Kent Academic Repository
Full text document (pdf)

Citation for published version
Bai, Lu and Pepper, Matthew G. and Yan, Yong and Spurgeon, Sarah K. and Sakel, Mohamed
and Phillips, Malcolm (2015) Quantitative Assessment of Upper Limb Motion in Neurorehabilitatic

Utilizing Inertial Sensors. |IEEE Transactions on Neural Systems and Rehabilitation Engineering
pp. 232-243. ISSN 1534-4320.

DOI
https://doi.org/10.1109/TNSRE.2014.2369740

Link to record in KAR
https://kar.kent.ac.uk/47726/

Document Version
UNSPECIFIED

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all
content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions
for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the
published version of record.

Enquiries
For any further enquiries regarding the licence status of this document, please contact:
researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down
information provided at http://kar.kent.ac.uk/contact.html

KAR =

Kent Academic Repository



TNSRE201300273.R2 1

Quantitative Assessment of Upper Limb Moti
In Neurorehabilitation Utilizing Inertial Senso!

Lu Bai, Matthew G. Pepper, Yong YaRellow, IEEE, Sarah K. Spurgeot&enior Member, |EEE,
Mohamed Sakel and Malcolm Phillips

Abstract— Two inertial sensor systems were developed for 3D is an important aspect of any rehabilitation programgen-
tracking of upper limb movement. One utilizes four sensors and a eral, most of the currently available assessments are viewed
Kinematic model to track the positions of all four upper limb  and scored by therapists based on assessment scales and deci-
segments/joints and the other uss one sensor and a Dead Reck- gjq ryles. For example, the Fudeyer Assessment (FMA)
oning algorithm to track a single upper limb segment/joint. Ini- .
tial evaluation indicates that the system using the Kinematic [4], the Box & Block Test (BBT) [5] and the Action Re;earch
Model is able to track orientation to 1 degree and position to Arm Test (ARAT)[6] are all thought to be comprehensive and
within 0.1 cm over a distance of 10 cniThe dead reckoning sys- quantitative measures of upper limb motor function, having
tem combined with the ‘Zero Velocity Update’ correction can been used for years. Although thesssessments have proven
reduce_errors_ introduced through doubl_e integration of errors in 1 peeffective and reliable [7] [8], they do not provide objec-
the estimate in offsets of the acceleration from several meters to tive data on the physical mement of the upper limb or how

0.8% of the total movement distance. Preliminary evaluation of h limb th h Theref th .
the systems has been carried out on ten healthy volunteers and € upper imb moves through space. thereiore, there IS con-

the Kinematic System has also been evaluated on one patientSiderable interest in developing motion tracking systems as a
undergoing neurorehabilitation over a period of ten weeks. The tool for the quantitative measurement of dynamic upper limb
initial evaluation of the two systems also showthat they can movement [9] [10]. This precise data may a@dlie in moni-
monitor dynamic information of joint rotation and position and  {oring progress of the patient and the rehabilitation program.
assess rehabilitation process in an objective way, providing addi-  peye|oping a motion monitoring system for clinical use a
tional clinical insight into the rehabilitation process. . ; . S
hospital setting must be acceptable to patient and clinician.
Index Terms—3D motion tracking, dead reckoning, inertal Ideally t-h.e sysltem should be trahsportable, easy to seindp,
sensors, kinematic modelling, motion monitoring, upper limb have minimal impact on the patients’ normal range of move-
motion, Zero Velocity Update. ment. Existing motion tracking systems can be divided into
two types: visual tracking and nafsual tracking systems.
Visual or video tracking systems are well proven for motion
I. INTRODUCTION analysis and meehe requirements for upper limb tracking

ABOUT 10 million people in the UK live with a neurologi- [11]. However, they are relatively complex, expensive and
cal condition e.g. stroke, traumatic brain injury, and moequire careful setup. There are also severatvigral track-
tor neurone disease [1]. Neurolagjiconditions and disorders ing technologies available that are based on inertial, mechani-
can result in mental and physical disabilities and one outcorfi@l, acoustic and magnetic sk strategies [12] [13]. Me-
can be dysfunction of upper limb function [2]. The recovery d§hanical sensing systems could provide a straightforward way
upper limb function is of great importance in improving thdo track the joints but they are uncomfortable to wear for long
patients’ quality of life and helping theto maximize their Periods. Acoustic sensing and magnetic sensing are affected
independence [3]. Rehabilitation, which usually includes o&y ambient conditions e.g. temperature, ity or surround-
Cupationa] therapy and physiotherapy, b&iip to ease symp- ing conductive/magnetic materia{li;4]. However, recent ad-
toms, and restore upper limb function. Assessment of recovagnces in inertial sensing technology based on micro
machined electromechanical systems (MEMS) [15] have made
, _ _ the use of small and lightweight inertial sensors a viable op-
Manuscript received October 15, 2013; re_wsed May 13, 2014upnd 1, tion.
2014; accepted September 04, 2014. This work was segploytthe East . . . .
Kent Hospitals University NHS Foundation Trust Intern@s&rch Grant A number of studies have used inertial sensors and kinemat-
Scheme. ic modelling for human upper limb motion trackingnclud-
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(e.g. angular velocity, orientation and acceleration) from thehabilitation. It also should be noted that these sestongdd
shoulder cannot be obtained. Therefore, in order to measbee acceptable to patients, and measurement systems utilizing
and then analyze the motion of all the upper limb segmerntsese sensors must also be suitable for use in the hospital envi-
(hand, wrist, elbow and shoulder), a kiregio model using at ronment, be portable and easy to set up.

