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We develop a reasoning system for an Euler diagram based visual logic, called spider
diagrams of order. We define a normal form for spider diagrams of order and provide an
algorithm, based on the reasoning system, for producing diagrams in our normal form.
Normal forms for visual logics have been shown to assist in proving completeness of

& 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Shin's rebirth of Peirce's α and β systems for reasoning
[15] has produced a variety of Euler diagram based visual
logics, for example [7,4,17,18]. Euler diagram based visual
logics allow reasoning about sets, their elements and their
relationships. Associated with visual logics are reasoning
systems that embody equivalence between diagrams
[2,10,19]. Spider Diagrams of Order (SDoO) and Second-
Order Spider Diagrams [3] differ from the main body of
work on Euler diagram based logics as elements of their
token syntax were designed to be as expressive as star-free
regular languages and regular languages respectively.

Weakly expressive language classes, such as regular
languages and star-free regular languages, are used to
formalise real-world temporal specifications [5,12]. Due to
the real-world application there has been recent interest in
incorporating temporal semantics in these diagrammatic
logics [1,14]. In this paper we address the problem of
adding temporal semantics to Euler diagrams by adding a
syntax and semantics for specifying order of the elements.
Furthermore, we develop the first reasoning system for an
Euler diagram based logic that includes an order relation.
In demonstrating our reasoning system for spider diagrams
of order we produce both a normal form and an algorithm
to produce the normal form. Our algorithm also contributes
to the recent interest in normal forms for Euler diagram
based logics [9].

In Section 2 we define the syntax and semantics of
spider diagrams of order. In Section 3 we present each of
our reasoning rules. Thereafter, in Section 4 we present our
normalisation algorithm by example. An implementation of
our algorithm is available under an open-source license at
https://github.com/AidanDelaney/SpiderReasoning.

2. Spider diagrams of order

The Euler diagram in Fig. 1(a) contains three labelled
contours and six zones. A zone is defined to be a pair, (in,
out), of disjoint subsets of the set of contour labels. The set
in contains the labels of the contours that the zone is
inside whereas out contains the labels of the contours that
the zone is outside. The set of all zones is denoted Z.
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Fig. 1. An Euler and a spider diagram.
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A region is a set of zones. As an example, there exists a
zone inside the contour P but outside both contours Q and
R denoted ðfPg; fQ ;RgÞ. The zone inside the bounding box
and outside all contours can be described by being inside
∅ and outside fP;Q ;Rg. We note that there is no zone in
the diagram corresponding to ðfP;Qg; fRgÞ i.e. there is no
zone inside contours labelled P and Q but outside the
contour labelled R. Euler diagrams may be conjoined using
the symbol 4 , disjoined using the symbol 3 or negated
using the symbol :.

A Spider Diagram of Order is an Euler diagram contain-
ing one or more graphs. The vertices of a graph are
labelled with ‘�’ or an integer. A graph is restricted such
that it is acyclic and may not have more than one vertex of
a given label in a given zone. To maintain consistency with
the literature we call graphs of this form spiders and term a
vertex within a graph to be a spider foot. The diagram in
Fig. 1(b) contains two spiders, one spider consisting of
three feet labelled ‘1’, ‘1’ and ‘�’, and the other spider
contains two feet labelled ‘1’ and ‘2’. In the following
definition, as throughout the paper, we use [to mean set
union, \ to mean set intersection and A�B to denote the
set difference between A and B.

Definition 1. A spider foot is an element of the set ðZþ [
f�gÞ � Z and the set of all feet is denoted F . A spider foot
ðk; zÞAF has rank k where kAZþ [ f�g. The rank of a
spider foot induces a relation o on the feet, defined by
ðk1; z1Þoðk2; z2Þ if both k1; k2AZþ and k1ok2 hold or
k1 ¼ � or k2 ¼ �.

Whilst it may seems strange that o as just defined is not a
strict ordering (because � is both less than and greater than
all other feet) this choice of o simplifies many definitions.

Definition 2. A spider, s, is a non-empty set of feet
together with a positive natural number, that is
sAZþ � ðPF�f∅gÞ, and the set of all spiders is denoted
S. The set p is the foot set of spider s¼ ðn; pÞ. The habitat of
a spider s¼ ðn;pÞ is the region ηðsÞ ¼ fz: ðk; zÞApg.

