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Abstract— Detecting symmetries is crucial to logic synthesis,
technology mapping, detecting function equivalence under un-
known input correspondence, and ROBDD minimization. State-
of-the-art is represented byMishchenko’s algorithm. In this paper
we present an efficient anytime algorithm for detecting symmetries
in Boolean functions represented as ROBDDs, that output pairs
of symmetric variables until a prescribed time bound is exceeded.
The algorithm is complete in that given sufficient time it is guaran-
teed to find all symmetric pairs. The complexity of this algorithm
is inO(n4+n|G|+|G|3)where n is the number of variables and |G|
the number of nodes in the ROBDD, and it is thus competitive with
Mishchenko’s O(|G|3) algorithm in the worst-case since n ! |G|.
However, our algorithm performs significantly better because the
anytime approach only requires lightweight data structure sup-
port and it offers unique opportunities for optimization.

I. INTRODUCTION

Symmetry detection has been important since the days of Shan-
non [1] who observed that symmetric functions have particularly ef-
ficient switch network implementations. Symmetry detection is no
less important these days and knowledge of symmetric variables has
many applications in logic synthesis [2,3], technology mapping [4,5],
ROBDD minimization [6, 7] and detecting equivalence of Boolean
functions for which input correspondence is unknown [8,9].
The challenge in symmetry detection is to find efficient algo-

rithms for detecting all symmetric variables pairs (xi, xj) of a given
Boolean function f(x1 . . . xn), that is, find all pairs (xi, xj) such that
f(. . . , xi, . . . , xj , . . .) = f(. . . , xj , . . . , xi, . . .). The intuition be-
ing that f remains unchanged under the switching of the variables xi

and xj . This symmetry is formally known as the first-order classical
symmetry, or the non-skew non-equivalence symmetry [10]. It can
be shown from Boole’s expansion theorem [11] this is equivalent to
checking equality of the co-factor pair f|xi←0,xj←1 = f|xi←1,xj←0.
This formulation shows that it is possible to find the set of all sym-
metric pairs by calling the co-factoring operation no more than n2−n
times, where n is the number of variables. Early work on detecting
symmetric variables in Boolean functions has focussed on the compu-
tation of these co-factor pairs and symmetry detected by checking their
equivalence [12]. The use of ROBDDs to represent Boolean functions
enables co-factor equivalence to be checked in constant time, how-
ever, repeated co-factoring involves the creation and deletion of many
intermediate ROBDD nodes and for very large ROBDDs this over-
head can be prohibitive. This method is often referred to as the naı̈ve
method [12]. Möller, Mohnke and Weber [12] thus advocate the use
of two preprocessing algorithms — two sieves — that detect pairs of
asymmetric variables. These linear-time sieves significantly reduce
the number of co-factor pairs that need to be computed. In general,
however, the method still requires naı̈ve co-factor computation, that is,
calls to the standard co-factoring algorithm the complexity of which
is in O(|G| lg |G|) [13]. Methods that rely on asymmetry sieves, such
as those proposed in [7, 12], are said to be based upon the so-called
negative-thinking paradigm [14]. That is, they obtain the symmetric
variable pairs from the set of all variables pairs by systematically re-
moving all asymmetric variable pairs.

Because of the cost of repeated co-factoring, many symmetry detec-
tion methods endeavor to avoid naı̈ve co-factor computation. Möller et
al. [12] and Panda el al. [6] detect all symmetries between variables
adjacent in the variable order with an algorithm in O(|G|). Rudell’s
dynamic variable reordering algorithm [15] has also been used to de-
tect symmetries, although the aim is not symmetry detection per se,
but ROBDD minimization. Rudell’s algorithm considers each vari-
able in turn moving it up and down in the variable ordering (sub-
ject to complexity limits) so as to minimize the ROBDD. Panda et
al. [6] modify Rudell’s algorithm to detect symmetries between vari-
ables that become adjacent when one of the variables is repositioned in
the ROBDD variable ordering. Symmetric variables are then grouped,
and any subsequent reordering that is applied is required to preserve
a contiguous variable ordering within each group. This approach to
symmetry detection does not require naı̈ve co-factor computation, but
there is no guarantee that all symmetries will be found. State-of-the-art
is represented byMishchenko’s algorithm [14] that detects all symmet-
ric variable pairs in a ROBDD in O(|G|3). (Note that this algorithm
is parameterized by the underlying set representation that is used to
store the variable pairs, and therefore this complexity result does not
consider the complexity of the set operations themselves. Most con-
servatively, assuming all set operations are linear, the overall running
time is at least O(n2|G|3) since each set contains potentially O(n2)
elements). Algorithms such as those of Mishchenko [14] and Panda et
al. [6] are based on the so-called positive-thinking paradigm [14]. That
is they compute variable pairs that are symmetric, and in the case of
Mishchenko’s algorithm, because of its completeness, those pairs not
found to be symmetric are then known to be asymmetric.
The problem with existing symmetry detection methods is that they

