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Abstract— Two inertial sensor systems were developed for 3D 
tracking of upper limb movement. One utilizes four sensors and a 
Kinematic model to track the positions of all four upper limb 
segments/joints and the other uses one sensor and a Dead Reck-
oning algorithm to track a single upper limb segment/joint. Ini-
tial evaluation indicates that the system using the Kinematic 
Model is able to track orientation to 1 degree and position to 
within 0.1 cm over a distance of 10 cm. The dead reckoning sys-
tem combined with the ‘Zero Velocity Update’ correction can 
reduce errors introduced through double integration of errors in 
the estimate in offsets of the acceleration from several meters to 
0.8% of the total movement distance. Preliminary evaluation of 
the systems has been carried out on ten healthy volunteers and 
the Kinematic System has also been evaluated on one patient 
undergoing neurorehabilitation over a period of ten weeks. The 
initial evaluation of the two systems also shows that they can 
monitor dynamic information of joint rotation and position and 
assess rehabilitation process in an objective way, providing addi-
tional clinical insight into the rehabilitation process.   
 

Index Terms—3D motion tracking, dead reckoning, inertial 
sensors, kinematic modelling, motion monitoring, upper limb 
motion, Zero Velocity Update. 
 

I. INTRODUCTION 

BOUT 10 million people in the UK live with a neurologi-
cal condition e.g. stroke, traumatic brain injury, and mo-

tor neurone disease [1]. Neurological conditions and disorders 
can result in mental and physical disabilities and one outcome 
can be dysfunction of upper limb function [2]. The recovery of 
upper limb function is of great importance in improving the 
patients’ quality of life and helping them to maximize their 
independence [3]. Rehabilitation, which usually includes oc-
cupational therapy and physiotherapy, can help to ease symp-
toms, and restore upper limb function. Assessment of recovery 
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is an important aspect of any rehabilitation program. In gen-
eral, most of the currently available assessments are viewed 
and scored by therapists based on assessment scales and deci-
sion rules. For example, the Fugl-Meyer Assessment (FMA) 
[4], the Box & Block Test (BBT) [5] and the Action Research 
Arm Test (ARAT) [6] are all thought to be comprehensive and 
quantitative measures of upper limb motor function, having 
been used for years. Although these assessments have proven 
to be effective and reliable [7] [8], they do not provide objec-
tive data on the physical movement of the upper limb or how 
the upper limb moves through space. Therefore, there is con-
siderable interest in developing motion tracking systems as a 
tool for the quantitative measurement of dynamic upper limb 
movement [9] [10]. This precise data may add value in moni-
toring progress of the patient and the rehabilitation program. 

Developing a motion monitoring system for clinical use a 
hospital setting must be acceptable to patient and clinician. 
Ideally the system should be transportable, easy to set up, and 
have minimal impact on the patients’ normal range of move-
ment. Existing motion tracking systems can be divided into 
two types: visual tracking and non-visual tracking systems. 
Visual or video tracking systems are well proven for motion 
analysis and meet the requirements for upper limb tracking 
[11]. However, they are relatively complex, expensive and 
require careful setup. There are also several non-visual track-
ing technologies available that are based on inertial, mechani-
cal, acoustic and magnetic sensing strategies [12] [13]. Me-
chanical sensing systems could provide a straightforward way 
to track the joints but they are uncomfortable to wear for long 
periods. Acoustic sensing and magnetic sensing are affected 
by ambient conditions e.g. temperature, humidity or surround-
ing conductive/magnetic materials [14]. However, recent ad-
vances in inertial sensing technology based on micro-
machined electromechanical systems (MEMS) [15] have made 
the use of small and lightweight inertial sensors a viable op-
tion. 

A number of studies have used inertial sensors and kinemat-
ic modelling for human upper limb motion tracking - includ-
ing Zhou, et al. [16], Hingtgen, et al. [17] and Perry, et al. 
[18]. At least two sensors (on upper arm and forearm segments 
to monitor the elbow and wrist orientation) are required to 
construct a basic upper limb link kinematic model. In Zhou, et 
al. [16], a two-sensor system is used and the shoulder move-
ment is predicted by an optimization technique without requir-
ing an additional sensor on the shoulder. But other motion data 
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(e.g. angular velocity, orientation and acceleration) from the 
shoulder cannot be obtained. Therefore, in order to measure 
and then analyze the motion of all the upper limb segments 
(hand, wrist, elbow and shoulder), a kinematic model using at 
least four inertial sensors is required. Although the four - iner-
tial sensor system enables the accurate tracking for all the up-
per limb segments, it has the disadvantages of its high cost 
(£6000) and the complexity of the system set-up. Under some 
circumstances it may only be necessary to monitor the motion 
of a single segment. Theoretically this could be achieved using 
one sensor and the Dead Reckoning (DR) method [19] based 
on strapdown inertial navigation technology [20]. This has 
been used in pedestrian tracking in indoor navigation [21] 
[22]. Additionally reducing the number of the sensors to one 
would benefit both patients and clinicians in terms of com-
plexity, cost and burden on the patient. However, one of the 
major challenges in using Dead Reckoning is the need to min-
imize the drift in estimate of position resulting from the dou-
ble integration of errors in the estimate of offsets in the linear 
acceleration. There are a range of options available, one of 
which is the Zero Velocity Update (ZUPT) [23], this tech-
nique has been used in pedestrian position tracking and is 
based on the identification of zero velocity intervals of the 
foot during the stance and swing phases of walking [22]. Un-
like walking, clear zero velocity intervals may not always ex-
ist for upper limb movement assessments. However, for some 
of the assessment tests there are known events when the limb 
segments are stationary, e.g. during peg collection and place-
ment in the nine-hole peg test (NHPT) [24]. Therefore the 
ZUPT technique has been applied in this preliminary evalua-
tion of the inertial measurement system using a single sensor 
and the DR method. Additionally, these two systems are able 
to provide more information on the active range of motion 
(AROM) measurement. AROM is considered to be a good 
indicator of response to the rehabilitation program and for 
differentiating between individuals [25]. The standard meas-
urement device, the goniometer [26], provides the clinician 
with a static measurement of the overall AROM, typically 
within 1°, but cannot provide any data on how that motion was 
achieved. However the use of the inertial motion measurement 
system also provides dynamic information throughout the 
movement, typically to within 1° [27]. 

