Citation for published version

DOI

Link to record in KAR

http://kar.kent.ac.uk/36028/

Document Version

Publisher pdf
High Agreement between Laboratory and Field Estimates of Critical Power in Cycling

Abstract
The purpose of this study was to investigate the level of agreement between laboratory-based estimates of critical power (CP) and results taken from a novel field test. Subjects were fourteen trained cyclists (age 40±7 yrs; body mass 70.2±6.5 kg; VO\(_{2}\)\(_{\text{max}}\) 3.8±0.5 L·min\(^{-1}\)). Laboratory-based CP was estimated from 3 constant work-rate tests at 80%, 100% and 105% of maximal aerobic power (MAP). Field-based CP was estimated from 3 all-out tests performed on an outdoor velodrome over fixed durations of 3, 7 and 12 min. Using the linear work limit (W\(_{\text{lim}}\)) vs. time limit (T\(_{\text{lim}}\)) relation for the estimation of CP1 values and the inverse time (1/t) vs. power (P) models for the estimation of CP2 values, field-based CP1 and CP2 values did not significantly differ from laboratory-based values (234±24.4 W vs. 234±25.5 W (CP1); P<0.001; limits of agreement [LOA], −10.98–10.8 W and 236±29.1 W vs. 235±24.1 W (CP2); P<0.001; [LOA], −13.88–17.3 W). Mean prediction errors for laboratory and field estimates were 2.2% (CP) and 27% (W). Data suggest that employing all-out field tests lasting 3, 7 and 12 min has potential utility in the estimation of CP.

Introduction
Performance tests are a key component in the training of athletes, providing markers of performance that can be used as an indicator of training status. One such marker is critical power (CP). In the hyperbolic relationship between power output and time to fatigue, CP represents the highest prolonged sustainable work rate, while the curvature constant (W) relates to a finite amount of energy which can be performed above CP [13,14,32]. Poole et al. [34] characterized the physiological response to exercise performed at CP, showing that CP represents the highest power output at which VO\(_{2}\) and blood lactate stabilize. Theoretically CP is sensitive to changes in performance capacity which are likely to occur frequently during athletic training, and therefore provides a useful indicator of training status.

In cycling CP is traditionally estimated in laboratory conditions by using time to exhaustion (TTE) trials at fixed intensities [8,25,35]. An estimation of maximal aerobic power (MAP) is required to calculate the intensity in question. The total number of trials required to estimate CP ranges between 3 and 5 [7,15,23,24,35,42], although it is usual for at least 3 trials to be performed, especially in non-elite athletes. Given this, laboratory estimation of CP can be time-consuming and potentially disruptive to an athlete’s training programme. While the estimation of CP in cycling has traditionally been lab-based, other sports have used field-based estimates of the related phenomenon of Critical Velocity (CV). In swimming, Wakayoshi [47] and Dekerle [9] suggested that the field estimation of CV in swimmers requires only 2 performances (200m and 400m). In running Kranenburg and Smith [28] estimated CV using all-out cycling tests on a treadmill that induced exhaustion within 3, 7 and 12 mins, and employed 3 set distances, each run on an indoor track, to estimate field CV. The authors reported that this field-based method of estimating CV proved to be robust, and that field CV was significantly related to 10 km race speed. Again in running, Galbraith et al. [16] developed a field test to determine critical speed also using set distances yielding finishing times between 2 and 12 min. Both studies used three trials of durations between 3 and 12 min, and used trained subjects. Hiyanne et al. [20] estimated CV using all-out cycling tests over distances of 2, 4 and 6 km resulting in testing times between 1 and 10 min.
Data suggest that laboratory and field tests might produce different findings. For example, Jobson et al. [27] reported higher power output values in the field than in the laboratory at given VO2 values, while Bertucci et al. [3] found an increased gross efficiency and cycling economy in the field when compared to the laboratory. While conditions in the laboratory are more controllable, providing greater reliability, field tests have the advantage of providing greater ecological validity [21,30]. Such validity might be a function of many factors. For example, field tests allow the athlete to perform in an environment consistent with that in which they usually compete, permitting previously acquired effort regulation skills to be employed, therefore reducing the need for habituation to laboratory protocols. Field tests are also relatively unconstrained by the mechanical limitations often imposed by laboratory equipment. Contrast for example cycling on a velodrome with riding a mechanically stable ergometer. In the former the bike moves laterally under the rider, and the rider is likely to have developed a handling technique that both controls for this and in doing so optimises the contribution to forward motion of various synergistic and stabilising components of the skeletal- and neuro-muscular systems. These components are less likely to be employed in all but the most ecologically valid laboratory settings. These factors are especially pertinent if the performance in question is measured over a pre-set time, as opposed to time to exhaustion \(^1\). The former better replicate the characteristics of most sports events, which take place over fixed distances or times and which rarely entail performance to the point of volitional exhaustion. A further benefit of field testing is that it widens access to the techniques and knowledge base of traditionally laboratory-based sports sciences, especially to athletes and coaches with low financial resources.