are either monolithic, inefficient, or incomplete. A monolithic algo-
rithm has to be run to completion before it can return any answer; the
value of such an algorithm is compromised if the running time is pro-
hibitive. Mishchenko’s [14] algorithm falls into this class. Practically
all engineering tasks (and logic synthesis is no exception) require an
acceptable answer to be found in a reasonable amount of time rather
than the optimal answer in an exorbitant amount of time. This is rel-
evant in the context of symmetry detection because the running time
of the state-of-the-art algorithm [14] can exceed 12 hours on some
ROBDDs of less than a million nodes (actually this was benchmark
simp12). This motivates the need for a so-called anytime algorithm
that will incrementally detect pairs of symmetric variables until some
given time bound is exceeded. Symmetry detection algorithms [7, 12]
based on naı̈ve co-factor computation can be considered to be incre-
mental but, alas, this approach is inefficient. The algorithm of Panda et
al. [6] is an interesting example of an incremental algorithm that does
not require co-factor computation but, unfortunately, the algorithm is
incomplete for the purposes of symmetry detection.
In this paper we present a novel anytime algorithm for symmetry

detection based on the negative-thinking paradigm, whose efficiency
compares very favorably against that of Mishchenko in the case when
all the pairs require to be enumerated. The algorithm demonstrates
that, with careful construction, it is possible to detect symmetries in-
crementally without compromising efficiency. Our anytime algorithm
is inspired by that of Mishchenko, but the correctness of our algorithm
is surprisingly subtle in that it depends on paths not passing through



given nodes in the ROBDD. For pedagogical purposes, two versions of
the algorithm are presented: a simple version that contains a minimal
number of components to ensure correctness; and a refined version that
demonstrates how an incremental algorithm has computational advan-
tages over a comparable monolithic algorithm. These two algorithms
are respectively presented in Sections III and IV. An intriguing aspect
of the anytime approach is that it permits transitivity to be fully ex-
ploited. It is well-known that if (xi, xj), (xj , xk) are symmetric then
so is (xi, xk) [16,17], but this observation has had scant consideration
in the symmetry detection literature. Möller et al. [12, p 681] state
that “we also use the fact that if {xi, xj} and {xj , xk} are pairs of
symmetric variables, then {xi, xk} is a pair of symmetric variables
as well”, seemingly missing the fact that if (xi, xj) are symmetric
and (xi, xk) are asymmetric then (xj , xk) are asymmetric. Due to
the way our anytime algorithm decomposes symmetry detection into a
series of passes, one for each variable, we are free to apply asymme-
try/symmetry propagation between each of these passes to reduce the
expected cost of each pass. This is discussed in Section IV-C. Sec-
tions IV-A and IV-B show how the algorithm can be accelerated using
more well-known techniques that relate to adjacent symmetries [12]
and positive satisfy counts [8]. Extensive experimental results that are
given in Section V demonstrate the value of these refinements, com-
pare the algorithm against of that Mishchenko and demonstrate the
anytime nature of the algorithm. The remainder of this paper is orga-
nized as follows: Section II presents definitions used within the paper
and Section VI presents the concluding discussion. For clarity, we
summarize our contributions as follows:

• The paper presents a novel incremental, anytime algorithm for
symmetry detection based on the negative-thinking paradigm.

• In theory, the algorithm is inO(n4+n|G|+|G|3)where n! |G|
(even considering the complexity of all set operations) which
compares favorably against state-of-the-art [14].

• The paper shows that an anytime algorithm can put low compu-
tational demands on the underlying data-structures that represent
pairs of symmetric variables. Thus anytime generality does not
have to sacrifice efficiency, indeed the converse is true.

