
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Wang, Meng and Gibbons, Jeremy and Wu, Nicolas (2011) Incremental Updates for Efficient
Bidirectional Transformations. In: ACM SIGPLAN international conference on Functional
programming.

DOI

https://doi.org/10.1145/2034773.2034825

Link to record in KAR

http://kar.kent.ac.uk/47477/

Document Version

Publisher pdf

Incremental Updates for Efficient Bidirectional Transformations

Meng Wang

Computer Science and Engineering
Chalmers University of Technology

412 96 Göteborg, Sweden

wmeng@chalmers.se

Jeremy Gibbons

Department of Computer Science
University of Oxford

Wolfson Building, Parks Road
Oxford OX1 3QD, UK

jeremy.gibbons@cs.ox.ac.uk

Nicolas Wu

Well-Typed LLP
Oxford, UK

nick@well-typed.com

Abstract

A bidirectional transformation is a pair of mappings between
source and view data objects, one in each direction. When the view
is modified, the source is updated accordingly. The key to handling
large data objects that are subject to relatively small modifications
is to process the updates incrementally. Incrementality has been
explored in the semi-structured settings of relational databases and
graph transformations; this flexibility in structure makes it rela-
tively easy to divide the data into separate parts that can be trans-
formed and updated independently. The same is not true if the data
is to be encoded with more general-purpose algebraic datatypes,
with transformations defined as functions: dividing data into well-
typed separate parts is tricky, and recursions typically create inter-
dependencies. In this paper, we study transformations that support
incremental updates, and devise a constructive process to achieve
this incrementality.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Applicative (functional) lan-
guages, Specialized application languages; D.3.3 [Programming
Languages]: Language Constructs and Features—Data types and
structures, Polymorphism

General Terms Languages, Design, Performance, Theory

Keywords Functional Programming, Bidirectional Programming,
Incremental Computing, Program Transformation, View-update
Problem

1. Introduction

From a programming perspective, bidirectional programming is an
exercise in writing programs that execute both forwards and back-
wards. This goal is not always achievable: non-injective functions
obscure the route back, while non-surjective functions leave the
‘backward’ execution partial. Nevertheless, the need to invert a
computation does arise in many contexts in which pairs of pro-
grams naturally interact with one another; parser/printer, embed-
ding/projection, marshalling/unmarshalling, and compression/de-
compression are typical examples. For decades, the needs of bidi-
rectionality have been fulfilled by individually crafted pairs of pro-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ICFP’11, September 19–21, 2011, Tokyo, Japan.
Copyright c© 2011 ACM 978-1-4503-0865-6/11/09. . . $5.00

grams. This is a significant duplication of work, because the two
programs in a pair are closely related. Furthermore, maintaining
the relationship between these progams becomes a source of er-
rors, where changes to only one of the programs may lead to an
inconsistency within the pair.

A more promising solution to the challenge of bidirectional pro-
gramming is to design languages that execute bidirectionally. In
such languages, any user-defined program, mapping a source into
a view, is coupled with an automatically generated ‘backward’ ver-
sion, whose correctness with regards to certain bidirectional prop-
erties is guaranteed. An obvious bidirectional property is invertibil-
ity. For a given program fwd, its inverse bwd satisfies fwd◦bwd = id
and bwd◦ fwd = id. While this invertibility is elegant, it restricts the
expressiveness of the approach, since fwd must be bijective. Mod-
ulo information encoded in fwd itself, the source and view neces-
sarily contain exactly the same information, probably with different
presentations. This is an unrealistically strong assumption, and has
driven research into more widely applicable frameworks:

“More generally, bijective transformations are the exception
rather than the rule: the fact that one model contains infor-
mation not represented in the other is part of the reason for
having separate models.” [27]

1.1 Semi-Invertibility

To circumvent the bijectivity restriction, other languages have been
designed with particular applications in mind, where less demand-
ing constraints such as one-sided invertibility are imposed: left-
invertibility (fwd ◦bwd = id) in [24], and right-invertibility (bwd ◦
fwd = id) in [31]. A more dramatic diversion from the invertibility
framework is the lens approach [10, 4, 12, 11, 3, 18], which orig-
inated from the study of the view-update problem of databases [7,
2, 14]. In the setting of lenses, (all or part of) the original source
is copied and is used in the ‘backward’ computation: a ‘get’ func-
tion has type s → v from source to view, while a ‘put’ function has
type (v,s) → s. We make the following notational convention: for
a ‘get’ function f , the counterpart ‘put’ function is written as f<.
The task of a ‘put’ function is to discover the connection between a
view update and an appropriate corresponding source update. This
‘appropriateness’ is defined by the definitional properties [6, 27]:

Consistency f (f< (v,s)) = v

Acceptability f< (f s,s) = s

Here consistency (also known as the PutGet law) roughly corre-
sponds to right-invertibility, basically ensuring that all updates on
a view are captured by the updated source, and acceptability (also
known as the GetPut law) roughly corresponds to left-invertibility,
prohibiting changes to the source if no update has been made on the
view. Bidirectional transformations satisfying the above two laws

are sometimes called well-behaved [10]. In addition to these laws,
an optional undoability property is sometimes introduced:

Undoability f< (f s, f< (v′,s)) = s

This property states that the result of an update can be undone
through the view. For the sake of this paper, we will present our
proposal within the lenses framework, with the understanding that
the same technique applies to invertible languages as well.

1.2 State-Based and Operation-Based Approaches

The word ‘update’ is commonly found in the bidirectional transfor-
mation literature, and used to describe changes both in views and in
sources. In the sequel, we restrict the use of the term ‘update’ to the
transformed effect on a source, as a result of an edit to the view. De-
spite being fundamental to bidirectional transformation, there is no
universal agreement on what constitutes an edit. Roughly speak-
ing, opinions are divided as to whether one should look into the
mechanism of an edit or simply its result. Translated into language
design, one can either take an operation-based approach, consid-
ering an editing function that changes a view, or a state-based ap-
proach, which only sees the unedited and edited views. It happens
that the majority of existing bidirectional frameworks take the lat-
ter approach, due to its mathematical simplicity and good compat-
ibility. The bidirectional laws discussed above are specified from a
state-based perspective. Since only the edited view is required for
the ‘put’ function, it is easier to design a bidirectional framework
independently of any editing system. On the other hand, a state-
based approach necessarily discards information about an edit, and
must reverse-engineer it later by performing some kind of differ-
ence analysis on the two view values. Consequently, the run-time
performance of a state-based ‘put’ function is bound by the dif-
ference analysis that is required: even a small change to the view
implies a complete re-traversal.

Meertens [23] observed that to maintain constraints between
two structures, it is useful to know how a view is edited. Consider
the scenario where two lists are connected by a mapping relation
(i.e. each is the result of mapping some function over the other); an
edit to one list, say deletion at a particular position, can be trans-
lated to a deletion at the same position in the other list. In this set-
ting, a lot more information about the edit is made available to the
bidirectional framework, including where (the location) and what
(a deletion) has changed. As a result, the updating process could
be more straightforward compared to a state-based approach—in
the latter, all that is known is that one list is changed into another
list that is one element shorter, which is fairly ambiguous. In ad-
dition, having an operation for source update potentially achieves
better-than-linear runtime performance.

If run-time performance is the only concern, the ‘where’ part of
the knowledge of an edit is the key. For a given edit-affected view
fragment, once the corresponding source fragment is picked out, a
state-based approach could perform the changes as efficiently as an
operation-based counterpart, without the undesired complications
that the latter brings. This idea is not new. As a matter of fact, for
bidirectional systems in the neighbouring fields of databases and
software engineering, incrementality of source updates is the norm
rather than the exception [5, 8, 15]. With the more recent upsurge
in (mostly functional) programming language approaches to bidi-
rectional transformation [19, 10, 21, 28, 25, 29], fresh challenges
emerge: structured data cannot easily be divided into separate parts
to be transformed and updated independently; and recursions typ-
ically create interdependencies. As a result, in contrast to the sit-
uation with databases and model transformations, none of the ex-
isting bidirectional languages supports any kind of incremental be-
haviour.

1.3 A Change-Based Approach

In this paper, we propose a novel change-based framework for
bidirectional transformation. Instead of inventing from first prin-
ciples to add to the already burgeoning population of bidirectional
languages, we focus on the preservation and propagation of user-
provided editing information. In a sense, our proposal can be seen
as a generic optimiser of certain given state-based bidirectional
frameworks: we exploit any locality in the editing of views, and
try to translate it into incrementality in the updating of sources.
Obviously, such preservation of locality does not hold for arbitrary
transformations. Identifying the semantic properties, or conditions,
required forms one of the major technical contributions of this pa-
per. The ultimate goal of our framework is to reduce an update of a
(large) structure into one of a (small) delta, and then outsource the
hopefully much smaller problem of actually translating the update
to an existing state-based frameworks. This step positively impacts
the run-time behaviour of ‘put’, due to the newly gained incremen-
tality.

