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Abstract
A copula can characterize the complete dependence of multi-variables sepa-
rately from the univariate marginals. The purpose of this paper is to provide
a Bayesian nonparametric methodology to estimate a copula. We show that
any bivariate copula density can be approximated by an infinite mixture of the
Gaussian copula densities that are the dependence structures of the pairs with
standard normal marginals. A slice sampling idea is introduced for this infinite
structure that can estimate the number of occupied clusters in a sampler. The
estimation procedure is proposed by the Gibbs sampling algorithm. Simulation
and real data application illustrate the rational of the proposed approach.
Key words: Copula; Gaussian copula; copula density; Bayesian nonparametric
estimation; Gibbs sampling; Slice sampling.

1 Introduction

Copulas have recently become popular as a modeling tool for accounting
for the dependence structure of multivariate data. The aim in this paper is to
contribute by presenting a new method to estimate a copula density function
using Bayesian nonparametric techniques. A Copula is a multivariate distribu-
tion function with uniform marginals on I = [0, 1]. The copula density function,
c, exists when the copula distribution function, C, is absolutely continuous and
then, in the bivariate case,

c(u, v) =
∂2

∂u∂v
C(u, v), u, v ∈ I. (1)

The foundations can be found in the works of Nelsen (2002, 2006), based on the
original Sklar’s Theorem (Sklar, 1959), and which may explain the popularity
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of copulas in statistical modeling. Suppose H(x, y) is a joint cumulative dis-
tribution function of X and Y , with marginal distribution functions F (x) and
G(y), respectively, and let

F−1(u) = inf{x : F (x) ≥ u}, G−1(v) = inf{y : g(y) ≥ v}.
There then exists a copula function C : I2 → I, such that

C(u, v) = H(F−1(u), G−1(v)). (2)

The copula C is unique if the marginal distributions F and G are continu-
ous. Consequently, the copula approach characterizes the complete dependence
structure of (X, Y ) separately from the marginal distributions.

In practice, the joint distribution function H is unknown and it can be esti-
mated by eq. (2). That is, for any x, y, H(x, y) = C(F (x), G(y)). It is essential
to use an appropriate copula function. Choroś et al. (2010) reviewed para-
metric, semi–parametric and nonparametric approaches to copula estimators.
We briefly describe copula inference methods for independent and identically
distributed (i.i.d) random samples with dependent components.

Emphasis is typically placed on a proper copula chosen from some pre-
determined parametric family. Estimation approaches are obtained either by
maximum likelihood, see Genest et al. (1993), pseudo-likelihood estimation,
Kim et al. (2007), the method of moments or Bayesian techniques, Silva et al.
(2008) and Huard et al. (2006). But there is a strong need to check whether
the dependence structure is suitable for the data, i.e. model adequacy, and
such issues have been considered for the Gaussian and Archimedean copulas,
see Genest et al. (2009a).

More flexible approaches are obtained using nonparametric methods, which
work by avoiding any assumption of a particular copula family. Classical estima-
tors are based on the empirical copula function, developed by Deheuvels (1979).
Let (X1, Y1), . . . , (Xn, Yn) be a random sample from the unknown distribution
H and denote by Fn and Gn the empirical distribution functions associated with
the F and G samples, respectively. Then Hn(x, y) is taken to be the empirical
distribution function, given by

Hn(x, y) =
1
n

n∑

i=1

1(Xi ≤ x, Yi ≤ y),

and let the corresponding empirical marginal distribution functions be

Fn(x) = Hn(x,+∞), Gn(y) = Hn(+∞, y).

Then the empirical copula function can be obtained as

Cn(u, v) = Hn(F−1
n (u), G−1

n (v)), u, v ∈ I. (3)

This is a rank–based estimator of a copula function. The standardized ranks
(Fn(Xi), Gn(Yi)) replace the unobservable pairs (F (Xi), G(Yi)) and then form
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a random sample (U1, V1), . . . , (Un, Vn) from the copula C. Deheuvels (1979)
also established consistency and asymptotic normality of the empirical copula
process for i.i.d. observations of random vectors. However, the empirical copula
function is not continuous, and some smoothing techniques are needed to obtain
realistic estimators, using kernels, wavelets, and splines.

