Kent Academic Repository
Full text document (pdf)

Citation for published version
Lamela Seijas, Pablo and Li, Huiging and Thompson, Simon (2013) Towards property-based
testing of RESTful web services. In: Erlang '13 Proceedings of the twelfth ACM SIGPLAN

workshop on Erlang. Proceedings of the twelfth ACM SIGPLAN workshop on Erlang. Associatior
for Computing Machinery, New York, USA pp. 77-78. ISBN 978-1-4503-2385-7.

DOI
https://doi.org/10.1145/2505305.2505317

Link torecord in KAR
https://kar.kent.ac.uk/42310/

Document Version
UNSPECIFIED

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all
content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions
for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the
published version of record.

Enquiries
For any further enquiries regarding the licence status of this document, please contact:
researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down
information provided at http://kar.kent.ac.uk/contact.html

KAR =

Kent Academic Repository

Towards Property-Based Testing of RESTful Web Services

Pablo Lamela Seijas
University of Kent
Canterbury, UK
P.Lamela-Seijas@kent.ac.uk

ABSTRACT

Developing APIs as Web Services over HT'TP implies adding
an extra layer to software, compared to the ones that we
would need to develop an API distributed as, for example,
a library.

This additional layer must be included in testing too, but
this implies that the software under test has an additional
complexity due both to the need to use an intermediate pro-
tocol in tests and to the need to test compliance with the
constraints imposed by that protocol: in this case the con-
straints defined by the REST architectural style.

On the other hand, these requirements are common to all
the Web Services, and because of that, we should be able
to abstract this aspect of the testing model so that we can
reuse it in testing any Web Service.

In this paper, as a first step towards automating the test-
ing of Web Services over HTTP, we describe a practical
mechanism and model for testing RESTful Web Services
without side effects and give an example of how we success-
fully adapted that mechanism to test two different existing
Web Services: Storage Room by Thriventures and Google
Tasks by Google. For this task we have used Erlang together
with state machine models in the property-based testing tool
Quviq QuickCheck, implemented using the statem module.

1. INTRODUCTION

In order for software to be testable, it needs to have clearly
defined interfaces. When testing Web Services we get two
advantages inherently:

e Web Services have a clear interface by definition.

e The interfaces for Web Services are language-independent.

Because of this we do not need to know in which lan-
guage they are written, under which operating system

Huiqing Li
University of Kent
Canterbury, UK
H.Li@kent.ac.uk

Simon Thompson
University of Kent
Canterbury, UK
S.J. Thompson@kent.ac.uk

they are running, or where in the world they are de-
ployed.

But because we have a protocol in the middle (usually HTTP),
the number and complexity of tests needed are higher than
would be in the case that we just had to call the functions
of a traditional library because:

e We must test the constraints of the protocol support-
ing access to the services; in our case this is the REST
architecture implemented over HTTP.

e We have to use sockets or other intermediate libraries
which add complexity to the tests.

e Web Services are usually exposed to a more hostile en-
vironment — the internet — so they need to be tested for
safety against malformed or maliciously constructed
requests.

Nevertheless, since Web Services — and in particular REST
Web Services [8] — usually follow a series of conventions, it
should be possible to create a framework that abstracts the
parts of the testing model which are applicable to all Web
Services. This way we would not have to develop tests from
scratch for each project but, instead, it would be sufficient to
adapt the framework to each set of particular requirements.

As a first step and in an attempt to find those commonali-
ties, we have developed a simple property-based test model
that represents an idealised model of a REST Web Service
(Section 3), and we have adapted this model to test two ex-
isting Web Services claimed to follow the REST principles:
Storage Room [22] and Google Tasks [9]. (Section 4).

Despite the fact that our approach has only been applied
on a small scale, and that we did not find any actual bugs,
the exercise has allowed us to learn behaviours of the target
systems that were different to those that we were expect-
ing beforehand, thus giving us a broader understanding of
their functionality. Furthermore, we achieved this in a non-
intrusive way, by issuing a total of less than 5000 requests
to each of the services and spreading them out in time so
that they would not perceptibly diminish the availability of
the Web Services. The contributions of this paper are:

e A base model to test side-effect-free REST Web Ser-
vices.

e A technique to adapt the model to specific scenarios.

e Two examples that illustrate the model and technique
applied to two existing Web Services.

2. RELATED WORK

The Web Services tested in this paper return and expect
resources in JavaScript Object Notation (JSON) [11]. JSON
is becoming popular and is often used where XML was used
before, or in conjunction with XML. JSON is a lightweight
format used for data exchange that is characterised by being
a subset of the JavaScript language. This property makes
it easy for web browsers to parse. In Section 6 we will talk
a bit more about JSON and we will address the issue of
randomly generating valid JSON input data for the use in
testing.

QuickCheck was originally a tool created for Haskell [6]
that uses random generated data as input for testing func-
tions. Functions are fed with random inputs and the tool
checks that the outputs comply with the appropriate post-
conditions. Because at the time of initial development Haskell

had a small industrial community, a new version of QuickCheck

was developed for Erlang and it is currently being main-
tained by Quvig AB [10]. In turn, the latter QuickCheck
inspired the creation of a similar but open-source tool called
PropEr, which further explores the integration with Erlang
type specifications [18]. Versions of QuickCheck have also
been developed for other languages, notably Java [20].