least four inertial sensors is required. Although the faoer-

tial sensor system enables the accurate tracking for all the up- Il. METHODS

per limb segments, it has the disadvantages of its high cgf,t System Setup

(£6000) and the complexity of the systentigetUnder some i .
circumstances it may only be necessary to monitor the motionThe two motloq tracking systems use the Xseps MTx [2,7]
rial sensor which was developed for use in biomechanics

of a single segment. Theoretically this could be achieved usi ; 2
one sensor and the Dead Reckoning (DR) method [19] ba4 ]. The MTx sensor contains two biaxedcelerometers

on strapdown inertial navigation technology [20]. This haQA‘DXLZOZE)' three singlexis gyroscopes (ENO3J) and

been used in pedestrian tracking in indoor navigation [21}i€® magnetoesistive sensors (KMZ51). This combination
ables the measurement of 3D acceleration, 3D magnetic

[22]. Additionally reducing the number of the sensors to orfg! _
would benefit both patients and clinicians in terms of corﬁe'-eld and 3D angular velocity. Furthermore, Xsens have em-

plexity, cost and burden on the patient. However, one of t}k?gddgd a calibrat.ion and a Kalman Filter (XKF). sensor fusion
major challenges insing Dead Reckoning is the need to min2/90rithm Xsens in the MTx which can be applied to the raw

imize the drift in estimate of position resulting from the doudat@ to provide an accurate esitron of sensor 3D @nta-

ble integration of errors in the estimate of offsets in the line4P"- L , L N
acceleration. There are a range of options available, one of N€ inértial sensing system set up is illustrated in Fig. 1.
which is the Zero Velocitypdate (ZUPT) [23], this tech- The four sensors are connected by cables to the Xbus master

nique has been used in pedestrian position tracking andV‘fQ'Ch provides the sensors with power and connection to a PC

based on the identification of zero velocity intervals of thEXnning the Xsens MT (Motion Tracking) manager software

foot during the stance and swing phases of walking [22]. Uf{€vel®ment kit [32]. The maximum sampling frequency for

like walking, clear zero velocity intervals gaot always ex- e raw data is 512 Hz per sensor. The maximum sampling
ist for upper limb movement assessments. However, for sofigduency for the calibrated data is reduced to 120 Hz per sen-
of the assessment tests there are known events when the i @d is sufficient to capture human upper limb movement.

segments are stationary, e.g. during peg collection and plaatiab (2009b, The MathWks) was used for data pro-
ment in the ninédole peg test (NHPT) [24]. Therefore the

tion of the inertial measurement system using a single sens '

and the DR method. Additionally, these two systems are abl |

ZUPT technique has been applied in this preliminary evalus _recostpm
O O O gL | |
to provide more information on the active range of motion UUU\JW\

MTx

(AROM) measurementAROM is considered to be a good
indicator of response to the rehabilitation program and fo -
differentiating between individuals [25]. The standard meas Motion Sensing Serial Link or Bluetooth connection Data Acquisition, Processing, and

between sensors and PC Presentation

urement device, the goniometer [26], provides the cliniCiarrig 1. structure of the motion tracking system

with a static measurement of the overall AROtypically

within 1°, but cannot provide any data on how that motion wagssing, analysis and presentation.

achieved. However the use of the inertial motion measurement

system also provides dynamic information throughout the The parameters derived from the motion tracking algo-

movement, typically to within 1° [27]. rithms described in this study are those which are of im-
As some of the researchers have introduced the quantitatpuertance for the guantitative evaluation of changes in the pa-

tool into treatment regimes [28], in this research inertial trackients’ movement duringehabilitation and are segment rota-

ing systems have been developed to enable clinicians to obt@dm (orientation tracking) and joint or segment trajectory (po-

repeatable and objective measurements of the progress sitidn tracking).

efficacy of rehabilitation interventions, including the use olg Orientation Trackin

botulinum therapy or functional electrical stimulation [29]™ 9

[30]. As stated previously, the implementation of the four One key parameter in the assessment of limb function is the

sensor system is able to dkaall the upper limb segments. active range of motion (AROM). AROM usually refers to the

This will provide the clinician with complete motion infor- voluntary range of movement around a specific joint. AROM

mation of the upper limb segments. The single sensor Systgmvides information about the patients’ ability to move and

reduces the complexity of measurement system, and enadfi8t mobility [33]. The change in orientation of the upper

the tracking of a specific joint and limb segrhednce the two limb segments with respect to their original displacement can

systems have been evaluated the aim of this research is toifi-representedy the inertial sensors’ Euler angle outputs

vestigate whether these system are able to obtain novel quaiill, Pitch and yaw) in the global reference frame (Fig. 2 (a)).

tative motion information from patients’ assessment durin§© perform the AROM test, the subjects were asked to move
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o r Fig. 3. Kinematic and Dead Reckoning position tracking strategies
L x Senso':;:zrence
y J olobal reference the position of each upper limb segment from knowledge of
© the segment lengths and the orientation of the sensors on each

. Shoulder Shoulder limb segment. Multiplesensors are required to build up the
Shoulder abduction Joint Joint kinematic model. DR uses double integration of the linear
Y o2 | Y w2 acceleration, the acceleration with the gravity component re-

@ignsi;;;fgence I %”S?{a’;‘gm”” moved, to calculate changes in position of that sensor.
X X g 1) Four Inertial Sensor Based Kinematic Model

z | Y Based on the upper limb kinematic geometry, the displace-

v : G( ment of the multiinked skeleton model of the upper limb can

be described by the rotation of the upper limb segments about
Giobal reference X abduction sensorreterence g reference point. For simplification, these segments have
rame . . . . -
@ been treated afgid bodies of fixed length whose deformation

can be neglected. These segments, linked by joints, are treated

Fig. 2. The reference frame transformation (a) Euler angle in thea  as a kinematic chain.

