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Abstract

Talin is a large (,2540 residues) dimeric adaptor protein that associates with the integrin family of cell adhesion molecules
in cell-extracellular matrix junctions (focal adhesions; FAs), where it both activates integrins and couples them to the actin
cytoskeleton. Calpain2-mediated cleavage of talin between the head and rod domains has previously been shown to be
important in FA turnover. Here we identify an additional calpain2-cleavage site that removes the dimerisation domain from
the C-terminus of the talin rod, and show that an E2492G mutation inhibits calpain cleavage at this site in vitro, and
increases the steady state levels of talin1 in vivo. Expression of a GFP-tagged talin1 E2492G mutant in CHO.K1 cells inhibited
FA turnover and the persistence of cell protrusion just as effectively as a L432G mutation that inhibits calpain cleavage
between the talin head and rod domains. Moreover, incorporation of both mutations into a single talin molecule had an
additive effect clearly demonstrating that calpain cleavage at both the N- and C-terminal regions of talin contribute to the
regulation of FA dynamics. However, the N-terminal site was more sensitive to calpain cleavage suggesting that lower levels
of calpain are required to liberate the talin head and rod fragments than are needed to clip off the C-terminal dimerisation
domain. The talin head and rod liberated by calpain2 cleavage have recently been shown to play roles in an integrin
activation cycle important in FA turnover and in FAK-dependent cell cycle progression respectively. The half-life of the talin
head is tightly regulated by ubiquitination and we suggest that removal of the C-terminal dimerisation domain from the
talin rod may provide a mechanism both for terminating the signalling function of the talin rod and indeed for inactivating
full-length talin thereby promoting FA turnover at the rear of the cell.
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Introduction

Cell migration involves a complex cycle of inter-related events

initiated by extracellular cues that establish cell polarity and

membrane protrusion at the leading edge driven by actin

polymerisation [1]. This is followed by the assembly of small

highly dynamic nascent adhesions, a fraction of which mature into

larger more stable structures, the subsequent translocation of the

cell body, and the detachment of the trailing edge [2]. The

migratory cycle is orchestrated from within the cell by the Rho-

family of GTPases, which regulate both actin polymerisation and

the architecture and dynamic properties of the newly assembled

actin filaments, as well as myosin II-dependent contractility

[3,4,5].

Cell-extracellular matrix interactions are typically mediated by

members of the integrin family of transmembrane ab-heterodi-

mers, and both ‘‘inside-out’’ and ‘‘outside-in’’ signalling [6] can

trigger the formation of multi-protein complexes on the cytoplas-

mic face of integrins that are important in cell adhesion and

migration [7,8,9]. One of the key proteins required for the

assembly of cell-matrix adhesions is the adaptor protein talin

[10,11], which can bind both integrins and F-actin, and can also

switch integrins from a low to high affinity state [12,13]. Most cells

express two closely related talin isoforms [14], and cells depleted of

talin1 assemble far fewer FA and show reduced cell spreading and

migration [15], although this phenotype can be rescued by talin2

[16,17]. Moreover, talin1 is required to form the slip bond

between fibronectin/integrin complexes and the actomyosin

contractile apparatus within the cell [18].

Talins (,270 kDa; ,2540 amino acids) are comprised of an N-

terminal head (1–400) containing an atypical FERM domain [19]

with binding sites for b-integrin tails [20,21], F-actin [22], the type

1 isoform of PIPKc [23,24] and acidic phospholipids such as PIP2

[25,26] (Fig. 1A). The talin head is linked via residues 401–481 to

a long flexible rod (482-C-terminus) consisting of 61 a-helices

organised into a series of amphipathic 4- or 5-helix bundles

[27,28,29]. The talin rod contains an integrin binding site [30,31]

and several actin-binding sites (ABS) [32], the best characterised of

which is associated with the most C-terminal helical bundle [27].

This is followed by a single helix (helix 62) that forms an anti-

parallel dimer, and appears to be largely responsible for formation
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of talin homodimers [27]. Interestingly, talin dimerisation is

essential to the activity of the C-terminal ABS, which binds along

the surface of a single actin filament. The other notable feature of

the talin rod is that it contains several binding sites for vinculin

[33], which itself has numerous binding partners [34], and is

thought to stabilise FA [35,36,37].

While talin plays a prominent role in FA assembly, calpain2-

mediated cleavage of talin [38,39] and a number of other FA

proteins [40,41,42] including b3-integrin tails [43] is thought to be

important in the disassembly of FA and LFA-1 adhesions in T-cells

[44], and for the mesenchymal though not the amoeboid form of

cell migration [45]. Calpain2 was originally shown to cleave talin

between residues Q433 and Q434 in the region between the head

and rod domains [46], and mutation of L432G rendered talin

partially resistant to cleavage and suppressed the turnover of talin

as well as the FA proteins paxillin and zyxin [38]. This suggests

that calpain2 cleavage of talin is an important step in FA turnover.

