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Abstract

This paper addresses the issue of freight rate risk measurement via Value at Risk (VaR) and forecast
combination methodologies while focusing on detailed performance evaluation. We contribute to the
literature in three ways: First, we re-evaluate the performance of popular VaR estimation methods on
freight rates amid the adverse economic consequences of the recent financial and sovereign debt crisis.
Second, we provide a detailed and extensive backtesting and evaluation methodology. Last, we propose a
forecast combination approach for estimating VaR. Our findings suggest that our combination methods
produce more accurate estimates for all the sectors under scrutiny, while in some cases they may be

viewed as conservative since they tend to overestimate nominal VaR.
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1 Introduction

Freight rate risk has always been one of the most important risk factors of the shipping industry
mainly because it affects its primary source of income. The uprising interest of participants in
the shipping industry such as shipping companies, shipping hedge funds and shipping banks
makes the accurate measurement of freight risk a procedure of high importance and difficulty
induced by the intrinsic characteristics of the shipping industry itself. Specifically, the cyclicality
of the maritime economy and the mechanics of the shipping markets create a complex profile
for both the freight rates and their volatility.! While, from a financial perspective, freight rates
are typically considered part of the commodities market, freight rate markets are quite different
from the majority of the other commodities markets. For example, in contrast to all major
traded commodities, freight rates are essentially not storable, a property that makes simple
cost-of-carry valuations of futures contracts for freight rates impossible. Moreover, the freight
rate spot market shows a high degree of volatility and seasonality which causes significant
risks for shipowners, charterers and market participants in general (Alizadeh and Nomikos,
2011, Alizadeh et al., 2014). Consequently, producing accurate estimates of freight risk is
essential to freight market participants as it enables them to enhance their ability of sound
strategic, investment and hedging decisions. This paper addresses the subject of freight rate risk
measurement via Value at Risk (VaR) and forecast combination methodologies while focusing
on detailed performance evaluation.

There are many factors behind the fluctuation of freight rates. In the long run, freight
rates are determined through the interaction between the supply and demand schedules for
shipping services. Information on vessel availability and production directly influences price
levels. On the other hand, demand for shipping services is closely linked to the business cycle
and economic growth through various channels. For example, during economic booms, both
production of commodities and demand for crude oil is high. This leads to increases in both
dry bulk (responsible for raw non liquid materials transportation) and tanker (responsible for
the transportation of liquids, such as crude oil, petroleum products, etc.) freight rates. In the
short run, the cost of operating a vessel greatly fluctuates with the cost of crude oil, mainly
used as a shipping fuel and known as ‘bunker’. Consequently, bunker prices are closely linked
to crude oil prices and, therefore, freight rates react to changes in oil price levels. Moreover,
tanker vessels account for approximately half of the world’s seaborne trade and tanker freight
rates determine the transportation cost of strategic for the world economy products such as the
crude oil and its by-products. Finally, the importance of freight rates for global real economic
activity is highlighted in the index of real economic activity constructed by Kilian (2009). This
index is essentially based on global dry cargo freight rates and exhibits high correlation with
the Bulk Dry Index (BDI). BDI is often employed as a general market indicator, "barometer",
reflecting changes not only in the dry-bulk market, but in the overall worldwide real economy.

Given the importance of freight rates, calculating accurately freight rate risk is of utmost

'For an in depth discussion on freight rate characteristics, see Stopford (2009) and Alizadeh and Nomikos
(2009).



importance for at least three reasons. First, market participants can develop hedging schemes
more effectively and efficiently when they are aware of the risk they are exposed to. Simple risk
metrics, like volatility, have not been proven adequate for this market due to deviation from
normality, complexity, cyclicality and the existence of jumps during extreme events (see Kavus-
sanos and Visvikis, 2004, Kavussanos and Dimitrakopoulos, 2011). For example, Alizadeh and
Nomikos (2011) argue that volatility dynamics vary with shipping market conditions, i.e. they
are regime dependent. In the same vein, Alizadeh et al. (2014) implement a regime switch-
ing multivariate approach in order to capture the volatility dynamics and possible correlations
of spot and futures prices in the tanker sector. Second, during the last decade, the shipping
freight market has transformed from a service market, where freight rate was the cost of trans-
porting raw materials by sea to a market where freight rate is seen as an investment like any
other asset or commodity (see e.g. Nomikos et al., 2013). Market participants now include
investment banks and hedge funds, who are interested in quantifying the risk profile of this al-
ternative asset class having realized its potential benefit for both speculation and diversification.
Alizadeh (2013) documents a positive contemporaneous relationship between trading volume,
which has increased rapidly in the recent years, and volatility in the shipping forward freight
market. Finally, VaR provides a mean of setting margin requirements in the freight exchange
derivatives market, which is expanding fast. Given that forward freight agreements (FFAs) and
freight options are employed to hedge freight rate risk and that trading of these derivatives
can be done through an organized exchange, margin determination is very important. With
the elimination of credit risk, margins reflect market liquidity and volatility of the underlying
spot freight rates.? Specifically, FFAs are the primary instrument shipping market participants
employ to hedge freight exposure risk. These contracts are agreements between a buyer and
seller to settle the difference between the contract price and an appropriate settlement price in
cash. The settlement price is normally the average of the spot freight rates on the underlying
shipping route over the calendar month, reported by the Baltic Exchange. Alternative freight
risk management techniques include time-charter contracts, contracts of affreightment (CoAs),
and freight options. While period charter contracts and CoAs are considered physical forms
of hedging, these contracts are not very liquid and operationally flexible. Finally, freight rate
options can be used for hedging freight rates, but they are not very liquid and are comparatively
expensive.

Despite the plethora of related research in the financial sector, the measurement of the
market risk of freight rates has been under-researched. To the best of our knowledge the most
recent contributions in the field of freight rate risk adopt the VaR methodology in order to
measure the market risk of the dry bulk and tanker freight market. Specifically, Angelidis and

2Predictability in the underlying freight spot rate does not imply predictability of the corresponding derivative
contract, since the standard cost-of-carry relationship for financial futures does not hold for the freight ones. This
is because the underlying asset is not tradable, and hence the pricing by arbitrage argument cannot be applied.
A series of papers have tested the unbiasedness hypothesis of the market, i.e. whether the freight rate market is
efficient. Results are mixed mainly due to market segmentation (see Kavussanos and Visvikis, 2006, for a review).
A more recent contribution by Goulas and Skiadopoulos (2012) points to the inefficiency of the International
Maritime Exchange (IMAREX) freight futures markets over the daily horizon. The futures trading strategies
based on the formed daily forecasts the authors develop yield a positive, economically significant risk premium.



Skiadopoulos (2008) applied a variety of parametric, non-parametric and hybrid methods in
order to measure the market risk mainly for the dry bulk sector. Their findings suggest that in
almost all cases the simplest non-parametric methods produce accurate results. On the other
hand, Kavussanos and Dimitrakopoulos (2011) dealt with the selection of the appropriate freight
rate risk model by applying a similar VaR methodology solely for the tanker sector. The authors
find that parametric methods are more suitable for this sector. More recently, Abouarghoub
et al.(2014) utilized a two state Markov-Switching distinctive conditional variance model in
order to improve the tanker sector VaR forecasts. Their results suggest that a regime switching
approach can capture more precisely the tanker sector volatility dynamics, thus providing better
VaR forecasts.

In this paper, we contribute to the literature on both tanker and dry bulk freight rate
risk forecasting in the following dimensions. First, we re-evaluate the performance of popular
VaR estimation methods amid the adverse economic consequences of the recent financial and
sovereign debt crisis. Second, we provide a detailed and extensive backtesting methodology in
order to identify possible weaknesses associated with the standard backtesting criteria. Finally,
we propose a forecast combination approach in estimating VaR, which provides more accurate
VaR estimates while reducing the cost in time and resources.

More specifically, we calculate the daily 5% and 1% VaR of a long position comprising the
most important Baltic Exchange indices and individual routes by applying a wide range of es-
timation methods. The aggregate freight rate indices employed are averages of individual route
or time chartered indices and can be thought of as portfolios of freight rate positions covering
large fleets of vessels. On the other hand, individual route indices are more relevant for market
risk exposures of smaller companies, since these companies employ vessels in one of these routes
which also serve as the underlying assets of freight rate derivatives (see Kavussanos and Dimi-
trakopoulos, 2011). To account for both types of risk exposure, we complement our analysis with
the most actively utilized individual routes of both the dry bulk and the tanker sector. Detailing
our methodology, we apply parametric, non-parametric, hybrid and a variety of combination
methods on the logarithmic returns of the indices at hand and employ an evaluation sample
that includes both booming periods and the crises periods of 2007-2009. Given the plethora of
VaR estimation methods, we go one step further and investigate whether combinations of VaR
forecasts can lead to gains such as: diversification gains, robustness to model mis-specification
and structural breaks and bias correction of individual VaRs (see e.g. Timmermann, 2006 and
Halbleib and Pohlmeier, 2012). To this end, we employ the mean, median and trimmed means
(two versions) of individual VaR estimates aiming at producing a superior forecast. In order to
conduct a more reliable and in depth evaluation, we implement a battery of newly developed
backtesting criteria, namely the Engle and Manganelli (2004) quantile regression approach, the
Christoffersen and Pelletier (2004) duration approach and the Colletaz et al. (2013) test along
with the standard Christoffersen (1998) approach. More importantly, we complement statistical
evaluation with the performance evaluation methodology proposed by Sener et al. (2012) in

order to rank the implemented methods.



We find evidence that combination methods outperform the individual ones. Specifically
we find that at the 5% VaR level, combination methods provide a globally accepted method
which in every case examined produces equal or superior results to the highest ranked individual
methods. Quite importantly, our findings are more pronounced at the 1% VaR level as we find
that in the majority of cases combination methods are superior to the individual ones. We
expect the empirical findings of the paper to be useful to a wider range of market participants
given that the freight rate markets exhibit similar characteristics to financial markets, such as
stock, bond, energy and commodity markets.

The remainder of this paper is organized as follows; Sections 2 and 3 present the theoretical
framework and methodologies for computing and evaluating the VaR estimates. Section 4
presents the data and the empirical findings while Section 5 presents the related findings for

individual route indices. Section 6 concludes the paper.

2 VaR Forecasting

There are three basic categories of risk measures; sensitivity measures, volatility measures and
finally downside risk measures.? Downside risk measures are thought to be the most comprehen-
sive category as they combine both sensitivity and volatility measures with the adverse effect
of uncertainty. A typical example of a downside risk measure is Value at Risk (VaR) which
can be described as the maximum potential deviation for a given significance level over a given
time horizon. More specifically, let p; be the price of the asset at the end of the day t and
ry = log (1%) the daily log returns. For a long position, VaR is defined as the expected max-
imum loss over a specific horizon at a certain confidence level. For the continuous distribution

case, it can be defined at a ¢% confidence level as follows:
P(ry < =VaR(q)) =q (1)

Equation (1) essentially defines VaR as the ¢ quantile of the distribution of returns. There-
fore, approximating the distribution of returns or more precisely its tails is essential to forecast
VaR. In the following sections we describe the individual and combination VaR forecasting
methods.

2.1 Individual Forecasting Methods

Approximating the returns distribution can be a cumbersome task given that the real Data
Generating Process (DGP) is unknown. There is an abundance of proposed methods, which
utilize the information set in an attempt to approximate accurately the unknown DGP. Based
on the nature of this approximation, the corresponding methods are defined as parametric, non
parametric and hybrid.

Despite the methods’ specifications for the DGP approximation, individual forecasting meth-

ods may induce significant model risk to the forecasts. For instance, simple methods such as

3For an elaborate discussion, see Bessis (2002).



Historical Simulation (HS) or an unconditional distribution fit assume independent and identi-
cally distributed (iid) returns. This assumption simplifies significantly the approximation of the
DGP as it provides an average on all possible events in the sample. However, assuming iid is
counterintuitive given that empirical evidence (heteroscedasticity) point towards returns depen-
dency. In addition, iid returns alongside large sample sizes may force out of date and therefore
irrelevant information into the forecasts. Controlling for the empirical properties of the returns
requires an augmented set of specifications. For instance, the AutoRegressive Moving Aver-
age (ARMA) Generalized AutoRegressive Conditional Heteroscedasticity (GARCH) approach
treats efficiently the returns time variation. However, the augmented parameter vector may
induce estimation risk in the forecasts. In general, complex structures carry more model risk
given that they are based on layers of models and distributional assumptions.

In this paper, we implement a variety of individual methods in order to evaluate their per-
formance and create the combination methods pool of forecasts. In more detail, with respect
to the parametric approach we implement a normal distribution unconditional fit, JP Morgan’s
univariate Riskmetrics method and members of the ARMA-GARCH family models.? Specifi-
cally, we focus on first order volatility processes based on the ARCH, GARCH and EGARCH
specifications. Although the aforementioned specifications are members of the same family, each
one of them has its own characteristics. For instance, GARCH specifications provide a well doc-
umented all around volatility approximation while ARCH specifications allow for less volatility
persistence. On the other hand, EGARCH specifications incorporate the returns leverage ef-
fects and therefore account for possible skewness in the data. Finally, we employ the Normal,
Student-t and Generalized Pareto (GP) distributions for the theoretical distribution of the error
term .

With respect to the non-parametric approach, we implement three versions of the Historical
Simulation (HS) method based on different sample sizes. Finally, from the hybrid approach we
implement the Filtered Historical Simulation (FHS) and a Monte Carlo simulation based on the
ARMA-GARCH(1,1)-t modeling specification. In total, we employ 14 individual forecasting
methods, covering the literature’s and financial practitioners’ benchmark models. Appendix A

provides a more detailed description of the implemented methods.

2.2 Combination Methods

The individual methods take into account certain empirical properties which in turn lend to
each method specific characteristics and weaknesses. So the question is whether appropriate
combination of these methods can eliminate inefficiencies and ultimately produce improved
results compared to the individual ones. Timmermann (2006) suggests that combination es-
timators display superior performance because they combine the information embedded into
each individual estimator. In addition, they are less sensitive to structural breaks and model
mis-specification. Profits from combination forecasts also arise from diversification gains and

correction for bias of individual forecasts.

4Riskmetrics and Historical Simulation are the financial practitioners’ benchmark risk models.



So far the macroeconomic and financial literature suggests that the combination of individ-
ual forecasts produce superior results (see for example Stock and Watson, 2004; Huang and
Lee, 2010; Rapach et al., 2010). In the field of combination forecasts and especially volatility
forecasts, the most recent studies (Becker and Clements, 2008; Patton and Sheppard, 2009;
Andreou et al., 2012) conclude that the combination methods outperform the individual ones.
Specifically Becker and Clements (2008) investigate the performance of the S&P 500 Implied
Volatility forecasts relative to model based forecasts and their combinations. Their results sug-
gest that the combinations of model based forecasts are superior. In the same vein, Patton
and Sheppard (2009) investigate the performance of Realized Volatility combination estimators
relative to the individual ones and find that the simplest combination schemes produce superior
results in most of the cases. Finally, Andreou et al. (2012) address the issue of model uncer-
tainty in volatility by using a comprehensive model space and investigate whether a combination
framework can improve volatility forecasts. More precisely, the authors consider the simple Au-
toRegressive models of Realized Volatility (AR-RV), the Heterogeneous Autoregressive model of
Realized Volatility (HAR-RV) (Corsi, 2009) and the Leverage HAR-RV (LHAR-RV)(Corsi and
Reno, 2009) in addition to GARCH-type and nonparametric models of volatility. Their results
suggest that forecast combinations based on an homogeneous robust loss function significantly
outperform simple forecast combination methods, especially during the period of the recent
financial crisis.

Risk management practices during the recent financial crisis is the focus of two recent papers
closely related to our approach. McAleer et al. (2013) suggest using a combination of VaR
forecasts to obtain a crisis-robust risk management strategy for a variety of international stock
market indices. The authors develop VaR forecasts using combinations of the forecasts of
individual VaR models, namely the r-th percentiles of the VaR forecasts of a set of univariate
conditional volatility models. Their findings suggest that the median of the point VaR forecasts
is a superior risk management strategy compared to strategies based on single and composite
model alternatives. Relaxing the assumption of deterministic weights on individual forecasts,
Halbleib and Pohlmeier (2012) propose a new methodology of computing VaRs based on the
principle of optimal combination that accurately and robustly forecasts losses during periods of
high risk. They consider two ways of computing optimal weights; first by minimizing the distance
between the population and empirical moments derived from Basel II rules and other VaR
evaluation techniques and second by employing simple quantile regressions on stand-alone VaR
forecasts. Their combination forecasts exhibit a stable in-sample and out-of-sample performance
across both calm and turbulent evaluation periods.

Our approach is more related to McAleer et al. (2013). In the same spirit, we aim at
dealing with the adverse effects of the recent financial crisis on the potential mis-specification
and inaccuracy of individual VaR methods by appropriately combining them. More precisely,
we employ the mean, median and trimmed mean combination schemes of a large number of
individual VaR forecasts. From an empirical point of view, the risk associated with the selection

of a specific individual model (model risk) is eliminated, volatility of forecasts is reduced and



structural instability is minimized. Moreover, our approach does not suffer from estimation error
since weights are not estimated and is relevant to a wider audience due to its computational
tractability.

