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e Social, Economic and Geographical Sciences Research Group, James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
f Institute of Energy and Sustainable Development, De Montfort University, Leicester, UK
g Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA
h Environment and Sustainability Institute, University of Exeter, Cornwall TR10 9FE, UK

A R T I C L E I N F O

Article history:

Received 20 April 2014

Received in revised form 31 August 2014

Accepted 15 January 2015

Available online 18 March 2015

Keywords:

Above-ground carbon

Cultural heritage

Historical ecology

Land-use change

Species richness

Urban greenspace

A B S T R A C T

Ecosystem service provision varies temporally in response to natural and human-induced factors, yet

research in this field is dominated by analyses that ignore the time-lags and feedbacks that occur within

socio-ecological systems. The implications of this have been unstudied, but are central to understanding

how service delivery will alter due to future land-use/cover change. Urban areas are expanding faster

than any other land-use, making cities ideal study systems for examining such legacy effects. We assess

the extent to which present-day provision of a suite of eight ecosystem services, quantified using field-

gathered data, is explained by current and historical (stretching back 150 years) landcover. Five services

(above-ground carbon density, recreational use, bird species richness, bird density, and a metric of

recreation experience quality (continuity with the past) were more strongly determined by past

landcover. Time-lags ranged from 20 (bird species richness and density) to over 100 years (above-ground

carbon density). Historical landcover, therefore, can have a strong influence on current service provision.

By ignoring such time-lags, we risk drawing incorrect conclusions regarding how the distribution and

quality of some ecosystem services may alter in response to land-use/cover change. Although such a

finding adds to the complexity of predicting future scenarios, ecologists may find that they can link the

biodiversity conservation agenda to the preservation of cultural heritage, and that certain courses of

action provide win-win outcomes across multiple environmental and cultural goods.

� 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Land-use change has led to substantive alterations in the amount
and quality of services that ecosystems can provide (Dearing et al.,
2012; Tianhong et al., 2010; Zhao et al., 2006). While mapping
ecosystem services is a necessary first step in developing strategies
for their maintenance (Chan et al., 2006; Davies et al., 2011; Naidoo
et al., 2008; Raudsepp-Hearne et al., 2010a), it presents a static
picture of current/contemporary distributions (e.g., Lautenbach
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0959-3780/� 2015 The Authors. Published by Elsevier Ltd. This is an open access artic
et al., 2011; Jiang et al., 2013). To understand how best to manage
ecosystem service provision in response to land-use/cover (LU/LC)
change, an expanding body of work has developed model-based
scenarios to predict likely future consequences (Kareiva et al., 2011;
Nelson et al., 2009; UKNEA, 2011). These studies often highlight a
decline in some services as human development (e.g. urbanisation,
intensification of agriculture) proceeds. Counter-intuitively, even
though ecosystem services are increasingly degraded (MEA, 2005),
human well-being continues to improve globally. One possible
explanation may be that time-lags exist between the effects of
human-driven land transformations and present-day provision of
ecosystem services (Raudsepp-Hearne et al., 2010b).

Indeed, time-lags and feedbacks are a common and widespread
response to perturbations in many biological systems (Foster et al.,
2003; Nicholson et al., 2009). Historical land-use change has been
shown to influence ecosystem function in a broad range of studies,
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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with legacy effects that can last tens, hundreds or even thousands
of years (Foster et al., 2003; Szabo and Hedl, 2011). For example,
time-lags in extinction processes following habitat loss have been
documented across several taxa (Kuussaari et al., 2009; Tilman
et al., 1994). Given that many long-lived plants, or those with
certain life-history traits (e.g. clonal propagation, extensive seed
banks) are able to persist for long periods after conditions become
unfavourable (Eriksson, 1996), services underpinned by vegetation
are perhaps the most likely to be subject to a legacy of past land-
use. For instance, plant species diversity in grassland is often
heavily influenced by historical management (Gustavsson et al.,
2007; Pärtel et al., 1999) and, similarly, harvesting and wildfires in
forest habitats can limit annual carbon stored over 60 years later
(Gough et al., 2007). Vegetation carbon storage is primarily
determined by tree size (e.g., Davies et al., 2011) and thus has a
strong link to past land-use and management.

Likewise, legacies can also be expected in a social context, which
could influence the provision of cultural ecosystem services, such as
the number of recreational visitors to a particular location, or the
values that people associate with a certain site. For example, in the
built environment, features can act as ‘‘icons’’ (Hull et al., 1994). Such
icons can convey a connection with the past, self-identity and a sense
of community for local residents. Indeed, a central aim of built
cultural heritage preservation is to enhance the continuity of the
historical environment. This, in turn, helps to connect people with
both place and culture, thereby contributing to how desirable a place
is to live and/or to visit (e.g., Ashworth, 2008).