As some of the researchers have introduced the quantitative 
tool into treatment regimes [28], in this research inertial track-
ing systems have been developed to enable clinicians to obtain 
repeatable and objective measurements of the progress and 
efficacy of rehabilitation interventions, including the use of 
botulinum therapy or functional electrical stimulation [29] 
[30]. As stated previously, the implementation of the four-
sensor system is able to track all the upper limb segments. 
This will provide the clinician with complete motion infor-
mation of the upper limb segments. The single sensor system 
reduces the complexity of measurement system, and enables 
the tracking of a specific joint and limb segment. Once the two 
systems have been evaluated the aim of this research is to in-
vestigate whether these system are able to obtain novel quanti-
tative motion information from patients’ assessment during 

rehabilitation. It also should be noted that these sensors should 
be acceptable to patients, and measurement systems utilizing 
these sensors must also be suitable for use in the hospital envi-
ronment, be portable and easy to set up.  

II. METHODS 

A. System Setup 

The two motion tracking systems use the Xsens MTx [27] 
inertial sensor which was developed for use in biomechanics 
[31]. The MTx sensor contains two biaxial-accelerometers 
(ADXL202E), three single-axis gyroscopes (ENC-03J) and 
three magneto-resistive sensors (KMZ51). This combination 
enables the measurement of 3D acceleration, 3D magnetic 
field and 3D angular velocity. Furthermore, Xsens have em-
bedded a calibration and a Kalman Filter (XKF) sensor fusion 
algorithm Xsens in the MTx which can be applied to the raw 
data to provide an accurate estimation of sensor 3D orienta-
tion.  

The inertial sensing system set up is illustrated in Fig. 1. 
The four sensors are connected by cables to the Xbus master 
which provides the sensors with power and connection to a PC 
running the Xsens MT (Motion Tracking) manager software 
development kit [32]. The maximum sampling frequency for 
the raw data is 512 Hz per sensor. The maximum sampling 
frequency for the calibrated data is reduced to 120 Hz per sen-
sor, and is sufficient to capture human upper limb movement. 
Matlab (2009b, The MathWorks) was used for data pro-

cessing, analysis and presentation.  
 
The parameters derived from the motion tracking algo-

rithms described in this study are those which are of im-
portance for the quantitative evaluation of changes in the pa-
tients’ movement during rehabilitation and are segment rota-
tion (orientation tracking) and joint or segment trajectory (po-
sition tracking).  

B. Orientation Tracking 

One key parameter in the assessment of limb function is the 
active range of motion (AROM). AROM usually refers to the 
voluntary range of movement around a specific joint. AROM 
provides information about the patients’ ability to move and 
joint mobility [33]. The change in orientation of the upper 
limb segments with respect to their original displacement can 
be represented by the inertial sensors’ Euler angle outputs 
(roll, pitch and yaw) in the global reference frame (Fig. 2 (a)). 
To perform the AROM test, the subjects were asked to move 

 
Fig. 1.  Structure of the motion tracking system 
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their upper limb without any external assistance. The subjects  
were asked to perform 7 DoF rotation, including shoulder 
flexion-extension, internal-external rotation, adduction-
abduction, elbow flexion-extension, forearm supination-
pronation, wrist flexion-extension and ulnar-radius deviation. 
As seen in Fig. 2 (d), the pitch angle of the sensor attached on 
the upper arm is -90 degrees to the initial displacement where 
the abduction angle is 0 degree. The direction of the abduction 
rotation is the same as that of the pitch angle, which is the 
rotation around the y-axis. Therefore according to the above 
relationship, the shoulder pitch angle (Fig. 2 (d)) is related to 
the pitch angle of the sensor attached on the upper arm as pre-
sented in equation (1). In this case the output of the pitch angle 
is presented in the global reference frame. The choice of refer-
ence frame will depend on how the data is to be presented - 
see section II.C.1. 
 