In the semantics predicate, we will define a spider to
represent an element corresponding to only one of its feet
in one of the constituent regions of its habitat.

Formally, the set of all contour labels is denoted C.
Definition 3. A unitary spider diagram of order, d, is a
quadruple 〈CðdÞ; ZðdÞ; ShZðdÞ; SIðdÞ〉 where:

CðdÞDC is a finite set of contour labels,
ZðdÞDfðin;CðdÞ� inÞ: inDCðdÞg is a set of zones,
ShZðdÞDZðdÞ is a set of shaded zones,
SIðdÞ⊊S is a finite set, called the spider identifiers, such
that for all spiders ðn1; p1Þ; ðn2; p2Þ in SI(d) if p1 ¼ p2 then
n1 ¼ n2.
The set of spider identifiers, in effect, counts the number

of spiders with a particular habitat. The set of spiders in d is

defined to be

SðdÞ ¼ fði; pÞ: ðn; pÞASIðdÞ41r irng:
The symbol ? is also a unitary spider diagram. We define
Cð?Þ ¼ Zð?Þ ¼ ShZð?Þ ¼ SIð?Þ ¼∅.

Spider diagrams of order may also be combined using the
Boolean operations 4 , 3 and :. In addition we allow the
binary connective ◃. A spider diagram of order that
contains one of the 4 , 3 , : or ◃ connectives is a
compound diagram. Furthermore, a spider diagram of
order containing either no spiders or containing spiders
consisting of only single feet is an α�diagram. A zone can
be considered to be missing from a spider diagram as
presented in [10].

Definition 4. Given an Euler diagram, d, a zone (in,out) is
said to be missing if it is in the set fðin;CðdÞ� inÞ: inD
CðdÞg�ZðdÞ with the set of such zones denoted MZ(d). If d
has no missing zones then d is in Venn form.

Spider diagrams of order have a model based
semantics.

Definition 5. An interpretation is a triple ðU; ! ;Ψ Þ where
U is a universal set and Ψ : C-PU is a function that assigns
a subset of U to each contour label and ! is a strict total
order on U. The function Ψ can be extended to interpret
zones and sets of regions as follows:
1.
 each zone, ðin; outÞAZ, represents the set

Ψ ðzÞ ¼ ⋂
cA in

Ψ ðcÞ \ ⋂
cAout

ðU�Ψ ðcÞÞ and
2.
 each region, rAPZ, represents the set which is the
union of the sets represented by r's constituent zones,
that is
Ψ ðrÞ ¼ ⋃

zA r
Ψ ðzÞ:

Definition 6. Let I¼ ðU; ! ;Ψ Þ be an interpretation and
let d (a ?) be a unitary spider diagram. Then I is a model
for d, denoted IFd, if and only if the following conditions
hold.
1.
 The missing zones condition: All of the missing zones
represent the empty set, that is, ⋃zAMZðdÞΨ ðzÞ ¼∅.
2.
 The spider mapping condition: There exists an injective
function, φ: SðdÞ-U and a function f : SðdÞ-F , called a
valid pair, such that the following conditions hold:
(a) The selected foot condition: Each spider s must map,

under f , to a spider foot in its foot set:

8ðn; pÞASðdÞf ðn; pÞAp:

(b) The spiders' location condition: All spiders represent
elements in the sets represented by the zone in
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which the selected foot, under f , is placed:

8sASðdÞðf ðsÞ ¼ ðk; zÞ ) φðsÞAΨ ðzÞÞ:

(c) The shading condition: Shaded regions represent a
subset of elements denoted by spiders:

8zAShZðdÞΨ ðzÞD imðφÞ:

(d) The order condition: The ordering information pro-
vided by the selected spider feet agrees with that
provided by the strict order relation.
That is,

8s1; s2ASðdÞðφðs1Þ!φðs2Þ ) f ðs1Þo f ðs2ÞÞ:
If d¼ ? then no interpretation is a model for d.

The conjunction of conditions 1 and 2 above is the
semantics predicate for spider diagrams of order. The
semantics of the connectives 4 , 3 and : extend in the
obvious manner, however the semantics of ◃ requires
some explanation.

The ◃ operation allows the specification of an order
between unitary diagrams. In order to define the semantics of
compound spider diagrams of order involving ◃ we present
the definition of ordered sum of interpretations [8].

