Kent Academic Repository

Full text document (pdf)

Citation for published version

DOI

P2-599

Link to record in KAR

http://kar.kent.ac.uk/35140/

Document Version

Presentation

Copyright & reuse
Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research
The version in the Kent Academic Repository may differ from the final published version. Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the published version of record.

Enquiries
For any further enquiries regarding the licence status of this document, please contact: researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down information provided at http://kar.kent.ac.uk/contact.html
The use of equine influenza pseudotyping for serological screening

Simon Scott1*, Eleonora Molesti1, Nigel Temperton1, Francesca Ferrara2, Eva Böttcher-Friebertshäuser1, & Janet Dalý3

1Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, UK
2Institute of Virology, Philipps University, Marburg, Germany
3School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonnington, UK

INTRODUCTION

The primary protective immune response against equine influenza virus infection is generation of neutralising antibodies against the surface glycoproteins haemagglutinin (HA) and neuraminidase (NA). As for human influenza, measurement of anti-HA antibodies is important in field studies and experimental vaccination and challenge studies to determine the effectiveness and efficacy, respectively, of vaccines.

The haemagglutination inhibition (HI) test is useful for virus characterisation and diagnostic purposes as it is a strain-specific assay. However, high levels of inter-lab variation are observed, as a result of which protective antibody levels are ill-defined, ranging from titres of 8 to 128 [1, 2]. Furthermore, the test only measures inhibition of HA binding to cells. The single radia1 haemolysis (SRH) assay measures complement-mediated haemolysis induced by influenza antibody-antigen complexes. SRH can be standardised using reference sera [2, 3] and a clear relationship has been demonstrated between pre-challenge antibody levels measured by SRH and protection afforded in challenge studies [1, 2]. However, the SRH assay has disadvantages: it is relatively cumbersome to perform; requires the use of sheep blood and guinea pig complement; and resulting zones of haemolysis have to be measured either using specialised equipment or by hand using digital callipers.

Measurement of virus neutralising (VN) antibodies against equine influenza is rarely performed; VN assays in eggs are time-consuming and awkward and the lack of cytopathic effect in cells requires a two-step assay in which reduction in virus replication is measured by detection of viral protein by ELISA or other assays.

The use of equine influenza pseudotyped lentiviruses may provide a solution to the requirement for a reliable and reproducible assay to assess the level of neutralising antibodies to equine influenza in vaccinated or naturally-infected horses. A number of avian and human influenza virus subtypes have been pseudotyped and used in such serological assays [2, 4–6]. A pseudotype virus has the ‘core’ of one virus (e.g. a retrovirus) and outer ‘envelope’ of another (e.g. the HA of influenza virus; Figure 1). The core virus has deletions in the genome making it replication-deficient, and harbours a transgene (e.g. luciferase). The envelope contains specific proteins from the study virus, which permit entry into susceptible target cells. During cell transduction, the pseudotype virus (PV) genome becomes integrated in the cell genome and expresses the reporter gene. Thus the number of transduced cells can be quantified and the subsequent inhibitory effects of antibodies in serum and pseudotype entry determined [2, 4–6].

AIM

To develop a pseudotype virus neutralisation assay (PVNA) for the measurement of neutralising antibodies to H3 subtype equine influenza viruses and compare with a standard serological assay (SRH).

MATERIALS AND METHODS

Viruses and sera

Stocks of equine influenza A/Sussex/89 virus were grown in 10-day-old embryonated hens’ eggs. Serum samples surplus to diagnostic requirements were obtained from donkeys recently inoculated (>80 days prior) with vaccines containing the American-lineage H3N8 strain A/equine/Newmarket/1/93, the European-lineage H3N8 strain A/equine/Newmarket/2/93 in addition to A/equine/Newmarket/56 (H7N7). The positive control was a hyper-immunised experimental pony vaccinated with a number of H3N8 strains over two decades (A/equine/Suffolk/89, A/equine/Newmarket/1/93, A/equine/Newmarket/2/93, A/equine/Ohio/03). Negative control horse sera were confirmed by SRH (kind gift of Dr Ann Cullinane, Irish Equine Centre)

Generation of H3 pseudotyped virus

Viral RNA was extracted from allantoic fluid using the Qiaamp viral RNA extraction kit (Qiagen). The full HA gene was amplified by RT-PCR using specific primers (Invitrogen), and cloned into the pl.18 expression plasmid. Influenza pseudotyped lentivirus particles expressing a luciferase reporter gene were generated using four-plasmid transfection (Fugene6; Promega) into HEK293T cells [3]: pl.18-HA, pk.9-HIV-gag-pol, pCSFW-Luc and a pCAGGS-TMPRSS2 pseudotyped plasmid to effect cleavage of the HA (Figure 1).

