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Figure 1: Different set visualizations: (a) An Euler diagram [Pod08], (b) Bubble Sets [CPC09], (c) Radial Sets [AAMH13].

Abstract

A variety of data analysis problems can be modelled by defining multiple sets over a collection of elements and
analyzing the relations between these sets. Despite their simple concept, visualizing sets is a non-trivial problem
due to the large number of possible relations between them. We provide a systematic overview of state-of-the-
art techniques for visualizing different kinds of set relations. We classify these techniques into 7 main categories
according to the visual representations they use and the tasks they support. We compare the categories to provide
guidance for choosing an appropriate technique for a given problem. Finally, we identify challenges in this area
that need further research and propose possible directions to address with these challenges.

Categories and Subject Descriptors (according to ACM CCS): H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Graphical user interfaces F.4.1 [Theory of Computation]: Mathematical Logic—Set theory

1. Introduction

Data items are often grouped into sets based on specific
properties. For instance, Fig. 1a shows amino acids grouped
according to known features, while Fig. 1b groups countries
by continent. Several relations between the sets are possi-
ble, such as: containment, exclusion, and intersection. An-
alyzing these relations is key to gain information about the
behaviour of the entities they represent. Such information

might involve which sets have strong overlaps (Fig. 1c), and
whether certain data features are responsible for this. A va-
riety of real-world concepts can be modelled using sets, in-
cluding: club memberships, product features, and employee
skill sets. Example questions about such data are: whether
certain clubs are exclusive to each other, whether a certain
product feature is always in combination with another one,
and whether specific skill combinations are highly paid.
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Information visualization (InfoVis) offers many opportu-
nities for analyzing sets and their relations. A key challenge
in visualizing sets is the potentially large number of possible
relations between them, as it grows exponentially with the
number of sets. This imposes a severe limit on common rep-
resentations based on Venn and Euler diagrams. Several In-
foVis techniques were proposed to visualize sets using alter-
native representations. These techniques vary in their scala-
bility limits and in the set-related tasks they support.

In this report, we survey state-of-the-art techniques for vi-
sualizing sets. After discussing several characteristics of set-
typed data (Sect. 2) and tasks related to them (Sect. 3), we
provide an overview and a categorization of these techniques
(Sect. 4) based on the visual metaphors they use. In addi-
tion, we compare these techniques according by their advan-
tages and limitations, and by the tasks they support (Sect. 5).
Finally, we identify challenges that require future research,
along with possible opportunities to tackle them (Sect. 6).

2. Sets and Set-typed Data

Sets have been traditionally studied by mathematicians and
logicians as a foundational concept. A set is defined as a
collection of unique objects, called the set elements. A key
characteristic of this collection is that it does not impose an
ordering of the elements. A family of sets, also called a set
system, is a collection of subsets of a given set of elements.
Such sets potentially overlap, making several relations be-
tween the sets possible such as containment, exclusion, and
intersection. Cantor formalized set theory [Can95] in the
19th century. This theory is concerned with various concepts
related to sets, such as set algebra and set operations.

In data analysis, sets have been mainly treated as a collec-
tion of data points, such as a subset of rows in a data table.
Such subsets are usually used to define training and vali-
dation sets, or to store the results of search and clustering
algorithms. In addition, set-theoretic operations such as in-
tersection, union, difference, complement, Cartesian product
and the power set are extensively used in relational databases
to query elements and join multiple data tables.

Despite the ubiquitous usage of sets in data analysis, sets
have not been commonly treated as an own data type in
InfoVis literature, unlike graphs and hierarchies. Set mem-
berships are rather often abstracted as separate Boolean at-
tributes. Freiler et al. [FMH08] pointed to this lack, and
proposed several ideas to support set-enabled visualizations.
Treating set families as an elementary data type would con-
tribute to a better understanding of their characteristics and
the challenges associated with visualizing them. We refer
to data that involves element-set memberships as set-typed
data. The data can also encompass additional attributes of
the elements or the sets. In the following, we give exam-
ples of how set-typed data are represented and what special
cases, specific features, similarity measures, and tasks are
associated with them.

Figure 2: Various forms of set-typed data: (a) the cardinality
of set relations, (b) a multi-valued attribute (in grey), (c) a
membership list, (d) Boolean attributes (in grey).

2.1. Data Representation

There are several ways to represent a set family on the data
level, depending on the information available. One way is to
explicitly represent the relations between the sets in the fam-
ily. The data stores the absolute or relative size of the inter-
section of these sets (Fig. 2a). This representation does not
require information about the individual set elements, and is
hence suited when this information is unavailable or when
dealing with infinite sets. For example, when the sets repre-
sent events, relative sizes can be used describe joint proba-
bilities for these events. Also, when the sets represent logical
variables, the data can involve infinite sizes.

When the number of elements in the set family is finite
and their set memberships are available, three data struc-
tures for graphs can be used to represent these memberships.
A multi-valued attribute can specify the sets to which each
element belongs (Fig. 2b), resembling adjacency lists. Al-
ternatively, a table of element-set memberships can be used
(Fig. 2c), resembling an edge list. Boolean attributes repre-
senting the sets can also be used to specify which elements
belong to them (Fig. 2d), resembling an adjacency matrix.
These representations illustrate a duality between the ele-
ments and the sets: by transposing the matrix, each set S can
be treated as an element that belongs to the dual sets corre-
sponding to the elements of S. Also, adjacency lists can rep-
resent element lists as in the extensional definition of sets.

Apart from set membership, further attributes of the ele-
ment might need to be involved in the analysis. For example
information about club members might encompass their age
and sex. A special type of attribute is associated with the set
membership, for example the membership date in each club.
This means for each set, one such attribute is needed to store
the set-dependent values. Certain techniques support visual-
izing set-dependent attributes (Sect. 5.1).
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An important notion in a family of sets is the set member-
ship degree of an element, which we refer to as the element’s
degree. This degree denotes the number of sets in the fam-
ily the element belongs to. It corresponds to set cardinality
in the dual representation of sets and elements. A related
concept is the exclusive membership to certain sets or set
intersections. Many analysis tasks and visualization designs
are concerned with the degree of certain elements and with
exclusive membership, as we explain in Sect. 3 and Sect. 4.

2.2. Scope and Special Cases

In general, the sets in a set family overlap, i.e., they have one
or more intersection relations. When all sets are in exclusion
relation, they exhibit no overlap and define groupings over
the respective elements. If such sets cover all the elements,
they define a classification of the elements into classes (also
called partitioning). In such cases, the set memberships can
be represented by one categorical attribute that stores these
classes. When the sets exhibit both exclusion and inclusion
relations, but no intersections, they define a hierarchy over
their elements. We limit our survey to techniques for visu-
alizing overlapping sets. Hence, visualizing hierarchies and
non-overlapping groups is not covered in this report.

A family of sets defined over a finite number of elements
is equivalent to a hypergraph whose hyperedges represent
the sets. A hypergraph is usually drawn either in subset stan-
dard (Sect. 4.3.1) or in edge standard (Sect. 4.4) [Mäk90].
For more details about available drawing techniques, refer
to graph drawing literature [BCPS12,BVKM∗10,KvKS09].

In some cases, there are constraints on possible intersec-
tion relations between the sets. One example is when an ele-
ment can belong to a maximum of k < m sets from a family
of m sets. Another example is when a set can intersect with k
other sets at most. It is important to identify and exploit such
special cases, as some of the techniques presented in Sect. 4
can be simplified under such assumptions.