Specifically, let us denote with V/a?it, 1 =1,2,...,n the n individual VaR methods. Then the

mean, trimmed mean and median combining schemes for the VaR forecasts are the following:
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where %R\i/t denotes the sorted, in an ascending order, individual estimates.

3 Evaluation Framework

In order to evaluate individual forecasts and compare them with the combination methods,
we use a two-step evaluation framework. First, we examine in detail the statistical accuracy of
each method by applying a battery of backtesting criteria. Secondly, we evaluate the forecasting
performance by utilizing the newly proposed methodology of Sener et al. (2012) in order to
rank the VaR methods. These steps are considered independently while the final results are

produced by ranking only the statistically accepted methods.

3.1 Statistical Evaluation

To statistically evaluate the employed VaR methods we use three different approaches plus an
additional test. First we employ the approach proposed by Christoffersen (1998) which consists
of three criteria, the unconditional coverage (LR,.), the independency of the violations (LR;,q)
and the conditional coverage criteria (LR..). To perform these tests a violations sequence is

defined as follows:

L(q) = {3—)7 7{f T < —VCLRt(‘I)} (6)
, if re > —=VaR(q)

The unconditional coverage criterion tests whether the empirical violations are consistent with

the expected ones. Thus, this criterion tests the null hypothesis Hoy.:E[l;(q)] = q against the

Hi ye:E[Ii(q)] # q. This hypothesis test is based on the following likelihood ratio test:

1= g)TogT1
i o

LRye = —2In(

where T is the number of out-of-sample observations, Ty the number of non violations and T}

the number of violations. The independence criterion tests the interrelationship between the



empirical violations. This test is performed using the following likelihood ratio:
E)To(ﬁ
T T

where Tj; with 4,5 = 0 (noviolation), 1(violation) is the number of observed events with the

LRing = —2In((1 — )T 4 20 ((1 — mor) To0mgdt (1 — 7ry9) Pror Tt v 3 (8)

j event following the ¢ event. The estimates of the probabilities of T;; are marked as mg;
and mw1;. The conditional coverage criterion is essentially a synthetic criterion which tests the
unconditional coverage and independence simultaneously. This test is performed using the
following likelihood ratio:

LRee = LRuc + LRina ~ X3

Another approach of evaluating the statistical performance of the VaR methods is the Engle
and Manganelli (2004) Dynamic Quantile (DQ) approach. This method is based on a quantile
regression model, by which the observed violations are associated with past violations and past

information according to the following procedure:

Hiti(q) = It(q) — ¢ 9)
. 1—q,if re<—VaR
Hitia) = {4 ) (10)

K K
Hiti(q) = 6 + ZﬁjHittfj(Q) + Z'Yth—j +eét (11)
p= =1

where Hit;(q) denotes the modified violations sequence, § is a constant term and (,_; the
variable that corresponds to any information that can be derived from the existing sample
of observations. The null hypothesis of independence, DQ;nq4, dictates that 5, = ~v; = 0,
Vj = 1...K., while the null unconditional coverage hypothesis, DQ,., dictates that 6 = 0.
Therefore, the null hypothesis of the conditional coverage criterion D@ is defined as follows:

\AVA 9
q(1— q)) X2K+1 (12)

where V¥ is the 2K + 1 parameter vector and Z denotes the matrix of the regression variables.

DQcc — (

In this paper we set the maximum number of K lags equal to 3.

Another approach of evaluating the statistical performance of the VaR methods is the
Christoffersen and Pelletier (2004) duration approach. While the Christoffersen and Engle-
Manganelli approaches view the violation as the event, the duration approach takes into account
the time interval between two violations. In other words, it evaluates the independence and
conditional coverage hypothesis by testing the statistical properties of the sequence of time inter-
vals between violations. The duration approach is based on the rationale of dependence causing
violations clusters. In order to perform the tests, we define d, as the time interval between
the v — 1 and the v violation. In the conditional coverage case, the evaluated method should

produce exactly g violations equally time distanced. Consequently, the violation sequence will



be characterized by a distribution with no memory. This entails that the d, sequence will follow

the Geometric distribution, i.e.
fldv,q) = q(1 =)™ ' dy €N (13)

It is obvious that this evaluation method is based on determining a no memory distribution
for the time intervals between the violations. In other words the probability of a violation at
time ¢ does not depend on the number of days that have passed since the previous violation.
The only continuous distribution which is characterized by lack of memory is the Exponential

distribution given by the following formula:

fdy,q) = ge™1%

Christoffersen and Pelletier (2004) considered the Weibull distribution with parameters a, b for

the alternative hypothesis of the non conditional coverage;®
w(dy,a,b) = abbdg_le_adﬁl3 (14)

The duration approach tests of independence and conditional coverage are converted in a
Weibull parameter estimation procedure. Consequently the null hypothesis of the indepen-
dence (Dur;yq) is not rejected if b = 1. In addition the conditional coverage (Dur..) hypothesis
is not rejected if b =1 and a = q.

The aforementioned unconditional coverage tests do not account for the severity of the
violations. This entails significant risk especially in the case of extreme losses. To address this
shortcoming, Colletaz et al. (2013) proposed a test which takes into account the severity of

each violation. Specifically, a second violation sequence is defined as follows:

Lyif re < =VaRi(q) ,
Jy = 15
! {O,if re > —VaR(¢) )’ T =q (15)

where ¢ is a stricter significance level. The second violations or super exemptions sequence
aims at measuring the number of initial violations that exceed the second threshold. Thus, if
the VaR method produces an acceptable number of violations in conjunction with an increased
number of super exemptions, the null hypothesis of the test will be rejected. To perform the

test, three indicator functions are introduced:

go,t = 1- g1t — g2t = 1-1
L _J - Liif —VaRy(q) <ri < —=VaR(q)
-t b 0,if r < —=VaR(q)

- Lif re < =VaRi(q)
g2t =St = 0,if re > =VaR(q)

®The Exponential distribution can be derived from the Weibull distribution for b = 1.
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The above random variables follow the Bernoulli distribution with 1 — ¢, ¢ — ¢/, ¢’ parameters
respectively. The null hypothesis of the test is defined as Ho muc:E[I:(q)] = q and E[Ji(¢)] = ¢

and the test is performed via the following likelihood ratio:

Ny No

MM~ (16)

LRe = —20n((1 ) (g — )™ (¢)™) + 2n((1 — 50)%(

T
where N; ; = ng,z’ =0,1,2.
=1

3.2  Performance Evaluation

The statistical evaluation tests sort the VaR methods according to their ability to produce the
correct number of uncorrelated violations. However, they cannot provide information about the
performance of the methods both in terms of underestimation or overestimation of the required
capital. Another issue that arises is which method is the appropriate one in the case of multiple
methods meeting the statistical criteria. To address these issues numerous loss functions and
tests have been proposed.® In this paper we adopt the newly proposed approach of Sener et
al. (2012) in order to rank the VaR methods. The main advantage of this approach is that it
allows for a weighting between the underestimation and overestimation error. In order to rank
the methods, penalization functions grade the underestimation error (r, — (—=VaR) < 0) and
the overestimation error (r; — (—VaR) > 0). These quantities represent, for a long position, the
unexpected loss and the excessive allocated capital, respectively.

For the violation space, i.e. for all the violations, clusters of successive violations are con-
structed in order to compute the severity of the unexpected loss associated with each string of
violations. For non-successive violations, the clusters are single elements. Let us assume that
the ¢ — th cluster has z; successive violations. The severity of unexpected losses for the ¢ — th

cluster of violations is calculated as follows:

Ci=[ 1+ (VaRy; =) = 1,i=1,2,...,a (17)
b=1

where VaRy; — rp; denotes the error corresponding to each violation (for b =1,2,...,2) of the
i — th cluster and « is the number of clusters. In addition to the severity of each cluster, the
proposed methodology takes into consideration the correlation between clusters. Therefore, the

penalization function for the unexpected loss is calculated as:

a—1 a—1
®(VaR,r) = > > CiCim (18)
=1 m=1
a—1 a—i 1 z; Zitm
= 2> i (H(H(VaRb,i—rb,i)) IT (1 + (VaRyiim — rhiem)) — 1)
i=1 m=1 """ \p=1 b=1

5See for example, Angelidis and Benos (2008) who employ standard forecast evaluation methods in order to
examine whether any differences between competing models are statistically significant.
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where d; ;4r, is the distance in days between the clusters. The penalization function of over-
estimation errors is derived in a similar way. However, given that the correlation between the
excessive allocations does not affect directly the investor’s position, it is not important for the
computation of the excessive allocated capital penalization function. The penalization function

for the overestimation of VaR is calculated :

T
U (VaR,r) = Z [ (re > —VaR|ry <0)]( VaR — 1) (19)
t=1

The penalization measure is calculated as:

1
PM (©,ry,VaR) = T+ [(1-0)® (VaR,r) + 0OV (VaR,r)] (20)
where © denotes the weight on each penalization function and 7™ denotes the number on non
positive returns. For this paper © has been set equal to the VaR estimates significance level
(¢). The PM ratio for the j-th method is defined as:
PM;

; (21)

PMj—ratio = m

The method with the lowest ratio is the best performing one. In addition to the ranking
methodology, Sener et al. (2012) propose a supplementary test in order to test statistically the
equality of performances between candidate methods. The main advantage of this test is the
use of a ratio which eliminates the use of a benchmark method and reduces the computation
complexity. For the supplementary test the PM ratio is set as the loss function. The loss series
for the j-th method is defined as:

T

PM.,;

{]‘3} }T— = nij (22)
Pt Zj:l PMj, =1

If all the methods perform equally well, the aforementioned ratio should be equal to 1/n. Hence,
the null hypothesis for the j-th method is defined as:

1
HO : E[k}j7t] < —, j = 1, N
n
and the test statistic is defined as:
4 1
Wi =3 Tk > ) (23)
t=1
—~ W, —oT
W= —2 P2 N0,1) (24)
p(1—p)

where p is the probability of k;; > %, which is set equal to 0.5. The above procedure reduces
significantly the computational complexity. If a number of methods produce relative high ra-

tios, a false non rejection may occur. To remedy this disadvantage, we evaluate the methods’
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performance in two steps. First we calculate the PM ratios and the corresponding tests for
all the implemented methods. Second, we exclude the methods with the highest PM ratio and
perform the evaluation process again. Finally, it is worth noting that the Ratio ranking and

the supplementary test may point to different directions.

4 Empirical Findings

4.1 Dataset and Descriptive statistics

The bulk shipping sector constitutes the major form of sea transportation. This sector is
particularly fragmented with the most notable categories being the dry bulk sector, which
involves raw non liquid materials transportation and the tanker sector which is for liquids.
Each freight depends on the type of the contract,” the size of the vessel, the type of the cargo
and the route followed. This heterogeneity makes freight rate dynamics more complex than
those of traditional asset classes (stocks, stock indices, etc.). A major provider of these rates
is the Baltic Exchange, which publishes daily various spot freight rates calculated by members
(panelists) of the exchange.

The dataset used in this study consists of eleven indices of the Baltic Exchange, describing
both the aggregate state of the market and individual routes of the dry and wet cargo sectors.
The aggregate indices we employ are the Baltic Dry Index (BDI), the Baltic Panamax Index
(BPI), the Baltic Capesize Index (BCI), the Baltic Dirty Tanker Index (BDTI) and the Baltic
Clean Tanker Index (BCTI). BDI is the general index of the dry bulk freight market and is
expressed in index points. It is calculated as the non equal weighted sum of BCI, BPI and
BHMI (Baltic Handymax Index) time charter averages.® These sub-indices are composite dry-
cargo indices across international routes that correspond to vessels of size 30-49,999, 50-79,999
and over 80,000 deadweight tones (dwt henceforth) for the BHMI, BPI and BCI, respectively.
With respect to the tanker shipping sector, we employ the Baltic Dirty Tanker Index (BDTI)
and the Baltic Clean Tanker Index (BCTI), which are the two major sub-sector indices of this
market. The distinction between ‘clean’ and ‘dirty’ comes from the type of cargo and specifically
from whether the oil product carried can be classified as clean or dirty.”

The aforementioned indices are aggregate indices and as such we expect their behavior to be
smoother compared to their constituents. However, as they are averages of individual route or
time charter contract indices, they do capture the general dynamics of the fragmented freight
market and can be thought of as portfolios of freight rate positions covering large fleets of

vessels. On the other hand, individual route indices are more relevant for market risk exposures

"The type of contract entails specific characteristics for the chartering of a vessel. There are four types of
contracts, voyage, bareboat, time charter and contract of affreightment (COA). The voyage type consists of the
simplest contract where the vessel is chartered for a specific voyage and the rate is calculated by the weight of
the goods. Bareboat type contracts lease only the equipment while Time Charter contracts lease the equipment
and the corresponding services. Finally, COA consists of a series of voyage contracts.

8The Baltic Handymax index was replaced by the Supramax index in 2006.

9Clean products consist of lighter (sweet) distillates, such as gasoline and kerosene, which are usually shipped
via vessels with coated tanks to ensure the cleanliness of the product. Dirty products involve lower distillates
and residual oil which is usually shipped in conventional tankers.
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of smaller companies since these companies employ vessels in one of these routes which also
serve as the underlying assets of freight rate derivatives. To this end, we employ two popular
averages of the time chartered indices included in the calculation of BPI and BCI; namely the 4
Time Charter Average Capesize (4TC AVG CAPE) and the 4 Time Charter Average Panamax
(4TC AVG PANAM). They are averages of specific routes, expressed in US dollars and measure
the cost to hire the vessel per day.! We complement our dataset with four popular Worldscale
routes of the Baltic Dirty Index;'! namely route TD3 (Middle East Gulf to Japan, for Very
Large Crude Carriers (VLCC) vessel sizes of 250,000 dwt), the TD5 route (West Africa to US
Atlantic Coast (USAC), for Suezmax vessel sizes of 130,000 dwt), route TD7 (North Sea to
Continent, for Aframax vessel sizes of 80,000 dwt) and route TD9 (Caribbean to US Gulf, for
Panamax vessel sizes of 70,000 dwt). The choice of these routes and time charter averages stems
from their liquidity in the freight forward and option markets. For our analysis, we concentrate
on the behavior and analysis of the aggregate sector indices. The analysis and findings for the
individual routes are presented and discussed in Section 5.

Our dataset covers the period from 1/11/1999 to 13/03/2012 including 3091 daily observa-
tions. The dataset is obtained from Clarkson’s Shipping Intelligence Network. Table 1 presents
the descriptive statistics of the daily logarithmic returns of the indices at hand. All series display
means statistically equal to zero as it is typical with daily returns of financial assets. Moreover,
all return series are highly volatile and leptokurtic. The tanker sector displays higher kurtosis
and is more negatively skewed compared to the dry bulk sector. These features indicate an
increased probability for extreme events and given the negative asymmetry (leverage effect) in
the empirical distribution of the aggregate indices (with the exception of BCI) the odds are in
favour of negative outcomes. In contrast to aggregate indices, individual routes exhibit posi-
tive skewness with the exception of 4TC AVG PANAM. As expected, the null hypothesis of
normality is rejected as indicated by the Jarque-Bera test.

Contrary to more traditional asset classes (stocks, stock indices, etc.) freight rate returns
display significant autocorrelation according to the Ljung Box statistic. This departure from the
martingale difference hypothesis can be attributed to the specific characteristics of the freight
rate market. For instance, Stopford (2009) argues that freight market equilibrium is conditional
on the magnitude of the demand and supply fluctuations, while financial market equilibrium can
be characterized as instantaneous. Furthermore, the freight rate market is strongly correlated to
exogenous variables such as crude oil or mineral demand, economy growth etc. pointing towards
augmented information sets. Finally, the return series exhibit significant heteroscedasticity as
suggested by the Ljung Box statistic for the squared return series. These characteristics of the
freight return series call for a VaR methodology that can adequately capture tail risk. The

following sections are focused solely on the returns information set and leave the inclusion of

10 Admittedly, these indices do not represent individual routes. They represent averages of individual ones.
However, we loosely refer to them as ‘individual’ routes since they are more disaggregate indices.

For a description of the specific time chartered routes, see Table 1 in Angelidis and Skiadopoulos(2008).

HyWorldscale is a freight rate measurement. It is used in the tanker sector and is calculated every year by the
World Scale Association. Each rate is quoted as a percentage of 100 Worldscale.
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exogenous variables to future research.!?

[TABLE 1 AROUND HERE]

4.2 Statistical Evaluation

Before presenting our findings, it is useful to briefly describe our forecast construction method-
ology. Given a total sample of K observations, we must determine the way to split the sample
into the estimation part (say R observations) and the out-of-sample part (say 7' := K — R ob-
servations). Obviously, there is a trade-off, since a large R improves the quality of the estimated
parameters of the model but, at the same time, leaves few observations for the out-of-sample
forecast exercise making the evaluation of the predictive ability of the model difficult. In our
analysis, we keep about 1/3 of the available sample (1029 observations) for out-of-sample fore-
casting. This out of sample specification gives us a sufficient number of forecasts to evaluate
the estimated models, while keeping enough observations to obtain reliable in sample parame-
ter estimates. We employ a rolling forecasting scheme, i.e. the size of the estimation sample
remains fixed (equal to R = 2061 observations) and produce VaR estimates for the 5% and 1%
significance levels. These forecasts are used to conduct both the statistical and the performance
evaluation.