reference frame (b) Sensor and global reference frames (c) Frame t To describe the relative positions of the segments, a com-

mation between sensor reference frame and global reference fd§ f f . f h t

Shoulder abduction in the global reference frame mon reference frame Is necessary for each segment or sensor

[34]. This reference system is usually defined with respect to

their upper limb without any external assistance. The subjectée global reference frame or with respect to the sensor itself
were asked to perform DoF rotation, including shoulder (sensor reference frame). In accordance with the-Highted
flexion-extension, internagéxternal rotation, adductien co-ordinate system, the global reference frame is an -earth
abduction, elbow flexiomxtension, forearm supination fixed referencerame (Fig. 2 (b)) whose positive X direction
pronation, wrist flexiorextension and ulnasadius deviation. points to the local magnetic North, positive Y direction points
As seen in Fig. 2 (d), the pitch angle of te@sor attached on to the West, and positive Z direction points in the opposite
the upper arm is90 degrees to the initial displacement whergirection to the force of gravity. The sensor reference frame is
the abduction angle is 0 degree. The direction of the abductied to the devicén the righthanded cebrdinate system: the
rotation is the same as that of the pitch angle, which is tXeaxis points horizontally to the right of the sensor, thaxié
rotation around the-gxis. Therefore according tthe above points upwards (vertical to the-a«is in the horizontal plane
relationship, the shoulder pitch angle (Fig. 2 (d)) is related & the sensor) and the-@is points towards the outside of the
the pitch angle of the sensor attached on the upper arm as gg#sor's horizontal plane as shown in Fig. 2 (b). To describe
sented in equation (1). In this case the output of the pitch angie movement trajectory of the upper limb segments, a com-
is presented in the global reference frame. The choice of refgton reference frame is required to present the relative move-
ence frame will depend on how the data is to be presentethents of each upper limb segment. In order to be able to relate

see section II.C.1. the outputs from all the sensoto the common reference
frame, the measurements in the sensor reference frames have
abduction angle= pitch angle+ 90 (1) firstly to be converted into the global reference frame. This is

achieved by the application of the Rotation Matrix [34] to the
orientation output of the sensors. Fig(c3 shows the frame
C. Position Tracking transformation between the above two reference frames.

In order to explore the feasibility of using inertial sensors Though the global reference frame is well defined, it is con-
for segment position tracking, kinematic modelling and DReptually easier to relate any segment motion to a reference
methodshave been used. The flow chart for these trackingpint on the patient, especially as the patient may moee rel
strategies is presented in Fig. 3. The kinematic model deriviid¢e to the global reference frame during or between measure-
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and the reference poin0,0,0) . In order to estimate shoulder

Trunk Shoulder  Clavicle

reference frame - - s

-~ movement, the sensor was attached onto the scapulacThe
L P4 0) \;\'i " is the angle of this sensor with respect to thaxig in the
z 1 II k™ trunk reference frame and is measured with a goniometer. In
Y rom order to measure the lengti the upper limb segmentd 1,
L . L2, L3and L4), the subject sits upright with arms hanging

down. A nonstretchable tape measure was used. The upper
Clavical arm (humerus) lengthl{l) was measured between the shoul-
der joint and the elbow. The forearm length2() was meas-
ured between the elbow joint and the wrist joint. And the hand
length (L3) was measured between the wastl thecenterof
Q the palm. The angler and length (4) were measured after
Scapula mmerus  the sensor had been attached onto the shoulder.
"R - In equation (2) belowgR,(t) is the rotation matrix which
Back View Top View 7 rotates the elbow joint vector from the sensor reference frame
to the global reference. This is obtained from the sensor’s rota-
(@) (b) tion matrix output which is generated by the Xsens inertial
sensor using the integrated data fusatgorithm XKF as dis-
Fig. 4. Foursensor kinematic model (a) 4 Sensor Model (b) Sensore- . . tr . . . .
ment on shoulder [37] cussed in Section llgR.(t) is the rotation matrix which ro-

-
N

-
w

- ————— — >

MTx

. . . . i tates the elbow joint vector from the global reference frame to
ment sessions. Therefore in this preliminary evaluation the, .k reference frame. The product of the above two ma-

lowest vertebra of the nedk used as the reference point, as . . , . . ;
shown in Fig. 4 (a). The positive-a&is of the sensor is up- ?I’ICGS, TR,(t) , is defned as the rotation matrix which rotates

ward paralleto the axial skeleton of the upper limb, the posiIhe elbow vector from the sensor reference frame to the trunk

tive Y-axis of the sensor points into the plane and the positi\r,gference frame. Similarly the rotation matrices which rotate
Z-axis points rightward corresponding to the right hand rule. the shoulder, wrist and hand vectors from the sensor reference
The kinematic model is based on that used for robotic miame to the trunk refereacframe are{Ry (t), TR,(t),

nipulators [34] and & Degree of Freedom (DoF) upper limbtr (t) and "R, (t) respectively. In equation (3), the position

model [35] is used. The orientation data inputs to the kinem%tutputs of the shoulder, elbow, wrist and hand in the trunk

ic model can be obtained directly from the MTx sensors, with " r tr
each sensor being capable of producing orientation inforrgference frame aréPy (1), "R(t), "R.()and TR,(t) re

mation in three formats (Euler angle, tRtion Matrix, and spectively. The shoulder position, for example, is calculated
Quaternions [36]). In this study, the Rotation Matrix is usedy multiplying the shoulder rotation matri§Ry,(t) and the
Although movement of the shoulder is tracked by the sensgjtial shoulder position in the trunk referené@®,, (0). Simi-

attached to the scapula it should be noted that the shoulde . ; e
joint is very complex, consisting of three bones, tlavicle, Parfy, the position of the elboWF(t) , wrist R, (t) and hand

scapula and humerus, with each possessing associated artfch,(t) are calculated according to equation (3).