Definition 7. The ordered sum of two interpretations
m1 ¼ ðU1; !1;Ψ 1Þ and m2 ¼ ðU2; !2;Ψ 2Þ, denoted
m1þm2, where U1 and U2 are disjoint, is the interpretation
m¼ ðU; ! ;Ψ Þ such that
�
 U ¼U1 [ U2,
�
 ! ¼ !1 [ !2 [ fða; bÞ: aAU14bAU2g,
�
 Ψ ðcÞ ¼Ψ 1ðcÞ [ Ψ 2ðcÞ for all cAC.
Given an interpretation, I, and a diagram, D1◃D2, I models
D1◃D2 if there exist models m1 and m2 for D1 and D2

respectively and I ¼m1þm2. We now define when two
diagrams are semantically equivalent.

Definition 8. Let D1 and D2 be spider diagrams of order. If
the model set for D1 is exactly that of D2 then D1 and D2

are semantically equivalent, denoted D1 � FD2.

Having defined the syntax and semantics of spider dia-
grams of order, we now define the rules of our sound
reasoning system.

3. Reasoning rules

We introduce seven reasoning rules for spider diagrams
of order. These rules are subsequently used to produce
diagrams in normal form; providing the basis of our
reasoning system. The rules are:
1.
 introduction of a contour label,

2.
 introduction of a missing zone,

3.
 splitting spiders,
Fig. 2. The introduction of a contour label rule.
4.
 separate rank and bounds,
5.
 factor lowest spiders,

6.
 drop spider-foot rank, and

7.
 rule of replacement.
The rules of replacement, introduction of a contour label,
introduction of a missing zone and splitting spiders rule
are generalised from [19], whereas the other three rules
are completely new. For each rule we present a statement
of the rule, a formal definition of the rule and an example
of the use of the rule. All of the reasoning rules presented
in this section produce semantically equivalent diagrams.
Therefore, each of the rules defines its own inverse, and if
D2 is the consequence of applying a rule to D1 then D1 is
the consequence of applying the inverse of the rule to D2.
The reasoning rules are presented here without proof of
soundness. Full proofs of soundness of each reasoning rule
can be found in [6].

The following rule describes how to introduce a miss-
ing contour into a diagram producing a semantically
equivalent diagram.

Rule 1 (Introduction of a contour label). Let d be a unitary
spider diagram of order and let d0 be a unitary spider diagram
of order obtained from d by introduction of a contour label as
follows.
�
 The new contour has a label that is not present in d.

�
 The contour introduced in d0 splits each zone z of d into

two zones z1 and z2 and both z1 and z2 are shaded where
z is shaded.
�
 Each unordered foot of a spider in zone z of d is replaced
in d0 by a pair of unordered spider feet in z1 and z2.
�
 Each ordered spider foot in zone z is similarly replaced in
d0 by a pair of ranked feet of the same rank in z1 and z2.

Then d may be replaced by d0 and vice versa.

Example 1. Let d be the diagram in Fig. 2(a). Let d0 be the
diagram in Fig. 2(b) where each zone in d has been split by
the introduced contour R in d0. Each spider foot of d has
been replaced by a pair of spider feet in d0 such that one
foot of the pair is the original foot and the other foot is
extended into new zone created by the partition of the
original zone containing the original foot.

Formal description of rule 1. Let d be a unitary spider
diagram of order such that da ? . Let lAC�CðdÞ and let d0

be the diagram where

Cðd0Þ ¼ CðdÞ [ flg;
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Zðd0Þ ¼ fðin [ flg; outÞ: ðin; outÞAZðdÞg
[fðin; out [ flgÞ: ðin; outÞAZðdÞg;
ShZðd0Þ ¼ fðin [ flg; outÞ: ðin; outÞAShZðdÞg
[fðin; out [ flgÞ: ðin; outÞAShZðdÞg;
SIðd0Þ ¼ fðn; p0Þ: (ðn; pÞASIðdÞ4p0

¼ fðk; ðin [ flg; outÞÞ: ðk; ðin; outÞÞApg
[fðk; ðin; out [ flgÞÞ: ðk; ðin; outÞÞApgg:

Then d may be replaced by d0 and vice versa.

The add contour rule is sound as the resultant diagram
is semantically equivalent to the original, as we now state.