2.3. Similarity Measures

Many tasks related to set-typed data are concerned with find-
ing which pairs of sets S1 and S2 exhibit higher similarity
than other pairs, with regard to the number of shared ele-
ments between them |S1 ∩ S2|. Several similarity measures
between finite sets have been proposed in the literature. A
symmetric measure was proposed by Jaccard [HHH∗89]:

Jaccard(S1,S2) = |S1∩S2|/|S1∪S2|

It has been employed in set visualization both explicitly to
reveal set similarity as in Radial Sets (Fig. 1c) and implicitly
for matrix reordering (Sect. 4.5). Tversky [Tve77] proposed
a generalized index for set similarity that can replicate other
measures by using different parameterizations. It is also pos-
sible to weigh shared elements differently when computing
the similarity. For example, elements of degree 2 in S1 ∩ S2

can be weighed higher than other elements, as they belong
exclusively to the overlap. An important issue with similar-
ity measures is their sensitivity to the respective set sizes.
Larger sets have higher probability of overlap, causing a bias
in the above-mentioned measures. Applying the χ

2 statistic
can eliminate such bias [AAMH13].

The choice of an appropriate similarity measure depends
on the data, the tasks to be solved and the information to be
communicated by the visualization. Depending on whether
the chosen measure is symmetric or not, and on the value
range it takes (e.g. [0,1] or [−1,1]), different visual vari-
ables are appropriate for encoding set similarity, such as size
[KSB∗09], colour [AAMH13], position [LLS05] or order
[KLS07]. Additionally, some techniques compute element-
element similarities based on their set memberships, e.g. to
optimize element ordering [KLS07].

3. Common Tasks with Set-typed Data

When designing a visualization of set-typed data, it is im-
portant to determine which tasks it needs to support. Here
we list general tasks addressed by the surveyed techniques,
classified into the following categories.

3.1. Tasks related to elements

These tasks are concerned with the membership of the ele-
ments in the sets.

A1 Find/Select elements that belong to a specific set.
A2 Find sets containing a specific element.
A3 Find/Select elements based on their set memberships: e.g.

elements in A and in B but not in C.
A4 Find/Select elements in a set with a specific set member-

ship degree: e.g. elements exclusive to the set or that also
belong to two other sets.

A5 Filter out elements based on their set memberships.
A6 Filter out elements based on their set membership de-

grees: e.g. filtering out elements exclusive to their sets,
to focus on shared elements.

A7 Create a new set that contains certain elements.

3.2. Tasks related to sets and set relations

These tasks are concerned with higher-level reasoning about
the sets without taking individual elements into account. Ex-
ample tasks applied to sets A, B and C include:

B1 Find out the number of sets in the set family.
B2 Analyze inclusion relations: e.g. find out if a set A is fully

included in B, or in B∩C, or in B∪C.
B3 Analyze inclusion hierarchies: e.g. find out if A is in-

cluded in B, and B in turn is included in C (and so on).
B4 Analyze exclusion relations: e.g. find out if A does not

intersect B, or B∩C, or B∪C.
B5 Analyze intersection relations: e.g. find out if a certain

pair of sets overlap, or if a certain group of sets overlap
(i.e. have a non-empty intersection).
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B6 Identify intersections between k sets.
B7 Identify the sets involved in a certain intersection.
B8 Identify set intersections belonging to a specific set.
B9 Identify the set with the largest / smallest number of pair-

wise set intersections.
B10 Analyze and compare set- and intersection cardinalities:

e.g. estimate |A| or |A∩B|, compare |A| with |B|, or |B∩
C|, or |B∪C|, and identify the set or set intersection with
the largest or smallest cardinality.

B11 Analyze and compare set similarities: e.g. find out which
pairs of sets exhibit high or low similarity according to
some similarity measure.

B12 Analyze and compare set exclusiveness: e.g. find out if
A contains more exclusive elements than B, or more ele-
ments shared with 1, 2, or 3 other sets.

B13 Highlight specific sets, subsets, or set relations: e.g. to
emphasize them, and de-emphasize the remaining data.

B14 Create a new set using set-theoretic operation: e.g. create
the complement of A, or A \B as a new set to compare
with other sets.

3.3. Tasks related to element attributes

Set-typed data can encompass additional attributes of the el-
ements. The following tasks are concerned with how the el-
ement memberships and attributes are inter-related.

C1 Find out the attribute values of a certain element.
C2 Find out the distribution of an attribute in a certain set

or subset: this aims to understand how the attribute cor-
relates with element membership of this set. Sometimes,
the two attributes have a spatial reference and the ele-
ments are positioned accordingly as in maps or scatter
plots (Sect. 4.3). In this case, the task supports estimating
the spatial distribution of a set [DvKSW12].

C3 Compare the attribute values between two sets or subsets:
e.g. the attribute distributions in two sets can be compared
against each other. Alternatively, summary values can be
compared such as the mean, the median, or the dominant
category.

C4 Analyze the set memberships for elements having cer-
tain attribute values: e.g. find out if these elements appear
more frequently or less often in certain sets / subsets.

C5 Create a new set out of elements that have certain at-
tribute values: this set represents a query on the elements
based on their attributes. Shneiderman emphasized the
importance of supporting such queries in his task taxon-
omy [Shn96] and the role of set-theoretic operations to
combine multiple constraints on the attribute values.

In the next section we survey state-of-the-art techniques that
address the generic tasks listed above. A number of other
tasks are also concerned with set-typed data such as hierar-
chical clustering of the sets or the elements, comparing mul-
tiple instances of a set family, and analyzing changes in the
data over time. Such tasks are often application-specific and
require dedicated techniques, and hence are not addressed
explicitly in this survey.

4. The Survey

We conducted this survey by examining the titles published
in the main visualization conferences and journals as listed
in the supplementary material. After identifying relevant ar-
ticles, we extended the search to further articles citing them
in other venues. We classified the techniques we found into
seven categories according to the main visual representation
they use for depicting set relations. The techniques in each
category exhibit similar scalability and readability proper-
ties as well as design considerations. Also, certain tasks are
better supported by a certain category of techniques as we
discuss in Sect. 5. The following subsections list the seven
visual categories and describe the techniques in each of
them. Certain techniques, however, might belong to multi-
ple categories. Links to available software implementations
or demonstrations and to additional resources about these
techniques are available in the supplementary material and
in the companion website http://www.setviz.net.

4.1. Euler and Venn Diagrams

Euler and Venn diagrams are amongst the oldest [Bar69] and
most popular set visualizations. Sets are represented by la-
belled closed curves (of various shapes e.g. circles, ellipses
or polygons) and set relations are depicted by the curve over-
laps. Any set inclusion, exclusion and intersection can be
represented with an Euler diagram as there are no restric-
tions on how the curves overlap. A Venn diagram is a re-
stricted form of an Euler diagram as it has to show all pos-
sible combinations of curve overlaps. Thus, Venn diagrams
quickly become visually complex as more sets are depicted.

The visual properties of Euler diagrams are simple yet
perceptually powerful for depicting set relations [War12].
The closed curves clearly indicate set membership, as the
perceptual tendency to organize space into regions is much
stronger when indicated by closed curves than by proximity
or similarity [Pal92]. The set relations are also easily visi-
ble, as the closed curves pop out preattentively, particularly
when smooth [TS85, Kof35].

Euler diagrams were originally used to teach categorical
propositions and syllogisms [Eul68]. They are still used to
teach set theory, but are now also used in areas such as genet-
ics and proteomics [MM11, RGBS∗11] and reasoning sys-
tems [Sta05]. An Euler diagram is well-matched to what it
represents when the spatial relationships between the curves
precisely reflect the set relations. Euler diagrams are most
effective when they are well-matched [Gur99], however, this
cannot always be achieved without less effective aesthetics.