More recent data shows that the talin head liberated by calpain2

cleavage is itself crucial to FA turnover and cell spreading, and its

half-life is tightly regulated by a balance between Smurf1-mediated

ubiquitination and proteasomal destruction versus cdk5-mediated

S425 phosphorylation which inhibits Smurf1 binding [47].

However, the fate of the talin rod has not been extensively

studied, although in platelets, it is recruited with aIIbb3-integrin

into the TritonX100 resistant cytoskeletal fraction while the talin

head was Triton soluble [48].

Here we report the identification and characterisation of a

second calpain2 cleavage site in talin that removes the dimerisa-

tion helix at the C-terminus of the talin rod. Expression of GFP-

talin carrying mutations in this site singly or in combination with

Figure 1. The talin1 C-terminal dimerisation domain is clipped off by calpain2. (A) Talin consists of an N-terminal head (residues 1–400)
containing an atypical extended FERM domain (made up of F0–F3 domains) and a flexible rod containing 61 a-helices (grey elipses) organised into 13
helical bundles and terminating in a single helix responsible for dimerisation (DD). The position of various ligand-binding sites are shown including
the C-terminal actin-binding site (ABS). The head and rod are joined by a linker region that is cleaved by calpain2 between Q433 and Q434. (B)
Sequence and secondary structure of the last two helices in the talin rod. The two asterisks indicate residues L2515 and R2526, key determinants of
the epitope recognised by the TD77 monoclonal antibody. The red arrow indicates the calpain2 cleavage site. (C,D) Purified turkey gizzard talin was
incubated with calpain2 to generate a partial digest (PD) and a complete digest (CD). Cleavage products were resolved by SDS-PAGE and stained
either with (C) Coomassie blue or (D) the monoclonal antibody TD77 that recognises the DD. (E) A talin polypeptide (residues 2300–2541) containing
the C-terminal ABS and DD domain was incubated with calpain2 in the presence (+) or absence (2) of calcium. N-terminal sequencing and mass
spectroscopy of the products show that the largest band corresponds to the ABS (2300–2493) and the smallest fragment (M2494) corresponds to the
dimerisation domain (2494–2541).
doi:10.1371/journal.pone.0034461.g001

Talin Contains a C-Terminal Calpain2 Cleavage Site
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the L432G mutation markedly suppressed protrusion persistence

and FA turnover suggesting that both sites are important in

regulating the dynamic properties of FA.

Results

Characterisation of a novel calpain2-cleavage site in the
talin rod

It is well documented that calpain2 cleaves talin1 in the linker

region between the head and rod domain (Fig. 1A), an event that is

important in FA turnover and cell migration [38]. The cleavage

site has been mapped to between Q433 and Q434 (STVLQ-

QQYNR) [46]. Interestingly, there is a second QQQ sequence in

talin1 close to the C-terminus of the talin rod (residues 2527–2529)

just downstream of the dimerisation helix (Fig. 1B). We therefore

considered the possibility that calpain2 might cleave talin1 at this

C-terminal site. To address this, we used a monoclonal antibody

TD77, that we have previously shown recognises an epitope

towards the C-terminal region of talin [49]. Western blotting

showed that TD77 binds to a purified recombinant mouse talin1

polypeptide spanning residues 2300–2541 that contains both the

C-terminal actin-binding site and the dimerisation domain, but

not to a polypeptide (2300–2482) lacking the dimerisation domain

(Fig. S1). The epitope for TD77 was further characterised by

testing a series of point mutations in the C-terminal helix [27]. The

data show that residues L2515 and R2526 are key determinants of

TD77 binding (Fig. S1).

We then used TD77 to monitor calpain2-cleavage of purified

turkey gizzard talin. Coomassie stained gels of partial talin digests

showed two bands (Fig. 1C), both of which were recognised by

TD77 (Fig. 1D) and therefore contain the dimerisation domain.

We conclude that the upper band is intact talin and the lower

band, the talin rod liberated by calpain2 cleavage in the linker

between the talin head and rod. As expected, intact talin

completely disappeared following a more prolonged incubation

with calpain2, but interestingly, it was replaced by a Coomassie-

stained polypeptide that was slightly smaller than the TD77-

positive rod fragment liberated by partial cleavage (Fig. 1C).

Significantly, this fragment was not recognised by TD77 (Fig. 1D)

suggesting that calpain2 can indeed cleave the last helix from the

talin rod domain.

To map the C-terminal calpain2 cleavage site more precisely,

we used the purified recombinant talin1 2300–2541 polypeptide

which has an apparent molecular weight of ,25 kDa by SDS-

PAGE. Incubation of this polypeptide with calpain2 in the

presence, but not the absence of calcium, generated a proteolytic

fragment of ,20 kDa (Fig. 1E). If cleavage had occurred as

predicted, between residues 2527-QQQ-2529, only 13 residues

would have been removed (Fig. 1B), and the molecular weight of

the proteolytic fragment would have been much larger. N-terminal

sequencing of the ,20 kDa fragment showed that it had the same

sequence as the uncleaved polypeptide, indicating that cleavage

must take place towards the C-terminus. Careful inspection of the

cleavage products resolved by SDS-PAGE revealed a small

proteolytic fragment running close to the bottom of the gel

(Fig. 1E) the N-terminus of which was M2494 (Fig. 1B). Cleavage

at this site would release a 5.7 kDa C-terminal fragment,

consistent with the shift observed in the molecular weight of the

2300–2541 talin1 polypeptide following calpain2 cleavage. In

summary, we have identified a novel calpain2 site between

residues K2493-M2494 in the talin rod that clips off the

dimerisation domain.