• The paper explains how an incremental anytime approach of-
fers special opportunities for optimization, in that classical as-
symetry/symmetry sieves can precede the algorithm and as-
symetry/symmetry propagation techniques can be inserted into
the main loop of the algorithm.

• The paper also reports a hitherto overlooked subtlety of symme-
try detection: it seems that at least O(n|G|) preprocessing steps
must be performed before incremental symmetry detection may
commence. Rather surprisingly, the correctness of our algorithm
critically depends upon an O(n|G|) asymmetry sieve [12], that
relates to paths that can arise within an ROBDD in the presence
of symmetries. (As a consequence, we conjecture that there is no
way to construct an incremental, complete symmetry detection
algorithm without first applying preprocessing).

II. PRELIMINARIES

In this paper we consider completely specified Boolean functions
f : {0, 1}n → {0, 1} that are conventionally written as Boolean
formulae defined over a variable set X = {x1, . . . , xn}. The
satisfy-count of an n-ary Boolean function f is defined as ‖f‖ =
|{(b1, . . . , bn) | f(b1, . . . , bn) = 1}| [13]. The (Shannon) co-factor
of a function f w.r.t a variable xi and a Boolean constant b is defined
by f|xi←b = f(x1, . . . , xi−1, b, xi+1, . . . , xn). Multiple variable co-
factors can be defined inductively as f0 = f , fi = fi−1|xi←bi and
f|x1←b1,...,xn←bn = fn. A function f over X is symmetric in a pair
of variables (xi, xj) iff f|xi←0,xj←1 = f|xi←1,xj←0, otherwise it is
asymmetric in (xi, xj).
ROBDDs are obtained by inducing a total-order onX . A BDD is a

rooted directed acyclic graph where each internal node is labeled with

a Boolean variable. Each internal node has one successor node con-
nected via an edge labeled 0, and another successor connected via an
edge labeled 1. Each external (leaf) node is either 0 or 1. The Boolean
function represented by a BDD can be evaluated for a given variable
assignment by traversing the graph from the root, taking the 1 edge at
a node when the variable is assigned to 1 and the 0 edge when the vari-
able is assigned to 0. The external node reached in this traversal indi-
cates the value of the Boolean function for the assignment. An OBDD
is a BDDwith the restriction that the label of a node is always less than
the label of any internal node reachable via its successors. An ROBDD
is an OBDD with the additional constraint that the successors of any
internal node do not represent the same Boolean function. Note that
any internal node of an ROBDD is itself the root of an ROBDD. An
ROBDD f is symmetric in a pair of variables (xi, xj) iff the Boolean
function it represents is symmetric in (xi, xj). Finally, let |G| denote
the number of internal nodes in a ROBDDG.

III. ANYTIME SYMMETRY DETECTION ALGORITHM

In this section we propose a novel, anytime approach to symme-
try detection. The algorithm presented in Algorithm 1 contains the
minimum number of components required so as to ensure correct-
ness. The algorithm takes as input an ROBDD f and returns the set
S of symmetric variable pairs. The algorithm is composed of two dis-
tinct procedures. ComputeAsymmetry(f ) performs two depth-first
search (dfs) traversals over the ROBDD f , to detect pairs of variables
that are asymmetric (in the particular sense that is described in Sec-
tion III-A). RemoveAsymmetry(f, i, C) filters a set of variables C
whose symmetry relationship with variable xi is unknown to return
the set C ′ ⊆ C of variables that are symmetric with xi (this procedure
is detailed in Section III-B).

Algorithm 1 ComputeSymmetricPairs(f )
A← ComputeAsymmetry(f)
S ← ∅
for i = 1 to n− 1 do

C ← { j | (i, j) (∈ (S ∪ A) ∧ i < j}
D ← RemoveAsymmetry(f, i, C)
S ← S ∪ {(i, k), (k, i) | k ∈ D}
A← A ∪ {(i, l), (l, i) | l ∈ C \ D}

return S

The call to ComputeAsymmetry initializes the set of asymmetric
variable pairs A; S is initially empty. The remainder of the algorithm
considers each of the n variables in turn. Firstly, a set C is constructed
that contains all variables whose symmetry relation with xi has not yet
been ascertained. Secondly, the set of symmetric variablesD returned
from RemoveAsymmetry is used to extend S and A. Observe that
the sets S and A can be augmented in O(n) time when C and D are
represented as arrays. Furthermore, observe that C can be constructed
in O(n) time when the sets of pairs S and A are represented as adja-
cency matrices. Finally, observe that actually only n− 1 iterations of
the loop are required because of the structure of C . Further details of
these two procedures are given in Sections III-A and III-B.