Quviqg’s QuickCheck provides some specific tools that sim-
plify the generation of input data for certain scenarios. It is
the case of the modules statem and fsm. The module fsm
allows the interface under test to be described by a finite
state machine, where transitions represent calls to the in-
terface. QuickCheck can use this descriptions to generate
sequences of commands that comply with the given state
machine. The module statem works in a similar way but it
does not require a state machine to be defined, relying in-
stead on a single “control state” with a mutable “data” state
value, preconditions, and postconditions.

The work described in this paper is the result of using a
QuickCheck statem — in the style described by Castro and
Arts to test database intensive applications [3] — to the par-
ticular case of REST Web Services. We also show briefly
how we can abstract the approach in order to use the mod-
ule £sm for the same purpose, (Section 5).

In the past, other approaches have been used to test REST
Web Services, like is the case of the tool Test-the-rest [4].
These approaches usually rely on unit testing in contrast to
ours, which consists in property-based testing. There is also
some work on testing and verification of the RESTfulness of
Web Services that focuses on the general REST principles
such as connectedness [5] and temporal constraints [13].

On the other hand, property-based testing has been used to
test SOAP (non-restful) Web Services in an automatic way
before. In [14] Lampropoulos and Sagonas show a way to
create properties to test SOAP services by using WSDL de-
scriptors. Their method generates a set of simple properties
without the need of human intervention, and then they use

this properties as a template for writing more complex ones.
Nevertheless, despite the fact that WSDL descriptors are a
de facto standard for SOAP Web Services, they are rarely
present in REST Web Services. For this reason we use a
different approach for the elaboration of generators.

Haskell QuickCheck has also been used for SOAP Web Ser-
vice testing [23], and automatic approaches for testing non-
restful Web Services using both FSMs [1] and EFSMs [12]
have been described in several places.

Finally, Lastres in [15] has also used QuickCheck statem
to test a REST Web Service (Wriaki) in a property-based
way. The method we use in this paper is quite similar to
this approach although here we focus on generalising the
common aspects of REST Web Services.

3. THE REST MODEL

The principles of the REST architecture [8] reflect the orig-
inal principles behind the HTTP protocol. Because REST
is a radical new perspective, which has been highly influen-
tial, the terms ‘REST’ and ‘RESTful’ have become over-used
buzzwords, and despite that fact that the original principles
identified by Fielding [8] are clear and unambiguous, there
is controversy about what is and isn’t a RESTful system
in practice; see Fielding’s blog post REST APIs must be
hypertext-driven [21] for a particular example of controversy.

Introducing the model

According to the REST philosophy, each resource must have
a permanent Uniform Resource Identifier (URI) that iden-
tifies a resource globally [2] and which must be unique and
persistent. In conformance with the HT'TP protocol,

e whenever we want to retrieve a resource we must use
the method GET;

e when we want to add a new resource we must use the
method POST;

e when we want to remove a resource we must use the
method DELETE; and

e when we want to modify a resource we must use the
method PUT.

No assumptions must be made about the location of re-
sources since it should be possible to find them by following
hyperlinks from a base URI [19]. With this assumption in
mind we can model a collection of resources in a similar way
to how we would model a database table: each entry of the
collection would correspond to a row in the database table
and GET would correspond to SELECT, INSERT would corre-
spond to POST, UPDATE would correspond to PUT, and DELETE
would correspond to DELETE.

Our collection will have a defined URI. For example (where
we use ‘...’ to elide part of the initial segment of the URISs):

http://restsrv...collections/book_collection

Based on the URI for the collection, there will be a URI
where we can POST new entries and GET the list of existing
entries. For example:

http://restsr...collections/book_collection/entries

And all the entries in the collection will follow a common
pattern. For example:

http ... book_collection/entries/Cinderella
http ... book_collection/entries/Hansel_and_Gretel
http ... book_collection/entries/Snow_White

In our model we can then define five operations, four based
on the HTTP actions, and a fifth to list an entire set of
resources.

Note that 1ist() uses the same HTTP action as get() ,
namely GET. The reason we do not use the same method for
both is that 1ist() is used for resources of the type “col-
lection”, and get () is used for the rest of resources. 1ist ()
will extract the list of entries in the collection while get ()
will return the resource as a black box. The facade must be
adapted for each particular implementation and by separat-
ing both behaviours we can keep a more general get () while
list () is more specific.