Fermanian et. al. (2004) proposed a kernel estimator. They construct the
kernel estimator as

Ĥn(x, y) =
1
n

n∑

i=1

Kn(x−Xi, y − Yi),

where Kn(x, y) = K(a−1
n x, a−1

n y) and

K(x, y) =
∫ x

−∞

∫ y

−∞
k(u, v)dudv,

for some bivariate kernel function k : R2 → R, with
∫

k(x, y)dxdy = 1, and a
sequence of bandwidths an ↓ 0 as n → ∞. Similar smoothed marginal distri-
butions F̂n and Ĝn are obtained using univariate kernels. A smoothed kernel
empirical copula estimator is given as

Ĉn(u, v) = Ĥn(F̂−1
n (u), Ĝ−1

n (v)), u, v ∈ I. (4)

Fermanian et al. (2004) showed that, under certain regularity conditions, asymp-
totic normality holds for this smoothed copula process. The local linear version
of the kernel was suggested by Chen and Huang (2007) and a mirror-reflection
kernel estimator was also a choice. However, the kernel-based estimator is often
not effective along the borders of I2, and for good performance requires a large
amount of data.

Genest et al. (2009b) proposed to estimate the copula density function
using linear wavelets to smooth the empirical copula function, and a smoothed
result for every level of resolution can be generated automatically. On the other
hand, Autin et al. (2010) obtained an estimator using two shrinkage procedures
based on thresholding.

Pitt et al. (2006) developed a Bayesian estimation procedure for multivari-
ate Gaussian copula models in which the marginals were constrained to fixed
parametric families. Hoff (2007) provided a semi–parametric Bayesian estimator
using the Gaussian copula to construct a dependence structure. The estima-
tors of the dependence parameters are based on a pseudo-likelihood, and the
model avoids the specification of the marginal distributions, and thus suitable
for mixed continuous and discrete data. Estimating the parameters of the Gaus-
sian copula family are available via Markov Chain Monte Carlo methods using
Gibbs sampling. However, their approach are confined to an elliptical copula
family such as the Gaussian copula. Müller et al. (2004) stated that constrain-
ing inference to a specific parametric form may limit the scope and type of
inference.
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Recently, Bayesian nonparametric methodology has been considered to es-
timate the copula function. Ideas have been recently proposed by Guillotte et
al. (2008, 2009), Silva et al. (2009) and Elidan (2010). Guillotte et al. (2008)
focused on a kind of copula family, the extreme-value copulas, which can be char-
acterized by a univariate dependence function. In this way, the high-dimensional
problem is reduced to one variable. They construct a nonparametric model and
propose Bayesian estimation of the dependence function whether the marginal
distributions are known or not. The estimation approach is facilitated by jump
MCMC algorithms. However, applications are restricted to the specificity of a
copula family.

A further Bayesian framework for copula estimation is provided by Guillotte
et al. (2009). First, they construct an approximation subspace A on the space B
of all copula functions. This subspace A is finite dimensional and determined by
a doubly stochastic matrix P . They prove that for any copula C ∈ B and ε > 0,
there exists a copula A ∈ A such that ‖C−A‖ ≤ ε, where ‖ ·‖ is a proper norm.
Secondly, they consider any copula function C as a finite mixture of distributions
and the weights are associated with the matrix P . In order to obtain the
Bayesian copula estimator Ĉ, they assume the Jeffreys prior on the subspace
A. Consequently, Ĉ is obtained by the Bayesian posterior mean. Numerical
evaluation is based on Markov Chain Monte Carlo methods. Finally, they state
their Bayesian approach outperforms traditional nonparametric estimators, such
as kernel estimators, in many cases. However, this result is heavily dependent on
the selection of the prior. Furthermore, the approach is not fully nonparametric
Bayesian. Elidan (2010) developed a copula Bayesian network model to estimate
flexible high-dimensional continuous distributions. But this work also depends
on the choice of copula.

This paper proposes a Bayesian nonparametric procedure to estimate any
copula density function c associated with a copula C. We focus on the estimator
of the copula density c(u, v) (assuming it exists). Our approach utilizes the well
known infinite mixture style model, and in particular we justify the use of an
infinite mixture of Gaussian copulas.