Various automatic drawing techniques that generate Euler
diagrams with different aesthetic features and for different
types of data have been developed. We provide an overview
of implemented techniques in Table 1 and we discuss these
further in the next sub-sections (see surveys on Venn [RW97]
and Euler [Rod13] diagrams for more details).
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Table 1: Features of implemented automatic drawing tech-
niques for Euler and Venn diagrams.
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example
techniques

X any X polygon [SRHZ11, SAA09]

X any X X circle X
[SFRH12]

(no shading)
X any X X circle X X [SFRH12] (shaded)

any X X polygon [FH02]

3 X X X circle X X [LM13, CR05a]

X any X circle X X [Wil12]

3 X X X ellipse X X [MR14]

X any polygon X X [KMK∗08]

3 X polygon X [RFSH10, CR03]

X any X polygon X [CR05b]

X 1-3 X
circle

polygon X [RHSF14]

3 X X circle X X [Cla08]

3 X ellipse X X [MDF12]

4.1.1. Well-formedness and Aesthetics

Studies indicate that the layout of the Euler diagram and its
aesthetics affect user comprehension. An effective Euler di-
agram should be well-formed [RZP12], as in Fig. 3a. A well-
formed Euler diagram has: simple curves that meet at most at
one point in which case the curves cross; every set is repre-
sented by at most one curve; every set relation is represented
by at most one region. Diagrams with concurrent curves or
more than one curve for a set or more than one region for
a set relation are the least effective for human comprehen-
sion [RZP12].

Euler diagrams with non-smooth curves or curves that
are close to one another impede understanding [BR07].
Those drawn with circles are the most effective, but if cir-
cles cannot be used, the curves should be highly symmetric
and the shape of the regions should be highly distinguish-
able from that of the curves [BSR∗13]. Nevertheless, well-
matchedness can be more important than well-formedness
[CSR∗14].

However, as illustrated in Table 1 it is not always possi-
ble for a drawing technique to satisfy all of these aesthetic
criteria. This often depends on whether the technique draws
diagrams for any or for only specific types of set relations.

4.1.2. Techniques for Any Set Relations

The techniques that draw well-matched diagrams for any
set relations are often not well-formed and have non-smooth
curves (e.g. [SRHZ11, SAA09, RZF08]), as in Fig. 3a. The
smoothness, shape and closeness of the curves of the gener-
ated diagram could be further improved by other methods
(e.g. [MR09, FRM03]), as shown in Fig. 4, but not well-
formed diagrams are likely to remain not well-formed. Mul-
tiple curves representing the same set can be used to draw
well-matched Euler diagrams with circles (e.g. [SFRH12]).

Techniques that draw well-formed Euler diagrams for any
set relations often have smooth and highly symmetric curves
like circles. However, the generated diagrams are not well-
matched, as regions representing unwanted set relations are
shown. The regions corresponding to these set relations are
often shaded (e.g. [SFRH12, Ven80]), as in Fig. 3b, or left
empty while glyphs are placed in the other regions (e.g.
[MDF12,Cla08]), as in Fig. 6. However, shading was shown
to be less effective than well-matchedness with respect to
human accuracy and time [CSR∗14].

4.1.3. Techniques for Specific Set Relations

A number of techniques generate a diagram for only those
set relations for which a well-matched and well-formed Eu-
ler diagram can be drawn. No diagram is generated for other
set relations. Thus when generated, the diagrams are more
likely to have aesthetic features that aid comprehension, par-
ticularly when the curves are circles (e.g. [SZHR11]) rather
than irregular polygons (e.g. [FH02]).

(b)(a) c b

a

ef

Figure 3: (a) A well-matched Euler diagram that is not well-
formed and whose curves are not smooth [RZF08], and (b)
a not well-matched Euler diagram with shading that is well-
formed and has smooth curves [SFRH12].

(b)(a)

Figure 4: The layout improvement technique eulerForce
[MR09] converts (a) to (b).
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(b)(a)

(c)

Figure 5: Area-proportional Venn diagrams drawn with: (a)
circles [MM11] using Venn Diagram Plotter [LM13]; (b)
polygons [RGBS∗11] using 3 Circle [CR05b]; (c) ellipses
using eulerAPE [MR14] for the numeric data in (a).

4.1.4. Techniques for Area-proportional Diagrams

Euler diagrams can be area-proportional, such that the area
of each region in the diagram is directly proportional to the
cardinality of the depicted set relation. Differences in these
cardinalities are easily noted [TG80]. However, it is difficult
and often impossible to draw accurate area-proportional di-
agrams with aesthetic features that aid comprehension.

Current techniques differ mainly in the shape used for
the curves. Most techniques use circles (e.g. [LM13, Wil12,
CR05a]) to facilitate user comprehension. However, circles
have limited degrees of freedom and so, the generated dia-
grams are less likely to have accurate region areas. This is
particularly problematic for Venn diagrams, as an accurate
area-proportional Venn diagram can be drawn for any data
with only two sets [Cho07]. Most circle-based techniques
can produce misleading diagrams, e.g. in Fig. 5a, the region
with 3 is much smaller than that with 4.

Other techniques use polygons (e.g. rectilinear curves
[CR03], 4- or 5-sided convex curves [RFSH10], irregular
curves [CR05b]) to generate accurate diagrams for most
data. However, these diagrams are often difficult to compre-
hend, as they are not well-formed and have non-smooth and
non-symmetric curves, as in Fig. 5b. Techniques that use reg-

ular polygons (e.g. [KMK∗08]) produce symmetric curves,
but have the same limitations as those using circles.

A recent technique, eulerAPE, [MR14] uses ellipses. El-
lipses are smooth like circles, but have two more degrees
of freedom. This means, the generated diagrams are more
likely to be accurate and aesthetically desirable, as demon-
strated by eulerAPE’s evaluation for 3-set data, and Fig. 5c.

Current techniques often draw diagrams with only two or
three curves and do not allow any regions with zero area. Ex-
ceptions include: venneuler [Wil12], which draws often in-
accurate diagrams with any number of curves using circles;
Rodgers et al.’s [RHSF14] technique, which draws accurate
diagrams with up to three curves using a mix of circles and
convex and non-convex polygons.

4.1.5. Techniques for Euler Diagrams with Glyphs

Humans are biased to area judgement [CM84]. Hence, tech-
niques have been devised to generate Euler diagrams with
glyphs, such that glyphs (not area) indicate the cardinality of
the set relations, while the curves depict the set relations.

Equally-sized glyphs that are directly proportional in
number to the cardinality of the set relations are typically
placed in the corresponding regions of the diagram. Twitter-
Venn [Cla08] draws such diagrams to depict the number of
twitter messages that used any of two or three user-selected
words (Fig. 6a). eulerGlyphs [MDF12] draws similar dia-
grams with randomly or uniformly positioned glyphs and
curves that are either area-proportional or not for Bayesian
problems to reduce fallacious reasoning (e.g. Fig. 6b-c).

Differently-sized and multi-attribute glyphs can be used to
depict different associated quantities [Bra12] (Fig. 6d), but
no automatic drawing techniques have been devised.

4.1.6. Other Techniques

A technique that draws 3D Venn and Euler diagrams was
recently introduced [RFS12]. Sketching software Sketch-
Set [WPS∗11] and SpiderSketch [SDRP11] were also de-
vised to respectively generate Euler diagrams and Euler di-
agrams with graphs or shading from hand drawn sketches.
Techniques that draw Euler diagrams for diagrammatic rea-
soning systems [Sta05] (e.g. spider diagrams [HST05], con-
straint diagrams [SD08]) and interactive diagrammatic theo-
rem provers [UJ12, UJSF12] are also available.