A. Computing Asymmetries
The algorithm that initializes A is constructed from lemmas

that detail how symmetric variables place structural constraints on
ROBDDs [12]. For completeness, we state these lemmas below:
Lemma 1. If an ROBDD f over a set of variablesX = {x1, . . . , xn}
is symmetric in the pair (xi, xj) and i < j, then every ROBDD rooted
at a node labeled xi must contain a node labeled xj .
Lemma 2. If an ROBDD f over a set of variablesX = {x1, . . . , xn}
is symmetric in the pair (xi, xj) and i < j, then every path from the
root of f to a node labeled xj must visit a node labeled xi.
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Fig. 1. The ROBDD g for the propositional formula (x1 ∧ x2) ∨ x3

Lemma 1 and Lemma 2 provide two conditions under which asymme-
try can be observed. For any given node labeled xi we can compute
the set of all variables xj that appear in a ROBDD that is rooted at that
node, and any variable not appearing in this set is necessarily asym-
metric with xi. Furthermore, for any given node labeled xj , we can
compute the set of all variables xi that appear on all paths from the
root of the ROBDD to the node, and any variable not appearing in this
set is asymmetric with xj . The asymmetry conditions of Lemma 1
and Lemma 2 can be checked in two dfs traversals of the ROBDD,
each traversal taking O(n|G|) time.
Each iteration of the loop in Algorithm 1 considers a variable xi

and forms the setC from those variables whose symmetry relationship
with variable xi is not yet known. The validity of this decomposition
into multiple passes, is justified by the proposition which itself is a
consequence of the following lemma [12]:

Lemma 3. A Boolean function f over a set of variables
X = {x1, . . . , xn} is symmetric in the pair (xi, xj) iff both co-factors
f|xk←0 and f|xk←1 are symmetric in the pair (xi, xj).

Proposition 1. If an ROBDD f over a set of variables
X={x1, . . . , xn} is symmetric in the pair (xi, xj) and i < j iff

• every ROBDD rooted at a node labeled xi is symmetric in
(xi, xj) and,

• every path from the root to a node labeled xj passes through a
node labeled xi.

Proof. The proposition follows by applying the lemma inductively on
the variables xi−1, . . . , x1, though for brevity we consider only the
first inductive step. Consider an ROBDD g whose root node is la-
beled with xi−1. There are four cases to consider. First, the roots of
both co-factors g|xi−1←0 and g|xi−1←1 are labeled xi. By Lemma 3,
g is symmetric in (xi, xj) iff g|xi−1←0 and g|xi−1←1 are symmetric
in (xi, xj). Observe that every path from the root of g to xj passes
through a node labeled xi. Second, the root of g|xi−1←0 is labeled
with xi whereas g|xi−1←1 is not. Again, g is symmetric in (xi, xj) iff
g|xi−1←0 and g|xi−1←1 are symmetric in (xi, xj). Observe g|xi−1←1

is symmetric in (xi, xj) iff g|xi−1←1 contains no node labeled xj , or
equivalently, every path from the root of g to xj passes through a node
labeled xi. The third and fourth cases are respectively analogous and
similar to the second.

The proposition allows exhaustive checking to be decomposed into
a series of passes; one pass for each variable xi. The crucial point
is that when the loop is entered, we have already removed all pairs
of variables (xi, xj) such that there exists a path from the root to
a node labeled xj which does not pass through a node labeled xi.
Hence, for correctness, the body of the loop in Algorithm 2, must
only check the first condition of the proposition. The counterexam-
ple given in Figure 1 illustrates the necessity of the second condi-
tion in the proposition, or put another way, it shows that correctness

is compromised if the preprocessing is omitted from the algorithm.
Observe that in Figure 1 that the variable pair (x2, x3) is symmet-
ric in the ROBDD rooted at x2, however (x2, x3) are asymmetric in
the ROBDD g since there exists a path from the root of g (x1) to
the node x3 that does not visit a node labeled x2. In fact, disabling
the preprocessing gives the following asymmetry and symmetry sets
Ai and Si after i iterations of the loop: A0 = S0 = ∅, A1 =
{(x1, x3), (x3, x1)},S1 = {(x1, x2), (x2, x1)}, A2 = A1, S2 =
S1 ∪ {(x2, x3), (x3, x2)}. Observe the erroneous pair (x2, x3) con-
tained within S2.