While all of the above advantages hold true for many settings, the major limitation with field testing is the lack of control over environmental variables. Even in relatively controlled environments such as indoor athletics tracks, velodromes and swimming pools, variations in temperature and humidity, and disturbances in air or water flow caused by other athletes can reduce reliability of measurement. This of course becomes a far more serious problem in outdoor road or track cycling where wind and temperature conditions can vary substantially within minutes. In modelling cycling performance in varying wind conditions, Swain [43] used a circuit course which contained equal-length segments of headwind and tailwind. The modelled time for trials was greater in wind conditions compared to no-wind conditions. These greater times resulted from the slowdown of the cyclist into headwinds, which were greater than time saved with tailwinds. Counter to this suggestion, Quod et al. [37] compared values of CP observed in the laboratory with those observed in competition and reported no significant differences between the 2 \((p = 0.09, \text{relative difference } \approx 0.8\%\).

\(^1\)While TTE protocols have frequently been used in sports research [10,48], they are often associated with low reliability. For example, using untrained subjects Krebs and Power [29] and McLellean et al. [31] reported coefficient of variation (CoV) values ranging between 5.2–56.0% and 2.8–31.0% respectively. Even using well-trained cyclists, Jeukendrup et al. [26] reported CoV values ranging between 17 and 40%. In contrast with TTE protocols, testing protocols that employ a fixed quantity of work, distance or time are reported to be more reliable [4,19,26,32,38,39]. However, we recognise that in conducting the present study we have based our field estimates of CP on laboratory estimates derived through TTE protocols.

To date, only 2 studies have employed field settings for the estimation of CV [20] and CP [37] in cycling. The purpose of the present study was to use a method similar to that of Kranenburg and Smith [28] to compare values of CP derived through laboratory-based TTE trials with values of CP derived through field tests using trials of set durations.

Methods

Subjects

12 male and 2 female cyclists were recruited from local cycling clubs (mean ± SD: age 40 ± 6 yrs; body mass 70.2 ± 6.5 kg; VO2 max 3.8 ± 0.5 L·min⁻¹; MAP 311 ± 32.5 W). All subjects had been involved in regular cycling training and competition for a minimum 2 years. The study was performed in accordance with the ethical standards of the International Journal of Sports Medicine [18] and approved by the University Ethics Committee. Prior to providing written informed consent and participation, cyclists were fully informed of the nature and risks of the study.

Protocol

The study used an intra-subject design. During the first laboratory session maximal oxygen consumption \((\text{VO2max})\) and MAP values were established. Subjects then performed 3 laboratory-based ergometer CP tests and 3 field CP tests all randomised (below). Subjects were not informed of their performance outcomes until the completion of the study. To minimise training effects each subject completed all 7 sessions within 21 days. A minimum of 24 h rest was required between individual tests [8,36].

A 24 speed road bike (Raleigh Airlite, UK), equipped with a PowerTap Elite wheel (CycleOps, Madison, USA) and a magnet for direct cadence measurement was used to measure work in both laboratory and field tests [17]. The saddle and handlebar were adjusted to suit each participant and settings were replicated exactly during subsequent tests. For laboratory testing the bicycle was attached to a Computracer (RacerMate, Seattle, USA). To ensure the most accurate power reading the PowerTap was zeroed prior to each test according to the manufacturer’s instructions. According to Bertucci et al. [2] the PowerTap provides a power output accuracy of 1.2 ± 1.3% and coefficient of variation values of 0.9–2.9%. The authors deemed it a valid and reliable measure of power output at submaximal intensities. The same road bike and PowerTap Elite wheel was used for all subjects and tests.

