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Abstract. With the release of their latest processor microarchitecture, codenamed

Haswell, Intel added new Transactional Synchronization Extensions (TSX) to their

processors’ instruction set. These extensions include support for Restricted Transac-

tional Memory (RTM), a programming model in which arbitrary sized units of mem-

ory can be read and written in an atomic manner. This paper describes the low-level

RTM programming model, benchmarks the performance of its instructions and spec-

ulates on how it may be used to implement and enhance Communicating Process Ar-

chitectures.

Keywords. Transactional Synchronization Extensions, TSX, Restricted Transactional

Memory, RTM, transactional memory, performance

Introduction

With the release of their latest processor microarchitecture, codenamed Haswell, Intel

added new Transactional Synchronization Extensions (TSX) to their processors’ instruction

set [1,2]. These extensions provide Hardware Lock Elision (HLE) and Restricted Transac-

tional Memory (RTM). RTM allows the atomic manipulation of arbitrary size units of mem-

ory. Without RTM the largest unit of memory that can be atomically manipulated on x86

architectures is a single memory word, 32 or 64 bits, using for example a compare-and-swap

(CAS) operation 1. This restriction has necessitated the development of entire classes of non-

blocking, lock-free and wait-free algorithms [3,4] along with complex architectural memory

models [5,6]. Programmers using a Communicating Process Architecture (CPA) such as that

provided by occam-π [7], Communicating Scala Objects [8] or ProcessJ [9], are freed from

considering the details of atomic synchronisation on shared memory systems. However, the

developers of high-performance CPAs for modern multi-core and many-core must concern

themselves with these details.

Transactions are commonly found in database systems. These systems are, at least con-

ceptually, providing a large shared mutable memory [10]. In a database system transactions

provide: atomicity, consistency, isolation and durability [11]. In practice this means that all

operations in the same transaction should be enacted together or at-least seen to be done so

(atomicity), preserve system invariants (consistency), not interfere with other transactions in

non-deterministic ways (isolation) and be persistent once committed (durability). Most rel-

evant to the developers of operating systems and language run-time systems are atomicity

and isolation, whereas consistency and durability are more higher level concerns. Transac-

tions have the potential to vastly simplify the implementation of lock-free and non-blocking

algorithms which required for efficient communicating process architectures [12,13].

1Compare-and-swap updates a memory location M with a new value Y iff its current value matches another

value X , reporting the success or failure of the update.



272 C.G.Ritson and F.R.M.Barnes / Evaluating Intel RTM for CPAs

The concept of using transactions for system memory was first described by Herlihy

and Moss in 1993 [12]. Although hardware support for transactional memory has been im-

plemented in specialised processors such as IBM’s BlueGene/Q [14] and the cancelled Sun

Rock processor [15], it has taken 20 years for it to become available in a commodity pro-

cessor. In the intervening timespan much work has been done on Software Transactional

Memory (STM) [16], where transactional memory is provided by a language run-time sys-

tem rather than dedicated hardware. The literature has focused on how memory transactions

(using STM) can be exposed to programmers; however, as CPAs do not typically expose

shared memory this work is not relevant. Coupled with this, the lack of hardware support

and the poor performance of STM [17], transactional memory has not seen significant uptake

in the implementation of CPAs. One notable exception is Brown’s Communicating Haskell

Processes which uses STM to implement multiway choice and synchronisation [18].

This paper focusses on what Intel’s hardware RTM offers the designer or implementor of

a run-time system (RTS) or virtual machines (VM) for a communicating process architecture

(CPA). Content is broadly divided into three sections: section 1 describes the instruction set

and associated programming model for RTM; section 2 evaluates the performance of RTM

on a recently released Core i7-4770 processor; and section 3 looks at the potential applica-

tions of RTM in the implementation of CPAs. Conclusions and future work are reviewed in

section 4.

1. Programming Model

This section briefly describes the instruction set and programming model associated with

Intel’s RTM facilities.

At an instruction level RTM is simple to use. A transaction is initiated with an XBEGIN

instruction. Computation proceeds normally; memory can be read and written with common

instructions and other activities such as branching and arithmetic may also be used. At the

end of the transaction an XEND instruction commits any changes to memory.

During the transaction read and write sets are constructed. These sets have cache line

granularity and are based on the memory addresses read or written by the transaction’s body.