(d)(a)

Blue 
cabs

Red 
cabs

cabs identified
as Blue

(b)

Blue 
cabs

Red 
cabs

cabs identified as Blue( c)

Figure 6: Euler diagrams with glyphs: (a) TwitterVenn [Cla08], (b)-(c) eulerGlyphs [MDF12], (d) Brath’s [Bra12].
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Figure 7: Euler diagram variants: (a) Missing Pieces [KSJ∗06], (b) visualizing undrawable Euler diagrams [SA08], (c, d)
untangling Euler diagrams [HRD10] using set splitting (c), and element duplication (d).

4.1.7. Diagram Design

Different designs have been used to draw Euler diagrams,
but no empirical studies have been conducted to assess their
effectiveness.

A different colour per curve is often used. If the curve in-
terior is not coloured (e.g. Fig. 3b), the curves in which a
region is located might not be easily identified. If the curve
interior is coloured, transparency can be used (e.g. Fig. 3a,
Fig. 4). However, the colours of the curves could perceptu-
ally fuse at overlaps and the colours of regions in the same
curve could seem unrelated, giving the impression that they
belong to different sets. The same issue is evident when a
different colour per region is used (e.g. Fig. 5a), irrespec-
tive of whether the colours of regions in the same curve are
somehow related (e.g. Fig. 5b). To avoid such problems a
weaving approach [LRS10] has been proposed, so a diagram
like Fig. 8b is drawn instead of Fig. 8a.

In contrast to other drawing techniques, eulerAPE
(Sect. 4.1.4) draws the curves using different visual feature
channels (namely colour, outline and texture, as in Fig. 5c)
so the curves are visually distinct and do not fuse percep-
tually. The curves in which the specific regions are located
are thus easily identified. Also, by tuning one’s attention
to the feature type of a curve, other feature types recede
and one can better focus on a specific curve representing a
set [War12].

Figure 8: An Euler diagram filled using: (a) transparency,
(b) weaving. [LRS10]

4.2. Euler Diagram Variants

Several variations of Euler diagrams have been proposed for
different purposes. Like Euler diagrams, these techniques
use closed regions to represent the sets or subsets thereof.

Missing Pieces [KSJ∗06] use concentric rings for show-
ing the results of three search engines (Fig. 7a). The outer
and middle rings include the elements retrieved by one or
two engines, respectively. The inner ring includes elements
retrieved by all three engines. The search results are rep-
resented as glyphs inside the respective regions and can
be coloured to encode additional attributes. Fan diagrams
[KLS07] use a similar layout to visualize three sets. Instead
of having a separate ring for pair-wise overlaps, these over-
laps are placed between the respective parts in the outer ring.

To handle cases where Euler diagrams cannot be drawn,
Simonetto et al. [SA08] proposed a drawing method based
on the corresponding Euler graph. Set relations that cannot
be represented in a proper Euler diagram are visualized by
splitting or duplicating certain sets and subsets into disjoint
parts, and connecting these parts using edges (Fig. 7b).

Similar ideas were proposed to untangle Euler diagrams
and ensure their drawability using simple rectangular shapes
[HRD10]. Two variations, called ComED and DupED use
set splitting and element duplication respectively. ComED
splits a set into multiple rectangular parts, depending on how
it overlaps with larger sets (Fig. 7c). These parts are con-
nected with hyperedges that preserve the continuity of the set
regions, as in Euler diagrams. However, the hyperedges con-
tain no elements and hence their mutual crossings represent
no shared elements between the respective sets. The rect-
angular parts are arranged in a containment hierarchy that
reveals several set relations. For example, in Fig. 7c it is ev-
ident that all elements shared between the blue and the pink
sets also belong to the green and purple sets. DupED cre-
ates separate rectangular regions for the sets, and duplicates
the elements that belong to multiple sets. Multiple instances
of the same element are linked with hyperedges (Fig. 7d). It
outperforms ComED in counting the sets, comparing their
sizes, and assessing their intersections. However, ComED
scales significantly better in terms of visual complexity.
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4.3. Overlays

In many data analysis scenarios, the set memberships are a
secondary information in the data that needs to be analyzed
in the context of other data features. For example, when the
elements have a spatial reference, they are often viewed on a
map that provides context information about their locations.
Other examples are points in a scatter plot or nodes in a
graph. Several techniques have been proposed to augment
set memberships over the elements in an existing visualiza-
tions. These techniques can be classified into the following
three categories, according to the visual elements they use.

4.3.1. Region-based Overlay Techniques

These techniques surround the elements of a set with a
closed curve that defines a region. One element can belong
to multiple regions if it belongs to multiple sets.

Bubble Sets [CPC09] constructs a contour (also named
implicit surface) for every set so that it includes all of its el-
ements and excludes all other elements if possible. For this
purpose it computes an energy map over the pixels in the
convex hull containing the set elements. In a second step,
it applies the marching squares algorithm to compute the
implicit surface from the map. The sets are assigned semi-
transparent colours to reveal their overlaps and to keep the
context visualization visible. Unlike Euler diagrams, two re-
gions might overlap even if their sets share no elements.
Such overlaps should be understood as artifacts that encode
no information. An inverse distance-based potential field
[VPF∗14] alleviates these artifacts but might result in dis-
connected regions. Bubble sets were demonstrated to over-
lay set memberships over tens of elements in a scatter plot, a
graph, or a map (Fig. 1b and Fig. 9a). Depending on the over-
lap extent, the technique can handle between 4 to 20 sets and
still retains enough visibility of the context.

Texture splatting has been proposed to depict areas of
interest (AOIs) in software architecture diagrams [BT06].
Splatting is applied to a skeleton constructed from the di-
agram elements according to their size and position. A post-
processing step erases elements that incorrectly fall within a
specific AOI. Overlaps between multiple AOIs are empha-
sized using subtractive colour blending which creates darker
overlapping regions (Fig. 9b). A follow-up work [BT09]
uses texture and colour to encode further software metrics
about AOI elements. Splatting creates smooth boundaries
and is applied there only, as it is computationally exhaustive.

When the base visualization places elements that belong
to the same set close together, simpler and more convex
shapes can be used for the regions than in previous tech-
niques. A typical case is when the sets indicate clustering re-
sults of a graph. Vizster [HB05] create a region for each clus-
ter by computing the convex hull of the nodes in it and inter-
polating the hull boundaries using a cardinal spline (Fig. 9c).
If the clustering algorithm allows node membership to mul-
tiple clusters, the cluster overlaps are revealed by colour.

4.3.2. Line-based Overlay Techniques

To reduce the ink used in the overlay and the interference
with the base visualization, many techniques use lines to rep-
resent set membership. Elements that belong to the same set
are shown by being present on one or more connected lines.

LineSets [AHRRC11] computes a line for each set that
passes through its elements (Fig. 10a) using a travelling
salesman heuristic that minimizes the line length. This in
turn reduces self-crossings and bends, making it easier to
follow the line. The lines are drawn as piecewise Bézier
splines of different colours. As with region-based methods,
not all line crossings represent set overlaps. Actual over-
laps are marked with concentric rings around the elements
colour-coded according to the respective sets. Interaction
makes certain lines salient, while the other lines are drawn
thinner to reduce visual clutter. LineSets were shown to scale
better than region-based methods and can overlay up to tens
of sets over hundreds of elements. However, the use of sim-
ple lines imposes an artificial ordering on the set elements.

Kelp Diagrams [DvKSW12] connects the elements in a
set using a graph structure instead of a simple line. It sur-
rounds each element with a circle clipped to its Voronoi cell
to avoid overlaps. Then it computes a tangent visibility graph
based on these clipped circles. Finally, it constructs for each
set a minimum cost path as a subgraph that connects its el-
ements. This graph aims to capture the shape of a point set
on a map. The links are routed so that no path contains el-
ements that do not belong to the respective set. Two styles
were proposed to draw overlapping links. The nested style
draws the links over each other, with thinner links in the top
to ensure their visibility (Fig. 10c). The striped style uses
alternating stripes for areas that contain elements of multi-
ple sets (Fig. 11c). A follow-up technique called KelpFu-
sion [MHRS∗13] allows the graph to vary from a minimum
spanning tree to the convex hull of a point set. It uses a hy-
brid representation that bridges Bubble Sets (Sect. 4.3.1) and
Kelp Diagrams using both lines and regions (Fig. 10d).