Both the N- and C-terminal calpain2 cleavage sites in
talin1 are in unstructured regions

We have previously determined the structure of the C-terminal

region of talin1 [27]. The NMR structure of residues 2300–2476

shows a 5-helix bundle (the THATCH core domain) while the

crystal structure of residues 2497–2527 reveals a single helix that

forms an anti-parallel dimer, and is responsible for talin1

dimerisation (Fig. 2A). However, we were unable to determine

the structures of a segment of ,20 residues between the 5-helix

bundle and the dimerisation domain, and a stretch of 14 residues

at the extreme C-terminus of talin1 (Fig. 1B). Analysis of the NMR

spectra of various C-terminal talin polypeptides suggests that the

5-helix bundle and the dimerisation domain interact [27], but also

that the majority of the residues between the two domains are

largely unfolded (Fig. 2B). Thus, calpain2 cleaves in an

unstructured region between the THATCH core domain and

the dimerisation helix.

The calpain2 cleavage site in the linker region (401–481)

between the talin F3 FERM domain (residues 309–400) and the 5-

helix bundle, VBS1 (482–655) at the start of the talin rod (Fig. 1A)

is also predicted to be largely unstructured, although this has not

been investigated directly. We therefore used NMR to analyse a

recombinant 15N-labelled 400–480 talin1 polypeptide. The
1H-15N HSQC spectrum was consistent with a peptide that is

predominantly unstructured with low signal dispersion in the

proton dimension (Fig. 2C). Comparison of the spectra of 400–482

with the larger construct 309–655 (which contains the two flanking

domains F3 and VBS1) showed that many of the signals from the

linker region are at identical positions in the two spectra (Fig. 2D),

confirming that even in the context of larger talin polypeptides,

this linker region remains unstructured. We modelled the linker

region in the context of the talin1 309–655 polypeptide using the

Modeller software [50,51]. Strikingly, the linker region has the

potential to extend ,200 Å equivalent to approximately four talin

rod helical bundle domains (Fig. 2E). In summary, it is apparent

that calpain2 cleaves talin in two unstructured regions at the N-

terminal and the C-terminal region of the protein.

Relative sensitivities of the N- and C-terminal calpain2
cleavage sites in talin1 and talin2

We next compared the relative sensitivities of the N- and C-

terminal regions of talin1 to calpain2 cleavage. Interestingly, the

N-terminal F3-VBS1 (residues 309–655) talin1 polypeptide was

significantly more sensitive to cleavage than the C-terminal

polypeptide spanning the C-terminal ABS and DD (residues

2300–2541) (Fig. 3A,B). Even at a calpain: talin1 ratio of 1:200,

the N-terminal polypeptide was quantitatively converted to smaller

fragments while only a small percentage of the C-terminal

polypeptide was cleaved under these conditions. This suggests

that the N-terminal calpain2 site might be more exposed than that

at the C-terminus.

Although talin1 and 2 are highly conserved proteins (74%

identity), the sequence in the vicinity of the N-terminal calpain2

cleavage site differs, and it has been suggested by Senetar et al.

that this may confer different sensitivities to calpain2 cleavage

[52]. Indeed, Western blots of muscle extracts showed two large

talin1 immuno-reactive proteins thought to represent intact talin1

and the talin1 rod, while talin2 blots showed only a single band

thought to be full-length protein. On this basis, the authors

propose that talin2 may be more resistant to calpain2 cleavage

than talin1. We therefore compared the relative sensitivity of N-

and C-terminal talin1 and talin2 polypeptides to calpain2

cleavage. The results do not bear out the above suggestion, and

Talin Contains a C-Terminal Calpain2 Cleavage Site
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Figure 2. Both calpain cleavage sites are located in predominantly unstructured regions. (A) The structures of the C-terminal ABS and the
dimerisation domain of talin1 are incorporated into a model of the C-terminal region of the protein. The calpain2 cleavage site is indicated (blue line).
(B–D) 1H,15N HSQC spectra of the following talin1 polypeptides (150 mM); (B) Residues 2294–2541 spanning the C-terminal ABS and dimerisation
domain (DD). The intense poorly dispersed peaks (red asterisks) relate to the 18 amino acid linker between the ABS and the DD (as deduced by
comparison of the spectra of residues 2294–2491 and 2300–2482), and show that the linker is predominantly disordered. (C) Residues 400–480 - the
linker between the talin1 head and rod that contains the calpain-cleavage site. The intense poorly dispersed signals in the centre of the spectrum
indicate that the linker is predominantly unstructured. (D) Residues 309–655 containing the F3 FERM domain, the linker and the VBS1 rod domain. (E)
A model of the linker region generated using MODELLER [50,51] showing that it can span ,200 Å when fully extended. The calpain2 cleavage site
(blue line) between Q433–Q434 is shown along with L432, which when mutated to a glycine, reduces calpain2 cleavage. The CDK5 phosphorylation
site (S425) that regulates binding of Smurf1 [47] is also shown.
doi:10.1371/journal.pone.0034461.g002