There is therefore a need to quantify the extent to which
historical land-use determines the distribution of present-day
ecosystem service provision. An analysis of this type is particularly
pertinent within human-dominated regions, such as urban areas,
where shifts in landcover are dynamic, changing rapidly in
response to policy (Dallimer et al., 2011; McDonald et al., 2010).
Urbanisation is a major driver of land-use change globally (Seto
et al., 2012), and will continue to be given that the proportion of the
world’s population that lives in cities is predicted to rise to 70%
over the next 40 years (United Nations, 2013). Furthermore, towns
and cities are set to expand disproportionately, as increases in the
area of urbanised land generally outpace population growth (Liu
et al., 2003; ONS, 2012b).

Urban development has profound impacts on ecosystem service
provision (Güneralp et al., 2013; Seto et al., 2012; Tianhong et al.,
2010; Zhao et al., 2006), not least because the costs and benefits of
green infrastructure (the network of greenspaces, water and other
vegetated features in towns and cities) are rarely considered in
expanding cities. This is despite the plethora of studies which have
demonstrated the importance of urban green infrastructure in
supporting the delivery of multiple services, such as temperature
mitigation (Myint et al., 2013; Park et al., 2012; Susca et al., 2011),
pollution reduction (Manes et al., 2012; Pugh et al., 2012), biological
carbon storage (Davies et al., 2011), promoting human health and
well-being (Mitchell and Popham, 2007; Ward-Thompson et al., 2012;
Dallimer et al., 2012a; Irvine et al., 2013, Keniger et al., 2013),
facilitating good social relations (Kuo and Sullivan, 2001; Sullivan
et al., 2004), and the provision of habitat for biodiversity (Davies et al.,
2011; Goddard et al., 2010; Dallimer et al., 2012b). The social and
cultural value of urban greenspaces is also important (Barau et al.,
2013; Gomez-Baggethun and Barton, 2013; Tzoulas et al., 2007).

Here, for a suite of eight ecosystem services delivered by urban
greenspaces (Table 1), we examine the influence of historical
landcover on present-day service provision within the city of
Sheffield, UK. Using the UK National Ecosystem Assessment
classification (UKNEA, 2011), we do this for one regulatory service
(above-ground carbon storage), multiple dimensions of two
cultural services (number of recreational users and the quality
of recreational experience in terms of the self-reported psycho-
logical well-being of visitors to urban greenspaces) and three
measures of wild species diversity (species richness and density of
two highly visible and charismatic taxonomic groups; plants and
birds). The choice of services was influenced by the desirability of
having a spatially and temporally synchronous primary dataset
likely to span a broad range of potential historical relationships.
We were thus constrained to a combination of measures that was
compatible with the resources available for data collection.
However, if anything, the eight measures are biased towards
those with a cultural dimension, which are often thought of as
more difficult to quantify (UKNEA, 2011).

2. Materials and Methods

2.1. Study System

Sheffield (538220N, 18200W) is a typical large city in England
(Jenks and Jones, 2010) and has a human population of 552,700
(ONS, 2012a). It lies at the confluence of five rivers, the Loxley,
Rivelin, Porter, Sheaf and Don. A sixth, the Blackburn, enters the
city on its eastern fringes where it joins the Don (Fig. 1). The rivers
have a long history of human exploitation and their physical
properties have been critical in determining the development of
Sheffield (Crossley and Cass, 1989). Riparian zones therefore make
an ideal system to investigate land-use legacies on ecosystem
service provision and form the focus of this study.

Industrial output and the human population of the city peaked
in the 1950s, and both contracted rapidly through the latter half of
the 20th century, resulting in large areas of vacant former
industrial land by the mid-1980s (Hey, 2005), much of which
has subsequently been redeveloped. Pollution and environmental
degradation followed the rapid urbanisation and, despite the early
recognition of the importance of greenspaces associated with
rivers (Abercrombie, 1924), the Don remained highly polluted until
the 1980s (Firth, 1997). Much of this particular river is still
dominated by large-scale industrial and commercial use. Despite
this history of human exploitation, long-established public parks
and networks of footpaths are located along the Porter, Rivelin and
Sheaf that pass through residential areas of south and west
Sheffield. More recent redevelopment initiatives have incorporat-
ed new public greenspaces and access routes along the city’s
waterways. In parallel, there has been a renewed focus on the
appreciation of the historical importance of the city’s rivers (e.g.,
Griffiths, 1999; Kendall, 2005). Given that riparian areas are
distributed throughout the urban, suburban and more rural
periphery of the city, they have the potential to deliver a range
of ecosystem services to urban dwellers and we can expect that
there would be an historical aspect to their provision.