Maximal oxygen uptake test protocol

Following a standardised warm-up (5 min cycling at 100 W, followed by 3 min unloaded phase), subjects completed a progressive, incremental laboratory exercise test to exhaustion. Expired gases were collected continuously throughout the test using a MetaMax gas analyser (MetaMax 3B, Cortex Biophysik, Leipzig, Germany). Blood lactate was analysed using the Biosen C_line analyser (EKF Diagnostics, Barleben, Germany), and heart rate was continuously monitored using the PowerTap. The maximal test commenced at a work rate of 150 W for male and 120 W for female cyclists (females have lower absolute peak power values than males [44] and a maximal test should last somewhere between 8 and 10 min for moderately trained to trained subjects [48]). Thereafter, intensity increased at a step rate of 20 W·min⁻¹ using power values obtained from the PowerTap. Consistent
with previous CP research [46] cyclists’ preferred cadence was used throughout the test. The test was terminated when cadence dropped by more than 10rev·min⁻¹ for more than 10s. MAP was calculated as the highest mean power values (W) over the final 60s. VO₂\text{max} was calculated as the highest mean oxygen consumption over a 30-s period.

Laboratory-based critical power tests

Cyclists completed 3 tests to exhaustion on the equipment described above. All tests were performed on separate days at work rates equivalent to 80%, 100% and 105% of MAP. After a 5-min warm-up at a work rate of 100W, the test resistance was set and cyclists were instructed to maintain their preferred cadence for as long as possible. Heart rate (HR), P and cadence were logged continuously by the PowerTap. Consistent with previous CP research [46] strong verbal encouragement was provided throughout the tests. Tests were terminated when cadence dropped by 10 rev·min⁻¹ below preferred cadence for more than 10s. Capillary fingertip blood samples were collected at rest, immediately post-test and 3 min post-test and analysed for lactate concentration. Consistent with published guidelines [4] a post-test blood lactate concentration of ≥8 mmol·l⁻¹ or HR within 10 beats of age-predicted HR maximum was taken as an indicator for attainment of VO₂\text{max} and accepted as a successful test.

Field-based critical power tests

Subjects were tested over fixed times of 3, 7 and 12 min rather than over set distances [34] on an outdoor velodrome. Tests were completed on separate days and in randomised order. Tests started from a standing position, and subjects were instructed to ride around the velodrome as fast as possible in each test. Feedback regarding remaining time, as well as verbal encouragement, was provided throughout the tests. Capillary fingertip blood samples were taken at rest, immediately post-test and 3 min post-test. A post-test blood lactate (of ≥8 mmol·l⁻¹ or HR within 10 beats of age-predicted HR maximum was taken as an indicator for attainment of VO₂\text{max} and accepted as a successful all-out test [5].

Control of environmental factors

As suggested above, environmental conditions are a major concern in field testing. Consistent with the data reported by Swain [43], it was initially decided that field testing would not take place in wind speeds above 6.6m·s⁻¹, or in rain or otherwise wet conditions. The latter scenario was relatively straightforward to address. However, wind speed so frequently exceeded the 6.6m·s⁻¹ level that cancelling tests on the basis of this criterion would have extended data collection beyond the 21-day criterion and might have introduced other sources of error (e.g., training/de-training effects). Cancellation on the basis of wind speed – which would have led to several tests being abandoned once underway – would likely have led to subjects dropping out of the study. Therefore testing went ahead irrespective of measured wind speed, and this issue and decision are discussed further below.

Calculation of critical power and W*

Linear regression was used to provide an estimate of CP and W* from the results of the laboratory and the field trials using the work-time model [P=W*(CP·t)] are consequently termed CP1 and W*1 and using the power-1/time model [P=(W/t)+CP] are consequently termed CP2 and W*2.

Statistical methods

The distribution of each variable was examined with the Shapiro-Wilk’s normality test. Pearson product moment correlation analysis was used to provide an indication of the strength of any relationship between field- and laboratory-derived CP1 and CP2 and W*1 and W*2. Agreement between laboratory and field CP1 and CP2 and W*1 and W*2 was assessed using a paired samples t-test and Limits of Agreement (LOA; [1,6]). Paired samples t-tests were conducted to identify any differences in laboratory and field based CP TTE trials, in maximal lactate concentration, and maximal HR for each equivalent test (80% and 12 min, 100% and 7 min, 105% and 3 min) and for differences between relative percentages of MAP achieved during the laboratory- and field-based CP1 and CP2 tests. Additionally, linear regression was used to estimate error associated with predicting field CP and W* values [22]. Statistical significance was accepted at P<0.05. Results are reported as mean±SD unless otherwise stated.