The functions of the model

We now show the proposed Erlang functions of the model
and how they would map with their equivalents in HTTP.
They are presented in the form:

function(Parameteri, ., ParameterN) -> Result

In this example, the titles of the books are used as keys,
but in real systems keys would usually be just hashes. The
values are strings containing the JSON representation of the
information of the book but they could also be any string:

get(Key) -> Entry - Retrieves the entry with key Key. For
example:

get("Cinderella") ->
" {

title: ’Cinderella’;
author: ’Charles Perrault’

}n

would be implemented as a GET call to the URL where
the entry with key Key is stored:

GET .../book_collection/entries/Cinderella

delete(Key) -> ok - Removes the entry with key Key. For
example:

delete("Cinderella") -> ok

would be implemented as a DELETE call to the URL
where the entry with key Key is stored:

DELETE .../book_collection/entries/Cinderella

post (Entry) -> Key - Adds the entry Entry to the collec-
tion, and returns the Key used to store it. For example:

post (" {

title: ’Cinderella’;
author: ’Charles Perrault’

} ") -> "Cinderella"

would be implemented as a POST call to the URL of
the entries of the collection:

POST .../book_collection/entries
{

title: ’Cinderella’;
author: ’Charles Perrault’

put (Key, PartialEntry) -> ok - Modifies the entry with
key Key to include the fields in PartialEntry. For
example:

put("Cinderella",
" {
author: ’Brothers Grimm’
} ") -> ok

It is implemented as a PUT call to the URL where the
entry with key Key is stored:

PUT .../book_collection/entries/Cinderella
{
author: ’Brothers Grimm’

}

list() -> [{Key, Value}] - Returns a list with all the
pairs of keys and entries in the collection, (in our im-
plementation, a list of tuples). For example:

list() —>
[{"Cinderella", "{ title: ... }"},
{"Hansel_and_Gretel", "{ title: ... }"},
{"Snow_White", "{ title: ... }"}]

It is implemented as a GET call to the URL of the en-
tries of the collection:

GET .../book_collection/entries

Using the model

In order to guide the design of our initial test model before
trying it in the real services, we implemented the previous
model as an Erlang gen_server with a dictionary (module
dict) as storage. In this implementation, the post method
returns a long hexadecimal hash, and the entries were as-
sumed to be arbitrary Erlang terms. Whenever an entry is
deleted, it is no longer accessible via get, 1ist or put. Also,
whenever any method is used with a Key that is not in the
dictionary, the tuple {error, not_found} is returned. This
is illustrated in the example execution below:

1> model:start_link().

{0k,<0.33.0>}

2> HashCinderella = model:post("Cinderella").
"fe3d73ebe0045732£200490b"

3> model:get (HashCinderella) .
{ok,"Cinderella"}

4> model:1list().
[{"fe3d73ebe0045732£200d90b", "Cinderella"}]
5> model:delete(HashCinderella).

ok

6> model:delete(HashCinderella).
{error,not_found}

7> model:get (HashCinderella).
{error,not_found}

8> model:1list().

1

9> model:stop().
ok

10> q().

ok

In order to test our model we used QuickCheck statem as
described by Laura Castro and Thomas Arts in [3], but this
time, we used the new grouped version of statem instead of
the ungrouped one.

The ungrouped version uses the same function for each as-
pect of the test model, because of that, all the preconditions,
all the postconditions, etc. have to be together in the code.
By contrast, in the new grouped version, we can put together
all the functions corresponding to the same method, for ex-
ample, the precondition of the GET method can go together
with the postcondition of the GET method, which makes the
test model more readable.

The code of the test model module is given in Appendix A.
The function model:comment_gen() returns a QuickCheck
generator of a valid entry, (details are explained in Section
6). The user-defined type listset, is equivalent to a nor-
mal set but also provides a function to access its elements
by index, because of this, by using listsets, it is much
easier and efficient to retrieve a random element, (the func-
tion modelutil:rnd_from_listset_gen/1, returns a gener-
ator that produces a list with a random element of the spec-
ified listset).

invariant/1 is a function that is called before and after
any command is executed. Our invariant function calls the
method 1list() and checks that the hashes of the resources
match the hashes we have stored in our model. This way

we try to ensure that the model and the Web Service are
always on the same page.

4. TESTING REAL WEB SERVICES

Storage Room [22] is an engine that provides you with an
online database. It has an administration web site that al-
lows you to define the structure of the database and it pro-
vides you with a RESTful API with the typical queries that
databases have.

Google Tasks [9] is a simple web application that allows you
to keep several lists of tasks and subtasks, it integrates with
GMail and Google Calendar, and it allows you to set due
dates and to mark tasks as done. It provides a RESTful
API with roughly the same functionality than the normal
web version.

Both Google Tasks and Storage Room were services in pro-
duction phase at the time of the experiment. In addition,
the amount of requests we can make to the Web Services are
limited in both cases. Because of this, we introduced a delay
of half a second between requests and limited the amount of
test cases produced by QuickCheck to 30.

A typical API call to insert an object into Storage Room
would look similar to the one shown in Figure 1.

We can easily apply the test model of our model to Storage
Room by making a facade as shown in Figure 2. But when
running QuickCheck we get back the error below.

For purposes of clarity we have replaced the actual input
data with the literal ENTRY_1.