Theorem 1. Let d be a unitary spider diagram of order such
that da ? . Let lAC�CðdÞ. Let d0 be a spider diagram of
order such that l is introduced to d resulting in d0 by rule 1,
introduction of a contour. Then d� Fd0.

Given an arbitrary diagram D and the introduction of a
contour label rule we may introduce all contours in C
producing a diagram containing all contours. The introduc-
tion of a missing zone rule, when coupled with the
introduction of a contour label rule, allows us to produce
diagrams in Venn-form containing all contours.

Rule 2 (Introduction of a missing zone). Let d be a unitary
spider diagram of order with missing zone z and let d0 be a
copy of d where z is added to d0 and z is shaded. Then d can
be replaced by d0 and vice versa.

Example 2. Let d be the unitary diagram in Fig. 3(a).
The zone z¼ ðfP;Qg; fgÞ is missing from d. Let d0 be the
diagram in Fig. 3(b). The zone z has been added as a
shaded zone to d0.

Formal description of rule 2. Let dða ?Þ be a unitary
spider diagram of order. Let zAMZðdÞ. Then d0 is a unitary
spider diagram of order where

Cðd0Þ ¼ CðdÞ;
Zðd0Þ ¼ ZðdÞ [ fzg;
ShZðd0Þ ¼ ShZðdÞ [ fzg;
SIðd0Þ ¼ SIðdÞ:
Then d can be replaced by d0 and vice versa.

The following establishes the soundness of the intro-
duction of a missing zone rule.

Theorem 2. Let dða ?Þ be a unitary spider diagram of
order. Let zAMZðdÞ. Let d0 be the diagram obtained by
applying rule 2 introduction of a missing zone to d. Then
d� Fd0.
Fig. 3. The introduction of a missing zone rule.
The splitting spiders rule allows us to represent the
disjunctive information held within a unitary diagram as a
disjunction of unitary diagrams. By repeated application
we generate a disjunction of α-diagrams.

Rule 3 (Splitting spiders). Let dða ?Þ be a unitary spider
diagram of order containing a spider s with foot set p where
jpj41. Let d1 and d2 be copies of d and let fp1; p2g be a
partition of p. Then s is replaced in d1 with s1 where the foot
set of s1 is p1. Similarly, s is replaced in d2 with s2 where the
foot set of s2 is p2. Then d can be replaced by the diagram
d13d2 and vice versa.

Example 3. Let d1 be the diagram in Fig. 4(a). A single
application of the splitting spiders rule may result in the
diagram d23d3 in Fig. 4(b). A further application of the
splitting spiders rule to d3 produces a disjunction of α-
spider diagrams of order.

In order to formally describe the split spiders rule we
require the following definition, which allows us to
remove spiders from, and add spiders to, a unitary
diagram.

Definition 9. Let d be a unitary spider diagram of order.
Let p be a foot set such that fz: ðk; zÞApgDZðdÞ. Let d0 be a
unitary spider diagram of order that contains the same set
of contours, set of zones and set of shaded zones as d. We
may remove a spiderwith foot set p from d, denoted d⊖p to
give d0 such that, d0 is identical to d except that:

SIðd0Þ ¼ SIðdÞ�fðn; pÞ: ðn; pÞASIðdÞg
[fðn�1;pÞ: ðn; pÞASIðdÞ4n41g:

Alternatively, we may add a spider with foot set p to d,
denoted d � p to give d0 such that, d0 is identical to d
except that:

SIðd0Þ ¼ SIðdÞ�fðn; pÞ: ðn; pÞASIðdÞg
[fðnþ1;pÞ: ðn; pÞASIðdÞg
[fð1;pÞ: ðn; pÞ=2SIðdÞg:

Formal description of rule 3. Let d be a spider diagram of
order containing a spider s¼ ðn; pÞ with jpj41 and let
fp1; p2g be a partition of p. Let d1 and d2 be unitary diagrams
such that:
�
 d1 ¼ ðd⊖pÞ � p1, and
�
 d2 ¼ ðd⊖pÞ � p2.
Then d can be replaced by the diagram d13d2 and vice versa.

Theorem 3. Let d be a unitary spider diagram of order and
let d13d2 be the result of the application of rule 3 splitting
spiders to d. Then d� Fd13d2.

