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COHOMOLOGICAL STRATIFICATION OF DIAGRAM ALGEBRASROBERT HARTMANN, ANNE HENKE, STEFFEN KOENIG, ROWENA PAGET
1. IntrodutionIn 1901 Issai Shur proved a fundamental result, whih in modern language reads asfollows: Let k = C be the �eld of omplex numbers, n and r integers, Σr the symmetrigroup on r letters, G = GLn(k) the general linear group of invertible n by n matries,and Polr the ategory of polynomial representations of G that are homogeneous ofdegree r over C. Then Polr is equivalent to the subategory of CΣr-mod of moduleshaving omposition fators indexed by partitions of r into not more than n parts. Inpartiular, if n ≥ r then Polr is equivalent to CΣr-mod.What happens if we replae k by an algebraially losed �eld of prime harateristi? Inthis ase, Shur's result appears to be ompletely wrong. Not only is Shur's funtor faraway from being an equivalene. Even worse, the ategory Polr always has �nite globaldimension, while kΣr-mod and its relevant subategories usually have ohomology inin�nitely many degrees. Thus no exat ategorial equivalene is possible. However,modular representation theory suggests onsidering a more sophistiated setup whentrying to extend Shur's theorem. Indeed, the simple representations in harateristizero of either G or Σr have integral versions. These latties an be redued to primeharateristi, providing (in general non-simple) modular analogues of the harateristizero simples. Well-known analogues are the Weyl modules ∆(λ) in the ase of thegeneral linear group, and the ell modules S(λ) in the ase of the symmetri group(here taken to be the dual Speht modules); in either ase, the indies λ are partitions.Hene the modular redution proess suggests onsidering a relative version of Shur'sresult: F(∆) ≃ F(S) - an equivalene between a ategory of G-modules with a Weyl�ltration and a ategory of kΣr-modules with a ell �ltration. This, however, is stillwrong, as shown by small examples suh as Σr with r = 2, 3 in harateristi two orthree.It ame as a major surprise when Hemmer and Nakano [13℄ reently proved, using re-sults on ohomology of symmetri groups, that in prime harateristi Shur's theoremis almost relatively true. That is, the above relative version F(∆) ≃ F(S) of Shur'sresult is true provided one exludes harateristi two or three. In other words, theategory of ell �ltered representations of symmetri groups behaves (mostly) like a sub-ategory of a highest weight ategory in algebrai Lie theory. In more tehnial terms,this means there is a partial order on the indies λ suh that Hom(S(λ), S(µ)) 6= 0 im-plies λ ≤ µ and Ext1(S(λ), S(µ)) 6= 0 even implies λ < µ, whih is rather unexpetedfrom the point of view of representations of �nite groups. The result by Hemmer and1



2 ROBERT HARTMANN, ANNE HENKE, STEFFEN KOENIG, ROWENA PAGETNakano exhibits a new phenomenon, whih is however not isolated. Indeed a reent re-sult [12℄ by Hartmann and Paget establishes the same phenomenon for Brauer algebras� with a similar set of ases to be exluded.We are going to establish the Hemmer-Nakano phenomenon for a large lass of algebras.We mostly work with an axiomatially de�ned lass of algebras, see De�nition 2.1. Themain feature of this de�nition is, however, that it inludes many known lasses of so-alled diagram algebras, whih have been used extensively in knot theory, C∗-algebras,mathematial physis or representation theory for various reasons. In partiular, wewill over Brauer algebras (thus reproving results of [12℄), Birman-Wenzl-Murakami(BMW) algebras and partition algebras. In all ases we will �nd almost relatively trueversions of Shur's theorem, see Theorem 10.2 and Corollary 10.3.While diagram algebras are usually de�ned in ombinatorial terms, the main teh-niques employed here are of a ategorial and ohomologial nature. In partiular, wewill provide strati�ations of derived module ategories of the algebras we study, seeProposition 7.2 and Theorem 7.3. We will relate these strati�ations to the ellularstrutures of our algebras, whih in our examples are so-alled iterated in�ations ofvarious symmetri groups or their Heke algebras. On a tehnial level, we atuallywill �nd two kinds of strati�ations. One of them is on the level of derived ategories,and this strati�ation is a new feature of our algebras, not visible for group algebras ofsymmetri groups. The seond (relative) strati�ation is the analogue of the Hemmer-Nakano result.Apart from the results mentioned above, the methods employed also yield a variety ofnew results on the diagram algebras studied, and the methods and results are likelyto arry over to other diagram algebras too. On a numerial level we will identifymany unknown deomposition numbers of the algebras studied with known or un-known deomposition numbers of symmetri groups, see Proposition 6.2. Moreover,ell �ltration multipliities are well-de�ned, see Theorem 10.2 (b). On a struturallevel, we get omparisons of ohomology whih for instane allow us to apply knownresults of the ohomology of symmetri groups to diagram algebras. Moreover, thereare several vanishing results for extensions between ell modules, see Setions 7 and 8.Furthermore, we will verify the �nitisti dimension onjeture for the algebras studied,whih is known to imply various other onjetures, see Corollary 7.6. Algebras suh asthe Brauer algebra our in representation theory of sympleti or orthogonal groups.Thus, all of these omparisons, on a numerial or strutural level, have the feature ofrelating types B or C with type A (symmetri groups).In a wider ontext, the results of this artile also have the following features: Thealgebras we are going to study are ellular and usually not quasi-hereditary, thus theydo not fall into the ustomary setup of algebrai Lie theory. However, our methodsyield the existene of Shur algebras for our algebras, and these Shur algebras have theusual features known for Shur algebras of lassial groups or bloks of the Bernstein-Gelfand-Gelfand ategory of a semisimple omplex Lie algebra. In partiular, thesenew � and yet to be studied � Shur algebras are quasi-hereditary, that is, their moduleategories are highest weight ategories. These new Shur algebras are in Shur-Weylduality with the diagram algebras studied in this artile, see Theorem 13.1. We also



COHOMOLOGICAL STRATIFICATION OF DIAGRAM ALGEBRAS 3an keep various features of symmetri groups suh as the existene of Young modules,whih in the ase of the symmetri groups are diret summands of permutation modules.Results suh as Theorem 13.1 an be seen as providing a hidden algebrai Lie theoryfor the diagram algebras we are studying.As mentioned, the diagram algebras we are studying are ellular algebras, but usuallynot quasi-hereditary. Cellular algebras keep some of the numerial features of quasi-hereditary algebras, while strutural features are usually lost when passing from quasi-hereditary to ellular algebras. Another generalization of quasi-hereditary algebras,strati�ed algebras, has been de�ned and studied with the aim of keeping struturalproperties suh as strati�ations of derived ategories. All three lasses of algebrasare de�ned by the existene of ertain hains of ideals. Formally, a ell ideal that isstratifying must be heredity and a stratifying ideal that is ell must be heredity, too.That is, in a formal sense, the intersetion of ellular and strati�ed is quasi-hereditary.However, the diagram algebras studied here, and the axiomatially de�ned lass of el-lularly strati�ed algebras we are going to study, ombine ellular and strati�ed featuresin a new way. This new generalization of quasi-hereditary algebras appears to preserveor to extend naturally the fundamental properties of quasi-hereditary algebras, and toonnet the two theories of ellular and strati�ed algebras and their rather di�erentsets of methods.This artile is organized as follows: In Setion 2 we give an axiomati de�nition, phrasedin ombinatorial terms, of the abstrat lass of algebras to be studied, and then we verifythat three lasses of examples �t into this setup: Brauer algebras, BMW algebras andpartition algebras. One feature of our algebra A is to have a hain of ideals whosesubquotients (layers) are related to other algebras B, whih in the examples are groupalgebras of symmetri groups or deformations of those. Setion 3 sets up the ategorialtehnology to ompare the module ategories of A and B. Three ruial ring theoretialand homologial onditions are identi�ed and veri�ed, whih provide the basis of themain results. In partiular, this struture gives an indution funtor whose propertiesare studied in Setion 4. In Setion 5 we show that our algebras an be haraterisedby these strutural properties, this yields an alternative de�niton. In Setion 6, werelate some deomposition numbers of the algebra A with deomposition numbers ofthe smaller algebras B. Setion 7 investigates the whole hain of ideals, whih turns outto yield a strati�ation of the derived ategory of A. Setion 8 strengthens these resultsby proving further vanishing results for homomorphism and extension spaes. Setion9 gives a detailed example. Finally, Setions 10 to 13 use the results of Setions 3, 7and 8 to ahieve the main results, summarized in Theorems 10.2 and 13.1, inludingthe Hemmer-Nakano phenomenon, the existene of Shur algebras, and Shur-Weylduality.Aknowledgement. The authors would like to thank the referee for all their verydetailed omments.



4 ROBERT HARTMANN, ANNE HENKE, STEFFEN KOENIG, ROWENA PAGET2. Cellularly stratified algebras � definition and examplesThe main objets studied in this artile are ertain ellular algebras. Cellular algebraswere introdued in [9℄ and, subsequently, an equivalent de�nition was given in [17℄. Itwas shown in [18℄ that every ellular algebra an be onstruted by iterated in�ations ofsmaller ellular algebras. In this setion we provide an axiomati de�nition of the lassof ellular algebras to be studied in this artile, so alled ellularly strati�ed algebras.We then give three lasses of diagram algebras whih are ellularly strati�ed.2.1. Cellularly strati�ed algebras. Let A be an algebra (with identity) whih anbe realized as an iterated in�ation of ellular algebras Bl along vetor spaes Vl for
l = 1, . . . , n. By [18, Setion 3.1℄, this implies that as a vetor spae

A =
n⊕

l=1

Bl ⊗ Vl ⊗ Vl,(1)and A is ellular with a hain of two-sided ideals {0} = J0 ⊆ J1 ⊆ . . . ⊆ Jn = A, whihan be re�ned to a ell hain, and eah subquotient Jl/Jl−1 equals Bl ⊗ Vl ⊗ Vl as analgebra without unit. The involution i of A, an anti-automorphism with i2 = id, isde�ned through the involutions jl of the ellular algebras Bl where
i(b⊗ u⊗ v) = jl(b)⊗ v ⊗ u(2)for any b ∈ Bl and u, v ∈ Vl. Reall that the multipliation rule of a layer Bl ⊗ Vl ⊗ Vlis ditated by the axioms of in�ation and given by

(b⊗ x⊗ y) · (b′ ⊗ x′ ⊗ y′) = (bϕ(y, x′)b′ ⊗ x⊗ y′) + lower terms,(3)for b, b′ ∈ Bl, x, x′, y, y′ ∈ V , where ϕ is the bilinear form oming with the in�ationdata. Here lower terms refers to elements in lower layers Bh ⊗ Vh ⊗ Vh for h < l. Formore details on in�ations see [18℄ and also the examples below. Let 1Bl
be the unitelement of the algebra Bl. We de�ne:De�nition 2.1. A �nite dimensional assoiative algebra A over a �eld k is alled el-lularly strati�ed with strati�ation data (B1, V1, . . . , Bn, Vn) if and only if the followingonditions are satis�ed:(C) The algebra A is an iterated in�ation of ellular algebras Bl along vetor spaes

Vl for l = 1, . . . , n.(E) For eah l = 1, . . . , n there exist non-zero elements ul, vl ∈ Vl suh that
el := 1Bl

⊗ ul ⊗ vlis an idempotent.(I) If l > m, then elem = em = emel.Condition (C) implies that A is ellular, see [18, Proposition 3.5℄. The name `strati�ed'will be justi�ed in Setion 7, when we will show that ellularly strati�ed algebras arestrati�ed in the sense of [3℄.Remark. (a) By the de�nition of an iterated in�ation (see assumption 3.4 in [18℄),the top layer satis�es Vn = k, and hene en = 1. Again by the de�nition of iteratedin�ation, the algebra Bn is a quotient algebra of A.



COHOMOLOGICAL STRATIFICATION OF DIAGRAM ALGEBRAS 5(b) Let u, v ∈ Vl be any elements suh that 1⊗ u⊗ v is an idempotent. We laim thatthen ϕ(v, u) = 1 = ϕ(u, v): By the multipliation in A, see Equation (3), we have
(1⊗ u⊗ v)(1⊗ u⊗ v) = ϕ(v, u) ⊗ u⊗ v + lower terms.(4)Sine 1⊗u⊗v is an idempotent, it follows that there are no lower terms and ϕ(v, u) = 1.Using the involution, we have 1Bl

= jl(1Bl
) and hene i(1Bl

⊗ u ⊗ v) = 1Bl
⊗ v ⊗ u.Doing the same alulation as in (4) for i(1Bl

⊗ u⊗ v), it also follows that ϕ(u, v) = 1.Lemma 2.2. Let A be ellularly strati�ed and 1 ≤ l ≤ n. The following holds:(1) The ideal Jl is generated by el, that is, Jl = AelA.(2) The algebra A/Jl is ellularly strati�ed.Proof. Assume we are in the lowest layer, that is l = 1. Then for any x, y ∈ V1 and
b ∈ B1 we have

(b⊗ x⊗ v1)(1⊗ u1 ⊗ v1)(1 ⊗ u1 ⊗ y) = (b⊗ x⊗ v1)(1⊗ u1 ⊗ y) = b⊗ x⊗ yas there are no lower terms and as ϕ(v1, u1) = 1 by the above remark. Hene the lowestlayer J1 = Ae1A is generated by e1. Assume next that the ideal Jl−1 is generated bythe element el−1. Sine el−1el = el−1 by assumption (I), all elements in Jl−1 an begenerated by el. Moreover, in layer l we have for any c ∈ Bl and x, y ∈ Vl:
(c⊗ x⊗ vl)(1⊗ ul ⊗ vl)(1 ⊗ ul ⊗ y) = c⊗ x⊗ y + lower terms.By the above, the lower terms an be generated by el. Hene c⊗x⊗y an be generatedby el, and the �rst laim follows. The seond laim follows from the de�nition ofellularly strati�ed.Lemma 2.3. Let A be ellularly strati�ed. With the set-up as in De�nition 2.1, thereis an algebra isomorphism Bl ≃ elAel/elJl−1el with 1Bl

mapped to el.Proof. Sine the index l is �xed, it will be omitted. We will denote Jl−1 by J ′.As algebras, eAe/eJ ′e ≃ (e + J ′)(A/J ′)(e + J ′) ≃ (e + J ′)(J/J ′)(e + J ′). Usingthe multipliation in A, we see that (e + J ′)(J/J ′)(e + J ′) is spanned by elements
b ⊗ u ⊗ v + J ′, where b ∈ B. Using the fat that ϕ(v, u) = 1, all suh elements lie in
(e + J ′)(J/J ′)(e + J ′) sine

b⊗ u⊗ v + J ′ = (1⊗ u⊗ v + J ′)(b⊗ u⊗ v + J ′)(1⊗ u⊗ v + J ′).The map B → (e + J ′)(J/J ′)(e + J ′) given by b 7→ b⊗ u⊗ v + J ′ is then bijetive. Itis a homomorphism sine
(b⊗ u⊗ v + J ′)(b′ ⊗ u⊗ v + J ′) = bϕ(v, u)b′ ⊗ u⊗ v + J ′ = bb′ ⊗ u⊗ v + J ′.Next we will give examples of ellularly strati�ed algebras. All examples given are`diagram algebras', meaning that they have a basis whih an be represented by ertaindiagrams. Instead of writing down the elements ul, vl in the following, we will give theidempotents el. Note that the labelling of the ideal hains is di�erent from the one inDe�nition 2.1.