lations [37]. The fousensor model shown in Fig. 4 (a) as-

sumes that the movement of the shoulder is caused solely hy, _tr g

scapular movement (as shown in Fig. 4 (b)) with the trun Sf;‘e((tt))__?ﬁé((tt)):;::(”t()t)

remaining gationary during movement. "S ' :t? . *Z X (2)
The initial position of the shouldéefPy, (0) relative to the erN( )_ERN() Ry

reference point as shown in Fig. 4 (a), the elbow initial posit s (t)=g R (R, (1)

tion "P,(0) relative to the shoulder, the wrist initial position

"R (0) relative to the elbow and the hand initial position ttrrpsh(t) . {téRmttr)}*{" qu(t?)}

"R, (0) relative to the wrist in the trunk reference frame are I:j,((tt)) = tz:e;v((tt))i tr%\:%)i {trpg;ég (3)
expressed as Py (0)=(-cosa*L4sina*L40)", r - r r

”FZ(O) ~(-L10,0)T, " PW((O) (-L2,0,0)7 ;nd "RO] LEROF RO} RO

"R, (0)=(-L30,0)T in the trunk eference frame. Here, the 2) SingleInertial Sensor Based Dead Reckoning Method

lengths of the upper armLt), forearm (L2) and hand [3) In order to explore the feasibility of using a single sensor to

are measured, thus defining the initial position of thevelbo 'ack the movement of one upper limb segment e.g. the hand,

wrist and hand as the constraints of the upper limb kinemaflt¢ DR method is used.
model with L4 defined as the distance between the shoulder
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a) DR Method b) Drift Correction Method

This method estimates the current position by adding the es-The ZUPT is a standard drift correction method used in in-
timated change in position obtained from the double integrartial navigation sysims [40]. This method is based on the
tion of the measured linear acceleration, with respect to tinessumption that there are time intervals when the segment
to the previous estimate of the position. By using the rotatiaelocity is known to be zero. When the segment velocity is
matrix ¢R(t) , the measurable acceleration vector in the senggiown to be zero, the offset error in the computed segment
velocity can be measured and the segmefcity reset to

reference frame®a(t) can be converted from the sensor refer- . 2 ’
am zero. If it can be assumed that the drift in velocity (caused by

ence frame to the global reference frame or to a referengg, gration of the error in the estimate of the offset in the ac-
frame of choice e.g. the trunk reference framecéhe gravi- cgjeration) between the zero velocity intervals is linear then a
tational component of the acceleratiay, has been removed correction for that drift between those intervals can also be
then double integration of the linear acceleration data in theade, thus further reducing the error introduced by the offsets
global reference framé3, ., (t) should, in theory, enable and their changes with time. In order to detect the occurrence

any change in sensor or segm position to be estimated. TheOf zero velocity the double threshold method [41] is used. In

equations used to calculate the linear position are as followstNiS method the short time signal energy and zeossing
rates are used to estimate these two thresholds. Since the gyro

is very sensitive to changes in orientation, it is considered to

95, =9 S3(t) — G
Bineer (1)=ER(t)**8() 9 @) be the best sensor to indicate zero velocity using the equation
s=gyro,. The signals is divided into time frames, each
NViinear (1) = J 98near (1)t ®) containing four samples. For each of the frames, the short time
t energy E; (i is the discrete time) is calculated by equation
- - - (7):
g Plinear (t) = J- gVIinear (t)dt = J-J. ga1inear (t)dt (6)
t t N
E=) s )

Where, 98, cor + Viinear @Nd 9 Pyireer are the linear accelera-

tion, velocity and position, respectively, in the global refer-
ence frame. These vectors can then be transformed into th@nd the zero crossing rates (ZCR) arecalculated by:
trunk reference frame by multiplication with the rtkurefer-
ence rotation matrix. N

Althoughthis tracking method seems straightforward, errorg; = Zn:l|sgf{$ (n)]-sarls (n-1)) (8)
in the estimate of offsets in the acceleration, changes in these
offsets over the measurement period and the presence of white {

Where, s = gyroy;

noise in the acceleration data can lead to significant errors inWhere,sgr{s(n)]: L §(m=0 .

the calculabn of the velocity and displacement of the upper 0 5(M<0

limb segment. Furthermore, errors in the sensor orientationAfter computing the short time energy, two thresholds, T1
calculations (here the rotation matrix is used) may introdu@?d T2, in short time energy are set. These are used as upper
further errors into position estimation. It is therefore challengnd lower thresholds to detect the sfaint and engpoint of

ing to estimate treslational movement based on acceleratiofd movement epoch. Here movement epoch is defined as the
measurements alone. Initial evaluation [38] and evidence frdfPvement between two zero intervals. The lower threshold T2
the literature [20] indicate that position estimation using DR ghould be selected to be small enough to include every possi-
only expected to be acceptable for measurements over ond§rspike due to movement and the upper threshold should be
two seconds. Typical errors over ten or more seconds cand@@sen to exclude every possible spike due to noise. These
the order of meters. One reason for this limitation is that driftvo values are determined based on trial and error and are
resulting from the integration of the error in the estimate of tH&0sen to make sure the right maxima of the motion can be
acceleration offset is very difficult to remove. To minimizedetected whe at the same time eliminating the effect of the
errors, optimization methodsuch as Kalman filtering [39], Presence of noise in the signal. Another threshold, T3, is used
high pass filter, wavelet analysis and the Zero Velocity Upda@ the zero crossing rates data to detect the zero points. An
(ZUPT) method [22] are typically employed. A detailed de€xample of application of this drift correction method will be
scription and evaluation of these drift correction methods féesented in theesults. Additionally, this method can also be
position estimation is beyond the scodethis paper. There- used to identify the start and end point of each individual ele-
fore, in this paper, only the ZUPT method is evaluated as tAent of the upper limb segment movement for the DR and the

selected assessment tests contain the required zero velokigematic models. This will enable the automatic timing
intervals. measurement of these movemeastsch will be of value when

analysing patient performance.
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D. SJbJ eCtS 10cm