90+= anglepitchangleabduction  (1) 

 

C. Position Tracking 

In order to explore the feasibility of using inertial sensors 
for segment position tracking, kinematic modelling and DR 
methods have been used. The flow chart for these tracking 
strategies is presented in Fig. 3. The kinematic model derives 

the position of each upper limb segment from knowledge of 
the segment lengths and the orientation of the sensors on each 
limb segment. Multiple sensors are required to build up the 
kinematic model. DR uses double integration of the linear 
acceleration, the acceleration with the gravity component re-
moved, to calculate changes in position of that sensor. 
1) Four Inertial Sensor Based Kinematic Model 

Based on the upper limb kinematic geometry, the displace-
ment of the multi-linked skeleton model of the upper limb can 
be described by the rotation of the upper limb segments about 
a reference point. For simplification, these segments have 
been treated as rigid bodies of fixed length whose deformation 
can be neglected. These segments, linked by joints, are treated 
as a kinematic chain. 

To describe the relative positions of the segments, a com-
mon reference frame is necessary for each segment or sensor 
[34]. This reference system is usually defined with respect to 
the global reference frame or with respect to the sensor itself 
(sensor reference frame). In accordance with the right-handed 
co-ordinate system, the global reference frame is an earth-
fixed reference frame (Fig. 2 (b)) whose positive X direction 
points to the local magnetic North, positive Y direction points 
to the West, and positive Z direction points in the opposite 
direction to the force of gravity. The sensor reference frame is 
fixed to the device in the right-handed co-ordinate system: the 
X-axis points horizontally to the right of the sensor, the Y-axis 
points upwards (vertical to the X-axis in the horizontal plane 
of the sensor) and the Z-axis points towards the outside of the 
sensor’s horizontal plane as shown in Fig. 2 (b). To describe 
the movement trajectory of the upper limb segments, a com-
mon reference frame is required to present the relative move-
ments of each upper limb segment. In order to be able to relate 
the outputs from all the sensors to the common reference 
frame, the measurements in the sensor reference frames have 
firstly to be converted into the global reference frame. This is 
achieved by the application of the Rotation Matrix [34] to the 
orientation output of the sensors. Fig. 2 (c) shows the frame 
transformation between the above two reference frames. 

Though the global reference frame is well defined, it is con-
ceptually easier to relate any segment motion to a reference 
point on the patient, especially as the patient may move rela-
tive to the global reference frame during or between measure-
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Fig. 3.  Kinematic and Dead Reckoning position tracking strategies 
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ment sessions. Therefore in this preliminary evaluation the 
lowest vertebra of the neck is used as the reference point, as 
shown in Fig. 4 (a). The positive X-axis of the sensor is up-
ward parallel to the axial skeleton of the upper limb, the posi-
tive Y-axis of the sensor points into the plane and the positive 
Z-axis points rightward corresponding to the right hand rule. 

The kinematic model is based on that used for robotic ma-
nipulators [34] and a 7 Degree of Freedom (DoF) upper limb 
model [35] is used. The orientation data inputs to the kinemat-
ic model can be obtained directly from the MTx sensors, with 
each sensor being capable of producing orientation infor-
mation in three formats (Euler angle, Rotation Matrix, and 
Quaternions [36]). In this study, the Rotation Matrix is used. 
Although movement of the shoulder is tracked by the sensor 
attached to the scapula it should be noted that the shoulder 
joint is very complex, consisting of three bones, the clavicle, 
scapula and humerus, with each possessing associated articu-
lations [37]. The four-sensor model shown in Fig. 4 (a) as-
sumes that the movement of the shoulder is caused solely by 
scapular movement (as shown in Fig. 4 (b)) with the trunk 
remaining stationary during movement. 

The initial position of the shoulder )0(sh
tr P  relative to the 

reference point as shown in Fig. 4 (a), the elbow initial posi-
tion )0(e

tr P  relative to the shoulder, the wrist initial position 

)0(w
tr P  relative to the elbow and the hand initial position 

)0(h
tr P  relative to the wrist in the trunk reference frame are 

expressed as T
sh

tr LLP )0,4sin,4cos()0( ∗∗−= αα , 
T

e
tr LP )0,0,1()0( −= , T

w
tr LP )0,0,2()0( −=  and 

T
h

tr LP )0,0,3()0( −=  in the trunk reference frame. Here, the 

lengths of the upper arm (1L ), forearm ( 2L ) and hand ( 3L ) 
are measured, thus defining the initial position of the elbow, 
wrist and hand as the constraints of the upper limb kinematic 
model with 4L  defined as the distance between the shoulder 

and the reference point )0,0,0( . In order to estimate shoulder 

movement, the sensor was attached onto the scapula. The α  
is the angle of this sensor with respect to the Z-axis in the 
trunk reference frame and is measured with a goniometer. In 
order to measure the length of the upper limb segments (1L ,

2L , 3L and 4L ), the subject sits upright with arms hanging 
down. A non-stretchable tape measure was used. The upper 
arm (humerus) length (1L ) was measured between the shoul-
der joint and the elbow. The forearm length (2L ) was meas-
ured between the elbow joint and the wrist joint. And the hand 
length ( 3L ) was measured between the wrist and the center of 
the palm. The angle α  and length ( 4L ) were measured after 
the sensor had been attached onto the shoulder. 

