
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Wang, Meng and Najd, Shayan (2014) Semantic Bidirectionalization Revisited. In: Workshop
on Partial Evaluation and Program Manipulation (PEPM).

DOI

http://doi.org/10.1145/2543728.2543729

Link to record in KAR

http://kar.kent.ac.uk/47482/

Document Version

Publisher pdf

Semantic Bidirectionalization Revisited

Meng Wang

Computer Science and Engineering
Chalmers University of Technology

Göteborg, Sweden

wmeng@chalmers.se

Shayan Najd

School of Informatics
University of Edinburgh

Edinburgh, UK

sh.najd@ed.ac.uk

Abstract

A bidirectional transformation is a pair of mappings between
source and view data objects, one in each direction. When the
view is modified, the source is updated accordingly with respect
to some laws. Over the years, a lot of effort has been made to of-
fer better language support for programming such transformations,
essentially allowing the programmers to construct one mapping of
the pair and have the other automatically generated.

As an alternative to creating specialized new languages, one can
try to analyse and transform programs written in general purpose
languages, and “bidirectionalize” them. Among others, a technique
termed as semantic bidirectionalization [16] stands out in term of
user-friendliness. The unidirectional program can be written using
arbitrary language constructs, as long as the function is polymor-
phic and the language constructs respect parametricity. The free
theorem that follows from the polymorphic type of the program
allows a kind of forensic examination of the transformation, de-
termining its effect without examining its implementation. This is
convenient, in the sense that the programmer is not restricted to us-
ing a particular syntax; but it does require the transformation to be
polymorphic.

In this paper, we revisit the idea of semantic bidirectionalization
and reveal the elegant principles behind the current state-of-the-
art techniques. Guided by the findings, we derive much simpler
implementations that scale easily.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.3 [Program-
ming Language]: Languages Constructs and Features—Data types
and structures, Polymorphism; I.2.2 [Artificial Intelligence]: Au-
tomatic Programming—Program transformation

Keywords Bidirectional Transformation, Free Theorem, Haskell,
View-Update Problem

1. Introduction

Bidirectionality is a fundamental aspect of computing: transform-
ing data from one format to another, and requiring a transformation
in the opposite direction that is in some sense an inverse. The most

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PEPM ’14, January 20–21, 2014, San Diego, CA, USA.
Copyright c© 2014 ACM 978-1-4503-2619-3/14/01. . . $15.00.
http://dx.doi.org/10.1145/2543728.2543729

well-known instance is the view–update problem [1] from relational
database design: a ‘view’ represents a kind of virtual database table,
computed on the fly from concrete source tables rather than being
represented explicitly, and the problem comes when mapping an
update of the view back to a ‘corresponding’ update on the source
tables. In the same way, the problem is central to model transfor-
mations, playing a crucial role in software evolution: having trans-
formed a high-level model into a lower-level implementation, for
a variety of reasons one often needs to reverse engineer a revised
high-level model from an updated implementation.

By dint of hard effort, one can construct separately the ‘for-
wards transformation’ from source to view together with the corre-
sponding ‘backwards’ transformation. However, this is a significant
duplication of work, because the two transformations are closely
related; moreover, it is prone to error, because they do really have
to correspond in order to avoid bugs; and it introduces a mainte-
nance issue, because changes to one transformation entail match-
ing changes to the other. Therefore, a lot of work has gone into
ways to reduce this duplication and the problems it causes; in par-
ticular, there has been a recent rise in linguistic (mostly functional)
approaches to streamlining bidirectional transformations—this is
very much a current problem.

Using terminologies advocated by the lens framework [2, 3,
6–8, 10, 11] that traces back to database research: the forwards
function is commonly known as get having type S → V , and the
backwards one as put having type S → V → S . The idea is that
put , in addition to an updated view, takes the original source as an
input, so that get does not have to be bijective to have a backwards
semantics. The correctness of the pair of functions is governed by
the following definitional properties [4, 15].

Consistency get (put s v) = v

Acceptability put s (get s) = s

Here consistency (also known as the PutGet law) roughly corre-
sponds to right-invertibility, basically ensuring that all updates on
a view are captured by the updated source, and acceptability (also
known as the GetPut law) roughly corresponds to left-invertibility,
prohibiting changes to the source if no update has been made on the
view. Bidirectional transformations satisfying the above two laws
are sometimes called well-behaved [6]. In addition to these laws,
an optional undoability property is sometimes introduced:

Undoability put (put s v ′) (get s) = s

This property states that the result of an update can be undone
through the view.

The paradigm of bidirectional programming is about construct-
ing get in a bidirectional language and expecting a corresponding
put to be created automatically. Very often, such languages are de-
fined as a collection of combinators, which can be read in two ways:
forwards, as ordinary functions from source to view, and back-

51

wards, from original source and updated view to updated source. A
disadvantage of the combinator-based approach is that transforma-
tions have to be encoded in a somewhat inconvenient programming
style.

Other than creating special purpose bidirectional languages, an
alternative is to mechanically transform existing unidirectional pro-
grams to obtain a backwards counterpart, a technique known as
bidirectionalization [12]. Different flavours of bidirectionalization
have been proposed: syntactic [12], semantic [16], and a combi-
nation of the two [17, 18]. Syntactic bidirectionalization inspects
a get definition written in a somehow restricted syntactic repre-
sentation and synthesizes a definition for the backwards version.
Semantic bidirectionalization on the other hand treats polymorphic
get as an opaque semantic object, applying the function indepen-
dently to a collection of unique identifiers, and the free theorem
arising from parametricity states that whatever happens to those
identifiers happens in the same way to any other inputs—this infor-
mation is sufficient to construct the backwards transformation. (We
will give more details of the technique in Section 2.) This is conve-
nient, in the sense that the programmer is not confined to a certain
(sometime awkward) syntactic representation; but it does require
the transformation to be polymorphic.

In the original paper describing semantic bidirectionaliza-
tion [16], which will be referred as BFF in this paper, the tech-
nique developed for fully polymorphic transformations is carefully
extended to two instances of constrained polymorphism, namely
the Eq and Ord classes in Haskell [14]. The extensions are made
in a case-by-case manner, which give rise to a design of having
non-compatible infrastructures for individual extensions.

In this paper, we set out to devise a general theory for seman-
tic bidirectionalization (Section 3) that is sufficient to explain the
different extensions defined in BFF, and many more that are yet
to be defined. This unified theory can be instantiated into general
scalable algorithms that work in practise (Section 4). We then dis-
cuss extensions and related literature of semantic bidirectionaliza-
tion (Section 5) before the conclusion (Section 6).