The testswere conducted in a quiet room, permitting the
subject to feel relaxed and undisturbed. During the test, t
subjects were asked to sit in front of a table as shown in Fig.
This study included 10 healthy volunteers (age 20 to 38,
men and 2 women) aral41 year old female patient who hac
been diagnosed with fourth ventricular lesion extending to tl
cervical spine: associated hydrocephalus and brain stem cc
pression that resulted in an upper limb disability. This patie
was tested upon admission tce thleureRehabilitation Unit
and throughout her rehabilitation over a period of six month
During the tests, the patient remained in a wheelchair beca
of her underlying condition.

Trunk Reference
frame

(0,0,0)
Fig. 6. Example of the NHPT

and used in the kinematic model and the uncertainty in the
measurement of segment length is estimated to be 0.5 cm. The
effect of error in te measurement of segment length and
alignment of the sensors has also been evaluated. For example,
a measurement error in upper arm length of 0.5 cm will cause
an average position measurement error of 0.4 cm-axrisx

0.1 cm on yaxis (the error on-axisis smaller and therefore

can be ignored) in a NHPT. Additionally, it should be noted

®) that any relative movement between the clothes and the upper
Fig. 5. Attachment of sensors to a subject (healthy volunteertmgp(a  IMb Will also introduce errors in the position measurement. In
Sensors attached to a healthy volunteer (b) Sensorhexdtexa patient practice it is estimated that during the $etbte movement be-
tween the sensors and upper limb segments is less than 0.5 cm
E. Experimental Protocol relative to its initial placement and at present is ignored. The

Experiments were carried out to validate the measuremé@nsors must also be aligned parallel with the skeleton axis of
system on volunteers and patients. The patient was tested ofgeUPPer limb segments within 1°. This presemslifficulty
a week over a ten week period, and the assessment testsViff) healthy volunteers” who can straighten their arm, howev-
clude the NHPT, Bean bag test, drinking water test, arfd Some patients are not able to straighten their arms. This
AROM test. Each of the assessment tests was repeated tipakes it more difficult to align the sensors. Failure to align the
times. The NHPT is atandard rehabilitation assessment tesi€nsors at the start of the measurement sessiomindtiuce
commonly used to evaluate the dexterity of hand movemé#ficertainty into the measurement of the relative joint and
and grip (Fig. 6) [24]. The subject is asked to pick up the peag_gment orientation and. position. The expected alignment
from the bowl and place them into the holes. The time takenQg€ntation presented using Euler angle should be-40,
complete the test is recordasing a stopwatch. Usually thereY2W(¥)). It is estimated that a 1° deviation in pitch and yaw
is no requirement to insert the pegs in a fixed sequence, hofll cause an error of 0.5 cm, 0.01cm, and 0.01cm with re-
ever, for initial evaluation of the system and to simplify théPect to all the three axes-dxis, yaxis and zaxis) in the
evaluation of the accuracy of the inertial measurement systéink reference frame with a 30 cm arm segment.
- the distance between the holes fwn - the subject was F_ Accuracy Evaluation Protocol

asked to insert the pegs into the holes in order from 1 to 9TWO assessment tests the Active Range of Motion

(Fig. 6). (AROM) test and the Nine Hole Peg Test (NHRWill be

Although thl's freﬂuwes h%nd and finger dd;axterlty I aISX dr(jjsed in the system evaluation. Two parameters were selected
quires contro o_t € shoulder, upper and lower arm. AdCkg guantifiable measures of performance during the AROM
tionally as the distance between each peg ®lknown this

: test: (i) the measurement of AROI&nd (ii) the time taken to
was selected as one of the tests for evaluating the sensor

N Therefore the aim of th . " to track fform the test. Both measurements provide the clinician
ems. Therelore the aim of the experiments was 1o track Uk, guantitative information about the progress of the patient
limb segment rotation and position during known movementfhroughout the rehabilitation programme

Velfoam and Velcro were used to attach the MTx inergal s 1) , Orientation Tracking Accuracy Eval uati;)n against a Go-

sors onto the subject’'s shoulder, upper arm, and forearm gmeter

hand respectively (Fig. 5). Velfoam was used to help minimize o gonjometer was used to check the static orientation accu-
the discomfort of sensor attachment onto the upper limb a”drHI:y. Two MTx sensors were attached to the goniometer and
stabilize the sensors attachment so that any movement relaiy§ rientation then changed from O to 80 degree in 10 degree

to the limb segment is minimized. The lengths of the UPP§Lcrements. The measurements were repeated for all four MTx
arm and forearm were measured as described in Section II.C.1
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inertial sensors.
2) Position Tracking Accuracy Evaluation against a Vicon
Camera System and a Goniometer

In order to evaluate the accuracy of the Xsens inertial po:
tion tracking system using kinematic modelling comparisor
was made using a Vicon motion capture systevhose acu-
racy is stated to be 0.1 mm. Preliminary tests were carried ¢
on normal volunteers performing the Nine Hole Peg Te
(NHPT). The elbow and wrist positions were tracked using
two sensor kinematic model to estimate elbow and wrist po:
tion. The experirantal setup is shown in Fig. 7 (a).