The layout of the article is as follows. Section 2 contains a brief description
of copula and includes our Bayesian nonparametric model. We present the
Gibbs sampling algorithm for estimating the model in Section 3. Illustrations
and numerical results are described in Section 4 and we conclude with a brief
discussion in Section 5. A proof of a theorem is given in the Appendix.

2 Copulas and the Nonparametric Model

Formally, see Nelsen (2006), we have the following definition of a copula:
Definition 1. A (two-dimensional) copula is a function C : I2 → I, such that:

(i) C(0, x) = C(x, 0) = 0 and C(1, x) = C(x, 1) = x for all x ∈ I;
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(ii) C is 2-increasing : for every a, b, c, d ∈ I with a ≤ b and c ≤ d if

VC([a, b]× [c, d]) = C(a, c)− C(a, d)− C(b, c) + C(b, d) ≥ 0.

Here, VC is called the C -volume of the rectangle [a, b] × [c, d]. Note that a
copula C induces a probability measure on I2 via VC([0, u] × [0, v]) = C(u, v).
For instance, the function π(u, v) = uv is a copula that yields an independent
structure. It is also easy to show that, as a consequence of the 2-increasing
property in Definition, for any copula C we have C is nondecreasing in each
variable, and C satisfies the Lipschitz condition; i.e. for every a, b, c, d in I,

|C(b, d)− C(a, c)| ≤ |b− a|+ |d− c|.

A Copula is thus uniformly continuous. The Fréchet–Hoeffding bounds inequal-
ity is an important exercise,

max{F (x) + G(y)− 1, 0} ≤ H(x, y) ≤ min{F (x), G(y)}, x, y ∈ R;

or

W (u, v) = max{u + v − 1, 0} ≤ C(u, v) ≤ min{u, v} = M(u, v), u, v ∈ I.

Here, the functions W and M are known as the Fréchet–Hoeffding lower and
upper bounds. Furthermore, M and W are themselves copulas.

Many copula can be found in the literature, and among them, the most pop-
ular one is the Gaussian copula. Durante et al. (2010) discussed some general
properties that a copula should have for being considered valuable in statistical
applications. A ’good’ copula should have some probabilistic interpretation, be
flexible and have a wide range of dependence. The Gaussian copula satisfies
such requirements. Let Nρ(x, y) denote the standard bivariate normal distribu-
tion function with correlation coefficient ρ. Then Cρ, the copula corresponding
to Nρ, is given by

Cρ(u, v) = Nρ(Φ−1(u),Φ−1(v)).

where Φ denotes the standard normal distribution function. Since there is no
closed form expression for Φ−1, there is no closed form expression for Nρ. How-
ever, Nρ can be evaluated approximately in order to construct bivariate distri-
bution functions with the same dependence structure as the standard bivariate
normal distribution function but with non-normal marginals.

The Gaussian copula density cρ(u, v) is given by eq. (1), that is

cρ(u, v) =
1√

1− ρ2
exp

{
−1

2
(
Φ−1(u),Φ−1(v)

) (
Σ−1 − I

)(
Φ−1(u)
Φ−1(v)

)}
(5)

where

Σ =
(

1 ρ
ρ 1

)
,

and I is the identity matrix.

5



We observe that any copula density function can be approximated to an
arbitrary precision by a mixture of the Gaussian copula densities. The details
are presented later in this section, and here is a simple example of c(u, v) as a
mixture of five Gaussian copula densities:

c(u, v) =
5∑

j=1

wjcρj
(u, v), (6)

where ρ1 = −0.9, ρ2 = −0.5, ρ3 = 0, ρ4 = 0.2, ρ1 = 0.75, and w1 = 0.1, w2 =
0.15, w3 = 0.05, w4 = 0.5, w5 = 0.2. It is easy to show that c(u, v) is a copula
density.

