Citation for published version

DOI

Link to record in KAR

https://kar.kent.ac.uk/47761/

Document Version

Other

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version. Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact: researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down information provided at http://kar.kent.ac.uk/contact.html
Additive manufacturing (AM) or 3D printing (3DP) enables the bottom-up fabrication of objects from a digital model. Complex objects that were difficult or impossible to produce using standard methods can now be manufactured. There is significant interest in applying 3D printing technology to aerospace applications. It is very probable that future RF components will be integrated into 3D printed parts.

This paper describes the transmission performance of full-metal (volumetric) frequency selective structures and compares them with those of 3D FSS made by partially metallizing the same 3D shapes, thereby controlling induced current paths. 3D printing is used here to fabricate the core of the structures [1], which are based around a new concept of folding FSS elements in three-dimensions [2].

Introduction

Additive manufacturing (AM) or 3D printing (3DP) enables the bottom-up fabrication of objects from a digital model. Complex objects that were difficult or impossible to produce using standard methods can now be manufactured. There is significant interest in applying 3D printing technology to aerospace applications. It is very probable that future RF components will be integrated into 3D printed parts.

This paper describes the transmission performance of full-metal (volumetric) frequency selective structures and compares them with those of 3D FSS made by partially metallizing the same 3D shapes, thereby controlling induced current paths. 3D printing is used here to fabricate the core of the structures [1], which are based around a new concept of folding FSS elements in three-dimensions [2].

Designs – “Four-legged loaded” loop

- **Volumetric, entirely metallised**
 - a) original
 - b) 3D folded

- **Partially metallised**
 - c) original
 - d) 3D folded

Dimensions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Dimensions (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>35</td>
</tr>
<tr>
<td>w</td>
<td>9</td>
</tr>
<tr>
<td>d</td>
<td>10</td>
</tr>
<tr>
<td>f</td>
<td>4</td>
</tr>
<tr>
<td>b</td>
<td>3</td>
</tr>
<tr>
<td>c</td>
<td>8.5</td>
</tr>
<tr>
<td>r</td>
<td>3</td>
</tr>
<tr>
<td>p</td>
<td>38</td>
</tr>
</tbody>
</table>

Simulations

- **Volumetric, entirely metallised**
- **Partially metallised**

Fabrication

- **Volumetric, entirely metallised**
 - Elements fabricated with Z650 printer from Zcorp
 - Plaster based material
 - Elements fully coated using silver conductive paint

- **Partially metallised**
 - Inexpensive FDM machine (modified MBOT 3D printer)
 - Plastic based material. Polylactic acid (PLA) material
 - Elements partially coated using silver conductive paint

Measurements - 3D folded loops

- **Volumetric, entirely metallised**
- **Partially metallised**

Conclusions

This study has demonstrated the possibility of developing complex frequency selective structures using additive manufacturing techniques. Work is progressing on the fabrication of FSS using 3D printing with metal.

Acknowledgements

This work was supported by a grant from the UK Royal Society.

References