If these sets conflict with memory being read or written by other hardware threads then the

transaction is aborted. If a transaction is aborted, all changes to memory and registers are

discarded and execution jumps to a fallback handler supplied to the initial XBEGIN instruction.

Before invoking the fallback handler, status flags are set in the processor’s EAX register. These

flags allow the fallback handler to determine what caused the transaction to abort.

It is worth clarifying that read and write sets are specific to a given hardware thread. We

use the term hardware thread to describe the smallest unit of parallel execution in a computer

system. In Intel’s Haswell architecture a computer may have multiple processors, each of

which has multiple cores, each of which has multiple hardware threads. Hardware threads

on the same core share components such as arithmetic units and cache, but have their own

registers and instruction pointer.

1.1. Instructions

There are only four machine instructions used to access RTM functionality.

• XBEGIN initiates a transaction. An instruction pointer (relative to the current instruc-

tion pointer) to a fallback handler is passed. XBEGIN is also valid within a transaction,

permitting nesting (see 1.3).

• XEND completes a transaction, flushing changes to memory, assuming this is not a

nested transaction (see 1.3). Following this instruction it can be assumed that changes

are visible to other hardware threads.
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• XABORT aborts the current transaction. It takes an 8-bit failure code which is accessible

to the fallback handler.

• XTEST updates the processors comparator flags such that a subsequent branching in-

struction can determine if the processor is executing within a transaction or not.

1.2. Restrictions

The term restricted in restricted transactional memory refers to the fact that not all proces-

sor instructions and functions may be used within a transaction. If a restricted operation is

attempted then the transaction is aborted and the fallback handler invoked. Essentially any

instruction that causes changes to the processor or system state that cannot (trivially) be re-

verted induces a transaction to abort.

There are several restrictions worth noting:

• X87 floating-point and multi-media extensions (MMX) are not supported; however,

this is a not a significant concern as streaming SIMD extensions (SSE) and advanced

vector extensions (AVX) are supported permitting floating-point and vectorised com-

putation.

• Instructions that halt the processors execution such as PAUSE and MWAIT are not sup-

ported.

• Debugging mechanisms are not supported, while not verified in this work essentially

breakpoints cannot be placed within a transaction.

• An interrupt within a transaction will cause the transaction to abort before invoking

the interrupt handler.

• Changes in privilege level will cause a transaction to abort and disregard the source of

the invocation. This will prevent calls into the operating system kernel.

• Any exception will cause a transaction to abort and disregard the source of the excep-

tion. This includes memory addressing exceptions and page faults, meaning all mem-

ory accessed during a transaction must be mapped.

1.3. Nesting

Nesting of transactions is supported. Each invocation of the XBEGIN instruction increases a

nesting count and XEND decrements the same count. The transaction is only completed and

committed to memory when the nesting count is reduced to zero. However, any conflict caus-

ing the transaction to abort will invoke the outermost fallback handler. Essentially nested

transactions are simply folded into the outermost transaction.

1.4. Failures

When a transaction is aborted and fails all changes to the processor state made within the

transaction are discarded. This includes any exceptional conditions raised, such as a page

faults. Thus if an exception is triggered within a transaction, the transaction will abort and the

exception handler will not be invoked. A special case is interrupts which cause the transaction

to abort, but still invoke the interrupt handler once the transaction state has been discarded.

The cause of a transaction’s failure is reported to the fallback handler by setting flags in

the EAX register. At the time of writing six flags are defined:

0 XABORT: An XABORT instruction aborted the transaction, in which the EAX register also

carries the 8-bit code pass to the XABORT instruction.

1 Retry: The transaction might succeed if retried.

2 Conflict: Interference from another processor, core or hardware thread caused the

transaction to abort.
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3 Overflow: Overflow of buffers caused the transaction to abort.

4 Debug: A debug break point was encountered causing an abort.

5 Nested: The transaction was aborted within a nested transaction.

2. Performance

This section evaluates the performance of RTM on generally available hardware. The goal is

to provide data which can inform the design of language run-time systems and CPA imple-

mentations.

When implementing a language run-time it is important to minimise run-time cost in

terms of space and time complexity. However, without meaningful data it is not possible to

make reasoned choices. For example, when implementing for performance it would not make

sense to use a memory transaction if the same operation could be implemented with three

CAS instructions if the overhead of a transaction is ten times that of a CAS.