2. The Original Proposal

Following from BFF, we use Haskell with second-rank types. Con-
sider that we are given a polymorphic function get :: [a] → [a].
Parametricity asserts that get can only reorganize, remove and du-
plicate its input list elements, without inspecting them or creating
new ones. Semantic bidirectionalization exploits this fact to con-
duct a kind of forensic examination of the transformation, deter-
mining its effect without examining its implementation. The tech-
nique can be implemented as the following higher-order function:

bff :: (∀a.[a]→ [a])→ (∀a.Eq a ⇒ [a]→ [a]→ [a])
bff get s v = seq mv (map (lookupL m) is)

where ms = templ s

is = map fst ms

mv = assoc (get is) v
m = union mv ms

templ :: [a]→ [(Int , a)]
templ as = zip [0 . .] as

assoc :: Eq a ⇒ [Int]→ [a]→ [(Int , a)]
assoc is as | length is length as =

if and [i / j ∨ x y | (i , x)← m, (j , y)← m]
then m else error "Inconsistent Update!"

where m = zip is as

union :: [(Int , a)]→ [(Int , a)]→ [(Int , a)]
union = Data.List .unionBy (λ(i ,) (j ,)→ i j)

lookupL :: [(Int , a)]→ Int → a

lookupL ((j , a) : as) i = if i j then a

else lookupL i as

lookupL [] =
error "This shouldn’t happen!"

The function bff is parameterized on a forwards function, and pro-
duces a backwards function that reverses the effect of its func-
tion argument. When presented with inputs, the produced back-
wards function firstly indexes all source elements with identifiers
by building a map from indices to values (templ). Since get is
polymorphic, we can apply it to the indices (get is) and expect that
whatever happens to those indices happens in the same way to any
other inputs. Matching the result of get is and the updated view v
associates the indices with the updated values (assoc). If we imag-
ine the indices as locations, assoc effectively reassigns the values
in them. Lastly, union merges the original map with the newly cre-
ated one by given precedence to the latter, so that elements in the
source that didn’t end up in the view can be accounted for. (The
Haskell library function Data.List .unionBy performs set union.)
Then the values inside the map can be straightforwardly looked up
to construct the updated source.

A number of checks are in place to ensure that the updates to
the view do not cause inconsistency: in assoc it is enforced that the
updates to the view shall not change the list length, and if a source
element appears more than once in the view, it will make sure the
multiple occurrences of the same element are updated consistently
(that is why the Eq context is needed). A small technical detail
here with Haskell is that function assoc must execute strictly to
avoid any errors escaping silently due to laziness, which give rises
to the use of seq .

For simplicity, we favour the simple list representation for
Maps over more complicated but more efficient variants. It is
also worth mentioning that the above technique generalizes al-
most straightforward to arbitrary tree structures through generic
programming as shown in [16]

Key to the practicality of this approach is that it extends to
non-full polymorphism. For example, we may want to apply bff
to nub :: Eq a ⇒ [a] → [a] (a function in Haskell Prelude that
removes duplicates from a list) 1:

$ bff nub "abba" "aa"
"aaaa"

This behaviour is certainly unacceptable as the result of nub "aaaa"
is different from "aa", breaking the consistency law. Astute read-
ers may have already realised the problem here. Since we have this
newly gained ability of using equality in the forwards function, the
free theorems derived from fully polymorphic types are no longer
applicable; applying get to a list of unique indices can no longer
mimic its effect on the actual source.

In BFF, the problem is confronted head on: a separate bidirec-
tionalization system namely bffEq

bffEq :: (∀a.Eq a ⇒ [a]→ [a])→
(∀a.Eq a ⇒ [a]→ [a]→ [a])

is introduced with a different indexing strategy and additional va-
lidity checks in assoc and union to make sure that the view up-
dates do not conflict with invariants dictated by the template. We
explain this technique with the above example. With bffEq , we no
longer simplemindedly index the elements with running numbers.
In BFF, a state monad carrying around the elements that have al-
ready been encountered and an integer denoting the next available
index is used to produce the following.

1 Of course we have to change the type annotation in bff ’s definition

52

templEq :: Eq a ⇒ [a]→ ([Int], [(Int , a)])
templEq s = case runState (go s) ([], 0)

of (s ′, (g ,))→ (s ′, g)
where go [] = return []

go (a : as) = do i ← numberEq a

is ← go as

return (i : is)

numberEq :: Eq a ⇒ a → State ([(Int , a)], Int) Int
numberEq a =

do (m, i)← Control .Monad .State.get
case Prelude.lookup a (map swap m) of

Just j → return j

Nothing →
do let m ′ = (i , a) :m

Control .Monad .State.put (m ′, i + 1)
return i

The above code is taken from BFF. We do not explain the code in
detail since the functions are not used in this paper; but we give an
example to illustrate its behaviour.

$ templ_Eq "abba"
([0,1,1,0],[(1,’b’),(0,’a’)])

There are two parts in the result: the indices sequence and their
mappings. The indices now reflect equality among the elements
and duplications are removed from the mappings. With this, we
regain the power of the free theorem: whatever happens to those
indices happens in the same way to the elements. This equality cor-
respondence needs to be respected by view updates; in the above,
"aa" is an invalid update since it assigns equal values to unequal
indices, and will be rejected by the new bidirectionalization system
(bffEq). The bidirectional laws have been reinstated, but in a com-
plicated and non-scalable way. The knowledge that the Eq class
is about equality comparisons is hardwired into the definition of
templEq . When we want to move to a different class constraint,
Ord as shown in BFF, the above designing process has to be re-
peated, with greater diligence. The indices now need to reflect the
relative ordering of the elements, on top of equality (because Eq is
a superclass of Ord).

$ templ_Ord "mississippi"
([1,0,3,3,0,3,3,0,2,2,0],
[(1,’m’),(0,’i’),(3,’s’),(2,’p’)])

As with templEq , the definition of templOrd (which is rather com-
plicated and is omitted from a reproduction here) requires human
ingenuity and is critically dependent on the knowledge that Ord
class is about inequality comparisons, an effort that cannot be eas-
ily reused.

The problem of scalability Type classes are a convenient way
of expressing constrained polymorphism. However, they are not
general enough for many commonly used polymorphic functions.
The principled approach of dealing with (non-fully) polymorphism
is through higher-order functions (type classes are desugared into
higher-order functions through dictionary translation). In Haskell
Prelude (the default library that is imported implicitly), we can find
the following functions:

takeWhile :: (a → Bool)→ [a]→ [a]
dropWhile :: (a → Bool)→ [a]→ [a]
span :: (a → Bool)→ [a]→ ([a], [a])
break :: (a → Bool)→ [a]→ ([a], [a])
filter :: (a → Bool)→ [a]→ [a]

As a comparison, there are 3 top-level functions in Prelude that use
type class Eq and 2 functions use type class Ord . And for those

functions that do use type classes, it is by convention that they are
companied by a more general form of “By” functions with user-
supplied operations other than the overloaded ones. For example,

nubBy :: (a → a → Bool)→ [a]→ [a]
sortBy :: (a → a → Ordering)→ [a]→ [a]

for nub and sort respectively. Despite being polymorphic, all the
above higher-order functions are out of reach from the class-based
technique of BFF, because there is no meta-knowledge about the
properties of the function arguments (such as Eq is about equality)
that we can hinge on to create the specialized indices.

In summary, semantic bidirectionalization based on type classes
quickly reaches its limit, not only that it is difficult to extend to new
classes, but also that it rules out functions that are not expressed by
type classes altogether.