Our proposal aims at modularity: there is a clearly defined
interface that decouples any editing system from our framework;
and different state-based bidirectional approaches can be plugged
in as black boxes, whatever their manifestation as purpose-built
bidirectional languages or syntactic/semantic transformations of
unidirectional programs. As a result, a change-based bidirectional
framework arises automatically from a given state-based one, while
preserving the bidirectional properties of the latter.

We choose Haskell [26] as the language of discourse, but no
specific language feature other than algebraic datatypes is required
for our technique to apply.

1.4 A Small Example

As a motivating example, consider the structure of a binary tree:

data Tree a = Empty

| Fork a (Tree a) (Tree a)

One possible ‘get’ function from this source is an inorder traversal,
which produces a list, and can be defined as follows:

inorder :: Tree a → [a]
inorder Empty = []
inorder (Fork a t u) = inorder t++[a]++ inorder u

For instance, a traversal of the source

Fork 5 (Fork 6 (Fork 7 Empty Empty) Empty)
(Fork 8 (Fork 4 Empty Empty) (Fork 9 Empty Empty))

yields the list [7,6,5,4,8,9]. Now, suppose the number 4 is deleted
from this view. A state-based ‘put’ function will take the edited
view and try to construct a tree without the deleted element; and
hopefully the new source remains similar to the original one, so that
unnecessary changes are kept to a minimum. (Note that we have
deliberately kept all the functions abstract, because our proposal is
not dependent on any particular implementation.)

The method described above takes effort proportional to the
size of the data, not to the size of the change. Assuming a func-
tional cons-list, the deletion of 4 involves traversing the view
list to the location of the deletion, and changing only the sub-
list [4,8,9] rooted at that location; a more efficient approach is
to update only the source subtree (Fork 8 (Fork 4 Empty Empty)
(Fork 9 Empty Empty)) that is responsible for generating the view
fragment [4,8,9]. That is to say, the bidirectional updating should
be incremental. Better still, in the case of lists, where a deletion
is local and does not induce subsequent changes to a substruc-
ture, a more refined analysis may discover that only the subtree
(Fork 4 Empty Empty) is really affected by the edit, and updating
this is sufficient.

We were able to conclude above that the view sublist [4,8,9]
corresponds to the source subtree (Fork 8 (Fork 4 Empty Empty)
(Fork 9 Empty Empty)), because all elements in the former can be
found in the latter, and the ‘get’ function (inorder traversal) hap-
pens to have certain properties that allow structure correspondences
to be derived from element correspondences. In the sequel, we will
discuss in detail how ‘get’ functions that support incremental up-
dates can be identified; and present a constructive method for per-
forming the said update in a change-based framework. Assuming
a fairly balanced source tree, the complexity of our algorithm is
O (m× log n+ f m) where n is the size of the source tree, m is the
size of the affected source part, and f is the complexity function
of a state-based ‘put’ function. The update itself takes time propor-
tional to m; but it takes m× log n time to locate the target source
location.

The rest of the paper is structured as follows. Section 2 gives the
overall setting of change-based bidirectional frameworks. Section 3
discusses the propagation of locality of view editing to the level of
source updating, and Section 4 presents a constructive method for
deriving change-based ‘put’ functions. We then refine the technique
for list views (Section 5), and discuss related issues (Section 6), be-
fore surveying related work (Section 7) and concluding (Section 8).

2. The Overall Setting

We restrict our attention to polymorphically typed tree-structured
data, and polymorphic ‘get’ functions. To be explicit about our
assumptions, we express our requirements in terms of a type class
TypeFunctor:

class TypeFunctor s where

bimap :: (a → b)→ (c → d)→ s a c → s b d

arity :: s a b → Int

select :: s a b → Int → b

lab :: s (Label,a) Labels → Labels

data Delta s ::∗→ ∗→ ∗
close :: Delta s a b → b → s a b

The remainder of Section 2 elaborates on these requirements.

2.1 Algebraic Datatypes

We restrict attention to regular datatypes—that is, defined in terms
of sums, products, and least fixed points. We assume that the type
functor is (as the name suggests) a bifunctor, satisfying the functor
laws

bimap id id = id

bimap (f ◦g) (h◦ k) = bimap f h◦bimap g k

The type functor determines the shape of the tree; polymorphic
tree terms are then formed by taking the fixpoint (in the second
argument) of this bifunctor.

data TypeFunctor s ⇒ Term s a = InT {outT :: s a (Term s a)}

For example, the binary tree type from Section 1.4 is represented
by the following definitions:

data TreeF a b = EmptyF | ForkF a b b

type Tree a = Term TreeF a

with the obvious definition of bimap.
In the interests of brevity, we will usually write binary type

constructors s in the type class TypeFunctor as single bold capitals
S; and in an abuse of notation, we will often omit the element type,
writing just µS for Term s a.

As usual, the type functor induces a fold operator for consuming
tree terms:

fold :: TypeFunctor s ⇒ (s a b → b)→ Term s a → b

fold f t = f (bimap id (fold f) (outT t))

The idea is that ‘get’ functions should be written as polymorphic
instances of fold. For example, with an appropriate type functor
definition for lists:

data ListF a b = NilF | ConsF a b

type List a = Term ListF a

we could implement the inorder transformation as follows:

inorder :: Tree a → List a

inorder t = fold step t (InT NilF) where

step EmptyF = id

step (ForkF a f g) = f ◦ InT ◦ConsF a◦g

2.2 Tree Navigation

We use functions

arity :: TypeFunctor s ⇒ s a b → Int

select :: TypeFunctor s ⇒ s a b → Int → b

to capture the number of recursive components in an S-structure,
and to select one of those components. For example, for binary
trees we have

arity EmptyF = 0
arity (ForkF) = 2

select (ForkF t) 0 = t

select (ForkF u) 1 = u

Note that select is a partial function, and select x i is defined iff
0 6 i< arity x. As a shorthand, we write xi for select x i, and xi 7→ t

to denote the substitution of t for xi in x. We define a function child
to select an immediate subterm of a term:

child :: TypeFunctor s ⇒ Term s a → Int → Term s a

child t i = (outT t)i

and a function zoom to select an arbitrarily deep subterm, following
a path represented as a list of positions:

type Path = [Int]

zoom :: TypeFunctor s ⇒ Term s a → Path → Term s a

zoom = foldl child

2.3 Labelling

We assume that all tree elements are associated with unique labels;
for this purpose we assume an abstract type Label, and a corre-
sponding type Labels of sets of labels. (For example, the unique la-
bel associated with an element at a particular node might be formed
out of the path from the root of the tree to that node, together with
a disambiguating index in case there are multiple elements at the
same node.)

type Label = ...
type Labels = Set Label

Generally speaking, the labels should be thought of as being be-
hind the scenes, inaccessible to normal functions; that is why we
insist that ‘get’ functions should be polymorphic. In particular, we
assume that the ‘get’ function cannot invent labels: all the labels
that turn up in a view subterm originated from the corresponding
source term. But for the purposes of discussing labels and labelsets
themselves, we require the type functor to provide a mechanism
for combining the labelsets from subterms to make the labelset for
a term itself:

lab :: TypeFunctor s ⇒ s (Label,a) Labels → Labels

open

close

tree context

focus

Figure 1. The context-focus representation.

For example, for binary trees we have

lab EmptyF = /0

lab (ForkF (l,a) x y) = singleton l∪ x∪ y

This forms an S-algebra, which can be exploited by a partly poly-
morphic fold to compute the labelset of a labelled term:

type LTerm s a = Term s (Label,a)

labels :: TypeFunctor s ⇒ LTerm s a → Labels

labels = fold lab

We will often use the shorthand 〈t〉 to denote labels t; we extend
this notation to S-structures of µS′ trees x :: S µS′ by writing ‘〈x〉’
for ‘labS (S labelsµS′ x)’, and, as a shorthand, write ‘〈x6=i〉’ for
‘labS (S labelsµS′ x)i 7→ /0’).