Talin Contains a C-Terminal Calpain2 Cleavage Site
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both the N- and C-terminal talin2 polypeptides were somewhat

more sensitive to calpain2 cleavage than their talin1 counterparts

(Fig. 3C,D). Perhaps the lack of talin2 cleavage in cell extracts is

more a reflection of lack of exposure of the calpain2 cleavage sites

rather than its inherent susceptibility to calpain2 cleavage.

Identification of mutations that block calpain2 cleavage
in vitro and in vivo

To evaluate the importance of the C-terminal calpain2 cleavage

site in talin1 in a cellular context, we first sought to identify

mutations that suppress cleavage. Previous studies have shown that

substituting the residue at the P2 position upstream of the calpain

cleavage site partially inhibits calpain cleavage [38,53], and we

therefore introduced an E2492G mutation into a talin 2300–2541

polypeptide. This mutation proved to significantly reduce the

sensitivity of the C-terminal talin1 polypeptide to calpain2

cleavage (Fig. 4A). Indeed, it was substantially more effective in

suppressing cleavage than the L432G mutation in the linker

between the talin head and rod (Fig. 4B). Importantly, the E2494G

mutation did not affect the ability of the C-terminal talin

polypeptide to bind F-actin (Fig. 4C) or to dimerise (Fig. 4D),

while a R2526G mutation in the dimerisation helix has been

shown to inhibit both talin dimerisation (Fig. 4D) and actin

binding [27].

To establish whether mutations in the N- and C-terminal

calpain cleavage sites affect the stability of talin1 in vivo, we

transfected HEK293 cells with wild-type GFP-tagged talin1 or the

L432G or E2492G calpain-resistant mutants as well as a L432G,

E2492G double mutant. Western blotting for GFP showed that

both the L432G and the E2492G calpain-resistant talin1 mutants

accumulated to a significantly greater extent than wild-type GFP-

talin1 (Fig. 5) indicating that both calpain sites are important in

talin1 turnover, although the GFP-talin1 double mutant was no

more stable than GFP-talin1 carrying the single mutations.

In an attempt to identify the C-terminal talin1 helix liberated by

calpain2 cleavage, we expressed doubly tagged GFP-talin1-

mCherry in HEK293 cells. However, we were unable to detect

the C-terminal talin1 helix fused to mCherry by Western blotting

(data not shown). Similarly, we were unable to detect GFP-talin1

head in cells transfected with GFP-talin1 (Fig. 5A). The talin head

liberated by calpain2 cleavage is ubiquitinated and rapidly

degraded by the proteasome [47], and similar mechanisms may

lead to clearance of the C-terminal talin1 polypeptide.

Effects of calpain2-resistant talin mutants on adhesion
dynamics

To investigate the possible significance of calpain2-mediated

proteolysis of talin at both the N- and C-terminal sites, we co-

transfected CHO.K1 cells with paxillin-mCherry, and one of three

GFP-talin1 mutants i.e. (L432G), (E2492G), and (L432G,

E2492G). Using TIRF microscopy on cells with similar, low,

expression levels, we found that all of the various GFP-talin1

mutants localized to focal adhesions (FA) (Fig. 6A). However, the

size of the adhesions varied among the different mutants, and

there was an increase in the number of larger adhesions in cells

expressing the GFP-talin1 double mutant when compared to the

single point mutants or wild-type talin1 (Fig. 6B). Under these

experimental conditions, the adhesions were relatively stable and

disassembled on the time scale of tens of minutes. These

observations agree with Franco et al. using the L432G talin1

mutant [38]

We quantified the dynamics of cell protrusions (Fig. 7A, upper

panel) and the fraction of nascent adhesions that stabilize and

mature at the cell edges (Fig. 7C). The persistence time of a

protrusion, which is the time it takes a protruding front to stop and

for adhesions to stabilize and grow, varied among the mutants.

The GFP-talin1 double (L432G, E2492G) mutant showed the

lowest protrusion persistence time (Fig. 7B) and the largest fraction

of maturing adhesions per cell front (Fig. 7D), whereas the single

point talin1 mutants (L423G) and (E2492G) had intermediate

values between wild-type GFP-talin1 and the double mutant. In

conclusion, the data indicate that calpain2 cleavage of talin1 at

both the N- and C-terminal sites has a significant effect on

adhesion dynamics.