3. Specifying Semantic Bidirectionalization

It has become obvious that indexing in the way of constructing
templEq quickly becomes over complicated, if not impossible. It
is time to go back to the drawing board and review the design. In
this section, we start by specifying semantic bidirectionalization,
which once done hopefully will enable us to make a more informed
decision.

Following from the previous section, we use lists for illustration
with the understanding that it applies to algebraic datatypes in
general. We write o

n
to represent n repetitions of os. We abuse the

notation to write a
n
→ Z for a → ... → a → Z . We avoid type

classes and use explicit higher-order functions getBy ::∀a. (a
n
→

Z) → [a] → [a], where we use lower case for polymorphic type
variables and upper case for arbitrary monomorphic types. We call
the function of type a

n
→ Z observer function.

An important semantic aspect of bidirectional systems is the
notion of equality that is used to decide the propogation of updates.
In this paper, we use structural equality (denoted by

.
=) to mean that

two values have equal contents, and physical equality (denoted by
≡) to mean that two values are duplicates sharing the same origin.
We extended the notations naturally to expressions to represent the
equalities between their evaluation results. As expected, physical
equality is stronger than structural equality: x ≡ y ⇒ x

.
= y .

We assume that structural equality is implemented by the Haskell
function () (i.e., (x y)

.
= True ⇔ x

.
= y), but carefully

distinguishes them in presentation.
Rewriting semantic bidirectionalization in our explicit style

gives rise to the following:

bffBy :: (∀a.(a
n
→ Z)→ [a]→ [a])→

(a
n
→ Z)→ (i

n
→ Z)→ [a]→ [a]→ [a]

bffBy getBy f g s v = seq m (map (lookupLBy eqI m) is)
where ms = templ s

is = map fst ms

mv = invfg (assocBy eqA eqI (getBy g is) v)
m = invfg (unionBy eqI mv ms)
invfg = invCk f g

eqA = ...
eqI = ...

assocBy :: (a → a → Bool)→ (i → i → Bool)→
[i]→ [a]→ [(i , a)]

assocBy eqA eqI is as | length is length as =
if and [¬ (i ‘eqI ‘ j) ∨ (x ‘eqA‘ y) | (i , x)← m,

(j , y)← m]
then m else error "Inconsistent Update!"

where m = zip is as

53

unionBy :: (i → i → Bool)→
[(i , a)]→ [(i , a)]→ [(i , a)]

unionBy eqI xs ys = Data.List .unionBy
(λ(i ,) (j ,)→ i ‘eqI ‘ j) xs ys

lookupLBy :: (i → i → Bool)→ [(i , a)]→ i → a

lookupLBy eqI ((j , a) : as) i = if i ‘eqI ‘ j then a

else lookupLBy eqI i as

lookupLBy [] = error "This should not happen!"

In this version, we have made the observer functions and also the
equality operators explicit. Note that we do not parameterize the
equality operators but have them locally defined (eqA and eqI),
because as we will see from the sequel that they sometimes are
derived from the observer functions or from each other, instead of
being externally supplied. This difference in treatment also helps
to distinguish the different roles of the two pairs of functions: the
observer functions are required by forwards functions, whereas
the equality operators are used to build the bidirectionalization
infrastructure, and different choices of equality allow us to explore
different bidirectional semantics. We removed the definition of
templ since it depends on the index representation, which is yet
to be decided. We also delay a discussion of a guard function
invCk , which is supposed to enforce consistency between indices
and elements.

EXAMPLE 1. Consider a forwards function using user-defined
lessthan operator as the observer function: get = getBy (<A). It
is bidirectionalized as

bffBy getBy (<A) (<I)

�

EXAMPLE 2. Consider a forwards function using user-defined
equality operator as the observer function: get = getBy (A). It
is bidirectionalized as

bffBy getBy (A) (I)

�

We continue to use the term fully polymorphic functions in this
higher-order setting to mean polymorphic functions that do not
have observer functions as argument.

EXAMPLE 3. A fully polymorphic forwards function is bidirection-
alized as

bffBy getBy (const z) (const z)

where z is an arbitary value that is outputted by the constant
function. �

Having the constant function in the place of the observer function
conveys the message that nothing can be observed about the ele-
ments.

3.1 Map Invariant

With this new setup, we begin with specifying invCk by stating a
general property that it enforces.

CONDITION 1 (Map Invariant). A valid map m :: [(I ,X)] must
satisfy the following property.

∀(i1, x1) ... (in , xn) ∈m. f x1 ... xn
.
= g i1 ... in

where f :: X
n
→ Z and g :: I

n
→ Z are a pair of observer

functions.
�

EXAMPLE 4. Consider a forwards function using user-defined
lessthan operator as the observer function: get = getBy (<A). A
valid map m :: [(I ,X)] needs to satisfy

∀(i , x), (j , y) ∈m. x <A y
.
= i <I j

�

EXAMPLE 5. Consider a forwards function using user-defined
equality operator as the observer function: get = getBy (A). A
valid map m :: [(I ,X)] needs to satisfy

∀(i , x), (j , y) ∈m. x A y
.
= i I j

�

EXAMPLE 6. The map invariant for a fully polymorphic forwards
function is always satisfied because the observer function const z
always returns the value z . �

Map invariant is essentially the precondition for the free theorems,
which can be traced back to Wadler’s original proposal [19]. The
finiteness of the map that the elements and indices are drawn from
allows us to perform dynamic checking of the condition. Intuitively,
applying f and g to every entry pairs in the map builds two tables,
which have header rows and columns occupied by the elements
or indices, and cells containing values of type Z – the results of
applying f or g to the header values; the dimension of the tables is
the arity of f and g , and the size of the tables is determined by the
size of map m . We call these tables the observation tables because
they are basically all the information that can be extracted from the
polymorphic list elements by the observer functions, and we require
the observation table of elements (represented by f x1 ... xn) to
coincide with it of indices (represented by g i1 ... in), so that we
know that whatever observations made to the indices agrees to them
to the elements.

For a given source, the observation tables are fixed by the
observer functions, with the function names as the names of the
tables. The first step of the bidirectionalization algorithm is to come
up with indices that entail a matching observation table as the one
of the source, a property captured by imposing the map invariant
on the source map ms . In steps that follows, the set of indices
(is) contained in ms remain constant, whereas the set of elements
changes with the view update. Effectively, the observation table
of the indices anchors the changeable table of the elements by
the imposition of the map invariant. When the view is updated,
the effect is encoded into a map mv . Since the set of indices in
getBy g is is a subset of the original indices in is , its observation
table consists of a subset of the rows and columns in the original.
The map invariant guarantees that the observation table of the
updated view map (mv) matches the one of the indices, and does
not cause conflict when combined with the original source table
(ms). Let’s look at an example illustrating the above process.

EXAMPLE 7. Given a binary predicate f as the observer function,
and a source [x , y , z], which give rise to the following observation
table:

f x y z

x T T F

y T T F

z F F T

We consider forwards function nubBy f . �

Basically, the above encodes the fact that x and y are considered
equivalent by f , but not z . So nubBy f [x , y , z]

.
=[x , z]. Assuming

through some magic, we come out with indices [i , j , k] and a
function g that produces a matching table.