Shrinking........... (11 times)
[{set,{var,5},{call,dbtest,post,
[{struct, [ENTRY_11}1}},
{set,{var,7},{call,dbtest,delete, [{var,5}]1}},
{set,{var,11},{call,dbtest,get, [{var,5}]1}}]

dbtest:post({struct, [ENTRY_1]}) ->
"5190£a9b0£66027a4900046e"
dbtest:delete("5190fa9b0£f66027a4900046e") -> ok
dbtest:get ("56190fa9b0£66027a4900046e") ->
{ok, {struct, [ENTRY_1]}}

Reason: {postcondition, false}

Indeed, if in Storage Room we POST an object, then we
DELETE it and finally we GET it, we still obtain the object
back.

The behaviour discovered goes against our first intuitions
about the behaviour of REST Web Services, and it could
be seen as a bug. But having set this behaviour on purpose
would make sense in some cases. This result could as well
have been caused by an unknown intermediate server acting
as a cache between the server and the client: we checked this
by appending a random and innocuous extra parameter to
the end of the URL and it was not the case, the server was
still returning the object.

T }
|
|
|

Client Storage Room
T T
- |
POST]
'
{
entry: {
title: "Little Red Riding Hood",
author: {
url: "50f2f9640f660277e0001b88"
},
isbn: "9780836249019"
}
}
return
« - - - - — - =4
{ [|
entry: { |
@type: "Book", |
@url: "51113a390f66021f7d0019bc",
@version: 1, I
@trash: false, |
title: "Little Red Riding Hood", |
author: { |
@type: "Author",
url: "50f2f9640f660277e0001b88" :
},
isbn: "9780836249019" |
|
4 |
|
|

Figure 1: Representation of a normal POST call to Storage Room

The set of principles on which the web relies also says that
queries do not necessarily have to be answered in the order
in which they are made. It could be the case that we issued
a GET query before a DELETE query but the server sees the
DELETE before; and we may not want the GET query to fail
because of that. This reasons could justify the behaviour.

Moreover, if disk space is not a problem, for data security
reasons it may not be desirable to allow users to really delete
data. Also, the usual intuition promoted by most GUIs is
that when you delete something it goes to the recycle bin.

Klein and Namjoshi, in their formalization of RESTful be-
havior [13], also contemplate this delay in the execution of
the DELETE communication as a reasonable variation on
RESTful HTTP properties.

Storage Room has in fact a meta-attribute called trash,
which tells us whether the object has already been deleted
or not. In addition, we were able to check that the par-
ent container object was also updated and it did not return
any of the hashes corresponding to the children that were al-
ready deleted. Later we found the same behaviour in Google
Tasks, the latter has an attribute called deleted.

We updated the test module to reflect the behaviour dis-
covered in last section, (see Appendix B). And this time
the 30 test cases passed without problems. The fixed tests
worked with Google Tasks without any change to the dbtest
module.

S. FINITE STATE MACHINE

As an alternative approach, we can abstract out some of the
preconditions and postconditions by designing the model as
a finite state machine, see Figure 3.

We can implement a test model for this model by using the
fsm module from QuickCheck which has some advantages
over statem. For example, if we use the fsm module, then
QuickCheck will try to ensure that the visits to each state
are balanced so that the random tests generated reach all
the functionalities evenly.

In the FSM model, we consider the following states, where
‘normal’ entries are those that are not ‘trashed’.

e EC - Empty & Canonical - No entries are stored, (nor
trashed, nor normal).

e NC - Non-empty & Canonical - Entries are stored, but
none is trashed.

e NN - Non-empty & Non-canonical - There are both
trashed and normal entries stored.

e EN - Empty & Non-canonical - There are entries but
they are all trashed.

The four original REST methods were divided according
to their possible different behaviours and an extra one was
added:

e POST - Creates a new entry.

Client

Storage Room

POST

{

T
|
|

L

POST

entry: {
title: "Little Red Riding Hood",
author: {
url: "50f2f9640f660277e0001b88"
}

isbn: "9780836249019"

return

"51113a390f66021f7d0019bc"

Figure 2: Representation

— post_first - Creates the first normal entry.

— post_norm - Creates an additional normal entry.
e GET - Retrieves an existing entry.

— get_norm - Retrieves a normal entry.

— get_del - Retrieves a trashed entry.
e DELETE - Trashes an existing entry.
— del_last - Trashes the last remaining normal en-
try.

— del_norm - Trashes one of several remaining nor-
mal entries.

— del_del - Tries to trash an already trashed entry,
(does nothing).

e PUT - Modifies an existing entry.

— put_del - Modifies a trashed entry.

— put_norm - Modifies a normal entry.

e empty_trash - Removes definitely all the trashed en-
tries. This command is not an API method neither in
Storage Room neither in Google Tasks, but we decided
to add it to our model for completion.

{
entry: {
title: "Little Red Riding Hood",
author: {
url: "50f2f9640f660277e0001b88"
+

isbn: "9780836249019"

return

{

entry: {

@type: "Book",

@url: "51113a390f66021f7d0019bc",
@version: 1,
@trash: false,
title: "Little Red Riding Hood",
author: {

@type: "Author",

url: "50f2f9640f660277e0001b88"
},
isbn: "9780836249019"

of model and facade over Storage Room

6. GENERATORS

Input to Web Services consists in most of the cases of XML
or JSON structures. In recent years JSON has been gaining
popularity and it seems to be slowly replacing XML in a
growing number of scenarios. JSON is a format with similar
functionality to XML, but JSON objects can also be inter-
preted as pure JavaScript. This property makes it very easy
and efficient to parse by web browsers. Its syntax basically
consists of nested dictionaries (represented with curly brack-
ets), arrays (represented with square brackets), and the basic
primitives of type boolean, number, string, and null [7].