Table 2 presents the detailed BDI backtesting results by providing the p-values associated
with the statistical evaluation of our methods (see Section 3.1). Table 3 summarizes the results
for the remaining aggregate indices in number of rejections for every test category.!> More in
detail, for the BDI index and the 5% estimates (Table 2, Panel A) our results suggest that the
hybrid and parametric GARCH-type methods (AR-GARCH(1,1)-N, AR-GARCH(1,1)-t, AR-
EGARCH(1,1)-N, AR-EGARCH(1,1)-t) pass all the conditional coverage criteria, while the
Historical SimulationAll and Variance Covariance methods fail on the basis of all tests. Inter-
estingly, Historical Simulation-500 and Historical Simulation-250 are not rejected by any uncon-
ditional coverage test specification. The high volatility periods of the index combined with the
small in-sample specification inflate (overestimate) the VaR forecasts, rendering a small number
of violations. However, these violations cluster and therefore point towards dependency of VaR
forecasts on past information. Finally, the Combination Median method succeeds in meeting all
the backtesting criteria, while the remaining combination methods fail to respond adequately
to the violation clustering. The failure of the mean and trimmed mean combination methods
are in a sense expected, since almost half of the individual methods exhibit non tolerance to

violation clustering.
[TABLE 2 AROUND HERE]

Our findings with respect to BPI 5% VaR case (Table 3, Panel A) point to the superiority
of the AR-ARCH(1)-N model which succeeds in all the backtesting criteria. However, most of

12\e thank an anonymous referee for pointing this out. For each series at hand, we employ the appropriate AR
specification based on the autocorrelation function. Specifically, we implement the following AR specifications for
the mean equation: BCI: AR(2), BCTI: AR(3), BDI: AR(2), BDTI: AR(2), BPI: AR(2), 4 TC Av Ca: AR(2), 4
TC Av Pa: AR(2), TD3: AR(1), TD5: AR(1), TD7: AR(1), TD9: AR(1).

13The detailed tables are given in Appendix B, which is available from the authors upon request.
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the parametric GARCH and hybrid methods meet the conditional coverage criteria. For the
combination methods we find similarities with the individual methods’ results. Specifically,
only the Combination Median produces statistically accurate forecasts while the remaining
combination methods succeed in specific unconditional coverage tests. Turning to the BCI Index,
our findings lead to similar results pointing to the superiority of parametric (GARCH type) and
hybrid methods. In addition to GARCH volatility modelling, the Combination Median method
meets all the criteria while the trimmed mean methods are successful in at least two conditional
coverage criteria (Standard approach and Duration approach).

Our findings for the tanker sector paint a different picture. Specifically, with respect to the
BDTI 5% VaR case, only the Filtered Historical Simulation method passes all the conditional
coverage criteria. All the remaining individual methods, with the exception of EVT, exhibit
fewer violations which eventually lead to the rejection of the Conditional Coverage Hypothe-
sis. Similarly, the combination methods overestimate VaR and lead to a significantly reduced
number of violations. However, the combination methods produce very good results in terms
of independence, indicating their suitability to correctly capture the violation clustering. Simi-
lar findings pertain to the case of BCTI with the addition of three more statistically accepted
individual methods. More in detail, for the Clean tanker sub-sector the Filtered Historical Sim-
ulation method passes all the backtesting criteria while the Monte Carlo Simulation passes all
the conditional coverage criteria. Finally, the AR-GARCH(1,1)-t and the AR-EGARCH(1,1)-t
models pass two conditional coverage criteria. Despite the improved statistical performance of
some individual methods, the performance of the combination methods does not show any signs
of improvement. As in the BDTI case, the overestimation of market risk leads to a decreased

number of violations.
[TABLE 3 AROUND HERE]

Moving to the 1% significance level, we find that the majority of individual methods are
statistically rejected while the combination methods display superior performance. For the BDI
index (Table 2, Panel B) we find that only the AR-GARCH(1,1)-t and AR-EGARCH(1,1)-t
models pass all the backtesting criteria while the Filtered Historical Simulation method fails
only on the basis of the LR, test. For the combination methods we find that the Combination
Mean and Combination Trim1 methods pass all the criteria while the Combination Median and
Combination Trim2 methods are rejected by one conditional coverage test. As far as the BPI
index is concerned (Table 3, Panel B), mainly the parametric and hybrid methods produce
statistically accurate forecasts with the AR-GARCH(1,1)-t, AR-EGARCH(1,1)-t and hybrid
methods passing all the criteria. The Combination Median method emerges as the best among
the combination methods followed by the Combination Mean and Combination Trim2. Our
findings regarding the BCI index are similar to the BDI index, where the AR-GARCH(1,1)-t,
AR-EGARCH(1,1)-t and hybrid methods pass all the backtesting criteria. More importantly,
all the combination methods succeed in all the backtesting criteria.

For the tanker sector, our findings are quite different compared to the 5% significance level.

For BDTI, eleven of the individual methods pass at least two conditional coverage criteria,
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while six pass all the backtesting criteria. In addition, the Variance Covariance and Historical
Simulation methods are not rejected by every specification. In addition, HS 250 does not fail
any test. Similarly to the BDI 5% results, the BDTT increased volatility and excessive kurtosis
in conjunction with the small out of sample period leads to overestimation of risk. However,
the number of violations at the 1% coverage level is small, making violation clustering more
difficult. This is supported by the rejections of the HS methods for the BDTI 5% coverage level.
More importantly, the combination methods display an improved performance. Specifically, the
CombinationTrim2, Combination Mean and Combination Median methods fail only on the basis
of the LR,yc test. With respect to the Combination Trim1 method, we should clarify that its
failure at the LR,. and DUR,. test is attributed to the overestimation of risk. In addition,
the successes at all the DQ.. and independence tests, the borderline failure at the LR.. and
finally the second highest LRy, p-value suggest that Combination Trim1 can be considered as
a statistically adequate method. The results for the BCTI Index are quite similar but with fewer
successes for the individual methods. All the parametric and hybrid methods pass at least two
conditional coverage criteria while the Historical Simulation-250, Historical Simulation-500 and
the Variance Covariance methods fail. With respect to the combination methods, we find an
improved performance compared to BDTI since they all pass at least two conditional coverage

criteria and three of them pass all the conditional coverage criteria.

4.3 Performance Evaluation

While the statistical evaluation framework provides a way of examining the statistical accuracy
of the VaR methods, it does not offer any insight on the economic performance of the alternative
methods with the exception of the Colletaz et al. (2013) test. In other words, the statistical
backtesting framework does not offer a measure of overestimation or underestimation of market
risk, which in turn is crucial in selecting the most reliable method. In this paper, we employ the
performance evaluation approach proposed by Sener et al. (2012), described in detail in Section
3.2. The evaluation proceeds in two steps. First, we derive the loss ratio and the supplementary
test for all the methods. Our findings are reported in Table 4 (Panels A and B for the 5%
and 1% VaR, respectively). At a second step, we repeat the analysis by excluding the worst
performing methods, i.e. those with significantly high ratios. In this way, we make sure that

we get more accurate results which are not affected by extreme ratios.
[TABLE 4 AROUND HERE]

For the BDI index and the 5% VaR level, the Penalization Measure (PM) (Equation 20)
ranges from 0.135 for the AR-EGARCH(1,1)-N model to 0.592 for the HistoricalAll simulation
method. The corresponding ratios (Equation 21) range from 3.255 to 14.265. Overall, our
findings suggest that the non-parametric Variance Covariance methods and the AR-ARCH(1)-t
methods are outperformed by the parametric, hybrid and combination methods. With respect
to the combination methods, we have to note that they belong to the pool of the equally

performing methods with the Combination Median performing best. Excluding the methods
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with the relative worst PM ratios (Table 5, Panel A), we find that the AR-ARCH methods, the
Riskmetrics and the EVT are outperformed by the remaining methods while the initial ranking
is maintained. At the 1% VaR level (Table 5, Panel B) our findings are similar with the Variance
Covariance, the AR-ARCH(1)-N and most of the non-parametric methods being outperformed
by the remaining methods. However, at the 1% significance level the ranking of the accepted
methods differ in comparison with the 5% level. Specifically the three highest performing
methods are the mean combination methods while the median ranks fifth. Excluding the worst
ranked methods (Table 5 Panel B), we find that the Riskmetrics, the Historical Simulation-500
and three of the parametric methods are statistically out performed while the equal performing

methods maintain their ranking.
[TABLE 5 AROUND HERE]

For the BPI index, our 5% VaR level results are generally similar to the BDI index. The
majority of the parametric and hybrid methods outperform the non-parametric ones, the AR-
ARCH(1)-t and Variance Covariance methods. On the other hand, the combination methods
cannot be rejected with the median method ranking third. Excluding the worst performing
methods, we find that the GARCH-type methods, the Filtered Historical Simulation, the Monte
Carlo Simulation, the Median and Trim2 Combination emerge as superior methods. Moving
to the 1% VaR level (Table 4, Panel B) we find that the Historical SimulationAll, the His-
torical Simulation-500 and the Variance Covariance methods are the worst performing ones,
closely followed by the Historical Simulation-250, the Riskmetrics, the AR-ARCH(1)-N and the
Combination Mean method. Excluding the worst performing methods (Table 8, Panel B) we
find that the pool of rejected methods is joined by the Historical Simulation-250, Riskmetrics,
AR-ARCH-t, Mean and Trim2 combination methods.

Turning to the BCI index (Table 4, Panel A), our findings suggest that at the 5% significance
level two of the nonparametric methods, the Variance Covariance plus the AR-ARCH methods
are outperformed by the remaining ones. In addition, we find that the Combination Median
method ranks first and the alternative combination methods rank from the fourth to the sixth
place. The re-evaluation of the methods (Table 5, Panel A) suggests that no specific group
of methods is superior while the rejected methods consist of the non-parametric Historical
Simulation-500, the Riskmetrics, the parametric EVT and the AR-ARCH(1)-N methods. At
the 1% VaR level (Table 4, Panel B) our findings are similar. The combination methods produce
mixed signals since the Combination Trim1 method ranks first while the remaining combination
methods rank from the seventh to the ninth position. The second step evaluation (Table 5, Panel
B) does not yield any differences in the ranking with the combination methods being statistically
equal to the best performing methods.

For the BDTI index at the 5% significance level, we find that the non-parametric, the
Variance Covariance, the EVT and AR-EGARCH(1,1)-N are outperformed by the remaining
methods, while the combination methods rank within the first five places with the Combination
Mean ranking first. Our second step evaluation findings suggest that the combination methods

perform better than any other group of methods. Four of the parametric methods and one of the
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hybrid ones are outperformed by the remaining methods which in general keep their first step
evaluation ranking. Our 1% significance level results show that the rejected methods are the
same as previously with the exception of the EVT and Historical Simulation-250. The second
step evaluation (Table 5, Panel B) does not yield any substantial differences with the excep-
tion of the Historical Simulation-250 forecasts equality of performance rejection. This finding
suggests that the model’s statistical accuracy is based on the overestimation of risk. Although
statistically accurate, the model cannot compete against parametric or hybrid methods. Finally,
the combination methods do not perform as well as at the 5% significance level despite the third
place of the Trim1 method and the fact that only the median method is rejected.

For the BCTT index and the 5% VaR level (Table 4, Panel A) six of the individual methods
are rejected including the non-parametric methods, the Variance Covariance and representatives
from the other groups of methods with the exception of the combination methods. Specifically,
the combination methods occupy the four top positions with the Combination Median method
ranking first. Excluding the worst performing methods (Table 5 Panel A) we find that the
combination methods and the parametric with normal realizations outperform the remaining
methods. With respect to the 1% significance level (Table 4, Panel B) we show that except
for the non-parametric methods and the Variance Covariance methods, the remaining methods
perform equally well. Moreover, the first two positions are occupied by the Trimmed Combi-
nation methods while the Combination Median and Combination Mean rank sixth and seventh
respectively. At the second step evaluation (Table 5, Panel B) we find that six methods are
rejected including the parametric with normal errors, the EVT, the Riskmetrics and finally the

Filtered Historical Simulation.

4.4  Joint Evaluation

The findings presented so far are indicative of the statistical and performance evaluation in-
dependently. In order to evaluate the overall ability of the methods to measure market risk
accurately and efficiently, we have to combine the results of the statistical and performance
evaluation. To this end, we rank the statistically accepted methods, presented in Section 4.2
by employing the performance evaluation ranking results presented in Section 4.3. As already
mentioned, we consider as a statistically accepted method any method that has passed at least
two conditional coverage criteria. Table 6 presents the ranking of the statistically accepted
methods for the two significance levels.

For the 5% significance level (Table 6, Panel A) we could conjecture that due to the time-
varying nature of volatility, the methods with a GARCH-EGARCH-Normal volatility mapping
produce superior results compared with the non-parametric ones. Regarding the combination
methods, the Combination Median performs equally well in every case while it ranks first in
the BCI case. Moving to the Tanker sector our findings differ mainly due to the nature of the
returns of the corresponding indices. Due to the overestimation of risk, the final evaluation of
the methods for the BDTI and BCTI indices include the methods that overestimate market

risk. The respective findings show that combination methods outperform the individual ones.
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Overall the results in the dry and tanker sector suggest that the Combination Median can be
considered as a global method of measuring market risk or at least as an accurate proxy for the
expected daily 5% VaR of the freight rates.

[TABLE 6 AROUND HERE]

Our findings with respect to the 1% significance level (Table 6, Panel B) paint a different
picture. For both sectors the combination methods rank amongst the top positions!? alongside
specific individual methods. Contrary to the 5% significance level, the parametric methods with
GARCH-EGARCH-Student volatility mapping perform better than the non-parametric, other
parametric methods and the hybrid methods. However, the very good performance of these
individual methods cannot mask the superior performance of the combination methods and
especially the Combination Trim1 method, which ranks first in three indices and third in one.
At this point, we should mention that the failure in BPI is due to overestimation of risk which
in turn leads to the failure of the unconditional coverage hypothesis. However the independence
criteria point to the adequacy of the method, a fact that is supported by both the PM ratio
and the performance equality test.?

To conclude, we find that the combination methods are a strong alternative to the large set
of individual methods. At the 5% VaR, the Combination Median method is a globally accepted
one. This method performs equally well as the highly-ranked individual methods and thus can
significantly reduce the cost of freight rate risk measurement. For the 1% VaR, we find that the
combination methods are superior to the individual methods with Combination Trim1 achieving

the highest performing ranking in almost every case.

5 Robustness Checks: Individual routes

In order to examine the robustness of our main findings, we repeat our analysis for the six
individual routes already described in section 4.1. Quite importantly, individual routes are
practically relevant from the shipping industry perspective since ships can be fixed on a floating
rate charter based on the daily value of the Baltic time charter averages, for example. Table
7 summarizes the backtesting results in number of rejections per test category, while Table 8
presents the ranking of the statistically accepted methods for the two significance levels.'6
Starting with the time chartered averages, we note that their heteroscedastic and heavy
tailed profile leads to failure of the majority of the individual methods (Table 7, Panel A).
For the 4 TC AVG CAPE, only the AR-GARCH, AR-EGARCH and Monte Carlo Simulations
methods prove adequate. Despite the failure of the majority of the individual methods, the

Combination Median method produces excellent results succeeding in every backtesting criteria.

Y The acceptance of the Combination Trim1 method as an accurate method is due to the borderline backtesting
results (see section 4.2) in conjunction with the superior results in the evaluation ranking.

15Tn contrast with the Combination Trim1 in the BDTI case, for the BPI the combined results of the statistical
and performance evaluation are not sufficient to surpass the "at least two Conditional Coverage criteria pass"
rule and therefore consider the method as an adequate one.

6The detailed tables are given in Appendix B, which is available from the authors upon request.
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Similar results are reported for the 4 TC AVG PANAM 5% statistical evaluation where the AR-
ARCH(1)-N, AR-GARCH, Filtered Historical and Monte Carlo Simulation methods pass all the
backtesting criteria. However, in this case none of the combination methods produce statistically
accurate results. Turning to the individual tanker routes, our findings suggest that the majority
of the parametric and hybrid methods are statistically accurate for the TD5, TD7 and TD9
routes. Quite importantly, the proposed combination methods produce excellent results. In
contrast to the aforementioned three routes, only the student-t parameterized methods prove
adequate for TD3, as the remaining methods overestimate risk.

Moving to the 1% statistical evaluation (Table 7, Panel B), the 4 TC AVG CAPE results
suggest that there is a significant improvement in the statistical performance of the combi-
nation methods. Combination Mean, Combination Trim 1 and Combination Trim 2 produce
statistically accurate results, while only the AR-GARCH(1,1)-t and the Monte Carlo Simula-
tion qualify as statistically adequate individual methods. For the 4 TC AVG PANAM, the
AR-GARCH-EGARCH and Hybrid methods, produce accurate results. In addition, three of
the combination methods, namely Combination Mean, Combination Median and Combination
Trim 2, produce accurate results with Combination Median passing all the backtesting Criteria.
A similar improvement is also evident for the individual tanker routes, where the majority of
the individual methods and all the combination methods produce accurate results, even for the
TD3 case.