Splitting an S-structure into one component and the remainder
yields an exhaustive and (at least for S-structures arising directly
from a µS-structure) disjoint partition of the label sets: for x :: S µS′

and for any valid i,

〈x6=i〉∪ 〈xi〉= 〈x〉

and for s :: µS and any valid i,

〈(outT s) 6=i〉# 〈(outT s)i〉

where # denotes disjointness, that is, x # y = (x∩ y = /0). Note that
(x ⊆ y) ∧ (y # z) ⇒ (x # z) by monotonicity of intersection, so we
allow ourselves to write derivations of the form ‘w⊆ x#y⊇ z’, with
a chain of inclusions, a disjointness, and a chain of containments,
and conclude from it that w # z.

2.4 Tree Contexts

As implemented by function zoom, a subtree of interest can be
accessed by navigating from the root of a tree and following a given
path. Such a path need not represent a traversal from the root all
the way to a leaf: paths may point to internal nodes in a tree. The
traversal of a tree following a path ‘opens’ that tree into two disjoint
structures: one represents the subtree below the node reached by
the path, known as the current focus; the other represents the rest
of the tree and is known as the context of the focus (see Figure 1).
On typing grounds, we only consider as valid those paths that lead
to recursive components; for example, the focus of the binary tree
datatype above can descend to the left or the right subtree, but not
to the element stored in a node.

We represent a context as a tree with a hole in it, denoting the
location of the subtree given by the focus. This can be captured in
terms of a type function Delta, such that Delta s a b is the type of
one-hole contexts for s a b. That is, a value of type Delta s a b is
equivalent to one of type s a b that is missing one value of type b;
so the type functor should be equipped with the corresponding
operation to ‘close’ a Delta s a b around the missing b to make an
s a b.

data Delta s ::∗→ ∗→ ∗
close :: TypeFunctor s ⇒ Delta s a b → b → s a b

Then a one-hole context for a tree consists of a list of one-hole
contexts for nodes; we have chosen to represent that list outermost
context first, so that ‘closing’ is a foldr.

type Context s a = [Delta s a (Term s a)]

(⋖) :: TypeFunctor s ⇒ Context s a → Term s a → Term s a

cs⋖ t = foldr (λd u → InT (close d u)) t cs

For example, for binary trees, there are two ways of making a
TreeF a b that is missing a single b, one for each side of a Fork
node—but there is no way for an Empty node to have a hole:

data Delta TreeF a b = LForkF a b | RForkF a b

close (LForkF a u) t = ForkF a t u

close (RForkF a t) u = ForkF a t u

In fact, the context type Delta s follows directly from the structure s
of the tree; contexts are a type-indexed data type [17], and can be
defined generically [16, 22].

2.5 Subterms

We prohibit trees with ‘junk’ structures that are not labelled, be-
cause such structures break the one-to-one correspondence between
subtrees of a given tree and their labelsets, a property required for
tracing structure transformations using labels.

REQUIREMENT 1 (No Junk). Given a tree t, 〈child t i〉 ⊂ 〈t〉, for
any valid index i. �

The no-junk condition enforces that the labelset of any subtree tree
must be a proper subset of that of its parent. For many datatypes,
similar to the representation of binary trees above, this no-junk
condition is enforced by the constructors. But for other datatypes
such as leaf-labelled trees

data LTree a = EmptyL

| Leaf a

| Bin (LTree a) (LTree a)

one can construct invalid values such as Bin EmptyL (Leaf 1),
where Leaf 1 is a strict subterm of Bin EmptyL (Leaf 1), but has
the same labelset. In this paper, we rule out datatypes like this that
do not enforce the no-junk requirement.

Tree navigation induces a subterm ordering on trees.

DEFINITION 2 (Subterm Ordering). Given trees r and t, we say r
is a subterm of t, written r4 t, if r = zoom t p for some p. We say
that a subterm r is trivial if 〈r〉= /0. �

Throughout this paper, we assume non-trivial subterms unless oth-
erwise stated.

COROLLARY 3 (Distinct Subterms). Because tree elements are
uniquely labelled, when r4 t (and r is non-trivial), then r is in
fact at the end of a unique path; that is, there is a (partial) function
locate :: µS → µS → Path satisfying

locate t r = p ⇔ r = zoom t p

We say that ‘r is at depth n in t’ when n = length (locate t r). �

DEFINITION 4 (Orderedness). We say r and t are ordered, written
as r∼ t, if r4 t ∨ t4 r. �

A consequence of the no-junk requirement is a close correlation
between the subterm relation and inclusion among labelsets.

COROLLARY 5 (Labels of Subterms). The subterm relationship is
a refinement of inclusion of labelsets: r4 t ⇒ 〈r〉 ⊆ 〈t〉. And for
ordered trees r∼ t, the converse holds too: r4 t ⇐ 〈r〉 ⊆ 〈t〉. �

Another consequence is that the labelsets of two ordered trees
intersect.

COROLLARY 6. We have r ∼ t ⇒ (〈r〉 ∩ 〈t〉 6= /0) for non-trivial
trees r,t. �

The operator (⋖) that closes a context around a tree has a partial
inverse (/), in the sense that

c⋖ r = t ⇔ t / r = c

when r4 t; in particular, (t / r)⋖ r = t and (c ⋖ r) / r = c. One
might think of t/ r as the result of subtracting subtree r from tree t.
The two operators (⋖) and (/) associate to the right, and (/) has a
higher precedence than (⋖); we can therefore nest them:

PROPOSITION 7 (Nesting). Given that r4 s4 t, then
t / s⋖ s/ r⋖q = t / r⋖q. �

Subtraction is related to substition:

PROPOSITION 8. For trees r and t and position i,
InT (outT r)i 7→ t = r / (outT r)i ⋖ t. �

Closing extends the input tree, as captured by the following mono-
tonicity condition.

PROPOSITION 9 (Monotonicity). t4 (c⋖ t) �

Lastly, all holes are equal.

REQUIREMENT 10 (Hole Equality). s/ s = t / t. �

COROLLARY 11 (Left Unit). s/ s⋖ t = t. �

2.6 Local Editing

An editing function is an endofunction edit :: v → v; we will con-
sider editing functions only on views. We require all editing func-
tions to be total, so that they can always be applied to a subterm of
a view. We treat editing functions as being in some sense location-
independent: they can be applied to any superterm enclosing the
subterm that is actually affected by the edit.

DEFINITION 12 (Locality). We say an editing function e is local
to a subterm u0 of a view v if

∀u. u04u4 v ⇒ e v = v/u⋖ e u

�

In the above definition, applying the local editing function e to
any subterm u of v enclosing the affected subterm u0 has the
same effect as applying the function to v. For example, as we
have seen in the binary tree example, deleting 4 from the sublist
[4,8,9] and combining the result with the context [7,6,5] is the
same as deleting 4 from the complete view [7,6,5,4,8,9]. From the
equality of holes, we can conclude that the trivial locality always
holds.

COROLLARY 13. Given a view v, any editing function is local to
subterm v of v. �

Beyond the trivial one, there is certainly an ordering among differ-
ent levels of locality, based on the subterm ordering, which falls out
from the above definition. In this sense, a context-sensitive (path-
based) editing function, always requiring traversing from the root,
fixes u0 to be v, which implies very poor locality characteristics.
We will discuss an option for remedying this in Section 6.1.

In our proposal, the subterm u0 to which an editing function is
local is user-provided; our approach is based on the assumption that
u0 is significantly smaller than v. We pair the editing function with
an additional function that returns the affected subterm.

data Edit a = E {edit :: a → a,affect :: a → a}

(The above declaration creates a polymorphic record type Edit with
named fields edit and affect, each of which is a function. The field
extractors are named after the fields; so given a value e ::Edit a, the

two functions encapsulated in it can be retrieved as edit e :: a → a
and affect e :: a → a. We require that edit e is local to affect e.)

2.7 Change-Based Bidirectional Frameworks

A change-based bidirectional framework consists of two functions:
a ‘get’ function f :: s → v from source to view, and a change-based
‘put’ function f<ch ::Edit v→ s→ s. We only consider ‘get’ functions
that are regular structural recursions, because they are more likely
to benefit from our proposed improvement. We will discuss this
choice in detail in Section 3.2. We also rule out ‘get’ functions
involving duplication of labels, so that uniqueness of identifiers
is preserved. The function f<ch is higher-order, in contrast to f<st ::

(v,s)→ s in a state-based setting. Thus f<ch no longer constructs an
updated source from an edited view, but from the original source;
any information in the edited view can be derived from the editing
function and the original source. In contrast to an operation-based
approach, f<ch is not dependent on the actual editing functions.

Bidirectional laws semantically equivalent to those developed
for state-based bidirectional frameworks can be specified in the new
setting.