In an attempt to detect calpain-mediated cleavage of talin1 in

disassembling adhesions at the rear of the cell, we used

fluorescence ratio imaging. We compared wild-type talin1 with

the double talin1 mutant (L432G, E2492G) dually labelled with

GFP and mCherry on opposite ends of the molecule. However, we

did not observe any major difference in the ratios between the

wild-type talin1 and the double mutant as adhesions disassembled

and translocated in retracting regions (Fig. S2). This suggests that

either the fraction of cleaved talin1 in disassembling adhesions is

small and therefore not readily detected using this approach, or

that the N- and C-terminal talin1 fragments are released at the

same rate.

Figure 3. The C-terminal calpain2 site in talin1 is less sensitive
to cleavage than that in the linker between the head and rod.
(A) A talin1 F3-VBS1 polypeptide (residues 309–655) containing the
linker between the head and rod and (B) a talin1 polypeptide
containing the C-terminal ABS and DD (residues 2300–2541) were
incubated with varying dilutions of calpain2. Cleavage products were
analysed by SDS-PAGE and visualised with Coomassie blue. The N-
terminal calpain2 cleavage site in talin1 is more sensitive than the C-
terminal site. (C, D) Calpain2 cleavage of the equivalent talin2
polypeptides. Both talin2 polypeptides were somewhat more sensitive
to calpain2 cleavage than the corresponding talin1 polypeptides.
doi:10.1371/journal.pone.0034461.g003

Talin Contains a C-Terminal Calpain2 Cleavage Site

PLoS ONE | www.plosone.org 5 April 2012 | Volume 7 | Issue 4 | e34461



Discussion

We report here the characterisation of a novel calpain2 cleavage

site in talin1 that removes the dimerisation helix at the C-terminus

of the talin rod. We have identified a mutation (E2492G) that

suppresses cleavage at this site in vitro, and show that it leads to an

increase in the steady state levels of talin1 in HEK293 cells.

Moreover, it reduces FA turnover and cell protrusion in CHO.K1

cells to about the same extent as the well documented L432G

mutant that suppresses calpain2 cleavage between the talin head

and rod [38]. Importantly, the effects of the point mutations on FA

turnover were greatest when both were incorporated into a single

talin1 molecule. The results show that calpain2 cleavage of talin1

at both the N- and C-terminal sites is important in regulating FA

dynamics.

Recent data suggest that the talin1 head liberated by calpain2

cleavage has a function independent of full-length talin1, and

promotes FA turnover [47] and the early phases of cell spreading,

including integrin and Src activation, though not FAK signalling

or FA assembly [17]. The potential physiological significance of

these observations is supported by the finding that the half-life of

the talin head is tightly regulated by Smurf1-mediated ubiquitina-

tion coupled to proteasomal degradation [47]. The fact that both

FA turnover and persistence of cell protrusion is reduced in cells

expressing the talin1 L432G calpain2-resistant mutant is consistent

with these findings, although it might equally well be explained by

an inability to degrade talin and therefore promote FA turnover.

The proposal that the talin1 head has functions independent of

full-length talin1 raises the possibility that the talin1 rod might also

have its own unique role in the cell. The talin1 rod contains an

integrin-binding site and several vinculin- and actin-binding sites

(Fig. 1A), and in activated platelets, it is the talin1 rod (not the

head) that is incorporated with aIIbb3-integrin into the

TritonX100-resistant cytoskeletal fraction. Wang et al., [54] have

recently reported the surprising finding that talin1 knockdown in

mammary epithelial cells (which do not express talin2) does not

affect cell spreading, integrin activation or the formation of actin

stress fibres, but does lead to cell cycle arrest that was attributable

to defective FAK signalling. Intriguingly, FAK signalling and cell

cycle arrest were rescued by expression of a talin1 rod fragment

spanning residues 1974–2541 that contains both the C-terminal

integrin- and actin-binding sites (Fig. 1A). While we have been

unable to find a calpain2-cleavage site in the talin1 rod that would

generate such a fragment, we have identified an internal promoter

in the talin2 gene that gives rise to a similar talin rod polypeptide

(residues 1608–2543) in kidney, although it is expressed at lower

levels in other tissues [14].

The results of Wang et al., [54] strongly suggest that the talin

rod has a signalling role that is independent of the talin head.