2.2. Survey Design

To ensure that the sampling adequately covered the environ-
mental variation across the riparian zones in the study area at the
present time, we followed Gradsect survey design principles
(Austin and Heyligers, 1989), by characterising Sheffield according
to present-day landcover and river features (Dallimer et al.,
2012b). This provided 81 survey points in the urban area and
immediate rural surroundings. To further extend the variability
covered, an additional 26 survey sites were placed along rivers at
increasing distances from the urban centre, giving 107 locations in
total (Fig. 1). Although we wished to generate data covering the
complete suite of ecosystem services across all sites, sample sizes
were constrained for a number of measures (Table 2). This was
primarily due to logistical difficulties associated with resource-
intensive data collection, or access restrictions being put in place
while fieldwork was ongoing.



Table 1
Ecosystem services quantified across riparian greenspaces in the city of Sheffield, UK, and their hypothesised relationship with historical land-use, cover or management.

Service Context Historical influences Hypothesised

relationship with

past land-use

Above-ground carbon storage An important ecosystem service to which

towns and cities can contribute. Although

small compared with carbon emissions,

the size of urban carbon reservoirs appears

substantial (Davies et al., 2011).

Above-ground carbon storage is largely determined by

the density, size and species of tree present (Davies

et al., 2011). Tree cover in cities constantly changes due

to natural processes (growth/regeneration) and human

decisions to plant/remove individual trees (Nowak and

Greenfield, 2012).

Current vegetation structure and cover in urban areas is

often better explained by past conditions (Hope et al.,

2003; Luck et al., 2009; Pickett et al., 2008).

Strong

Wild species diversity Biodiversity is considered central to

supporting all ecosystem services

(Balvanera et al., 2006), but is often not

thought of as a service (Mace et al., 2012).

We include the richness of two highly

visible and culturally important groups

(plants, birds) due to their associated use

and non-use values for UK citizens

(UKNEA, 2011). Large numbers of people

actively participate in citizen science

projects (e.g., over 600,000 people took

part in the RSPB’s annual ‘‘Garden Bird

Watch’’ citizen science event; and/or are

members of conservation/wildlife NGOs

(e.g., around 3.7 million people are

members of the National Trust).

Plant species richness is related to historical land-use,

management and socio-economic characteristics across

locations and habitat types (Gustavsson et al., 2007;

Luck et al., 2009; Pärtel et al., 1999).

Although the patterns are less clear than for plants, the

persistence of bird species can be determined by past

land-use changes and habitat fragmentation (Ford et al.,

2009; Kamp et al., 2011).

Plant richness:

Strong

Bird richness and

density: Weak

Recreation (number of users) Government policies (EEA, 2009; ODPM,

2003) seek to encourage increased

provision and usage of urban greenspaces.

The effort invested by human volunteers in protected

areas in the region is positively related to how long the

area has been managed for conservation (Armsworth

et al., 2013). We therefore postulate that older

greenspaces will receive more visitors, perhaps because

they are better known and valued by the surrounding

community.

Cultural heritage preservation aims to connect people

with places through the historical continuity of the built

environment (e.g., Ashworth, 2008). Within Sheffield, a

recent focus on encouraging people to visit historical

locations along the city’s rivers may result in the

number of recreational users at a site being related to

past land-use.

Weak

Recreation (quality of experience) Greenspaces offer residents opportunities

for improving their physical and mental

health (Berman et al., 2008; Bowler et al.,

2010). Self-reported psychological well-

being can depend on the physical

properties of the greenspaces (Dallimer

et al., 2012a).

Attention restoration theory proposes that the natural

world, including urban greenspaces, is cognitively

restorative (Kaplan and Kaplan, 1989), something that is

likely to be associated with the current features of a

greenspace.

The sense-of-place framework suggests that the

relationship between people and greenspaces may be

understood in terms of the site itself. We focus here on

human emotional attachments with physical locations

(Altman and Low, 1992) and on the sense of identity that

may be developed by association with a particular

location (Proshansky et al., 1983). We consider the

relationship with place to include a cognitive, or

conscious, dimension such that the meaning, thoughts,

values and memories of a place held by an individual are

linked to one’s ‘sense of place’. This relationship is likely

to develop and strengthen through time.