Consistency f (f<ch e s) = edit e (f s)

Acceptability f<ch (E {edit = id}) = id

Undoability f<ch (e {edit = (edit e)◦})◦ f<ch e = id.

The relationships between different view values are expressed
through explicit editing functions. For acceptability, we construct a
record with the identity edit (and leave the affect field unspecified).
For undoability, a record is updated with the left-inverse ((edit e)◦)
of its editing function to cancel its effect on the source.

Moving from a state-based framework to a change-based frame-
work potentially improves run-time performance, as we exploit the
locality of updating. We look into the details in the next section.

3. Locality Preservation

Incremental updates can be achieved if the locality of an editing
function is propagated to the source level. Figure 2 shows how a
‘get’ function may relate subterms in the source to subterms in the
view. The idea is that the subterm v of the view depends only on
the subterm s of the source. Furthermore, the sequences of source
contexts sc1, ...,scn and view contexts vc1, ...,vcm maintain this
relationship, so that vc1⋖v depends only on sc1⋖s, and so on, until
vcm ⋖ ...⋖ vc1 ⋖ v depends only on scn ⋖ ...⋖ sc1 ⋖ s. Note that we
can always arrange the two columns in a way that both have the
same length (i.e., m = n); when one subterm on one side matches
with multiple ones on the other side, we only need to insert a few
empty contexts (since []⋖ t = t) to realign the two sides. This kind
of locality preservation is determined by the ‘get’ function, which
defines the connection between a view and its source.

3.1 Alignment

DEFINITION 14 (Alignment). We say ‘get’ function f aligns at
subterm r of s if for all t we have

f (s/ r⋖ t) = f s/ f r⋖ f t

We call r an alignment position in s with respect to f . �

When a ‘get’ function f and a source s are unambiguous, the term
r may be referred to as an alignment position, where f is said to
align at r. The above definition not only characterizes the matching
of source subterms r to corresponding view subterms f r, but also a
kind of isolation between them. An alignment position can be seen
as a ‘resistive barrier’ between the construction of a subterm and its

scn

sc1

s

vcm

vc1

v

get

get

get

Figure 2. Source-view alignment.

context, through which information does not flow. At an alignment
position, f r is independent of s/ r and f s/ f r is independent of r.

The significance of alignment positions is that they capture the
mapping between the locality to f r in the view and the locality to r
in the source. As a result, if f r can be locally edited, then r can be
locally updated:

f<st ′ (f s/ f r⋖ v′,s) = s/ r⋖ f<st (v′,r)

The above defines an optimization of an existing ‘put’ function.
Basically, to process an edited view f s / f r⋖ v′, we only need to
process v′ (the edited f r), provided f aligns at r. To show that the
above transformation is correct, we prove the consistency of f<st ′ .

f (f<st ′ (f s/ f r⋖ v′,s))
= { definition of f<st ′ }

f (s/ r⋖ f<st (v′,r))
= { f aligns at r}

f s/ f r⋖ f (f<st (v′,r))
= { consistency of f<st }

f s/ f r⋖ v′

Other bidirectional properties hold as well; we postpone their
proofs until Section 4, where the complete solution is presented.

Not all view subterms match exactly with a source subterm;
sometimes we need to resort to a looser fit.

DEFINITION 15. Given a ‘get’ function f , we say an alignment
position s covers v if v4 f s.

We now show some example ‘get’ functions that preserve dif-
ferent degrees of alignment. Consider a function that returns the
mirror image of a tree.

mirror :: Tree a → Tree a

mirror Empty = Empty

mirror (Fork a l r) = Fork a (mirror r) (mirror l)

Every subtree in the source is an alignment position, because the
constructions of the view and of the source coincide.

Another such function is inorder, defined in Section 1.4. In this
case, only the right subtrees are alignment positions, because the
left subtrees do not correspond to subterms in the view.

Yet another example is the function spine that extracts the ele-
ments on the spine of a tree:

spine :: Tree a → [a]
spine Empty = []
spine (Fork a l r) = a : spine r

In this case, all subterms of the source are alignment positions,
though the left subtrees, which always correspond to the empty list
in the view, are not very interesting.

3.2 Exploiting Regularity

Change-based ‘put’ functions are only interesting when there are
plenty of alignment positions to choose from, so that view subterms
can be covered ‘tightly’. As alignment positions represent matches
between source and view constructions, for a recursive ‘get’ func-
tion, this matching of constructions suggests a kind of structural
recursion pattern. Though not a sufficient condition, regularity of
the recursion pattern is likely to positively impact the availabil-
ity of alignment positions. Thus, we focus on regular structural
recursions—functions that can be implemented as folds. For a regu-
lar structural recursion, a source is deconstructed in a uniform way,
which leaves the fold body to determine whether the construction
of a view matches up.

To explain the intuition behind how ‘get’ functions determine
alignment positions, let us revisit the function spine. A fold de-
constructs a non-empty input tree into two source subterms l and
r and a single element a; for the spine computation, the fold body
discards l and adds the element a to spine r. The recursive calls al-
ways produce a view recursive component (such as spine r) from a
source subterm (r); whether the view recursive component so pro-
duced is made into a view subterm by the fold body determines the
possibility of alignment. For example, recursive component spine r
is a subterm of a : spine r, which makes r an alignment position. In
this case, any edit local to spine r can be addressed by updating r.
In contrast, if we define spine as

spineRev (Fork a l r) = spineRev r++[a]

then the view construction is the ‘opposite’ of the source construc-
tion, with the parent a at the bottom (tail end) of the list. This mis-
alignment manifests itself by causing spineRev r not to form a sub-
term in the view. Any edit to the view affects a sublist including a,
which implies an update to the complete source tree.

In the case of spine, a view subterm not only has a recursive
component as its origin, but also as its exclusive origin: spine r
is copied to the view without modification. This exclusivity is
necessary for producing alignment positions. Consider a variant of
spine that breaks this rule:

spineRot (Fork a l r) = a : reverse (spineRot r)

The recursive component spineRot r is changed by reverse; and
its manifestation in the view depends on its context, which de-
cides how many times reverse is applied to it. Though at each
individual recursive step reverse (spineRot r) is a subterm of a :
reverse (spineRot r), a subsequent step does not preserve this prop-
erty: reverse (spineRot r) ceases to be a subterm of b : (reverse (a :
reverse (spineRot r))). In this case, only three alignment positions
(the complete source and the root’s two immediate children) exist,
which is not very interesting.

3.2.1 The Well-Aligning Condition

We formalize the above observation into a condition on the bodies
of ‘get’ functions defined as folds that guarantees the availability
of alignment positions.

DEFINITION 16 (Well-aligning). We say a fold body b is well-
aligning if for all x such that arity x 6= 0, and for all non-trivial
subterms u of b x, we have

∃i. u∼ xi ∧ ∀w. b xi 7→w = b x/ xi ⋖w

Further, we say that f = fold b is well-aligning if its body b is. �

We do not worry about the case when there are no recursive com-
ponents in x (i.e., arity x = 0), as they are terminals in construction,
and will not affect alignment. There are two parts to the condi-
tion: the first part (u∼ xi) enforces that each non-trivial view sub-
term u has a recursive component as its origin; the second part

(∀w. b xi 7→w = b/ xi ⋖w) guarantees the exclusivity of the origins
(with no influence by external factors)—the recursive component
in question is copied unchanged to the view. It is important for the
expressiveness of ‘get’ functions that this copying requirement only
applies to selected recursive components; some, that will appear as
subterms of b x, are taken as opaque blocks, leaving the rest to be
broken up for gluing the blocks together.

For example, consider the following functions:

vlr (v, ls,rs) = [v]++ ls ++ rs

lvr (v, ls,rs) = ls ++[v]++ rs

lrv (v, ls,rs) = ls ++ rs ++[v]

The functions vlr, lvr, and lrv (standing for ‘visit, left, right’, etc)
correspond to individual cases of the fold bodies for traversing
binary trees in pre-, in-, and post-order, respectively. There are two
inputs to the functions that are recursive view components, namely
ls and rs. Functions vlr and lvr are well-aligning, as rs is ordered
with respect to all the view subterms that are visited, whereas lrv is
not.

Generalizing the definition to the semantics of transformations,
we say that a ‘get’ function is well-aligning if all cases of its
body are well-aligning. By that definition, preorder, inorder, unzip,
mirror, spine, filter, map are examples of well-aligning ‘get’ func-
tions, while postorder is not. (However, we will discuss how this
function can be made well-aligning in Section 5.)

3.2.2 Availability of Alignment Positions

The well-aligning property guarantees the availability of alignment
positions; and we can state a declarative result about how they may
be found.