54

g i j k

i T T F

j T T F

k F F T

Now suppose we change the z in the view to w , and then union the
view map mv with the source map ms to incorporate the updates
into the original source. The resulting map m gives rise to the
updated tables (with the affected row/column highlighted). Since
the index table is not affected by the update, the map invariant
dictates that the element table remains constant too.

f x y w

x T T F

y T T F

w F F T

g i j k

i T T F

j T T F

k F F T

This is of course only true if we have ∀(i , x)∈m. f x w
.
= f x z ∧

f w x
.
= f z x , which guarantees that the change from z to w is

not observable, and thus can be safely accepted.
This strategy of checking map invariant is done by function

invCk , which is implemented as the following.

invCk :: (a
n
→ Z)→ (I

n
→ Z)→ Map a → Map a

invCk f g m =

if and [g i
n

f x
n
| (i , x)← m

n
]

then m else error "Invariant Broken!"

We use a list comprehension to enumerate all combinations of
mappings and check whether the observation-table entries are kept
consistent.

This framework based on observer functions is general: it mod-
els the separate cases discussed in BFF uniformly. More impor-
tantly, we observe that little restriction on indices other than their
resemblance to the elements is actually needed, suggesting that we
can employ a trivial indexing strategy of copying the elements:
templ duplicates the source with one copy as constant indices and
the other as updatable elements, and the observer function for the
indices is the same as the one for the elements.2

templ :: [a]→ [(a, a)]
templ xs = zip xs xs

And consequently, the pair of observer functions and the pair
of equality operations on indices and elements coincide, and the
definition of bffBy can be simplified to the following.

bffBy getBy f s v = seq m (map (lookupLBy eqI m) is)
where ms = templ s

is = map fst ms

mv = invfg (assocBy eqA eqI (getBy f is) v)
m = invfg (unionBy eqI mv ms)
invfg = invCk f f

eqA = ...
eqI = eqA

3.2 Observable Equivalence

Now the only missing part is a notion of equality for comparison
between elements and indices. The equality is needed in unionBy
to remove duplicates, and the same equality is used in looking

2 Readers familiar with BFF may notice that we do not model exactly the
same semantics as the original for fully polymorphic forwards functions.
We will address this issue in Section 4.

up from the map in constructing the updated source. Moreover,
in assocBy we need equalities for both indices and elements to
guarantee consistent updates to duplicated values.

This choice of equality decides the precise semantics of the
backwards transformations, which will be the topic of Section 4.
In this section, we aim for maximum generality and use an
observation-based equivalence, which is weaker than equality and
is compatible with the observation-based map invariant.

DEFINITION 2 (Observable Equivalence (Unary)). Let f :: X →
Z be an observer function, and let d :: [X] be a subset of f ’s
domain. We say two values x ∈ d and y ∈ d are observable
equivalent with respect to f under element set d denoted by x∼f ;dy
if

f x
.
= f y

�

DEFINITION 3 (Observable Equivalence (Binary)). Let f :: X →
Z be an observer function, and let d :: [X] be a subset of f ’s
domain. We say two values x ∈ d and y ∈ d are observable
equivalent with respect to f under element set d denoted by x∼f ;dy
if

∀z ∈ d . f z x
.
= f z y ∧ f x z

.
= f y z

�

The above definition generalises to arbitrary arities in a straight-
forward way. We sometimes omit the domain d , and even the ob-
server function, when they are clear from the context, or irrelevant.
Observable equivalence is by definition a weaker notion of equality
and is reflexive, symmetric, and transitive.

EXAMPLE 8. Equality is a special instance of observable equiva-
lence

∀d .x ∼();d y ⇒ x
.
= y

�

For a given observer function, observable equivalences are ordered
according to the element sets they are under.

COROLLARY 4. Given two element sets c ⊆ d , we have

∀x , y . x ∼f ;d y ⇒ x ∼f ;c y

for all f . �

From the definition of map invariant, we can easily derive the
following correspondence of observable equivalences.

COROLLARY 5. Let f :: X
n
→ Z , and g :: I

n
→ Z be observer

functions, and let m :: [(I ,X)] be a finite map satisfying the map
invariant. We have

∀(i , x), (j , y) ∈m. x ∼f ;d y ⇔ i ∼g;di j

where (di , d) = unzip m . �

We can now look back at Example 7 above and see observable
equivalence at work. The missing definition of eqA can be filled
in with a definition of observable equivalence for binary observer
functions.

eqA a b = and [(f x a f x b) ∧ (f a x f b x) |
x ← s ++ v]

When we try to union mv which is [(i , x), (k ,w)] and ms which
is [(i , x), (j , y), (k , z)], we have i ∼g;di j where di = {i , j , k }.
As a result, the map m now has only two entries, instead of three,
[(i , x), (k ,w)]. When looked up, the map produces the updated
source [x , x ,w]. Some may worry that the result is different from

55

the seemingly only correct one [x , y ,w]. But in this observation-
based setting, x and y are not differentiable. (We will come back
to this point later in Section 4.) This is the reason that the absence
of the entry (j , y) is unimportant; the above corollary guarantees
that if i ∼g;di j , observation-wise it does not matter whether they
are mapped to x or y , or even any other values that are equivalent
to the two.

As another example, let’s consider a variant of Example 7. If
we update the view [x , z] to [x , y], then the union of mv which is
[(i , x), (k , y)] and ms which is [(i , x), (j , y), (k , z)] produces m
which is [(i , x), (k , y)]. This will be rejected by the map invariant
check because f x y is not equal to g i k . Indeed, if we do not
reject this update, map (lookup m) is would result [x , x , y] and
get [x , x , y] would be [x], which breaks the consistency law.

We are now ready to state the bidirectional laws in this new
setting.

THEOREM 6 (Consistency). Let get = getBy f and put =
bffBy getBy f . Assuming successful executions, we have

get (put s v)∼f ;s++v v

PROOF SKECH.

get (put s v)
.
= { definition of bffBy }
get (map (lookupLBy eqI m) is)

.
= {Corollary 5 and free theorem}
map (lookupLBy eqI m) (get is)

.
= { all indices in get is is in mv and mv is a prefix of m }
map (lookupLBy eqI mv) (get is)
∼ {Corollary 5}
v

�

The proof is based on the following free theorem, and Corollary 5
together with the definition of lookupLBy serve as its precondition.
Also from Corollary 5, we know that for entries in mv , equal
indices always map to equal elements in the last step above.

LEMMA 7. Let getBy :: ∀a.(a
n
→ Z) → [a] → [a], let

f :: A
n
→ Z and g :: I

n
→ Z be observer functions for elements

and indices respectively. Let h :: I → A and is :: [I]. We have

∀i
n
∈ is.g i1 i2 ... in

.
= f (h i1) (h i2) ... (h in)⇒

getBy f (map h is)
.
=map h (getBy g is)

THEOREM 8 (Acceptability). Let get = getBy f and put =
bffBy getBy f . Assuming successful executions, we have

put s (get s)∼f ;s++v s

PROOF SKECH.

put s (get s)
.
= { definition of bffBy }
map (lookupLBy eqI m) is

.
= { definition of m }
map (lookupLBy eqI (unionBy eqI mv ms)) is
∼ { no update is made in v }
map (lookupLBy eqI ms) is
∼ { definition of templ and lookupLBy }
s

�

THEOREM 9 (Undoability). Let get = getBy f and put =
bffBy getBy f . Assuming successful executions, we have

put (put s v ′) (get s)∼f ;s s

PROOF SKECH.
As a shorthand, we write x

⋃
y for unionBy eqI x y .