During the early stages of this experiment, we used the same
object as input for all the tests, which made things easier;
but in the final version, we used several randomly generated
objects to get a better coverage of the target systems.

In order to achieve this, we made generic generators out of
our example objects. To illustrate this, we will use a more
complex type of object than the books: CommentOnABook.
Our original example object was similar to the one shown in
Figure 4.

In order to make a QuickCheck generator out of a JSON
structure we could use strings with pieces of JSON and use
Erlang to put them together. We could also use the Er-
lang representation of JSON and then encode the composi-
tion. But perhaps the most readable way to mix QuickCheck
generators and JSON is to add annotations as template lan-
guages like PHP or JSP do with HTML, so we decided to

empty_trash

empty_trash

post_norm
get_norm
get_del
put_norm
put_del
del_norm
del_del

post_norm
get_norm
put_norm
empty_trash

Figure 3: Representation of model and facade over
Storage Room

label attributes with tags in the JSON itself. These tags
specify which kind of generator should be placed where, and
which parameters could be omitted as shown in Figure 5.
We have also considered the possibility of creating a hybrid
language combining JSON and Erlang or Erlang’s symbolic
representation, but creating a new language is always a deli-
cate task and by using our simple solution we could reuse ex-
isting parsing libraries, which was enough for our approach.
We leave the creation of an advanced JSON template lan-
guage for future work.

Once we have defined the JSON template, we can program-
matically parse it and replace its tags with QuickCheck gen-
erators. To parse the JSON structures we used mochijson2
from MochiWeb project [17]. For example, we replaced
nonempty_string() with the following generator:

nonempty_string_gen() ->
?LET(String,
[choose (33, 126)|1list(choose(32, 126))],
list_to_binary(String));

This way we only generate visible standard ASCII charac-
ters. Some manual tests showed that Storage Room is im-
plemented to consider that empty strings do not fulfil the
mandatory parameter constraint. That is also the reason
why we add a single character at the beginning, and why
we do not allow the “white space” (ASCII code 32) for that
character. For bool() we just used the bool() generator
provided by QuickCheck.

Alternatively, in their paper about automatic WSDL-guided
testing [14], Lampropoulos and Sagonas present a quite con-
venient and flexible method to build custom generators for
XML. A similar approach could be used for JSON and it
would probably be more appropriate for the ultimate goal

{

{

}

}
}

"entry": {
"name": "Stupid comment",
"rating": 3,
"was_read": false,
"finished_reading": "2013-01-30",
"time_started_page_37": "2013-02-01T10:35:00Z",
"where_read": {
"lat": -82.40859297752702,
"lng": 65.6540299999998
} s
"ideas": [
"cold" s
"snow" s
"freezing",
"ice" R
"Wind"
] 3
"comment": "I don’t like the book at all.",
"book": {
"url": "http: ... /51113a390£66021£7d0019bc"
}
Figure 4: Example of CommentOnABook JSON
"entry": {
"name": "nonempty_string()",
"rating": 3,
"was_read": "bool()",
"finished_reading": {
"optional()": "2013-02-08"
},
"time_started_page_37": {
"optional()": "2013-02-01T10:35:00Z"
} bl
"where_read": {
"optional(D": {
"lat": -82.40859297752702,
"lng": 65.6540299999998
}
} 3
"ideas": [
"nonempty_string()",
"nonempty_string()",
{ "optional()": "nonempty_string()" I},
{ "optional()": "nonempty_string()" I},
{ "optional()": "nonempty_string()" }
1,
"comment": "nonempty_string()",
"book": {
"url": "http: ... /51113a390£66021£7d0019bc"
}
}

Figure 5: Example of tagged JSON structure

"name": "nonempty_string()",
"rating": 3,
"was_read": "bool()",

"optional(D": {
"finished_reading": "2013-02-08"
}
"optional(D": {
"time_started_page_37": "2013-02-01T10:35:00Z"
}

Figure 6: Example of incorrectly tagged JSON

of developing a framework to automate the testing of REST
Web Services, since it fits a broader range of scenarios. Nev-
ertheless, for this scenario, our simpler ad hoc approach was
enough.

Finally, lists or dictionaries that have parameters with the
optional() tag, are replaced by generators that randomly
remove some or all of the parameters tagged as optional(),
(or none of them). Note that, in the case of dictionaries,
parameters only have their value tagged. If we tagged both
key and value we could have several parameters with the
same key. See for example the incorrect JSON structure
shown in Figure 6.

This would not make sense in JSON because dictionaries are
made to be accessed by key.

7. KNOWN LIMITATIONS

The current approach still involves a lot of manual work that
could probably be automated in the future. It is also not
very extensive, since we only tested single collections and
we did not cover dependencies between different collections
or between parameters inside the same entry. Dependencies
should not be a problem for any particular project, but they
are a more complex subject when speaking about a general-
isation for any REST Web Service.