THEOREM 17. Given a well-aligning ‘get’ function f such that
f s = v, we have that f aligns at subterm r of s if there exists a
non-trivial subterm u of v such that u4 f r. �

The well-aligning condition tells us clearly that some selected re-
cursive components become subterms in the view; and the source
subterms producing the selected subcomponents are alignment po-
sitions. The key to proving Theorem 17 is to establish the fact that
recursive component f r is among those selected due to the premise
u4 f r; this can be achieved by connecting the unique labels in u
with those in f r.

As preparation for formally proving Theorem 17, we state some
properties regarding labels of trees under transformation. As men-
tioned at the beginning of Section 2, one important requirement of
‘get’ functions is that they do not invent labels.

REQUIREMENT 18 (Conservation of Labels). Given a ‘get’ func-
tion f = fold b, we have that b does not invent labels:

∀x. 〈b x〉 ⊆ lab x

and hence, neither does f = fold b invent labels:

∀s. 〈f s〉 ⊆ 〈s〉

�

An important consequence of the fact that ‘get’ functions do
not invent labels is that labels cannot reappear after they have been
dropped during the construction of a view. Conversely, if a label set
〈v〉 has been generated after processing subterm r of t by the ‘get’
function f (that is, r4 t and 〈v〉 ⊆ 〈f r〉), and 〈v〉 is still present after
processing t itself (that is, 〈v〉 ⊆ 〈f t〉), then 〈v〉 is present at every
intermediate stage too (〈v〉 ⊆ 〈f s〉 for every s such that r4 s4 t).
This is a kind of ‘convexity’ property of label sets.

More importantly in what follows, a similar result holds for
subterms, rather than their projections to label sets; but for this,

we need the additional assumption that the ‘get’ function f is well-
aligning. The primary result (Corollary 20) is a convexity property
for terms: given sources r, t with r4 t such that v4 f r and v4 f t,
then also v4 f s for any s such that r 4 s4 t. (In fact, v4 f t
is not strictly required; 〈v〉 ⊆ 〈f t〉 suffices.) The essential step
(Lemma 19) is the one from the outermost term t to one of its
immediate children: if view subterm v shows up after processing
a subterm r within the ith child (outT t)i of t, and v is still present
after processing t, then v must have come from the ith child: v4
f (outT t)i. Note that, for both of these results, we make use of our
implicit assumption that v is non-trivial.

LEMMA 19 (Maintaining terms). Suppose a well-aligning ‘get’
function f = fold b. For source terms r, t with r4(outT t)i, if v4 f r
and v4 f t, then also v4 f (outT t)i.

PROOF. Let x = S f (outT t), so that f t = b x and f (outT t)i = xi.
Since b is well-aligning, and v is a non-trivial subterm of b x, there
exists a j such that v∼ xj = f (outT t)j. In fact, this j must be i:

〈v〉
⊆ { labels of subterms (Corollary 5); v4 f r, by assumption}
〈f r〉

⊆ { f does not invent labels}
〈r〉

⊆ { r4 (outT t)i; Corollary 5 again}
〈(outT t)i〉

{ disjointness of labels}
〈(outT t)6=i〉

⊇ { f does not invent labels; monotonicity of intersection}
〈(S f (outT t)) 6=i〉

= { definition of x}
〈x6=i〉

and so 〈v〉 # 〈x6=i〉, and hence 〈v〉 ⊆ 〈xi〉 by disjointness of labels.
Finally, v∼ xi and 〈v〉 ⊆ 〈xi〉 imply v4 xi, by Corollary 5. �

COROLLARY 20 (Term convexity). Suppose a well-aligning ‘get’
function f = fold b. For source terms r, t with r4 t, if v4 f r and
v4 f t, then also v4 f s for every s such that r4 s4 t.

PROOF. The proof is by induction over the length of locate t r. The
base case is when the path is empty, so r = t; then the lemma
is trivially true. For the inductive case, assume the statement is
valid for paths of length n. Suppose that r4 t, and that r is at
depth n + 1 in t (so that r4 (outT t)i for some unique index i,
and locate (outT t)i r has length n), and that v4 f r and v4 f t. By
Lemma 19, we get v4 f (outT t)i; then by induction we get v4 f s
for every s with r4s4(outT t)i too; and the final case s= t trivially
holds. �

Theorem 17 follows directly from the following result: given
a well-aligning ‘get’ function f , and sources r,s such that r4 s, if
there exists any view subterm v such that v4 f r and v4 f s, then f
aligns at subterm r of s. (Again, we assume that v is non-trivial.)

LEMMA 21 (Get alignment). Given a well-aligning ‘get’ function
f , sources r, t with r4 t, and view v such that v4 f r and v4 f t,
then f aligns at subterm r of t.

PROOF. Again, by induction over the length of locate t r. The base
case is when the path is empty; then t = r and the theorem is
trivially true (since f necessarily aligns at the root t of source t).
For the inductive case, we assume that the statement is valid for
paths of length n; we are given terms r, t with r4 t and r at depth
n+1 in t, and a term v with v4 f r and v4 f t, and we have to show
that f aligns at subterm r of t.

Suppose that r is within the i’th child of t, that is, r4s where s=
(outT t)i. Then by Corollary 20, we have v4 f s, and by induction,
f aligns at subterm r of s. Let x = S f (outT t), so that f t = b x and
f (outT t)i = xi. Because b is well-aligning and v4b x, there exists
a j such that v∼xj and b xj 7→w = b x/xj ⋖w for any w. In fact, that
j must be i, by the same argument as in the proof of Lemma 19. In
particular, f s = xi4b x, a fact that we shall use below. Finally, we
show that f aligns at subterm r of t. For an arbitrary source term p,
we have:

f (t / r⋖p)
= { since r4 s4 t}

f (t / s⋖ (s/ r⋖p))
= {Proposition 8—s = (outT t)i}

f (InT (outT t)i 7→(s/r⋖p))

= { evaluation rule for f = fold b}
b (S f (outT t)i 7→(s/r⋖p))

= { naturality of select}
b (S f (outT t))i 7→(f (s/r⋖p))

= { b is well-aligning; discussion above}
b (S f (outT t))/ f (outT t)i ⋖ f (s/ r⋖p)

= { evaluation rule for f again; s = (outT t)i}
f t / f s⋖ f (s/ r⋖p)

= { induction}
f t / f s⋖ (f s/ f r⋖ f p)

= { nesting}
f t / f r⋖ f p

�

So far, we have established well-alignment as a sufficient con-
dition for the availability of alignment positions (Definition 16),
and proved a declarative result about how alignment positions can
be found (Theorem 17). Next, we move on to devise a construc-
tive method of finding alignment positions, and deriving a change-
based ‘put’ function based on this method.

4. Change-Based ‘Put’ Functions

The derivation of a ‘put’ function is divided into three steps:
(i) finding an alignment position covering the edited view subterm;
(ii) using a state-based ‘put’ function to map the view subterm to a
source subterm; and (iii) merging the original source context with
the updated source subterm. The key part of this process is step (i);
the other two follow on quite naturally. Taking the previous result,
we know that a source subterm is an alignment position if there
is a corresponding subterm in the view. A standard way of estab-
lishing the source/view correspondence semantically is to trace the
uniquely identifying labels.

4.1 Labelling and Reflecting

Unique identifiers are created using paths in the source, from the
root to the node constructors of the elements. As a result, a node
is at the root position of the subterm identified by the path. As
far as ‘get’ functions are concerned, an element and its label form
an atomic unit; an element in the view originates from an element
in the source associated with the same label. (It is worth noting
that the labels only represent paths in the source, not those in the
view.) Given an edit-affected view subterm v, a sensible alignment
position should include all the labels in 〈v〉; the path leading to such
a source subterm is the maximum common prefix mcp 〈v〉 of all the
paths to nodes with these labels.

Consider a simple example with mirror as the ‘get’ function (see
Figure 3). Note that the labels in the source—the list component of
each pair in the diagram—are copied over to the view. Suppose
we insert a new node at the location labelled [1] in the view, af-

100, []

68, [1] 79, [2]

34, [1,1] 9, [1,2]

100, []

79, [2] 68, [1]

9, [1,2] 34, [1,1]

mirror

Figure 3. Using mirror as a ‘get’ function.

fecting the element 68 at location [1] and the locations below it
[[1,1], [1,2]]. (Note that we don’t require a concrete label for the
newly inserted node since it will not contribute to the identification
of the affected source.) The maximum common prefix of the af-
fected labels [[1], [1,1], [1,2]] is [1]. Now tracing the pedigree of
the path [1] back to the source, we conclude that it is the subtree
with root element 68 that needs to be changed.