Let

ms1 = templ s

is1 = map fst ms1
mv1 = invfg (assocBy eqA eqI (getBy f is1) v

′)
m1 = invfg (mv1

⋃
ms1)

and let

s ′ = put s v ′

v = get s

ms2 = templ s ′

is2 = map fst ms2
mv2 = invfg (assocBy eqA eqI (getBy f is2) v)
m2 = invfg (mv2

⋃
ms2)

Given the map invariant, we know that the observation tables for
is1 and is2 coincide: the table entries match each other even though
the header values may be different. Thus, no matter whether is1 or
is2 is used as the indices in a backwards execution, the results will
not be affected.

Let ms21 be a version of ms1 with the indices replaced by their
counter parts in is2:

ms21 = zip is2 (map snd ms1)

Similarly,

mv21 = zip (getBy f is2) (map snd mv1)

We then prove the theorem with the following derivation.

map (lookupLBy eqI m2) is2
∼f ;s′++v { definition of m2}
map (lookupLBy eqI (mv2

⋃
ms2)) is2

∼f ;s′++v { definition of put and templ }
map (lookupLBy eqI (mv2

⋃
(mv21

⋃
ms21))) is2.

= {map fst mv2
.
=map fst mv21 }

map (lookupLBy eqI (mv2

⋃
ms21)) is2

∼f ;s++v {Acceptability: put s (get s)∼f ;s++v s }
s

Since v⊆s⊆s ′++ v , we conclude the proof. �

A key step above is that the new update mv2 completely overwrites
the previous update mv21 .

So far we have completed a specification of semantic bidirec-
tionalization. We demonstrate that the various seemingly ad hoc
decisions made in BFF are by no means arbitrary. There exists
a neat underlying theory of semantic bidirectionalization that ex-
plains the handcrafted instances, and guides further development.
On the other hand, it is also obvious that the specification devel-
oped here is not as intuitive and deterministic as desired. When the
observable functions are discerning, such as (), observable equiv-
alent works perfectly, but less so otherwise, for example the fully
polymorphic case.

In the sequel, we will look at instantiating observable equivalent
with two commonly-used notions of equality, namely structural
equality and physical equality, and how the choices will affect the
indexing technique.

4. Equality-Based Bidirectional Transformation

As concluded in the previous section, using observable equivalence
in unionBy , assocBy and lookupBy is less intuitive. The bidirec-
tional laws hold up only to observable equivalence now, not to the

56

more common notions of equality. In this section, we will look at
ways to improve this situation.

Conceptually, in the algorithm the need for some equality op-
erator (let it be observable equivalence or others) comes from the
construction of the updated map by unionBy ; we need to be able
to merge separate entries in the map that have a common index
into one, pointing to the most up-to-date element with duplications
handled consistently (assocBy), and the following lookup straight-
forwardly makes use of the same equality. Since the correctness of
the bidirectional system is guaranteed by observation-based map
invariant, the change from observable equivalence to a different
notion of equality results in a two-track system: observation-based
map invariant checking, and equality-based map union and looking
up. Such a two-track system requires some careful plumbing.

Before we start, it is worth emphasising that the discussion in
this section is about different semantics of bidirectional transfor-
mation when different equality is used in unionBy , assocBy and
lookupBy . It is not related to the different kinds of observer func-
tions that are used to form the forwards functions.

4.1 Structural Equality

Roughly speaking, our notion of structural equality (
.
=) means a

kind of equality describing two objects with the same contents.
Commonly, such equality is implemented in Haskell by , where
two values are equal if they have the same structure and the match-
ing components are equal.

DEFINITION 10 (Structure Equality). For all x and y,

x
.
= y ⇔ (x y

.
= True)

�

We assume that observer functions are functional, contrasting to
relational, with respect to

.
=.

ASSUMPTION 11 (Functional). For all observer function f ,

x
.
= y ⇒ f x

.
= f y

From the definition of observable equivalence, we derive the fol-
lowing corollary.

COROLLARY 12. For all observer function f ,

x
.
= y ⇒ x ∼f y

�

On the other hand, we do not expect the other direction of the
implication to hold, which means that the map invariant is no longer
a sufficient condition for the bidirectional laws up to equality. Let’s
look at a forwards function that filters elements of a list.

EXAMPLE 9. We consider a backwards execution

bffBy filter (1<) [0, 2, 3] [4, 5]

�

The above execution produces a view map [(2, 4), (3, 5)]. For the
particular observer function, we have 2 ∼f 3 and 4 ∼f 5, and the
above map passes the map invariant check. Since first entry [(2, 4)]
shadows the second, when looked up it produces an updated source
[0, 4, 4]. This result is certainly lawful with respect to observation
because filter (1<) [0, 4, 4]∼f [4, 5], but not to equality because
filter (1<) [0, 4, 4] is not equal to [4, 5].

This problem arises because in unionBy and lookupBy , we
merge entries with equal indices, but those indices map to observ-
able equivalent but not necessarily equal elements. If we want to
have the laws up to equality, we need a stronger condition that guar-
antees the merged entries are not differentiable by equality compar-
ison either.

CONDITION 13. Given a map m , we require

∀(i , x), (j , y) ∈m. i
.
= j ⇒ x

.
= y

�

We impose this condition in addition to the map invariant in our
bidirectionalization algorithm. Note that different from the map
invariant, the condition does not include the other direction of
the implication because it is used to safeguard the merging of
map entries, which only operates on the indices, not to serve as
the precondition of the free theorem, which demands two-way
correspondence of the indices and elements.

bffS getBy f s v = seq m (map (lookupLBy eqI m) is)
where ms = templ s

is = map fst ms

mv = invfg (assocBy eqA eqI (getBy f is) v)
m = invfg (unionBy eqI mv ms)
invfg = invCkS f f

eqA = ()
eqI = eqA

invCkS :: (a
n
→ Z)→ (I

n
→ Z)→ Map a → Map a

invCkS f g m =

if and [g i
n

f x
n
| (i , x)← m

n
] ∧

and [i / j ∨ x y | (i , x)← m, (j , y)← m]
then m else error "Invariant Broken!"

With the right condition in place, we are able to state a version
of the bidirectional laws up to structural equality.

THEOREM 14. Let get = getBy f and put = bffS getBy f .
Assuming successful executions, we have

Consistency get (put s v)
.
= v

Acceptability put s (get s)
.
= s

Undoability put (put s v ′) (get s)
.
= s

�

Compare to the ones up to observable equivalence, the above laws
are obviously more natural. Moreover, similar to the map invariant,
the additional Condition 13 does not demand anything from the
indices more than their correspondence to the elements. So still, we
can copy the elements to construct indices and the same observer
function for the elements can be used for the indices.