Moreover, they show that the activity of the talin1 1974–2541 rod

fragment is dependent on its ability to dimerise via the C-terminal

helix. In this scenario calpain2-mediated cleavage of the C-

terminal helix might serve to terminate the functions associated

with the talin rod polypeptide, although the same mechanism may

equally well play a role in inactivating full-length talin, thereby

destabilising existing FA. It is notable that the cleavage site

between the talin head and rod is more sensitive to calpain2 than

that flanking the C-terminal helix. Thus, low levels of active

calpain2 may generate sufficient talin head and rod to participate

in the integrin activation cycle and FAK signalling respectively,

Figure 4. An E2492G mutation in talin1 2300–2541 reduces sensitivity to calpain2 cleavage but does not affect actin binding or
dimerisation. (A) Wild-type talin 2300–2541 (ABS-DD) and an E2492G mutant were incubated with varying dilutions of calpain2, and their sensitivity
to cleavage analysed by SDS-PAGE. (B) For comparison, the same experiment was conducted with wild-type talin 309–655 (F3-VBS1) and a L432G
mutant in the linker between the head and rod which has previously been shown to partially inhibit calpain2 cleavage [38]. (C) Actin co-
sedimentation assay using wild-type talin 2300–2541 and the E2492G mutant. Comparable amounts of each protein co-sedimented with F-actin
(Pellet (P); Supernatant (S). Binding was quantified using imageJ analysis of the relevant bands; wild-type 10062.3 versus mutant 10564.3. (D) Gel
filtration of wild-type talin1 2300–2541 and the E2492G mutant show that both form dimers. The monomeric R2526G mutant [27] is shown for
comparison.
doi:10.1371/journal.pone.0034461.g004
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while termination of rod function by removal of the dimerisation

domain would require higher levels of calpain activation. While

the above data indicate that both the talin head and rod liberated

by calpain2 cleavage have independent functions in cell spreading

and cell cycle progression, co-expressing the talin1 head and talin1

rod in talin1 knock-down fibroblasts or endothelial cells fails to

rescue cell spreading and FA assembly (Kopp et al., unpublished

data) indicating that the full-length molecule is essential in this

regard.

Calpain2 cleavage of FA proteins at the rear of the cell and its

role in tail end retraction and cell migration are well documented

[41]. Current data suggest a model in which calpain2 is targeted to

and activated at the rear of the cell by a combination of PIP2

(EGF-mediated activation of PLCc at the leading edge generates a

PIP2 gradient) and ERK-mediated phosphorylation on Ser50

[55]. Targeting is rapidly reversed by PKA-mediated Ser369

phosphorylation (induced by the CXCR3 ligands IP-9 and IP-10),

which blocks binding of calpain2 to PIP2, and inhibits tail end

retraction and cell migration. In this scenario, talin cleavage

between the head and rod at the rear of the cell is envisaged to

terminate talin function, switch integrins to a lower affinity state,

weakening the link between integrins and the actin cytoskeleton

and resulting in FA disassembly. However, our ratio imaging data

using talin1 tagged at both the N- and C-terminus indicate a low

level of cleavage. Since calpain acts on other FA proteins including

b3-integrin tails, FAK and vinculin [40], the actual fraction of

cleaved talin1 could be small and not detected using our methods.

Indeed, mutations that suppress calpain2 cleavage of FAK

similarly reduce FA turnover [42], although suppression of

calpain2-mediated paxillin cleavage increased FA turnover by an

unidentified mechanism [56].

In conclusion, we report here a novel calpain2-cleavage site in

talin that removes the C-terminal helix from the talin rod, and

show that it is important in FA turnover and cell protrusion.

Whether cleavage at this site is regulated in any way has not been

explored, although it is interesting to note that phosphorylation of

the C-terminal region of filamin by PKC protects against calpain1

cleavage [57].

Materials and Methods

Protein expression, purification and calpain2-mediated
proteolysis

Mouse talin1 and human talin2 cDNAs were amplified by PCR,

cloned into pET-151/D-TOPO (Invitrogen) and authenticated by

DNA sequencing. Recombinant talin polypeptides were expressed

as His-tagged proteins in E. coli and purified on Ni-NTA (GE

Healthcare) columns following standard procedures. The tag was

removed by TEV cleavage, and the polypeptides purified further

on a Resource-Q column (GE Healthcare). Talin polypeptides

were incubated (37uC for 30 minutes) with recombinant rat

calpain2 (Calbiochem) in 25 mM HEPES, pH 7.5, 50 mM NaCl,

1 mM DTT 63 mM CaCl2. Analytical gel filtration chromatog-

raphy of recombinant talin polypeptides was performed using

Superdex-75 (10/300) (Amersham Biosciences) at room temper-

ature. The column was pre-equilibrated and run in 20 mM

Laflamme Tris pH 8.0, 150 mM NaCl and 2 mM DTT at a flow

rate of 0.8 ml/min.

NMR Spectroscopy and modelling
For NMR experiments, 15N-labeled talin polypeptides were

transferred into 20 mM sodium phosphate pH 6.5, 50 mM NaCl

and 2 mM DTT, 10% (v/v) 2H2O using a PD10 column (GE

Healthcare), and concentrated to 0.15 mM immediately prior to

collection of NMR spectra. NMR spectra of all proteins were

obtained at 298 K using a Bruker AVANCE AVII 800

spectrometer equipped with a CryoProbe. Spectra were processed

with TopSpin (Bruker Corp.) and analyzed using Analysis [58].