In equation (2) below, )(tRe
g
s  is the rotation matrix which 

rotates the elbow joint vector from the sensor reference frame 
to the global reference. This is obtained from the sensor’s rota-
tion matrix output which is generated by the Xsens inertial 
sensor using the integrated data fusion algorithm XKF as dis-

cussed in Section II. )(tRe
tr
g  is the rotation matrix which ro-

tates the elbow joint vector from the global reference frame to 
the trunk reference frame. The product of the above two ma-
trices, )(tRe

tr
s , is defined as the rotation matrix which rotates 

the elbow vector from the sensor reference frame to the trunk 
reference frame. Similarly the rotation matrices which rotate 
the shoulder, wrist and hand vectors from the sensor reference 
frame to the trunk reference frame are )(tRsh

tr
s , )(tRw

tr
s , 

)(tRw
tr
s  and )(tRh

tr
s  respectively. In equation (3), the position 

outputs of the shoulder, elbow, wrist and hand in the trunk 
reference frame are )(tPsh

tr , )(tPe
tr , )(tPw

tr and )(tPh
tr  re-

spectively. The shoulder position, for example, is calculated 
by multiplying the shoulder rotation matrix )(tRsh

tr
s  and the 

initial shoulder position in the trunk reference )0(sh
tr P . Simi-

larly, the position of the elbow )(tPe
tr , wrist )(tPw

tr  and hand 

)(tPh
tr  are calculated according to equation (3). 
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2) Single Inertial Sensor Based Dead Reckoning Method 

In order to explore the feasibility of using a single sensor to 
track the movement of one upper limb segment e.g. the hand, 
the DR method is used. 
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(a)                                                      (b) 

 
Fig. 4.  Four-sensor kinematic model (a) 4 Sensor Model (b) Sensor’s place-
ment on shoulder [37] 
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a) DR Method 

This method estimates the current position by adding the es-
timated change in position obtained from the double integra-
tion of the measured linear acceleration, with respect to time, 
to the previous estimate of the position. By using the rotation 
matrix )(tRg

s , the measurable acceleration vector in the sensor 

reference frame )(tas   can be converted from the sensor refer-

ence frame to the global reference frame or to a reference 
frame of choice e.g. the trunk reference frame. Once the gravi-
tational component of the acceleration, g


, has been removed 

then double integration of the linear acceleration data in the 
global reference frame )(talinear

g   should, in theory, enable 

any change in sensor or segment position to be estimated. The 
equations used to calculate the linear position are as follows: 
 

gtatRta sg
slinear

g 
−∗= )()()(  (4) 

 

∫=
t

linear
g

linear
g dttatv )()(


 (5) 

 

∫∫∫ ==
t

linear
g

t

linear
g

linear
g dttadttvtp )()()(


 (6) 

 
Where, linear

g a


, linear
gv


 and linear
g p


 are the linear accelera-

tion, velocity and position, respectively, in the global refer-
ence frame. These vectors can then be transformed into the 
trunk reference frame by multiplication with the trunk refer-
ence rotation matrix. 

Although this tracking method seems straightforward, errors 
in the estimate of offsets in the acceleration, changes in these 
offsets over the measurement period and the presence of white 
noise in the acceleration data can lead to significant errors in 
the calculation of the velocity and displacement of the upper 
limb segment. Furthermore, errors in the sensor orientation 
calculations (here the rotation matrix is used) may introduce 
further errors into position estimation. It is therefore challeng-
ing to estimate translational movement based on acceleration 
measurements alone. Initial evaluation [38] and evidence from 
the literature [20] indicate that position estimation using DR is 
only expected to be acceptable for measurements over one or 
two seconds. Typical errors over ten or more seconds can be 
the order of meters. One reason for this limitation is that drift 
resulting from the integration of the error in the estimate of the 
acceleration offset is very difficult to remove. To minimize 
errors, optimization methods such as Kalman filtering [39], 
high pass filter, wavelet analysis and the Zero Velocity Update 
(ZUPT) method [22] are typically employed. A detailed de-
scription and evaluation of these drift correction methods for 
position estimation is beyond the scope of this paper. There-
fore, in this paper, only the ZUPT method is evaluated as the 
selected assessment tests contain the required zero velocity 
intervals. 

b) Drift Correction Method 

The ZUPT is a standard drift correction method used in in-
ertial navigation systems [40]. This method is based on the 
assumption that there are time intervals when the segment 
velocity is known to be zero. When the segment velocity is 
known to be zero, the offset error in the computed segment 
velocity can be measured and the segment velocity reset to 
zero. If it can be assumed that the drift in velocity (caused by 
integration of the error in the estimate of the offset in the ac-
celeration) between the zero velocity intervals is linear then a 
correction for that drift between those intervals can also be 
made, thus further reducing the error introduced by the offsets 
and their changes with time. In order to detect the occurrence 
of zero velocity the double threshold method [41] is used. In 
this method the short time signal energy and zero crossing 
rates are used to estimate these two thresholds. Since the gyro 
is very sensitive to changes in orientation, it is considered to 
be the best sensor to indicate zero velocity using the equation 

ygyros = . The signal s  is divided into time frames, each 

containing four samples. For each of the frames, the short time 
energy iE  ( i  is the discrete time) is calculated by equation 

(7): 
 

∑ =
=

N

n ii nsE
1

2 )(  (7) 

 
Where, yii gyros =  

And the zero crossing rates (ZCR) iZ  are calculated by: 

 

[ ] [ ]∑ =
−−=

N

n iii nsnsZ
1

)1(sgn)(sgn  (8) 

 

Where, [ ]




<
≥=

0)(,0
0)(,1

)(sgn
ns
ns

ns
i

i
i .  