B. Removing Asymmetries
After the initial preprocessing, incremental symmetry detection can

commence. The procedure given below takes as input an ROBDD f , a
variable index i, and a set C of variable indices corresponding to those
variables whose symmetry relation with variable i is unknown.

Algorithm 2 RemoveAsymmetry(f, i, C)
if C = ∅ then
return ∅

j ← index(f)
if j > i ∨ f = true ∨ f = false then
return C

if j = i then
return RemoveAsymmetryVar(f|0, f|1, C)

else
C ← RemoveAsymmetry(f|0, i, C)
return RemoveAsymmetry(f|1, i, C)

The function index(f) returns the index of the root node of f , that
is, i if the root is labeled xi. The test j > i implements a form
of early termination: if the test is satisfied then the ROBDD f can
contain no node labeled xi. The external nodes true and false also
trigger early termination. At the heart of RemoveAsymmetry is a
call to RemoveAsymmetryVar which encapsulates the logic to co-
factor f0 and f1 so as to perform the symmetry check. The pseudo-
code for this procedure is given in Algorithm 3. Whenever the call
RemoveAsymmetryVar is reached, it examines the co-factors of f
to remove variables from C that are asymmetric w.r.t xi. First, con-
sider the case when both root nodes of f0 and f1 are labeled with the
same variable xj . In this case we compute f0|xj←1 and f1|xj←0 and
check for equivalence. Second, when f0 is labeled with xj and f1 is
labeled with xk where j < k, the check reduces to f0|xj←1 = f1.
Third, the k < j case is analogous to the second. The recursive calls
follow the co-factor check because it is necessary to check symmetry
across all variable assignments. Note that both RemoveAsymmetry
and RemoveAsymmetryVar terminate as soon as C = ∅.
When C is implemented as an array, the complexity of a sin-

gle call to RemoveAsymmetryVar is O(|G|2). This follows
since co-factor comparison and C \ {l} are in O(1), as is the test
C = ∅ when C is augmented with a counter to record |C|. Over-
all, RemoveAsymmetryVar can only be invoked a total of |G|
times from within Algorithm 1, thus RemoveAsymmetryVar con-
tributes O(|G|3) to the overall running time. The n − 1 calls to
RemoveAsymmetry cumulatively cost O(n|G|).

IV. OPTIMIZED ANYTIME SYMMETRY DETECTION
ALGORITHM

In this section we propose a series of optimizations for Algo-
rithm 1. This refined algorithm retains the incremental nature of
the original algorithm, and in fact shows how this can be ex-
ploited by several optimizations. These optimizations seek to re-
duce the size of the set C , and hence the running time of the call



Algorithm 3 RemoveAsymmetryVar(f0, f1, C)
if C = ∅ then
return ∅

if (f0 = true ∨ f0 = false) ∧ (f1 = true ∨ f1 = false) then
return C

j ← index(f0)
k ← index(f1)
if j = k then

(l, f00, f01, f10, f11)← (j, f0|j←0, f0|j←1, f1|k←0, f1|k←1)
else if j < k then

(l, f00, f01, f10, f11)← (j, f0|j←0, f0|j←1, f1, f1)
else

(l, f00, f01, f10, f11)← (k, f0, f0, f1|k←0, f1|k←1)
if f01 (= f10 then

C ← C \ {l}
C ← RemoveAsymmetryVar(f00, f10, C)
return RemoveAsymmetryVar(f01, f11, C)

RemoveAsymmetry(f, i, C), by enriching the sets A and S on-
the-fly before, and between, iterations of the main loop. The sym-
metry sieve algorithms presented by [7, 12] give a way to refine the
sets A and S before the loop is entered. When the loop is en-
tered, it is possible to take advantage of the transitivity of the sym-
metry relation to add further pairs to A and S. The optimized sym-
metry detection algorithm presented in Algorithm 4 takes as input
an ROBDD f and returns the set S of symmetric variable pairs.
The new algorithm includes three additional procedures, namely,
ComputeSatisfyCounts(f ), ComputeAdjSymmetry(f ) and
SymmetryClosure(A,S) which are detailed in Sections IV-A and
IV-B, IV-C respectively.