[TABLE 7 AROUND HERE]

The first step of the performance evaluation for both sectors produces results similar to the
statistical evaluation ones. Specifically, at the 5% significance level, the 4 TC AVG CAPE results
suggest that the parametric (AR-GARCH, AR-EGARCH), hybrid and combination methods
perform equally well to the best performing method. Similarly, the 4 TC AVG PANAM results
are almost identical with the addition of EVT, Riskmetrics and AR-ARCH(1)-N. For the Tanker
Sector the student parameterization seems to underperform while in some cases (TD3, TD5)
the non-parametric Historical Simulation-250 and Historical Simulation-500 perform well. In
addition, the Riskmetrics is performing equally in every index while the Variance Covariance is
not rejected only for the TD5 index. At the 1% significance level, our results are similar with the
combination methodology producing non-rejection results in every case examined. The hybrid
and parametric GARCH-EGARCH-Student methods produce a single rejection in the TD3
index while the Variance Covariance is rejected in every case. Finally, it is worth mentioning
that there is at least one non parametric method performing equally well in every index.

The second step evaluation results are consistent with the first step results. At the 5%
significance level, the Dry Bulk results are almost identical for the parametric AR-GARCH,
AR-EGARCH and Hybrid methods. However, in the Panamax Sector there is a rejection of
performance equality for the Combination Mean, Combination Trim 1 and Combination Trim
2 methods. At the tanker sector there are rejections of equal performance for the parametric

methods with student-t parametrization, while the combination methodology performs equally
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in almost every case. An exception has to be made for the TD5 index where the Combina-
tions Trim methods fail to perform equally well. At the 1% level evaluation, only the Filtered
Historical Simulation presents a non rejection in every case while the Montecarlo and the AR-
GARCH(1,1)-t methods produce a rejection in TD3 index. The remaining individual methods
do not unveil a specific profile as there are random rejections and non-rejections. Finally, the
performance of the proposed combination methodology is encouraging with at least one non-
rejection in every case and four non rejection in three routes (4 TC AVG CAPE, TD3, TD5).

Combining the results of the statistical and the performance evaluation reveals that the
combination methods constitute a strong alternative. Specifically, at the 5% significance level
(Table 8, Panel A), there is not a single method globally accepted. Alongside the Combination
Median, which is equally performing with the top ranked method in four indices, the AR-
GARCH(1,1)-N produces similar results. In addition, our combination methods perform better
in the tanker sector where for the TD5, TD7 and TD9 indices there are at least two methods in
the best performers’ group. Moving to the 1% significance level (Table 8, Panel B), our results
are in favor of the proposed combination methodology. Specifically, in every case there is a
statistically accurate best performing combination method with Combination Trim1 alongside
AR-GARCH(1,1)-N presenting a global profile.

To conclude, measuring the market risk of the individual routes is quite challenging due to
the specific characteristics attached to each one of these routes. Our findings imply that although
there is not a definite superiority of the combination methodology, it represents a reliable
alternative that reduces significantly model uncertainty and parameter instability contained in
the individual methods. This is even more pronounced in the 1% VaR calculation where the
combination methodology provides, in every case, at least one statistically accepted method
performing equally well to the best performing one. These results confirm the superiority of the
proposed combination methodology and the robustness of our approach. This finding reinforces
its potential suitability for other markets such as the freight derivatives market and various

financial markets.

6 Conclusions

Freight rate risk is one of the most important risk factors of the shipping industry. In addition,
the profile of the distributions of returns complicates the measurement of freight risk leading to
poor performances by the majority of the VaR methods. In this paper we provided a thorough
insight of freight risk via a VaR methodology. Specifically, we considered the performance of
the standard VaR methods amid the recent adverse economic circumstances while most im-
portantly we proposed a Combination approach aiming at superior VaR results. In order to
evaluate the employed models/ methodologies, we implemented a two step evaluation method-
ology. For the backtesting of the implemented methods, three distinct approaches plus a newly
proposed test were applied in order to achieve an in depth statistical evaluation. Specifically,
besides the standard approach proposed by Christoffersen (1998) we implemented the Dynamic
Quantile approach proposed by Engle and Manganelli (2004), the Duration approach proposed

22



by Christoffersen and Pelletier (2004) and finally the super exemption test proposed by Colletaz
et al. (2013).

For the evaluation of the forecasting performance, we implemented a newly proposed method-
ology introduced by Sener et al. (2012). The main advantages of the this methodology, in
contrast with the standard loss functions, are two. First it allows weights to each type of error,
making it possible to distinguish between underestimation and overestimation errors. Second,
it significantly reduces the computation complexity associated with the testing of performance
equality.

Our findings suggest that on the basis of individual methods only the parametric and hy-
brid methods produced acceptable results and seem to adapt better to the volatile nature of
the freight market. More importantly, we found that the combination methods produce better
results than the individual methods posing a strong alternative to the large number of individual
methods. In addition, we found combination methods that present a global profile applicable
throughout the entire freight market. Therefore, the combination methods we propose can pro-
vide accurate results while simultaneously reducing the cost of model evaluation and selection.

Further research should investigate the possibility of expanding the model space to incorpo-
rate models based on realized volatility estimators, such as the AR-RV, HAR-RV and LHAR-RV
models (Andreou et al., 2012). In this respect intra-day data should be employed, which unfor-
tunately are currently unavailable due to the nature of the spot freight rate market. In addition,
such an approach can be pursued for the evaluation of risk in futures freight contracts for which
it might be probable that IMAREX provides intra-day data in the near future. Finally, current
revisions to the Basel III framework suggest moving from VaR to Expected Shortfall. In this
respect, it would be worth investigating whether our framework can be of sufficient value in this

new era for risk management practices.
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Appendix A: Individual VaR Forecasting Methods

In our analysis, we utilize a variety of individual forecasting methods which can be divided
into three categories; parametric, non-parametric and hybrid methods. The following sections

provide a detailed description of the implemented specifications.

A.1. Parametric methods

The parametric approach requires the fit of a known theoretical distribution as an alternative to
the real DGP. The underlying idea is to provide an approximation that would treat efficiently
the returns empirical properties and at the same time would lay a structure for the risk measures

calculations.

Unconditional Distribution Fit
The simplest parametric approach consists of a theoretical distribution fit directly to the raw
empirical returns. It assumes iid returns and utilizes the sample estimates to infer the parame-
ters in question. In more detail, let rq,...,7n be a random sample of returns. Then r, ~ F(0)
Vt = 1,..., N where F(0) is the CDF of a theoretical continuous distribution with parameters
vector . The Variance Covariance method assumes zero mean Normal iid returns and uses the
sample standard deviation as a proxy for the volatility. The VaR estimates are produced as
follows:

VaRi(q) = F ' (2,006 (25)

where F, q_l (z,0) denotes the ¢ quantile of the normal distribution and & is the in sample standard

deviation.

Conditional Distribution Fit

A more elaborate parametric approach is to consider the time variation of returns and adjust the
fitted distribution accordingly. This requires to model the distribution’s parameters evolution
in an attempt to control for time variation. Based on a mean variance modeling process, we

can estimate VaR as follows:
VaRy(q) = iy + F; ' (2,0)5% (26)

where [1; is the mean return estimate, Fq_1 is the quantile of the standardized theoretical distrib-
ution given the estimated parameter 6, and 7y is the estimate of the conditional standard devia-
tion. If the series of returns present autocorrelation, while stationary, the AutoRegressive Mov-
ing Average (ARMA) model approach is suitable for the mean estimation. The ARMA(P, Q)

process is given by the following equation:
P Q
Pt = o+ Z PiTt—i + Z Vjer—j (27)
i=1 j=1

where > f; 1 ¢iTi—i denotes the dependence with lagged observations of returns and Z]Q:l Yiet—j
denotes the dependence of returns with lagged errors. To model volatility, we employ models
that belong to the Generalized AutoRegressive Conditional Heteroscedasticity (GARCH) fam-
ily. Specifically, we employ the AutoRegressive Conditional Heteroscedastic (ARCH) model
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proposed by Engle (1982) which can be considered a special case of the GARCH models pro-
posed by Bollerslev (1986). A GARCH(P, Q) model is given by the following equation:

P Q
U% = oo + Z OéiEtZ,Z- + Z bjU%fj (28)
i=1 j=1
maz(P,Q)
ap > 0,a; > 0,b; > 0 and Z (i +b;) <1
=1

while ARCH models can be derived from equation (28) for @ = 0. While the above models
can sufficiently capture the volatility of returns, they cannot discriminate between negative
or positive prior returns. In order to capture the potential leverage effect, we employ the
Exponential GARCH (EGARCH) models proposed by Nelson (1991). The EGARCH(P, Q)

model is described by the following equation:

p Q
€t_j [T
tog(o?) = a0+ S (el 22 4,250 + 3 bytog(o?.) 29
i=1 - =
max(P,Q)
ag > 0,05 > 0,b; > 0 and Z (o +b;) <1
i=1

In order to estimate the parameters of models (27)-(29), we employ both the Normal and
Student-t distributions as the theoretical return distribution.

Finally, we follow the McNeil and Frey (2000) Extreme Value Theory (EVT) approach in
order to simulate the tail of the empirical returns distribution and avoid the implementation
of symmetrical distributions that may not account for the unique properties of the empirical
distribution of returns.!” The authors propose a two step approach that utilizes an ARMA-
GARCH process in order to filter the historical returns and create iid error terms. Then a
Generalized Pareto (GP) distribution is fitted on the error terms. With respect to the GP fit,
we use the Hill estimator in order to attain the parameter of the GP distribution while setting as
a threshold the 5% quantile of the sample of returns. The mean return is calculated as described
in equation (27), while the standard deviation is estimated by a GARCH(1,1)-t model. The
EVT-VaR is estimated as follows;

- L q (=9
VaRi(q) = [ + oru (Tu /T> (30)
1 & Yi
&= Tu;ln(u),yizm—u (31)

(=9
where (ﬁ) is the ¢ quantile of the GP distribution, u denotes the threshold and finally

T and T, are the number of sample observations included in the evaluation sample and the

"For a more detailed discussion on EVT theory see Rocco (2014).
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calculation of the Hill estimator (Equation 31) respectively.

In conjunction to the aforementioned methods, we also implement the JP Morgan’s univari-
ate Riskmetrics method. Riskmetrics assumes normality of returns but rejects the homoscedas-
ticity property. In addition, returns depend only on the past volatility as captured by an
Integrated GARCH (IGARCH) model with fixed parameters. The VaR estimates are produced
by the following specification:

Tt = &, &t = 2t0¢ (32)
o7 =0.04e7_; +0.9607_, (33)
VaR,(q) = F, ' (2,0)5, (34)

where F~ 1(2,0) denotes the ¢ quantile of the normal distribution and &; is the estimated

conditional standard deviation.

A.2. Non Parametric Methods - Historical Simulation

In contrast to the parametric methods, the non-parametric ones calculate VaR using exclusively
the empirical distribution of returns. The idea underlying the non-parametric processes is that
of the repetition of past losses. The simplest and more popular member of the non-parametric
methods is the Historical Simulation (HS) method. HS utilizes the iid returns assumption to

calculate VaR as:

VaRy(q) = F;  ({ri}12) (35)

where Fq_1 denotes the g quantile of the sample of returns.'® By definition, HS incorporates the
properties of the empirical distribution of returns and does not induce estimation risk. However,
the iid assumption induces specification risk as it creates a sample average of all the events. In
our study, we employ three versions of Historical Simulation estimates based on data samples
of 250, 500 and T observations corresponding to a window of one year, two years and the whole
sample. Given that the relevance of the information set is connected to the market conditions
at the time of the forecast, restricting the information set may improve the performance of the
HS VaR forecasts.

A.3. Hybrid Methods

In an attempt to combine both approaches and thus alleviate their disadvantages, Barone-Adesi
et al. (1999) propose the Filtered Historical Simulation (FHS). FHS employs the mean and
standard deviation procedure of the parametric methods (Equations (27)-(29)) in conjunction
with the properties of the empirical distribution of returns. Essentially this method can be

viewed as a parametric method without the theoretical distribution hypothesis. In this paper,

81 is considered as a benchmark method for quantifying risk. Berkowitz and O’Brien (2002) and O’Brien and
J.Szerszen (2014) report HS amongst the main risk measuring approaches of the largest United States financial
institutions.
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we model returns via an ARMA-GARCH(1,1)-t model and the VaR is calculated as follows:
VaRi(q) = i, + Fy ' ({2:}i21)6 (36)

where F; ({2 t=1) denotes the ¢ quantile of the standardized residuals. Similarly, we utilize a
Monte Carlo approach where VaR is estimated as a quantile of a simulated empirical distribution
of returns. Specifically an ARMA-GARCH(1,1)—t model is employed in order to produce 10000

daily pseudo returns and VaR is produced as the ¢* quantile of these simulated returns.
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Table 1. Descriptive Statistics

LBCI LBCTI LBDI LBDTI LBPI 4TC AVG CAPE 4TC AVG PANAM TD3 TD5 TD7 TD9
Mean -0.006 0.000 -0.014 0.004 -0.010 -0.0353 -0.0051 0.0069 0.0093 0.0043 0.0001
Median 0.000 -0.120 0.057 -0.060 0.048 0.0100 0.0483 -0.2432 -0.1363 -0.1528 -0.0881
Maximum 16.502 25.359  13.658 22.951 12.836 31.497 13.112 39.961 55.587 42.700 47.923
Minimum -19.215 -29.647  -11.953 -38.122 -21.623 -34.203 -21.663 -50.199 -40.180 -49.959 -51.748
Std. Dev. 2.630 1.493 1.832 2.230 2.308 3.679 2.414 5.149 4.776 5.202 6.150
Skewness 0.067 -1.515 -0.066 -1.613 -0.471 0.326 -0.380 0.155 0.694 0.797 0.713
Kurtosis 9.488 93.744 9.928 40.501 12.081 13.675 10.714 15.929 15.968 17.776 16.226
Jarque-Bera  5423.5  1061713.  6184.5  182467.8  10735.7 14731.09 7737.52  21539.86 21905.46 28445.34  22790.52
Probability 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Q(1) 1724.3 783.6  2084.1 943.2 2229.0 1734.30 2229.20 807.30 525.07 767.06 417.79
Probability 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Q(10) 2767.0 2741.4  4775.0 1974.4 3976.5 2992.50 3997.40 1228.10 726.69 1395.50 608.74
Probability 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Q(1)sq 738.38 0.471  1482.0 2.824 1642.4 630.94 1621.70 96.86 25.41 46.26 80.51
Probability 0.000 0.493 0.000 0.093 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Q(10)sq 1781.8 2.327  4007.6 7.036 4115.9 1607.00 4013.20 208.61 36.39 103.27 104.48
Probability 0.000 0.993 0.000 0.722 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Observations 3091 3091 3091 3091 3091 3091 3091 3091 3091 3091 3091

Notes: Descriptive statistics are calculated for the whole sample of logarithmic returns covering the period 1/11/1999 -12/03/2012.
The Jarque-Bera statistic for the normality test is x? (2) distributed. Q(i) and Q(i)sq are the Ljung-Box Q statistics for the returns and
squared returns at the i lag.