When given an arbitrary diagram D, we may use the
introduction of a contour label, introduction of a missing
zone and splitting spiders rules, to produce a diagram Dα

where each unitary component is in Venn-form, contains
all contours in C and is an α-diagram. We now introduce a
series of three rules which, when given Dα, produce a
diagram that contains no ranked feet. The first of our three
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Fig. 5. The separate rank and bounds rule.
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rules isolates the order information from the bounds
information provided by unranked spiders and shading.

Rule 4 (Separate rank and bounds). Let d be a unitary
α-spider diagram of order. The diagram d can be decom-
posed into the conjunction of d1 and d2 where d1 contains the
ordered spider feet from d and no shading. Furthermore, d2
contains an unranked spider foot for each spider foot in d and
each shaded zone in d is also shaded in d2. Then d can be
replaced by diagram d14d2 and vice versa.

Example 4. Let d be the diagram in Fig. 5(a). A single
application of rule 4 separate rank and bounds produces
dα○ 4dα� in Fig. 5(b). The ordered spider feet are separated
from the bounds information as the diagram d1 contains
only the order information, provided by ordered spider
feet in d. The diagram d2 contains the bounds information
provided by both the shading and spiders in d. For each of
the spiders in d there exists an unranked spider in d2 with
the same habitat.

Formal description of rule 4. Let dða ?Þ be a unitary α-
diagram of order in Venn-form containing all contours in C.
Let d1 and d2 be diagrams such that

Cðd1Þ ¼ Cðd2Þ ¼ CðdÞ;
Zðd1Þ ¼ Zðd2Þ ¼ ZðdÞ;
ShZðd1Þ ¼∅;

ShZðd2Þ ¼ ShZðdÞ;
and

SIðd1Þ ¼ fðn; fðk; zÞgÞ: ðn; fðk; zÞgÞASIðdÞ4ka�g;

SIðd2Þ ¼ orderEraseðSIðdÞÞ;
where

orderEraseðSIðdÞÞ

¼ ðn; fð�; zÞgÞ:n404n¼ ∑
ðm;fðk;zÞgÞA SIðdÞ

m

( )
:

Then d can be replaced by d14d2 and vice versa.
Our proof of the soundness of Rule 4 proceeds by first
presenting a series of lemmas. Each lemma corresponds to
a step demonstrated in Fig. 6. The diagram d is semanti-
cally equivalent to the diagram d4d2 by Lemma 1 below.
Lemma 2 will show that d4d2 is equivalent to d34d2; i.e.
we may drop shading from d without changing the mean-
ing of the diagram d4d2. Finally, Lemma 3 will show that

d34d2 � Fd44d2 � Fd54d2

i.e. we may remove all unranked spiders from d3, one at a
time, without changing the meaning of the diagram. We
observe that, in general, shading has no effect on the order
information contained in a unitary diagram. We now show
that the first step in this process holds.

Lemma 1. Let d be a unitary α-diagram of order in Venn-
form containing all contours in C. Let d2 be a diagram where

Cðd2Þ ¼ CðdÞ
Zðd2Þ ¼ CðdÞ
ShZðd2Þ ¼ ShZðdÞ
SIðd2Þ ¼ orderEraseðSIðdÞÞ:
Then d� Fd4d2.

Returning to Fig. 6, Lemma 1 shows that d is semanti-
cally equivalent to d4d2. We now show that d4d2 is
semantically equivalent to d34d2. Here, d3 is obtained
from d by removing the shading.

Lemma 2. Let d4d2 where da ? and d2a ? be a spider
diagram of order where d is a unitary α-diagram of order in
Venn form containing all contours in C and where

Cðd2Þ ¼ CðdÞ
Zðd2Þ ¼ CðdÞ
ShZðd2Þ ¼ ShZðdÞ
SIðd2Þ ¼ orderEraseðSIðdÞÞ:
Let d3 be a copy of d where ShZðd3Þ ¼ fg. Then
d4d2 � Fd34d2.
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We now show that where rank information has been
separated from bounds information we can remove
unranked spiders. This is illustrated in Fig. 6, where
d34d2 becomes d44d2, by removing an unranked spider.

Lemma 3. Let d34d2 be a spider diagram of order where
�
 d3 is a unitary α-spider diagram of order in Venn form
containing all contours from C and ShZðd3Þ ¼ fg,
�
 d2 is a unitary α-spider diagram of order in Venn form
containing all contours from C containing only unranked
spider feet, and
�
 there exists a habitat preserving injective function
π: Sðd3Þ-Sðd2Þ.