Results

No significant differences were observed between field-based and laboratory-based CP1 (234±24.4W vs. 234±25.5W respectively; t(13)=0.97, p=0.392) and CP2 (235±24.1W vs. 236±29.1W respectively; t(13)=0.81, p=0.435). Data recorded in the 2 environments were highly correlated (r=0.976; P<0.05 (CP1) and r=0.973; P<0.05 (CP2)). Mean difference between laboratory- and field-based values for CP1 was 0.17±7.2W (95% CI, −3.14−16.61; limits of agreement [LOA], −10.98−10.8W) and for CP2 it was 2±7.72W (95% CI, −2.28−25.35; [LOA], −13.88−17.3W) (Fig. 1). Significant differences were observed between laboratory- and field-based W*1 (12.2±2.7kW vs. 17.3±5.4kW, respectively, t(13)=−3.98, p=0.02) and W*2 (11.6±2.7kW vs. 16.5±4.8kW, respectively; t(13)=−3.93, p=0.02). The mean difference in W*1 was −5.1±4.8kW (95% CI, −7.86−9.14; [LOA], −14.5−4.3kW) and in W*2 it was −4.9±4.7kW (95% CI, −7.58−8.94; [LOA], −14.0−4.2kW) (Fig. 2). The predication error associated with the laboratory-based and field-based estimates of CP/W* was 1.9% (CP1), 2.5% (CP2) and for W* it was 26.3% (W*1) and 27.6% (W*2). Analysis of [blood] lactate (mmol·l⁻¹) revealed significantly higher concentrations for field-based testing when comparing the 100% TTE trial vs. the 7min test (t(13)=−2.12, p=0.035) and the 105% TTE trial vs the 3min test (t(13)=2.36, p=0.009), while the 80% TTE trial vs. the 12min test did not result in a statistically significant but low p-value (0.054) (Table 1). Table 2 illustrates the differences in mean initial 10s and 30s power values for field and laboratory-based tests. Table 3 shows mean durations (±SD) and mean distances (±SD) for laboratory and field tests respectively. Ferguson et al. [11,12] in their CP research added another TTE trial if individual SE values for a CP estimate fell above or below that of 3 W. Interestingly, individual SE values of ±3 W in the present study fit well for the linear work-time model of laboratory and field-based CP estimates but lie above (−8 W) of the recommended value in the power-1/time-power model.

Discussion

A mean difference between laboratory- and field-derived estimates of CP of 0.2±5.7 W, suggests that field testing might provide
a valid estimate of CP in cycling. Results support those of Quod et al. [37], Kransenburg and Smith [28], and Galbraith et al. [16]. Using a magnitude-based analysis, Paton and Hopkins [33] identified that a change of 1.7% in performance impacts on the chances of an elite road time trial cyclist winning an event. With an average SEE value for laboratory-based CP1/2 vs. field-based CP 1/2 of 1.9% and 2.5% respectively, the discrepancy between the 2 measurement methods in the present study is deemed to be acceptable, considering that a group of elite cyclists would have likely produced lower biological variability. While in designing the study, the research team were optimistic that the field-based estimation of CP held some promise, differences between laboratory-based and field-based values of CP were lower than anticipated, especially given that the velodrome

Table 1 Group maximal [blood] lactate (mmol·l⁻¹) results, p-values and confidence intervals of the difference for each test.

<table>
<thead>
<tr>
<th></th>
<th>105 % MAP</th>
<th>3 min</th>
<th>P-value</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactate (mmol·l⁻¹)</td>
<td>12.26 (± 2.29)</td>
<td>14.22 (± 2.98)</td>
<td>0.009*</td>
<td>−3.34</td>
<td>−0.58</td>
</tr>
<tr>
<td></td>
<td>100 % MAP</td>
<td>7 min</td>
<td>P-value</td>
<td>Lower</td>
<td>Upper</td>
</tr>
<tr>
<td>Lactate (mmol·l⁻¹)</td>
<td>13.55 (± 1.99)</td>
<td>15.19 (± 2.75)</td>
<td>0.035*</td>
<td>−3.14</td>
<td>−0.14</td>
</tr>
<tr>
<td></td>
<td>80 % MAP</td>
<td>12 min</td>
<td>P-value</td>
<td>Lower</td>
<td>Upper</td>
</tr>
<tr>
<td>Lactate (mmol·l⁻¹)</td>
<td>13.84 (± 3.30)</td>
<td>14.95 (± 3.09)</td>
<td>0.054</td>
<td>−2.25</td>
<td>−0.021</td>
</tr>
</tbody>
</table>