6 ROBERT HARTMANN, ANNE HENKE, STEFFEN KOENIG, ROWENA PAGET2.2. Brauer algebras. Reall that for r ∈ N and δ ∈ k, the Brauer algebra Bk(r, δ)has k-basis the set of diagrams of the following form: a diagram has 2r verties arrangedin two rows of r verties, and r edges suh that eah vertex is inident to preisely oneedge. To multiply two diagrams, the diagrams are onatenated and any losed loopsappearing are removed. If c losed loops are removed from the onatenation to giveanother diagram d then the produt is de�ned to be δc ·d. More details and an exampleof the multipliation an be found, for example, in [21℄.Graham and Lehrer [9℄ showed that Bk(r, δ) is a ellular algebra, with the involution igiven by re�eting diagrams in the horizontal line utting diagrams into an upper anda lower half. In [21℄, a di�erent proof of the ellularity has been given, by showing thatBrauer algebras are iterated in�ations of group algebras of symmetri groups. Let usreall some details of this. We de�ne Jl to be the subspae of Bk(r, δ) with basis alldiagrams with at most l `through strings', that is, edges joining a vertex in the top rowof the diagram to a vertex in the bottom row. Then Jl is a two-sided ideal of Bk(r, δ)and we obtain a �ltration of the Brauer algebra:
0 ⊆ Jt ⊆ Jt+2 ⊆ . . . ⊆ Jr−2 ⊆ Jr = Bk(r, δ)where t is 0 or 1 depending on whether r is even or odd. The subquotient Jl/Jl−2 isisomorphi to an in�ation kΣl ⊗ Vl ⊗ Vl of kΣl along a vetor spae Vl as given in [21,Lemma 5.3℄. Here we de�ne J0/J−2 = J0 and J1/J−1 = J1. This realizes Bk(r, δ) asan iterated in�ation of group algebras of symmetri groups, see [21, Theorem 5.6℄. Asa free k�module

Bk(r, δ) = kΣr ⊕ (kΣr−2 ⊗ Vr−2 ⊗ Vr−2)⊕ (kΣr−4 ⊗ Vr−4 ⊗ Vr−4)⊕ . . . ,and the iterated in�ation starts with kΣr, in�ates it along kΣr−2 ⊗ Vr−2 ⊗ Vr−2 andso on, ending with an in�ation of k = kΣ1 or k = kΣ0 as bottom layer, depending onwhether r is odd or even. We shall see that Bk(r, δ) is ellularly strati�ed in the aseswhere δ 6= 0 or δ = 0 and r is odd. By [21, Theorem 5.6℄ assumption (C) is satis�ed,sine group algebras of symmetri groups are ellular [9, (1.2)℄. For δ 6= 0 and for
l = r, r − 2, . . . , t, we hoose el to be

el =
1

δ
r−l
2

·
• · · · • • • · · · • •

• · · · • • • · · · • •where this diagram has l through strings. If δ = 0 and r is odd then we de�ne el to bethe following diagram with l through strings:
el =

• · · · • •

XXXXXXXXXXXXXXXXXXXXXXXXX • • · · · • •

• · · · • • • · · · • • •In eah ase the element el is an idempotent of Bk(r, δ), so (E) holds. It easily is hekedthat (I) is satis�ed. Observe that the ondition δ 6= 0 when r is even is neessary sineotherwise the non-zero ideal J0 is nilpotent, and hene not generated by an idempotent.We have proved:Proposition 2.4. Let k be any �eld, r an integer and δ ∈ k. If r is even, suppose
δ 6= 0. Then the Brauer algebra Bk(r, δ) is ellularly strati�ed.



COHOMOLOGICAL STRATIFICATION OF DIAGRAM ALGEBRAS 7Note that elBk(r, δ)el ⊆ Bk(r, δ) is isomorphi to Bk(l, δ) and has a subalgebra isomor-phi to kΣl.Using the results of Hemmer and Nakano [13℄, it has been shown in [12℄ that, in theabove ases, the ell modules of Bk(r, δ) form a standard system (see Setion 10) if andonly if the harateristi of k is neither two nor three, and it was then dedued that�ltration multipliities are well-de�ned for Bk(r, δ)-modules with a ell �ltration ([12,Thm 2℄). Results on deomposition numbers were also obtained in [12, Prop 2 and 6℄.We will derive these statements again from the general set-up in this artile.2.3. Birman-Murakami-Wenzl algebras (BMW algebras). The BMW algebrasare deformations of Brauer algebras. Xi [25℄ showed that BMW algebras are ellular,and moreover they are iterated in�ations of Heke algebras H of symmetri groups ([25,Setion 3℄). For r ∈ N, λ, λ−1, q, q−1, δ ∈ k satisfying λ−1 − λ = (q − q−1)(δ − 1), theBMW algebra
BMWr := BMWk(r, λ, q − q−1, δ)an be de�ned by generators and relations (see [25℄). But instead we use the equiv-alent de�nition whih displays BMWr as a diagram algebra, with a basis of ertain

r-tangles, subjet to ertain relations. Given a Brauer diagram d on 2r verties, onean de�ne an r-tangle Td by a rule whih spei�es whih strings of d should rossover and whih ross under. For details we refer the reader to [25, Setion 2.2℄. Then
{Td : d a Brauer diagram} is a k-basis for BMWr. Xi goes on to de�ne Jl to be the
k-module generated by elements Td where d is a Brauer diagram with at most l throughstrings. Then:

0 ⊆ Jt ⊆ · · · ⊆ Jr−2 ⊆ Jr = BMWris a hain of two-sided ideals where t is 1 or 0 depending on whether r is odd or even,and
Jl/Jl−2 ≃ Hl(q

−2)⊗ Vl ⊗ Vlfor some vetor spae Vl (see [25℄, 3.5), and where Hl(q
−2) is a Heke algebra. Thus

BMWr satis�es assumption (C). If δ 6= 0 we de�ne for eah l = r, r − 2, . . . theidempotent el by
el =

1

δ
r−l
2

·
• · · · • • • · · · • •

• · · · • • • · · · • •where the diagram is an r-tangle with l vertial lines. If δ = 0 and r is odd we de�nefor eah l = r, r − 2, . . . , 1 the idempotent el by
el =

• · · · • •

VVVVVVVVVVVVVVVVVVV • • · · · • •

• · · · • • • · · · • • •Then it is lear from the de�nitions that elBMWrel ≃ BMWl. We �nd that all theassumptions are satis�ed, and we obtain that BMWr is ellularly strati�ed.Proposition 2.5. Let k be any �eld, r an integer and δ ∈ k. If r is even, suppose
δ 6= 0. Then the BMW algebra BMWk(r, λ, q − q−1, δ) is ellularly strati�ed.



8 ROBERT HARTMANN, ANNE HENKE, STEFFEN KOENIG, ROWENA PAGETNote that here Bl ≃ Hl(q
−2) is in general not a subalgebra of elBMWrel � in ontrastto the situation for Brauer algebras.2.4. Partition algebras. The third family of examples are the partition algebras, in-trodued by Martin [22℄. Like Brauer algebras, partition algebras are iterated in�ationsof group algebras of symmetri groups (see Xi [24℄). For r ∈ N and δ ∈ k, the partitionalgebra Pk(r, δ) has k-basis the set of all partitions of 2r points. Suh a partition maybe drawn as a diagram with 2r points arranged in two equal rows, and edges betweenpoints so that a pair of points is joined by a path of edges if and only if they lie inthe same blok of the partition. Note that di�erent diagrams an represent the samepartition. Multipliation is given by onatenation of diagrams, and any blok of theonatenated diagram that does not ontain a point from either the top or bottom rowis replaed by δ. This is independent of the diagrams hosen to represent the partitions.For more details see [6, 22℄. Xi de�nes Jl to be the subspae of Pk(r, δ) spanned by allpartitions whose diagrams have at most l bloks ontaining a point from both top andbottom rows. In this way he obtains a hain of two-sided ideals:

0 ( J0 ⊆ J1 ⊆ · · · ⊆ Jr−1 ⊆ Jr = Pk(r, δ)whih realizes Pk(r, δ) as an iterated in�ation, in partiular:
Jl/Jl−1 ≃ kΣl ⊗ Vl ⊗ Vlfor some vetor spae Vl, see [24, Setion 4℄ for details. If δ = 0 then Pk(r, δ) is notellularly strati�ed sine J2

0 = 0, and so ondition (E) annot be satis�ed. However if
δ 6= 0 we hoose idempotents:

e0 = δ−1 ·
• • · · · · · · • • •

• • · · · · · · • • •and for l ∈ {1, 2, . . . , r}:
el =

• · · · • • · · · · · · •

• · · · • • · · · · · · •with l vertial edges. We readily see that Pk(r, δ) is ellularly strati�ed. Note that thealgebra elPk(r, δ)el is isomorphi to Pk(l, δ) of whih kΣl is a subalgebra.Proposition 2.6. Let k be any �eld, r an integer and δ ∈ k. Suppose δ 6= 0. Then thepartition algebra Pk(r, δ) is ellularly strati�ed.3. Corner split quotients for ellularly stratified algebrasWe assume the set-up as in De�nition 2.1. In this setion, we will set up funtors
Gl : Bl − mod → A − mod, following the `split pairs' approah developed in [4℄. Asbakground, we �rst reall some de�nitions. Let C and D be two module ategories.Let F,G be additive funtors with F : C → D and G : D → C.De�nition 3.1. The pair of funtors (F,G) is a split pair of funtors if the omposition
F ◦ G is an autoequivalene of the ategory D. If the two funtors are exat then wesay (F,G) is an exat split pair of funtors.



COHOMOLOGICAL STRATIFICATION OF DIAGRAM ALGEBRAS 9It is shown in [4℄ that all exat split pairs are ompositions of so-alled orner splitquotients with Morita equivalenes. Next we reall the de�nition of a orner splitquotient. Let C and D be rings. We all D a split quotient of C if D is a subringof C, via an embedding ε sending the unit of D to that of C, and also there exists asurjetive homomorphism π : C ։ D, suh that the omposition π ◦ ε is the identityon D. The homomorphisms π and ε respetively indue two exat funtors
F = DC ⊗C − and G = CD ⊗D −between the ategories C-mod and D-mod, namely restrition and in�ation. The om-position F ◦G is the identity on D-mod, and hene (F,G) is a split pair of funtors.De�nition 3.2. Let C be a ring, e an idempotent, and D a split quotient of eCeviewed as a subring of eCe. Then we all D a orner split quotient of C with respet to

e if there is a left C- and right eCe-module S, whih is projetive as a right D-modulevia the embedding of D into eCe, and whih satis�es eS ≃ D as left D-modules.Note that every D-module is an eCe-module via the quotient map. Thus, in thede�nition, we may equivalently require S just to be a right D-module. If D is a ornersplit quotient of C with respet to e, then the funtors
F = res◦eC⊗C− : C-mod→ eCe-mod→ D-mod, G = S⊗D− : D-mod→ C-modform an exat split pair (see [4, Lemma 3.2℄).De�nition 3.3. Let A be ellularly strati�ed. For eah l = 1, . . . , n, de�ne Sl =
Ael ⊗elAel

Bl. We will refer to the funtors Gl := Sl ⊗elAel
− : Bl-mod → A-mod asindution funtors.Note for eah Bl-module X, we have Bl ⊗Bl

X ≃ Bl ⊗elAel
X, where elAel ats on Xand Bl by the quotient map elAel → Bl.Lemma 3.4. With the notation as above, Sl is an A-Bl-bimodule, and as suh isisomorphi to (A/Jl−1)el, whih gets its right Bl-module struture via the isomorphismin Lemma 2.3. In partiular, the left A-module struture on Sl fators through thequotient map A→ A/Jl−1.Proof. Reall that by Lemma 2.3 and Lemma 2.2, Bl ≃ el(A/Jl−1)el and Jl−1 =

Ael−1A with el−1el = el−1 = elel−1. Hene
Jl−1el ⊗elAel

Bl = Ael(el−1elAel)⊗elAel
Bl(5)

= Ael ⊗elAel
el−1(elAel)(el(A/Jl−1)el)

= Ael ⊗elAel
el−1(elAel/elJl−1el) = 0.This implies the following isomorphism of A-Bl-bimodules:

Sl ≃ (A/Jl−1)el⊗elAel
Bl ≃ (A/Jl−1)el⊗el(A/Jl−1)el

Bl ≃ (A/Jl−1)el⊗Bl
Bl ≃ (A/Jl−1)el.