Table 2. Backtesting results BDI

Panel A: 5% LRy LR;ng LRce LRmue DQluc DQ2uc DQ3ue DQlijng DQ2ina DQ3ina DQlcc DQ2cc DQRScc Durce Duripg
Filtered Historical Simulation 0.820 0.866 0.961 0.126 0.820 0.822 0.814 0.863 0.248 0.497 0.960 0.526 0.650 0.947 0.750
Historical Simulation-250 0.108 0.000 0.000 0.003 0.400 0.462 0.520 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Historical Simulation-500 0.002 0.000 0.000 0.000 0.189 0.275 0.276 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Historical StmulationAll 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Riskmetrics 0.841  0.000 0.000 0.813 0.919 0.924 0.927 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Variance-Covariance 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Eztreme Value Theory 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.008 0.000 0.000 0.000 0.000 0.345
AR-ARCH(1)-N 0.033 0.461 0.078 0.000 0.023 0.029 0.040 0.428 0.602 0.684 0.060 0.048 0.116 0.138 0.697
AR-ARCH(1)-t 0.000 0.144  0.000 0.000 0.000 0.000 0.000 0.084 0.309 0.962 0.000 0.000 0.000 0.000 0.161
AR-GARCH(1,1)-N 0.217 0.877 0.461 0.092 0.232 0.237 0.231 0.886 0.840 0.867 0.481 0.689 0.775 0.396 0.894
AR-GARCH(1,1)-t 0.623 0.612 0.779 0.050 0.632 0.650 0.646 0.607 0.232 0.621 0.778 0.595 0.616 0.739 0.641
AR-EGARCH(1,1)-N 0.350 0.428 0.472 0.422 0.349 0.364 0.358 0.498 0.977 0.726 0.522 0.618 0.700 0.570 0.956
AR-EGARCH(1,1)-t 0.820 0.190 0.412 0.534 0.827 0.833 0.821 0.142 0.013 0.173 0.332 0.094 0.088 0.651 0.356
Monte Carlo Simulation 0.729 0.661 0.855 0.064 0.735 0.754 0.752 0.655 0.117 0.436 0.853 0.323 0.357 0.720 0.513
Combination Mean 0.432 0.000 0.000 0.078 0.527 0.585 0.587 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.001
Combination Median 0.432 0.966 0.733 0.510 0.439 0.464 0.457 0.968 0.357 0.726 0.741 0.495 0.572 0.542 0.531
Combination Trim1 0.523  0.000 0.000 0.179 0.604 0.653 0.656 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.001
Combination Trim2 0.278 0.011 0.021 0.580 0.340 0.388 0.384 0.004 0.000 0.002 0.008 0.001 0.002 0.019 0.011
Panel B: 1% LRy LR;nqg LRce LRmue DQluc DQ2uc DQ3uec DQlijng DQ2ina DQ3ina DQlcc DQ2cc DQRScc Durce During
Filtered Historical Simulation 0.269 0.534  0.447 0.025 0.237 0.265 0.257 0.606 0.234 0.464 0.444  0.094 0.158 0.602 0.554
Historical Simulation-250 0.054  0.000 0.000 0.090 0.131 0.238 0.259 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Historical Simulation-500 0.015 0.000 0.000 0.000 0.242 0.263 0.326 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Historical StmulationAll 0.000 0.000 0.000 0.000 0.000 0.005 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Riskmetrics 0.097 0.001 0.001 0.130 0.139 0.207 0.176 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.001
Variance-Covariance 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Eztreme Value Theory 0.003 0.445 0.010 0.004 0.001 0.002 0.001 0.206 0.078 0.376 0.002 0.002 0.004 0.027 0.822
AR-ARCH(1)-N 0.000 0.709 0.000 0.000 0.000 0.000 0.000 0.501 0.161 0.064 0.000 0.000 0.000 0.000 0.279
AR-ARCH(1)-t 0.000 0.210 0.000 0.000 0.000 0.000 0.000 0.142 0.467 0.424 0.000 0.000 0.000 0.000 0.548
AR-GARCH(1,1)-N 0.015 0.359 0.033 0.021 0.008 0.011 0.009 0.131 0.036 0.220 0.008 0.008 0.012 0.094 0.936
AR-GARCH(1,1)-t 0.269 0.534 0.447 0.083 0.237 0.265 0.257 0.606 0.234 0.464 0.444  0.094 0.158 0.602 0.554
AR-EGARCH(1,1)-N 0.003 0.445 0.010 0.007 0.001 0.002 0.001 0.206 0.078 0.376 0.002 0.002 0.004 0.022 0.516
AR-EGARCH(1,1)-t 0.413 0.564 0.605 0.080 0.388 0.418 0.411 0.645 0.180 0.374 0.625 0.093 0.160 0.829 0.749
Monte Carlo Simulation 0.166 0.212 0.176 0.026 0.161 0.183 0.173 0.041 0.005 0.054 0.042 0.018 0.030 0.253 0.215
Combination Mean 0.146 0.791 0.335 0.328 0.178 0.177 0.176 0.885 0.838 0.801 0.402 0.607 0.763 0.184 0.860
Combination Median 0.930 0.658 0.903 0.387 0.929 0.938 0.940 0.756 0.068 0.164 0.949 0.038 0.076 0.881 0.767
Combination Trim1 0.146 0.791 0.335 0.398 0.178 0.177 0.176 0.885 0.838 0.801 0.402 0.607 0.763 0.184 0.860
Combination Trim2 0.682 0.690 0.849 0.655 0.686 0.685 0.718 0.791 0.706 0.135 0.891 0.960 0.043 0.261 0.144

Notes: The Table reports p-values of the employed backtesting criteria. Bold indicates significance at the 5% level and suggests a ‘pass’ in the respective
criterion.



Table 3. Backtesting results Aggregate Indices

Panel A: 5%
BPI BCI BDTI BCTI
UuCc IND CC UuCc IND CC UuCc IND CcC UC IND CC
Filtered Historical Simulation 0 2 0 0 0 0 1 0 0 0 0 0
Historical Simulation-250 1 5 5 0 5 5 2 5 5 2 4 4
Historical Simulation-500 2 5 5 1 5 5 2 5 5 2 4 4
Historical SimulationAll 5 5 5 5 5 5 2 5 5 2 4 4
Riskmetrics 1 5 5 0 5 5 5 5 5 5 3 4
Variance-Covariance 5 5 5 5 5 5 5 5 5 4 4 5
Extreme Value Theory 5 4 5 5 1 5 5 3 5 3 2 4
AR-ARCH(1)-N 0 0 0 5 0 5 5 1 5 3 2 4
AR-ARCH(1)-t 5 0 5 5 0 5 5 0 5 3 2 4
AR-GARCH(1,1)-N 0 1 0 0 0 0 5 3 5 3 2 4
AR-GARCH(1,1)-t 0 1 0 0 0 0 5 0 5 3 0 1
AR-EGARCH(1,1)-N 0 3 0 0 0 0 5 3 5 3 2 4
AR-EGARCH(1,1)-t 0 4 4 0 0 0 4 0 2 3 0 1
Monte Carlo Simulation 0 2 0 0 0 0 5 0 5 3 0 0
Combination Mean 1 5 5 0 4 4 5 0 5 3 2 4
Combination Median 1 1 1 0 0 0 5 1 5 3 2 4
Combination Trim1 2 5 5 0 4 3 5 0 5 3 2 4
Combination Trim2 3 5 5 0 3 2 5 0 5 3 2 4
Panel B: 1%
BPI BCI BDTI BCTI
UuC IND CC UC IND CC UC IND CC UC IND CC

Filtered Historical Simulation 0 0 0 0 0 0 0 0 0 0 0 0
Historical Simulation-250 1 5 5 0 5 5 0 0 0 2 4 4
Historical Simulation-500 1 5 5 0 5 5 0 3 3 2 4 4
Historical SimulationAll 2 5 5 5 5 5 0 3 3 1 3 2
Riskmetrics 2 5 5 0 5 5 0 0 0 0 0 0
Variance-Covariance 5 5 5 5 5 5 0 3 3 2 4 5
Extreme Value Theory 5 0 5 5 0 5 0 0 0 0 0 0
AR-ARCH(1)-N 5 0 5 5 2 5 1 0 0 0 0 1
AR-ARCH(1)-t 1 1 1 5 0 5 0 0 0 0 0 1
AR-GARCH(1,1)-N 2 0 2 5 0 5 0 0 0 0 0 0
AR-GARCH(1,1)-t 0 0 0 0 0 0 1 0 0 0 0 1
AR-EGARCH(1,1)-N 0 0 1 5 0 4 0 1 2 0 0 0
AR-EGARCH(1,1)-t 0 0 0 0 0 0 3 0 1 0 0 1
Monte Carlo Simulation 0 0 0 0 0 0 1 0 0 0 0 1
Combination Mean 0 4 3 0 0 0 1 0 0 0 0 1
Combination Median 0 0 0 0 0 0 1 0 0 0 0 1
Combination Trim1 4 2 3 0 0 0 4 0 2 1 0 1
Combination Trim2 0 0 1 0 0 0 1 0 0 0 0 1

Notes: The table reports the number of 5% and 1% VaR estimation methods failed tests at the 5% significance level.



Table 4. Performance Evaluation: All methods

Panel A: 5% BDI BPI BCI BDTI BCTI

PM Ratio PM Ratio PM Ratio PM Ratio PM Ratio
Filtered Historical Simulation 0.150 3.614 NR 0.135 3.158 NR 0.276 4.195 NR 0.145 4.753 NR 0.106 5.682 R
Historical Simulation-250 0.313  7.538 R 0.301  7.072 R 0.326 4.956 NR 0.216 7.094 R 0.106 5.674 R
Historical Simulation-500 0.426 10.271 R 0.473 11.101 R 0.440 6.685 R 0.233  7.654 R 0.141  7.548 R
Historical SimulationAll 0.592 14.265 R 0.643 15.091 R 0.936 14.231 R 0.240  7.866 R 0.094 5.058 R
Riskmetrics 0.200 4.822 NR 0.212 4967 NR 0.287 4356 NR 0.132 4.325 NR 0.106 5.665 NR
Variance-Covariance 0.489 11.773 R 0.592 13.889 R 0.692 10.513 R 0.221  7.243 R 0.138  7.386 R
Extreme Value Theory 0.208 5.011 NR 0.181 4.2383° NR 0.373 5.663 NR 0.2890  9.469 R 0.166  8.910 R
AR-ARCH(1)-N 0.210 5.0562 NR 0.203 4.769 NR 0.404 6.141 R 0.141 4.616 NR 0.090 4.823 NR
AR-ARCH(1)-t 0.234 5.628 R 0.239 5.611 R 0.472  7.176 R 0.141 4.626 NR 0.097 5.210 NR
AR-GARCH(1,1)-N 0.137 3.291 NR 0.124 2920 NR 0.260 3.945 NR 0.138 4.523 NR 0.098 5.273 NR
AR-GARCH(1,1)-t 0.139 3.341 NR 0.133 3.117 NR 0.270 4.104 NR 0.142 4.647 NR 0.099 5.286 NR
AR-EGARCH(1,1)-N 0.135 3.255 NR 0.130 3.063 NR 0.248 3.770 NR 0.204 6.676 R 0.089 4.777 NR
AR-EGARCH(1,1)-t 0.147 3.540 NR 0.125 2923 NR 0274 4.162 NR 0.144 4.731 NR 0.109 5.826 NR
Monte Carlo Simulation 0.143 3.447 NR 0.132 3.110 NR 0.277 4.209 NR 0.137 4.507 NR 0.101 5.399 NR
Combination Mean 0.167 4.022 NR 0.180 4.215 NR 0.267 4.060 NR 0.130 4.278 NR 0.081 4.331 NR
Combination Median 0.142 3.419 NR 0.129 3.032 NR 0.248 3.769 NR 0.132 4.339 NR 0.079 4.250 NR
Combination Trim1 0.162 3.896 NR 0.169 3.971 NR 0.265 4.030 NR 0.132 4.331 NR 0.084 4.479 NR
Combination Trim2 0.158 3.815 NR 0.160 3.753 NR 0.266 4.036 NR 0.132 4.323 NR 0.082 4.422 NR
Panel B: 1% BDI BPI BCI BDTI BCTI

PM Ratio PM Ratio PM Ratio PM Ratio PM Ratio
Filtered Historical Simulation 0.023 2.699 NR 0.018 2.014 NR 0.036 2.812 NR 0.021 3.212 NR 0.021 4.273 NR
Historical Simulation-250 0.071  8.318 R 0.048 5.540 NR 0.076 5.899 NR 0.020 3.059 NR 0.072 14.673 R
Historical Simulation-500 0.0563 6.234 NR 0.068 7.770 R 0.099  7.690 R 0.080 12.315 R 0.064 13.162 R
Historical SimulationAll 0.193 22.680 R 0.153 17.646 R 0.086  6.697 R 0.080 12.377 R 0.058 11.901 R
Riskmetrics 0.047 5525 NR 0.036 4.125 NR 0.063 4.912 NR 0.027 4.176 NR 0.021 4.313 NR
Variance-Covariance 0.160 18.772 R 0.251 28.834 R 0.333  26.003 R 0.089 13.683 R 0.060 12.287 R
Extreme Value Theory 0.022 2.549 NR 0.018 2.030 NR 0.035 2747 NR 0.019 2.844 NR 0.023 4.737 NR
AR-ARCH(1)-N 0.057 6.668 R 0.050  5.767 R 0.158 12.347 R 0.026 3.969 NR 0.017 3.541 NR
AR-ARCH(1)-t 0.032 3.776 NR 0.031 3.573 NR 0.0566 4.393 NR 0.023 3.469 NR 0.014 2.778 NR
AR-GARCH(1,1)-N 0.027 3.177 NR 0.023 2639 NR 0.047 3.624 NR 0.027 4.194 NR 0.022 4.412 NR
AR-GARCH(1,1)-t 0.022 2634 NR 0.017 1952 NR 0.035 2710 NR 0.021 3.162 NR 0.014 2.844 NR
AR-EGARCH(1,1)-N 0.027 3.120 NR 0.022 2.568 NR 0.047 3.665 NR 0.093 14.399 R 0.020 4.011 NR
AR-EGARCH(1,1)-t 0.021 2417 NR 0.017 1908 NR 0.034 2628 NR 0.019 2981 NR 0.015 3.149 NR
Monte Carlo Simulation 0.022 2628 NR 0.017 1936 NR 0.035 2749 NR 0.021 3.158 NR 0.014 2.831 NR
Combination Mean 0.018 2.079 NR 0.037 4.250 NR 0.037 2.847 NR 0.021 3.287 NR 0.014 2.875 NR
Combination Median 0.021 2478 NR 0.018 2064 NR 0.037 2876 NR 0.022 3.426 NR 0.014 2.845 NR
Combination Trim1 0.017 2.007 NR 0.022 2573 NR 0.033 2576 NR 0.020 3.0563 NR 0.013 2.648 NR
Combination Trim?2 0.019 2239 NR 0.024 2810 NR 0.036 2825 NR 0.021 3.234 NR 0.013 2.720 NR

Notes: The Table reports the Performance Evaluation results for all the implemented methods. The PM column provides the Penalization Measure while the
Ratio column provides the corresponding ratio. R (N R) suggests rejection (non-rejection) with respect to the performance equality test.



Table 5. Performance Evaluation: Second Stage

Panel A: 5% BDI BPI BCI BDTI BCTI

PM Ratio PM Ratio PM Ratio PM Ratio PM Ratio
Filtered Historical Simulation 0.150 6.437 NR 0.135 5976 NR 0.276 6.162 NR 0.145 7.834 R 0.106 7.461 R
Historical Simulation-250 - - - - - - 0.326  7.280 NR - - - 0.106  7.451 R
Historical Simulation-500 - - - - - - 0.440  9.819 R - - - - - -
Historical SimulationAll - - - - - - 0.000 - - - - - 0.094 6.642 R
Riskmetrics 0.200  8.587 R 0.212  9.400 R 0.287 6.398 R 0132 7.128 NR 0.106 7.439 R
Variance-Covariance - - - - - - 0.000 - - - - - - - -
Extreme Value Theory 0.208  8.923 R 0.181 8.019 R 0373 8.318 R - - - - - -
AR-ARCH(1)-N 0.210  8.997 R 0.203 9.025 R 0404 9.020 R 0.141 7.607 NR 0.090 6.333 NR
AR-ARCH(1)-t 0.234 10.023 R 0239 10.618 R  0.000 - - 0.141 7.624 R 0.097 6.841 R
AR-GARCH(1,1)-N 0.137 5.861 NR 0.124 5.525 NR 0.260 5.795 NR 0.138 7.455 NR 0.098 6.924 NR
AR-GARCH(1,1)-t 0.139 5950 NR 0.133 5.898 NR 0.270 6.028 NR 0.142 7.659 R 0.099 6.941 R
AR-EGARCH(1,1)-N 0.135 5.797 NR 0.130 5.795 NR 0.248 5.537 NR 0.204 11.002 R 0.089 6.272 NR
AR-EGARCH(1,1)-t 0.147 6.304 NR 0.125 5530 NR 0.274 6.113 NR 0.144 7.798 R 0.109 7.650 R
Monte Carlo Simulation 0.143 6.138 NR 0.132 5884 NR 0.277 6.182 NR 0.137 7428 NR 0.101 7.090 R
Combination Mean 0.167 7.162 NR 0.180 7.976 R 0267 5964 NR 0.130 7.050 NR 0.081 5.688 NR
Combination Median 0.142 6.089 NR 0.129 5.737 NR 0.248 5536 NR 0.132 7.152 NR 0.079 5.581 NR
Combination Trim1 0.162 6.938 NR 0.169 7.514 R 0265 5920 NR 0.132 7.138 NR 0.084 5.882 NR
Combination Trim2 0.158 6.795 NR 0.160 7.102 NR 0.266 5.929 NR 0.132 7.124 NR 0.082 5.806 NR
Panel B: 1% BDI BPI BCI BDTI BCTI

PM Ratio PM Ratio PM Ratio PM Ratio PM Ratio
Filtered Historical Simulation 0.023 6.195 NR 0.018 5.037 NR 0.036 5.211 NR 0.021 6.802 NR 0.021 8.906 R
Historical Simulation-250 - - - 0.048 13.857 R 0.076 10.933 R 0.020 6.478 R - - -
Historical Simulation-500 0.053 14.310 R - - - - - - - - - - - -
Historical SimulationAll - - - - - - 0.086 12.412 R - - - - - -
Riskmetrics 0.047 12.683 R 0.036 10317 R  0.063 9.103 R 0.027 8.842 R 0.021 8.989 R
Variance-Covariance - - - - - - - - - - - - - - -
Extreme Value Theory 0.022 5.851 NR 0.018 5.076 NR 0.035 5.090 NR 0.019 6.022 NR 0.023 9.875 R
AR-ARCH(1)-N - - - - - - - - - 0.026  8.404 R 0.017 7.380 R
AR-ARCH(1)-t 0.032  8.668 R 0.031 8.936 R 0.056 8.141 R 0.023 7346 NR 0.014 5.791 NR
AR-GARCH(1,1)-N 0.027  7.294 R 0.023 6.601 NR 0.047 6.716 R 0.027 8.880 R 0.022 9.196 R
AR-GARCH(1,1)-t 0.022 6.047 NR 0.017 4.882 NR 0.035 5.022 NR 0.021 6.696 NR 0.014 5.927 NR
AR-EGARCH(1,1)-N 0.027 7.162 R 0.022 6.423 NR 0.047 6.791 R - - - 0.020  8.360 R
AR-EGARCH(1,1)-t 0.021 5.548 NR 0.017 4.773 NR 0.034 4.871 NR 0.019 6.312 NR 0.015 6.563 NR
Monte Carlo Simulation 0.022 6.032 NR 0.017 4.842 NR 0.035 5.095 NR 0.021 6.688 NR 0.014 5.901 NR
Combination Mean 0.018 4.772 NR 0.037 10.631 R 0.037 5277 NR 0.021 6.961 NR 0.014 5993 NR
Combination Median 0.021 5.688 NR 0.018 5.162 NR 0.037 5.330 NR 0.022 7.255 R 0014 5931 NR
Combination Trim1 0.017 4.608 NR 0.022 6.435 NR 0.033 4.773 NR 0.020 6.465 NR 0.013 5.519 NR
Combination Trim2 0.019 5.141 NR 0.024 7.028 R 0036 5235 NR 0.021 6.849 NR 0.013 5.670 NR

Notes: The Table reports the second stage Performance Evaluation results. For each index the worst performing methods are excluded and the analysis is
repeated with the remaining methods. The PM column provides the Penalization Measure while the Ratio column provides the corresponding ratio. R (NR)
suggests rejection (non-rejection) with respect to the performance equality test.



