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Abstract

Genetic Programming (GP) is a technique which uses an evolutionary metaphor

to automatically generate computer programs. Although GP proclaims to evolve

computer programs, historically it has been used to produce code which more

closely resembles mathematical formulae than the well structured programs that

modern programmers aim to produce. The objective of this thesis is to explore

the use of GP in generating high-level imperative programs and to present some

novel techniques to progress this aim.

A novel set of extensions to Montana’s Strongly Typed Genetic Programming

system are presented that provide a mechanism for constraining the structure of

program trees. It is demonstrated that these constraints are sufficient to evolve

programs with a naturally imperative structure and to support the use of many

common high-level imperative language constructs such as loops. Further simple

algorithm modifications are made to support additional constructs, such as vari-

able declarations that create new limited-scope variables. Six non-trivial prob-

lems, including sorting and the general even parity problem, are used to experi-

mentally compare the performance of the systems and configurations proposed.

Software metrics are widely used in the software engineering process for many

purposes, but are largely unused in GP. A detailed analysis of evolved programs

is presented using seven different metrics, including cyclomatic complexity and

Halstead’s program effort. The relationship between these metrics and a program’s

fitness and evaluation time is explored. It is discovered that these metrics are

poorly suited for application to improve GP performance, but other potential

uses are proposed.

ii



Acknowledgements

I have many people to thank for the part they have played in helping me through-

out the PhD process. The first thank you goes to my supervisor, Colin Johnson,

for the exceptional supervision and guidance, without which I am sure the jour-

ney would have been even more testing. I would also like to thank Alex Freitas

and David Barnes, for the formal role they have played on my panel and for the

questions they have asked, which have on more than one occasion helped to guide

my research to areas of higher fitness!

Throughout my studies at Kent I have been very fortunate to share an office

with some genuinely wonderful people. So, to the original occupants of S109B -

Lawrence, Laurence, Rob and Ahmed - I thank you for initially making me so

welcome and for the ever friendly and productive environment. Thank you also

to Patrick, for keeping me sane during my brief time in S15. Special thanks to

both Lawrence and Fernando, who have both at times been like unofficial mentors.

Thank you for the guidance, stimulating conversation and of course the ongoing

collaboration on the EpochX software.

Thank you, also, to all my family and friends, for putting up with me during

the low points, high points and the long periods of self-imposed reclusion. In

particular, to my parents who played a key role in my own evolutionary tale, not

to mention the continual support and encouragement they have always provided.

Also, thanks go to Mike for his willingness to read much of this thesis. Finally, a

huge thank you to Trish, for her unending patience - I am finished now, I promise!

iii



Contents

Abstract ii

Acknowledgements iii

List of Tables xiii

List of Figures xix

1 Introduction 1

1.1 Motivations for Evolving High-Level Imperative Programs . . . . 3

1.2 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background 9

2.1 Introduction to Genetic Programming . . . . . . . . . . . . . . . . 9

2.1.1 Representation . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.3 Fitness Evaluation and Selection . . . . . . . . . . . . . . 14

2.1.4 Genetic Operators . . . . . . . . . . . . . . . . . . . . . . 16

2.1.5 Data-types, Closure and Sufficiency . . . . . . . . . . . . . 19

2.2 Evolving Imperative Programs . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Tree-Based Genetic Programming . . . . . . . . . . . . . . 21

iv



2.2.2 Linear Genetic Programming . . . . . . . . . . . . . . . . 23

2.2.3 Grammar-Guided Genetic Programming . . . . . . . . . . 24

2.3 Strongly Typed Genetic Programming . . . . . . . . . . . . . . . 28

2.4 Search-Based Software Engineering . . . . . . . . . . . . . . . . . 30

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Methodology 33

3.1 General Configuration . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Software and Hardware . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Presentation of Results . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Test Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.1 Factorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.2 Fibonacci . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4.3 Even-n-parity . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.4 Reverse List . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.5 Sort List . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.6 Triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Strongly Formed Genetic Programming 44

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.1 Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.2 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.3 Crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Enhanced Iteration and Variable Assignment . . . . . . . . . . . . 51

4.4 Evolving High-Level Imperative Programs . . . . . . . . . . . . . 54

4.4.1 Polymorphism and Generic Functions . . . . . . . . . . . . 55

4.4.2 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4.3 Converting to Source . . . . . . . . . . . . . . . . . . . . . 62