With respect to Intel’s RTM the critical questions to answer are:

• What is the cost of setting up a transaction? (see 2.3)

• What is the cost of committing a transaction? (see 2.3)

• Is there an overhead on operations within a transaction? (see 2.3 and 2.5)

• How big can a transaction reasonably be? (see 2.4)

• What is the cost of failed transactions and conflicts between transactions? (see 2.3 and

2.6)

2.1. Test Setup

All tests and benchmarks were performed using a system with a single Core i7-4770 proces-

sor running at 3.4GHz, with 16GiB of RAM running at 1600MHz and CAS timing of 9-9-

9-24. Stock Ubuntu Linux 12.04.2 LTS was used with kernel 3.5.0-23-generic. No specific

compiler support for RTM was employed, instead assembly macros were used in the standard

GCC 4.6.3 installation.

The processor Turbo Boost was disabled in the system’s BIOS to allow for consis-

tent results regardless of hardware temperature. Additionally, CPU frequency scaling was

disabled by modifying the scaling_min_freq parameter in the sysfs entry to match the

scaling_max_freq. While executing POSIX threads were bound to specific hardware threads

(or processor cores) using the sched_setaffinity API. The scheduling quantum was not ad-

justed.

2.2. Test Strategy

We define four different test operations:

• read: load words from increasing memory locations.

• write: store words to increasing memory locations.

• cas: compare-and-swap words at increasing memory locations.

• abort: store words to increasing memory locations, but abort the transaction after n

words.

Each operation (with the exception of abort) can operate in either untransactional (u) or

transactional (x) mode. Additionally the word size for these operations can be either 32-bits or

64-bits. For each combination of operation, mode and word size we test increasing numbers

of words per operation, or operation size.

At each operation size we recorded the amount of time (and clock cycles) required to

complete a number of operations (between 16384 and 131072), in order to derive the mean
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speed in bytes per nanosecond. Within a test run each operation uses a distinct memory area

(aligned to a cache line boundary) to minimise the effect of L2 and L3 processor caches. The

total size of the memory area is 512MiB, hence 16384 operations are performed when the

total operation size is 32KiB.

We also recorded the success or failure of operations allowing calculation of failure

rates. We do not retry failed transactions, but simply move on to the next operation. Failed

transactions are disregarded when computing performance.

Untransactional reads and writes will always succeed; however, untransactional compare-

and-swap (using LOCK prefix) can fail if multiple threads are using the same memory. Transac-

tional aborts will always fail, although the failure reason may not be the abort if a transaction

was interrupted before the XABORT instruction.

For abort operations we define two variants:

• abortn which sets up to do an operation of a given size, but aborts before performing

any memory access,

• abortm which performs all memory access before aborting the transaction.

Both have the same compiled structure and use a counter to trigger the transaction abort. This

is intended to minimise pipelining effects in the processor.

The source code for our benchmark is available on GitHub: https://github.com/

perlfu/rtm-bench.

2.3. Base Transaction Cost

To determine the base cost of transactions we examine the time taken to complete untrans-

actional and transactional operations with a size of zero. The overhead of our instrumenta-

tion and test framework will be the same between untransactional and transactional versions

allowing us to determine the cost of invoking transactional mode on the processor.

Table 1. Cost of zero size test operations.

Operation Time 32-bit Time 64-bit Cycles 32-bit Cycles 64-bit

u read 2.0ns 2.4ns 7.0 8.0

u write 2.1ns 2.1ns 7.0 7.0

u cas 2.0ns 2.0ns 7.0 7.0

x read 15ns 15ns 50 50

x write 15ns 15ns 50 50

x cas 15ns 15ns 49 49

x abortn 47ns 47ns 160 161

x abortm 47ns 47ns 161 161

With respect to table 1 the base cost of invoking transactional mode appears to be 13ns or

43 clock cycles. We also observe that triggering a transactional abort is relatively expensive. If

we assume this is because a pipeline and cache flush occurs then we can infer that successful

transactions are effectively pipelined.

Before plotting trends it is desirable to closely review the cost of small numbers of

operations. Table 2 and table 3 show these costs for 32-bit and 64-bit operations respectively.

The critical observation is that once a transaction reaches two words in size it has equivalent

cost to compare-and-swap operations on the same number of words. Beyond this (very low)

tipping point a transaction is more efficient than compare-and-swap with the benefit of overall

atomicity.
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will still be able to override transactions by setting the lock word and aborting any running

transaction, giving non-transactional code priority over transactional code. This is essentially

the approach used by Intel’s Hardware Lock Elision (HLE).