Four copula density graphs are presented in Figure 1. The panel (a) is the
Gaussian copula density and the shape is symmetric. The above mixture of five
Gaussian copula densities is shown in the panel (b). It is asymmetric with some
high peaks at the corners, not like the Gaussian copula density. The panel (c)
shows the t copula density, that is,

cρ,ν(u, v) =
Γ(ν+2

2 )Γ(ν
2 )

[Γ(ν+1
2 )]2

√
1− ρ2

[1 + qρ(t−1
ν (u),t−1

ν (v))
ν ]−

ν+2
2

[1 + t−1
ν (v))2

ν ]−
ν+1
2

with qρ(x, y) = (x2 + y2− 2ρxy)/(1−ρ2) and t−1
ν (u) denoting the inverse of the

distribution of the univariate student t density with ν degrees of freedom. The
shape changes with the different parameters. It is symmetric with the heavy
tails on the borders. We rebuilt this dependence structure using our predictive
data later. The panel (d) shows the Gumbel copula density with a heavy tail
on the top. In general, any copula density function with arbitrary shape can be
considered as the mixture of the Gaussian copula densities.

The plan now is to generate a complete class of copula models by mixing
the correlation parameter; yielding

c(u, v) =
∞∑

j=1

wj cρj (u, v), (7)

where cρj
(u, v) is the Gaussian copula density in eq. (5), the weights (wj) sum

to one and the (ρj) vary in (−1,+1).
The motivation for using the Gaussian copula is as follows: taking our

cue from the result that bivariate density functions on the real plain can be
arbitrarily well approximated with respect to the L1 distance by a mixture of
bivariate normal distributions; of the type

f(x, y) =
∞∑

j=1

wj N
(

(x, y)|µj ,Σj

)
.

In order to recover the copula, by transforming U = Φ(X) and V = Φ(Y ), we
need to obtain the marginal distributions for X and Y as standard normal.
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Theorem 1. For X and Y to be marginally standard normal, it is necessary
and sufficient for µj = 0 for all j and

Σj =
(

1 ρj

ρj 1

)
.

Proof. See Appendix.

Hence, our nonparametric copula model is given by (7) having appropriately
transformed X and Y . This is clearly a copula density function as it is a mixture
of such densities. Moreover, due to its derivation we contend it can arbitrarily
well approximate any copula with respect to the L1 distance. Undertaking
full Bayesian posterior analysis may not be have been possible with an infinite
mixture of copulas; however, it is quite feasible using a slice sampling algorithm
recently introduced to the literature.

3 The Gibbs sampling algorithm

In order to transform the infinite model (7) to be finite, we introduce a
standard latent variable zi for each i such that the joint density of (ui, vi, zi), is
given by

c(ui, vi, zi) =
∞∑

j=1

1(zi < ξj) (wj/ξj) cρj
(ui, vi)

for some deterministic decreasing sequence (to 0) (ξj). See Kalli et al. (2010)
for details of this approach for estimating infinite mixture models. The model in
the presence of the (zi) becomes finite since the number of j such that ξj > zi is
finite and so, conditional on zi, the number of parameters is finite. Furthermore,
another latent variable di is introduced, which allocates each observation to one
component of the mixture model. Therefore the joint density of (ui, vi, zi, di) is

c(ui, vi, zi, di) = 1(zi < ξdi
) (wdi

/ξdi
) cρdi

(ui, vi),

where di ∈ {1, 2, 3, . . .}. This form omits any sums.
With all the n observations, we can write down the full likelihood function

as
n∏

i=1

c(ui, vi, zi, di) =
n∏

i=1

1(zi < ξdi)
wdi

ξdi

cρdi
(ui, vi).

Therefore the full posterior distribution can be expressed as

f(ρ|u,v, z,d) ∝ π(ρ) ∗
n∏

i=1

c(ui, vi, zi, di) = π(ρ) ∗
n∏

i=1

1(zi < ξdi
)
wdi

ξdi

cρdi
(ui, vi).

To be able to implement a Gibbs sampler to the model we discussed above, a
set of full conditional density functions is required. The chain can be initialized
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in the following way. We initialize {di = i, i = 1, · · · , n} and then simulate
{zi, i = 1, · · · , n} from a uniform distribution between 0 and ξdi = e−βdi . Then
we define Ni = {−xlog ziy} , where xXy defines the largest integer less than or
equal to X. Define, also, Nmax = max1≤i≤n{Ni}.

Step 1: Updating w. The conditional distribution of the parameter, wj , given
di, i = 1, · · · , n, is proportional to

wj | · · · ∼ beta (a + #{di = j}, b + #{di > j}) ,

where #{di = j} registers the number of di, which equals j and #{di > j}
registers the number of {di > j}.