4.5 Imperative Experiments . . . . . . . . . . . . . . . . . . . . . . . 65

4.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 65

v



4.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5.3 Example Solutions . . . . . . . . . . . . . . . . . . . . . . 71

4.6 A Reduced Search-Space . . . . . . . . . . . . . . . . . . . . . . . 73

4.7 Alternative Parameter Settings . . . . . . . . . . . . . . . . . . . 77

4.7.1 Code Block Size . . . . . . . . . . . . . . . . . . . . . . . . 77

4.7.2 Maximum Loop Iterations . . . . . . . . . . . . . . . . . . 79

4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 High-Level Imperative Extensions 82

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Limited Scope Variable Declarations . . . . . . . . . . . . . . . . 83

5.2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2.2 Syntax Updates . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.3 Modified Initialisation . . . . . . . . . . . . . . . . . . . . 87

5.2.4 Modified Mutation . . . . . . . . . . . . . . . . . . . . . . 89

5.2.5 Modified Crossover . . . . . . . . . . . . . . . . . . . . . . 89

5.2.6 Repair Operation . . . . . . . . . . . . . . . . . . . . . . . 91

5.2.7 New Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2.8 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2.9 Results & Discussion . . . . . . . . . . . . . . . . . . . . . 94

5.3 Multi-Variable Return . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6 An Analysis of GP with Software Metrics 112

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.3 Introduction to Software Metrics . . . . . . . . . . . . . . . . . . 114

6.4 Analysis of Genetic Programs . . . . . . . . . . . . . . . . . . . . 116

6.4.1 Explanation of Metric Charts . . . . . . . . . . . . . . . . 117

6.4.2 Program Tree Length . . . . . . . . . . . . . . . . . . . . . 119

vi



6.4.3 Program Tree Depth . . . . . . . . . . . . . . . . . . . . . 123

6.4.4 Number of Statements . . . . . . . . . . . . . . . . . . . . 125

6.4.5 Cyclomatic Complexity . . . . . . . . . . . . . . . . . . . . 128

6.4.6 Halstead’s Effort . . . . . . . . . . . . . . . . . . . . . . . 132

6.4.7 Prather’s Measure µ . . . . . . . . . . . . . . . . . . . . . 135

6.4.8 NPATH Complexity . . . . . . . . . . . . . . . . . . . . . 140

6.4.9 Summary of Analysis . . . . . . . . . . . . . . . . . . . . . 143

6.5 Comparing the Metrics . . . . . . . . . . . . . . . . . . . . . . . . 144

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7 Conclusions 152

7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.2 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

A Java Code Templates 158

Bibliography 160

vii



List of Tables

3.1 Listing of the control parameter settings that are used for all of the

six test problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 Type list for an example syntax, showing the data-type and node-

type constraints for each type of node . . . . . . . . . . . . . . . . 49

4.2 Type list for the structural nodes of the imperative syntax, showing

the data-type and node-type constraints for each type of node. d

indicates a pre-specified data-type and a Void data-type indicates

that no value is returned. . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Type list for the Statement nodes of the imperative syntax, show-

ing the data-type and node-type constraints for each type of node.

d indicates a pre-specified data-type and d[] indicates an array of

elements of the data-type d. A Void data-type indicates that no

value is returned. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Type list for the Expression nodes from the imperative syntax,

showing the data-type and node-type constraints for each type of

node. d indicates a pre-specified data-type and d[] indicates an

array of elements of the data-type d. . . . . . . . . . . . . . . . . 61

4.5 Example source code templates for the Java programming language,

where 〈child-n〉 is replaced by the source code for the node’s nth

child. A complete listing of templates for the Java programming

language is given in appendix A. . . . . . . . . . . . . . . . . . . . 64

viii



4.6 Example source code templates for the Pascal programming lan-

guage, where 〈child-n〉 is replaced by the source code for the node’s

nth child. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.7 Example source code templates for the Python programming lan-

guage, where 〈child-n〉 is replaced by the source code for the node’s

nth child. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.8 Listing of the control parameter settings used for SFGP on the

factorial problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.9 Listing of the control parameter settings used for SFGP on the