Let d4 be a copy of d3 where one of the unranked spiders
s¼ ðn; fð�; zÞgÞ in d4 is removed; i.e. Sðd4Þ ¼ Sðd3Þ⊖fð�; zÞg.
Then d34d2 � Fd44d2.
Having demonstrated that we can remove a single
unranked spider, we can repeatedly remove such spiders
from diagrams like d3 in Fig. 6 until no unranked spiders
remain. We use this observation in the proof of the next
theorem.

Theorem 4. Let d be a unitary α-diagram of order where
d14d2 is the result of applying rule 4 separate rank and
bounds rule to d. Then d� Fd14d2.

Given a diagram d that contains only rank information
(such a diagram is generated by an application of separate
rank and bounds), the factor lowest spiders rule allows us
to factor the different ranks out into a product of diagrams,
where each unitary component of the product contains
spiders of the same rank. We will subsequently show that
ranked spider feet may be substituted by unranked spider
feet given a unitary diagram containing only spiders of the
same rank.

Rule 5 (Factor lowest spiders). Let d be a unitary α-diagram
containing only spiders whose feet are ranked and containing
no shaded zones. Then d may be replaced by dk◃d

0 where dk
contains those spider feet of lowest rank in d and d0 contains
all other spider feet.

Example 5. Let dα○ be the diagram in Fig. 7(a) and dα1
○
◃dα2

○

be the diagram in Fig. 7(b). We factor dα○ into dα1
○
and dα2

○

where dα1
○
contains all the lowest ranked spider feet from

dα○ ; i.e. those spider feet labelled . The diagram
dα1

○
◃dα2

○
� Fdα○ .

Formal description of rule 5. Let d be a unitary α-diagram
containing only spiders whose feet are ranked and containing
no shaded zones. Let k be the lowest rank of these feet. Let dk
and d0 be diagrams such that

CðdkÞ ¼ Cðd0Þ ¼ CðdÞ
ZðdkÞ ¼ Zðd0Þ ¼ ZðdÞ
ShZðdkÞ ¼ ShZðd0Þ ¼ ShZðdÞ ¼ fg

and

SIðdkÞ ¼ fðn; ðk; zÞÞ: ðn; ðk; zÞÞASIðdÞg
SIðd0Þ ¼ SIðdÞ�SIðdkÞ:

Then d may be replaced by dk◃d
0 and vice versa.

Theorem 5. Let dða ?Þ be a unitary α-diagram containing
only spiders whose feet are ranked and containing no shaded
zones. Let d� Fdk◃d

0 be the result of applying rule 5 factor
lowest spiders to d. Then d� Fdk◃d

0.

Rule 6 (Drop spider-foot rank). Let d be a unitary α-
diagram such that each foot of each spider in d is of rank
kAZþ . Then d may be replaced by a diagram d0 where d0 is a
copy of d and each foot of each spider foot in d0 is unranked.

Example 6. Let d be the diagram in Fig. 8(a), in which all
spiders contain the same rank spider feet. Then d may be
replaced by d0 in Fig. 8(b).

Formal description of rule 6. Let d be a unitary α-diagram
and kAZþ where

ðn; fðj; zÞgÞÞASIðdÞ ) j¼ k:



Fig. 7. The factor lowest spiders rule.

Fig. 8. The drop spider foot rank rule.
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The diagram d may be replaced by d0 where

Cðd0Þ ¼ CðdÞ;
Zðd0Þ ¼ ZðdÞ;
ShZðd0Þ ¼ ShZðdÞ;

and

SIðd0Þ ¼ fðn; fð�; zÞgÞ: ðn; fðk; zÞgÞASIðdÞg:

Theorem 6. Let dða ?Þ be a unitary α-diagram where all
spiders contain only feet of rank k. Let d0 be the diagram
produced by application of rule 6 to d. Then d� Fd0.

Our final rule, the rule of replacement, allows us to
replace any spider diagram of order which is a sub-
diagram in a compound expression with a semantically
equivalent diagram. The purpose of this rule is to allow a
sub-diagram in a compound expression to be replaced by
the result of application of a reasoning rules to that sub-
diagram. We first define a sub-diagram. We observe that
the syntax of a spider diagram of order is defined by the
following grammar in Backus–Naur form:

diagram :: ¼ 〈unitary_diagram〉 j conjunction
j disjunction j negation j product;

conjunction :: ¼ diagram4diagram;

disjunction :: ¼ diagram3diagram;

negation :: ¼:diagram;

product :: ¼ diagram◃diagram;

Given any spider diagram of order we may now construct
its abstract syntax tree. Each tree contains unitary spider
diagrams of order at leaf nodes and compound operators
at non-leaf nodes.