Step 2: Updating z. The zj follows the uniform distribution with support
(0, ξdi

).

Step 3: Updating di. The values of di can take between 0 and Ni, which is
derived from the value of zi. We have the density of di as proportional to

Pr(di = j| · · · ) ∝ wj

ξj
cρj

(ui, vi).

Step 4: Updating ρ. The full conditional distribution of the parameter ρj is

given as following

f(ρj | · · · ) ∝ π(ρj) ∗
∏

di=j

cρj (ui, vi),

where π(ρj) is the prior distribution for ρj , which we assume it following the
uniform distribution with support (−1, 1). The detailed sampling procedure for
cρj

(ui, vi) will be discussed later. Once we can sample from cρj
(ui, vi), the chain

is completed.
To be able to sample from cρj (ui, vi), we introduce the slice sampling idea.

Substituting u = Φ(x) and v = Φ(y) into (5), we can obtain the dependence
structure of (X, Y ), c, the copula density as

c(Φ(x),Φ(y)) =
1√

1− ρ2
exp

{
− 1

2(1− ρ2)
(ρ2x2 + ρ2y2 − 2ρxy)

}
,

with −1 < ρ < 1.
Then, the full likelihood can be presented as

f(ρ;x, y) =
n∏

i=1

1√
1− ρ2

exp
{
− 1

2(1− ρ2)
(ρ2x2

i + ρ2y2
i − 2ρxiyi)

}

=
(

1
1− ρ2

)n
2

exp

{
− 1

2(1− ρ2)

[
ρ2

n∑

i=1

(x2
i + y2

i )− 2ρ
n∑

i=1

xiyi

]}
.
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Let A =
∑n

i=1(x
2
i + y2

i ) and B = 2
∑n

i=1 xiyi, posterior distribution of ρ, given
the prior π(ρ), is proportional to

f(ρ| · · · ) ∝ π(ρ)
(

1
1− ρ2

)n
2

exp
{
− 1

2(1− ρ2)
(Aρ2 −Bρ)

}
.

We introduce two latent variables λ and η in such way that the posterior
distribution can be represented as

f(ρ, λ, η) ∝ π(ρ) ∗ e−
λ
2 1

(
λ >

Aρ2 −Bρ

1− ρ2

)
∗ 1

(
η <

(
1

1− ρ2

)n
2
)

.

It is straightforward to see that integrated out the latent variables λ and η, we
will obtain the posterior distribution of ρ. Now we can use the Gibbs sampler.
We start initializing by simulating ρ ∼ U(−1, 1). Then we update following the
steps:

f(η| · · · ) ∝ U

[
0,

(
1

1− ρ2

)n
2
]

,

f(λ| · · · ) ∝ e−
λ
2 1

(
λ >

Aρ2 −Bρ

1− ρ2

)

and

f(ρ|λ, η) ∝ π(ρ) ∗ 1

(
{λ >

Aρ2 −Bρ

1− ρ2
} ∩ {η <

(
1

1− ρ2

)n
2

}
)

.

In the next section we run this code on some predictive data sets and also a real
data set.

4 Numerical Results

In order to examine the numerical performance of the proposed model,
we perform two examples below. As a first example, consider two groups of
data that are generated from the extremely strong positive correlation and the
t copula, respectively. The copula density estimator is obtained for every data
set. Secondly, we apply our Bayesian method to the real data. The evidences
illustrate that our Bayesian nonparametric estimators give effective approaches
in general.

For simulation, two common dependence structures are considered. For
each copula, we generate a data set of (U, V ) using Matlab. That is, an i.i.d.
standard uniform bivariate random sample is got from the specified copula. The
sample sizes considered are n = 500. Based on copula theory, U1, U2, . . . , Un is
a sample from uniform U(0, 1) and so is V1, V2, . . . , Vn. Therefore, the bivariate
copula density c(u, v) can be considered as the joint density (pdf) of (U, V ).
The predictive data (U ′, V ′) is estimated by the Gibbs sampling in Section 3.
With 4,000 iterations, 500 pairs are used after burning in the first 3,500 ones.

9



The bivariate copula density c(u, v) is obtained by the classic kernel method. It
is the same to (U ′, V ′).