Attention

restoration theory

well-being

components: Weak

Sense-of-place

well-being

components:

Strong
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2.3. Landcover Classification

We generated a timeline of landcover for the 107 sites using
data dating back over 150 years. The decades chosen reflect the
availability of historical topographical maps: the 2000s (the
most recent map series), 1980s, 1960s, 1940s, 1890s and 1850s
(Fig. 2). Landcover at each site was recorded in one of four
categories: (a) developed (buildings, roads, other impervious
surfaces); (b) urban greenspace (parks, gardens, playing fields,
all green open space enclosed by urban development); (c) open
land outside urban areas (agricultural land, moorland) and (d)
woodland (all types of tree cover). More resolved landcover
classification was not possible due to variability in the clarity of
the historical topographical maps. Equally, we restricted our
dataset to variables that could be acquired from all time periods.
As landscape-scale processes are likely to be important in
determining biodiversity and ecosystem service provision in
urban areas, the proportion of a circular buffer (100 m radius)
around each site that was covered by urban land was also
estimated.

2.4. Quantifying Present-day Ecosystem Service Provision

2.4.1. Above-ground Carbon Storage

Tree density across the study sites was highly variable
(0.0005–0.0797 trees m�2), so we employed a variable radius



Fig. 1. The urban area of Sheffield (shaded) showing the surveyed riparian sites in the city (filled circles—recreational users, plants, birds and above-ground carbon density; open

circles—plants, birds and above-ground carbon; crosses—quality of recreation experience). Rivers are indicated by solid lines. The inset shows location of the study area in Britain.
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plot method (analogous to the distance sampling methods used
for birds; see Section 2.4.2) with which to assess carbon storage. At
each study point the distance to the five nearest trees was
measured. These individuals were identified to species and their
diameter at breast height and crown height recorded. Data were
converted into above-ground dry-weight biomass for each tree
using allometric equations obtained from the literature (Davies
et al., 2011). A site-specific above-ground carbon density was
calculated by dividing the total carbon stored in the five nearest
trees by the circular area containing those trees (i.e., if the five
trees lay within 10 m of the study point, then the total carbon
stored was divided by the area of a 10 m radius circle to derive
carbon density).
Table 2
Sample size (N), mean and standard errors (SE) and range for ecosystem services acros

Ecosystem service Measure 

Above-ground carbon storage Carbon density (kg m�2) 

Wild species diversity Bird species richness 

Plant species richness 

Total bird density (birds ha�1) 

Recreation Number of users (index) 

Quality of experience Reflection 

Attachment 

Continuity with past 
2.4.2. Wild Species Diversity

The density and richness of birds was surveyed across all
107 sites (Dallimer et al., 2012b; Rouquette et al., 2013). Following
standard protocols, two visits were made in spring and early
summer 2009 to coincide with the breeding season, with the second
visit at least 6 weeks after the first. To ensure that the maximum
number of species was encountered, visits began between one and
three hours after sunrise (the time of highest bird activity) and were
only carried out in suitable weather conditions (low wind, no rain or
mist). A single observer (MD) recorded the identity of each bird that
was seen or heard from the survey point over a 5 min period,
excluding individuals that were flying over the site. A list of all
species encountered during both visits was collated.
s the riparian greenspace study sites in Sheffield, UK.

N Mean (�SE) Range

102 7.66 � 1.01 0.01–56.50

107 11.09 � 0.30 4–19

100 43.30 � 1.47 9–95

107 21.99 � 0.93 5.82–74.37

74 22.88 � 4.31 0–288

34 3.91 � 0.03 3.26–4.43

34 4.23 � 0.03 3.42–4.67

34 3.20 � 0.04 2.40–3.86



Fig. 2. Topographical maps of a part of the city of Sheffield, UK from: (a) the 1850s, (b) the 1890s, (c) the 1940s, (d) the 1960s, (e) the 1980s, and (f) the 2000s. All maps at a

scale of 1:15,000. Maps (a) to (e) are from � Landmark Information Group Ltd and Crown Copyright 2014. Map (f) is � Crown Copyright/database 2014 Ordnance Survey/

EDINA supplied service.
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The radial distance from the observer to each bird was
measured (using a laser rangefinder), which allowed distance
sampling techniques to be employed (Thomas et al., 2010). Bird
densities were calculated using Distance software (version 5.0,
release 2), so that the variability in species’ detectability can be
incorporated into estimates of their density. Species-specific density
functions were estimated for all species with 60 or more
registrations. For less common species, a detection function was
estimated using registrations for a group of similar species. We also
controlled for the cue type used to locate the bird (i.e., whether the
bird was only heard, or whether it was also seen). Subsequently,
candidate models of the detection function were chosen and tested
against the data. Model selection was based on minimum Akaike
Information Criteria (AIC) and x2 goodness of fit tests. The detection
function model was then applied to the number of encounters at
each point location to give a species-specific estimate of the density.
The density for all bird species recorded at a site was summed to give
an estimate of the total bird density. For plant species richness, all
forbs and woody plants were identified to species within a 40 m by
10 m area (long axis parallel to the river), centred on the bird survey
location. Surveys were conducted at 100 sites (Dallimer et al., 2012b;
Rouquette et al., 2013).