Values are mean (± SD)

* = significantly different from the mean 105% constant work load lactate values (P<0.05)

b = significantly different from the mean 100% constant work load test (P<0.05)
used for field testing provided no shelter and wind speeds above the 6 m·s⁻¹ criterion suggested by Swain [43] were frequently observed. Given the linear function between work completed and time, any deviation of this linearity due to unequal headwind and tailwind speeds would have been identified in the individual CP1/CP2 field-based plots (the mean r-value for field-based CP1 was 0.99±0.001 and for field-based CP2 it was 0.99±0.008). Therefore our data do not appear to support those of Swain, and individual SE values reported above appear to support this position. Of course, given the relatively small number of subjects there is the possibility that the differences are due to chance. Therefore results will need to be tested on different, and ideally larger, samples.

Another aspect of the data worthy of discussion concerns the significant differences between laboratory and field-based estimates of W1 and W2. Field-based estimates for W1 were on average 5.09 kJ and for W2 4.89 kJ higher than the respective laboratory values. This is accompanied by overall higher blood [lactate] responses for laboratory values. This is accompanied by overall higher blood [lactate] responses for laboratory values. However, the data presented above are from a small sample, and the authors advise a replication of the study, ideally with a larger subject group.

Acknowledgements

The authors would like to thank all subjects who participated in this study. No financial support was received.

References

<table>
<thead>
<tr>
<th>Field Test</th>
<th>Initial 10 s P (W)</th>
<th>Laboratory Test</th>
<th>Initial 10 s P (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test 1</td>
<td>12 min = 532 ± 184 W</td>
<td>Test 1</td>
<td>80 % TTE = 179 ± 38 W</td>
</tr>
<tr>
<td>Test 2</td>
<td>7 min = 624 ± 133 W</td>
<td>Test 2</td>
<td>100 % TTE = 174 ± 38 W</td>
</tr>
<tr>
<td>Test 3</td>
<td>3 min = 633 ± 148 W</td>
<td>Test 3</td>
<td>105 % TTE = 204 ± 34 W</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field Test</th>
<th>Initial 30 s P (W)</th>
<th>Laboratory Test</th>
<th>Initial 30 s P (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test 1</td>
<td>12 min = 451 ± 132 W</td>
<td>Test 1</td>
<td>80 % TTE = 212 ± 45 W</td>
</tr>
<tr>
<td>Test 2</td>
<td>7 min = 496 ± 108 W</td>
<td>Test 2</td>
<td>100 % TTE = 230 ± 40 W</td>
</tr>
<tr>
<td>Test 3</td>
<td>3 min = 524 ± 95 W</td>
<td>Test 3</td>
<td>105 % TTE = 279 ± 45 W</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab trials</th>
<th>Mean time elapsed seconds (minutes:seconds)</th>
<th>SD time elapsed seconds (minutes:seconds)</th>
<th>Mean distance covered (metres)</th>
<th>SD distance covered (metres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 % MAP</td>
<td>725.1 (12:05.1)</td>
<td>141.1 (02:21.1)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>100 % MAP</td>
<td>239.4 (03:59.4)</td>
<td>48.0 (00:48.0)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>105 % MAP</td>
<td>152.2 (02:32.2)</td>
<td>29.8 (00:29.8)</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field trials</th>
<th>Mean time elapsed seconds (minutes:seconds)</th>
<th>SD time elapsed seconds (minutes:seconds)</th>
<th>Mean distance covered (metres)</th>
<th>SD distance covered (metres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 min (180 s)</td>
<td>–</td>
<td>–</td>
<td>1857.7</td>
<td>156.8</td>
</tr>
<tr>
<td>7 min (420 s)</td>
<td>–</td>
<td>–</td>
<td>4118.4</td>
<td>232.6</td>
</tr>
<tr>
<td>12 min (720 s)</td>
<td>–</td>
<td>–</td>
<td>7030.4</td>
<td>260.9</td>
</tr>
</tbody>
</table>
14 Fukuba Whipp BJ. A metabolic limit on the ability to make up for lost time in endurance events. J Appl Physiol 1999; 87: 853–861