A second validation test used a goniometer to represen
simple two segment model of the upper limb. As presented
Fig. 7 (b), the right end of the goniometer represents t
shoulder- whichis fixed and in this casgoes not rotate and
the centre of the goniometer represents a 2D elbow joint a
the left end of goniometer represents the wrist. In this bas
2D position tracking test, the right arm of the goniometer w
fixed during the movement and the left sectadrgoniometer

(b)

rotated clockwise 90° in the vertical plane. Fig. 7. System evaluation sep (a) Vicon system setp (b) Goniomete

Because the accuracy of the sensors’ alignment on the up®Perimental seip

limb segments will affect the accuracy of tracking the UPPg{e of averaged roll, pitch and yaw for a rotation of 80° were
limb joints position, calibration of the kinematic model beforg iy 0.23° 0.23° and 0.46° indicating that the MTx meas-

each measurement session is needed. It should be noted &t ent acaracy is within the manufacturer's specification of
the calibréion procedures are the same for both the kinemagiggo ¢, roll/pitch measurement is 0.5° and 1.0° for yaw [27].

modelling and DR method. The calibration process takesz} Position Tracking Accuracy Evaluation against a Vicon
minute and requires the subject to be stationary with their agmera System and a Goniometer

hanging down in order to obtain the sensor rotation matrix in The experiment results in the section II.F.2 show that t
the sensor referendeame, Ry - The ideal sensor attach- mean error in position tracking was approximately 2 mm and
ment is shown in Fig. 5 and the ideal orientation using i correlation of position tracking results between the Vicon
Euler angle is (0:90, 0). The value of yaw will depend on theSystem and the inertial sensing Xsens system is 99%. It can be

patient’s orientation with regard to the local magnetic nortif€en from Fig. 8 (a), pegs 2, 4, 5, 6, 7, 8 and 9, that the posi-
The correctedlnment rotation matrixRy, is calculat- tion tracking result from both sensing systems visually corre-
& ignment late within 5 mm, which is an indication that the inertial sys-

ed by the multiplication of expected orientation matrixtem using the Xsens sensors and applying the kinematic model

00 -1 is working well enough for upper limb measurements. Also it
Rexpected aligmment =| 0 1 0 | and the sensors’ alignmentshould be noted that the peg pick up position for both Vicon
0 O and Inertial systems begins at around 9 cm and shows a varia-

tion of about 1 cm throughout the test. This could be due to
shoulder movement, hand flexion about the wrist and differing
positions of the pegs in tHeowl. This uncertainty arises be-
Rajignment = Rensor ® Rexpected alignment (9) cause only two sensor outputs were analysed for the inertial
system and any shoulder, hand or finger movement could not
be taken into account. But overall the movements of the upper
and lower arm segments estimated by the $ystems are the
rotation matrix are used in the kinematic model to convert tsame within a few mm.
measurements from sensor reference frame to the trunk referThe change in position of the left end of the goniometer in
ence frame. the yaxis has been calculated using the kinematic model for
the MTx in the initial sensor reference frame as shown in Fig.
lll. RESULTS 8 (b). The expected movement the end of the goniometer
arm is 0 to 10 cm on theaxis. The error in the measurement
of a 10 cm movement was within 0.1 cm.

rotation matrix,Rengr  USing equation (9).

The corrected alignment rotation matrRa“gnment , and the

A. Orientation and Position Tracking Accuracy

1) Orientation Tracking Accuracy Evaluation against a go-
niometer _ _
The experimental results in section 11.F.1 show that the vap. Active Range of Motion (AROM) Test
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Fig. 8. Accuracy evaluation results (a) NHPT wrist position trackin
Vicon & Xsens (b) Positiotracking result by Xsens Fig. 9. Shoulder abduction test on healthy volunteer and pa@gatietis
shoulder abduction plotted against test week numberh@)l@er abductic

The AROM test was repeated three times at each session""9 0f motion plots of patient and healthy volunteer

this paper, the measurement of the shoulder adduction rart%\?
of motion has been selected as a typical example of the typeti8n returns to the recovery curve and that the previous period

analysis that the inertial system can providethis test a sin- . .
. ) ; has not impacted on overall recovery. Furthermore, it can be
gle sensor is attached to the upper limb, and the subject then

moves that limb away from the neutral position at the side agen thasfter week 8 the range of movement begins to stabi-

L P%ze at around 120°. This reduction in rate of improvement
body. The normal range of shoulder abduction is expected m% indicate that the patient had reached the limit of expected
lie between 160° and 180° [42] though some clairhribema- Y b P

tive values for shoulder abduction are in the range from 15(2N9¢ of shoulder abduction and that treatment could now be

, topped or that an aiteative treatment regime is required.

o]

:g rlefr? e[fé]tv[\i‘g'nTlr;f%ohglﬁzh{?\églu.lr]:]eee:falL’gllﬁslx\ge";zug tt]e attainment of a 120 degree range of motion is significant
. 9 : . !flor the patient as this indicates that some basic functional ac-

side the normative range and indicated the presence of d%{s

function due to an initially undisclosed shoulder injury. ThevItles are now practical (e.g. to comb one’s hair requires a

| . houlder abduction angle of 27£10°).
box-plot [45] of Fig. 9 (a) presents the weekly outcome of An example of time series data is shown in Fig. 9 (b) where

these tests for the patient over a ten week period. The patiﬁ]né[ itch anale of the ubper arm is plotted anainst time for the
repeated the assessment three times. The bottom and the t;é) 9 PP P 9

. However it can be seen that at week 7 the range of mo-

. . aﬂent in weeks 1, 4 and 10 of treatment and also for a typical
the box are the mimum and maximum of the data. The re . - . yp
L ealthy volunteer. This data indicates that not onthése an
line in the plot represents the mean value. . : . : S

S increase in the range of motion during the rehabilitation pro-

It can be seen that at the beginning of the treatment, the pa- . ) .