Fibonacci problem . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.10 Listing of the control parameter settings used for SFGP on the

even-n-parity problem . . . . . . . . . . . . . . . . . . . . . . . . 66

4.11 Listing of the control parameter settings used for SFGP on the

reverse list problem . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.12 Listing of the control parameter settings used for SFGP on the sort

list problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.13 Listing of the control parameter settings used for SFGP on the

triangles problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.14 Summary of the results of using SFGP to solve each of the test

problems with high-level imperative programs. Train% is the per-

centage of success on the training cases (as used for fitness) and

Test% is the percentage of runs that found a solution that gener-

alised to the test set. Effort is the required computational effort to

find a solution with 99% confidence and 95% CI is its confidence in-

terval. Evals is the number of program evaluations required to find

a solution with 99% confidence. The approach used to calculate

each of these values is described in detail in section 3.3. . . . . . . 68

ix



4.15 Summary of the results comparing SFGP to a system without node-

type constraints, shown in the rows labelled STGP. Train% is the

probability of success on the training cases (as used for fitness)

and Test% is the percentage of runs that found a solution that

generalised to the test set. Effort is the required computational

effort to find a solution with 99% confidence and 95% CI is its

confidence interval. Evals is the number of program evaluations

required to find a solution with 99% confidence. The approach

used to calculate each of these values is described in section 3.3. . 74

4.16 Summary of the results comparing code-block sizes of 2, 3 and

4. The Size column lists the number of statements to a code-

block. Train% is the percentage of success on the training cases

(as used for fitness) and Test% is the percentage of runs that found

a solution that generalised to the test set. Effort is the required

computational effort to find a solution with 99% confidence and

95% CI is its confidence interval. Evals is the number of program

evaluations required to find a solution with 99% confidence. The

approach used to calculate each of these values is described in detail

in section 3.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.17 Summary of the results comparing different maximum iteration set-

tings, as listed in the Its. column. Train% is the percentage of

success on the training cases (as used for fitness) and Test% is the

percentage of runs that found a solution that generalised to the test

set. Effort is the required computational effort to find a solution

with 99% confidence and 95% CI is its confidence interval. Evals

is the number of program evaluations required to find a solution

with 99% confidence. The approach used to calculate each of these

values is described in detail in section 3.3. . . . . . . . . . . . . . 80

4.18 Comparison of the mean time required to evaluate an individual

with maximum iterations settings of 50, 100 and 150 . . . . . . . 81

x



5.1 Type list for the declarative Statement node-types, showing the

required data-type and node-type for each type of node. d indicates

a pre-specified data-type and a Void data-type indicates no value

is returned. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2 Listing of the control parameter settings for SFGP with variable

declarations on the factorial problem . . . . . . . . . . . . . . . . 94

5.3 Listing of the control parameter settings for SFGP with variable

declarations on the Fibonacci problem . . . . . . . . . . . . . . . 95

5.4 Listing of the control parameter settings for SFGP with variable

declarations on the even-n-parity problem . . . . . . . . . . . . . 95

5.5 Listing of the control parameter settings for SFGP with variable

declarations on the reverse list problem . . . . . . . . . . . . . . . 95

5.6 Listing of the control parameter settings for SFGP with variable

declarations on the sort list problem . . . . . . . . . . . . . . . . . 96

5.7 Listing of the control parameter settings for SFGP with variable

declarations on the triangles problem . . . . . . . . . . . . . . . . 96

5.8 Summary of the results comparing SFGP with and without variable

declarations, where the Exp. column is the experimental setup

used. Train% is the percentage of success on the training cases (as

used for fitness) and Test% is the percentage of runs that found

a solution that generalised to the test set. Effort is the required

computational effort to find a solution with 99% confidence and

95% CI is its confidence interval. Evals is the number of program

evaluations required to find a solution with 99% confidence. The

approach used to calculate each of these values is described in detail

in section 3.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.9 Summary of repair operations, showing the proportion of program

trees produced by each of the genetic operators that required the

repair operation to fix one or more dangling variables . . . . . . . 103

xi



5.10 Summary of the results of using the MVR method of fitness eval-

uation. Rows labelled SFGP+MVR are where the MVR method

was used, while the SFGP rows show the results where MVR was

not used for comparison (the setup was otherwise identical). The

approach used to calculate each of these values is described in detail

in section 3.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.11 Summary of the results of using the MVR method of fitness eval-

uation with variable declarations. Rows labelled DECL+MVR are

where the MVR method was used, while the DECL rows show the

results where MVR was not used for comparison (the setup was

otherwise identical). The approach used to calculate each of these

values is described in detail in section 3.3. . . . . . . . . . . . . . 108

5.12 Listing of the average number of possible return variables per in-

dividual and the percentage of computational effort where MVR is

enabled by comparison with the case where MVR is not enabled.