�Proposition 3.5. Let A be ellularly strati�ed. For eah l = 1, . . . , n, the right Bl-module Sl is free of rank dimVl. The algebra Bl is a orner split quotient of A/Jl−1with respet to el, realized by Sl. Hene there is an exat split pair situation relating
A/Jl−1 and Bl via the A/Jl−1-Bl-bimodule Sl.



10 ROBERT HARTMANN, ANNE HENKE, STEFFEN KOENIG, ROWENA PAGETProof. Assume l = 1, that is we onsider the lowest layer of A. For onveniene wewill omit the subindies 1, that is, we use B = B1, V = V1, u = u1, v = v1 and e = e1.Then we have an isomorphism B → eAe = B ⊗ u⊗ v, mapping b ∈ B to b⊗ u⊗ v, inpartiular mapping the unit of B to e. So B is a split quotient of eAe. Let S denotethe A − eAe-bimodule Ae. Certainly as left B-modules, we have eS ≃ B. Thus toshow that B is a orner split quotient of A, it remains to prove that S is a projetiveright B-module. We will do so by showing that S is free as a right B-module.As a right B-module, S = Ae is isomorphi to B⊗V ⊗v, with the right ation of b ∈ Bgiven by multipliation with b ⊗ u ⊗ v. Take a basis {xi} of V . Then for eah basiselement xi we have
(c⊗ xi ⊗ v) · (b⊗ u⊗ v) = (c · b⊗ xi ⊗ v).This says that B⊗xi⊗v is isomorphi as a right B-module to the regular representation

BB, and so S = B ⊗ V ⊗ v is a diret sum of dim(V ) many opies of BB . This showsthe laim for l = 1.Now, for l = 1, . . . , n, A/Jl−1 is ellularly strati�ed by Lemma 2.2. Hene we obtainfrom the above that Bl is a orner split quotient of A/Jl−1 with respet to el realizedby the A/Jl−1 −Bl-bimodule Sl = (A/Jl−1)el.Remark. (a) We remarked in Setion 2.1 that for a ellularly strati�ed algebra A thequotient A/Jl is again ellularly strati�ed. The indution funtors assoiated to one�xed layer of A and to the orresponding layer of A/Jl are the same. More preisely,for l = 1 and the idempotent e2 ∈ J2 we have the assoiated indution funtor G2 :
B2-mod → A-mod. Similarly, for the ellularly strati�ed quotient A/J1, we have �without shifting the labels � a funtor Ḡ2 : B2-mod → A/J1-mod. The funtor G2 isgiven by tensoring with Ae2 ⊗e2Ae2

B2. By the proof of Lemma 3.4, this is the sameas tensoring with (Ae2/J1e2)⊗e2Ae2/e2J1e2
B2. Hene the following diagram ommutes,and we will no longer distinguish G2 and Ḡ2 in our notation:

B2-mod Ḡ2
//

G2 &&NNNNNNNNNNN
A/J1-modin�ation

��

A-mod(6)
(b) If A is ellularly strati�ed and, in addition, Bl is a subalgebra of elAel then thealgebra Bl is a orner split quotient of A with respet to el, realized by the bimodule
Ael ⊗elAel

Bl. This may be seen by slightly adapting the proof of Proposition 3.5.Hene, in this ase, there is an exat split pair situation relating A and Bl. This is thease in the examples of the Brauer algebra and the partition algebra. In partiular,this gives a funtor Fl = elA ⊗A − : A-mod → Bl-mod. However, in general, Bl isnot neessarily a orner split quotient of A, sine our axioms do not require Bl to be asubalgebra of elAel. Indeed, this does not hold in the example of the BMW algebra.



COHOMOLOGICAL STRATIFICATION OF DIAGRAM ALGEBRAS 114. Properties of the indution funtor GNext we ollet some �rst properties of the indution funtor Gl. We will see throughoutthis paper that Gl transfers the struture of the small ellular algebras Bl to the in�atedalgebra A. In this setion we will see in partiular that the funtor Gl sends ell modulesto ell modules, and eah ell module of the ellularly strati�ed algebra A is obtainedin this way. In the ase of A being a Brauer algebra, the funtor Gl de�ned here doespreisely the same as the ombinatorial indution proess used in [12, Setion 5℄ toprodue ell modules for Brauer algebras from Speht modules of symmetri groups.Continuing the notation of the previous setion, we omit subindies.Proposition 4.1. The indution funtor G has the following properties:(1) The funtor G is exat.(2) Let X be any B-module. Then G(X) = X ⊗k V as a vetor spae.Proof. Exatness of the funtor G is implied by S being projetive, see Proposition3.5. Next, let X be a left B-module. Using Lemma 2.3, X is an eAe-module by in�ationand moreover eJ ′e ·X = 0. Then:
G(X) = Ae⊗eAe B ⊗B X

= Ae⊗eAe X

= (Ae/J ′e)⊗eAe X by Equation (5)
= (Ae/J ′e)⊗B X

≃ (BdimV )⊗B X by Proposition 3.5,
≃ Xdim V ≃ X ⊗k Vas vetor spaes.Let us �x some notation here that will be valid throughout the artile. Any ellularalgebra A omes equipped with a set of ell modules ΘA(λ) with λ in some indexset ΛA. Then a omplete set of simple A-modules is given by the modules LA(λ) for

λ ∈ Λsimple
A ⊆ ΛA. If there is no doubt about the algebra onerned, we will just write

Θ(λ) or L(λ).The next result assumes A to be ellularly strati�ed and then explains how the indutionfuntor G relates the given ellular strutures of A and Bl (for eah l).Proposition 4.2. Suppose A is ellularly strati�ed. Then the funtor G sends the ellmodules of B to ell modules of A, and eah ell module of A is obtained in this way.In partiular, taking disjoint sets ΛBl
to label the sets of ell modules for the ellularalgebras Bl, the labels of the ell modules of A are the elements of ΛA =

⋃n
l=1 ΛBl

.Proof. (a) The ell �ltration of the layer J/J ′ is produed from that of B, see thedesription of the in�ation tehnique in [18℄. More preisely: By analogy with thefuntor G = S ⊗B − : B-mod → A-mod, we de�ne the funtor G′ = − ⊗B S′ :mod-B → mod-A with S′ = B ⊗eAe eA. Then G and G′ are exat by Proposition 4.1.



12 ROBERT HARTMANN, ANNE HENKE, STEFFEN KOENIG, ROWENA PAGETLet {0} = I0 ⊆ I1 ⊆ . . . ⊆ Is = B be a ell hain of B. This means there exist left
B/It−1-modules ΘB(t) suh that the subquotients are given by the B/It−1-bimodule

It/It−1 ≃ ΘB(t)⊗ i(ΘB(t))where i is the involution of the ellular algebra B. We tensor from the left with S andfrom the right with S′ and get the hain of A-A-bimodules
S ⊗B I0 ⊗B S′ ⊆ S ⊗B I1 ⊗B S′ ⊆ . . . ⊆ S ⊗B Is ⊗B S′ = S ⊗B B ⊗B S′ ≃ J/J ′where the last isomorphism is explained in (i) below. The subquotients of this idealhain are given by the A/J ′-bimodules

S ⊗B (It/It−1)⊗B S′ ≃ (S ⊗B ΘB(t))⊗k i(S ⊗B ΘB(t))(7)whih we show in (ii) below. This provides �ltrations for all layers Bl ⊗ Vl ⊗ Vl with
1 ≤ l ≤ n, and hene this provides a ell hain of A. This implies that the ell modulesof A are given by G(ΘB(t)).(i) By Equation (3), we have (J/J ′)e = B⊗V ⊗ v, and similarly, e(J/J ′) = B⊗u⊗V .By Equation (5), S ⊗B B ⊗B S′ ≃ (J/J ′)e⊗B e(J/J ′). De�ne

ϕ : (J/J ′)e⊗B e(J/J ′)→ J/J ′to be the map given by multipliation. This map is surjetive sine J = JeJ . Moreover,
(J/J ′)e and e(J/J ′), as right and left B-modules respetively, are free of rank dim V ,see the proof of Proposition 3.5. Hene

dim((J/J ′)e⊗B e(J/J ′)) = dim(B(dim V )2) = dimB ⊗ V ⊗ V = dimJ/J ′,and so ϕ is an isomorphism. This shows that S ⊗B B ⊗B S′ ≃ J/J ′ = B ⊗ V ⊗ V .(ii) We show that the subquotients have the form laimed in Equation (7). Reallthat the involution i of the algebra A operates as follows in the layer B ⊗ V ⊗ V :
i(b⊗ x⊗ y) = i(b) ⊗ y ⊗ x where i(b) denotes the operation of the involution of B onelement b ∈ B. Let d⊗ x⊗ v ∈ ΘB(t)⊗ V ⊗ v. Then i(d⊗ x⊗ v) = i(d)⊗ v ⊗ x, andhene

i(ΘB(t)⊗ V ⊗ v) = i(ΘB(t))⊗ v ⊗ V ≃ i(ΘB(t))⊗ u⊗ V,as right modules over A/J ′.We �nish this setion by omparing homomorphism spaes.Proposition 4.3. For all B-modules X and Y , HomB(X,Y ) = HomA(GX,GY ) where
G is the funtor S ⊗B − for S = Ae ⊗eAe B. In partiular, GX is indeomposable ifand only if X is so.Proof. Indeed, using the adjointness of the Hom funtor and the tensor funtor, wehave

HomA(GX,GY ) = HomA(Ae⊗eAe B ⊗B X,Ae ⊗eAe B ⊗B Y )

= HomA(Ae⊗eAe X,Ae⊗eAe Y )

≃ HomeAe(X,HomA(Ae,Ae ⊗eAe Y ))

= HomeAe(X, eAe ⊗eAe Y )

= HomeAe(X,Y ) = HomB(X,Y ).



COHOMOLOGICAL STRATIFICATION OF DIAGRAM ALGEBRAS 13Here the last equality holds as X and Y are B-modules, and eAe-modules via in�ation.Remark. Split pairs do not in general produe equalities of Ext1-groups: For instane,assume A is not semisimple, and B is its maximal semisimple quotient whih oursin A as subalgebra. Then A and B form a split pair. The indution funtor G in thissituation is just in�ation. Choose simple B-modules S, T suh that there exist a non-split extension between G(S) and G(T ). Then 0 = Ext1B(S, T ) 6= Ext1A(G(S), G(T )).Thus in order to ompare Ext1-groups, we need to use some stronger properties, forexample the speial hoie of S and of the idempotent e. Indeed, in this ase we thenan identify extension groups in all degrees, see Setion 7.5. A strutural haraterization of ellularly stratified algebrasDiagram algebras are de�ned in a ombinatorial way. Their ellular struture has typ-ially been identi�ed by writing them as iterated in�ations of known ellular algebras.The de�nition of a ellularly strati�ed algebra naturally enhanes the de�nition of aniterated in�ation. In this setion we disuss how the ombinatorial setup of De�ni-tion 2.1 is re�eted by strutural properties. We de�ne a set of properties, (G), (J)and (F). The struture theory of ellularly strati�ed algebras desribed in this artileis really based on this new set of properties. We will see in the �rst setion, thatunder the (mild) assumption of the involution i �xing the given idempotents, the newset of properties haraterizes ellularly strati�ed algebras (see Proposition 5.1). Thisovers all generi ases (that is δ 6= 0) among the examples given in Setion 2. Thisharaterization is then improved to full generality in the following two setions (seeProposition 5.2), inluding the non-generi ases, modifying properties (J) and (F).5.1. Generi ase. We de�ne the following strutural properties:(G) Let A be a �nite dimensional algebra over a �eld k with an involutory anti-isomorphism i : A→ A. Suppose there is a set of idempotents {el : l = 1, . . . , n}for some natural number n, suh that en = 1 and elem = em = emel if l > m.(J) For eah l = 1, . . . , n, let Jl := AelA and Bl := elAel/elJl−1el. Suppose el =
i(el), and the algebra Bl is ellular with respet to the involution i. Moreover,suppose that, as a vetor spae, Jl has a deomposition Jl = Jl−1⊕Xl for somesubspae Xl = i(Xl) for l = 2, . . . , n.(F) For eah l = 1, . . . , n, de�ne the A-Bl-bimodule Sl := Ael/Jl−1el. Assume thatfor eah l = 1, . . . , n, module Sl is free of �nite rank over Bl and multipliationindues an isomorphism of A-A-bimodules

Ael/Jl−1el ⊗Bl
elA/elJl−1 ≃ AelA/Ael−1A = Jl/Jl−1.Proposition 5.1. (a) Assume that A is a ellularly strati�ed algebra with i(el) = elfor l = 1, . . . , n. Then A satis�es properties (G), (J) and (F).(b) Suppose algebra A satis�es properties (G), (J) and (F). Then A is ellularlystrati�ed with respet to the given algebras Bl and idempotents el.