L . o . . —.gram, but also a decrease in the time taken for the patient to
tient's shoulder abduction range was 60°, which was signi

cantly lower than that for the normative value. Otver treat- o . .
S atient’s performance, it can be seen that the test still takes
ment period it can be seen that, apart from weeks 5 and 6, the. .
P ient twice as long to complete compared to a healthy volun-

recovery follows an S shaped curve. During weeks 5 and ” . X
ery 1ofo Pec 9 : eer. Additionally there is evidence from the reduced smooth-
deterioration in performance is measured. The patient state : )
. ness of the curves that the patient has a lower level of fine
that she felt tired, unwell and also depressed. These events can . :

X : L o motor control compared with healthy volunteers. This loss of
explain the seeming deterioration in the patient’s range of mo-

complete the task. Although there is an improvement in the
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fine mobr control has been reported in a previous study c

movement smoothness in stroke patients [46]. ? 02 T AT AT
Although a goniometer can be used to measure the fir -z oF= v/ i a  a

valuefor range of movement, it limits the patient to a two di-  * : . i S

mensional measure of motion and cannot provide informatic ¢ .| (N ML,

on the dynamic change in orientation or a more detailed tir =, Ll INIWWN) LWL

ing analysis. Whereas the inertial sensor system can provi § 1 3

three dimensional dymic information on how the motion is HJMLHM i FIW!W )M N 4
achieved as well as a more detailed timing analysis. This ad ° ;
tional information may be of clinical value.

C. The Nine-Hole Peg Test
1) Position Estimation Using Kinematic Modelling Based (;;(S)
Multiple Inertial Sensors System:

=
—
=
==

Velocity after ZUPT
& o o
2R
5
>
=
>

(mis)
s
2o
<l
<G

~
N
=
©
e
5
o
9
"
R
-
5

Four sensors are attached onto the arm segments as sh T P
in Fig. 6. Fig. 10 shows the hand ammbslder position estima- = Posiion before 20PT //
tion using kinematic modelling in the X, y and z axes in th ot /J
trunk reference frame. In Fig. 10 the hand position on the /
axis represents horizontal hand movement. In this axis the g p
positions for holes 1, 4, and 7 should havesto®me value. The //
position tracking result of Fig. 10 (a) indicates that this is th LI //
case. In Fig. 10 (a) the pegs 1, 4, 7; pegs 2, 5, 8 and pegs & /
9 have similar magnitudes (within 0.6 cm) on thaxis while .
the pegs 1, 2, 3; pegs 4, 5, 6 and pegs, B Bave similar
magnitudes (within 0.7 cm) on theayis. The xaxis result s
represents the vertical movement of the measurement s T
(b)
g O Position by DR after ZUPT
,\ A n N A P Position by Kinematic Model
35 W WA
_40_/ SV VM, U _ (_% -
x 0 2 4 6 8‘ 10 12 14 16 % % ?%
T 35 Time(s) 2 TQ j
I - Vam W A fo N
E \ \J NV i =
8 45 5 v} v
E 50 é E E i i
0 2 4 6 grime(s) 10 12 14 16 § 6 %
E 10 =2 3 A 5 BTy7 g 8 E E% %
L J —\ﬂ\f AVE\VARAVAVI &
E " -10
0 2 4 6 8 10 12 14 16
Time(s) 12 ,
0 2 4 6 8 10 12 14 16
@ Timef(s)
£1 (©
£ ¥ Fig. 11. Comparison of wrist position tracking by using dead realg
L, (with or without ZUPT drift correction method) and kinematiodelling fo
50 2 4 6 8 10 12 14 16 the ninehole peg test (a) ZUPT algorithm with velocity before and af
-0 amets) (b) Position tracking plot before ZUPT (c) Positioacking comparisc
. N e N e e Wae between DR and kinematic model
: L W - N/
gzo . . L L e VRT: ment. It can also be seen that the wrist position does not have
s, Time(s) the same value every time it returns to the origin to pickhe
H next peg.
£° NI NN NS G 2) Position Estimation by Using the DR Method and a Single
g % 2 4 6 8 10 12 14 16 Inertial Sensor: ) L. .
Time(s) For the NHPT test, using the DR method, the initial position
(b) for a healthy volunteer's hand movement in the horizontal

direction in the trunk reference frame is pldtia Fig. 11 (b).

Fig. 10. Hand and shoulder position tracking omgs of NHPT (a) 3| As can be seen, if offsets in the acceleration are not corrected

hand position tracking of NHPT (b) 3D shoulder positiatking of NHPT
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then the drift in the estimation of position is very large, react 10

ing a magnitude approximately 20 times larger than the orig

nal value within 20 seconds of beginning the.tel®wever, as \/H ﬂ T W (W FW m ﬂ ﬂ (\\“
the hand velocity will be zero at peg pick up and peg insertic °

and the ZUPT correction method discussed in section 11.C.2
can be applied.
The red line and green line shown in Fig. 11 (a) represe \ N H U /

the start and end of each peg insertion movement. As c

scribed in Sectiol.C.2.b, using the threshold values T1, T2 PIE—. J

(two thresholds of short time energy) and T3 (threshold ¢ W

zero crossing rates), the spikes in gyro energy data are dete Pegl Peg2  Pegd Pegd4 PegSi Peg6 Peg7 Pig8 Peg

ed as shown in the middle graph in Fig. 11 (a). Since one 410 —_—

the features is that the spikin velocity signal correspond to Time ()

the spikes in the gyro energy, the start and end points in velc @

ity signal can be figured out. This algorithm starts from th »

first frame (according the short term energy), the comparisc 2 "

initially will be made betweerhe low threshold value T2 and . ]

the short time energy. If the first point N1 exceeds the thres ; \ "

old value T2 but the next point after N1 does not exceed vali iR o e ML )