3.2. Conflict Synchronisation

The fallback mechanism detailed in section 3.1 highlights the use of transactional conflict as

a form of thread interlock. The same mechanism can be used to implement synchronisation

between a number of active threads.

One thread reads from a shared memory word and then spins performing no-op instruc-

tions. Other threads can then release the spinning thread by simply writing the shared memory

word. Multiple threads could spin on the same word and be released simultaneously.

This mechanism has a great deal of similarity with a classic spin-lock; however, the spin-

ning code is not required to read any memory. Whether the absence of memory operations

makes a difference to performance needs to be established through experimentation, but we

expect that there would be no observable difference due to existing caching mechanisms.

The significant difference with RTM is that multiple memory locations can be monitored

simultaneously with only marginally increased setup cost. Furthermore, using gather opera-

tions introduced with advanced vector extensions (AVX), also part of the Haswell microar-

chitecture, upto eight separate cache lines could be loaded simultaneously. This means that

synchronisation on upto 512 bytes of memory could be implemented in just five machine

instructions.

3.3. Context Switch Detection

As illustrated by the failure rates in section 2.4, operating system interference causes trans-

actional abort. These aborts are detectable by the absence of error flags being set. In turn this

means that user code can detect operating system context switches.

This effect could be applied in the implementation of timing critical code. It is worth not-

ing that instructions which read the CPU cycle counter, e.g. RDTSC, are valid within a transac-

tion. Thus transactions could be used to ensure accurate micro-benchmarking of instruction

sequences. This may be useful during run-time system initialisation.

Broadly speaking operating system interference represents the same level of risk to run-

time algorithms as data races with other processors. For example, operating system interfer-

ence and scheduling is a key factor in why spin-locks are not appropriate for use in user code.

Any user level locking primitive must account for operating system scheduling. Hence for al-

gorithms with short and relatively deterministic execution times, RTM could greatly simplify

implementation.

3.4. Exception Handling

Hardware exceptions which occur within a transaction are discarded once the transaction has

been rolled back. This applies equally to events normally mediated by the operating system

such as illegal memory accesses or instructions sequence. For example, if a null pointer is

accessed within an transaction the transaction will abort, but the operating system will not

be invoked. This allows very localised detection of exceptional conditions and mitigates the

need for (program global) operating system signal handlers. Additionally, operating system

signal propagation requires one or two orders of magnitude more time than a transactional

abort.
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3.5. Scheduling

Wait-free work-stealing algorithms such as those in the occam-π run-time system have

demonstrated efficient and scalable scheduling of CPA workloads [20,13] and have also been

used effectively with data parallel computations [21,22]. These algorithms are typically bi-

ased toward a work queue’s owner, making stealing of work a costly operation. This cost is

justified as the processor stealing work is otherwise idle. To ensure wait-freedom (bounded

completion) work queues must also be of bounded size. It is also desirable to keep this bound

low as it is directly related to maximum number of atomic operations the algorithm must

perform.

RTM could be used to relax queue size constraints in common use cases and code paths.

Existing operations which are efficiently implemented using compare-and-swap remain un-

changed; however, operations which potentially traverse the queue, such as work-stealing,

are performed transactionally. This maintains the existing bias as untransactional (local) op-

erations will have priority.

As an extension of the above, a cleanliness (or bias) flag could be explicitly recorded

within the work queue. When work is stolen from the queue this flag is updated at the begin-

ning of a transaction to indicate the queue has been modified. The queue owner also tests the

cleanliness flag when updating the queue in such a way that transactions conflict and abort.

We speculated that using some form of this scheme it may be possible to implement owner

updates without atomic operations, assuming all work-stealing is done transactionally.

As an optimisation, work-stealing schedulers often spin looking for work, before falling

back to a use of condition variables or operating system primitives waiting for work. Using

the method detailed in section 3.2 a transaction could instead be used to monitor work queues.

This transaction can be constructed while searching for work to steal. If a monitored work

queue is modified then the transaction will abort and the scheduler can again search for work.

3.6. Channel Communication

Previous work has demonstrated how channel communication in CPAs can be implemented

efficiently using a single atomic operation per communication [13,23]. Therefore the more

heavy-weight RTM does not provide an immediate benefit to implementation of point-to-

point communication. However, there are often operations closely related to channel com-

munication which may benefit from transactions or from being encompassed in a transaction

that subsumes the communication.