In some cases, the base visualization represents the ele-
ments of each set separately, and hence creates multiple in-
stances of the same element. An example of this are the par-
allel tag clouds [CVW09] that represent multiple sets of tags
(Fig. 10b). This technique connects multiple instances of the
same tag with a thick path line. To avoid clutter, only the
two ends of the edge connecting a tag instance with its next
occurrence are depicted. The full segment is shown only for
selected tags on demand. While it is hard to follow the in-
stances of an unselected tag, the depicted edge ends reveal if
such instances exist or not in parallel clouds.

The context-preserving visual links [SWS∗11] are a
generic technique that uses line overlays to link multi-
ple instances of the same element in multiple coordinated
views showing different visualizations. The layout algorithm
routes the lines preferably within white space using a density
map to minimize interference with the base visualizations.
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Figure 9: Region-based overlay techniques: (a) Bubble Sets showing groups of items over a timeline [CPC09], (b) texture
splatting to depict areas of interest [BT06], (c) convex hulls to depict clustering results of a social network in Vizster [HB05].

Figure 10: Line-based overlay techniques: (a) LineSets [AHRRC11], (b) Parallel Tag Clouds [CVW09], (c) Kelp Diagrams
[DvKSW12], (d) KelpFusion [MHRS∗13] uses a hybrid region- and line-based representation.

Figure 11: Glyph-based overlay techniques: (a) multi-colour hatching of a map [Wik10], (b) colour-coded nodes [IMMS09], (c)
striped glyphs in Kelp Diagrams [DvKSW12]. (d) using icons [Kin], (e) colour-coded bars [SOTM06] to indicate the co-authors
of each paper, (f) glyphs [XDC∗13] to indicate correlations between the graph structure and set memberships.
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4.3.3. Glyph-based Overlay Techniques

In many cases, it is enough to represent the set memberships
for the individual elements in the base visualization, without
the need to represent each of the sets as a connected object.
In this case, glyphs can be used as simple overlays.

Coloured glyphs are commonly used for this purpose:
each set is assigned a colour from a qualitative (categori-
cal) colour scale. There are several ways to design coloured
glyphs to show multiple set memberships, depending on how
the base visualization represents the elements. For example
if the element’s representation has enough space, multiple
coloured-coded dots can be added in an appropriate location
to indicate its set memberships. When the elements are re-
gions on a map, hatching techniques can be used to fill these
regions with multiple colours (Fig. 11a). Pie-like glyphs are
commonly used to overlay set memberships when the el-
ements are represented as circles, such as the nodes of a
graph [IMMS09] (Fig. 11b). BiblioViz [SOTM06] represents
papers as bars in a time line, and overlays coloured segments
over the bars to represent multiple co-authors (Fig. 11e).
However, the division of a circle or a bar into coloured seg-
ments might causes a bias regarding the order and size of
these segments and a confusion with the spatial layout. Kelp
Diagrams provide an alternating pattern to avoid this confu-
sion and minimize discontinuity (Fig. 11c).

Colour composition [HKvK∗13] is another way to indi-
cate multiple set memberships. For example purple can be
used to indicate membership of both red and blue groups.
However, this is restricted to two or three sets, as it is other-
wise hard to memorize all possible colour compositions.

The use of colour can support the inference of the spatial
distribution of the sets (Fig. 11a). Instead, the set member-
ships can be indicated using icons (Fig. 11d). This is appro-
priate when the sets represent real-world concepts that have
corresponding icons such as flags or common signs. How-
ever, without interaction, a serial scan might be needed to
find out which elements belong to which set.

Other types of glyphs have also been devised for specific
applications. For example, glyphs based on superimposed
area charts [XDC∗13] were proposed to encode how the
distance between two nodes in a graph correlates with the
number of set memberships shared between them (Fig. 11f).
Also, MetaCrystal [Spo04] uses polygonal glyphs to repre-
sent meta search results. The number of sides encodes how
many search engines retrieved a specific document, with
multiple colours encoding these engines. Finally, coloured
pie-like glyphs were proposed to visualize fuzzy member-
ship of overlapping communities in networks [VRW13].

Overlay techniques allow the analysis of how certain in-
formation and relations between the elements correlate with
their set memberships. Alternatively, these correlations can
be augmented with other visualizations that better emphasize
the set information as in some of the following techniques.

4.4. Node-link Diagrams

The membership relations between elements and sets can be
modelled as edges of a bipartite graph. Several techniques
have been proposed to visualize bipartite graphs.

A simple layout for bipartite graphs places the elements
and the sets in two lists parallel to each other. Jigsaw
[SGL08] uses this layout to show co-occurrence relations
between different concepts in documents (Fig. 12a). Schulz
et al. [SJUS08] demonstrated techniques to reduce the clut-
ter caused by crossing edges in such layouts using colour
blending and a fisheye lens. Both systems show how addi-
tional attributes of the elements can be depicted using colour
or additional columns.

Anchored maps [Mis06] use a circular layout to visual-
ize bipartite graphs. The technique depicts the set nodes
around a circle, and element nodes as free nodes depending
on their set memberships (Fig. 12b). Elements that belong
exclusively to a set are placed as a bundle of nodes outside
the circle, originating from the respective set node. Elements
that are shared between multiple sets are placed within the
circle, depending on their set memberships.

PivotPaths [DHRRD12] is designed to support strolling
in multi-faceted information spaces. Its node-link layout can
also be used to depict element-set memberships, by placing
the set nodes in the middle line (Fig. 12c). An element node
is placed at a distance from the middle line that is propor-
tional to its set membership degree. Its horizontal position
is computed as the mean of the set nodes it is connected to.
The elements can be divided into two groups and placed at
different sides of the middle line.

Node-link diagrams can also be used to show the simi-
larity between the sets as links between respective nodes.
Circos [KSB∗09] uses a circular layout for the nodes, and
stripes of varying thickness to connect the nodes. The stripe
thickness encodes the number of elements that fall in both
categories. Radial Sets [AAMH13] use a similar metaphor
to encode set overlaps (Sect. 4.6 and Fig 15). Unlike Circos,
the links originate from the same location, to emphasize that
the elements in a certain overlap between two sets can also
belong to other sets and overlaps.

4.5. Matrix-based Techniques

Different methods have been proposed to visualize set mem-
berships using matrices. These approaches take advantage of
the clear and flexible metaphor of matrices.

ConSet [KLS07] maps sets and elements to rows and
columns respectively. The cells encode set memberships
(Fig. 13a). The rows and columns are reorderable, as set and
element names have no predefined order. The reordering can
both simplify the matrix and reveal patterns in it, such as
clusters of elements that exhibit similar set memberships.
Several interactions and visual aids are possible with the
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Figure 12: Node-link techniques: (a) Jigsaw [SGL08], (b) anchored maps [Mis06], (c) PivotPaths [DHRRD12].

matrix representation, such as the aggregation of elements
or sets. Aggregated elements can be indicated visually us-
ing darker cells or additional bars. To facilitate inferring to
which sets an element belongs, the cells can be coloured by
unique set colours. Also, to facilitate inferring the elements
that belong to a set, the respective cells can be connected
with a line, instead of showing grid lines [ZKBS02].