Figure 1: Schematic of four-plasmid system for generating equine influenza HA pseudotyped virus

Table 1: Equine influenza H3 subtype-specific antibodies in 20 equine sera as measured by pseudotype virus neutralization assay (PVNA) and single radial haemolysis (SRH).

<table>
<thead>
<tr>
<th>Serum sample</th>
<th>PVNA (IC50)</th>
<th>SRH (mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1124</td>
<td>76</td>
</tr>
<tr>
<td>2</td>
<td>1860</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>4121</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>4627</td>
<td>83</td>
</tr>
<tr>
<td>5</td>
<td>4670</td>
<td>116</td>
</tr>
<tr>
<td>6</td>
<td>8336</td>
<td>118</td>
</tr>
<tr>
<td>7</td>
<td>6308</td>
<td>156</td>
</tr>
<tr>
<td>8</td>
<td>7500</td>
<td>100</td>
</tr>
<tr>
<td>9</td>
<td>7637</td>
<td>140</td>
</tr>
<tr>
<td>10</td>
<td>7863</td>
<td>61</td>
</tr>
<tr>
<td>11</td>
<td>8066</td>
<td>118</td>
</tr>
<tr>
<td>12</td>
<td>9179</td>
<td>118</td>
</tr>
<tr>
<td>13</td>
<td>9837</td>
<td>106</td>
</tr>
<tr>
<td>14</td>
<td>10523</td>
<td>58</td>
</tr>
<tr>
<td>15</td>
<td>11768</td>
<td>147</td>
</tr>
<tr>
<td>16</td>
<td>13237</td>
<td>199</td>
</tr>
<tr>
<td>17</td>
<td>17938</td>
<td>170</td>
</tr>
<tr>
<td>18</td>
<td>23843</td>
<td>207</td>
</tr>
<tr>
<td>19</td>
<td>35425</td>
<td>156</td>
</tr>
<tr>
<td>20</td>
<td>46617</td>
<td>181</td>
</tr>
</tbody>
</table>

Positive control: 90±1 146

Negative control 1: 90±5

Negative control 2: 90±5

REFERENCES

SERLOGICAL ASSAYS

Pseudotype virus neutralization assays (PVNAs) were performed using a standard protocol with HEK293T target cells and Bright-Glo (Promega) for luciferase measurement [4]. Serum samples were tested in duplicate.

The SRH assay was performed as described in the OIE (World Organisation for Animal Health) Terrestrial Manual using A/equine/Sussex/89 (H3N8) as antigen

RESULTS

An equine influenza pseudotype virus was successfully generated and used to assay 20 post-vaccination equine serum samples (Table 1). The PVNA assay performed well in that a strong correlation was found with the SRH assay (r=0.85, p=0.0002; Pearson analysis using GraphPad).

CONCLUSIONS & FUTURE WORK

- TMPRSS2 protease necessary for HA cleavage in PV production
- The PVNA shows promise for the measurement of neutralising antibody responses. Assay correlation was good (r=65%, p=0.0002; Pearson analysis using GraphPad)
- PVNA and SRH measure different types of antibody responses with differing sensitivity
- Further development of the assay will include:
 - Assessment of sensitivity/specificity and inter/intra-laboratory variability
 - Definition of a protective titre (sera obtained from vaccination and challenge studies)
- For further details of current study see [7] below

ACKNOWLEDGEMENT & CORRESPONDENCE

Dr Scott wishes to thank the ISIRV Options viii committee for sponsoring his registration
Simon Scott, Tel: +44 (0)1634-202957 Email: simon.scott@kent.ac.uk
Website: www.viralpseudotypeunit.info
Twitter: @ViralPseudotype