After computing the short time energy, two thresholds, T1 
and T2, in short time energy are set. These are used as upper 
and lower thresholds to detect the start-point and end-point of 
a movement epoch. Here movement epoch is defined as the 
movement between two zero intervals. The lower threshold T2 
should be selected to be small enough to include every possi-
ble spike due to movement and the upper threshold should be 
chosen to exclude every possible spike due to noise. These 
two values are determined based on trial and error and are 
chosen to make sure the right maxima of the motion can be 
detected while at the same time eliminating the effect of the 
presence of noise in the signal. Another threshold, T3, is used 
on the zero crossing rates data to detect the zero points. An 
example of application of this drift correction method will be 
presented in the results. Additionally, this method can also be 
used to identify the start and end point of each individual ele-
ment of the upper limb segment movement for the DR and the 
Kinematic models. This will enable the automatic timing 
measurement of these movements which will be of value when 
analysing patient performance. 
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D. Subjects 

The tests were conducted in a quiet room, permitting the 
subject to feel relaxed and undisturbed. During the test, the 
subjects were asked to sit in front of a table as shown in Fig. 5. 
This study included 10 healthy volunteers (age 20 to 38, 8 
men and 2 women) and a 41 year old female patient who had 
been diagnosed with fourth ventricular lesion extending to the 
cervical spine: associated hydrocephalus and brain stem com-
pression that resulted in an upper limb disability. This patient 
was tested upon admission to the Neuro-Rehabilitation Unit 
and throughout her rehabilitation over a period of six months. 
During the tests, the patient remained in a wheelchair because 
of her underlying condition. 

 

E. Experimental Protocol 

Experiments were carried out to validate the measurement 
system on volunteers and patients. The patient was tested once 
a week over a ten week period, and the assessment tests in-
clude the NHPT, Bean bag test, drinking water test, and 
AROM test. Each of the assessment tests was repeated three 
times. The NHPT is a standard rehabilitation assessment test 
commonly used to evaluate the dexterity of hand movement 
and grip (Fig. 6) [24]. The subject is asked to pick up the pegs 
from the bowl and place them into the holes. The time taken to 
complete the test is recorded using a stopwatch. Usually there 
is no requirement to insert the pegs in a fixed sequence, how-
ever, for initial evaluation of the system and to simplify the 
evaluation of the accuracy of the inertial measurement system 
- the distance between the holes is known - the subject was 
asked to insert the pegs into the holes in order from 1 to 9 
(Fig. 6). 

Although this requires hand and finger dexterity it also re-
quires control of the shoulder, upper and lower arm.  Addi-
tionally as the distance between each peg hole is known this 
was selected as one of the tests for evaluating the sensor sys-
tems. Therefore the aim of the experiments was to track upper 
limb segment rotation and position during known movements. 
Velfoam and Velcro were used to attach the MTx inertial sen-
sors onto the subject’s shoulder, upper arm, and forearm and 
hand respectively (Fig. 5). Velfoam was used to help minimize 
the discomfort of sensor attachment onto the upper limb and to 
stabilize the sensors attachment so that any movement relative 
to the limb segment is minimized. The lengths of the upper 
arm and forearm were measured as described in Section II.C.1 

and used in the kinematic model and the uncertainty in the 
measurement of segment length is estimated to be 0.5 cm. The 
effect of error in the measurement of segment length and 
alignment of the sensors has also been evaluated. For example, 
a measurement error in upper arm length of 0.5 cm will cause 
an average position measurement error of 0.4 cm on x-axis, 
0.1 cm on y-axis (the error on z-axis is smaller and therefore 
can be ignored) in a NHPT. Additionally, it should be noted 
that any relative movement between the clothes and the upper 
limb will also introduce errors in the position measurement. In 
practice it is estimated that during the tests the movement be-
tween the sensors and upper limb segments is less than 0.5 cm 
relative to its initial placement and at present is ignored. The 
sensors must also be aligned parallel with the skeleton axis of 
the upper limb segments within 1°. This presents no difficulty 
with healthy volunteers’ who can straighten their arm, howev-
er, some patients are not able to straighten their arms. This 
makes it more difficult to align the sensors. Failure to align the 
sensors at the start of the measurement session will introduce 
uncertainty into the measurement of the relative joint and 
segment orientation and position. The expected alignment 
orientation presented using Euler angle should be (0, -90, 
yaw(ȥ)). It is estimated that a 1° deviation in pitch and yaw 
will cause an error of 0.5 cm, 0.01cm, and 0.01cm with re-
spect to all the three axes (x-axis, y-axis and z-axis) in the 
trunk reference frame with a 30 cm arm segment. 