14 ROBERT HARTMANN, ANNE HENKE, STEFFEN KOENIG, ROWENA PAGETProof. (a) Let A be ellularly strati�ed and assume moreover that the involution i �xesall idempotents el. The general assumption (G) is satis�ed by de�nition. Assume that
I is an ideal in the ell hain of A. Then, by the de�nition of ellularity, there existsa vetor spae Y suh that A = I ⊕ Y with i(Y ) = Y . By Lemma 2.2, all Jl our asideals in a ell hain of A. By Lemma 2.3, it follows that assumption (J) is satis�ed.By Proposition 3.5, Sl is a free right Bl-module of �nite rank, and the isomorphism inproperty (F) has been shown in the proof of Proposition 4.2, part (i).(b) Assume the strutural properties (G), (J) and (F) are satis�ed. We now onstruta ell hain of A as in the proof of Proposition 4.2. By property (F), Sl = elA/elJl−1is free as right Bl-module, and sine i(el) = el, this implies i(Sl) = elA/elJl−1 is freeas left Bl-module. Fix a ell hain {0} = I0 ⊆ I1 ⊆ . . . ⊆ Is = Bl = B. Denote by
ΘB(t) the ell modules of B. Then we obtain for all t the isomorphism

Sl ⊗B (It/It−1)⊗B i(Sl) ≃ (Sl ⊗B ΘB(t))⊗k i(Sl ⊗B ΘB(t)).By (F), multipliation provides an isomorphism
Sl ⊗B B ⊗B i(Sl) = Ael/Jl−1el ⊗B B ⊗B elA/elJl−1 ≃ AelA/Ael−1A = Jl/Jl−1.Hene this onstruts a ell hain of A. We next see that A is an iterated in�ation ofthe algebras Bl: By (F), we an write

Sl =

m⊕

j=1

vjBl = Vl ⊗k Blas right Bl-module where Vl is an m-dimensional vetor spae. Applying i gives asimilar deomposition,
i(Sl) =

m⊕

j=1

Bli(vj) = Bl ⊗k Vl.Hene Sl ⊗B B ⊗B i(S) = Vl ⊗k B ⊗k Vl and so A is an iterated in�ation of ellularalgebras Bl along Vl. The ondition el = 1Bl
⊗ ul ⊗ vl is implied by (F) as follows. Wean hoose v1 = el, then under the isomorphism

Jl/Jl−1 ≃ Sl ⊗Bl
Bl ⊗Bl

i(Sl)the element el is mapped to el⊗ 1Bl
⊗ el = v1⊗ 1Bl

⊗ v1 as required. So A is ellularlystrati�ed. �Hene the above strutural assumptions may be taken as an alternative, slightly lessgeneral, starting point of the theory of ellularly strati�ed algebras, avoiding the expliituse of iterated in�ations. The examples given in Setion 2 show that the assumption
i(el) = el is not satis�ed in some exeptional ases, namely where the parameter δ = 0.We disuss these ases in the following subsetions.5.2. Modifying property (J). In the examples in Setion 2, assumption (J) is almostalways satis�ed. In the exeptional ases when the parameter δ = 0, the idempotents
el are not �xed under the involution i. These ases �t into the following setup:Let Λ be an algebra with idempotent e and involutory anti-automorphism i suh that eand i(e) are equivalent. The equivalene of idempotents implies that there are elements
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p, q ∈ Λ suh that e = pq and i(e) = qp. Applying i also gives i(e) = i(q)i(p) and
e = i(p)i(q). Assume that p is �xed under i. Then there is an algebra isomorphism
ϕ : i(e)i(Λ)i(e) → ei(Λ)e = eΛe, sending x to pxq, that is i(e)i(a)i(e) = qpi(a)qp to
pqpi(a)qpq = epi(a)qe. The inverse of ϕ multiplies by q from the left and by p fromthe right. Now de�ne j := ϕ ◦ (i|eΛe) : eΛe → eΛe. Then j is an anti-automorphismwith

j2(x) = ϕ(i(pi(x)q)) = ϕ(i(q)xi(p)) = pi(q)xi(p)q = i(p)i(q)xpq = exe = xfor any x ∈ eΛe. Hene j is an involution on eΛe. We now iterate this onstrution.Assume that A is a �nite dimensional algebra over k satisfying property (G) suhthat the idempotents el and i(el) are equivalent for all l. Let Jl−1 = Ael−1A, de�ne
Λ = A/Jl−1 and de�ne e to be the image of el in Λ. The equivalene of the idempotents
el−1 and i(el−1) in A implies that the ideal Jl−1 is �xed under i. So i is de�ned on
Λ. Then e and i(e) are equivalent in Λ. This in turn implies that there are elements
p, q ∈ Λ suh that e = pq and i(e) = qp. Now we assume that p is �xed under i, and
Bl = eΛe is ellular with respet to jl = j. We modify property (J) aordingly:(J′) For eah l = 1, . . . , n, let Jl := AelA and Bl := elAel/elJl−1el. Suppose, foreah l = 1, . . . , n, that there exist elements pl, ql ∈ A suh that el = plql,

i(el) = qlpl modulo Jl−1, and that i(pl) = pl, and that Bl is ellular withrespet to jl = ϕ ◦ (i|Bl
). Moreover, suppose that, as a vetor spae, Jl hasa deomposition Jl = Jl−1 ⊕ Xl for some subspae Xl whih is �xed by theinvolution i, for l = 2, . . . , n.Note (J) implies (J′) by hoosing p = q = e, but the two properties are not equivalent.Remark. Suppose we are given elements p, q ∈ A as above with i(p) = p and e = pqand i(e) = qp modulo lower layers. Calulating modulo lower layers,

i(qpq) = i(pq)i(q) = qpi(q) = qi(p)i(q) = qi(qp) = qpq.Assume in addition that qpq = ce for some salar c ∈ k×. Then ce = qpq = i(qpq) =
i(ce) = ci(e) modulo lower layers, and hene e = i(e) modulo lower layers.Examples. We return to the examples in Setion 2 and illustrate the modi�ed property(J′) in the exeptional ases. Consider the Brauer algebra with parameter δ = 0 when
r is odd. Then

e =
• · · · • •

XXXXXXXXXXXXXXXXXXXXXXXXX • • · · · • •

• · · · • • • · · · • • •
,and we an hoose

p =
• · · · • • • • · · · • •

• · · · • • • • · · · • •and
q =

• · · · • • • · · · • • •

• · · · • • • · · · • • •
.



16 ROBERT HARTMANN, ANNE HENKE, STEFFEN KOENIG, ROWENA PAGETThese hoies are not unique, alternatively one an take p as above and
q =

• · · · • •

VVVVVVVVVVVVVVVVVV •

NNNNNNNNNN · · · •

pppppppppp •

hhhhhhhhhhhhhhhhhh

• · · · • • • · · · • •
.The orresponding ase of the BMW algebras is handled in preisely the same way.So all exeptional ases from the examples in Setion 2 are overed by the modi�edproperty (J′).Remark. In general, if A is ellularly strati�ed, then by property (E), el = 1Bl

⊗ul⊗vl isan idempotent and hene by the remark after De�nition 2.1, ϕ(vl, ul) = 1 = ϕ(ul, vl).De�ne p = 1 ⊗ ul ⊗ ul and q = 1 ⊗ vl ⊗ vl. Then by the multipliation, given inEquation (3), pq = e+ lower terms and qp = i(e)+ lower terms. Moreover, by Equation(2), i(p) = p and i(q) = q. So, modulo lower layers, we have e = pq, i(e) = qp with
p = i(p) and q = i(q). Hene ellularly strati�ed algebras satisfy property (J′) as well.5.3. Modifying property (F). Assuming properties (G), (F) and (J′) for an algebra
A will not be su�ient for A to be ellularly strati�ed with respet to the hosenidempotents el, as we will see in an example at the end of this hapter. The onlyobstale is to show that the idempotents are of the form el = 1 ⊗ ul ⊗ vl for some
ul, vl ∈ Vl. We will now desribe how to strengthen property (F) to really obtain anequivalene in this general situation:(F′) For eah l = 1, . . . , n, de�ne the A-Bl-bimodule Sl := Ael/Jl−1el. Assume that

Sl is free of �nite rank over Bl for eah l = 1, . . . , n, and there exists a diretsum deomposition of Sl in whih el and qlel generate free summands suhthat qlel = cel for some c ∈ k× if the summands oinide. Assume moreovermultipliation indues an isomorphism of A-A-bimodules
Ael/Jl−1el ⊗Bl

elA/elJl−1 ≃ AelA/Ael−1A = Jl/Jl−1.Note that (F′) implies (F), and in ase el = i(el), we an hoose el = pl = ql =
1B ⊗ ul ⊗ ul for some ul ∈ Vl, so (F′) is just the same as (F). Now we an state thestrutural haraterization of ellularly strati�ed algebras in the general ase:Proposition 5.2. An algebra A is ellularly strati�ed if and only if it satis�es properties(G), (J′) and (F′) as stated above.Proof. (a) Let A be ellularly strati�ed. Then (G) holds. Assume el = 1Bl

⊗ ul ⊗ vl,and de�ne ql = 1Bl
⊗ vl ⊗ vl and pl = 1Bl

⊗ ul ⊗ ul. Then by the remark at the end ofSetion 5.2, property (J′) holds. Moreover, alulating modulo lower layers,
ql(elAel/elJl−1el) = ql · (Bl ⊗ ul ⊗ vl) = Bl ⊗ vl ⊗ vl,whih is a free diret summand of Bl⊗Vl⊗vl. We distinguish two ases. If vl = λul forsome salar λ, then Bl⊗ul⊗vl = Bl⊗vl⊗vl with ql = λel, and hene qlel = λel for somesalar λ. If the vetors {ul, vl} are linearly independent, then Bl⊗ul⊗vl∩Bl⊗vl⊗vl = 0.Hene property (F′) holds.



COHOMOLOGICAL STRATIFICATION OF DIAGRAM ALGEBRAS 17(b) We assume that the algebra A satis�es properties (G), (J′) and (F′). For simpliity,we will restrit ourselves here to the lowest layer and suppress indies. Thus J = AeA,
B = eAe and the idempotent e is of the form e = pq with i(e) = qp, where i(p) = p.For preparation, note that eA = pi(e)A and epAqe = eAe. For example sine pA ⊆ A,we obtain pqpA ⊆ pqA = eA. Similarly, qA ⊆ A implies that eA = pqpqA ⊆ pqpA.Hene we an write eA = pi(e)A. By a similar argument we obtain epAqe = eAe.By property (F′) we an write

S = Ae =
m⊕

j=1

vj(eAe)as right eAe-modules for some v1, . . . , vm ∈ Ae. Applying i, we get a orrespondingdeomposition
i(e)A = i(Ae) =

m⊕

j=1

i(e)Ai(e)i(vj )as left i(e)Ai(e)-modules. Note that pi(e)Ai(e) = epAqep = eAep. Sine eA = pi(e)A,we obtain the following deomposition of eA as a left eAe-module:
eA =

m⊕

j=1

pi(e)Ai(e)i(vj ) =

m⊕

j=1

eAe · pi(vj),and so eA is a free left eAe-module with basis pi(vj) for j = 1, . . . ,m. It follows from(F′), that we have an isomorphism
J = AeA ≃ Ae⊗eAe eAe⊗eAe eA

≃

m⊕

j=1

vj · eAe⊗eAe eAe⊗eAe

m⊕

j=1

eAe · pi(vj)

≃ V ⊗B B ⊗B Vwhere V is a vetor spae of dimension m. Hene A is an iterated in�ation of ellularalgebras Bl. The above isomorphism sends aeb to ae ⊗ e ⊗ eb. In partiular, e ∈ J ismapped to e⊗e⊗e = e⊗1B⊗e. By (F′), we an hoose the basis elements vj suh that
v1 = e. Reall the remark after the de�nition of property (J′). If qe = ce for some salar
c ∈ k×, then e = i(e), and hene e ∈ J is mapped to v1⊗ 1B ⊗ v1. If e and qe generatedi�erent free diret summands of Ae, then hoose v2 = qe = qpq = i(qpq) = i(v2).Then e ∈ J is mapped to v1⊗ 1B ⊗ pi(v2). Hene e is always of the required form, and
A is indeed ellularly strati�ed.5.4. Examples. We end this hapter by disussing the above properties on two exam-ples. In the �rst example, we onsider an algebra with a set of idempotents satisfyingproperties (G), (J′) and (F) where property (J) and (F′) do not hold. This algebra isnot ellularly strati�ed with respet to the hosen strati�ation data. This shows thatproperty (F′) is neessary. However the algebra onsidered is ellularly strati�ed withrespet to a di�erently hosen strati�ation data. In the seond example we give analgebra that is ellularly strati�ed with respet to a partiular iterated in�ation, butnot ellularly strati�ed with respet to isomorphi in�ation data.