2.4.3. Number of Recreational Users

For 74 sites that had some recreational access (public parks or
rights of way, informal paths), counts of all visitors within a 20 min
period were made on three occasions during summer 2009. The
number of visitors in each period was summed to give an index of
human use. Surveys were carried out in summer as this is the time
of year when the greatest number of people is likely to be present.
At the subset of 34 sites (see Section 2.4.4) where interviews were
conducted, estimates of visitor numbers per hour were also
recorded. The two metrics of human usage were highly correlated
(Pearson’s r = 0.874, p < 0.001), therefore in subsequent analyses
we used the dataset with the higher sample size and broader
spatial coverage (i.e., where counts took place over 20 min).

2.4.4. Quality of Recreation Experience

We used self-reported psychological well-being to measure the
quality of the recreational experience. For a subset of 34 sites with
good public access, we developed a questionnaire to derive
estimates of individual visitor well-being (Dallimer et al., 2012a).
The questionnaire was delivered face-to-face in situ to 1108 visitors.
Seven closed-ended well-being statements measured reflection and
contemplation, while a further 14 assessed emotional attachment
and personal identity. All 21 statements used a 5-point Likert scale
(1 = strongly disagree, 5 = strongly agree) in response to the stem
question ‘‘Please indicate how much you agree with each statement
about this stretch of river and the neighbouring banks’’. Factor
analysis identified meaningful subscales of statements providing
the following interpretable well-being axes: reflection (ability to
think and gain perspective); attachment (degree of emotional ties
with the stretch of river); and continuity with past (extent to which
sense-of-identity is linked to the stretch of river through continuity
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across time). Continuous measures were derived by calculating the
participant’s average rating of the set of statements forming each
factor (for full details see Dallimer et al., 2012a).

2.4.5. Data Analysis

Taking a regression-based approach, and using the appropriate
error structure (Poisson or quasiPoisson, to account for over-
dispersion as necessary, for count data), we modelled present-day
ecosystem service provision as a response to landcover in each of the
six time periods (the 2000s, 1980s, 1960s, 1940s, 1890s, 1850s).
Previous analyses revealed a lack of spatial autocorrelation in this
system (Dallimer et al., 2012b), so it is not accounted for in our
analyses. Explanatory variables included the landcover category at
the survey site, the proportion of developed land in the 100 m buffer
and their interaction. We included interactions to examine whether
particular services had different forms of relationship with the
proportion of developed land surrounding a survey point, dependent
on the landcover at the site itself. For example, a site categorised as
woodland may receive more recreational visitors as the proportion
of the surrounding buffer covered by developed land increases, but
the opposite may be true for a site that is categorised as developed.
The smaller sample size for the recreation quality metrics precluded
the inclusion of interaction terms.

As land-use at a site in one time period is likely to be related to the
previous time period, data are not independent. We therefore
refrained from including explanatory variables from different
historical periods in the same regression model, instead electing
to use AICc comparisons between full models for each time period to
determine which historical landcover dataset offered the best
explanation for present-day ecosystem service provision. We
assumed that the model with the lowest AICc offered the best
explanation for variation in present-day service provision. However,
models that differ from this by DAICc < 2 offer an equally plausible
explanation for the data (Burnham and Anderson, 2002), with all
models within this margin assumed to be equivalent. Thus, if the
AICc from a landcover model from an historical time period fell
within two AICc units of the 2000s model, we did not consider there
to be evidence for historical landcover influencing current service
levels. Similarly, where models from two time periods were
equivalent according to AICc, we took the conservative approach
of considering the most recent model as offering the best
explanation for present-day service provision.