PixelLayers [SDS13] represent each set as a separate ma-
trix whose cells encode which elements belong to the set
(Fig. 13b). Each element is represented by a unique cell po-
sition across all matrices. Hovering the mouse over an ele-
ment highlights the respective pixels in the sets it belongs to.
Drag and drop interactions allow aggregating multiple sets
into one matrix using union or intersection (Fig. 13b).

Frequency grids [MDF12] represent the elements as cells
in a matrix, and places a glyph in each cell to encode the re-
spective set memberships (Fig. 13c). They facilitate element
counting. However, they are limited to only a few overlap
combinations between a small number of sets.

The techniques mentioned so far encode which individual
elements belong to each set, and which ones do not. A matrix
can alternatively depict how the sets overlap with each other,
by representing the sets both as rows and as columns: Each
cell contains a similarity measure between the respective sets
(Sect. 2), encoded in colour as in a heatmap (Fig. 13d). Each
pair of sets corresponds to two cells in the matrix. Therefore,
the matrix can fit two symmetric measures, or one asymmet-
ric measure. The matrix can be reordered to reveal clusters
of sets that exhibit high overlap with each other. To explicitly
represent the overlaps between triples of sets, each row (or
column) can be divided recursively into multiple rows (or
columns). However, the resulting matrix becomes difficult
to comprehend and contains several redundancies, as each
3-set group is mapped to six separate cells.

KMVQL [Huo08] is a system to support formulating
queries over a collection of items, by defining Boolean com-
binations of different search criteria. It encodes all possible

2n membership combination of n sets in a matrix (Fig. 13e).
The user can click on a cell to include the elements it repre-
sents in the query result. Also, the cells can be coloured to
encode the frequency of elements in each combination of set
memberships.

Figure 13: Matrix-based techniques: (a) ConSet [KLS07],
(b) PixelLayer [SDS13], (c) frequency grid [MDF12], (d)
similarity matrix [LLS05], (e) the KMVQL layout [Huo08].
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4.6. Aggregation-based Techniques

When the number of elements is large, it becomes less fea-
sible to depict and investigate how single elements belong
to the sets. Following Shneiderman’s visual information-
seeking mantra [Shn96], many techniques provide an
overview of such data first, and allow exploring details about
certain elements on demand. These techniques employ fre-
quency representations of set-typed data to show the num-
ber of elements in different sets and subsets. They aggregate
multiple data elements into a single visual element that en-
codes this frequency.

Bar charts have been used to depict the sizes of the
sets and reveal the set overlaps as the bars are brushed
[AAMH13]. Unlike traditional bar charts, an element can
be aggregated in multiple bars, as it might belong to multi-
ple sets. Clicking on one bar selects the elements in the re-
spective set, and highlights the fraction that these elements
represent in the other bars, revealing how certain pairs of
sets overlap (Fig.14a). The selection can be refined further
using set operations between new selection and previously
selected elements, to investigate the overlaps between multi-
ple sets. However, this chart does not readily reveal how the
sets overlap and can only depict certain overlaps on demand.

Set’o’gram [FMH08] is an extension to the interactive bar
chart, designed for set-typed data. It divides the bars rep-
resenting the sets into sections that correspond to elements
of different degrees (Fig.14b). Starting from the bottom, the
ith section in a bar represents elements in the respective set
that are shared with i− 1 other sets. The height of a section
is proportional to the number of elements aggregated in it.
Starting from the top, the sections are assigned increasing
widths and are shaded along their diagonals to distinguish
between successive sections. The sections can be selected
and highlighted individually for finer analysis on demand of
the degree of overlaps.

Mosaic displays [Hof00] is a space-filling technique that
recursively partitions the space along the categories of mul-
tiple categorical variables (Fig.14c). To visualize set-typed
data, set memberships can be treated as binary categorical
variables [FMH08]. However, using both horizontal and ver-
tical subdivisions makes it hard to relate display tiles that
belong to the same set.

The Double-Decker plot [HSW00] adapts mosaic displays
to show how multiple Boolean variables correlate. It depicts
how multiple sets overlap by partitioning the space accord-
ing to the set memberships in the horizontal dimension only,
showing how many elements belong to each possible com-
bination of set memberships (Fig.14d). The partitioning hi-
erarchy is depicted using an additional display which shows
each set in a separate row using multiple tiles to represent
its element. Starting from the bottom, row i is divided into
2i parts that correspond to the different membership combi-
nations of the sets S1..Si. This gives an overview of how the
sets overlap, however, from the perspective of the set that

Figure 14: Aggregation-based techniques: (a) an interactive
bar chart [AAMH13], (b) Set’o’gram [FMH08], (c) Mosaic
displays [Hof00], (d) Double-Decker plot [HSW00].

defines the first partitioning level. In addition, the plot al-
lows easy comparison between selected portions in different
overlaps, as the respective tiles are of the same height. The
set co-occurrence view [Wit10] uses a similar plot to sup-
port set-typed data in the bargrams interface. This interface
uses additional rows to show the possible values of other at-
tributes and the frequencies of these values. Kosara [Kos07]
proposed a redesign of Venn diagrams composed of two
parts, as with Double-Decker plot. The lower part of this
redesign consists of a node-link visualization of the binary
tree whose levels represent the memberships to the different
sets. The upper part is a simple bar chart of the respective
overlap sizes, allowing direct comparison of these sizes.

Parallel Sets [KBH06] can be applied to visualize set-
typed data by treating set memberships as binary categorical
variables. Each set is represented on a separate horizontal
axis using two boxes of proportional size to represent both
the elements that belong to the set and the remaining ele-
ments. Up to four stripes connect the boxes between the two
topmost axes to represent elements that fall in the respec-
tive set membership combinations. In the standard mode, the
stripes are split further as they pass through the remaining
axes, representing all possible set combinations. Unlike mo-
saic displays, Parallel Sets represent the elements of a set
in one box only instead of several tiles. However, splitting
the stripes increases them by a factor of 2, as with the mo-
saic tiles. Moreover, the stripes overlap, causing clutter with
more than four sets. A bundled mode of the stripes reduces
this clutter but causes stripe discontinuity.

Radial Sets [AAMH13] provide a more detailed overview
of set-typed data than the above-mentioned techniques. The
sets are depicted as non-overlapping regions with a radial ar-
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Figure 15: (a) An Euler diagram (adapted from [WWC09]),
(b) equivalent Radial Sets [AAMH13] with illustrative icons.
The histograms in grey show a breakdown of set elements by
their degrees. The arcs show overlaps between pairs of sets.

rangement. The elements are represented as histogram bars
inside these regions, grouped by their degrees (Fig. 15).
Overlaps between pairs of sets are represented as links of
proportional thicknesses. Overlaps between triples of sets
are represented by hyperedges between the respective re-
gions. A hyperedge is depicted as a node connected to the re-
spective regions using tapered links. To avoid visual clutter,
these links can be shown on demand by hovering over a node
with the mouse. This results in a bubble chart of the overlaps
which enables size comparison, but hinders the ability to vi-
sually infer which sets are involved in which overlap. Radial
Sets use colour to indicate selected elements. When no ele-
ments are selected, colour can be used to encode aggregated
attribute values or measurements of the elements aggregated
in the histogram bars or the edges (Fig. 1c).

InfoCrystal [Spo93] uses glyphs to represent all possible
set overlaps. The set labels are placed on a circle and act
as magnets on the glyphs to determine their placement. A
follow-up work [Spo04] demonstrates the use of glyph sizes
to encode overlap sizes, and the use of colour to encode the
sets involved in the overlap.

In some cases, there is a need to provide a compact
overview of set sizes, as part of an information-dense in-
terface. A common mistake is to show the set sizes via a
pie chart, as the chart categories are not mutually exclusive
and do not sum up as parts of a complete whole. Fan dia-
grams [KLS07] address this issue by explicitly visualizing
the overlaps between the categories. An alternative way is to
use stacked bars with a special motif [WMLP12] or along
with an additional bar that indicates the actual number of the
elements [BCH∗13].