18 ROBERT HARTMANN, ANNE HENKE, STEFFEN KOENIG, ROWENA PAGET(1) We onsider the two-dimensional algebra B with basis a, b, where a2 = a, b2 = band ab = ba = 0, whih is ellular with respet to the identity involution i. We take
V to be a three-dimensional vetor spae, with basis v1, v2, v3, and set J to be thein�ation B ⊗ V ⊗ V with multipliation given by:

(c1 ⊗ vi1 ⊗ vj1)(c2 ⊗ vi2 ⊗ vj2) = (c1ϕ(vj1 , vi2)c2 ⊗ vi1 ⊗ vj2),where ϕ(v3, v3) = ϕ(v1, v2) = ϕ(v2, v1) = 1 and ϕ(vi, vj) = 0 otherwise. This isompatible with the usual involution i of an in�ation. The algebra A whih we onsideris obtained by adjoining a unit element to J , A = J ⊕ k1A. We de�ne
e = (a⊗ v3 ⊗ v3) + (b⊗ v1 ⊗ v2),whih is an idempotent. Then i(e) = (a⊗ v3 ⊗ v3) + (b⊗ v2 ⊗ v1) 6= e. We set e2 = 1Aand e1 = e. Property (G) is seen to hold. Now we turn to property (J′). We see that

Ae1A = AeA = J and eAe = spank{a⊗ v3 ⊗ v3, b⊗ v1 ⊗ v2} ≃ B. We let
p = (1B ⊗ v3 ⊗ v3) + (1B ⊗ v1 ⊗ v1) and q = (a⊗ v3 ⊗ v3) + (b⊗ v2 ⊗ v2).Then e = pq and i(e) = qp and i(p) = p. The indued involution we obtain on eAe ≃ Bis again the identity. The top layer presents no problems and property (J′) is satis�ed.For property (F), we onsider the A-eAe-bimodule S1 = Ae. As a right eAe-module:

Ae = spank{a⊗ vi ⊗ v3, b⊗ vi ⊗ v2 : i = 1, 2, 3},

= 〈a⊗ v3 ⊗ v3, b⊗ v1 ⊗ v2〉 ⊕ 〈b⊗ v3 ⊗ v2, a⊗ v1 ⊗ v3〉

⊕〈a⊗ v2 ⊗ v3, b⊗ v2 ⊗ v2〉The �rst summand is eAe ≃ B and the seond and third are eah isomorphi to eAeas right eAe-modules, thus S1 is free of rank three as a right eAe-module. The toplayer again poses no problems and property (F) holds. Property (F′) is, however, notsatis�ed and the idempotent e1 = e is not of the form spei�ed in property (E) ofDe�nition 2.1.The algebra A is in fat ellularly strati�ed though: one must simply make a di�erenthoie of idempotents. Starting with the idempotents 1B ⊗ v3 ⊗ v3 and 1A, the threeproperties of De�nition 2.1 are readily seen to hold.(2) The next example shows that the de�nition of a ellularly strati�ed algebra dependson the hoie of the in�ation data.(a) Let J be the in�ation of the group algebra of the symmetri group Σ2 = 〈σ : σ2 = ǫ〉by the two-dimensional vetor spae V with basis v1, v2. The multipliation in J isgoverned by the bilinear form ϕ, where ϕ(vi, vj) = σ if i 6= j and zero otherwise. Weform the algebra A by adjoining an identity element to J . So A is a nine-dimensionalalgebra. We de�ne an involution i by i(λ ·1A + b⊗u⊗w) = λ ·1A + b⊗w⊗u for λ ∈ k,
b ∈ kΣ2 and u,w ∈ V . Note that this involution is ompatible with the hosen bilinearform ϕ. Let B = kΣ2. Assume that e = 1B ⊗ u⊗ w is an idempotent in J . Then

e2 = (1⊗ u⊗ w)(1 ⊗ u⊗ w) = ϕ(w, u) ⊗ u⊗ w.Let u = αv1 + βv2 and w = λv1 + µv2 for some α, β, λ, µ ∈ k. Then
ϕ(w, u) = (αµ + βλ) · σ ∈ k · σ.



COHOMOLOGICAL STRATIFICATION OF DIAGRAM ALGEBRAS 19Hene ϕ(w, u) 6= 1B . So there are no idempotents in J of the form 1kΣ2
⊗ u⊗w, so Adoes not satisfy De�nition 2.1 of a ellularly strati�ed algebra with strati�ation data

(kΣ2, V, k, k).(b) We will verify that there is atually another in�ation data that onstruts anisomorphi opy of the algebra A. As before, let J be the in�ation of the groupalgebra of the symmetri group Σ2 = 〈σ : σ2 = ǫ〉 by the two-dimensional vetorspae V with basis v1, v2, and form A by adjoining an identity element. This timewe hose ϕ(vi, vj) = ǫ if i 6= j and zero otherwise. This hoie of bilinear form isonjugate to ϕ hosen in part (a), and hene we obtain an algebra struture on Awhih is isomorphi via a hange of basis to the algebra struture onsidered in part(a). We de�ne e = e1 = ǫ ⊗ v1 ⊗ v2 and e2 = 1A. Then property (G) is seento hold. We �nd AeA = J and eAe = spank{ǫ ⊗ v1 ⊗ v2, σ ⊗ v1 ⊗ v2}. We let
p = (ǫ⊗ v1⊗ v1) and q = (ǫ⊗ v2⊗ v2). Then e = pq and i(e) = qp and i(p) = p and theindued involution we obtain on eAe is again the identity, so property (J′) is satis�ed.Finally we onsider Ae as a right eAe-module:

Ae = 〈ǫ⊗ v1 ⊗ v2, σ ⊗ v1 ⊗ v2〉 ⊕ 〈ǫ⊗ v2 ⊗ v2, σ ⊗ v2 ⊗ v2〉.The �rst summand is eAe and the seond is qeAe, but both are isomorphi to eAe asright eAe-modules and their intersetion is trivial, thus property (F′) is satis�ed too.By Proposition 5.2, A is a ellularly strati�ed algebra.6. Comparing deomposition numbersDeomposition numbers of ellular algebras are by de�nition the multipliities of simplemodules L as omposition fators of ell modules Θ. Given a ellular algebra C, denoteits deomposition matrix by DC = ([ΘC(λ) : LC(µ)])λ,µ with ell modules ΘC andsimple modules LC and labels λ ∈ ΛC and µ ∈ Λsimple
C .Proposition 6.1. Let A be ellular and e ∈ A be an idempotent. If the idempotent eis �xed by the involution i, then eAe is also ellular, and DeAe is a diagonal submatrixof DA. If I is in the ell hain of A then A/I is again ellular, and DA/I is a diagonalsubmatrix of DA.Proof. The laim follows from the de�nition of ellular algebras by ell hains (see[9, 17, 18℄ for instane), and from general theory as in Green [10, Setion 6.2℄: Assumethe ell modules of A are indexed by the elements in ΛA. Then, as i(e) = e, eAe isellular and the ell hain of eAe is obtained from that of A by multiplying the ellhain of A by e from the left and the right. Modules of A beome eAe-modules bymultiplying with e from the left but some of these A-modules may beome zero. Inpartiular, multipliation by e sends ell modules to ell modules or zero, and simplesto simples or zero. That is, the ell modules and simple modules are

ΘeAe(λ) = eΘA(λ) with λ ∈ ΛeAe ⊆ ΛA,

LeAe(µ) = eLA(µ) with µ ∈ Λsimple
eAe ⊆ Λsimple

A .Hene DeAe is a diagonal submatrix of DA. Similarly, if I = Il is an ideal in the ellhain of A, say
A = It ⊇ It−1 ⊇ . . . ⊇ I0 = {0},



20 ROBERT HARTMANN, ANNE HENKE, STEFFEN KOENIG, ROWENA PAGETthen the ell hain of A/I is given by
A/I = It/I ⊇ It−1/I ⊇ . . . ⊇ Il/I = {0},and the ell modules and simple modules of the quotient algebra are

ΘA/I(λ) = ΘA(λ) with λ ∈ ΛA/I ⊆ ΛA,

LA/I(µ) = LA(µ) with µ ∈ Λsimple
A/I ⊆ Λsimple

A .Hene DA/I is a diagonal submatrix of DA.Corollary 6.2. Let A be ellularly strati�ed and assume that for eah l the idempo-tent e = el is �xed by the involution i. Then the deomposition matrix of A ontainson its diagonal preisely the deomposition matries DBl
for l = 1, . . . , n. Moreoverthe deomposition matries DeAe are submatries of the right-hand bottom orner, thedeomposition matries DA/Jl

are submatries of the left-hand top orner as in thefollowing piture:
DA =

DBl

DA/Jl

Del−1Ael−1

DA/Jl−1

DelAel

Proof. Note sine i(e) = e this implies u = v. Observe that e(A/Jl−1)e ≃ B⊗u⊗u ≃
B, and then the result follows from Proposition 6.1.Remark. For our main examples in this artile � Brauer algebras, BMW algebras andpartition algebras � in the ase where the parameter δ 6= 0 we have idempotents elof the form λ · (1 ⊗ u ⊗ u) where λ is a salar, learly satisfying i(el) = el. Henethe last orollary implies equalities between ertain deomposition numbers of thesealgebras and deomposition numbers of group algebras of symmetri groups or theirHeke algebras (whih are the algebras Bl in these examples). In addition, sine eah
eAe is isomorphi to a smaller diagram algebra of the same type we see, for example,that the deomposition matrix of Bk(r− 2, δ) (respetively BMWk(r− 2, λ, q− q−1, δ)or Pk(r − 1, δ)) is inluded in that of Bk(r, δ) (respetively BMWk(r, λ, q − q−1, δ), or
Pk(r, δ)).However the idempotents el for a ellularly strati�ed algebra may be of the form 1⊗u⊗vwith u 6= v, and then i(el) 6= el. In ertain suh ases we still obtain the aboveresults relating deomposition numbers. Under the additional assumption that theidempotents el and i(el) are orthogonal, ẽl = el + i(el) is an idempotent of A and wemay replae el by ẽl = el + i(el) in the proof of the orollary. Then ẽl(A/Jl−1)ẽl isthe in�ation B ⊗ span {u, v} ⊗ span {u, v}, of B, and sine the bilinear form for this



COHOMOLOGICAL STRATIFICATION OF DIAGRAM ALGEBRAS 21in�ation is non-singular, the deomposition matries of ẽl(A/Jl−1)ẽl and of B oinide,see [21, Corollary 3.4℄. Suh a situation ours for the Brauer and BMW algebras when
r is odd and δ = 0.7. Cellularly stratified algebras are stratifiedOne of our aims is to extend the phenomenon disovered by Hemmer and Nakano [13℄to ertain diagram algebras. This phenomenon identi�es homomorphism spaes andit identi�es �rst extension groups (for the ase of symmetri groups and their quan-tizations, see [13℄, Theorem 3.7.1 and Corollary 3.9.1). However, it identi�es higherextensions only with higher relative extensions. For ellularly strati�ed algebras thereis another homologial struture. In this setion we provide a strati�ation of the de-rived module ategory of any ellularly strati�ed algebra, independent of the Hemmer-Nakano phenomenon. We start by realling what strati�ed algebras are. There arevarious, in fat non-equivalent, de�nitions of strati�ed algebras. Here we follow themost general of these de�nitions, due to Cline, Parshall, Sott [3, 2.1.1℄.De�nition 7.1. An algebra A is strati�ed if there exists a hain of ideals {0} = J0 ⊆
J1 ⊆ . . . ⊆ Jn−1 ⊆ Jn = A suh that eah subquotient Ji/Ji−1 is a stratifying idealin the quotient algebra A/Ji−1. Here an ideal J in an algebra A is alled a stratifyingideal provided that the following onditions hold:(1) There is an idempotent e ∈ A suh that J = AeA.(2) Multipliation provides an A-bimodule isomorphism Ae⊗eAe eA→ J .(3) ToreAe

n (Ae, eA) = 0 for all n > 0.Remark. An equivalent way to phrase onditions (1) to (3) is to require that the derivedfuntor D+(A/J-mod) → D+(A-mod) indued by the full embedding A/J − mod →
A−mod is a full embedding, see [3, 2.1.2℄.Assume from now on that A is ellularly strati�ed. Next we show that the lowest layerin the hain of ideals provided by ondition (C) is a stratifying ideal. As a onsequeneellularly strati�ed algebras are strati�ed.Proposition 7.2. Suppose the algebra A is ellularly strati�ed, with notation as above.Then A is strati�ed with a strati�ation provided by the ideals Jl.Proof. We have to show that J1 is a stratifying ideal in A, J2/J1 is a stratifying idealin A/J1, and so on. We do this by indution on the layers. Write e = e1, B = B1 and
V = V1. By the assumptions on A, the lowest layer is the ideal J = AeA = B⊗V ⊗V ,and B ≃ eAe.By Proposition 3.5, the right module Ae = B ⊗ V ⊗ v � and similarly the left module
eA = B ⊗ u⊗ V � is a free B-module of rank dimk V . Hene Ae is �at, and the thirdondition for a stratifying ideal holds: ToreAe

n (Ae, eA) = 0 for all n > 0. The map
Ae⊗eAe eA→ J = B ⊗ V ⊗ V



22 ROBERT HARTMANN, ANNE HENKE, STEFFEN KOENIG, ROWENA PAGETgiven by multipliation is an isomorphism of vetor spaes (see Equation (3) fromSetion 2). This shows that J is a stratifying ideal in A. The laim now follows byindution on the layers.Remark. In the ase of the Brauer algebra Bk(r, δ) with δ = 0 and r even, the idealspanned by totally horizontal diagrams is not a stratifying ideal. However in this ase,the previous proposition is true for the quotient of the Brauer algebra obtained byfatoring out this ideal.In general, a stratifying ideal indues only partial reollement diagrams, see [3, Setion2.1.2℄ and [16℄, where de�nitions of reollements an also be found. Here we obtainmore:Theorem 7.3. Assume that A is ellularly strati�ed.(a) Then there is a full reollement of bounded derived ategories
i∗
←

j!←

Db(A/J1 −mod) i∗=i!→ Db(A−mod) j∗=j!