3. Results

Between the 1850s and the 2000s, the number of sites classified
as urban/developed increased by an order of magnitude (Table 3).
Urban greenspace sites rose fourfold and those classified as
woodland doubled. These changes were matched by a concomitant
decrease in the open land category. Similarly, the median
proportion of urban development in the 100 m buffer surrounding
each survey point rose from 0 to 50% (Table 3). Our study sites are
representative of current riparian landcover and river features (see
Table 3
Survey sites (N = 107) classified according to landcover for each time period, and the med

surrounding each site. Across the entire currently urbanised area of the city 4.2% of the cu

to 10.1, 14.9, 22.6, 31.6 and 41.5% for the 1890s, 1940s, 1960s, 1980s and 2000s, respe

Landcover

Time period Developed Urban greenspace 

1850s 3 (2.8% of 107 sites) 5 

1890s 14 (13.1%) 6 

1940s 21 (19.6%) 13 

1960s 23 (21.5%) 16 

1980s 24 (22.4%) 21 

2000s 34 (31.8%) 20 
Section 2.2). Nevertheless, until the 1960s, the pattern of historical
landcover change we observed was broadly similar to that
experienced by Sheffield as a whole (Table 3) (Dı́az Porras,
2013). After this date, landcover trajectories diverged, with a
higher proportion of the city as a whole classified as ‘‘developed’’
when compared to our study sites. Different landcovers exhibited
varying degrees of stability through the time period of our study
(Fig. 3). Developed land rarely changed categorisation, although in
more recent time periods some developed sites were re-classified
as urban greenspace, generally reflecting the presence of
abandoned former industrial sites in the city. As would be
expected, there was a notable movement of sites from the open
land into developed and urban greenspace categories. Sites
categorised as woodland tended to remain constant.

Ecosystem service provision varied across the study region
(Table 2). Historical landcover offered a better explanation for the
variation in five out of the eight ecosystem service measures than
current landcover (Figs. 4 and 5). For example, R2 for above-ground
carbon density modelled against current landcover was 0.14
compared to 0.27 for data from the 1890s (Fig. 4a). AICc comparisons
also indicated that landcover from the 1890s offered the best
explanation for present-day variation in carbon density. Indeed,
there was a strong signal from historical landcover as, with the
exception of the 1850s, models from all historical periods offered a
better explanation for current patterns of above-ground carbon
storage than data from the 2000s. The strength and direction of the
relationship between above-ground carbon density and the
explanatory variables was similar across different time periods
(again with the exception of the 1850s; Tables 4 and S1). Similarly,
apart from the 1850s, above-ground carbon density was highest for
landcovers classified as developed or woodland. For sites classified
as urban greenspace in 1890, carbon density was negatively related
to the proportion of urban land in the surrounding buffer (Table S1).

Across the three measures of wild species diversity (Figs. 4b–d),
the influence of historical landcover was either absent or modest.
The best explanation for current-day variation in bird density
(Fig. 4b) and richness (Fig. 4c) was offered by historical landcover
from the 1980s. However, the improvement in AICc (and increase
in explanatory power) relative to 2000s was modest, and the
strength and direction of the relationships with landcover
variables was similar (Table S1). For bird density, landcover in
all other time periods offered a substantially worse explanation of
the data than either 2000s or 1980s data. Bird density was lower
for sites classified as developed in the 1980s, but there was little
difference in bird species richness between landcover categories
(Table 4). Historical landcover was not related to present-day
variation in plant richness any more strongly than 2000s
landcover, with little difference in QAICc values across all time
periods. Explanatory power peaked at 0.16 across all plant richness
models (Table 4), with the parameter estimates for the landcover
categories broadly similar across all time periods (Table S1).

There was substantial variation in the ability of current and
historical landcover data to explain the number of recreational
ian (interquartile range) percent coverage by urban development in a 100 m buffer

rrently urbanised area of the city was classified as developed in 1850. This increased

ctively (Dı́az Porras, 2013).

Woodland Open land %Urban in 100 m buffer

15 84 0 (0–5)

20 67 5 (0–20)

19 54 10 (0–90)

21 47 30 (5–95)

26 36 40 (5–97.5)

29 24 50 (5–100)



Fig. 3. The fate of sites classified as the four landcover categories between different time periods across 107 survey sites situated along the urban riparian corridors in

Sheffield, UK, for between the: (a) 1850s and 2000s (the entire time period), (b) 1850s and 1890s, (c) 1890s and 1940s, (d) 1940s and 1960s, (e) 1960s and 1980s and (f) 1980s

and 2000s. In each case, the figures show the number of sites falling into the four landcover categories in the earlier time period (listed on the x-axis) which are subsequently

classified as developed (black), open land (light grey), urban greenspace (dark grey) and woodland (striped) in the later time period (listed on the y-axis).
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users at our study sites (Fig. 5a). The landcover model with the
lowest QAICc was from the 1940s, with pR2 varying from 0.15
(1850s) and 0.17 (2000s), to 0.37 (1940s). With the exception of
the 1850s data, models from all time periods offered a better
explanation (lower QAICc and higher pR2) of patterns of
recreational use than the measures of landcover from the 2000s.
Present-day usage was higher for sites that were classified as open,
woodland or urban greenspace in the 1940s than those classified as
developed. Usage increased with the proportion of land surround-
ing the site that was already urban in the 1940s (Table 4).