T2, this point cannot be treated as start point. If point N1 e: LMy :

ceeds the high threshold value T1, Nithe first start point. °
oL
-10

The same method is applied for detecting the end point N2 J
indicates the end point. The first and last plot in Fig. 11 (c ® ufJ

Position of Hand -z-axis (cm)

Position of Hand - z-axis(cm)
&

well. The red line indicates the start point while the green lin | i i
presents the velocity data before and after the ZUPT. 2 Pegl Fegs Peas  Pega Pegls pegt Pegd  Pegls Peg
Fig. 11 (b) shows the uncorrected position tracking resul I T
Fig. 11 (c) shows the comparison between the DR and kin Tmets)
matic models. Applying the ZUPT algorithm to the DR meth: (b)
od has reduced the error to 0.8%, an acceptable level. Fig. 12. Healthy volunteer and patient’s horizontal position dditainehole

However thisbasic application of the ZUPT algorithm doesPed test (a) Healthy volunteer's horizontal position tracking result é
tient’s horizontal position tracking result

introduce an error as movement data is discarded within t|

detected zero intervals and so the DR data wiill underestimgg:r and the Dead Reckoning method. This second system has

the aCtl_J‘_"ll movement. ) been evaluated as itli®ped that the use of a single sensor for
3) Position Tracking Comparison between the Healthy Vol - more basic Range of Motion measurements and where meas-

unteer a’.‘d Patient . . urement of the movement of a single segment is acceptable.
A series of measurements were carried out using the four. . : ! )

) . . . . The system using Kinematic modelling has been compared

sensor kinematic model system. Fig. 12 (a) shows typical posi-

tion tracking on the horizontal axis-@Xis in the trunk refer- With the Vicon system and shown to providearate position

. . tracking within 0.1 cm over a distance of 10 cm, but at least
ence frame) for a nirkole peg test for a healthy volunteer in . . .

: S . two sensors are required to construct the kinematic model. If
contrastto a typical result from the patient in Fig. 12 (b). It is

. S . only the movement of a single segment is required, then in
evident that there is significant base line movement (B y g g d

cm) during the peg placement for the patient. This is thoug%etrmS of system cost and st in a clinical setting, aingle

sbensor system using the DR method with ZUPT correction is
to be caused by compensatory movement of the shoulder Y opti o . . .
art option. Initial evaluation of correction techniques, such as

the patient in ader to achieve the task. It can also be seen ﬂﬁt ZUPT, has indicated that it may be possible to reduce the

the time taken to place each peg can be measured. This e%f:eict of these errors to an acceptable level (0.8% of the total

can be analysed to |dgnt|fy d|fference§ between the tlmlnrﬁovement distance). However this rather crude use of the
patterns of a normal subject and the patient [47].

. . ... ZUPT has removed some of the movement data as it corrects
These results provide evidence tlla¢ use of the inertial

. . . . the errors and further refinement is needed. It should also be
measurement system provides the clinician with data which |s

not only objective but also can provide further insight into thnOted that the use of ZUPT requires the zero intervals in the
d namii: mJCJvements and theirpcharacteristics thr?)u hout t gsessment testAdditionally for some tests e.g. the NHPT,

y 9 e distance between the peg locations is known and this data
assessments. .
can also be used to help reduce any modelling errors.

In this research, a preliminary evaluation has been carried

. T _ out on 10 healthy volunteers andeopatient. The performance
In this paper, the preliminary evaluation of two systems utiof this patient was tracked over 6 months from the day admit-

lising inertial sensors has been presented. One system utilig®$ to the hospital to the day discharged. Additional infor-
a foursensor and a kinematic model, the second a single sen-

IV. DiscussiON& CONCLUSION
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mation such as dynamic information and compensatolii]
movements has been provided by these two systems in-diffe
ent assessment tests. In the AROM test, the inertial systems
are able to provide dynamic position and orientation data
against time. The monitoring of all the segments also allows
the clinician to know whether a patient is successfully conprs)
pleting a testhrough using compensatory movements. For
example, in the patient's NHPT, the variation in base ling4
movement was too great to be explained by finger movement
and is probably due to the patient using trunkhich is as- [15]
sumed to be the stable reference franamd shoulder move-
ment to compensate for limited arm mobility. However thisg
pattern indicates that if the reference frame is not stable, its
movement can be deduceds can the source of the compen-
satory movement. This could be important in understandi 17
how the patient is recovering function, even if the test is com-
pleted within the expected normal time range. In addition tH&S]
plots indicate that the healthy volunteer finds it easier than the
patient to return to theenterof the peg container to piakp [19]
the next peg. This also implies that the volunteer has better
control of the upper limb segments than the patient. As it can
be seen from the Fig. 12, the healthy volunteer's movementjg)
smoother, there is minimal trunk movement and the test takes
lesstime to finish. 21]
Therefore this information should provide the clinician Wiﬂ{
additional information on clinical recovery and this may als{?2]
motivate the patient to his/her rehab prescription. Larger trans-
lational trials are now required to assess the iglehd usa-

bility of these inertial measurement systems. [23]
[24]
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