→ Db(B1 −mod)
i!
←

j∗
←(b) The derived ategory of A has a strati�ation (iterated reollements) by thederived ategories of the algebras Bl.Proof. (a) We write e = e1, J = J1 and B = B1, and so by Lemma 2.3, B ≃ eAe. It islear that HomA(AeA,A/J) = 0, and that AeA ≃

⊕
Ae is projetive as an A-module.So we an apply [16, Corollary 12℄ and obtain a full reollement for D− as above. Wean replae EndA(AeA) by eAe ≃ B, sine, as a left A-module AeA is just a sum ofopies of the projetive A-module Ae, so that the two algebras are Morita equivalent.Now [16, Lemma 2℄ implies that this reollement restrits to a right reollement forthe bounded derived ategories, that is, the bottom four funtors take omplexes withbounded homology to omplexes with bounded homology. It is left to show that theupper two funtors do that as well. Note that all the six ourring funtors are induedby funtors on the orresponding module ategories (denoted by the same symbols),namely

i∗ = i! := A(A/J) ⊗A/J − : A/J-mod→ A-mod,

i∗ := A/J ⊗A − : A-mod→ A/J-mod,

i! := HomA(A/J,−) : A-mod→ A/J-mod,

j∗ = j! := eA⊗A − : A-mod→ eAe-mod,

j! := Ae⊗eAe − : eAe-mod→ A-mod,

j∗ := HomeAe(eA,−) : eAe-mod→ A-mod.Here Ae is a projetive right eAe-module, hene �at, therefore ToreAe
j (Ae,−) = 0for j ≥ 1. So the derived funtor of j!, takes omplexes with bounded homology toomplexes with bounded homology. In Db(A), the module A/J is isomorphi to theomplex Y := (· · · → 0→ AeA→ A→ 0→ . . . ) of projetive (hene �at) A-modules.



COHOMOLOGICAL STRATIFICATION OF DIAGRAM ALGEBRAS 23Let X ∈ Db(A − mod). The homology of i∗(X) is just the homology of the totalomplex T of the double omplex Y ⊗A X, whih vanishes in high degrees, sine thehomology of X is zero for high degrees, and tensoring with �at modules is exat. Hene
i∗(X) ∈ Db(A/J −mod), as required.(b) Replaing A/Jl−1 by A/Jl and e = el by the idempotent el+1 in the next layer anditerating the above argument, we obtain a sequene of reollement diagrams, eah ofthem having the derived ategory of the respetive Bl-mod on the right hand side. Inthe last step, we have A/Jn−1 on the left hand side, whih is isomorphi to the algebra
Bn sine en = 1. The laim follows.The last theorem has various onsequenes. In partiular, using [3, Setion 2.1.2℄, weobtain a omparison of Ext-groups:Corollary 7.4. Let A be ellularly strati�ed. Let M,N be any A/Jl-modules and X,Yany Bl-modules. Then for any i > 0 and any j ≥ 0 we have:

ExtiA(M,N) ≃ ExtiA/Jl
(M,N),

ExtjBl
(X,Y ) ≃ ExtjA(Gl(X), Gl(Y )).Proof. The �rst isomorphism follows from [3, Setion 2.1.2℄. The ase j = 0 of theseond isomorphism has been obtained in Proposition 4.3. In the ase j > 0, we applythe �rst isomorphism to obtain

ExtjA(Gl(X), Gl(Y )) ≃ ExtjA/Jl−1
(Gl(X), Gl(Y )).Using the de�nition of the funtors Gl (see Setion 3), this equals

ExtjA/Jl−1
((A/Jl−1)el ⊗el(A/Jl−1)el

X, (A/Jl−1)el ⊗el(A/Jl−1)el
Y ).Sine el is in the lowest layer of A/Jl−1, it follows that el(A/Jl−1)el ≃ Bl. We nowapply Theorem 7.3 to the ellularly strati�ed algebra A/Jl−1. Then

ExtjA(Gl(X), Gl(Y )) ≃ Extj
A/Jl−1

(j!(X), j!(Y )).Sine j! : Db(Bl −mod)→ Db(A/Jl−1 −mod) is a full embedding, it follows that
Extj

A(Gl(X), Gl(Y )) ≃ ExtjBl
(X,Y ).Let A be any algebra. Reall that the projetive dimension of an A-module M is thelength of a minimal projetive resolution of M . The global dimension of the algebra Ais then the maximum of the projetive dimensions of the A-modules. For many algebrasthis number will not be �nite. In those ases one also onsiders the �nitisti dimension.The �nitisti dimension of an algebra A is the maximum of the projetive dimensions ofall those A-modules whih have a �nite projetive resolution. It has been onjeturedthat the �nitisti dimension is always �nite. A positive answer to this onjeture for�nite dimensional algebras would imply validity of various other onjetures suh asthe Nakayama onjeture. For more information see the surveys given in [8, 26, 27℄. In



24 ROBERT HARTMANN, ANNE HENKE, STEFFEN KOENIG, ROWENA PAGETthe ase of ellularly strati�ed algebras A, we an redue the question of �niteness ofthe �nitisti dimension to the same question for the smaller algebras Bl:Corollary 7.5. Let A be ellularly strati�ed by the algebras B1, . . . , Bn. Then the globaldimension of A is �nite if and only if all the algebras Bl have �nite global dimensions.The �nitisti dimension of A is �nite if and only if all the algebras Bl have �nite�nitisti dimensions.Proof. The �rst laim follows from Theorem 7.3 together with [16, Corollary 5℄. Theseond laim follows from Theorem 7.3 together with [11, Theorem 2℄.Corollary 7.6. The �nitisti dimension onjeture holds for Brauer algebras (with
δ 6= 0 if r is even), BMW-algebras (with δ 6= 0 if r is even) and partition algebras (with
δ 6= 0).Proof. Here the algebras Bl are group algebras of symmetri group or their Hekealgebras whih are self-injetive algebras. Self-injetive algebras are easily seen to have�nitisti dimension zero: Assume that a �nite projetive resolution of a non-projetivemodule M is given. In a self-injetive algebra projetive modules are injetive. Henethe �nite exat sequene of the projetive resolution of M splits in the leftmost term,a ontradition. This implies that a module for any self-injetive algebra is either pro-jetive or has no �nite projetive resolution. The statement now follows from Corollary7.5.Remark. Working in a more general ontext, Frisk proved several results on whenthe �nitisti dimension of a standardly strati�ed algebra is �nite. He also gives anupper bound for the �nitisti dimension, depending on the �nitisti dimension of theendomorphism algebras of standard modules, see for example [7, Theorem 24℄.8. Homomorphisms and extensions between layersWe have seen in Proposition 4.3 and Corollary 7.4 that homomorphisms and extensionsof ell modules of A inside the lth layer behave like those of the small algebra Bl. In thissetion we will study homomorphisms and extensions between ell modules of di�erentlayers. We will see that homomorphisms and extensions between ell modules anhappen either in the same layer or from a higher to a lower layer, but not the otherway round.Proposition 8.1. Let l < m, and let X be a Bm-module and Y a Bl-module. Then

HomA(Ael ⊗elAel
Bl ⊗Bl

Y,Aem ⊗emAem Bm ⊗Bm X) = 0.In partiular, if Θ(λ) and Θ(µ) are ell modules, with Θ(λ) in the layer of el and Θ(µ)in the layer of em with l < m, then HomA(Θ(λ),Θ(µ)) = 0.Proof. Using Proposition 4.2, we an write Θ(µ) = Aem ⊗emAem Bm ⊗Bm X, where
X is a ell module for Bm and similarly, Θ(λ) = Ael ⊗elAel

Bl ⊗Bl
Y where Y is a ellmodule for Bl. Hene it su�es to prove the �rst laim.



COHOMOLOGICAL STRATIFICATION OF DIAGRAM ALGEBRAS 25Using the adjointness of the Hom-funtor and the tensor funtor, and using assumption(I), we then have:
HomA(Ael ⊗elAel

Bl ⊗Bl
Y,Aem ⊗emAem Bm ⊗Bm X)

= HomA(Ael ⊗elAel
Y,Aem ⊗emAem X)

≃ HomelAel
(Y,HomA(Ael, Aem ⊗emAem X))

= HomelAel
(Y, elAem ⊗emAem X)

= HomelAel
(Y, elX) = HomelAel

(Y, 0) = 0.Note that X is a Bm-module, and as emAem surjets onto Bm, it is also an emAem-module with emJm−1em ·X = 0. So in partiular elX = 0.Similarly, extensions between ell modules an happen either in the same layer or froma higher to a lower layer but not the other way round; this resembles the situation forquasi-hereditary algebras where eah layer has just one index and one simple module.Proposition 8.2. Let l < m, and let X be a Bl-module and Y a Bm-module. Thenfor all i ≥ 1,
Exti

A(Ael ⊗elAel
Bl ⊗Bl

Y,Aem ⊗emAem Bm ⊗Bm X) = 0.In partiular, if Θ(λ) and Θ(µ) are ell modules, with Θ(λ) in the layer of el and Θ(µ)in the layer of em with l < m, then ExtiA(Θ(λ),Θ(µ)) = 0 for all i ≥ 1.Proof. As before, it su�es to prove the more general �rst laim. For the Bm-module X and Bl-module Y , we have Gm(X) = Aem⊗emAem Bm⊗Bm X and Gl(Y ) =
Ael ⊗elAel

Bl ⊗Bl
Y . Sine Jl ·Gm(X) = 0 and as el ∈ Jl, this implies

HomA(Ael, Gm(X)) = el ·Gm(X) = 0.(8)Consider the lowest layer, that is Bl = B1. Here we have elAel ≃ Bl and Ael is aprojetive right elAel-module (see Proposition 3.5). The indution funtor G sends Blto the projetive A-module Ael. The funtor G is exat by Proposition 4.1, hene itsends a Bl-projetive resolution of Y to an A-projetive resolution of Gl(Y ), say
. . .→ P1 → P0 → Gl(Y )→ 0(9)where P0, P1, . . . are diret summands of ⊕

Ael. But by Equation (8), it follows that
HomA(Pi, Gm(X)) = 0 for all i, so by the de�nition of Exti, this shows the laim in thelowest layer. For layers l and m with l < m onsider A/Jl−1. By (6), the A/Jl−1-module
Ḡl(Y ), viewed as an A-module, is isomorphi to Gl(Y ). Thus ExtiA(Gl(Y ), Gm(X)) ≃
Exti

A/Jl−1
(Gl(Y ), Gm(X)) = 0 by the above, using Corollary 7.4.9. Comparing ellular and stratified algebras on examplesCellular algebras have often been onsidered as a ombinatorial generalization of quasi-hereditary algebras while strati�ed algebras have been onsidered as a homologial one.We have seen in Setion 7 that there are ellular algebras whih are strati�ed. In thissetion, we illustrate by an example that the Ext-omparison (see Corollary 7.4) and



26 ROBERT HARTMANN, ANNE HENKE, STEFFEN KOENIG, ROWENA PAGETExt-vanishing properties (see Proposition 8.2) of strati�ed algebras do not hold forellular algebras in general. We onsider the algebra A = kQ/R given by the quiver
Q :

a bα

β
• •q
iwith relations R = 〈αβα, βαβ〉. Then A is a six dimensional algebra with basis

{a, b, α, β, αβ, βα}. De�ne a map i with
i(α) = β, i(β) = α, i(a) = a, i(b) = b,and extend it anti-multipliatively. Then the algebra A is ellular with involution i andell hain A = J3 ⊇ J2 ⊇ J1 ⊇ J0 = {0} where the ideals are given as follows:

J2 = AaA = spank{a, α, β, αβ, βα}, J1 = 〈αβ〉 = spank{αβ}.Then the quotient algebras A/Ji for 1 ≤ i ≤ 3 have the following deompositions intoprojetive indeomposable modules:
A =

a
b
a
⊕

b
a
b

, A/J1 =
a
b
⊕

b
a
b

and A/J2 = b.Here a and b denote the two simple one-dimensional A-modules. The ell modules are
Θ1 = a, Θ2 =

a
b

, Θ3 = b.Here, for instane, J1 as a left A-module equals a and J1 is isomorphi to Θ1 ⊗k i(Θ1)via multipliation so J1 = J1/J0 is a ell ideal in A = A/J0. As there are uniserial
A-modules [a, b] and [b, a], we have non-split extensions of the ell module Θ1 with Θ3and vie versa, and hene Proposition 8.2 does not hold for A.A minimal projetive resolution of the A-module a is given by the following omplexwhih is periodi of length four:

· · · -
a
b
a

- b
a
b

- b
a
b

-
a
b
a

- a - 0.
b
a

�R
b
�R

a
b

�R
a
�RThe same omplex an be used to read o� the minimal projetive resolution of b over

A. As an A/J1-module a minimal projetive resolution of a is given by the following�nite omplex, whih also an be used to read o� the minimal projetive resolution of
b:

0 - a
b

- b
a
b

- a
b

- a - 0.
b
�R

a
b

�RApplying HomA(−, a) and HomA/J1
(−, a) respetively to these omplexes, we an al-ulate the extension groups. For instane, we obtain that Extm

A/J1
(a, a) = 0 for all

m ≥ 3, but Ext4t
A (a, a) = Ext4t+3

A (a, a) = k for t ≥ 0. So, for A a general ellularalgebra, we annot identify higher extension groups for A with those for A/J .