The key to demonstrating the correctness of the above process
is to show that the subset relation between label sets corresponds to
the subterm relation between trees.

LEMMA 22. Given a well-aligning ‘get’ function f = fold b, and
source terms s, t with s4 t, and view term v, if v4 f t and 〈v〉 ⊆ 〈s〉
then v4 f s.

PROOF. Again, by induction over the length of locate t s. The base
case is when the path is empty; then s = t, and the result trivially
holds. For the inductive case, assume that the result holds for paths
of length n, and that s is at depth n + 1 in t. Let i be such that
s4 (outT t)i, so that locate (outT t)i s has length n. We will show
that v4 f (outT t)i; then we can conclude v4 f s by appeal to the
inductive hypothesis.

Let x = S f (outT t), so f t = b x and f (outT t)i = xi. Since v is
a non-trivial subterm of b x, and b is well-aligning, there exists a j
such that v∼ xj. By the usual argument, that j must be i:

〈v〉
⊆ { assumption}
〈s〉

⊆ { hypothesis, and Corollary 5}
〈(outT t)i〉

{ disjointness of labels}
〈(outT t)6=i〉

⊇ { f does not invent labels}
〈(S f (outT t)) 6=i〉

= { definition}
〈x6=i〉

So v∼ xi. Moreover, 〈v〉 ⊆ 〈xi〉, by disjointness of labels, since by
assumption we have v4 f t and hence 〈v〉 ⊆ 〈f t〉= 〈b x〉 ⊆ 〈x〉, and
we have just shown that 〈v〉 # 〈x6=i〉. Therefore, by Corollary 5 we
conclude v4 xi = f (outT t)i. �

As a side remark, so far we have been oblivious to the fact that
the source and view nodes are now labelled, and have assumed
that the ‘get’ and ‘put’ functions work uniformly on them. This is
certainly correct given parametrically polymorphic datatypes and
functions; free theorems [30] provide the guarantee we need. It
is straightforward to relax this fully-parametric type restriction to
constrained polymorphic types. For example, we can use equality
in the transformation by introducing the following:

f :: Eq a ⇒ s a → v a

f<st :: Eq a ⇒ (v a,s a)→ s a

and a generic instance to bypass the labels:

instance Eq a ⇒ Eq (Label,a) where

(≡) (,a) (,b) = a ≡ b

This kind of generic definition is all that is required to introduce
constrained polymorphism. For example, consider a function that
filters the labels of a tree and returns them as a list.

filterT :: Eq a ⇒ (a,Tree a)→ [a]
filterT (x,Empty) = []
filterT (x,Fork a l r) = if a ≡ x then lr else a : lr

where lr = filterT l++filterT r

Function filterT is well-aligning, and our technique is applicable
without modification.

It is worth mentioning that labelling tree elements uniquely and
exploiting parametricity to establish connections between source
and view is not limited to finding subterm correspondence. In [28],
‘get’ functions are applied to source values with elements replaced
by labels, which allows one to conduct a kind of forensic examina-
tion of the transformation, determining its effect without examining
its implementation; with such information a ‘put’ function can be
constructed. We will discuss in more detail in Section 7 the con-
nection between our technique and the approach in [28].

4.2 The Change-Based ‘Put’ Function

We are now ready to present the change-based ‘put’ function. For
any f<st , a generic f<ch function can be defined as follows:

f<ch :: Edit v → s → s

f<ch e s = s/ r⋖ (f<st ◦ ((edit e◦ f)△ id)) r

where r = zoom i s

i = mcp 〈affect e (f s)〉

The function f<ch maps an edit operation on views, e, into an update

operation on sources. The evaluation of f<ch is illustrated in Figure 4,
which shows how an updated source is obtained by an indirect
route. A source is firstly mapped into a view via f , with the affected
view subterm of the edit extracted via affect e. After that, the labels
in the affected view subterm are collected and are used to identify
an alignment position, r, covering the affected view subterm. A
view of the alignment position is then constructed by applying f ,
and is edited before the state-based ‘put’ function f<st maps it into
an updated source subterm. Finally, the standard split operator, △,
with type (a → b)→ (a → c)→ (a → (b,c)), is used to produce a
pair containing the result of applying two functions to a value. Here
it combines the newly created source subterm with the original
context that remains unchanged. (The straightforward re-labelling
of the newly generated source subterm with i as the root label is
omitted.)

As shown in Figure 4, there are several passes across the
source/view boundary, and apart from the initial ‘get’ function
application, all of them concern only the edit-affected subterms.
Assuming the editing and ‘get’ functions have no worse run-
time performance than the ‘put’ function, the complexity of f<ch
is O (m× log n+ c m) where n and m are the sizes of the source s
and the change r, and c is the complexity function for f<st . Note
that affect e (f s) will have been executed prior to the ‘put’ function
execution, and is not included in the performance analysis. The
cost of computing s / r is not considered because the context s / r
can be computed together with the focus r when the zooming is
performed. The m× log n part of the above complexity function
comes from the computation of mcp, where m labels of size log n
need to be processed.

The function f<ch is expected to preserve the bidirectional prop-

erties of f<st . This is established when f<ch operates at alignment po-
sitions.

THEOREM 23. Given a well-aligning ‘get’ function f such that
f s = v, then for all source subterms r of s and view subterms u
of v, zoom (mcp 〈u〉) s is the smallest alignment position covering
u.

PROOF. By definition, we have 〈u〉 ⊆ 〈zoom (mcp 〈u〉) s〉.

〈u〉 ⊆ 〈zoom (mcp 〈u〉) s〉 ∧ u4 f s ∧
(zoom (mcp 〈u〉) s)4 s

⇒ { lemma 22}
u4 f (zoom (mcp 〈u〉) s) ∧ u4 f s ∧
〈zoom (mcp 〈u〉) s〉4 s

⇒ { theorem 17}
f aligns at subterm zoom (mcp 〈u〉) s of s

Also from the definition of mcp, there exists no r such that
r≺ zoom (mcp 〈u〉) s and 〈u〉 ⊆ 〈r〉. Thus, zoom (mcp 〈u〉) s is the
smallest alignment position covering u. �

We can state the bidirectional properties of f<ch .

THEOREM 24 (Consistency). f (f<ch e s) = edit e (f s)

PROOF.

f (f<ch e s)
= { definition of f<ch }

f (s/ r⋖ (f<st ◦ ((edit e◦ f)△ id)) r))
= { r is an alignment position}

f s/ f r⋖ (f ◦ f<st ◦ ((edit e◦ f)△ id)) r)
= { consistency of f<st }

f s/ f r⋖ (edit e◦ f) r

= { r covers affect e (f s), and locality of edit}
edit e (f s/ f r⋖ f r)

= { r is an alignment position}
edit e (f (s/ r⋖ r)))

= { cancellation}
edit e (f s)

�

For acceptability, we need an ‘identity’ edit that does not change
the view.

THEOREM 25 (Acceptability). f<ch (E {edit = id}) = id.

PROOF.

f<ch (E {edit = id}) s

= { definition of f<ch }
s/ r⋖ (f<st ◦ ((id ◦ f)△ id)) r

= { acceptability of f<st }
s/ r⋖ r

= { cancellation}
s

�

Undoability involves inverting an edit as a function.

THEOREM 26 (Undoability). f<ch (e {edit = (edit e)◦}) ◦ f<ch e =
id.

PROOF.

(f<ch (e {edit = (edit e)◦})◦ f<ch e) s

= { definition of f<ch , and constant affect in e}
s/ r⋖ (f<st ◦ ((edit e)◦ ◦ f △ id)) ((f<st ◦ (edit e◦ f △ id)) r)

= { definition of △}
s/ r⋖ f<st (((edit e)◦ ◦ f ◦ f<st) ((edit e◦ f) r,r),

f<st ((edit e◦ f) r,r))

i
s/r s/rss s′

f s

f

m
c

p

f f
<st

affect edit

⋖zoom

r

f r

Figure 4. Change-based ‘put’ execution, showing relationship between source (top) and associated view (bottom) during transformation.