Except for mosaic displays (Fig.14c), the techniques men-
tioned above might represent one element in multiple visual
elements, depending on the sets it belongs to. Some visual-
izations indicate this element redundancy explicitly, as with
the links in Radial Sets and the collocated bars in Double
Decker plots. Interaction is needed to investigate which el-
ements are present in multiple sets, and to obtain detailed
information about selected elements.

4.7. Scatterplot-based Techniques

One way to analyze similarity values between sets in detail
is to use a 2D scatter plot that represents the sets as points
in the plane. Though such a plot does not emphasize sets
as containers of elements, it offers a clear layout to analyze
the relations between the sets and identify clusters of similar
sets. However, not all set similarity measures define a dis-
tance function, which limits the applicability of 2D projec-
tions (e.g. close points could be produced for disjoint sets).

The scatter view [LLS05] visualizes the similarity be-
tween a certain set, and the rest of the sets. It depicts two
asymmetric similarity measures against each other to find
which set is closer to the reference set both in overlap inten-
sity and completeness (Fig. 16a). To gain an overview of the
similarities between all pairs of sets, the authors proposed a
cluster view that projects the sets on the plane similar to the
way multi-dimensional scaling operates (Fig. 16b).

Correspondence analysis (CA) [Gre84] has been used to
visualize 2-mode social networks by treating them as binary
contingency tables [BH11]. Fig. 16c depicts the CA plot
for the southern women dataset (Fig. 2c). The plot contains
points both for sets and elements. Close element points indi-
cate similar set memberships. Close set points indicate high
overlap. Edges can be optionally overlaid between the sets
and elements.

Figure 16: Scatterplot-based techniques: (a, b) a scatter view
and a cluster view [LLS05], (c) Correspondence Analysis
view of the southern women dataset [BH11].
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5. Comparison and Findings

To provide guidance on applying the surveyed set visualiza-
tion techniques to a given problem, we compare the tech-
niques according to the following three aspects.

5.1. Comparison by what is represented

Set-typed data can encompass information about sets and
their relations, elements and their set memberships, and
other element attributes. The surveyed techniques differ by
the type of information they represent:

• Representing set information only: These techniques
provide no information about the individual elements.
This includes simple Euler diagrams that represent set re-
lations, as well as matrices, node-link diagrams, and scat-
ter plots that represent set similarities.
• Representing individual elements explicitly: Examples

are Euler diagrams with glyphs, overlays, element-set
node-link diagrams, membership matrices and frequency
grids. Further element attributes can often be represented
using additional visual features or additional columns.
• Representing element aggregates: As discussed in

Sect. 4.6, such techniques depict groups of elements, pos-
sibly along with relations between these groups. Some
techniques (e.g. Double-Decker and Radial Sets) can also
represent aggregated attribute values for group elements.

The techniques vary also in the set relations they rep-
resent explicitly. Euler diagrams show inclusion, exclu-
sion, and intersection relations. Scatterplot-based and some
aggregation-based techniques (e.g. Set’o’grams) do not rep-
resent these relations explicitly. Other aggregation-based,
node-link, and matrix-based techniques represent certain set
relations only (usually set intersections).

Finally, certain techniques show multiple instances of the
same element according to the sets it belong to. Example
for this are the DupED version of untangled Euler diagrams
(Fig. 7d) and parallel tag clouds (Fig. 10b). Also, mem-
bership matrices fill multiple cells for the same element
(Fig. 13a). Visual duplicates allow set-dependent attributes
(Sect. 2.1) to be shown, e.g. different tag frequencies or
ranks in multiple clouds.

5.2. Comparison of general strengths and weaknesses

Each of the techniques categories listed in Sect. 2 has ad-
vantages and limitations associated with the visual represen-
tation it employs. Table 2 summarizes the major ones that
generally apply to the techniques in the respective category.
However, it should be noted that individual techniques have
their own advantages and limitations. For more details refer
to Sect. 4 and to the respective articles.

5.3. Comparison by supported tasks and scalability

The surveyed techniques differ in the tasks (Sect. 3) they
support. Table 3 provides an overview of the tasks supported
by a representative subset of techniques from all surveyed
categories. The task support was either indicated by the au-
thors or judged by us based on published work. We indicate
whether the task is supported fully, partially or through in-
teraction only. Partial support means that the technique is
not always effective for the respective task, or support the
tasks to a limited extent (e.g. with few sets only). Addi-
tionally we give a rough estimate of the scalability of the
techniques, both in the number of sets and in the number of
elements, when applicable. Actual scalability limits depend
on the complexity of the specific dataset, such as overlap
strength and skewness in the set sizes.

Table 2: Selected strengths and weaknesses of the visual categories (Sect. 4). Euler diagram variants are not listed separately.

Category Strengths Weaknesses

Euler-based
diagrams

Intuitive when well-matched (little training is required).
Represent all standard set relations compactly.

Limited to few sets due to clutter and drawability issues.
Desired properties not always possible (e.g. convexity).

Overlays Emphasize element and set distributions according to
other data features (e.g. map locations).

Often limited in the number of elements and sets.
Undesired layout artifacts (overlaps, crossing, shapes, etc.).

Node-link
diagrams

Visually emphasize the elements as individual objects.
Show clusters of elements having similar set memberships.

Limited scalability due to edge crossings.
No representation of set relations in element-set diagrams.

Matrix-based
techniques

Fairly scalable both in the number of elements and sets.
Do not suffer from edge crossings or topological constraints.

Limited in the set relations they can represent.
Revealed membership patterns are sensitive to ordering.

Aggregation-
based

Highly scalable in the number of elements. Some techniques
can show how attributes correlate with set membership.

Usually, do not emphasize sets and elements as objects.
Limited in the set relations they can represent.

Scatter plots Show clusters of sets according to mutual similarity.
Clutter free and scalable when showing sets only.

Do not represent standard set relations.
Dots are often perceived as elements not as sets.
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The comparison matrix in Table 3 reveals how the tech-
niques in the same category tend to have similar task support
characteristics. As expected, this demonstrates the decisive
influence of the visual encoding used by a technique on the
types of tasks it supports. The matrix also reveals that certain
techniques depend heavily on interaction in supporting their
tasks. Clearly, there is no single technique that supports all
the tasks. The choice of the technique to use for a specific
problem requires extensive analysis of the problem domain
and its data characteristics. This is important to determine
the tasks that need to be supported and the actual scalability
requirements.

6. Future Challenges and Opportunities

The techniques surveyed in Sect. 4 demonstrate the signifi-
cant advances made in the past decade in visualizing sets and
set-typed data. Nevertheless, research in this area is still in
early stages, with many open problems and challenges that
need to be addressed in the future. In the following we give
some of these problems and provide a list of unexplored re-
search directions that could help in addressing them.

6.1. Open Problems

Some of the issues we list are specific to certain techniques,
while others are more generic in set visualization. Addition-
ally, some problems are concerned with complicated forms
of set-typed data.

Generating Euler diagrams with specific properties:
There are no generic tools that indicate, for a given input,
whether it is possible or not to generate diagrams that are
well-matched, well-formed, area-proportional, and/or use
certain shapes (e.g. circles or convex polygons). Rodgers
[Rod13] elaborated on related open research questions in
generating Euler diagrams. Tools that determine whether a
diagram can be drawn with desired properties and propose
alternative solutions to non-drawable cases (e.g. using shad-
ing or approximate areas) would improve the quality of the
generated Euler diagrams and their applicability in various
domains. In this regard, a high-level algorithm has been pro-
posed to determine the drawability of a well-formed diagram
and generates the diagram in that case [FFH08], but no im-
plementation is available yet.