COHOMOLOGICAL STRATIFICATION OF DIAGRAM ALGEBRAS 27Using a di�erent ideal hain that avoids nilpotent layers does not improve the situation:The ideal J1 is nilpotent, and there are no simple A-modules orresponding to nilpotentlayers of the ell hain of A. Thus we now try the ideal hain A ⊃ J2 ⊃ {0} whihalso re�nes to the ell hain of A given above. Then neither J2 as an ideal of A nor
A/J2 as an ideal of itself are nilpotent ideals. However, this is still not enough toobtain a strati�ation, the ideal J2 fails to be stratifying. As one easily alulates, the�rst two onditions of De�nition 7.1 hold, but the third one does not. To see this,note that the algebra C := aAa is two-dimensional, it has one simple module a and Cis the unique indeomposable projetive. The (right) C-module Aa ≃ a ⊕ C has theprojetive resolution

· · · → C → C → C ⊕ C → a⊕ C → 0and tensoring with aA ≃ a⊕C (from the right) gives a omplex with non-zero homologyin all degrees, hene TorC
n (Aa, aA) 6= 0 for all n. So the absene of nilpotent ideals inthe hain is not enough, we need ellularity and the idempotents, as in De�nition 2.1.10. Cellularly stratified algebras and standard systemsUsing the tehnology set up in the previous setions, we are now ready to state theHemmer-Nakano phenomenon for ellularly strati�ed algebras, exhibiting the algebraiLie theory hidden in the diagram algebras studied here. Reall the notion of a stan-dardizable set by Dlab and Ringel [5, Setion 3℄ � here alled a standard system � ofobjets in an abelian ategory, given here for a module ategory:De�nition 10.1. Let C be any algebra, and suppose we are given a �nite set Θ ofnon-isomorphi C-modules Θ(j), indexed by j ∈ I, where I is endowed with a partialorder ≤. Then the modules Θ(j) are said to form a standard system if the followingthree onditions hold:(i) For all j ∈ I, EndC(Θ(j)) is a division ring.(ii) For all m,n ∈ I, if HomC(Θ(m),Θ(n)) 6= 0 then m ≥ n.(iii) For all m,n ∈ I, if Ext1C(Θ(m),Θ(n)) 6= 0 then m > n.Remarks.(1) In our examples of ellularly strati�ed algebras A with algebras Bl being groupalgebras of symmetri groups, if k is a �eld of harateristi not equal to twothen the Speht modules have one-dimensional endomorphism rings [15, Corol-lary 13.17℄, and then Propositions 4.2 and 4.3 imply ondition (i) for the set ofell modules.(2) In a standard system, ondition (i) implies that all Θ(j) are indeomposable,a property that is not in general shared by the ell modules of an arbitraryellular algebra.(3) The partial order used above an be re�ned, for example into a total order, andtrivially (i)-(iii) hold for the re�ned order.(4) If the ell modules of a ellular algebra form a standard system then the dualell modules also form a standard system with respet to the dual order.



28 ROBERT HARTMANN, ANNE HENKE, STEFFEN KOENIG, ROWENA PAGETIt is well known that ∆-�ltration multipliities of modules over quasi-hereditary al-gebras are well-de�ned (see [2℄). More preisely, let A be a quasi-hereditary algebra.Denote by F(∆) the ategory of modules with a standard �ltration (∆-�ltration), andlet X ∈ F(∆). Then the number of times a partiular module ∆(j) ours as a sub-quotient in a ∆-�ltration of X is independent of the �ltration hosen. We sketh anargument for this: Let X ∈ F(∆). Denote ostandard modules, whih our in the�ltrations of injetive modules, by ∇(j). Take a ∆-�ltration of the module X, say
0 = X0 ⊆ X1 ⊆ . . . ⊆ Xt = X,and denote by [X : ∆(j)] the multipliity of ∆(j) ourring in this �ltration of X.We indutively determine [X/Xi : ∆(j)] for i = t, t − 1, . . . , 0. Apply the funtor

HomA(−,∇(j)) to the short exat sequenes
0→ Xi+1/Xi → X/Xi → X/Xi+1 → 0with 0 ≤ i ≤ t − 2. Note that HomA(−,∇(j)) is exat on F(∆) sine

ExtiA(∆(l),∇(j)) = 0 for j, l ∈ I, i ≥ 1. Hene
[X/Xi : ∆(j)] = [Xi+1/Xi : ∆(j)] + [X/Xi+1 : ∆(j)]for every i. Moreover, HomA(∆(l),∇(j)) = 0 unless l = j, in whih ase the Homspae is free of rank one over EndA(∆(j)) = EndA(∇(j)) = EndA(L(j)). This impliesthat
dimHomA(X,∇(j))/dim EndA(L(j)) = [X : ∆(j)].Hene [X : ∆(j)] is independent of the hosen �ltration of X.Assume an algebra C has a standard system Θ. Denote by F(Θ) the ategory of C-modules with a Θ-�ltration. Then by [5, Theorem 2℄, there exists a quasi-hereditaryalgebra S(C) with index set (I,≤) and standard modules ∆ suh that F(∆) ≃ F(Θ)(as exat ategories). Here F(∆) denotes the ategory of S(C)-modules with a ∆-�ltration. The equivalene sends the standard module ∆(j) to Θ(j), and hene moduleswith a standard �ltration to modules with a ell �ltration. Using the equivalene

F(∆) ≃ F(Θ), this implies that any module X ∈ F(Θ) has well-de�ned Θ-�ltrationmultipliities.Theorem 10.2. Let A be ellularly strati�ed.(a) Then the ell modules of A form a standard system if and only if for eah l theell modules of Bl form a standard system.(b) Assume that for eah l the ell modules of Bl form a standard system. Then an
A-module with a ell �ltration has well-de�ned �ltration multipliities.Proof. Combine Proposition 4.3 and Corollary 7.4 with Propositions 8.1 and 8.2.Hemmer and Nakano have shown in [13, 4.2.1 and 4.4.1℄ that in ase of k havingharateristi di�erent from two or three, the Speht modules (with the dominaneorder) form a standard system for the group algebra of the symmetri group. Similarly,they show that for e ≥ 4, where e is least suh that 1 + q−2 + q−4 + · · ·+ q−2e = 0, theHeke algebra Hl(q

−2) has a standard system omposed of Speht modules. We anombine Theorem 10.2 with the results in [13℄ to say that if A is ellularly strati�ed with



COHOMOLOGICAL STRATIFICATION OF DIAGRAM ALGEBRAS 29the ellular algebras Bl being group algebras of symmetri groups (or Heke algebrasrespetively) and the harateristi of k is di�erent from two and three (or e ≥ 4respetively), then A has well-de�ned ell �ltration multipliities. Under some mildassumptions this is the ase for the three main examples of this artile:Corollary 10.3. (a) Consider a Brauer algebra � with δ 6= 0 in the ase of r even� or a partition algebra � with δ 6= 0. Then its ell modules form a standard systemif char(k) 6= 2, 3. In this ase, modules with ell �ltrations have well-de�ned �ltrationmultipliities.(b) The ell modules of the BMW algebra � with δ 6= 0 in the ase of r even � form astandard system if e ≥ 4. In this ase, modules with ell �ltrations have well-de�ned�ltration multipliities.Remark. Note that Propositions 8.1 and 8.2 need no assumptions, apart from A beingellularly strati�ed. Thus, the assumptions needed in these orollaries are only usedwithin the layers, not in between layers.11. The equivalene F(Θ) −→ F(∆) for ellular algebrasThe results of Dlab and Ringel [5, Setion 3℄ are for a standard system Θ in anyabelian ategory. Here we apply this theory, and provide additional detail, in the aseof a ellular algebra whose ell modules form a standard system. So let A be ellularwith ell modules Θ(λ) for λ in the index set (Λ,≤). Assume the ell modules of Aform a standard system. As mentioned in the previous setion, by [5, Theorem 2℄, thereexists a quasi-hereditary algebra S(A) with index set (Λ,≤) and standard modules ∆suh that F(∆) ≃ F(Θ) (as exat ategories). The equivalene sends the standardmodule ∆(λ) to Θ(λ).Remark. It is known for a quasi-hereditary algebra that the full subategory of modules�ltered by the standard modules of the algebra is losed under taking diret summands.Hene [5, Theorem 2℄ implies that F(Θ) is losed under taking diret summands. Bythe de�nition of ellular algebras, A is �ltered by ell modules, and so A, and all itsdiret summands � that is, all projetive A-modules � lie in F(Θ).Example 11.1 (see Proposition 7.1 of [17℄). For a ellular algebra with ell modules
Θ, the ategory F(Θ) is in general not losed under taking diret summands. To obtainan example, take an algebra B whih is ellular with involution i and let X be some
B-module. De�ne M = X⊗k i(X). De�ne C to be the vetor spae B⊕M as a vetorspae and identify C with the set of 2× 2 matries

{(aij) | a21 = 0, a11 = a22 ∈ B and a12 ∈M}.and de�ne a multipliation on C via matrix multipliation. Then C is a ellular algebrawith M a ell ideal in C and X a ell module of C. Choosing a deomposable module
X whose diret summands are not ell modules of B, provides examples of ellularalgebras C with F(Θ) not losed under taking diret summands. For example, take asthe algebra B the algebra A/J1 appearing in Setion 9, and let X be the B-module
X = a⊕ a. In this ase C has the ell modules

Θ1 = [a, b], Θ2 = b and Θ3 = a⊕ a



30 ROBERT HARTMANN, ANNE HENKE, STEFFEN KOENIG, ROWENA PAGETwith Θ1,Θ2 uniserial. Here F(Θ) does not ontain the diret summand a of Θ3.De�nition 11.2. Let Y and M be left A-modules �ltered by ell modules. We say Yis relative projetive in F(Θ) if Ext1A(Y,N) = 0 for any module N ∈ F(Θ). Moreover,we say Y is the relative projetive over of M if(1) Y is relative projetive;(2) there is a surjetion ǫ : Y →M with ker(ǫ) ∈ F(Θ);(3) for any other relative projetive Y ′ ∈ F(Θ) and any surjetion ǫ′ : Y ′ → Mwith ker(ǫ′) ∈ F(Θ), there exists a map f : Y ′ → Y suh that ǫ′ = ǫ ◦ fRemark. The property of being a relative projetive over is preserved under exatequivalenes.Constrution of the algebra S(A). By [5, Setion 3℄, the elements of the standard system
{Θ(λ)} are in one-to-one orrespondene with the indeomposable relative projetive
A-modules in the ategory F(Θ) of Θ-�ltered A-modules. Let {Ypr(λ)} be the relativeprojetive over of Θ(λ); here Ypr(λ) is onstruted using iterated universal extensions,for details see [5, Setion 3℄.Take Y =

⊕
Ypr(λ)aλ where the sum runs through all indies λ ∈ Λ and where aλ ishosen to equal the dimension of L(λ) if suh a simple A-module exists, or equals 1otherwise. Then the quasi-hereditary algebra S(A), de�ned in [5℄, orresponding to theellularly strati�ed algebra A is given by

S(A) = EndA(Y ).The funtors realizing the equivalene F(Θ) −→ F(∆). The equivalene of ategories
F(Θ) −→ F(∆) established in [5, Setion 3℄ is provided by the (ovariant) funtor
F := HomA(Y,−) and the standard modules of the quasi-hereditary algebra S(A) are
∆(λ) = HomA(Y,Θ(λ)). Sine Y is relative projetive, F is an exat funtor on F(Θ),sending left A-modules to left S(A)-modules.The (indeomposable) projetive A-modules are a subset of the (indeomposable) rel-ative projetive A-modules. By the above hoie of the multipliities aλ, A is iso-morphi to a diret summand of Y , say Y = A ⊕ D for some left A-module D.Let f be the projetion from Y onto A, and onsider f as an element of S(A).Sine fS(A)f = fHomA(Y, Y )f = HomA(Y f, Y f) = HomA(A,A) ≃ A, the fun-tor H = f · −, the multipliation by f from the left, is an exat funtor from theategory of left S(A)-modules to left A-modules.Lemma 11.3. If M ∈ F(Θ), then H (F (M)) ≃M. In partiular, H(∆(i)) = Θ(i) and
H : F(∆) −→ F(Θ) is an equivalene of ategories.Proof. If M ∈ F(Θ), then:

H (F (M)) = f · HomA(Y,M) = HomA(Y f,M) = HomA(A,M) ≃M.So, in partiular, f · ∆(i) = Θ(i). Sine F : F(Θ) −→ F(∆) is an equivalene ofategories, H : F(∆) −→ F(Θ) is the inverse equivalene.



COHOMOLOGICAL STRATIFICATION OF DIAGRAM ALGEBRAS 31The following statement is well-known for quasi-hereditary algebras with respet tothe standard modules. Using the equivalene F(Θ) ≃ F(∆), or arguing diretly fromthe de�nition of a standard system, it translates to algebras with a standard system.Without loss of generality we assume Λ = {1, 2, . . . ,m} with 1 < 2 < . . . < m.Lemma 11.4. Let A be a ellular algebra suh that the ell modules Θ indexed by
Λ = {1, 2, . . . ,m} form a standard system. Let M be an A-module whih has a ell�ltration. Then there exists a ell �ltration

M = Mt ⊇Mt−1 ⊇ . . . ⊇M1 ⊇M0 = {0}and indies 0 < i1 < i2 < . . . < im = t suh that for 1 ≤ u ≤ m :

Miu/Miu−1
≃

mu⊕

x=1

Θ(u).A module �ltration M = Mim ⊇ Mim−1
⊇ . . . ⊇ Mi1 ⊇ Mi0 = {0} whih is obtainedby the proess desribed in the above Lemma is alled the ell hain of M . Unlike ell�ltrations, the ell hain is physially unique.The quasi-hereditary struture of S(A). As above, Dlab and Ringel onstrut therelative projetive module Y whih is �ltered by ell modules. Let us relate the ellhain of Y to the quasi-hereditary struture of S(A): Take the ell hain Y = Xm ⊇

Xm−1 ⊇ . . . ⊇ X1 ⊇ X0 = {0}. An element α ∈ S(A) is a map α : Y → Y . Considerall maps α : Y → Y with im(α) ⊆ X1, the lowest ell layer of Y . This de�nes an ideal
I1 in S(A). Next, onsider all maps α : Y → Y with im(α) ⊆ X2, the two lowest elllayers of Y . This de�nes an ideal I2 in S(A). Continue this proess to obtain a hainof two-sided ideals S(A) = Im ⊇ Im−1 ⊇ . . . ⊇ I1 ⊇ I0 = {0}. By [5℄ this hain is aheredity hain of S(A) = EndA(Y ).To obtain the ell hain of the left A-module A, we multiply the ell hain of Y by f :
A = Y f = Xmf ⊇ Xm−1f ⊇ . . . ⊇ X1f ⊇ X0f = {0}. Under the equivalene:

F (Xlf) = HomA(Y,Xlf) ≃ HomA(Y,Xl)f = Ilf,as S(A)-A-bimodules. If A is ellularly strati�ed then the hain of ideals whih realizes
A as an iterated in�ation, {0} = J0 ⊆ J1 ⊆ . . . ⊆ Jn = A, viewed as a hain of left
A-modules, may be re�ned to give the ell hain of A. So Jl = Xilf for some il ≥ l.12. Young modules and Shur algebras for ellularly stratifiedalgebrasLet A be ellularly strati�ed with ell modules Θ(λ) for λ in the index set (Λ,≤).Assume the ell modules of A form a standard system. We now show that the modules
Ypr(λ) de�ned in the previous setion (based on results by Dlab and Ringel) satisfytypial properties of Young modules.De�nition 12.1. Let A be ellularly strati�ed with ell modules Θ(λ) for λ in theindex set (Λ,≤). Assume the ell modules of A form a standard system. Then themodules Ypr(λ) de�ned above are alled Young modules of the algebra A, the algebra
S(A) = EndA(Y ) is alled the Shur algebra orresponding to A.