The MODELLER [50,51] software package (version 9v7) was

used to construct models of the linker regions between each

domain using the align2d and the model-single functions. In the

Figure 5. GFP-talin1 calpain2-resistant mutants accumulate in
HEK293 cells. (A) Western blots (anti-GFP) of cells transfected with the
following constructs: GFP alone; GFP-talin1; GFP-talin1(L432G); GFP-
talin1 (E2492G); a GFP-talin1(L432G,E2492G) double mutant. Anti-
GAPDH was used as a loading control. GFP-talin1 head (arrow) was
not detected in these cells. (B) Band intensity was quantified using the
Odyssey software (LI-COR). Bars indicate SEM of triplicate determina-
tions. Essentially similar results were obtained in three separate
experiments.
doi:10.1371/journal.pone.0034461.g005
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Figure 6. Size of adhesions in CHO.K1 cells expressing GFP-talin1 mutants. (A) TIRFM images of CHO.K1 cells co-expressing paxillin-
mCherry and the GFP-talin1 mutants imaged 4 hr after plating on 2 mg/ml FN. An increase in adhesion size is observed in cells expressing the GFP-
talin1 double mutant (L432G, E2492G) compared to cells expressing either the GFP-talin1 L432G or GFP-talin1 E2492G mutants as indicated in the
box plot in (B). The Dunn’s method was used to test the statistical significance of the pairwise differences in the distributions. The number of
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adhesions (Nadh) and cells (Ncells) included in the analysis was 182, 6 (L432G, E2492G); 192,5 (L432G); 195,6 (E2492G); 222,7 (WT) respectively. Error
bars are SEM.
doi:10.1371/journal.pone.0034461.g006

Figure 7. Quantification of the protrusion persistence and number of maturing adhesions in CHO.K1 cells expressing mutants of
GFP-talin1. (A) Average fluorescence image and kymograph from a TIRF time series of a CHO.K1 cell expressing GFP-talin 1 (E2492G) plated on 2 mg/
ml FN for 20–30 minutes. Images were collected every 0.5 seconds for 8–10 minutes. The kymograph (bottom) of the highlighted protrusion (red
line, top) indicates a persistence time of ,230 seconds. (B) Plot of the persistence times for GFP-talin1, GFP-talin1 (L432G), GFP-talin1 (E2492G), and
GFP-talin1 (L432G, E2492G) shows longer protrusion persistence time in cells expressing wild-type GFP-talin1 compared to the single and double
point mutants of GFP-talin1. The number of protrusions (Nprot.) and cells (Ncells) included in the analysis was 9,3 (L432G, E2492H); 11,4 (L432G); 9,3
(E2492G); 11,5 (WT) respectively. (C) TIRF images selected from earlier (20 sec.) and later (900 sec.) time points of the above data set. The number and
size of adhesions that stabilize and mature as the cell edge protrudes was greater in GFP-talin1 (L432G, E2492G) compared to wild-type GFP-talin1.
The average number of adhesions that stabilize per cell edge protrusion is presented in (D). Number of cells (Ncells) included in the analysis was 5
(WT), 6(E2492G), 4 (L432G), 5 (L432G, E2492G). Error bars are SEM. The Holm-Sidak method was used to test the statistical significance of the pairwise
differences in the distributions.
doi:10.1371/journal.pone.0034461.g007
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first stage, the known structured regions of talin1 [F3 (PDB ID:

3IVF; [19]); 482–786 VBS1 (PDB ID: 1SJ8 [29]); 2300–2482

ABS3 (PDB ID: 2JSW [27] and 2494–2541 DD (PDB ID: 2QDQ

[27]] were aligned with the larger fragments.

Actin co-sedimentation assays
G-actin was purified from rabbit skeletal muscle and polymer-

ised in 10 mM Tris, 50 mM NaCl, 100 mM ATP, 1 mM DTT,

1 mM MgCl2, pH 7.0. Assays were performed using 4 mM talin

polypeptides and 10 mM F-actin. The mixture was incubated for

60 min at room temperature and centrifuged at 100,000 rpm for

30 min at 22uC using a Beckman Optima TM ultracentrifuge.

Supernatants and pellets were analysed on 12% SDS-PAGE gels

and stained using Coomassie blue.

Cell culture and transfection
The GFP-talin1 and GFP-talin1 L432G expression vectors have

been previously described [38]. GFP-talin1 E2492G and GFP-

talin1 L432G, E2492G were created by site-directed PCR

mutagenesis using the aforementioned vectors. The C-terminal

mCherry translational fusions GFP-talin1-mCh and GFP-talin1-

(L432G, E2492G)-mCh were created by PCR using the relevant

GFP-talin1 construct together with mCherry (a gift from Roger Y.

Tsien). All constructs were authenticated by DNA sequencing.

mCherry-paxillin has been described previously [58].

To evaluate the stability of the GFP-tagged calpain-resistant

talin1 mutants in cells, HEK293 cells (10 cm dishes) were

transfected with 5 mg of DNA using Lipofectamine as per

manufacturer instructions. For the GFP control 0.2 mg and 5 mg

of pcDNA was used. The cells were lysed 24 hours post

transfection in 20 mM Tris pH 7.4, 150 mM NaCl, 2 mM

EDTA, 0.1% Deoxycholate, 0.5% NP-40 plus 1% protease

inhibitor cocktail set III (Novagen). Proteins (20 mg per lane) were

resolved by SDS-PAGE and transferred to a nitrocellulose

membrane for the Western blotting using anti-GFP antibodies

(Roche). Anti-GAPDH (Santa Cruz) was used as a loading control.