At a glance, we seem to have obtained the best of both worlds: a
simple indexing algorithm and strong bidirectional laws. Actually,
the compromise is in an aspect of bidirectionalization that is im-
plicit in the laws, namely the “definedness” of the backwards func-
tion, which specifies how much the range of the forwards function
is covered by the domain of its backwards counterpart. With the ad-
ditional condition, we inevitably reject more view updates, some-
times arguably unnecessarily. Let’s revisit Example 9, but with a
different source.

EXAMPLE 10. We consider a backwards execution

bffS filter (1<) [0, 2, 2] [4, 5]

�

The above update will be rejected due to Condition 13: the view
map mv which is [(2, 4), (2, 5)] does not satisfy the condition. But
after a second thought, this is not strictly necessary. The two 2s
in the source do not come from the same origin, and the updating
of them to different values are consistent considering the origins.
Our system of indexing elements with themselves certainly will
not make this distinction, as structural-equal values are considered
identical.

57

This behaviour is certainly defendable: in many situations, we
do want to treat equal values as identical, for example the name
of an employee is better kept consistent across different tables in a
company database. Yet, at the same time, it is wrong to consider it
as the only option. Our investigation so far on one hand discovered
that the use of elements as indices has granted us an unmatched
generality, on the other hand proven that the use of a different
representation of indices in BFF is not completely unnecessary,
since it supports a more discerning notion of equality concerning
the origins of the elements.

4.2 Physical Equality

We have seen in the previous subsection that the migration from an
observation-based system to an equality-based system is modular:
given a notion of equality satisfying Assumption 11, we can simply
add Condition 13 on top of the map invariant. In this section, we
would like to consider physical equality (≡), which is a kind of
equality describing two values with the same origin in the source.
As an example the two 2s from Example 10 are no longer equal due
to their different origins.

We encoded physical equality by indexing the source elements
with a running sequence of integers so that different integers rep-
resent different origins. The new definition of templ is straightfor-
ward.

templP :: [a]→ Map a

templP as = zip [0 . .] as

Physical equality among elements is encoded by the structural
equality of the integer indices. So it only makes sense to discuss
physical equality between indexed elements.

DEFINITION 15 (Physical Equality). For all map m ,

∀(i , x), (j , y) ∈m. i
.
= j ⇔ x ≡ y

Note that this shift to physical equality is only to alter the “defined-
ness” property of the backwards functions, and does not affect the
expressiveness of bffBy (in the sense of different instantiations of
the observer functions) and the bidirectional laws: we still want
the bidirectional laws to hold up to structural equality between el-
ements. Consequently the validity check is the same as it is for
structural equality: the map invariant does not change as always,
and Condition 13 (reproduced below)

∀(i , x), (j , y) ∈m. i
.
= j ⇒ x

.
= y

trivially holds provided x ≡y ⇒ x
.
=y . Effectively, the new index-

ing mechanism templP guarantees that map entries with structural
equal indices always point to structurally equal elements.

The tricky part here is to come up with an appropriate observer
function for the indices. (We can no longer simply use the same
observer function for the elements, and we certainly do not want
to go back to the old way of BFF, which tunes the indices to
suit a given function.) Again, the finiteness of the input domain
is essential here: the semantics of the observer function is fully
specified by the observation table introduced in Section 3. Let’s
revisit Example 7 with integers as indices. Given a source and an
observer function f on elements, table f is fixed, and table g for
indices is simply a copy.

f x y z

x T T F

y T T F

z F F T

g 0 1 2

0 T T F

1 T T F

2 F F T

We also know that during the entire execution of the backwards
function, table g never changes. As a result, we can derive a defini-
tion of g from this table.

bffP getBy f s v = seq m (map (lookupLBy eqI m) is)
where ms = templP s

is = map fst ms

mv =
invfg (assocBy eqA eqI (getBy f is) v)

m = invfg (unionBy eqI mv ms)
invfg = invCk f g

eqA = ()
eqI = ()
g i1 ... in = f (lookupLBy () ms i1) ...

(lookupLBy () ms in)

In the above, we make use of the knowledge that the entries in table
g and table f are identical, so we can simply apply f to the elements
that correspond to the input indices in the source map ms . Both
equalities for indices and elements are simply structural equality of
respective types.

So we have moved to a different notion of equality, but end up
with exactly the same set of bidirectional laws. The point is that
there are noticeable semantic differences between the two systems
in their handling of structurally equal but physically unequal ele-
ments, as we will see next.

4.3 Comparing the Effects of Different Equalities

We have discussed three options for semantic bidirectionalization,
based on observable equivalence, structural equality and physical
equality respectively. These three equalities form a total order:
physical equality implies structural equality and structural equality
implies observable equivalence. Yet, this order between equalities
does not translate directly to an order of “definedness”. On one
hand, the system based on physical equality is potentially more
“defined” than the one based on structural equality because the
former does not require Condition 13 (i.e., the condition trivially
holds). The system based on observable equivalence is even more
“defined” as the checks in assocBy are more likely to pass if
observable equivalence is used. On the other hand, the use of
physical equality in unionBy merges less entries than the cases
of structural equality and observable equivalence, resulting in a
less aggressive “propagation” of the updates, which increases the
chances of violating the map invariant. We explore the different
scenarios with examples.

EXAMPLE 11. Consider function sieve that removes every second
elements from a list as the forwards function.

sieve :: [a]→ [a]
sieve (x : y : zs) = y : sieve zs

sieve = []

s get s v
put s v

Obs. Struct. Phy.

"ababa" "bb" "bb" "bbbbb" "ababa" "ababa"

"ababa" "bb" "Bb" "BBBBB" ∗ "aBaba"

"abba" "ba" "Ba" "BBBBB" "aBBa" "aBba"

�

As we can see from the second row above, the second ’b’ in the
view cannot be changed in the structural-equality setting as it is
supposed to remain equal to the other ’b’, whereas the two ’b’s
are considered unequal in the physical-equality setting. From the

58

third row, we can see that the system based on structural equality
propagates the updates to the other ’b’ in the source that does
not appear in the view. For the observation-based system, since the
forwards function is fully polymorphic, which has a trivial observer
function, the result is pretty arbitrary.

EXAMPLE 12. Consider function dropWhile :: (a → Bool) →
[a] → [a] that removes elements from a list until a particular
predicate cease to hold, and dropWhile (<’c’) as the forwards
function.

s get s v
put s v

Obs. Struct. Phy.

"abca" "ca" "ca" "aaca" "abca" "abca"

"abca" "ca" "cb" "bbcb" "bbcb" "abcb"

"abca" "ca" "cd" ∗ ∗ ∗

�

Note that the application of dropWhile to the predicate (<’c’)
instantiates the type variable to Char . However, this is not an is-
sue because dropWhile is defined as a polymorphic function. The
observation-based system is the most defined among all: when
it fails (because of the map invariant), the other two fail too.
In this case where the observer function is more discerning, the
observation-based system more deterministically produces results
that are similar to those of the other two, because the particular
instance of observable equivalence is closer to equality.