F. Accuracy Evaluation Protocol 

Two assessment tests - the Active Range of Motion 
(AROM) test and the Nine Hole Peg Test (NHPT) - will be 
used in the system evaluation. Two parameters were selected 
as quantifiable measures of performance during the AROM 
test: (i) the measurement of AROM, and (ii) the time taken to 
perform the test. Both measurements provide the clinician 
with quantitative information about the progress of the patient 
throughout the rehabilitation programme.  
1) Orientation Tracking Accuracy Evaluation against a Go-
niometer 

A goniometer was used to check the static orientation accu-
racy. Two MTx sensors were attached to the goniometer and 
the orientation then changed from 0 to 80 degree in 10 degree 
increments. The measurements were repeated for all four MTx 

(a)                                                      (b) 
 

Fig. 5.  Attachment of sensors to a subject (healthy volunteer or patient) (a) 
Sensors attached to a healthy volunteer (b) Sensors attached to a patient 
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Fig. 6.  Example of the NHPT 
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inertial sensors. 
2) Position Tracking Accuracy Evaluation against a Vicon 
Camera System and a Goniometer 

In order to evaluate the accuracy of the Xsens inertial posi-
tion tracking system using kinematic modelling comparison 
was made using a Vicon motion capture system - whose accu-
racy is stated to be 0.1 mm. Preliminary tests were carried out 
on normal volunteers performing the Nine Hole Peg Test 
(NHPT). The elbow and wrist positions were tracked using a 
two sensor kinematic model to estimate elbow and wrist posi-
tion. The experimental set-up is shown in Fig. 7 (a). 

A second validation test used a goniometer to represent a 
simple two segment model of the upper limb. As presented in 
Fig. 7 (b), the right end of the goniometer represents the 
shoulder - which is fixed and in this case does not rotate - and 
the centre of the goniometer represents a 2D elbow joint and 
the left end of goniometer represents the wrist. In this basic 
2D position tracking test, the right arm of the goniometer was 
fixed during the movement and the left section of goniometer 
rotated clockwise 90º in the vertical plane. 

Because the accuracy of the sensors’ alignment on the upper 
limb segments will affect the accuracy of tracking the upper 
limb joints position, calibration of the kinematic model before 
each measurement session is needed. It should be noted that 
the calibration procedures are the same for both the kinematic 
modelling and DR method. The calibration process takes 1 
minute and requires the subject to be stationary with their arm 
hanging down in order to obtain the sensor rotation matrix in 

the sensor reference frame, sensorR . The ideal sensor attach-

ment is shown in Fig. 5 and the ideal orientation using the 
Euler angle is (0, -90, 0). The value of yaw will depend on the 
patient’s orientation with regard to the local magnetic north. 

The corrected alignment rotation matrix alignmentR  is calculat-

ed by the multiplication of expected orientation matrix, 













 −
=

001
010
100

exp alignmentectedR  and the sensors’ alignment 

rotation matrix, sensorR  using equation (9).  

 

alignmentectedsensoralignment RRR exp⊗=  (9) 

 

The corrected alignment rotation matrix, alignmentR , and the 

rotation matrix are used in the kinematic model to convert the 
measurements from sensor reference frame to the trunk refer-
ence frame. 

III.  RESULTS 

A. Orientation and Position Tracking Accuracy 

1) Orientation Tracking Accuracy Evaluation against a go-
niometer 

The experimental results in section II.F.1 show that the val-

ue of averaged roll, pitch and yaw for a rotation of 80° were 
within 0.23°, 0.23° and 0.46°, indicating that the MTx meas-
urement accuracy is within the manufacturer’s specification of 
0.5° for roll/pitch measurement is 0.5º and 1.0º for yaw [27]. 
2) Position Tracking Accuracy Evaluation against a Vicon 
Camera System and a Goniometer 

The experiment results in the section II.F.2 show that the 
mean error in position tracking was approximately 2 mm and 
the correlation of position tracking results between the Vicon 
system and the inertial sensing Xsens system is 99%. It can be 
seen from Fig. 8 (a), pegs 2, 4, 5, 6, 7, 8 and 9, that the posi-
tion tracking result from both sensing systems visually corre-
late within 5 mm, which is an indication that the inertial sys-
tem using the Xsens sensors and applying the kinematic model 
is working well enough for upper limb measurements. Also it 
should be noted that the peg pick up position for both Vicon 
and Inertial systems begins at around 9 cm and shows a varia-
tion of about 1 cm throughout the test. This could be due to 
shoulder movement, hand flexion about the wrist and differing 
positions of the pegs in the bowl. This uncertainty arises be-
cause only two sensor outputs were analysed for the inertial 
system and any shoulder, hand or finger movement could not 
be taken into account. But overall the movements of the upper 
and lower arm segments estimated by the two systems are the 
same within a few mm. 

The change in position of the left end of the goniometer in 
the y-axis has been calculated using the kinematic model for 
the MTx in the initial sensor reference frame as shown in Fig. 
8 (b). The expected movement of the end of the goniometer 
arm is 0 to 10 cm on the y-axis. The error in the measurement 
of a 10 cm movement was within 0.1 cm. 
 

B. Active Range of Motion (AROM) Test 

 
(a) 

 
(b) 

 
Fig. 7.  System evaluation set-up (a) Vicon system set-up (b) Goniometer 
experimental set-up 
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The AROM test was repeated three times at each session. In 
this paper, the measurement of the shoulder adduction range 
of motion has been selected as a typical example of the type of 
analysis that the inertial system can provide. In this test a sin-
gle sensor is attached to the upper limb, and the subject then 
moves that limb away from the neutral position at the side of 
body. The normal range of shoulder abduction is expected to 
lie between 160º and 180º [42] though some claim that norma-
tive values for shoulder abduction are in the range from 150° 
to 180º [43] [44]. The healthy volunteers’ values were found 
to range between 140° and 170°. The value of 140o lies out-
side the normative range and indicated the presence of dys-
function due to an initially undisclosed shoulder injury. The 
box-plot [45] of Fig. 9 (a) presents the weekly outcome of 
these tests for the patient over a ten week period. The patient 
repeated the assessment three times. The bottom and the top of 
the box are the minimum and maximum of the data. The red 
line in the plot represents the mean value.  