The self-imposed limitation to 30 tests was necessary in
this scenario, due to the use of foreign Web Services. This
amount of tests is much smaller than the 100 that QuickCheck
uses by default. Even with such a small number of tests, we
where able to use QuickCheck with our technique to find
out that our preconceived initial model did not match the
systems under test. Nevertheless, for cases where the tester
has access to an appropriate testing environment, this num-
ber can be increased just by changing a constant in the test
model.

8. FUTURE WORK

The obvious next step would be to automate this process
further. However, there are also a number of lateral im-
provements that would be useful, as well as those mentioned
in the previous section. For example, a common framework
could include tools to focus on common bugs that are al-
ready well known: buffer overruns, problems with encoding,
problems with character escaping, pages without authenti-
cation mechanism, code injection.

CRUD (Create, Read, Update and Delete) [16] is the acronym
for database-like behaviour. REST is not CRUD. The POST
method may have side effects or may not create a resource
with an URL of its own. Future work should be focused in
automating the modelling of this side effects. Nevertheless,
most of the examples of REST Web Services that we have
found in fact exhibit substantial CRUD-like behaviour. Be-
cause of this we envision a broader automated framework
that may instantiate versions of this model adapted in some
way to test different CRUD parts of Web Services and will
fill the gaps by linking the CRUD parts and extending them
by using a high-level model representing the side effects that
go beyond the CRUD model.

9. CONCLUSION

In this paper we have contributed with a practical exam-
ple of the application of QuickCheck to REST Web Services
without side effects, with a technique to adapt this model
to specific scenarios, and with an example of how we used
the model to learn about the real implementation of the two
Web Services we tested which differed from our preconceived
mental model of them. Hopefully this approach will be use-
ful as a first step towards the automation of testing of REST
web services.

We are grateful to the European Commission for their sup-
port for of work via the collaborative project PROWESS,
http://wuw.prowess-project.eu/, grant number 317820.
We also wish to thank the anonymous reviewers of this work
for the Erlang Workshop 2013 for their detailed and thought-
provoking comments.

10. REFERENCES

[1] A. A. Andrews, J. Offutt, and R. T. Alexander.
Testing web applications by modeling with FSMs.
Software €& Systems Modeling, 4(3):326-345, 2005.

[2] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform
resource identifiers (URI): generic syntax, 1998.

[3] L. M. Castro and T. Arts. Testing Data Consistency
of Data-Intensive Applications Using QuickCheck.
Electr. Notes Theor. Comput. Sci., 271:41-62, 2011.

[4] S. K. Chakrabarti and P. Kumar. Test-the-rest: An
approach to testing restful web-services. In Future
Computing, Service Computation, Cognitive, Adaptive,
Content, Patterns, 2009.
COMPUTATIONWORLD’09. Computation World:,
pages 302-308. IEEE, 2009.

[5] S. K. Chakrabarti and R. Rodriquez. Connectedness
testing of restful web-services. In Proceedings of the
3rd India software engineering conference, pages
143-152. ACM, 2010.

[6] K. Claessen and J. Hughes. QuickCheck: a lightweight
tool for random testing of Haskell programs. Acm
sigplan notices, 46(4):53-64, 2011.

[7] D. Crockford. The application/json Media Type for
JavaScript Object Notation (JSON), 2006.

[8] R. T. Fielding. Architectural Styles and the Design of
Network-based Software Architectures. Phd thesis,
University of California, 2000.

[9] Google Tasks. https://mail.google.com/tasks.

[10] J. Hughes. Quickcheck testing for fun and profit. In
Practical Aspects of Declarative Languages, pages

1-32. Springer, 2007.

[11] JSON, the JavaScript Object Notation.
http://wuw.json.org.

[12] C. Keum, S. Kang, I.-Y. Ko, J. Baik, and Y.-I. Choi.
Generating test cases for web services using extended
finite state machine. In Testing of Communicating
Systems, pages 103—117. Springer, 2006.

[13] U. Klein and K. S. Namjoshi. Formalization and
Automated Verification of RESTful Behavior. In
Computer Aided Verification, pages 541-556. Springer,
2011.

[14] L. Lampropoulos and K. Sagonas. Automatic
WSDL-guided Test Case Generation for PropEr
Testing of Web Services. arXiv preprint
arXiw:1210.6110, 2012.

[15] R. Lastres Guerrero. Testing a distributed Wiki web
application with QuickCheck. 2012.

[16] J. Martin. Managing the Data-base Environment.
Prentice-Hall, 1983.

[17] MochiWeb. https://github.com/mochi/mochiweb.

[18] M. Papadakis and K. Sagonas. A PropEr integration
of types and function specifications with
property-based testing. In Proceedings of the 10th
ACM SIGPLAN workshop on Erlang, pages 39-50.
ACM, 2011.

[19] P. Prescod. REST and the Real World. Published on
XML.com, 2002

[20] QuickCheck for Java.
http://java.net/projects/quickcheck.