The first dependence model is the extremely strong positive correlation.
The Gaussian copula in eq.(5) is chosen with the correlation coefficient ρ = 0.99.
Four graphical representations of this group of data are provided in Figure 2.
In the top row, the panels (a) and (b) show the generated data (U, V ) on the
scatter and kernel-based copula density plots, respectively. Those of predictive
data (U ′, V ′) are in the panel (c) and (d). The approach illustrates that it is
easy to estimate this linear structure.

The second dependence structure is the t copula. The scatter plot in the
panel (a) of Figure 3 shows the feature of this copula. The parameters are
especially chosen with the correlation coefficient ρ = −0.5 and the degree of
freedom ν = 1 because the t copula with low freedom produces greater upper
and lower tail dependence. See Figure 3. This dependence structure can also be
mixed with the Gaussian copula densities. The predictive approaches in panel
(c) and (d). It approximately returns the real copula density.

The last example uses the medical data from the Framingham Heart study
database. Qu et al. (2012) analyzed similar data using MPLE-TV method.
Based on the systolic (SBP) and diastoloc (DBP) blood pressures (in mm*Hg)
measured on 468 subjects, we focus on the dependence structure via our infinite
mixture model. In the simulation, let X be SBP and Y be DBP, the marginals
F (x) and G(y) are unknown. We then follow Genest et al. (2009b) and consider
the observations (Ûi, V̂i) = (Ri/n, Si/n) = (Fn(Xi), Gn(Yi)), i = 1, . . . , n. Here,
Ri is the rank of Xi among X1, . . . , Xn and Si is the rank of Yi among Y1, . . . , Yn,
denoted by Fn and Gn the empirical distribution. These standardized ranks of
the sample closely approximate to the pairs (Ui, Vi) = (F (Xi), G(Yi)). The
scatter plot of log(SBP) and log(DBP) is in the panel (a) of Figure 4, and panel
(b) shows the plot of rank (log(SBP))/n and rank (log(DBP))/n. It illustrates
that there is a positive correlation between the two responses, but not very
strong.

The Monte Carlo sample size is 10,000 with the initial 9,000 used as a burn
in period. See Figure 5. The scatter plot of the predictive data in the panel (c)-
(e) broadly characterizes the dependence structure of real data in panel (a) and
(b). They show a strong agreement between the real data and our predictive
sampler using the Gaussian mixture structure.

In this infinite model, the key is to find out the exact number of occupied
clusters in a sample. That is, how slice sampling ideas in Section 3 can be
applied to estimate the copula density. We are concerned with the finite number
of variable to sample a valid Markov chain with correct stationary distribution.
The number of clusters, k, in each iteration is shown in the panel (f). The
mean of k is 7. That means the copula density is considered as the mixture of
7 Gaussian copula densities. This shape of copula is not similar to any known
family model such as the Gumbel or Gaussian copula. But, more flexible copula
density can be estimated by our Bayesian nonparametric model as we should
expect.
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5 Discussion

We present a Bayesian nonparametric methodology to estimate arbitrary
bivariate copula density. There is no need for any assumption of the copula
family models, so this approach extends the range of estimation. If a copula
function is known, our predictive data can reconstruct the key features of a
copula that are symmetry, skewness, heavy tail or linear relationship. It is also
true on the phenomenon when the copula is unknown. The estimator is not
obtained until the observations are transformed into standard uniform variables.

Two points need to be discussed. First, the Bayesian approaches rely on the
consistency and convergence rate of the Markov chain. Much work is ahead for
reliable diagnosis. Secondly, there is more challenges in higher dimensions. How
to deal with ”the curse of dimensionality”? The following work will be done on
multi-dimensional copula density estimation using the Bayesian nonparametric
method.

Appendix: Proof of Theorem 1.

To prove the theorem, we need to show that

+∞∑

j=1

wjN(x|µj , σ
2
j ) = N(x|0, 1) (8)

for all the j it is necessary and sufficient for µj = 0 and σ2
j = 1 for all j.