It can be seen that at the beginning of the treatment, the pa-
tient’s shoulder abduction range was 60°, which was signifi-
cantly lower than that for the normative value. Over the treat-
ment period it can be seen that, apart from weeks 5 and 6, the 
recovery follows an S shaped curve. During weeks 5 and 6 
deterioration in performance is measured. The patient stated 
that she felt tired, unwell and also depressed. These events can 
explain the seeming deterioration in the patient’s range of mo-

tion. However it can be seen that at week 7 the range of mo-
tion returns to the recovery curve and that the previous period 
has not impacted on overall recovery. Furthermore, it can be 
seen that after week 8 the range of movement begins to stabi-
lize at around 120º. This reduction in rate of improvement 
may indicate that the patient had reached the limit of expected 
range of shoulder abduction and that treatment could now be 
stopped or that an alternative treatment regime is required. 
The attainment of a 120 degree range of motion is significant 
for the patient as this indicates that some basic functional ac-
tivities are now practical (e.g. to comb one’s hair requires a 
shoulder abduction angle of 112°±10°).  

An example of time series data is shown in Fig. 9 (b) where 
the pitch angle of the upper arm is plotted against time for the 
patient in weeks 1, 4 and 10 of treatment and also for a typical 
healthy volunteer. This data indicates that not only is there an 
increase in the range of motion during the rehabilitation pro-
gram, but also a decrease in the time taken for the patient to 
complete the task. Although there is an improvement in the 
patient’s performance, it can be seen that the test still takes the 
patient twice as long to complete compared to a healthy volun-
teer. Additionally there is evidence from the reduced smooth-
ness of the curves that the patient has a lower level of fine 
motor control compared with healthy volunteers. This loss of 

 
(a) 

 
(b) 

 
Fig. 8.  Accuracy evaluation results (a) NHPT wrist position tracking by 
Vicon & Xsens (b) Position tracking result by Xsens 
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Fig. 9.  Shoulder abduction test on healthy volunteer and patient (a) Patient’s 
shoulder abduction plotted against test week number (b) Shoulder abduction 
range of motion plots of patient and healthy volunteer 
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fine motor control has been reported in a previous study on 
movement smoothness in stroke patients [46]. 

Although a goniometer can be used to measure the final 
value for range of movement, it limits the patient to a two di-
mensional measure of motion and cannot provide information 
on the dynamic change in orientation or a more detailed tim-
ing analysis. Whereas the inertial sensor system can provide 
three dimensional dynamic information on how the motion is 
achieved as well as a more detailed timing analysis. This addi-
tional information may be of clinical value. 

C. The Nine-Hole Peg Test 

1) Position Estimation Using Kinematic Modelling Based 
Multiple Inertial Sensors System: 

Four sensors are attached onto the arm segments as shown 
in Fig. 6. Fig. 10 shows the hand and shoulder position estima-
tion using kinematic modelling in the x, y and z axes in the 
trunk reference frame. In Fig. 10 the hand position on the z-
axis represents horizontal hand movement. In this axis the peg 
positions for holes 1, 4, and 7 should have the same value. The 
position tracking result of Fig. 10 (a) indicates that this is the 
case. In Fig. 10 (a) the pegs 1, 4, 7; pegs 2, 5, 8 and pegs 3, 6, 
9 have similar magnitudes (within 0.6 cm) on the z-axis while 
the pegs 1, 2, 3; pegs 4, 5, 6 and pegs 7, 8, 9 have similar 
magnitudes (within 0.7 cm) on the y-axis. The x-axis result 
represents the vertical movement of the measurement seg-

ment. It can also be seen that the wrist position does not have 
the same value every time it returns to the origin to pick up the 
next peg. 
2) Position Estimation by Using the DR Method and a Single 
Inertial Sensor: 

For the NHPT test, using the DR method, the initial position 
for a healthy volunteer’s hand movement in the horizontal 
direction in the trunk reference frame is plotted in Fig. 11 (b). 
As can be seen, if offsets in the acceleration are not corrected 

 
(a) 

 
(b) 

 
Fig. 10.  Hand and shoulder position tracking on 3-axis of NHPT (a) 3D 
hand position tracking of NHPT (b) 3D shoulder position tracking of NHPT 
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Fig. 11.  Comparison of wrist position tracking by using dead reckoning 
(with or without ZUPT drift correction method) and kinematic modelling for 
the nine-hole peg test (a) ZUPT algorithm with velocity before and after it 
(b) Position tracking plot before ZUPT (c) Position tracking comparison 
between DR and kinematic model 
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then the drift in the estimation of position is very large, reach-
ing a magnitude approximately 20 times larger than the origi-
nal value within 20 seconds of beginning the test. However, as 
the hand velocity will be zero at peg pick up and peg insertion 
and the ZUPT correction method discussed in section II.C.2.b 
can be applied. 