[21] REST APIs must be hypertext-driven.
http://roy.gbiv.com/untangled /2008 /rest-apis-must-
be-hypertext-driven.

[22] Storage Room. http://storageroomapp. com.

[23] Y. Zhang, W. Fu, and J. Qian. Automatic testing of
web services in haskell platform. Journal of
Computational Information Systems, 6(9):2859-2867,
2010.

APPENDIX
A. TEST MODEL

-module (dbtest) .
-include_lib("eqc/include/eqc.hrl").
-include_lib("eqc/include/eqc_statem.hrl").

-compile (export_all).

-record(state, {keys = listset:new(),
dict dict:new()}).

initial_state() -> #state{}.
invariant(S) ->
Local = element(1l, lists:unzip(
dict:to_list(S#state.dict)
»,
Remote = element(1l, lists:unzip(list())),
lists:sort(Local) =:= lists:sort(Remote).

get_command (State) ->
{call, ?MODULE, get,
[oneof ([modelutil:hash_gen() |
modelutil:rnd_from_listset_gen(

State#state.keys)])]
}.
get_pre(_State) -> true.
get_pre(_State, _Args) -> true.
get_next(State, _Value, _Args) -> State.
get_post(State, [Key], Res) ->
is_substruct (
case dict:is_key(Key, State#state.dict) of
true -> {ok, dict:fetch(Key,
State#state.dict)
};
false -> {error, not_found}
end, Res).

post_command (_State) ->
{call, ?MODULE, post, [comment_gen()]}.
post_pre(_State) -> true.
post_pre(_State, _Args) -> true.
post_next (#state{keys = Keys, dict = Dict} = State,
Var, [Value]) ->
Statettstate{
keys = listset:insert(Var, Keys),
dict = dict:store(Var, Value, Dict)
}.
post_post(_State, _Args, Res) when is_list(Res) ->
true.

put_command (State) ->
{call, 7MODULE, put,
[oneof ([modelutil:hash_gen() |
modelutil:rnd_from_listset_gen(
State#state.keys)]),
comment_gen()1}.
put_pre(_State) -> true.
put_pre(_State, _Args) -> true.
put_next (#state{dict = Dict} = State, _Var,
[Key, Valuel) ->
case dict:is_key(Key, Dict) of
true -> State#tstate{
dict = dict:store(Key, Value,
Dict)
};
false -> State
end.
put_post(State, [Key, _], Res) ->
is_substruct (
case dict:is_key(Key, State#state.dict) of
true -> ok;
false -> {error, not_found}
end, Res).

delete_command(State) ->
{call, ?MODULE, delete,
[oneof ([modelutil:hash_gen() |
modelutil:rnd_from_listset_gen(
State#state.keys)])]
}.

delete_pre(_State) -> true.
delete_pre(_State, _Args) -> true.

delete_next (#state{dict = Dict} = State, _Var,
[Keyl) ->

State#tstate{
dict = dict:erase(Key, Dict)
}.
delete_post (#state{dict = Dict}, [Key], Res) ->
case dict:is_key(Key, Dict) of
true -> ok;
false —> {error, not_found}
end =:= Res.

weight (_S, get) -> 2;
weight (_S, post) -> 1;
weight (_S, put) -> 1;
weight (_S, delete) -> 1;
weight(_S, _Cmd) -> 1.

prop_db() ->
?FORALL(Cmds, commands(?MODULE),
begin
{H, S, Res} = run_commands (?MODULE,
Cmds),
clean_up(S#state.dict),
pretty_commands (?MODULE, Cmds,
{H, S, Res},
Res == ok)
end) .

%%% Returns true if the Left element is a
%k’ substructure of the Right element
is_substruct (SubTuple, OriTuple)
when is_tuple(SubTuple), is_tuple(OriTuple) ->
SubList = tuple_to_list(SubTuple),
Orilist = tuple_to_list(OriTuple),
case {length(SubList), length(OriList)} of
{Same, Same} —>
BL = [is_substruct(Sub,0ri) ||
{Sub, Ori}
<- lists:zip(SubList,
OriList)]
and_colapse();
{_, _} -> false
end;
is_substruct([], []) -> true;
is_substruct(List, []) when is_list(List) -> false;
is_substruct(List, [Head|Taill)
when is_list(List) ->
is_substruct (
sub_if_substruct(List, Head), Tail);
is_substruct(Original, Original) -> true;
is_substruct(_, _) -> false.
and_colapse([true|Tail]) -> and_colapse(Tail);
and_colapse([false|_]) -> false;
and_colapse([]) -> true.
sub_if_substruct([1, _) -> []1;
sub_if_substruct([Head|Tail], Element) ->
case (is_substruct(Head, Element)) of
true -> Tail;
false -> [Head|sub_if_substruct(Tail,
Element)]
end.

clean_up(Keys) ->
clean_up_aux(
element (1, lists:unzip(dict:to_list(Keys)))).

clean_up_aux([]) -> ok;

clean_up_aux([H|T]) -> ok = delete(eval(H)),
clean_up_aux(T),
[= 1istQ).