EXAMPLE 13. Consider function nubBy :: (a → a → Bool) →
[a]→ [a] that removes duplicates from a list according to a given
equality predicate, and nubBy () as the forwards function.

s get s v
put s v

Obs. Struct. Phy.

"aa" "a" "a" "aa" "aa" "aa"

"aa" "a" "b" "bb" "bb" ∗

�

This is another example with a discerning observer function. But
since not all the source elements appear in the view, the difference
between different equalities used in unionBy becomes evident. As
we can see from the second row above, with structural equality
unionBy merges mv = [(a, b)] and ms = [(a, a), (a, a)]
into [(a, b)] which passes the map invariant check, whereas with
physical equality unionBy merges mv = [(0, b)] and ms =
[(0, a), (1, a)] into [(0, b), (1, a)] which will be rejected by the
map invariant, because the indices 0 and 1 are equivalent whereas
the corresponding elements b and a are not.

In conclusion, in terms of “definedness” the structural-equality-
based system performs better for discerning observer functions
when the map invariant is more dominant, while the physical-
equality-based system is better in other cases when Condition 13 is
responsible for most rejections. In BFF, the three separate systems
are split into two categories using different equalities: the fully-
polymorphic case is based on physical equality, whereas the Eq and
Ord cases are based on structural equality. The result we obtained
here allows us to confirm that the seemingly ad hoc decision made
in BFF is actually thoughtful. More importantly, in contrast to BFF,
our system can be simply deployed to handle any polymorphic
functions of the right type without the need of any extension or
adaptation.

5. Discussion and Related Work

In this section, we look at some features of semantic bidirectional-
ization and discuss how our proposal interact with them.

5.1 Combining with Syntactic Bidirectionalization

In Section 4.3, we have looked at “definedness” as an important
property of bidirectional transformations; and semantic bidirec-
tionalization by itself only permits data updates (in the sense of
changing the element values), but not shape updates (in the sense
of changing the list structure). It is known that this limitation can
be lifted by incorporating semantic bidirectionalization with other
techniques. For example as shown in [17], on the intersection of
the application domain, the combination of syntactic and semantic
bidirectionalization outperforms either. Our framework of semantic
bidirectionalization preserves this nice property.

Roughly the intuition behind the combined approach [17] is the
recognition that the semantic approach to bidirectionalization is
very good at handling changes in elements but not shapes, whereas
the syntactic approach [12] permits shape updates, and performs
better if the elements are out of the way. Thus, the hope is that a
combined approach dedicating shape and element updates to the
syntactic and semantic approaches respectively will achieve better
results. We implement this idea in our framework as the following.

bffBy :: (∀a.(a
n
→ Z)→ [a]→ [a])→ (∀a.(a

n
→ Z)→

[a]→ [a]→ [a])
bffBy getBy f s v = map (lookup m) is

where ms = templ s

is = map fst ms

sh = sput (map unit s) (map unit v)
is ′ = [0 . .]
mv = assoc (getBy g is ′) v
m = unionBy f mv ms

g = g ′ f ms

unit :: a → ()
unit = ()

Instead of associating getBy g is with v , which fails if the shape
of v is different from getBy f s , we employ the backwards
function sput (stands for shape put) from the syntactic approach.
Of course, sput may fail at certain inputs, but when it succeeds we
obtain a new source shape that matches the update view. We then
perform the backwards computation with the new source shape.
The key for establishing the correctness of this algorithm is that
the elements appearing in the view are correctly indexed in mv ,
while the rest of s can be more or less arbitrarily positioned since
they do not influence the view anyway. This is certainly only true
for fully polymorphic forwards functions, which is the only case
that is supported in [17] (for this reason we have chosen physical
equality in the above code). Though it is clear from the above
code fragment that our framework offers good support for such
a combined approach, we are not able to go beyond its current
applicability. Since sh is only a shape skeleton, it is not clear how a
non-trivial observation table for it, which the map invariant is based
on, can be built.

5.2 Performance

The bidirectional systems based on the lens framework usually
has supra-linear runtime performance. Conceptually, without addi-
tional information describing an update, we must reverse-engineer
the update later by performing some kind of difference analysis on
the original and updated views. Practically, the backwards function
typically traverse the original source and the updated view side-by-
side so that the two steps of identifying and incorporating changes

59

are fused into one. Still, even a small change to the view implies a
complete re-traversal.

In this paper, we have favoured presentation clarity than perfor-
mance in the code. It is clear that there are some standard optimiza-
tions that we can deploy. For example, some of the steps can be
fused to reduce the number of traversals, and a more efficient Map
representation than plain list will dramatically reduce the complex-
ity of lookupBy and unionBy . For the physical-equality-based
system, we can have composite indices, which include both an in-
teger part and an element part, so that no lookup is required in the
definition of g ′. Different from BFF, our proposal has the addi-
tional work of constructing and checking against the observation
table, which has a complexity as a polynomial of the source size,
depending on the arity of the observer function.

As updates are typically far smaller than the data, the sav-
ing gained through improving the processing speed is likely to
be dwarfed by the saving through reducing the data that is actu-
ally processed. As a result, incremental computation as an opti-
mization of the backwards function has attracted much interest re-
cently [5, 11, 20]. In our proposal, the cost of checking the obser-
vation table can be greatly reduced by only checking the columns
and rows of the updated elements. Together with the fact that the
observation table only need to be created once for arbitrary number
of backwards computation, and our simple indexing algorithm is
more efficient, we expect our proposal to have complexity similar
to BFF.

Additionally semantic bidirectionalization fits particularly well
with the incremental computation technique proposed in [20]. The
key insight of the proposal in [20] is that if one is able to identify the
source segments that are affected by an update, we can simply try
to update the segments instead of the whole source which, under
the right condition, will dramatically reduce the work required.
Assume that we know the segments of the view that are updated;
the corresponding source segments can be identified by indexing
and tracing the source elements that appear in the view. This is
a setup very similar to the one of semantic bidirectionalization,
and works best with polymorphic forwards functions. We expect
an integration of the two to be particularly promising.

5.3 Constant Complement

It is well known that injective functions are naturally bidirectional.
Thus, the core of bidirectionalizing a uni-directional program is to
make it injective. One can assume that the source s can be factored
into the view v and its (fairly orthogonal) complement c in such a
way that the pair (v , c) uniquely determines s . When v is updated,
the complement c stays constant; if the updated result (v ′, c) re-
mains in the range of the forwards transformation, then the straight-
forward reconstruction serves as a backwards transformation. The
constant nature of the complement gives rise to the name constant
complement approach.

In any case, a trivial complement is the original source itself,
where the pair (v , s) to v requiring changes to s will violate the
constant nature of complement s , and the resulting backwards ex-
ecution will inevitably fail. Note that in this case it is not that the
updated view is not producible from any source, but the updated
view is not producible from any source with the given comple-
ment. Thus, the challenge is to come up with a “small” comple-
ment, which is less likely to cause a conflict and admitting more
updates. This is the reason that the combination of syntactic and
semantic bidirectionalization techniques as discussed earlier on in
Section 5.1 outperforms the syntactic approach used alone: the el-
ements appearing in the complements often prevent the comple-
ments from being “reduced”.