The set of all abstract syntax trees is T and the set of all
spider diagrams of order is Δ.
Theorem 7. Let D be a spider diagram of order. There exists
a unique abstract syntax tree t and bijective function δ:Δ-T
such that δðDÞ ¼ t.

Let D be a spider diagram of order with abstract syntax
tree t where t contains a non-leaf node r. The tree tr with
root node r is a sub-tree of t. Furthermore, δ�1ðtrÞ is a sub-
diagram of D.

Not only do we need to define what a sub-tree is, but
we also need to know when two diagrams are syntactically
equivalent. The following two definitions define transfor-
mational equivalence.

Definition 10 (Adapted from Molina [13], Stapleton
[16]). Let D1 and D2 be spider diagrams of order. Then
D1CD2 if and only if D1 can be transformed into D2 by
applying one of the reasoning rules given in this section.
We say that D2 is obtainable from D1, denoted D1 ‘ D2, if
and only if there is a sequence of diagrams 〈D1;D2;…;Dm〉

such that D1 ¼D1;D
m ¼D2 and Dk�1CDk for each

1rkrm.

Definition 11 (Adapted from Molina [13], Stapleton
[16]). Let D1 and D2 be spider diagrams of order. If D1 ‘
D2 and D2 ‘ D1 then D1 and D2 are syntactically equivalent
denoted, D1 � ‘D2.

We may now define the rule of replacement.

Rule 7 (Rule of replacement). Let D and D0 be spider
diagrams of order. Let Dr be a sub-diagram of D, where Dr

is syntactically equivalent to D0. Then an instance of Dr in D
may be replaced by D0.

Example 7. In the diagram d13d2 in Fig. 9(a) we apply a
rule to d1 such that d1 ‘ dx3dy (specifically, the split
spiders rule). Then we may replace d1 by dx3dy as seen in
Fig. 9(b).

Formal description of rule 7. Let D1 and D0 be spider
diagrams of order where Dr is a sub-diagram of D1. If
Dr � ‘D

0 then any occurrence of the subtree δðDrÞ in δðD1Þ
may be replaced by δðD0Þ to produce D2. Then D1 can be
replaced by D2 and vice versa.

The soundness of the rule of replacement is given in the
following theorem:

Theorem 8. Let D1 and D2 be spider diagrams of order
where D2 is obtained from D1 by application of rule 7 rule of
replacement. Then D1 is semantically equivalent to D2.
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Each of our seven reasoning rules is sound. However,
our reasoning system is incomplete. Previous approaches
to showing completeness of spider diagram based reason-
ing systems do not readily generalise to spider diagrams of
order. As a first step in developing a complete reasoning
system we produce a normal form for spider diagrams of
order. In the next section we provide an algorithm that,
Fig. 9. The rule of

Fig. 10. Applying reasoning rules resulti
given an arbitrary spider diagram of order, produces a
spider diagram of order in our normal form.

4. An algorithm to produce diagrams in normal form

In this section we define a normal form for spider
diagrams of order. Our normal form allows the diagram ? .
replacement.

ng in a disjunction of α-diagrams.
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Furthermore, compound diagrams are formed from uni-
tary α-spider diagrams in Venn-form containing all con-
tours in C and no ranked spiders. Compound expressions
in normal form allow 4 , 3 and ◃ as connectives and : as
the unary operator. From the 7 reasoning rules, presented
in the previous section, we show that any spider diagram
of order is semantically equivalent to a diagram in our
normal form. Specifically, we define a sequence of applica-
tions of reasoning rules for producing a diagram in normal
form given an arbitrary spider diagram of order.
Definition 12. Let D be a spider diagram of order. It is the
case that D is in normal form if the following conditions
hold:
�
 No unitary component of D contains ranked spider feet.

�
 Each unitary component of D is an α-diagram and

contains all contours in C, or is ? .

�
 There are no zones missing from any unitary compo-

nent ða ?Þ of D.