The red line and green line shown in Fig. 11 (a) represent 
the start and end of each peg insertion movement. As de-
scribed in Section II.C.2.b, using the threshold values T1, T2 
(two thresholds of short time energy) and T3 (threshold of 
zero crossing rates), the spikes in gyro energy data are detect-
ed as shown in the middle graph in Fig. 11 (a). Since one of 
the features is that the spikes in velocity signal correspond to 
the spikes in the gyro energy, the start and end points in veloc-
ity signal can be figured out. This algorithm starts from the 
first frame (according the short term energy), the comparison 
initially will be made between the low threshold value T2 and 
the short time energy. If the first point N1 exceeds the thresh-
old value T2 but the next point after N1 does not exceed value 
T2, this point cannot be treated as start point. If point N1 ex-
ceeds the high threshold value T1, N1 is the first start point. 
The same method is applied for detecting the end point N2 as 
well. The red line indicates the start point while the green line 
indicates the end point. The first and last plot in Fig. 11 (a) 
presents the velocity data before and after the ZUPT. 

Fig. 11 (b) shows the uncorrected position tracking result. 
Fig. 11 (c) shows the comparison between the DR and kine-
matic models. Applying the ZUPT algorithm to the DR meth-
od has reduced the error to 0.8%, an acceptable level. 

However this basic application of the ZUPT algorithm does 
introduce an error as movement data is discarded within the 
detected zero intervals and so the DR data will underestimate 
the actual movement. 
3) Position Tracking Comparison between the Healthy Vol-
unteer and Patient 

A series of measurements were carried out using the four 
sensor kinematic model system. Fig. 12 (a) shows typical posi-
tion tracking on the horizontal axis (Z-axis in the trunk refer-
ence frame) for a nine-hole peg test for a healthy volunteer in 
contrast to a typical result from the patient in Fig. 12 (b). It is 
evident that there is significant base line movement (5 - 10 
cm) during the peg placement for the patient. This is thought 
to be caused by compensatory movement of the shoulder by 
the patient in order to achieve the task. It can also be seen that 
the time taken to place each peg can be measured. This data 
can be analysed to identify differences between the timing 
patterns of a normal subject and the patient [47]. 

These results provide evidence that the use of the inertial 
measurement system provides the clinician with data which is 
not only objective but also can provide further insight into the 
dynamic movements and their characteristics throughout the 
assessments. 

IV.  DISCUSSION &  CONCLUSION 

In this paper, the preliminary evaluation of two systems uti-
lising inertial sensors has been presented. One system utilises 
a four-sensor and a kinematic model, the second a single sen-

sor and the Dead Reckoning method. This second system has 
been evaluated as it is hoped that the use of a single sensor for 
more basic Range of Motion measurements and where meas-
urement of the movement of a single segment is acceptable.  

The system using Kinematic modelling has been compared 
with the Vicon system and shown to provide accurate position 
tracking within 0.1 cm over a distance of 10 cm, but at least 
two sensors are required to construct the kinematic model. If 
only the movement of a single segment is required, then in 
terms of system cost and set-up in a clinical setting, a single 
sensor system using the DR method with ZUPT correction is 
an option. Initial evaluation of correction techniques, such as 
the ZUPT, has indicated that it may be possible to reduce the 
effect of these errors to an acceptable level (0.8% of the total 
movement distance). However this rather crude use of the 
ZUPT has removed some of the movement data as it corrects 
the errors and further refinement is needed. It should also be 
noted that the use of ZUPT requires the zero intervals in the 
assessment tests. Additionally for some tests e.g. the NHPT, 
the distance between the peg locations is known and this data 
can also be used to help reduce any modelling errors. 

In this research, a preliminary evaluation has been carried 
out on 10 healthy volunteers and one patient. The performance 
of this patient was tracked over 6 months from the day admit-
ted to the hospital to the day discharged. Additional infor-

 
(a) 

 
(b) 

Fig. 12.  Healthy volunteer and patient’s horizontal position data of nine-hole 
peg test (a) Healthy volunteer’s horizontal position tracking result (b) Pa-
tient’s horizontal position tracking result 
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mation such as dynamic information and compensatory 
movements has been provided by these two systems in differ-
ent assessment tests. In the AROM test, the inertial systems 
are able to provide dynamic position and orientation data 
against time. The monitoring of all the segments also allows 
the clinician to know whether a patient is successfully com-
pleting a test through using compensatory movements. For 
example, in the patient’s NHPT, the variation in base line 
movement was too great to be explained by finger movement 
and is probably due to the patient using trunk - which is as-
sumed to be the stable reference frame - and shoulder move-
ment to compensate for limited arm mobility.  However this 
pattern indicates that if the reference frame is not stable, its 
movement can be deduced - as can the source of the compen-
satory movement. This could be important in understanding 
how the patient is recovering function, even if the test is com-
pleted within the expected normal time range. In addition the 
plots indicate that the healthy volunteer finds it easier than the 
patient to return to the center of the peg container to pick up 
the next peg. This also implies that the volunteer has better 
control of the upper limb segments than the patient. As it can 
be seen from the Fig. 12, the healthy volunteer’s movement is 
smoother, there is minimal trunk movement and the test takes 
less time to finish.  

Therefore this information should provide the clinician with 
additional information on clinical recovery and this may also 
motivate the patient to his/her rehab prescription. Larger trans-
lational trials are now required to assess the validity and usa-
bility of these inertial measurement systems. 
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