To maintain (8), we replace the both sides of equation by their characteristic
functions, as follows

+∞∑

j=1

wje
itµj−(1/2)σ2

j t2 = e−(1/2)t2

⇔
+∞∑

j=1

wjcos(tµj)e−(1/2)σ2
j t2 + i

+∞∑

j=1

wjsin(tµj)e−(1/2)σ2
j t2 = e−(1/2)t2 ,

which we obtain the following two equations

+∞∑

j=1

wjcos(tµj)e−(1/2)σ2
j t2 = e−(1/2)t2 (9)

and

+∞∑

j=1

wjsin(tµj)e−(1/2)σ2
j t2 = 0 (10)
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Applying the Taylor expansion to both sides of (9), we have

+∞∑

j=1

wjcos(tµj)
( +∞∑

k=0

(−(1/2)σ2
j t2)k

k!

)
=

+∞∑

k=0

(−(1/2)t2)k

k!

⇐⇒
+∞∑

k=0

(−(1/2)t2)k

k!

( +∞∑

j=1

wjcos(tµj)σ2k
j

)
=

+∞∑

k=0

(−(1/2)t2)k

k!

⇐⇒
+∞∑

j=1

wjcos(tµj)σ2k
j = 1 ∀t

Let t = 0, we have

+∞∑

j=1

wjσ
2k
j = 1

⇒ σ2
j = 1

for all j.
From (10), we have

+∞∑

j=1

wjsin(tµj) = 0

for all j. Applying the Taylor expansion for the sin function, we have

+∞∑

j=1

wj [tµj − (tµj)3/3! + (tµj)5/5!− · · ·+ (−1)k+1(tµj)2k−1/(2k− 1)! + · · · ] = 0.

For the above equation to be real for all the t ∈ R, the following equation has
to be true for all the k ∈ {1, 2, · · · ,+∞}

+∞∑

j=1

wjµ
2k−1
j = 0.

Hence µj = 0 for all j.

References

[1] Autin F., Pennec E.L., Tribouley K., 2010. Thresholding methods to esti-
mate copula density. Journal of Multivariate Analysis 101, 200-222.

[2] Chen S.X., Huang T., 2007. Nonparametric estimation of copula functions
for dependence modelling. Canadian Journal of Statistics 35, 265-282.
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(a) Gaussian copula
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(b) Mixture of Gaussian copulas

0

0.5

1

0

0.5

1
0

1

2

3

4

uv

(c) t copula

0

0.5

1

0

0.5

1
0

2

4

6

8

uv

(d) Gumbel copula

Figure 1: Plots of the copula density functions. Panel (a): the Gaussian copula
density with the correlation coefficient ρ = 0.5; panel (b): the mixture of 5 Gaussian
copula densities in eq. (5) with ρ1 = −0.9, ρ2 = −0.5, ρ3 = 0, ρ4 = 0.2, ρ1 = 0.75 and
the weights are w1 = 0.1, w2 = 0.15, w3 = 0.05, w4 = 0.5, w5 = 0.2; panel (c): the t
copula density with ρ = −0.5 and the degree of freedom parameter ν = 1; panel (d):
the Gumbel copula density with ρ = 3.
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(a) Scatter of data (b) Copula density of data
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(c) Scatter of predictive sample (d) Copula density of predictive sample

Figure 2: Gussian copula with ρ = 0.99, and the number n = 500. Panel (a): scatter
of the predictive data; panel (b): kernel-based copula density of the predictive data;
panel (c) and (d): scatter and kernel-based copula density of the predictive data,
respectively.
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Figure 3: The t copula density with ρ = −0.5, the degree of freedom ν = 1, and the
number n = 500. Panel (a): scatter of the predictive data; panel (b): histogram of
the predictive data; panel (c) and (d): scatter and histogram of the predictive data,
respectively.
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(b) Rank-rank of real data

Figure 4: Panel (a): scatter plot of log(SBP) and log(DBP); Panel (b): rank-rank
plot of (log(SBP))/n and (log(DBP))/n.
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(c) Scatter of predictive sample (d) Copula density of predictive sample

(e) Histogram of predictive sample
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Figure 5: Dependence structure of SBP and DBP, and 468 pairs of the data
transformed by the empirical distribution function. Panel (a) and (b): scatter
and kernel-based copula density plots of the data, respectively; Panel (c)-(e):
scatter, kernel-based copula density and histogram plots of the predictive sam-
pler, respectively; Panel (f): histogram of k, the number of cluster in the mixture
Gaussian copula densities.
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