For one measure of the quality of the recreational experience
(continuity with past), the best explanation for current-day
variation was offered by landcover in the 1960s (Fig. 5), with
the measure of well-being negatively related to the proportion of
the surrounding 100 m classified as urban in that time period. The
improvement in AICc relative to present-day landcover was
substantial and was matched by an increase in R2. For the
remaining two measures of well-being (reflection and attachment),
the 2000s landcover models offered both the lowest AICc and
highest R2 (Fig. 5). For all well-being measures, the direction
(positive/negative) of the relationship with landcover variables
was similar across models (Table S1).

4. Discussion

The provision of ecosystem services varies temporally (Lau-
tenbach et al., 2011; Jiang et al., 2013; Holland et al., 2011).
Nonetheless, the prevailing approach to their study has been to
quantify provision based on analyses that generally ignore time-
lags and feedbacks within and between social and ecological
systems (Carpenter et al., 2009; Nicholson et al., 2009), using
contemporary land-use proxies to map the spatial distribution of
services (Seppelt et al., 2011). Yet we report relatively modest
explanatory power for several relationships between current
landcover and ecosystem service provision; something not
uncommon in the literature (e.g., Eigenbrod et al., 2010). Our
results demonstrate that, for some ecosystem services, past
landcover is a better predictor of current provision than present
landcover, and highlight the need to incorporate legacy effects into
ecosystem service provision models.

For five out of the eight ecosystem services examined here, past
landcover offered a better explanation for present-day variation in
service provision when compared to current landcover (cf.
Table 1). The strength and length of the time-lag varied according
to the service; ranging from more than 100 years for above-ground
carbon density, through 60 years for human visitor numbers,
40 years for continuity with past well-being, to 20 years for total
bird density and richness. There was no evidence of a time-lag for
the remaining measures of well-being (cf. Table 1). Any ecosystem
is likely to be subject to a number of historical influences, which
will be due to its inherent properties, as well as human-induced
alterations (Holland et al., 2011). When examining multiple
services, we should thus expect that each service will respond
to landcover from different points in the past.



Fig. 4. DAICc (solid circles—lower DAICc represents more plausible models) and R2 (open square—higher R2 represents better explanatory power) for present-day ecosystem

service measures across the riparian areas of Sheffield for: (a) carbon density; (b) bird density; (c) bird richness; and (d) plant richness. The horizontal dotted line indicates

DAICc = 2. Where multiple time periods offer plausible explanations for the data (difference in AICc < 2 between models), we took the conservative approach of considering

the most recent model as offering the best explanation for present-day service provision (see Section 2.5; Table 4).
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Within cities, many dimensions of vegetation are often better
explained by past characteristics, with temporal lags often due to
social and ecological changes happening at different rates (Luck
et al., 2009; Troy et al., 2007). Although we find no conclusive
(a)

(b) (

(

Fig. 5. DAICc (solid circles—lower DAICc represents more plausible models) and R2 (open

service measures across the riparian areas of Sheffield for: (a) number of recreational visi

well-being. The horizontal dotted line indicates DAICc = 2. Where multiple time periods

we took the conservative approach of considering the most recent model as offering t
evidence that plant species richness is related to past landcover,
two different biodiversity metrics, bird richness and density, were
more strongly predicted by landcover from the 1980s than from
the present-day, although the improvement in model fit was
d)

c)

 square—higher R2 represents better explanatory power) for present-day ecosystem

tors; (b) reflection well-being; (c) attachment well-being; and (d) continuity with past

 offered plausible explanations for the data (difference in AICc < 2 between models),

he best explanation for present-day service provision (see Section 2.5; Table 4).
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relatively modest. Given that the above-ground carbon stocks
associated with vegetation are closely correlated with biomass
density (i.e., tree size and number) they are more likely to be
related to historical management and landcover than present-day
conditions (Foster et al., 2003; Gough et al., 2007). For Sheffield’s
riparian greenspaces, above-ground carbon stocks were strongly
predicted by landcover over 100 years ago. However, regardless of
which time period we examined between the 1890s and the 2000s,
the strength and direction of relationships between above-ground
carbon stocks and landcover were similar.