All experiments were performed in triplicate.

The effects of the calpain-resistant talin1 mutants on FA was

studied using CHO.K1 cells (American Type Culture Collection;

CCL-61TM) cultured in low glucose DMEM supplemented with

10% FBS, 4 mM L-glutamine, 1% (v/v) non-essential amino

acids, and penicillin/streptomycin. Cells were maintained in a

humidified 5% CO2 atmosphere at 37uC. Transfections with

GFP-talin1 and paxillin-mCherry DNA or GFP-talin1-mCh and

GFP-talin1 (L432G, E2492G)-mCh plasmids were performed

using Lipofectamine. CHO.K1 cells were incubated with 5 ml

Lipofectamine and 0.1–0.2 mg DNA (supplemented with pBlue-

script DNA to yield a total of 1 mg DNA) for 3–4 hours. For live

time-lapse imaging, cells were trypsinised and replated on

fibronectin-coated (2 mg/ml) glass bottom dishes in CCM1

medium (HyClone, Logan, UT). Cells were maintained at 37uC
using a Warner Instruments heated stage insert (Bioptechs, Butler,

PA; Warner Instruments, Hamden, CT).
Fluorescence Microscopy and Image Analysis. TIRF

image time series were acquired on an Olympus IX71

microscope using a 10061.45 NA Plan Apo TIRFM oil

objective, a Ludl controller (Ludl Electronic Products,

Hawthorne, NY), and Metamorph Software (Molecular Devices,

Downingtown, PA). The 488 nm and 568 nm lines of an Ar-Kr

ion laser (Melles Griot, Albuquerque, NM) were used to excite

fluorescence from GFP- and mCherry-tagged constructs

respectively. Laser powers were modified and monitored by an

acousto-optical tunable filter (AOTF) unit with digitized power

readout (LSM technologies, Etters, PA). For simultaneous dual-

colour imaging, a polychroic mirror (Z488/568 rpc), dual emission

filter (Z488/568 nm) (Chroma Technology, Bellows Falls, VT),

and Dual-View (Photometrics, Tucson, AZ) were used. Image time

series were acquired using the QuantEM: 512C EMCCD camera

(Photometrics, Tucson, AZ). Quantification of adhesion size and

dynamics were performed in Image J (MBF-ImageJ for

Microscopy, McMaster University, Hamilton, Ontario, Canada).

Images were corrected for detector and diffuse background

fluorescence. A segmentation algorithm using maximum entropy

threshold was used to isolate and measure the size of adhesions

from images of GFP-talin1 mutants in CHO.K1 cells. We used the

GFP-talin1 channel for adhesion size quantification since

variations in fluorescence intensity and adhesion size between

the GFP-talin1 and paxillin-mCherry channels were minimal and

constant among the different talin1 mutants. Kymography analysis

was implemented on image time series to measure the persistence

time of cell edge protrusions. We define the persistence time as the

time at which a protrusions stop and nascent adhesions mature

and grow. For ratio imaging analysis of dual labeled GFP-talin1-

mCh and GFP-talin1-(L432G, E2492G)-mCh, cells were

corrected for background intensity effects and the channel 1

(GFP) was divided by channel 2 (mCherry) to yield a ratio

coefficient (R). For statistical comparison analysis, we use the

Kruskall-Wallis ANOVA on ranks approach. Multiple Pairwise

comparisons were performed in Sigma Plot 11.0 following the

Dunn’s method and the Holm-Sidak method for data presented in

Figures 6 and 7 respectively.

Supporting Information

Figure S1 Epitope mapping of the monoclonal antibody
TD77. (A) The recombinant talin polypeptides (2.5 mg) indicated

were analysed by SDS-PAGE and stained with Coomassie blue.

(B) Western blot analysis of the talin proteins (100 ng) using TD77

(1:5000) reveals the residues L2515 and R2526 as essential for

TD77 recognition. (C) Cartoon of the talin dimerisation domain

showing the relative positions of the key residues (L2515 and

R2526) of the TD77 epitope.

(TIF)

Figure S2 Fluorescence ratio imaging of wild-type and
(L432G,E2492G) calpain resistant talin1 in retracting
adhesions in CHO.K1 cells. Image time series of cells

expressing GFP-talin1-mCh (left) or GFP-talin1 (L432G,

E2492G)-mCh (right) were collected every 5 sec for 10 min. (A)

Images of summed time series for both construct highlight the

location and direction of the retracting adhesions (boxed regions).

Intensity time traces and ratios (R) for selected pixels along the

highlighted retracting adhesions in (A) for GFP-talin1-mCh (B)

and GFP-talin1 (L432G, E2492G)-mCh (C). The ratio is channel

1(GFP-black) divided by channel 2 (mCh-red).

(TIF)
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