Algorithm 4 OptimizedSymmetricPairs(f )
A← ComputeAsymmetry(f)
M ← ComputeSatisfyCounts(f)
for i = 1 to n do
for j = i + 1 to n do
ifM(i) (= M(j) then

A← A ∪ {(i, j), (j, i)}
S ← ComputeAdjSymmetry(f)
for i = 1 to n− 2 do

(A, S)← SymmetryClosure(A,S)
C ← { j | (i, j) (∈ (S ∪ A) ∧ i + 1 < j}
D ← RemoveAsymmetry(f, i, C)
S ← S ∪ {(i, k), (k, i) | k ∈ D}
A← A ∪ {(i, l), (l, i) | l ∈ C \ D}

return S

ComputeSatisfyCounts(f ) returns a mapping M from vari-
able indices to a natural number that can be used to distinguish pairs
of asymmetric variables, that is, if M(i) (= M(j) then (xi, xj) are
asymmetric. ComputeAdjSymmetry(f ) returns the set of symmet-
ric variable pairs for those pairs that are adjacent in the ROBDD or-
dering (which permits the number of loop iterations to be relaxed to
n − 2). Finally, SymmetryClosure(A,S) takes as input two sets
A and S of variable pairs known to be asymmetric and symmetric re-
spectively. Two new sets A′ ⊇ A and S′ ⊇ S are output that are
derived by exploiting the transitivity of symmetry.

A. Positive Satisfy-Counts
A consequence of symmetry, which can also be used to detect asym-

metry [8], relates to the satisfy count of one positive co-factor of a

variable to the satisfy count of another:

Lemma 4. If a Boolean function f over a set of vari-
ables X = {x1, . . . , xn} is symmetric in the pair (xi, xj), then
‖f|xi←1‖ = ‖f|xj←1‖.

Computing the satisfy counts of all co-factors can be realized using a
single dfs traversal of the ROBDD in O(n|G|) time [8]. Finding the
resultant asymmetries requires n2 comparisons in Algorithm 4, and
thus the overall complexity of this phase is O(n2 + n|G|).

B. Adjacent Symmetries
The following lemma details a special case of symmetry, which re-

lates to variables that are adjacent in the ROBDD ordering:

Lemma 5. If a ROBDD f over a set of variables X = {x1, . . . , xn}
is symmetric in the pair (xi, xi+1) iff g|xi←0,xi+1←1 =
g|xi←1,xi+1←0 holds for each ROBDD g that is rooted at a node la-
beled xi

This lemma leads to an O(|G|) time algorithm that can detect all sym-
metry and asymmetry relationships between adjacent variables [12].
(In fact the algorithm of Möller et al. can be improved to detect asym-
metry for a pair of non-adjacent variables, that is, a pair (xi, xk) is
asymmetric if there exists a node g labeled xi with successor nodes la-
beled xk and xl where i+1<k≤ l and g|xi←0,xk←1 (= g|xi←1,xk←0.)

C. Symmetry Propagation
The final lemma can be obtained by recalling that a function f

remains unchanged under the switching of any symmetric variables:

Lemma 6. If a Boolean function f over a set of variables
X = {x1, . . . , xn} is symmetric in the pairs (xi, xj) and (xj , xk)
then f is also symmetric in the pair (xi, xk).

This transitivity result provides a way of enriching the set S, that is, if
(xi, xj), (xj , xk) ∈ S then it follows that (xi, xk) is also a symmetric
pair. Further, given (xi, xj) ∈ S, (xi, xk) ∈ A then it follows that
the pair (xj , xk) is asymmetric, that is, A can possibly be enriched
too. This follows since if (xj , xk) is symmetric then by the lemma it
follows that (xi, xk) is symmetric, which is a contradiction. Adding
those variable pairs to A and S which can be inferred through transi-
tivity is not dissimilar to computing the transitive closure of a binary
relation. This motivates adapting the Floyd-Warshall [18,19] all-pairs-
shortest-path algorithm to this task by representing the sets of pairs A
and S as an adjacency matrix of n2 size. The pseudo-code for this
algorithm is given in Algorithm 5.