People have multiple motivations for visiting urban greenspaces,
which are not limited to the prosaic (e.g., proximity, convenience) and
can include reasons that are related to the physical features of, as well
as the emotional qualities associated with, the site (Dallimer et al.,
2014; Irvine et al., 2013). It is therefore plausible that landcover could
influence both the number of visitors a greenspace receives, and the
well-being that visitors gain whilst there. Here we found that the
number of recreational visitors to riparian greenspaces in Sheffield
was more strongly determined by landcover over 60 years previously
than by present-day conditions. Likewise, an approximate 40 year
temporal lag influenced current levels of one metric of well-being
(continuity with the past) associated with recreational experience.
These time-lags suggest that land-use decisions made many decades
ago can have long-lasting implications for the human population,
reinforcing the importance of retaining and enhancing existing green
infrastructure within cities, rather than simply creating new sites. This
is particularly germane given that providing urban greenspaces, in
order to encourage their use and thereby deliver individual and
societal benefits, is an important policy objective (EEA, 2009).

When seeking to understand the relationship between people
and the environment, our findings highlight the importance of
considering the dynamic interplay among the spatial and temporal
aspects of the biophysical alongside the cognitive and emotional
processes of individuals (e.g., di Castri et al., 1981; Ittelson et al.,
1974; Kaplan and Kaplan, 1989). What is intriguing is that this
relationship is evident even though most of our participants are
unlikely to have experienced the study locations directly between
40 to 60 years ago. The results therefore point to the need to consider
the socio-cultural context within which the person–environment
interaction occurs (e.g., Bonnes and Secchiaroli, 1995; Nassauer,
1997) and the potential influence of long-standing features (e.g., the
presence of older trees (O’Brien, 2004) and/or historical built
infrastructure (Hull et al., 1994). For example, it may be that well-
established greenspaces are more widely valued by city residents,
who are therefore more likely to visit them. In the context of our case
study city, the relatively recent focus on the preservation and
appreciation of cultural heritage (e.g., Griffiths, 1999; Kendall, 2005)
may encourage residents (either consciously or subconsciously) to
visit more established greenspaces. Indeed, heritage preservation is
undertaken for a range of reasons, but can include enhancing a
location’s character, identity or sense of place (Hull et al., 1994) thus
maximising its contribution to the creation of a liveable community
(e.g., Timothy and Nyaupane, 2009). Given the theoretical grounding
of our continuity with past metric in the sense of place literature
(Table 1) (e.g., Proshansky et al., 1983), the effect of past land-use on
present-day well-being is what might be expected.

Although we found no legacy effect of historical landcover for the
two other aspects of well-being (reflection and attachment), land-
cover was a strong predictor of all three measures of psychological
wellbeing. Both theory (Kaplan and Kaplan, 1989; Kaplan, 1993,
1995) and empirical research (e.g., Gulwadi, 2006; Herzog et al.,
1997; Staats et al., 2003; Talbot and Kaplan, 1984) support the idea
that the natural environment can facilitate thinking through, and
reflecting on, issues and suggest that people actively select certain
types of settings for such purposes that are often of a more natural
configuration. It may be, therefore, that landcover acts as an
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objective measure of some environmental qualities that the people
involved in our study were seeking. Within the sense of place
literature, the connection or bond between a person and a specific
place, as measured by our attachment metric, has been widely
discussed (for reviews see Altman and Low, 1992; Manzo, 2003;
Scannell and Gifford, 2010). Perhaps most relevant in relation to this
study is the emphasis on direct experience (e.g., Manzo, 2005
‘‘experience-in-place’’ concept) and the physical characteristics of
the place itself (e.g., Stedman, 2003).

5. Conclusions

The concept that historical information can help in understand-
ing the present-day properties of ecosystems is increasingly being
recognised. Nevertheless, land-use time-lags do not routinely
feature in predicting ecosystem service provision. This is a potential
weakness of their application. Indeed, some historians argue that
historical elements are fundamental to conservation biology and
that the discipline will continue to be incomplete if history is
neglected (Meine, 1999; Newell et al., 2005; Szabo, 2010). No field-
derived measures of ecosystem services provision contemporary
with the historical maps were available, precluding us from
undertaking any form of time series analyses and therefore
addressing issues of causality. Nevertheless, we have demonstrated
possible links between past landcover (covering periods 20 to
100 years ago) and the present provision of some ecosystem
services. This emphasises that historical dimension to biodiversity
and ecosystem services management is essential, especially in fast-
changing urban ecosystems. Examining other metrics of landcover
at different spatial scales (cf., Dallimer et al., 2010) and/or landcover
change trajectory and stability (e.g., Watson et al., 2014) offer
informative avenues for future research. Although our findings add
to the complexity of predicting how ecosystem service delivery may
respond to scenarios of LU/LC change, ecologists may find that they
can link the biodiversity conservation agenda to the preservation of
cultural heritage, and that certain courses of action provide win–win
outcomes across multiple environmental and cultural goods.
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