Scalability: As Table 3 shows, it is not always possible to
support tasks if they have particular scalability requirements.
Moreover, the scalability of certain techniques is severely
limited, such as overlays. Improving upon these limits is nec-
essary to address various real-world problems that involve a
large number of sets and/or elements.

The role of ordering: By definition, set-typed data im-
pose no inherent ordering neither on the elements nor the
sets. However, the order in which sets and elements are de-
picted has a significant impact on the patterns and relations
revealed by the visualization. Though reordering problems

are usually NP-complete, a lot of work has been done for re-
ordering generic matrices and node-link diagrams to reveal
clusters and/or reduce clutter. This work need to be re-visited
from sets perspective, e.g. by incorporating set-related data
features such as element degrees. Also, more work is needed
on the role of ordering in aggregation-based techniques.

Evaluation: There is a clear lack of empirical user stud-
ies that assess the effectiveness of different techniques in
performing different tasks. Some comparative studies fo-
cus on techniques from the same category, such as over-
lays [AHRRC11, MHRS∗13], while few studies compare
techniques from different categories [CSR∗14, RSA∗14].

More evaluation work is needed to determine which tech-
niques work well for which data characteristics and tasks,
and to steer future research toward promising directions.

Visualizing sets in the context of other data types: Over-
lay techniques reveal set memberships of elements placed
according to other data features. However, they offer limited
possibilities as the layout of the overlays cannot influence
the element placement. Designing set-aware visualizations
can improve on this: As example, a set-aware graph layout
would compute a node placement that reduces edge cross-
ing and produces convex-shaped overlays at the same time.
Further work is needed to visualize sets over elements in a
timeline, a tree, or a multi-variate visualization.

Comparing multiple set families: In many scenarios,
multiple instances of a set family are compared (e.g. how
skill overlaps change across different companies). With few
sets, small multiples of Euler diagrams help in comparing
the set relations between the respective set families. As ex-
ample, the comparison might involve finding which set rela-
tions change most / least across the different families. Ded-
icated techniques are needed to support such comparison
tasks in a scalable way in the number of sets and families.

Time-varying set-typed data: As with many types of
data, set-typed data can vary over time. For example, set
memberships might change over time, leading to changes
in set relations. Also, the attribute values of the elements
might change over time even with static set memberships.
Visualizing such changes is challenging, as the data is al-
ready complex. BubbleSets allow smooth re-computation of
set overlays, making them suited to track the spatial distri-
bution of set elements e.g. in an animated scatter plot. A
technique similar to Parallel Sets was proposed to visualize
object-group changes over multiple time steps [BvLA∗11],
however, allowing an element to belong to one set at a time.

Visualizing fuzzy and uncertain set memberships: Real-
world data typically involve uncertainty that result in fuzzy
set memberships. disk diagram [PP10] is a technique for an-
alyzing fuzzy data using interactive visualization of fuzzy set
operations. More work on both analytical and visual meth-
ods is needed to communicate the fuzziness in the data and
study its effect on various set-related tasks.

c© The Eurographics Association 2014.
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6.2. Possible Opportunities

Here we list ideas and research directions that could improve
on existing set visualization techniques.

Interaction opens new possibilities for addressing var-
ious challenges with analyzing and visualizing set-typed
data. For example, when generating Euler diagrams, the user
could specify certain constraints and properties or choose
where to take a compromise when they are not satisfiable.
Interactivity makes simplifying complex visualizations pos-
sible by showing certain information on demand and select-
ing certain parts to explore in more detail. It also facilitates
various comparisons within one set family or across multi-
ple families. Interaction allows influencing matrix reorder-
ing, e.g. to restrict changes to certain rows or columns. Fi-
nally, intuitive interactions allow sets to be combined using
Boolean operations, performing multi-faceted search over a
set of elements, or applying appropriate filtering and data
reduction techniques to explore large set-typed data.

Coordinated multiple views can reduce the complexity
of the data by showing information at multiple levels of de-
tail. This can also provide complementary perspectives on
the data (e.g. overlap matrix + spatial set distribution) to en-
rich the analysis.

Small multiples could provide solutions to visualizations
that are severely limited in the number of sets, such as Eu-
ler diagrams, Mosaic Displays or Double-Decker plots. They
can also be used to compare, for instance, data with certain
attribute values to determine if they correlate with certain set
relations or membership patterns.

Hybrid representations visualizations might be useful in
certain cases, especially when the sets can be semantically
divided in two groups. An example, in a 3 x 3 matrix or
mosaic display of 3 sets, each cell or tile can additionally
depict how its elements belong to another group of sets by
using a different visualization such as a bar chart or an Euler
diagram. Another example is combining matrix-based and
frequency-based representations to visualize sets involved in
an overlap and the overlap size.

Matrix-based representations are not fully exploited for
visualizing set-typed data. They are relatively simple and
clutter-free, and fairly scalable in the number of rows and
columns. Moreover, there are several possibilities to encode
multiple values in a matrix cell [ABHR∗13]. This can be em-
ployed to show aggregated information on the elements and
their attributes, as with aggregation-based techniques.

Analytical methods can transform large set-typed data
into volumes suited for visualization and still preserving

the most important information. In particular, several ag-
gregations of the elements are possible based on their set-
memberships, degrees, and attribute values. Similarly, intu-
itive set-operations can be used e.g. to aggregate multiple
sets, or to replace a large family of sets with a smaller fam-
ily over the same elements.

Identifying special cases and forms of set-typed data.
As example, when the sets exhibit no intersection relations,
treemaps would be a natural choice to visualize their con-
tainment hierarchy. Another example that arise in voting
analysis, is when each element belongs to a constant num-
ber of sets, e.g. exactly to 3 sets out of 10. Such set mem-
berships can be represented using three categorical variables
which result in

(10
3
)
= 120 non-redundant overlap combina-

tions (many of them potentially empty). This is significantly
lower than 210 = 1024 possible overlaps in the general case,
and can be handled by categorical visualization techniques
such as Parallel Sets.

Many other special cases can be identified in practical ap-
plications such as very sparse membership matrix, skewed
or two-mode distribution of membership degrees, etc. The
characteristics of these cases need to be studied extensively
e.g. to identify if they satisfy certain Euler diagram drawabil-
ity properties, can simplify existing visualization techniques,
allow for new forms of visual representations or overlays, or
lend themselves to new ways of aggregation.

7. Conclusion

The powerful and generic concepts of set theory make sets
and set relations essential data models in several data analy-
sis scenarios. Unlike common data types in information vi-
sualization such as graphs and trees, sets have been largely
treated as data containers to group related elements or to il-
lustrate overlaps between two or three groups. Nevertheless,
a number of techniques have been devised to visualize sets
and data related to them in the past decade. By emphasizing
the notion of set-typed data, we have identified their specific
characteristics as well as several measures and tasks com-
monly associated with this data type in visualization.

We have surveyed relevant literature on visualization tech-
niques that can be applied to address these characteristics
and tasks related to set-typed data, and have classified these
techniques into seven categories, according to the main vi-
sual representation they use for depicting set relations. For
each technique, we have analyzed which tasks it supports
and its scalability with respect to the number of sets and el-
ements. We have also outlined the general advantages and
disadvantages of each representation, and which informa-
tion they can represent from the data. This provides guidance
for designers of set visualizations in choosing appropriate
techniques for their data and tasks. Finally, we have exam-
ined major open problems in the area, and discussed various
ideas that are worth investigating as opportunities to address
open problems or to improve on state-of-the-art techniques.
A visual browser of the surveyed techniques along with addi-
tional resources are available at http://www.setvis.net.
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