Algorithm 5 SymmetryClosure(A, S)
for i = 1 to n do
for j = i + 1 to n do
for k = 1 to n do
if (k, i) ∈ S ∧ (k, j) ∈ S then

S ← S ∪ {(j, i), (i, j)}
else if (k, i) ∈ A ∧ (k, j) ∈ S then

A← A ∪ {(j, i), (i, j)}
else if (k, i) ∈ S ∧ (k, j) ∈ A then

A← A ∪ {(j, i), (i, j)}
return (A, S)

The complexity of Algorithm 5 is in O(n3) since membership check
and single element insertion can be performed in O(1) time for an
adjacency matrix representation. Note that although the worst-case
running time is not dependent on the number of symmetries present,
larger symmetry sets induce more propagation which reduces the over-
all running time.



TABLE I
EXPERIMENTAL RESULTS

Circuit # In # Out Σ|G| |S| read naı̈ve [14] § III A A+B A+B+C
pair 173 137 118066 1910 0.20 132.46 6.62 2.37 2.18 2.16 2.08
s4863 153 104 126988 547 2.63 20.60 5.30 1.41 1.08 1.01 0.82
s9234.1 247 250 4434504 3454 20.14 >7200 1407.20 183.84 158.36 145.94 141.26
s38584.1 1464 1730 150554 15629 3.70 337.59 16.70 3.12 3.04 3.01 2.80
C880 60 26 600998 262 8.29 704.54 13.90 7.75 6.84 5.63 5.20
C3540 50 22 4618194 81 21.80 >7200 132.72 71.64 68.23 66.08 65.04
simp10 105 1 722074 19 58.45 >7200 661.70 65.28 47.53 43.90 40.88
simp12 117 1 758330 23 76.23 >7200 >7200 105.67 61.94 59.87 57.59
simp14 120 1 562326 36 70.38 >7200 1114.29 75.75 38.48 36.17 30.63
hom06 104 1 1176845 20 65.22 >7200 274.90 115.66 91.70 88.31 81.50
hom08 95 1 893312 16 56.48 >7200 135.79 67.79 54.99 50.89 49.00
hom10 130 1 309221 29 29.98 >7200 1510.32 35.85 33.39 31.61 31.21
ca004 53 1 782640 2 5.40 >7200 147.97 31.35 12.33 12.33 12.10
ca008 96 1 682617 16 20.40 >7200 326.92 53.54 44.69 43.05 42.78
ca016 107 1 861209 26 60.10 >7200 305.11 72.68 59.96 50.90 50.80
urquhart2 25 48 1 722657 5 3.06 >7200 70.50 26.22 20.23 20.21 17.95
urquhart3 25 62 1 1771025 24 6.22 >7200 >7200 82.98 81.14 76.97 72.80
urquhart4 25 68 1 1736705 27 5.96 >7200 >7200 83.44 81.84 76.48 72.02
rope 0002 54 1 634914 3 3.06 >7200 192.77 22.48 18.53 18.47 18.50
rope 0004 62 1 1052214 10 4.73 >7200 487.26 41.71 39.70 37.90 37.82
rope 0006 61 1 759039 13 3.14 >7200 657.74 35.78 30.76 30.64 30.68
ferry8 111 1 290127 30 78.35 >7200 95.15 30.10 29.56 23.21 22.99
ferry10 116 1 539419 38 88.08 >7200 1866.62 70.34 69.84 54.19 53.42
ferry12 123 1 277291 36 47.96 >7200 142.10 37.63 37.50 30.98 30.95
gripper10 125 1 393485 28 69.08 >7200 261.32 52.97 50.53 45.38 44.74
gripper12 129 1 667877 43 50.95 >7200 368.50 106.32 102.87 85.43 84.90
gripper14 118 1 767735 40 47.29 >7200 415.57 111.49 110.40 73.48 71.34