In occam-π a shared channel has its reference copied when communicated. To support

this behaviour each shared channel (or channel bundle) has an associated reference count.

This reference count must be incremented when the shared channel is communicated. In prin-

ciple this update could be made into a transaction along with the update of the channel state.

While this would not represent any improvement in overhead, as only two atomic operations

are involved, it could be of significant benefit when applied to more complex memory and

object models than those used for occam-π .

3.7. Barriers

In order to support very large numbers of processes, priority and various forms of proces-

sor affinity, barriers within the occam-π run-time have a complex implementation and data

structure [24]. We speculate that operations on these structures or the structures themselves

could be simplified by use of a transactional model. Such changes would however need to

efficiently handle transactional failure and guarantee progress as contention on barriers is

common in many agent-based simulations.
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3.8. Choice

Choice or alternation is the area of CPAs in which RTM may have the most impact. Here we

briefly mention a few possible implementation starting points.

Brown has previously demonstrated the use of general and unrestricted software trans-

actional memory (STM) to implement generalised choice over events [18]. This would be

one possible route to use of RTM, although allowances would need to be made for the limited

size of transactions.

For implementing choice over barriers an oracle mechanism similar to that proposed

by Welch [25] could be adapted for transactional use. An oracle data structure common to

multiple threads would be transactionally manipulated. This strategy could be particularly

effective when compared to a lock-based implementation of the same data structure. This

implementation might also be simpler than generalised alternation as proposed by Lowe [26].

The existing wait-free implementation of alternation for occam-π by Ritson, Sampson

and Barnes [13] could be placed within a transaction. Consideration would need to be given to

the relationship between the number of channels in the alternation and maximum transaction

size. Additionally, the occam-π compiler does not guarantee that channels will not share

cache lines and thus false sharing of channel cache lines could cause excessive transaction

failures. If channels did occupy separate cache lines then in principle the transaction could

only conflict as many times as there are channels involved, as each conflict represents a

process committing to communication.

An alternative to the above strategy for occam-π would be to use a pre-enabling step as

proposed by Barnes [27]. A transaction is initiated and channels are tested to see if there are

waiting processes. This is done in priority order such that higher priority channels are added

to the read set of the transaction first. If a channel is ready then communication is initiated

with that channel, this can complete within the transaction. If no channels are ready then

standard enabling and alternation wait is initiated using existing algorithms. The effect of this

is that a channel being made ready by another process during the transaction will cause the

transaction to abort and be restarted. This accelerates alternation over sets of channels where

processes are already waiting. A lengthy enabling and disabling sequence is avoided and this

method is multi-processor safe unlike Barnes original method.

4. Conclusions and Future Work

In this preliminary exploration we have establish baseline performance indicators for Intel’s

Restricted Transactional Memory (RTM) extensions as implemented on their Haswell micro-

architecture. These performance indicators suggest that RTM is well suited for use on both

relatively small (three memory words) and relatively large (upto 16KiB) transactions. RTM

is available in the majority of 4th generation Core i7 and Core i5 processors. Thus will likely

be widely available in laptop, desktop and server computers within two to three years.

Going forward further experimental work is required to explore the application of RTM

to existing and emerging CPA run-time systems and languages. Additionally there are number

of RTM characteristics which require further exploration:

• Contention performance: our results only evaluated a very small class of contention

scenarios. A more intensive assessment is required. In particular, the observed bias to

particular processor cores should be further explored.

• Failure semantics: our results (section 2.4) suggest that either the processor may not

always accurately report the cause of a transactional abort, or that that there are other

factors in addition to L1 cache size which affect the maximum size of a transaction.
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• Atomic operations within transactions: instructions prefixed with LOCK are valid within

a transaction, but we have not assessed their performance. It may be that processor

implementations ignore the LOCK prefix, safely accelerating existing algorithms.

• Nested transactions: we have not tested nested transactions or established the nesting

limit supported by the Haswell micro-architecture.

• Performance counters: our measurements do not include data from processor perfor-

mance counters. These could be used to provide enhanced data on transactional failure

causes and the impact of transactions on L1 and L2 caches.

• Scheduler quantum: an obvious experiment would be to change the operating system

scheduling quantum and observe its impact on unknown transactional failures.

• Transactional spin-locks: our conflict based synchronisation mechanism as proposed

in section 3.2 should be benchmarked to establish its applicability to real-world code.
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