Table 6. Ranking and Performance Equality Test

Panel A: 5%
BDI BPI BCI BDTI BCTI
1 AR-EGARCH(1,1)-N NR AR-GARCH(1,1)-N NR Combination Median NR Combination Mean NR Combination Median NR
2 AR-GARCH(1,1)-N NR Combination Median NR AR-EGARCH(1,1)-N NR Combination Trim2 NR Combination Mean NR
3 AR-GARCH(1,1)-t NR AR-EGARCH(1,1)-N NR AR-GARCH(1,1)-N NR Riskmetrics NR Combination Trim2 NR
4 Combination Median NR Monte Carlo Simulation NR Combination Triml NR Combination Trim1 NR Combination Trim1 NR
5 Monte Carlo Simulation NR AR-GARCH(1,1)-t NR Combination Trim2 NR Combination Median NR AR-EGARCH(1,1)-N NR
6 AR-EGARCH(1,1)-t NR  Filtered Historical Simulation ~NR AR-GARCH(1,1)-¢ NR Monte Carlo Simulation NR AR-ARCH(1)-N NR
7 Filtered Historical Simulation ~NR AR-ARCH(1)-N R AR-EGARCH(1,1)-t NR AR-GARCH(1,1)-N NR Historical SimulationAll R
8 - - - - Filtered Historical Simulation ~NR AR-ARCH(1)-N NR AR-ARCH(1)-t R
9 - - - - Monte Carlo Simulation NR AR-ARCH(1)-t R AR-GARCH(1,1)-N NR
10 - - - - ; ; AR-GARCH(1,1)-t R AR-GARCH(1,1)-t R
11 - - - - - - AR-EGARCH(1,1)-t R Monte Carlo Simulation R
12 - - - - - - Filtered Historical Simulation R Riskmetrics R
13 - - - - - - AR-EGARCH(1,1)-N R Historical Simulation-250 R
14 - - - - - - - - Filtered Historical Simulation R
15 - - - - - - - - AR-EGARCH(1,1)-t R
Panel B: 1%
BDI BPI BCI BDTI BCTI

1 Combination Trim1 NR AR-EGARCH(1,1)-t NR Combination Trim1 NR Extreme Value Theory NR Combination Trim1 NR
2 Combination Mean NR Mounte Carlo Simulation NR AR-EGARCH(1,1)-t NR AR-EGARCH(1,1)-t NR Combination Trim2 NR
3 Combination Trim2 NR AR-GARCH(1,1)-t NR AR-GARCH(1,1)-t NR Combination Trim1 NR AR-ARCH(1)-t NR
4 AR-EGARCH(1,1)-t NR  Filtered Historical Simulation =~ NR Monte Carlo Simulation NR Historical Simulation-250 R Monte Carlo Simulation NR
5 Combination Median NR Combination Median NR  Filtered Historical Simulation =~ NR Monte Carlo Simulation NR AR-GARCH(1,1)-t NR
6 Monte Carlo Simulation NR AR-EGARCH(1,1)-N NR Combination Trim2 NR AR-GARCH(1,1)-t NR Combination Median NR
7 AR-GARCH(1,1)-t NR AR-GARCH(1,1)-N NR Combination Mean NR  Filtered Historical Simulation =~ NR Combination Mean NR
8 Filtered Historical Simulation = NR Combination Trim2 R Combination Median NR Combination Trim2 NR AR-EGARCH(1,1)-t NR
9 - - AR-ARCH(1)-t R - - Combination Mean NR AR-ARCH(1)-N R
10 - - Combination Mean R - - Combination Median R AR-EGARCH(1,1)-N R
11 - - - - - - AR-ARCH(1)-t NR  Filtered Historical Simulation R
12 - - - - - - AR-ARCH(1)-N R Riskmetrics R
13 - - - - - - Riskmetrics R AR-GARCH(1,1)-N R
14 - - - - - - AR-GARCH(1,1)-N R Extreme Value Theory R

Notes: The Table reports the ranking of the statistically accepted methods according to the

(non-rejection) with respect to the performance equality test.

PM measure presented in Table 8. R (N R) suggests rejection



Table 7. Backtesting results Individual Routes

Panel A: 5%
4 TC Av Ca 4 TC Av Pa TD3 TD5 TD7 TD9
UuCc IND CC UuCc IND CC UC IND CC UC IND CC UC IND CC UC IND CC
Filtered Historical Simulation 5 1 4 0 1 0 0 4 4 0 1 0 0 0 0 0 0 0
Historical Simulation-250 1 5 5 1 5 5 0 5 5 0 1 0 1 3 5 1 3 5
Historical Simulation-500 3 5 5 2 5 5 0 5 5 0 1 0 2 4 5 1 3 5
Historical SimulationAll 5 5 5 5 5 5 1 5 5 0 4 4 1 3 5 1 3 5
Riskmetrics 0 5 5 1 5 5 0 5 5 0 1 2 4 3 3 2 4 4
Variance-Covariance 5 5 5 4 5 5 5 5 5 0 2 1 2 4 5 1 3 5
Extreme Value Theory 5 4 5 5 4 5 5 3 5 5 2 5 4 5 5 4 3 4
AR-ARCH(1)-N 5 0 5 0 0 0 5 0 5 0 1 0 4 3 3 0 1 0
AR-ARCH(1)-t 5 0 5 5 0 1 0 0 2 5 0 5 0 0 0 4 3 4
AR-GARCH(1,1)-N 1 2 0 0 0 0 5 2 5 0 1 1 4 3 3 1 0 0
AR-GARCH(1,1)-t 1 1 1 0 0 0 0 0 0 5 0 5 0 0 0 4 3 3
AR-EGARCH(1,1)-N 1 1 0 0 4 4 5 4 5 0 1 0 4 3 3 0 0 0
AR-EGARCH(1,1)-t 5 0 3 0 4 4 0 0 0 0 1 1 0 0 1 4 3 3
Monte Carlo Simulation 1 0 0 0 0 0 0 0 0 5 0 5 0 0 0 4 3 3
Combination Mean 0 4 4 3 5 5 3 4 5 0 0 0 1 0 1 0 0 0
Combination Median 0 0 0 1 4 5 5 2 5 0 2 0 3 3 2 0 0 0
Combination Trim1 0 4 4 3 5 5 3 4 5 0 0 0 1 0 1 0 0 0
Combination Trim2 0 4 4 3 5 5 3 4 5 0 0 0 1 0 1 0 0 0
Panel B: 1%
4 TC Av Ca 4 TC Av Pa TD3 TD5 TD7 TD9

UC IND CC UC IND CC UC IND CC UC IND CC UC IND CC UC IND CC

Filtered Historical Simulation 4 2 4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Historical Simulation-250 1 5 5 2 5 5 0 4 4 0 3 3 0 2 4 0 1 1
Historical Simulation-500 3 5 5 1 5 5 0 4 4 0 1 2 0 0 0 0 3 4
Historical SimulationAll 5 5 5 2 5 5 0 4 4 0 0 0 0 0 2 0 3 4
Riskmetrics 3 5 5 2 5 5 5 4 5 5 1 4 0 1 0 4 4 4
Variance-Covariance 5 5 5 5 5 5 0 4 4 5 4 5 4 5 4 4 5 4
Extreme Value Theory 5 2 5 5 0 4 0 0 0 0 0 0 0 0 0 0 0 0
AR-ARCH(1)-N 5 1 5 5 0 5 0 0 0 5 2 4 3 3 2 4 2 3
AR-ARCH(1)-t 5 0 5 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0
AR-GARCH(1,1)-N 5 2 5 2 0 2 0 3 3 0 2 2 0 0 0 3 1 0
AR-GARCH(1,1)-t 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
AR-EGARCH(1,1)-N 5 2 5 0 0 1 0 3 3 0 0 0 0 0 2 3 1 0
AR-EGARCH(1,1)-t 5 0 4 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
Monte Carlo Simulation 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
Combination Mean 0 3 2 0 4 3 3 0 1 0 0 0 0 0 2 0 0 0
Combination Median 5 2 5 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Combination Trim1 0 1 2 1 5 5 3 0 1 0 0 0 0 0 0 0 0 0
Combination Trim?2 1 1 2 0 4 3 1 0 0 0 0 0 0 0 2 0 0 0

Notes: The table reports the number of 5% and 1% VaR estimation methods failed tests at the 5% significance level.



Table 8. Ranking and Performance Equality Test

Panel A: 5%
4 TC CAPE 4 TC PAN TD3

1 AR-EGARCH11-Normal Distibution = NR AR-GARCHI11-Normal Distibution NR AR-EGARCHI11-Student Distribution NR
2 AR-GARCHI11-Normal Distibution NR Montecarlo Simulation NR Montecarlo Simulation R
3 Combination Median NR AR-GARCHI11-Student Distribution NR AR-ARCHI1-Student Distribution R
4 AR-GARCHI11-Student Distribution NR Filtered Historical Simulation NR AR-GARCHI11-Student Distribution R
5 Montecarlo Simulation NR - -

6 AR-EGARCH11-Student Distribution NR - -

7 _ - -

8 _ - -

9 _ - -

10 - - -

11 - - -

12 - - -

13 - - -

14 - - -

Panel B: 1%

4 TC CAPE 4 TC PAN TD3

1 Combination Trim1 NR AR-EGARCHI11-Student Distribution NR Filtered Historical Simulation NR
2 Montecarlo Simulation NR Montecarlo Simulation NR AR-ARCHI1-Student Distribution NR
3 AR-GARCH11-Student Distribution @~ NR  AR-GARCHI11-Student Distribution = NR Combination Trim1 NR
4 Combination Mean NR Filtered Historical Simulation NR Combination Mean NR
5 Combination Trim?2 NR Combination Median NR Combination Trim?2 NR
6 - AR-EGARCHI11-Normal Distibution =~ NR Combination Median NR
7 - AR-GARCHI11-Normal Distibution NR Extreme Value Theory R
8 - AR-ARCH1-Student Distribution R Historical Simulation -Two Year Data R
9 - Combination Trim?2 R AR-EGARCHI11-Student Distribution R
10 - Combination Mean R AR-GARCH11-Student Distribution R
11 - Historical Simulation -One Year Data R Montecarlo Simulation R
12 - - -

13 - - -

14 - - -

Notes: The Table reports the ranking of the statistically accepted methods according to the PM measure presented in Table A9.

(non-rejection) with respect to the performance equality test.

R (NR) suggests rejection



Table 8.(cont’d) Ranking and Performance Equality Test

Panel A: 5%

TD5 TD7 TD9
1 Riskmetrics NR Combination Median NR AR-EGARCHI11-Normal Distibution = NR
2 Filtered Historical Simulation R Combination Mean NR AR-GARCHI11-Normal Distibution NR
3 AR-EGARCHI11-Student Distribution R Combination Trim1 NR Combination Median NR
4 AR-EGARCHI11-Normal Distibution NR Combination Trim?2 NR Combination Mean NR
5 Combination Median NR Montecarlo Simulation R Combination Trim1 NR
6 Combination Mean NR Filtered Historical Simulation R AR-ARCHI1-Normal Distribution NR
7 AR-GARCHI11-Normal Distibution NR AR-EGARCHI11-Student Distribution R Combination Trim?2 NR
8 Combination Trim1 R AR-GARCH11-Student Distribution R Filtered Historical Simulation NR
9 Combination Trim?2 R - -
10 Historical Simulation -One Year Data R - -
11 AR-ARCHI1-Normal Distribution R - -
12 Historical Simulation -Two Year Data R - -
13 Variance-Covariance R - -
14 - - -
Panel B: 1%

TD5 TD7 TD9
1 Extreme Value Theory NR Filtered Historical Simulation NR AR-EGARCHI11-Student Distribution NR
2 AR-EGARCH11-Student Distribution NR Extreme Value Theory NR Extreme Value Theory NR
3 AR-GARCHI11-Student Distribution =~ NR ~ AR-GARCHI11-Student Distribution = NR Montecarlo Simulation NR
4 Combination Trim1 NR Combination Trim1 NR AR-ARCH1-Student Distribution NR
5 Filtered Historical Simulation NR  Historical Simulation -Two Year Data NR Filtered Historical Simulation NR
6 Montecarlo Simulation NR Montecarlo Simulation NR AR-GARCH11-Student Distribution NR
7 Combination Mean NR AR-EGARCH11-Student Distribution R Combination Trim1 NR
8 Combination Trim?2 NR Combination Median R Combination Trim?2 NR
9 Combination Median NR Riskmetrics R Combination Mean NR
10 AR-ARCH1-Student Distribution R Combination Mean R Combination Median R
11 Riskmetrics R Combination Trim?2 R AR-GARCH11-Normal Distibution R
12 Historical Simulation All Sample NR Historical Simulation All Sample R AR-EGARCH11-Normal Distibution R
13 Historical Simulation -One Year Data R AR-GARCH11-Normal Distibution R -
14 Historical Simulation -Two Year Data NR AR-ARCH1-Student Distribution R -

Notes: The Table reports the ranking of the statistically accepted methods according to the PM measure presented in Table A9. R (NR) suggests rejection

(non-rejection) with respect to the performance equality test.



Appendix B. Detailed Tables

Table B1. Backtesting results BPI

Panel A: 5% LRy LR;,q LRce LRmuc DQluc DQ2uc DQS3uc DQlijna DQ2ina DQ3inag DQRlce DQ2cc DQR3cc Durce Duripg
Filtered Historical Simulation 0.712 0.080 0.201 0.843 0.727 0.732 0.727 0.042 0.019 0.055 0.119 0.119 0.211 0.826 0.564
Historical Simulation-250 0.082 0.000 0.000 0.000 0.589 0.571 0.626 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Historical Simulation-500 0.002 0.000 0.000 0.000 0.226 0.249 0.257 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Historical SimulationAll 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Riskmetrics 0.712 0.000 0.000 0.036 0.839 0.838 0.834 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Variance-Covariance 0.000  0.000  0.000 0.000 0.013 0.015 0.014 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Eztreme Value Theory 0.000  0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.433
AR-ARCH(1)-N 0.354 0.872 0.643 0.350 0.343 0.345 0.376 0.866 0.844 0.137 0.631 0.768 0.165 0.186 0.096
AR-ARCH(1)-t 0.000 0.369 0.001 0.000 0.000 0.000 0.000 0.300 0.655 0.295 0.000 0.000 0.001 0.002 0.319
AR-GARCH(1,1)-N 0.432 0.065 0.134 0.771 0.471 0.472 0.486 0.042 0.172 0.134 0.093 0.190 0.269 0.640 0.804
AR-GARCH(1,1)-t 0.932 0.166 0.381 0.871 0.935 0.933 0.928 0.122 0.033 0.067 0.301 0.206 0.334 0.696 0.396
AR-EGARCH(1,1)-N 0.841 0.039 0.116 0.813 0.853 0.859 0.868 0.018 0.061 0.035 0.059 0.127 0.153 0.570 0.315
AR-EGARCH(1,1)-t 0.932 0.004 0.016 0.871 0.939 0.934 0.929 0.000 0.012 0.027 0.002 0.006 0.015 0.401 0.177
Monte Carlo Simulation 0.820 0.067 0.183 0.716 0.830 0.829 0.824 0.034 0.045 0.088 0.104 0.173 0.289 0.620 0.330
Combination Mean 0.030 0.000 0.000 0.067 0.084 0.125 0.169 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Combination Median 0.045 0.220 0.063 0.113 0.067 0.081 0.096 0.226 0.094 0.045 0.076 0.091 0.105 0.019 0.064
Combination Trim1 0.013  0.001 0.000 0.053 0.045 0.071 0.113 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Combination Trim2 0.013  0.001 0.000 0.010 0.045 0.071 0.101 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001
Panel B: 1% LRyec LR;nqg LRece LRmue DQlue DQ2ue DQS3ue DQling DQ2ina DQ3ing DQlece DQ2¢cc DQ3¢cc Durce Duripg
Filtered Historical Simulation 0.413 0.564 0.605 0.641 0.388 0.380 0.410 0.645 0.511 0.407 0.625 0.761 0.158 0.832 0.759
Historical Simulation-250 0.097 0.000 0.000 0.007 0.306 0.380 0.344 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Historical Simulation-500 0.054  0.000 0.000 0.002 0.314 0.282 0.333 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Historical SimulationAll 0.000 0.000 0.000 0.000 0.098 0.054 0.083 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Riskmetrics 0.007 0.000 0.000 0.017 0.063 0.074 0.092 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Variance-Covariance 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Ezxtreme Value Theory 0.007 0.373 0.018 0.021 0.002 0.003 0.004 0.377 0.720 0.266 0.007 0.008 0.007 0.044 0.554
AR-ARCH(1)-N 0.000 0.264 0.000 0.000 0.000 0.000 0.000 0.216 0.752 0.825 0.000 0.000 0.000 0.001 0.240
AR-ARCH(1)-t 0.097 0.477 0.196 0.024 0.069 0.064 0.060 0.528 0.368 0.266 0.164 0.257 0.345 0.037 0.030
AR-GARCH(1,1)-N 0.054 0.450 0.118 0.125 0.032 0.040 0.050 0.490 0.443 0.097 0.086 0.046 0.023 0.254 0.873
AR-GARCH(1,1)-t 0.930 0.658 0.903 0.664 0.929 0.931 0.940 0.756 0.659 0.188 0.949 0.977 0.076 0.899 0.827
AR-EGARCH(1,1)-N 0.097 0.477 0.196 0.197 0.069 0.083 0.099 0.528 0.365 0.064 0.164 0.066 0.026 0.194 0.240
AR-EGARCH(1,1)-t 0.599 0.594 0.756 0.768 0.585 0.579 0.604 0.683 0.560 0.324 0.795 0.889 0.142 0.972 0.927
Monte Carlo Simulation 0.930 0.658 0.903 0.998 0.929 0.931 0.933 0.756 0.659 0.586 0.949 0.977 0.990 0.625 0.379
Combination Mean 0.457 0.048 0.107 0.679 0.529 0.575 0.613 0.001 0.000 0.000 0.003 0.000 0.000 0.081 0.050
Combination Median 0.457 0.723 0.712 0.530 0.471 0.470 0.468 0.824 0.752 0.698 0.756 0.895 0.957 0.554 0.975
Combination Trim1 0.007 0.895 0.027 0.037 0.023 0.024 0.135 0.959 0.943 0.001 0.074  0.157 0.000 0.001 0.025
Combination Trim2 0.457 0.723 0.712 0.679 0.471 0.470 0.526 0.824 0.752 0.092 0.756 0.895 0.019 0.290 0.255

Notes: The Table reports p-values of the employed backtesting criteria. Bold indicates significance at the 5% level and suggests a ‘pass’ in the respective
criterion.