V. EXPERIMENTAL RESULTS

To assess the efficiency of the anytime approach, the algo-
rithm, complete with all its refinements was implemented using
the CUDD [20] Decision Diagram package. The rationale for this
choice of library was that the Extra DD library [21], which im-
plements Mishchenko’s algorithm, also uses CUDD. Experiments
were performed on an UltraSPARC IIIi 900MHz based system with
16GB RAM under the Solaris 9 Operating System. All programs —
the CUDD package, the Extra library, and our algorithm— were com-
piled with the GNU C Compiler version 3.3.0 with -O3 enabled. The
algorithms were run against a range of MCNC and ISCAS benchmark
circuits of varying size [22], as well as several other benchmarks de-
rived from the SAT literature. All timings were averaged over four
runs and are given in seconds. Table I presents the results of these
tests, the first four columns of Table I give the circuit name, number
of inputs, outputs and the total number of nodes over all outputs re-
spectively. Column five indicates the total number of all symmetric
pairs found over each of the outputs of the circuit. Column six gives
the time in seconds to read in the benchmark circuit and construct
the ROBDD applying variable sifting. The remaining six columns
give the runtimes required to compute all symmetric and asymmet-
ric pairs. The first of these is the naı̈ve method for computing all
co-factor pairs. The second is Mishchenko’s implementation of his
own algorithm [21]. The third column is the unoptimized algorithm
presented in Section III. The remaining three columns relate to the
refinements presented in Section IV, that is, with the optimizations of
Sections IV-A, IV-B and IV-C cumulatively enabled. The rationale
for implementing the naı̈ve method was to verify the implementation
of our algorithm and Mishchenko’s; the performance numbers are in-
cluded to quantify the value of Mishchenko’s algorithm. Note, that
these figures present Mishchenko’s algorithm in best light since when

garbage collection is enabled the performance of Mishchenko’s im-
plementation can degrade, presumably because of its extensive use of
ZDDs [23] to represent sets. For example, the circuit pair requires
33.40s compared to 6.62s with garbage collection disabled. Enabling
garbage collection has no perceivable impact on our algorithm.
Figure 2 illustrates the outcome of some experiments designed to

explore the anytime nature of the algorithm. In these experiments, the
optimized algorithm was stopped after progressively larger timeouts
were exceeded. The graphs display the number of symmetries found
against these timeouts. Future work will investigate whether reorder-
ing the iterations in the main loop, for example, choosing i with the
largest number of unknowns, increases the proportion of symmetries
found early in the search.

VI. DISCUSSION

This paper presents a novel anytime symmetry detection algorithm,
that is capable of detecting all symmetric variable pairs. The startling
speed-ups over Mishchenko’s algorithm stem from our use of a sin-
gle static adjacency matrix rather than sets of pairs that are repeat-
edly generated. It is important to appreciate that there is no obvi-
ous way to re-engineer Mishchenko’s algorithm to use a static adja-
cency matrix. This is because Mishchenko’s algorithm is a bottom-up,
divide and conquer algorithm that derives the solution to a problem
by obtaining, and combining, the solutions to several sub-problems.
Mishchenko [14, p 1590] points out that caching of the answers to
these sub-problems is required to reduce the computational complexity
from exponential to polynomial yet this requires multiple data struc-
tures to be maintained. By contrast, the anytime approach merely has
to mark nodes as visited in any of the ROBDD traversals. Moreover,
the only set operations that the anytime algorithm require are atomic
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O(1) insertions and deletions, which finesses the otherwise O(n2)
overhead of set intersection and union. This partly explains the speed
of the anytime approach.
Another source of speedup, in the anytime approach, is its

amenability to optimization by enriching the A and S sets on-the-fly.
One would think that computing the transitive closure is prohibitively
expensive, but close inspection of the SPARC assembler revealed that
the GNU compiler was able to generate very tight code from the regu-
lar structure of the closure algorithm.
Finally, Mishchenko’s algorithm [14] is capable of detecting all

four basic types of symmetry, namely, non-skew non-equivalence sym-
metry — the notion of symmetry considered in this paper — (NE),
non-skew equivalence symmetry (E), skew non-equivalence symmetry
(!NE) and the skew equivalence symmetry (!E). In this more general
setting, a pair of variables are asymmetric if they do not satisfy any of
these four symmetry types. A key component of our optimized algo-
rithm, SymmetryClosure, can be straightforwardly generalized to
infer these transitive symmetries by using a 4-bit encoding to indicate
which symmetry types apply. A lookup-table of (42)×(42) = 256 en-
tries can then be used to obtain the transitive symmetry types without
any impact on the asymptotic running time.
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