Semantic bidirectionalization makes use of constant comple-
ment in an implicit way [9]. For example, for the fully polymor-

phic case, the shape of the source together with the elements that
is dropped by the forwards execution serves as the complement.
Our result in this paper shows a more principled approach with
the observation table as the constant complement, which applies to
all polymorphic functions. This finding is likely to offer a uniform
framework for systematic comparison and integration of different
bidirectionalization techniques.

5.4 Semantic Bidirectionalization for Monomorphic
Functions

In this paper and in BFF, semantic bidirectionalization is about
polymorphic forwards functions. This limitation stems from the
fact that it is the types, not any other information about the for-
wards functions, that guarantees correctness. And consequently, we
enjoyed the convenience of not having to touch the actual source
code of the functions that is bidirectionalized.

If it is the case that the source code is available, and one were
ready to get his or her hands dirty to instrument the code, a similar
technique as the one proposed in this paper can be used to bidirec-
tionalize certain monomorphic forwards functions [13]. The main
idea is that the instrumented code may produce a record of observa-
tions made to element values at run-time, and the observation table
is constructed only for those observation that actually happened,
not for all that are potentially possible. Assuming correct code in-
strumentation (which is partially guaranteed by the design of the
system [13]), correct bidirectionalization can be achieved. As said,
the obvious downside is that the forwards functions have to be re-
implemented for instrumentation.

6. Conclusion

We have revisited semantic bidirectionalization, and performed an
in-depth analysis of this approach to bidirectional programming.
To our pleasant surprise, our investigation has shown that the origi-
nal technique of BFF can be understood in a much more principled
way. This new understanding in turn allows us to derive new im-
plementations of semantic bidirectionalization, which are simpler,
and yet more general than the original. As a result, our proposal
extends the applicability of semantic bidirectionalization to its full
potential, without compromising its strength.

Acknowledgments

We would like to thank Kazutaka Matsuda, Janis Voigtländer and
members of Functional Programming group at Chalmers for their
helpful comments on a preliminary version of the paper. This work
has been partly supported by the Swedish Foundation for Strategic
Research (SSF), project RAWFP.

References

[1] Francois Bancilhon and Nicolas Spyratos. Update semantics of rela-
tional views. ACM Transactions on Database Systems, 6(4):557–575,
1981.

[2] Davi M.J. Barbosa, Julien Cretin, J. Nathan Foster, Michael Green-
berg, and Benjamin C. Pierce. Matching lenses: alignment and view
update. In International Conference on Functional Programming

(ICFP), pages 193–204, New York, NY, USA, 2010. ACM.

[3] Aaron Bohannon, J. Nathan Foster, Benjamin C. Pierce, Alexandre
Pilkiewicz, and Alan Schmitt. Boomerang: Resourceful lenses for
string data. In Principles of Programming Languages, pages 407–419,
New York, NY, USA, January 2008. ACM.

[4] Krzysztof Czarnecki, J. Nathan Foster, Zhenjiang Hu, Ralf Lämmel,
Andy Schürr, and James F. Terwilliger. Bidirectional transformations:
A cross-discipline perspective. In Theory and Practice of Model

Transformations, pages 260–283, Berlin, Heidelberg, 2009. Springer-
Verlag.

60

[5] Zinovy Diskin, Yingfei Xiong, and Krzysztof Czarnecki. From state-
to delta-based bidirectional model transformations. In Theory and

Practice of Model Transformations, ICMT’10, pages 61–76, Berlin,
Heidelberg, 2010. Springer-Verlag.

[6] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Ben-
jamin C. Pierce, and Alan Schmitt. Combinators for bidirectional tree
transformations: A linguistic approach to the view update problem.
ACM Transactions on Programming Languages and Systems, 29(3),
May 2007. Preliminary version in POPL ’05.

[7] J. Nathan Foster, Benjamin C. Pierce, and Steve Zdancewic. Updatable
security views. In Computer Security Foundations, pages 60–74,
Washington, DC, USA, 2009. IEEE Computer Society.

[8] J. Nathan Foster, Alexandre Pilkiewicz, and Benjamin C. Pierce. Quo-
tient lenses. In International Conference on Functional Programming

(ICFP), pages 383–396, New York, NY, USA, 2008. ACM.

[9] Nate Foster, Kazutaka Matsuda, and Janis Voigtländer. Three com-
plementary approaches to bidirectional programming. In Jeremy Gib-
bons, editor, Generic and Indexed Programming, volume 7470 of Lec-

ture Notes in Computer Science, pages 1–46. Springer Berlin Heidel-
berg, 2012.

[10] Martin Hofmann, Benjamin Pierce, and Daniel Wagner. Symmetric
lenses. In Principles of Programming Languages (POPL), POPL ’11,
pages 371–384, New York, NY, USA, 2011. ACM.

[11] Martin Hofmann, Benjamin Pierce, and Daniel Wagner. Edit lenses.
In Principles of Programming Languages (POPL), POPL ’12, pages
495–508, New York, NY, USA, 2012. ACM.

[12] Kazutaka Matsuda, Zhenjiang Hu, Keisuke Nakano, Makoto Hamana,
and Masato Takeichi. Bidirectionalization transformation based on
automatic derivation of view complement functions. In International

Conference on Functional Programming (ICFP), pages 47–58, New
York, NY, USA, 2007. ACM.

[13] Kazutaka Matsuda and Meng Wang. Bidirectionalization for free
with runtime recording: or, a light-weight approach to the view-update
problem. In Proceedings of the 15th Symposium on Principles and

Practice of Declarative Programming, PPDP ’13, pages 297–308,
New York, NY, USA, 2013. ACM.

[14] Simon Peyton Jones, editor. Haskell 98 Language and Libraries: The

Revised Report. Cambridge University Press, 2003.

[15] Perdita Stevens. Bidirectional model transformations in QVT: seman-
tic issues and open questions. Software and Systems Modeling, 9:7–20,
2010.

[16] Janis Voigtländer. Bidirectionalization for free! (Pearl). In Principles

of Programming Languages (POPL), pages 165–176, New York, NY,
USA, 2009. ACM.

[17] Janis Voigtländer, Zhenjiang Hu, Kazutaka Matsuda, and Meng Wang.
Combining syntactic and semantic bidirectionalization. In Interna-

tional Conference on Functional Programming (ICFP), pages 181–
192, New York, NY, USA, 2010. ACM.

[18] Janis Voigtländer, Zhenjiang Hu, Kazutaka Matsuda, and Meng Wang.
Enhancing semantic bidirectionalization via shape bidirectionalizer
plug-ins. Journal of Functional Programming, 23:515–551, 9 2013.

[19] Philip Wadler. Theorems for free! In Proceedings of the fourth

international conference on Functional programming languages and

computer architecture, FPCA ’89, pages 347–359, New York, NY,
USA, 1989. ACM.

[20] Meng Wang, Jeremy Gibbons, and Nicolas Wu. Incremental updates
for efficient bidirectional transformations. In International Conference

on Functional Programming (ICFP), ICFP ’11, pages 392–403, New
York, NY, USA, 2011. ACM.

61