Table B2. Backtesting results BCI

Panel A: 5% LRy LR;ng LRce LRmue DQluc DQ2uc DQ3ue DQlijpg DQ2ina DQ3ina DQlcc DQ2cc DQRScce Durce During
Filtered Historical Simulation 0.431 0.630 0.653 0.158 0.430 0.433 0.436 0.600 0.463 0.374 0.632 0.755 0.834 0.818 0.967
Historical Simulation-250 0.516  0.000 0.000 0.087 0.682 0.688 0.685 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Historical Simulation-500 0.061  0.000 0.000 0.001 0.251 0.275 0.288 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Historical StmulationAll 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Riskmetrics 0.278  0.000 0.000 0.469 0.497 0.544 0.511 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Variance-Covariance 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Eztreme Value Theory 0.000  0.150 0.000 0.000 0.000 0.000 0.000 0.047 0.090 0.285 0.000 0.000 0.000 0.000 0.528
AR-ARCH(1)-N 0.004 0.562 0.012 0.000 0.002 0.003 0.003 0.510 0.519 0.618 0.007 0.006 0.014 0.023 0.646
AR-ARCH(1)-t 0.000  0.487 0.000 0.000 0.000 0.000 0.000 0.386 0.834 0.571 0.000 0.000 0.000 0.000 0.800
AR-GARCH(1,1)-N 0.278 0.930 0.553 0.219 0.291 0.308 0.324 0.934 0.539 0.343 0.569 0.629 0.675 0.481 0.925
AR-GARCH(1,1)-t 0.610 0.972 0.878 0.149 0.607 0.602 0.604 0.971 0.961 0.672 0.875 0.965 0.948 0.928 0.886
AR-EGARCH(1,1)-N 0.841 0.329 0.609 0.429 0.846 0.850 0.860 0.297 0.600 0.300 0.569 0.747 0.672 0.944 0.971
AR-EGARCH(1,1)-t 0.181 0.219 0.192 0.131 0.188 0.188 0.197 0.149 0.248 0.158 0.138 0.260 0.320 0.444 0.609
Monte Carlo Simulation 0.354 0.343 0.416 0.092 0.361 0.363 0.365 0.284 0.290 0.268 0.361 0.527 0.661 0.724 0.811
Combination Mean 0.165 0.030 0.037 0.434 0.217 0.256 0.281 0.018 0.001 0.001 0.024 0.007 0.008 0.114 0.148
Combination Median 0.623 0.091 0.213 0.681 0.648 0.656 0.666 0.061 0.102 0.107 0.154 0.274 0.395 0.732 0.626
Combination Trim1 0.217 0.037 0.053 0.526 0.268 0.307 0.331 0.022 0.002 0.001 0.035 0.011 0.013 0.172 0.195
Combination Trim?2 0.350 0.054 0.101 0.675 0.395 0.430 0.451 0.034 0.004 0.002 0.070 0.027 0.033 0.273 0.225
Panel B: 1% LRy LR;pqg LRce LRmue DQluc DQ2uc DQ3uec DQlijng DQ2ina DQ3ina DQlcc DQ2cc DQRScc Durce During
Filtered Historical Simulation 0.166 0.505 0.307 0.077 0.134 0.127 0.147 0.567 0.414 0.600 0.284 0.413 0.137 0.534 0.830
Historical Simulation-250 0.269 0.012 0.023 0.207 0.311 0.410 0.415 0.000 0.000 0.000 0.000 0.000 0.000 0.017 0.006

Historical Simulation-500 0.166 0.001 0.001 0.335 0.230 0.353 0.338 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Historical StmulationAll 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Riskmetrics 0.269 0.000 0.001 0.406 0.353 0.361 0.381 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.002

Variance-Covariance 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Eztreme Value Theory 0.001 0.491 0.005 0.000 0.000 0.000 0.000 0.252 0.931 0.444 0.001 0.001 0.002 0.014 0.928
AR-ARCH(1)-N 0.000 0.038 0.000 0.000 0.000 0.000 0.000 0.002 0.334 0.334 0.000 0.000 0.000 0.000 0.508
AR-ARCH(1)-t 0.000  0.227  0.000 0.000 0.000 0.000 0.000 0.165 0.555 0.891 0.000 0.000 0.000 0.000 0.927
AR-GARCH(1,1)-N 0.007 0.401 0.019 0.003 0.003 0.003 0.004 0.166 0.727 0.263 0.004 0.007 0.007 0.046 0.605
AR-GARCH(1,1)-t 0.599 0.594 0.756 0.213 0.585 0.579 0.572 0.683 0.560 0.473 0.795 0.889 0.937 0.277 0.113
AR-EGARCH(1,1)-N 0.015 0.398 0.035 0.004 0.005 0.005 0.006 0.414 0.243 0.939 0.017 0.031 0.026 0.088 0.723
AR-EGARCH(1,1)-t 0.269 0.534 0.447 0.083 0.237 0.230 0.222 0.606 0.462 0.364 0.444 0.592 0.699 0.540 0.450
Monte Carlo Simulation 0.413 0.564 0.605 0.452 0.388 0.380 0.372 0.645 0.511 0.417 0.625 0.761 0.845 0.358 0.182
Combination Mean 0.823 0.626 0.866 0.827 0.820 0.815 0.810 0.720 0.610 0.529 0.914 0.958 0.978 0.882 0.622
Combination Median 0.269 0.534 0.447 0.485 0.237 0.230 0.257 0.606 0.462 0.499 0.444  0.592 0.156 0.702 0.833
Combination Trim1 0.682 0.690 0.849 0.951 0.686 0.685 0.685 0.791 0.706 0.642 0.891 0.960 0.985 0.760 0.997
Combination Trim?2 0.599 0.594 0.756 0.775 0.585 0.579 0.572 0.683 0.560 0.473 0.795 0.889 0.937 0.950 0.819

Notes: See Table Bl1.



Table B3. Backtesting results BDTI

Panel A: 5% LRy LR;ng LRce LRmue DQluc DQ2uc DQ3ue DQlijpg DQ2ina DQ3ina DQlcc DQ2cc DQRScce Durce During
Filtered Historical Simulation — 0.045  0.220 0.063 0.158 0.067 0.073 0.064 0.226 0.251 0.745 0.076 0.153 0.167 0.104 0.815
Historical Simulation-250 0.030 0.000 0.000 0.036 0.120 0.166 0.203 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Historical Simulation-500 0.008 0.000 0.000 0.017 0.070 0.098 0.111 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Historical StmulationAll 0.003 0.000 0.000 0.017 0.050 0.074 0.086 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Riskmetrics 0.000 0.000 0.000 0.000 0.004 0.010 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005
Variance-Covariance 0.000 0.000 0.000 0.000 0.011 0.022 0.034 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Eztreme Value Theory 0.000 0.120 0.000 0.000 0.000 0.000 0.000 0.033 0.003 0.002 0.000 0.000 0.000 0.000 0.438
AR-ARCH(1)-N 0.000 0.211  0.000 0.000 0.000 0.000 0.000 0.351 0.644 0.806 0.000 0.000 0.000 0.000 0.021
AR-ARCH(1)-t 0.000 0.789 0.001 0.002 0.001 0.001 0.002 0.835 0.770 0.722 0.004 0.010 0.024 0.000 0.230
AR-GARCH(1,1)-N 0.000 0.012 0.000 0.000 0.000 0.000 0.000 0.025 0.184 0.306 0.000 0.000 0.000 0.000 0.010
AR-GARCH(1,1)-t 0.001 0.252 0.001 0.003 0.002 0.003 0.000 0.307 0.415 0.793 0.003 0.010 0.019 0.001 0.348
AR-EGARCH(1,1)-N 0.000 0.022 0.000 0.000 0.000 0.000 0.000 0.043 0.052 0.166 0.000 0.000 0.000 0.000 0.018
AR-EGARCH(1,1)-t 0.013 0.482 0.036 0.060 0.022 0.022 0.019 0.524 0.735 0.794 0.052 0.116 0.149 0.033 0.722
Monte Carlo Simulation 0.000 0.789 0.001 0.002 0.001 0.001 0.001 0.835 0.744 0.514 0.004 0.009 0.017 0.001 0.687
Combination Mean 0.000 0.359 0.000 0.000 0.000 0.000 0.000 0.491 0.090 0.082 0.000 0.000 0.000 0.000 0.134
Combination Median 0.000 0.058 0.000 0.000 0.000 0.000 0.000 0.095 0.118 0.303 0.000 0.000 0.000 0.000 0.031
Combination Trim1 0.000 0.401  0.000 0.000 0.000 0.000 0.000 0.527 0.109 0.102 0.000 0.000 0.000 0.000 0.100
Combination Trim2 0.000 0.445 0.000 0.000 0.000 0.000 0.000 0.563 0.131 0.124 0.000 0.000 0.000 0.000 0.177
Panel B: 1% LRy LR;pqg LRce LRmue DQluc DQ2uc DQ3uec DQlijng DQ2ina DQ3ina DQlcc DQ2cc DQRScc Durce During
Filtered Historical Simulation 0.146 0.791 0.335 0.127 0.178 0.177 0.176 0.885 0.838 0.801 0.402 0.607 0.763 0.173 0.695
Historical Simulation-250 0.275 0.757 0.526 0.272 0.301 0.299 0.297 0.856 0.796 0.751 0.580 0.773 0.887 0.279 0.501
Historical Simulation-500 0.275 0.757 0.526 0.272 0.301 0.458 0.458 0.856 0.000 0.000 0.580 0.000 0.000 0.048 0.046
Historical StmulationAll 0.275 0.757 0.526 0.272 0.301 0.458 0.458 0.856 0.000 0.000 0.580 0.000 0.000 0.048 0.046
Riskmetrics 0.275 0.757 0.526 0.272 0.301 0.299 0.297 0.856 0.796 0.751 0.580 0.773 0.887 0.129 0.157
Variance-Covariance 0.275 0.757 0.526 0.272 0.301 0.458 0.458 0.856 0.000 0.000 0.580 0.000 0.000 0.048 0.046
Eztreme Value Theory 0.680 0.690 0.848 0.680 0.683 0.683 0.683 0.791 0.706 0.643 0.890 0.959 0.985 0.478 0.336
AR-ARCH(1)-N 0.066 0.825 0.179 0.007 0.097 0.096 0.096 0.913 0.877 0.849 0.252 0.430 0.597 0.052 0.344
AR-ARCH(1)-t 0.146 0.791 0.335 0.127 0.178 0.177 0.176 0.885 0.838 0.801 0.402 0.607 0.763 0.187 0.982
AR-GARCH(1,1)-N 0.146 0.791 0.335 0.127 0.178 0.177 0.176 0.885 0.838 0.801 0.402 0.607 0.763 0.173 0.695
AR-GARCH(1,1)-t 0.066 0.825 0.180 0.043 0.097 0.097 0.097 0.913 0.876 0.848 0.253 0.431 0.599 0.052 0.345
AR-EGARCH(1,1)-N 0.457 0.723 0.712 0.464 0.471 0.527 0.526 0.824 0.027 0.075 0.756 0.008 0.019 0.279 0.241
AR-EGARCH(1,1)-t 0.025 0.860 0.079 0.010 0.049 0.050 0.050 0.938 0.911 0.891 0.144  0.275 0.423 0.011 0.168
Monte Carlo Simulation 0.066 0.825 0.180 0.043 0.097 0.097 0.097 0.913 0.876 0.848 0.253 0.431 0.599 0.052 0.345
Combination Mean 0.066 0.825 0.180 0.043 0.097 0.097 0.097 0.913 0.876 0.848 0.253 0.431 0.599 0.052 0.345
Combination Median 0.066 0.825 0.180 0.043 0.097 0.097 0.097 0.913 0.876 0.848 0.253 0.431 0.599 0.052 0.345
Combination Trim1 0.007 0.895 0.027 0.539 0.023 0.024 0.025 0.959 0.943 0.929 0.074 0.157 0.268 0.001 0.050
Combination Trim?2 0.066 0.825 0.180 0.043 0.097 0.097 0.097 0.913 0.876 0.848 0.253 0.431 0.599 0.052 0.345

Notes: See Table Bl1.



Table B4. Backtesting results BCTI

Panel A: 5% LRy LR;ng LRce LRmue DQluc DQ2uc DQ3ue DQlijpg DQ2ina DQ3ina DQlcc DQ2cc DQRScce Durce During
Filtered Historical Simulation 0.432 0.395 0.511 0.665 0.429 0.443 0.426 0.464 0.952 0.394 0.567 0.676 0.483 0.325 0.234
Historical Simulation-250 0.431  0.000 0.000 0.606 0.563 0.603 0.592 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Historical Simulation-500 0.932  0.000 0.000 0.848 0.915 0.907 0.904 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Historical StmulationAll 0.013 0.000 0.000 0.060 0.097 0.150 0.163 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Riskmetrics 0.000 0.027 0.000 0.000 0.001 0.002 0.002 0.033 0.023 0.141 0.000 0.000 0.001 0.000 0.081
Variance-Covariance 0.000 0.037 0.000 0.000 0.000 0.000 0.001 0.066 0.001 0.004 0.000 0.000 0.000 0.000 0.001

Eztreme Value Theory 0.000 0.772  0.000 0.000 0.000 0.000 0.000 0.701 0.570 0.303 0.000 0.000 0.000 0.000 0.603
AR-ARCH(1)-N 0.000 0.534  0.000 0.000 0.000 0.000 0.000 0.814 0.587 0.738 0.000 0.000 0.000 0.000 0.051
AR-ARCH(1)-t 0.008 0.902 0.030 0.041 0.013 0.024 0.020 0.921 0.119 0.411 0.045 0.009 0.016 0.019 0.522
AR-GARCH(1,1)-N 0.000 0.564  0.000 0.000 0.000 0.000 0.000 0.833 0.764 0.711 0.000 0.000 0.000 0.000 0.091
AR-GARCH(1,1)-t 0.020 0.803 0.065 0.070 0.027 0.027 0.022 0.839 0.772 0.418 0.086 0.178 0.210 0.040 0.472
AR-EGARCH(1,1)-N 0.000  0.423  0.000 0.000 0.000 0.000 0.000 0.731 0.774 0.955 0.000 0.000 0.000 0.000 0.287
AR-EGARCH(1,1)-t 0.020 0.803 0.065 0.086 0.027 0.031 0.027 0.839 0.792 0.733 0.086 0.158 0.190 0.048 0.680
Monte Carlo Simulation 0.030 0.756 0.092 0.120 0.038 0.043 0.037 0.799 0.855 0.665 0.116 0.208 0.235 0.069 0.657
Combination Mean 0.000 0.423 0.000 0.000 0.000 0.000 0.000 0.731 0.287 0.460 0.000 0.000 0.000 0.000 0.074
Combination Median 0.000 0.491 0.000 0.000 0.000 0.000 0.000 0.601 0.465 0.744 0.000 0.000 0.001 0.000 0.465
Combination Trim1 0.000 0.349 0.000 0.000 0.000 0.000 0.000 0.664 0.409 0.630 0.000 0.000 0.000 0.000 0.171
Combination Trim2 0.000 0.491 0.000 0.000 0.000 0.000 0.000 0.601 0.155 0.370 0.000 0.000 0.000 0.000 0.071
Panel B: 1% LRy LR;pqg LRce LRmue DQluc DQ2uc DQ3uec DQlijng DQ2ina DQ3ina DQlcc DQ2cc DQRScc Durce During
Filtered Historical Simulation 0.930 0.658 0.903 0.126 0.929 0.931 0.933 0.756 0.659 0.586 0.949 0.977 0.990 0.591 0.347
Historical Simulation-250 0.054  0.029 0.014 0.090 0.059 0.110 0.093 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.003