%% Interface selection
%
check_prop() ->
model:start_link(),
eqc:quickcheck(eqc:numtests (1000, prop_db())),
model:stop().

%% Commands

get (Key) -> model:get (Key) .

post(Value) -> model:post(Value).
put(Key, Value) -> model:put(Key, Value).
delete(Key) -> model:delete(Key).

list() -> model:1list().

comment_gen() -> model:comment_gen() .

B. FIXES TO THE MODEL

-record(state, {keys = listset:new(),
dict = dict:new(),
nodeldict = dict:new()}).

get_post(State, [Key], Res) ->
is_substruct (
case dict:is_key(Key,
State#tstate.nodeldict) of
true ->
{ok, dict:fetch(Key,
State#state.nodeldict
)}
false -> {error, not_found}
end, Res).

post_command(_State) ->
{call, ?MODULE, post, [comment_gen()]}.
post_pre(_State) -> true.
post_pre(_State, _Args) -> true.
post_next (#state{keys = Keys, dict = Dict} = State,
Var, [Value]) ->
State#stateq
keys = listset:insert(Var, Keys),
dict = dict:store(Var, Value, Dict)
}.
post_post(_State, _Args, Res) when is_list(Res) ->
true.

put_command (State) ->
{call, ?MODULE, put,
[oneof ([modelutil:hash_gen() |
modelutil:rnd_from_listset_gen(
State#state.keys)]),
comment_gen()1}.
put_pre(_State) -> true.
put_pre(_State, _Args) -> true.

put_next (#state{dict = Dict,
nodeldict = NoDelDict} = State,
_Var, [Key, Value]) ->
case dict:is_key(Key, Dict) of
true ->
Statet#tstated{
dict = dict:store(Key, Value, Dict),
nodeldict = dict:store(Key, Value,
NoDelDict)
};
false ->
case dict:is_key(Key, NoDelDict) of
true -> State#stateq{

nodeldict =
dict:store(Key,
Value,
NoDelDict)
};

false -> State
end
end.
put_post(State, [Key, _], Res) ->
is_substruct(case dict:is_key(
Key, State#state.nodeldict)
of
true -> ok;
false -> {error, not_found}
end, Res).

delete_command(State) ->
{call, ?MODULE, delete,
[oneof ([modelutil:hash_gen() |
modelutil:rnd_from_listset_gen(
State#state.keys)])]

delete_pre(_State) -> true.
delete_pre(_State, _Args) -> true.

delete_next (#state{dict = Dict} = State, _Var,

[Keyl) ->
State#tstate{
dict = dict:erase(Key, Dict)

}.

delete_post (#state{keys = Listset}, [Keyl, Res) ->
case listset:exists(Key, Listset) of
true -> ok;
false -> {error, not_found}
end =:= Res.

weight (_S, get) -> 2;
weight (_S, post) -> 1;
weight (_S, put) -> 1;
weight (_S, delete) -> 1;
weight(_S, _Cmd) -> 1.

prop_db() ->
?FORALL(Cmds, commands(?MODULE),
begin
{H, S, Res} = run_commands(?MODULE,
Cmds),
clean_up(S#state.dict),
pretty_commands (?MODULE, Cmds,
{H, S, Res},
Res == ok)
end) .

%%/ Returns true if the Left element is a
%kt substructure of the Right element
is_substruct (SubTuple, OriTuple)
when is_tuple(SubTuple), is_tuple(OriTuple) ->
SubList = tuple_to_list(SubTuple),
Orilist = tuple_to_list(OriTuple),
case {length(SubList), length(Orilist)} of
{Same, Same} ->
BL = [is_substruct(Sub,0ri) ||
{Sub, Ori}
<- lists:zip(SubList,
Orilist)]
and_colapse();
{_, _} —> false
end;
is_substruct([], []) -> true;
is_substruct(List, []) when is_list(List) -> false;
is_substruct(List, [Head|Taill)
when is_list(List) ->
is_substruct(
sub_if_substruct(List, Head), Tail);
is_substruct(Original, Original) -> true;
is_substruct(_, _) -> false.
and_colapse([true|Tail]) -> and_colapse(Tail);
and_colapse([false|_]) -> false;
and_colapse([]) -> true.
sub_if_substruct([l, _) -> []1;
sub_if_substruct ([Head|Tail], Element) ->
case (is_substruct(Head, Element)) of

true -> Tail;
false —-> [Head|sub_if_substruct(Tail,
Element)]
end.

clean_up(Keys) ->
clean_up_aux(
element (1, lists:unzip(dict:to_list(Keys)))).
clean_up_aux([]) -> ok;
clean_up_aux([H|T]) -> ok = delete(eval(H)),
clean_up_aux(T),
[0 = 1istQ).

%% Interface selection
hh
check_prop() ->
model:start_link(),
eqc:quickcheck(eqc:numtests (1000, prop_db())),
model:stop().

%% Commands

get (Key) -> model:get(Key) .

post(Value) -> model:post(Value).

put (Key, Value) -> model:put(Key, Value).
delete(Key) -> model:delete(Key) .

list() -> model:list().

comment_gen() -> model:comment_gen().