�
 The binary connectives 4 , 3 and ◃ and the unitary

connective : are the allowed connectives in D.
a

b

c

d

Fig. 11. Applying reasoning rules result
Given a spider diagram of order as input, the algorithm
produces a spider diagram of order in normal form as output.
The algorithm is outlined as follows, where applications of
rule 7, the rule of replacement, are implicitly assumed:
�

ing
Let D be the input diagram.

�
 Apply rule 1 to each unitary diagram in D, producing

DC , until all contours in C are present in the result DC .
�
 Apply rule 2 to each unitary diagram in DC , producing
DZ , until there are no missing zones in the result DZ .
�
 Apply rule 3 to each unitary diagram in DZ until there
are no spiders with multiple feet in the result Dα.
�
 Apply rule 4 to each unitary diagram in Dα, producing Dα○ .
�
 Apply rule 5 to each unitary diagram in Dα○ until every
unitary diagram either contains no spider feet or spider
feet of all the same rank.
�
 Apply rule 6 to each unitary diagram in Dα○ 0 , producing
D�, the final result.

We now present an example of a unitary spider
diagram, its corresponding normal form diagram and an
in a diagram in normal form.
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illustration of the algorithm to generate the required
normal form.

Example 8. Let d1 be the unitary spider diagram of order
in Fig. 10(a) and let C¼ fP;Q ;Rg. The diagram d1 contains
the contours P and Q and the zones ðfg; fP;QgÞ; ðfPg; fQgÞ
and ðfQg; fPgÞ. It is not in Venn form as the zone ðfP;Qg; fgÞ
is missing. Furthermore, the contour R is not present in d1
and the diagram contains a spider with more than one
foot. Our strategy is to first add all the missing contours to
d1. The addition of R to d gives the diagram in Fig. 10(b).
We then add all the zones that are missing from 10(b)
forming 10(c). The addition of the zones ðfP;Qg; fRgÞ and
ðfP;Q ;Rg; fgÞ to the diagram can be seen in Fig. 10(c). The
diagram in Fig. 10(c) is in Venn form and contains no
missing zones. It is semantically equivalent to d1. From this
diagram in Venn form containing all contours in C we
repeatedly employ a split spiders reasoning rule to pro-
duce a disjunction of α-diagrams. The diagram in Fig. 10(d)
is a disjunction of α-diagrams where each unitary compo-
nent contains all contours in C. It is semantically equiva-
lent to d1.
Let d7 (an arbitrary choice) be the unitary component

of the diagram in Fig. 10(d) as annotated in the figure.
We now show that d7 and, by extension, any unitary
α-diagram may be transformed, by application of reason-
ing rules, into a diagram in our normal form. We first
separate order and shading resulting in diagram d124d13
in Fig. 11(a). Thereafter, we factor lowest spiders from d12
and replace d12 with d0124d″12 in Fig. 11(b). Finally, the
precondition for the drop spider foot order rule is satisfied,
so we drop the ordered foot from d012 resulting in d14 in
Fig. 11(a). Applying the drop spider foot order rule to d0012
and replacing the result into ðd14◃d0012Þ4d13 yields the
diagram ðd14◃d15Þ4d13 in normal form in Fig. 11(d).

5. Conclusion

We have presented a reasoning system and normal form
for spider diagrams of order. Spider diagrams of order are
an interesting recent advance in Euler-diagram based visual
logics as they incorporate an order relation into their
semantics. Furthermore, it is known that spider diagrams
of order are as expressive as star-free regular languages and
that star-free regular languages are as expressive as linear
temporal logic. In the future, we wish to use the normal
form, developed in this paper, to directly compare spider
diagrams of order and linear temporal logic.

We view our algorithm for obtaining normal form to be
the first step towards providing a completeness result for
spider diagrams of order. This is because the completeness
proofs for existing spider diagram logics, such as [10], as
well as their extension called constraint diagrams [11], rely
on obtaining diagrams with the property that all spiders
have single feet [2]. This property is delivered by our
normal form. Once in this normal form, the completeness
proofs use other rules to establish syntactic entailment. As
it stands, the spider diagram of order logic does not have
sufficient rules to establish completeness. Finding a com-
plete set of rules is an interesting prospect for future work
because it will provide insight into how to gain complete-
ness when an order operator is present, contributing to
our understanding of diagrammatic logics in general.
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