= { consistency of f<st }
s/ r⋖ f<st (((edit e)◦ ◦ edit e◦ f) r, f<st ((edit e◦ f) r,r))

= { (edit e)◦ ◦ edit e = id}
s/ r⋖ f<st (f r, f<st ((edit e◦ f) r,r))

= { undoability of f<st }
s/ r⋖ r

= { cancellation}
s

�

5. More Refined Locality

As we have seen, the performance of our proposal depends on the
height of the source tree and the size of the affected region (i.e.,
the degree of locality of the edit). The former is clearly beyond
the control of any bidirectional framework, and the latter is largely
decided by the structure of the view. For fairly balanced trees, the
majority of nodes are deep in the structure, so it is reasonable
to suppose that the majority of edits will be too; given structure
alignment, this implies a good degree of locality. A problem arises
when the view tree is skewed, such as in a list, since the likelihood
that a node appears at any depth is the same. If a node high in
the structure is affected by an edit, such as a deletion, the affected
subtree could be rather large.

This problem has already manifested itself in our binary-tree
traversal example (see Section 1.4, where it is excessive to mark
the whole sublist [4,8,9] as affected). A better alternative is to
recognize the sublist [8,9] as unaffected context too.

Another example is post-order tree traversal, where any non-
empty sublist of the view contains the head of the source, which
results in very poor locality preservation. As a matter of fact, post-
order traversal is excluded through the well-aligning condition.

Nevertheless, being a special kind of tree, lists enjoy a number
of unique properties. We notice that unlike general trees, where a
separate datatype is needed for contexts, the context type for lists
is isomorphic to the list type itself, and so we can simply use lists
as both contexts and foci, and use the append function (++) as the
close function (⋖). Given the symmetry of (++), either the context
or the focus can be edited, and all the definitions and results dualize.
For example, consider the reverse function. Editing the front of the
list view can be localized to a prefix of the view and mapped back
to a suffix of the source.

As a result, it makes sense to try to capture a lower (right)
bound of an edit-affected sublist, in addition to the upper (left)
bound. Instead of splitting a list view into a prefix (context) and
a suffix (focus), we can now see it as l1 ++ l2 ++ l3. To reflect this
specialization, we overload the infix operator ⋖ and define its list

version as (l1, l3)⋖ l2 = l1 ++ l2 ++ l3. (In a sense, this is treating
lists as semi-structured data, similar to traditional treatments of
relational databases and graphs, and not as an algebraic datatype.)
All the other definitions developed for general trees remain valid.

Now instead of always picking out a complete suffix or prefix,
we can mark an interior list segment as affected by editing, and
the same definition of f<ch directly applies. For example, deleting 4
from [7,6,5,4,8,9] only affects the interior segment [4], leaving
both contexts [7,6,5] and [8,9] unaffected. Correspondingly, the
alignment positions now match subterms in the source with seg-
ments (rather than with tails) in the view.

6. Discussion

6.1 Context-Sensitive Editing

The editing system we have looked at so far is context-independent;
this is particularly convenient for local editing, since the same edit
can be applied both to a structure and to its subterms. For tree-
structured views, it is sometimes useful to provide a full (or partial)
path to the intended editing location, to narrow down the search. In
this case, the editing becomes context sensitive, because the starting
point of the path matters. Consider a path-based editing system.

type EditP t = {edit :: Path → t → t,affect :: Path → t → Path}

An edit operation now finds its target in a structure following a path,
and produces the edited structure together with the path leading to
the affected subterm. Note that these paths in the view should not
be confused with labels of nodes that represent paths in the source.

The definition of f<ch can be adapted for the new editing system.
We separate all interesting steps into where clauses to facilitate
explanation.

f<ch :: Edit v → Path → s → s

f<ch e p s = (s/ r)⋖ f<st (edit e p3 u′,r) where

v = f s

p1 = affect e p v

u = zoom p1 v -- affected subterm
i = mcp 〈u〉
r = zoom i s

u′ = f r

p2 = travelUntil (p1,v) u′ -- path to u′

Just p3 = stripPrefix p2 p1 -- relative editing path

Note that we keep the path information of the edit explicit, so that
it can be modified along with the shifting of focus. Compared with
the context-independent version, there are a few additional steps.
As the editing function returns a path locating the affected subterm,
we need to open the view to get to it (u in the third clause above).
A bigger challenge posed by this context-sensitivity is to find a

relative editing path when the starting point is moved to the root of
subterm u′. We denote the path from the root of a structure x to its
subterm y as x y. Since we know the subterm relations u4u′4v
among the affected subterm, the view of the alignment position and
the complete view, the path p3 = u′ u is the difference between
p1 = v u and p2 = v u′. We already know p1; traversing
p1 until the root of u′ gives us p2, before we can perform path
arithmetic to recover the correspondence between the path and
structure inputs of edit e. Function travelUntil follows a path down
a tree until it reaches a given subtree; the part of the path travelled
is returned as the output. Function stripPrefix is a standard Haskell
function of type Eq a ⇒ [a]→ [a]→ Maybe [a] that strips the first
input from the second one; since we know that p2 is a prefix of
p1, the execution of stripPrefix p2 p1 is always going to succeed.
A concern here is that the additional computation does impose a
performance overhead: travelling the path takes time linear in the
height of the view tree. Clearly, the multiple traversals in the above
code can be combined; we have presented them in separate steps
for clarity.

6.2 Totality of ‘Put’ Functions

The proofs of bidirectional properties in Section 4.2 are done in
a total setting, where the state-based transformations are assumed
to execute successfully when given well-defined terms. Since the
‘get’ functions are regular structural recursions, it is reasonable to
expect that if the execution over a complete source is successful,
then the evaluation over subterms will also succeed. Establishing
a similar safety property for ‘put’ functions is much harder; ‘put’
functions are often partial due to the conflicts between the edited
view and the original source (though advanced type systems may
help to specify their domains [10]), and usually do not expose their
semantics other than through the bidirectional laws.

Since our approach employs state-based bidirectional frame-
works as black-boxes, it is impossible to conclude that the ap-
proach is universally safe. Nevertheless, there are patterns to fol-
low: most bidirectional frameworks create ‘put’ functions that try
to trace the original ‘get’ execution backwards, and recursively de-
construct their view and source inputs in parallel, until a discrep-
ancy is encountered, which is the point where the ‘put’ function has
to either resolve the conflict or fail. Our change-based approach re-
duces the scope of a ‘put’ function by removing a context that is
known to be unaffected by the edit. Consequently, we expect that
failures, if there are any, happen within the processing of the align-
ment position, and so moving from a state-based approach to the
change-based approach preserves the safety property.

7. Related Work

Incremental updates have been studied in the context of model
transformation, for improving speed [13], and for achieving more
refined semantics [8]. Similar to our design, both of these ap-
proaches also require additional specification of the effect of
an edit. In contrast to tree-like datatypes, models are loosely-
connected untyped graphs, which are more easily divided into
independent fragments to be updated separately; whereas our well-
aligning property of typed and overlapping subtrees is much harder
to establish. In their work on graph transformations via structural
recursion, Hidaka et al. [15] use a simplified assumption that dif-
ferent parts of the graph are always independent. As a result, the
structural recursion is effectively reduced to a concatMap opera-
tion. However, this assumption is not valid in general; and as a
result, the acceptability property does not hold in their framework.

The concept of an alignment position is also known as an exclu-
sive data source in the database literature [9], and is used to prevent
‘side effects’ on the view that is edited (similar to our consistency
requirement). Exclusive data sources are commonly computed by

establishing lineages between a database and its view through trac-
ing identifiers of data [5]. Databases are typically large, so it is
never practical to process them completely for an update; as a re-
sult, identifying exclusive data sources is not considered as an opti-
mization, but the core part of the update. Despite the obvious sim-
ilarity of these ideas, techniques developed for databases are not
applicable in our setting, due to the very different representations
of data and transformations.

Despite being in a unidirectional setting, the concept of adap-
tive programming [1] is closely related to incremental updates. The
basic idea of adaptive programming is to build up a complete input-
output dependency graph for a given input, from some syntactic an-
notations to the program. Based on the dependency, a correspond-
ing output change can be derived from an input change, which
hopefully has a much better run-time performance compared to re-
executing the program with the new input. However, it is not ob-
vious how the technique can be applied in a bidirectional setting,
where we need to derive an input change from an output change.
Nevertheless, this would be an interesting future direction to ex-
plore.

Explicit caching of intermediate computations is another way
of achieving incremental execution. If an input change can be de-
scribed as a loop increment, an incremental version of the program
under the change can be constructed and benefit from previously
computed results [20]. In a sense, the contexts in our approach can
be seen as cached values, and the focuses can be seen as incre-
ments. Since in our case the closing operation (⋖) that combines
the cached result and the newly computed increment is not depen-
dent on the transformations, we do not need to ‘improve’ the trans-
formations to achieve incrementality.