Historical Simulation-500 0.269 0.012 0.023 0.377 0.311 0.331 0.352 0.000 0.000 0.000 0.000 0.000 0.000 0.031 0.012

Historical StmulationAll 0.682 0.064 0.165 0.274 0.719 0.746 0.741 0.002 0.000 0.002 0.008 0.001 0.001 0.230 0.122
Riskmetrics 0.682 0.690 0.849 0.655 0.686 0.685 0.685 0.791 0.706 0.642 0.891 0.960 0.985 0.622 0.526
Variance-Covariance 0.146 0.024 0.027 0.026 0.261 0.335 0.311 0.000 0.000 0.000 0.000 0.000 0.000 0.027 0.048

Eztreme Value Theory 0.269 0.534 0.447 0.207 0.237 0.230 0.222 0.606 0.462 0.364 0.444  0.592 0.699 0.154 0.079
AR-ARCH(1)-N 0.066 0.825 0.180 0.006 0.097 0.097 0.097 0.913 0.876 0.848 0.253 0.431 0.599 0.062 0.455
AR-ARCH(1)-t 0.146 0.791 0.335 0.026 0.178 0.177 0.176 0.885 0.838 0.801 0.402 0.607 0.763 0.175 0.717
AR-GARCH(1,1)-N 0.275 0.757 0.526 0.075 0.301 0.299 0.297 0.856 0.796 0.751 0.580 0.773 0.887 0.348 0.906
AR-GARCH(1,1)-t 0.066 0.825 0.180 0.006 0.097 0.097 0.097 0.913 0.876 0.848 0.253 0.431 0.599 0.057 0.392
AR-EGARCH(1,1)-N 0.457 0.723 0.712 0.161 0.471 0.470 0.468 0.824 0.752 0.698 0.756 0.895 0.957 0.339 0.322
AR-EGARCH(1,1)-t 0.066 0.825 0.180 0.006 0.097 0.097 0.097 0.913 0.876 0.848 0.253 0.431 0.599 0.057 0.392
Monte Carlo Simulation 0.066 0.825 0.180 0.006 0.097 0.097 0.097 0.913 0.876 0.848 0.253 0.431 0.599 0.057 0.392
Combination Mean 0.066 0.825 0.180 0.006 0.097 0.097 0.097 0.913 0.876 0.848 0.253 0.431 0.599 0.057 0.392
Combination Median 0.066 0.825 0.180 0.006 0.097 0.097 0.097 0.913 0.876 0.848 0.253 0.431 0.599 0.057 0.392
Combination Trim1 0.025 0.860 0.079 0.231 0.049 0.050 0.050 0.938 0.911 0.891 0.144 0.275 0.423 0.017 0.313
Combination Trim2 0.066 0.825 0.180 0.006 0.097 0.097 0.097 0.913 0.876 0.848 0.253 0.431 0.599 0.057 0.392

Notes: See Table Bl1.



Table B5. Backtesting results 4 Time Charter Average Capesize

Panel A: 5% LRue LRipg LRee LRmue DQluc DQ2ue DQ3ue DQling DQZ2ima DQ3ina DQlece DQ2ec DQSce Durce During

Filtered Historical Simulation 0.023 0.238 0.038 0.002 0.023 0.028 0.026 0.150 0.046 0.152 0.021 0.022 0.043 0.111 0.788
Historical Simulation -One Year Data  0.061  0.000  0.000 0.006 0.251 0.275 0.288 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Historical Simulation -Two Year Data  0.000  0.000  0.000 0.000 0.041 0.058 0.068 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Historical Simulation All Sample 0.000  0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Riskmetrics 0.623  0.000 0.000  0.102 0.750 0.785 0.785 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Variance-Covariance 0.000  0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Extreme Value Theory 0.000  0.010  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.025 0.000 0.000 0.000 0.000 0.829
AR-ARCHI1-Normal Distribution 0.000 0.666  0.000 0.000 0.000 0.000 0.000 0.593 0.068 0.121 0.000 0.000 0.000 0.000 0.661
AR-ARCH1-Student Distribution 0.000 0.486 0.000 0.000 0.000 0.000 0.000 0.355 0.463 0.697 0.000 0.000 0.000 0.000 0.756

AR-GARCH11-Normal Distibution 0.820 0.190 0.412 0.031 0.827 0.829 0.828 0.142 0.043 0.038 0.332 0.244 0.326 0.727  0.427
AR-GARCH11-Student Distribution 0.230 0.076 0.100 0.013 0.249 0.248 0.249 0.033 0.095 0.126 0.048 0.106 0.185 0.551 0.731
AR-EGARCHI11-Normal Distibution 0.610 0.244 0.446 0.019 0.621 0.629 0.637 0.191 0.070 0.030 0.372 0.313 0.286 0.423 0.207
AR-EGARCH11-Student Distribution  0.023  0.238  0.038 0.000 0.023 0.026 0.026 0.150 0.111 0.150 0.021 0.038 0.076 0.102 0.617

Montecarlo Simulation 0.230 0.193 0.208 0.013 0.240 0.240 0.241  0.127  0.207  0.232  0.147 0.272 0.406 0.570 0.817
Combination Mean 0.516 0.001 0.002 0.655 0.567 0.578 0.569  0.000 0.000 0.00l  0.000  0.000 0.000 0.193 0.081
Combination Median 0.610 0.244 0.446 0.250 0.621 0.622 0.624 0.191  0.170  0.139  0.372 0.500 0.601 0.847 0.652
Combination Trim1 0.516  0.003 0.009 0.525 0.559 0.564 0.557  0.000 0.001 0.008  0.001  0.002  0.004 0.242 0.107
Combination Trim2 0.431 0.004 0.010 0.370 0.475 0.481 0.473  0.000 0.001 0.012  0.001  0.002  0.006 0.198 0.092
Panel B: 1% LRue LRipg LRece LRmue DQluc DQ2ue DQ3ue DQling DQZ2ima DQ3ina DQlece DQ2cc DQ3ce Durce During
Filtered Historical Simulation 0.020 0.319 0.056 0.069 0.020 0025  0.031  0.102  0.023 0.006 0014 0012 0.010 0.024 0.052

Historical Simulation -One Year Data 0.054 0.002  0.001 0.007 0.078 0.129 0.153 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.001
Historical Simulation -Two Year Data  0.003  0.000  0.000 0.002 0.034 0.057 0.061 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Historical Simulation All Sample 0.000  0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Riskmetrics 0.029  0.003  0.001 0.015 0.040 0.058 0.061 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002
Variance-Covariance 0.000  0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Extreme Value Theory 0.000 0.320 0.000 0.000 0.000 0.000 0.000 0.051 0.007 0.000 0.000 0.000 0.000 0.000 0.271
AR-ARCHI1-Normal Distribution 0.000 0.279  0.000 0.000 0.000 0.000 0.000 0.037 0.236 0.460 0.000 0.000 0.000 0.000 0.336
AR-ARCH1-Student Distribution 0.000 0.152  0.000 0.000 0.000 0.000 0.000 0.072 0.994 0.270 0.000 0.000 0.000 0.000 0.841
AR-GARCH11-Normal Distibution 0.000 0.738  0.000 0.000 0.000 0.000 0.000 0.569 0.000 0.000 0.000 0.000 0.000 0.000 0.133

AR-GARCH11-Student Distribution 0.097 0.477 0.196 0.214 0.069 0.083 0.078 0.528 0.365 0.671 0.164 0.066 0.110 0.220 0.288
AR-EGARCH11-Normal Distibution 0.000 0.789  0.000 0.000 0.000 0.000 0.000 0.648 0.001 0.000 0.000 0.000 0.000 0.000 0.228
AR-EGARCH11-Student Distribution  0.007  0.373  0.018 0.021 0.002 0.003 0.002 0.377 0.720 0.857 0.007 0.008 0.013 0.050 0.766

Montecarlo Simulation 0.097 0.477 0.196 0.214 0.069 0.083 0.078 0.528 0.365 0.671 0.164 0.066 0.110 0.226 0.298
Combination Mean 0.413 0.564 0.605 0.641 0.388 0.458 0.451 0.645 0.001 0.008 0.625 0.000 0.000 0.070 0.025
Combination Median 0.015 0.398 0.035 0.021 0.005 0.017 0.016 0.414 0.000 0.003 0.017 0.000 0.000 0.035 0.161
Combination Trim1 0.682 0.690 0.849 0.951 0.686 0.719 0.719 0.791 0.044 0.114 0.891 0.020 0.043 0.259 0.143
Combination Trim2 0.054 0.450 0.118 0.126 0.032 0.055 0.051 0.490 0.012 0.070 0.086 0.000 0.000 0.084 0.135

Notes: See Table Bl1.



Table B6. Backtesting results 4 Time Charter Average Panamax

Panel A: 5% LRue LRipg LRee LRmue DQluc DQ2ue DQ3ue DQling DQZ2ima DQ3ina DQlece DQ2ec DQSce Durce During

Filtered Historical Simulation 0.820 0.190 0.412 0.868 0.827 0.829 0.824 0.142 0.043 0.087 0.332 0.244 0.384 0.701 0.401
Historical Simulation -One Year Data  0.061  0.000  0.000 0.000 0.566 0.535 0.603 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Historical Simulation -Two Year Data  0.002  0.000  0.000 0.000 0.226 0.249 0.257 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Historical Simulation All Sample 0.000  0.000  0.000 0.000 0.004 0.005 0.007 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Riskmetrics 0.712  0.000  0.000 0.036 0.839 0.838 0.830 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Variance-Covariance 0.000  0.000  0.000 0.000 0.051 0.041 0.038 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Extreme Value Theory 0.000  0.002  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.378
AR-ARCHI1-Normal Distribution 0.729 0.295 0.544 0.378 0.741 0.749 0.767 0.264 0.278 0.059 0.505 0.677 0.330 0.174 0.071
AR-ARCH1-Student Distribution 0.033 0.849 0.100 0.024 0.025 0.031 0.042 0.832 0.353 0.050 0.081  0.061 0.018 0.089 0.309

AR-GARCH11-Normal Distibution 0.278 0.431 0.407 0.574 0.303 0.307 0.323 0.430 0.544 0.345 0.418 0.630 0.675 0.458 0.744
AR-GARCH11-Student Distribution 0.954 0.366 0.664 0.853 0.956 0.963 0.969 0.333 0.071 0.105 0.624  0.322 0.474 0.813 0.541
AR-EGARCHI11-Normal Distibution 0.729  0.002 0.007 0.970 0.763 0.767 0.775 0.000 0.005 0.010 0.001 0.002 0.005 0.443  0.237
AR-EGARCHI11-Student Distribution 0.841  0.002 0.009 0.813 0.860 0.864 0.871 0.000 0.006 0.014 0.001 0.003 0.008 0.326  0.145

Montecarlo Simulation 0.954 0.144 0.343 0.474 0.957 0.963 0.969 0.104  0.074  0.109 0.265 0.330 0.483 0.763 0.478
Combination Mean 0.008  0.001 0.000 0.017  0.035 0.058 0.098  0.000 0.000 0.000  0.000  0.000  0.000 0.000  0.000
Combination Median 0.045 0.012 0.006 0.147 0.085 0.088 0.104  0.006 0.032 0.015  0.004 0.011  0.015 0.046 0.192
Combination Trim1 0.013  0.001 0.000 0.022  0.045 0.071 0.113  0.000 0.000 0.000  0.000  0.000  0.000 0.000  0.000
Combination Trim2 0.013  0.001 0.000 0.010  0.045 0.062 0.093  0.000 0.000 0.000  0.000  0.000  0.000 0.000  0.001
Panel B: 1% LRue LRipg LRece LRmue DQluc DQ2ue DQ3ue DQling DQZ2ima DQ3ina DQlece DQ2cc DQ3ce Durce During
Filtered Historical Simulation 0.269 0.534 0.447 0.485 0.237 0.230 0.257  0.606  0.462  0.499  0.444 0.592 0.156 0.559 0.479

Historical Simulation -One Year Data ~ 0.029  0.000  0.000 0.015 0.172 0.253 0.201 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Historical Simulation -Two Year Data 0.054  0.000  0.000 0.007 0.314 0.282 0.333 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Historical Simulation All Sample 0.001 0.000  0.000 0.000 0.216 0.173 0.206 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Riskmetrics 0.015  0.000  0.000 0.036 0.108 0.119 0.143 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Variance-Covariance 0.000  0.000  0.000 0.000 0.000 0.001 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Extreme Value Theory 0.007 0.373 0.018 0.021 0.002 0.003 0.004 0.377 0.720 0.266 0.007 0.008 0.007  0.052 0.963
AR-ARCHI1-Normal Distribution 0.003 0.349  0.008 0.002 0.001 0.001 0.001 0.342 0.823 0.350 0.002 0.003 0.004 0.005 0.072
AR-ARCH1-Student Distribution 0.166 0.505 0.307  0.026 0.134 0.127 0.121 0.567 0.414 0.313 0.284 0.413 0.520 0.013 0.006

AR-GARCHI11-Normal Distibution 0.054 0.450 0.118 0.125 0.032 0.040 0.050 0.490 0.443 0.097 0.086 0.046 0.023  0.256  0.929
AR-GARCH11-Student Distribution 0.823 0.626 0.866 0.555 0.820 0.815 0.810 0.720 0.610 0.529 0.914 0.958 0.978 0.804 0.513
AR-EGARCHI11-Normal Distibution 0.097 0.477 0.196 0.130 0.069 0.083 0.099 0.528 0.365 0.064 0.164 0.066 0.026 0.194 0.240
AR-EGARCH11-Student Distribution 0.930 0.658 0.903 0.788 0.929 0.931 0.933 0.756 0.659 0.586 0.949 0.977 0.990 0.707 0.468

Montecarlo Simulation 0.930 0.658 0.903 0.664 0.929 0.931 0.933 0.756 0.659 0.586 0.949 0.977 0.990 0.332 0.153
Combination Mean 0.457 0.048 0.107 0.679 0.529 0.575 0.613 0.001 0.000 0.000 0.003 0.000 0.000 0.081  0.050
Combination Median 0.275 0.757 0.526 0.332 0.301 0.299 0.297 0.856 0.796 0.751 0.580 0.773 0.887 0.257 0.432
Combination Trim1 0.025 0.009 0.003 0.108 0.140 0.239 0.327 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001
Combination Trim2 0.682 0.064 0.165 0.714 0.719 0.746 0.769 0.002 0.000 0.000 0.008 0.001 0.000 0.089 0.038

Notes: See Table Bl1.



Table B7. Backtesting results TD3

Panel A: 5% LRue LRipg LRee LRmue DQluc DQ2ue DQ3ue DQling DQZ2ima DQ3ina DQlece DQ2ec DQSce Durce During

Filtered Historical Simulation 0.278 0.002  0.005 0.317 0.353 0.361 0.399 0.000 0.003 0.000 0.001 0.003 0.001  0.325 0.373
Historical Simulation -One Year Data  0.217  0.000  0.000 0.293 0.398 0.421 0.477 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Historical Simulation -Two Year Data 0.064  0.000  0.000 0.202 0.203 0.255 0.269 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Historical Simulation All Sample 0.045  0.000  0.000 0.158 0.191 0.206 0.235 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Riskmetrics 0.432  0.000  0.000 0.771 0.574 0.593 0.598 0.000 0.000 0.000 0.000 0.000 0.000 0.012 0.004
Variance-Covariance 0.000  0.000  0.000 0.000 0.003 0.007 0.012 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001
Extreme Value Theory 0.000 0.053  0.000 0.000 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.000 0.000 0.000 0.249
AR-ARCHI1-Normal Distribution 0.000 0.373  0.000 0.000 0.000 0.000 0.000 0.687 0.366 0.255 0.000 0.000 0.000 0.000 0.410
AR-ARCH1-Student Distribution 0.523 0.363 0.539 0.345 0.519 0.559 0.581 0.431 0.185 0.061 0.602 0.049 0.044 0.717 0.781
AR-GARCH11-Normal Distibution 0.001  0.063 0.001 0.006 0.005 0.009 0.020 0.071 0.014 0.001 0.002 0.001 0.000 0.003 0.935

AR-GARCH11-Student Distribution 0.841 0.765 0.937 0.915 0.840 0.857 0.867 0.774 0.139 0.067 0.940 0.125 0.141 0.810 0.579
AR-EGARCHI11-Normal Distibution 0.000 0.027 0.000 0.000 0.001 0.002 0.005 0.033 0.023 0.003 0.000 0.000 0.000 0.000 0.557
AR-EGARCH11-Student Distribution 0.