32 ROBERT HARTMANN, ANNE HENKE, STEFFEN KOENIG, ROWENA PAGETRemarks. (a) We de�ne here Young modules whih depend not only on the algebra A,but also on the standard system hosen.(b) Reall that in a ellular algebra projetives � and not neessarily injetives � have aell �ltration. Instead of hoosing relative projetive overs Ypr with respet to F(Θ),we ould also have hosen relative injetive hulls Yin with respet to F(Θ∗). In thisase Yin(λ) = Ypr(λ)∗.The Young modules de�ned here indeed satisfy the typial properties of Young modulesof symmetri groups: we know already that they are indexed by the same set as the ellmodules; they are indeomposable sine via the equivalenes F or H they orrespondto the projetive indeomposable S(A)-modules; they are isomorphi preisely whentheir labels are the same; they are �ltered by ell modules with the following propertytranslated from quasi-hereditary algebras through the equivalene F(Θ) ≃ F(∆):Proposition 12.2. The Young module Ypr(λ) is �ltered by ell modules where the ellmodule Θ(λ) ours preisely one and all other ell modules Θ(µ) ourring in a ell�ltration of Ypr(λ) satisfy µ > λ.A ellular algebra A is quasi-hereditary if and only if the number of ell modules of Aequals the number of simple A-modules, see [20℄; for ellular algebras in general, thereare more ell modules (parameterized in the following by Λ) than simple or projetiveindeomposable modules (parameterized in the following by Λsimple ⊆ Λ). In the ase ofa ellular algebra whose ell modules form a standard system, we determine the labelsfor whih a Young module is a projetive indeomposable module.Proposition 12.3. Suppose that A is a ellular algebra suh that the ell modules forma standard system, and assume the notation as above. Then Ypr(λ) is a projetive A-module if and only if λ ∈ Λsimple. In this ase Ypr(λ) is the projetive over of thesimple A-module LA(λ).Proof. Let S(A) be the Shur algebra orresponding to A, as onstruted in Se-tion 11. The equivalene f · − : F(∆) → F(Θ) sends indeomposable proje-tive S(A)-modules to indeomposable, relative projetive A-modules in F(Θ). Write
1S(A) = f +(1−f), and deompose both idempotents into a sum of pairwise orthogonalprimitive idempotents

f =
∑

µ∈Λsimple fµ,

1− f =
∑

µ∈Λ\Λsimple gν .By onstrution of S(A) in Setion 11, fµ and gν are inequivalent. The equiva-lene f · − sends the S(A)-projetive module S(A)fµ to the projetive A-module
fS(A)fµ = (fS(A)f)fµ = Afµ. And every indeomposable projetive A-module o-urs as some Afµ. Hene fS(A)gν annot be projetive. Moreover, S(A)fµ is theprojetive over of ∆(µ) and of LS(A)(µ). By exatness of the Shur funtor f · −, themodule Afµ is the projetive over of f∆(µ) = Θ(µ) and of fLS(A)(µ) = LA(µ). Hene



COHOMOLOGICAL STRATIFICATION OF DIAGRAM ALGEBRAS 33the equivalene provided by the Shur funtor indues a bijetion between the inde-omposable projetive S(A)-modules assoiated with idempotents fµ and the relativeprojetive overs Ypr(µ) = Afµ of Θ(µ), for µ ∈ Λsimple.Remark. Note that we also ould have used the proof of 3.7(iii) in [9℄ where it hasbeen shown not only that eah projetive indeomposable module P (λ) is �ltered byell modules but also that in this �ltration the top quotient is the ell module Θ(λ).Corollary 12.4. Let k be a �eld of harateristi not equal to 2 or 3. Let A be aellularly strati�ed k-algebra with strati�ation data (Bl, Vl) where eah Bl is a groupalgebra of a symmetri group. Choose as ell modules the dual Speht modules. Then aYoung module Ypr(λ) is a projetive A-module if and only if λ is a p-restrited partition.Proof. Ypr(λ) is a projetive A-module if and only if there is a simple module LA(λ);this exists if and only if we have a simple module LB(λ); but B is a group algebra of asymmetri group, hene the simple module LB(λ) exists if and only if λ is p-restrited.Remarks (a) If we hoose as our standard system the Speht modules (instead of thedual Speht modules), then the Young module Ypr(λ) is projetive if and only if λ is a
p-regular partition.(b) It has been shown in [14℄ that the r-fold tensor spae does not �t into a theory ofYoung modules for Brauer algebras, sine tensor spae in general does not have a ell�ltration. Here we have now seen that it is possible to �nd a bimodule Y whose diretsummands are the Young modules, and whose endomorphism ring de�nes the Shuralgebra and, as we will see in the next setion, suh that Shur-Weyl duality holds withrespet to this bimodule.() Let us examine the quasi-hereditary Shur algebra S(A) in the ase of Braueralgebras more losely. In this ase, the de�nition of Young modules above agrees withthat in [12℄ (see De�nition 15 and the proof of Theorem 21 in [12℄). We an write
Y =

⊕
l Yl, where Yl is the sum of the relative projetive overs of the ell modules

Gl(Θ), for Θ running through the ell modules of Bl (with appropriate multipliities).We will see that the `diagonal subalgebra' EndA(Yl) of S(A) has a quotient Moritaequivalent to the lassial Shur algebra for the group algebra Bl of the symmetrigroup. In fat, let e = el, and let J ′ = Jl−1 be the ideal for the next lower layer, so that
Bl ≃ eAe/eJ ′e. Then, using the remarks preeding Proposition 14 in [12℄, we have

0→ J ′Yl → Yl → Ŷl ⊗ Vl → 0,where Ŷl denotes the sum of the Young modules Y λ for the group algebra Bl withappropriate multipliities. Sine these modules all have ell �ltrations and Yl is relativeprojetive, applying HomA(Yl,−) gives
0→ HomA(Yl, J

′Yl)→ EndA(Yl)→ HomA(Yl, Ŷl ⊗ Vl)→ 0.The appliation of HomA(−, Ŷl⊗Vl) to the same short exat sequene yields EndA(Ŷl⊗

Vl) ≃ HomA(Yl, Ŷl ⊗ Vl), sine Proposition 8.1 implies the third term is zero. Now,



34 ROBERT HARTMANN, ANNE HENKE, STEFFEN KOENIG, ROWENA PAGETPropositions 4.1 and 4.3 imply that Ŷl ⊗ Vl = Gl(Ŷl) and EndA(GlŶl) ≃ EndBl
(Ŷl).Hene we obtain that EndBl

(Ŷl) is the quotient of EndA(Yl) by HomA(Yl, J
′Yl); thisquotient is Morita equivalent to the lassial Shur algebra.(d) The module Y is not neessarily self-dual, unlike in the symmetri group ase:When δ 6= 0 if r is even, then B := BC(r, δ) is quasi-hereditary (see [19℄, Thm 3.4).Then the Young modules of B are all projetive indeomposable by Prop 11.3, andpreisely all projetive indeomposable modules our in this way. The duals of theYoung modules are then preisely all the injetive indeomposable modules. This set ofmodules will only be the set of Young modules if the algebra is self-injetive. Choose δand r (see Rui [23℄) suh that B is not semisimple. Sine, an algebra that is both quasi-hereditary and self-injetive will be semisimple, it follows that B is not self-injetive.Hene some Young modules of B will not be self-dual.13. Shur-Weyl duality for ellularly stratified algebrasSuppose A is ellularly strati�ed with a standard system of ell modules, indexed by aset Λ. We show that Shur-Weyl duality holds between the algebras A and S(A) withrespet to the module Y .Remark. An algebra A is quasi-hereditary if and only if the algebra Aop is quasi-hereditary. In suh a ase the standard and ostandard modules of A and Aop arerelated as follows: ∆A = ∇∗

Aop and ∇A = ∆∗
Aop where ∗ denotes the k-dual of amodule.Theorem 13.1. Suppose A is ellularly strati�ed with index set Λ and all of the algebras

Bl have standard systems of ell modules. Then:(1) The algebra A also has a standard system of ell modules, and multipliities inell �ltrations are well-de�ned.(2) There exists a quasi-hereditary algebra S(A) with the same partially orderedindex set Λ suh that the following statements hold true:(a) The ategory F(Θ) of A-modules with ell �ltrations is equivalent, as anexat ategory, to the ategory of ∆-�ltered S(A)-modules.(b) The ategory of A-modules with ell �ltrations has relative projetive overs,the Young modules. The algebra S(A) is the endomorphism algebra of adiret sum Y of a omplete set of relative projetive objets in F(Θ).() Shur-Weyl duality holds between A and S(A). The faithfully balanedbimodule a�ording the double entralizer property between A and S(A) isthe diret sum Y of the Young modules.Proof. The �rst statement is ontained in Theorem 10.2 and the �rst two parts ofthe seond statement have been shown in Setions 10 and 11, following [5, Setion 3℄.This leaves only the �nal part. By de�nition, S(A) = EndA(Y ) and Y =
⊕

Ypr(λ)aλ ,where aλ is hosen to equal the dimension of L(λ) if suh a simple A-module exists,or equals 1 otherwise, and where the sum runs through all indies λ ∈ Λ. So Y isan A-S(A)-bimodule, and half of the double entralizer property holds by de�nition.We show the other half: Note that the projetive indeomposable A-modules are a



COHOMOLOGICAL STRATIFICATION OF DIAGRAM ALGEBRAS 35subset of the relative projetive indeomposable A-modules. Hene A is isomorphito a diret summand of Y , say Y = A ⊕ D for some left A-module D. Let f be theprojetion from Y onto A, and onsider f as an element of S(A). Clearly f2 = f , and
Y = HomA(A,Y ) = HomA(Y f, Y ) = fS(A) as right S(A)-modules; hene

A = HomA(A,A) = fS(A)f = HomS(A)(fS(A), fS(A)) = EndS(A)(Y ),and the double entralizer property holds.Remark. We examine the onnetion between Shur-Weyl duality and the Dlab-Ringelequivalene in more detail. Let A be a ellular algebra whose ell modules Θ forma standard system. Let C be any quasi-hereditary algebra with standard modules ∆and assume that there exists an exat equivalene F(Θ) ≃ F(∆). Then the relativeprojetive C-modules with respet to F(∆) are preisely the projetive C-modules Pi,say 1 ≤ i ≤ t. They orrespond under the equivalene to the relative projetive A-modules Yi in F(Θ). Let C = ⊕t
i=1P

ni

i and set Y = ⊕t
i=1Y

ni

i . The equivalene impliesthat HomC(Pi, Pj) ≃ HomA(Yi, Yj) and hene
C = EndC(C) ≃ EndA(Y ).Sine A is ellular and its ell modules form a standard system, all projetive indeom-posable A-modules are relative projetive indeomposable modules in F(Θ). Assumethat these are Y1, . . . , Yl, for some index l ≤ t. Then A = ⊕l

i=1Y
mi

i with mi ≥ 1.Assume that mi ≤ ni for all 1 ≤ i ≤ l (otherwise one an replae C by a Moritaequivalent algebra). Then A is isomorphi to a diret summand of Y , say Y = A⊕Dfor some left A-module D. Let f be the projetion from Y onto A, and onsider
f ∈ EndA(Y ) as an element of C. Clearly f2 = f , and

Y = HomA(A,Y ) = HomA(Y f, Y ) = fHomA(Y, Y ) ≃ fCas right C-modules; hene
A = HomA(A,A) = HomA(Y f, Y f) = fCf = HomC(fC, fC) ≃ EndC(Y ),and the double entralizer property holds.Referenes[1℄ R.Brauer, On algebras whih are onneted with the semisimple ontinuous groups. Annals ofMath. 38 (1937), 854�872.[2℄ E.Cline, B.Parshall, and L.Sott, Finite-dimensional algebras and highest weight ategories.J. Reine Angew. Math. 391 (1988), 85�99.[3℄ E.Cline, B.Parshall, and L.Sott, Stratifying endomorphism algebras. Memoir A.M.S. 124,1996.[4℄ L.Diraa and S. Koenig, Cohomologial redution by split pairs. J. Pure Appl. Algebra 212,no. 3 (2008), 471�485.[5℄ V.Dlab and C.M.Ringel, The module theoreti approah to quasi-hereditary algebras. In:Representations of algebras and related topis (Kyoto, 1990), 200�224, London Math. So. LetureNote Ser., 168, Cambridge Univ. Press, Cambridge, 1992.[6℄ W.F.Doran and D.B.Wales, The partition algebra revisited. J. Algebra 231, no. 1 (2000),265�330.[7℄ A.Frisk, Dlab's theorem and tilting modules for strati�ed algebras. J. Algebra 314, no. 2 (2007),507�537.
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