Indexed elements in source structures and parametricity arising
from polymorphic ‘get’ functions are the key components of se-
mantic bidirectionalization [28] – deriving a ‘put’ function without
inspecting the syntactic definition of the ‘get’ function. Similar to
our approach, the indices in [28] are unique and cannot be created
by ‘get’ transformations, so that individual elements in the view can
be mapped back to their source origins, as can any edits. Neverthe-
less, there has not been any attempt to derive structure correspon-
dences from the element correspondences, as we do in this paper.
Consequently, editing view structures is not permitted in seman-
tic bidirectionalization, while our approach only optimizes a given
‘put’ function instead of creating one.

Maintaining proper alignment between ordered source and view
is itself an important semantic issue of bidirectional programming,
as view editing may cause mismatchings between view/source data.
Matching lenses [3] aims at addressing this issue without hard-
wiring alignment strategies into bidirectional systems. Though our
use of alignment in this paper is intended for optimization pur-
poses, we note that a change-based ‘put’ function should preserve
the alignment semantics of the state-based ‘put’ function it uses,
because the unaffected context that is not processed will have no
impact on alignment.

The connection between alignment and incrementality is spec-
ulated in [18]. However, as far as we are aware, there has not been
any concrete proposal before.

8. Conclusions

We have developed a change-based bidirectional transformation
framework that focuses on changes rather than data. The technique
we have presented is very general, and most existing state-based
frameworks may draw benefits from its adoption, so long as the
‘get’ function is well-aligning. This condition is semantic; there is
no restriction on the language that is used for implementation.

In the future, we plan to look at ways of dealing with monomor-
phic functions, which are widely used in XML transformations. In

contrast to the polymorphic case presented in this paper, the la-
belling of tree nodes does require some adjustment of a state-based
bidirectional framework. It will be interesting to see whether such
adjustments can be made in a systematic way.

Acknowledgements

We are grateful to Ralf Hinze for his valuable comments on an
early draft of the paper; and the ICFP reviewers for their detailed
and insightful reviews. The work was partly conducted when the
first author was at the University of Oxford supported by the UK
EPSRC grant Generic and Indexed Programming (EP/E02128X).

References

[1] U. A. Acar, G. E. Blelloch, and R. Harper. Adaptive functional
programming. ACM Transactions on Programming Languages and

Systems, 28:990–1034, November 2006.

[2] F. Bancilhon and N. Spyratos. Update semantics of relational views.
ACM Transactions on Database Systems, 6(4):557–575, 1981.

[3] D. M. Barbosa, J. Cretin, N. Foster, M. Greenberg, and B. C. Pierce.
Matching lenses: alignment and view update. In International

Conference on Functional Programming (ICFP), pages 193–204,
New York, NY, USA, 2010. ACM.

[4] A. Bohannon, J. N. Foster, B. C. Pierce, A. Pilkiewicz, and
A. Schmitt. Boomerang: Resourceful lenses for string data. In
Principles of Programming Languages, pages 407–419, New York,
NY, USA, Jan. 2008. ACM.

[5] Y. Cui, J. Widom, and J. L. Wiener. Tracing the lineage of view
data in a warehousing environment. ACM Transactions on Database

Systems, 25:179–227, June 2000.

[6] K. Czarnecki, J. N. Foster, Z. Hu, R. Lämmel, A. Schürr, and
J. F. Terwilliger. Bidirectional transformations: A cross-discipline
perspective. In Theory and Practice of Model Transformations, pages
260–283, Berlin, Heidelberg, 2009. Springer-Verlag.

[7] U. Dayal and P. A. Bernstein. On the correct translation of update
operations on relational views. ACM Transactions on Database

Systems, 7(3):381–416, 1982.

[8] Z. Diskin, Y. Xiong, and K. Czarnecki. From state- to delta-based
bidirectional model transformations. In Theory and Practice of Model

Transformations, ICMT’10, pages 61–76, Berlin, Heidelberg, 2010.
Springer-Verlag.

[9] L. Fegaras. Propagating updates through XML views using lineage
tracing. In International Conference on Data Engineering, pages
309–320, Los Alamitos, CA, USA, 2010. IEEE Computer Society.

[10] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and
A. Schmitt. Combinators for bidirectional tree transformations: A
linguistic approach to the view update problem. ACM Transactions on

Programming Languages and Systems, 29(3), May 2007. Preliminary
version in POPL ’05.

[11] J. N. Foster, B. C. Pierce, and S. Zdancewic. Updatable security
views. In Computer Security Foundations, pages 60–74, Washington,
DC, USA, 2009. IEEE Computer Society.

[12] J. N. Foster, A. Pilkiewicz, and B. C. Pierce. Quotient lenses. In
International Conference on Functional Programming (ICFP), pages
383–396, New York, NY, USA, 2008. ACM.

[13] H. Giese and R. Wagner. From model transformation to incremental
bidirectional model synchronization. Software and Systems Modeling,
8:21–43, 2009. 10.1007/s10270-008-0089-9.

[14] G. Gottlob, P. Paolini, and R. Zicari. Properties and update semantics
of consistent views. ACM Transactions on Database Systems,
13(4):486–524, 1988.

[15] S. Hidaka, Z. Hu, K. Inaba, H. Kato, K. Matsuda, and K. Nakano.
Bidirectionalizing graph transformations. In International Confer-

ence on Functional Programming (ICFP), ICFP ’10, pages 205–216,
New York, NY, USA, 2010. ACM.

[16] R. Hinze and J. Jeuring. Functional Pearl: Weaving a web. Journal

of Functional Programming, 11(6):681–689, nov 2001.

[17] R. Hinze, J. Jeuring, and A. Löh. Type-indexed data types. Science

of Computer Programming, 51(1-2):117–151, 2004.

[18] M. Hofmann, B. Pierce, and D. Wagner. Symmetric lenses. In
Principles of Programming Languages (POPL), POPL ’11, pages
371–384, New York, NY, USA, 2011. ACM.

[19] Z. Hu, S.-C. Mu, and M. Takeichi. A programmable editor for
developing structured documents based on bidirectional transforma-
tions. In Workshop on Partial Evaluation and Program Manipulation

(PEPM), pages 178–189, New York, NY, USA, 2004. ACM.

[20] Y. A. Liu, S. D. Stoller, and T. Teitelbaum. Static caching for
incremental computation. ACM Transactions on Programming

Languages and Systems, 20:546–585, May 1998.

[21] K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi.
Bidirectionalization transformation based on automatic derivation
of view complement functions. In International Conference on

Functional Programming (ICFP), pages 47–58, New York, NY,
USA, 2007. ACM.

[22] C. McBride. The derivative of a regular type is its type of one-hole
contexts (extended abstract). http://strictlypositive.org/
diff.pdf, University of Durham, 2001.

[23] L. Meertens. Designing constraint maintainers for user interaction.
ftp://ftp.kestrel.edu/pub/papers/meertens/dcm.ps,
CWI, Amsterdam, 1998.

[24] S.-C. Mu, Z. Hu, and M. Takeichi. An injective language for
reversible computation. In Mathematics of Program Construction,
volume 3125 of Lecture Notes in Computer Science, pages 289–313.
Springer, 2004.

[25] H. Pacheco and A. Cunha. Generic point-free lenses. In C. Bolduc,
J. Desharnais, and B. Ktari, editors, Mathematics of Program

Construction, volume 6120 of Lecture Notes in Computer Science,
pages 331–352. Springer Berlin / Heidelberg, 2010.

[26] S. Peyton Jones, editor. Haskell 98 Language and Libraries: The

Revised Report. Cambridge University Press, 2003.

[27] P. Stevens. Bidirectional model transformations in QVT: semantic
issues and open questions. Software and Systems Modeling, 9:7–20,
2010.

[28] J. Voigtländer. Bidirectionalization for free! (Pearl). In Principles of

Programming Languages (POPL), pages 165–176, New York, NY,
USA, 2009. ACM.

[29] J. Voigtländer, Z. Hu, K. Matsuda, and M. Wang. Combining syntactic
and semantic bidirectionalization. In International Conference on

Functional Programming (ICFP), pages 181–192, New York, NY,
USA, 2010. ACM.

[30] P. Wadler. Theorems for free! In Functional Programming Languages

and Computer Architecture, pages 347–359, New York, NY, USA,
1989. ACM.

[31] M. Wang, J. Gibbons, K. Matsuda, and Z. Hu. Gradual refinement:
Blending pattern matching with data abstraction. In C. Bolduc,
J. Desharnais, and B. Ktari, editors, Mathematics of Program

Construction, volume 6120 of Lecture Notes in Computer Science,
pages 397–426. Springer Berlin / Heidelberg, 2010.