A percentage of 75 indicates that the computational effort where

MVR was enabled was three quarters of what it was where MVR

was not enabled. . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.1 Pearson linear correlation coefficient between each metric and both

the fitness and the evaluation time. The p-value in all cases is

< 2.2×10−16, except for the Prather metric on the Parity problem,

where p = 4.3 × 10−6 for the fitness property and p = 0.8789 for

the time property. . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.2 Summary of NPATH execution path expressions, where NP (x) is

an application of NPATH on the component x. . . . . . . . . . . . 143

6.3 Correlation between software metrics, as calculated over all pro-

grams using Spearman’s rank correlation. The p-value in all cases

is < 2.2× 10−16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.4 Number of individuals in each group of metric values that solve all

training cases per 10,000 individuals . . . . . . . . . . . . . . . . . 147

xii



6.5 Proportion of programs which solve all training cases that also solve

all test cases, in each group of metric values . . . . . . . . . . . . 148

6.6 Mean software metric value for all programs on each problem with

the standard deviation. The standard deviation for Prather µ on

the even-n-parity problem was 4.77× 109. . . . . . . . . . . . . . 149

A.1 Complete listing of source code templates for the Java programming

language, where 〈child-n〉 is replaced by the source code for the

nth child, 〈data-type〉 is replaced by the data-type of the node and

〈data-type-n〉 is replaced by the data-type of the nth child. . . . . 159

xiii



List of Figures

2.1 Flowchart illustrating the main steps of the genetic programming

algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Example GP program tree representing the arithmetic expression

((2+x)∗(3−x)). It can be evaluated with a depth-first traversal of

the tree, with each node performing the associated operation upon

the results of evaluation of its subtrees. . . . . . . . . . . . . . . . 13

2.3 Example illustrating subtree crossover. Two parent programs are

selected from the population using a selection method which favours

fitter individuals. Subtrees are randomly selected in both parent

programs (as highlighted) and are exchanged to produce two new

child programs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Example illustrating subtree mutation. One parent program is se-

lected from the population using a selection method which favours

more fit individuals. A subtree in that program is randomly se-

lected (as highlighted) and is then replaced with a randomly gen-

erated subtree to produce a new child program. . . . . . . . . . . 18

2.5 Example computer program represented as both a concrete syntax

tree(CST) and an abstract syntax tree(AST). In the CST, the actual

syntax of the program can be read from left to right in the leaf

nodes. The AST uses a higher level of abstraction to represent the

semantics of the program. . . . . . . . . . . . . . . . . . . . . . . 26

xiv



3.1 Example performance curves for a set of runs. The P (M, i) curve

shows the cumulative success rate and the I(M, i, z) curve shows

the number of individuals that must be processed to find a solution

with 99% confidence. . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Example illustrating the steps of the SFGP grow initialisation pro-

cedure, using the syntax from table 4.1. The small, empty nodes

indicate nodes yet to be filled by the algorithm. . . . . . . . . . . 48

4.2 Example illustrating the SFGP subtree mutation operator . . . . 50

4.3 Example illustrating the SFGP subtree crossover operator. The

crossover point in the first parent is selected at random and the

crossover point in the second parent is selected from those with a

compatible data-type and node-type. . . . . . . . . . . . . . . . . 51

4.4 The imperative structure imposed on all program trees. All exper-

iments used CodeBlocks requiring 3 statement arguments, except

where otherwise stated. . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5 Example abstract syntax tree representing a conditional statement

as it would be represented in SFGP . . . . . . . . . . . . . . . . . 63

4.6 Performance curves for each of the test problems, where a high-

level imperative structure was enforced with SFGP. P (M, i) is the

success rate and I(M, i, z) is the number of individuals to process

to find a solution with 99% confidence. . . . . . . . . . . . . . . . 69

4.7 Performance curves for each of the test problems, where structural

constraints are omitted. P (M, i) is the success rate and I(M, i, z)

is the number of individuals to process to find a solution with 99%

confidence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1 Example illustrating the position of syntax updates, which are

shown as dotted branches labelled with the order they would be

applied. At each syntax update, the available syntax can be modi-

fied for the following nodes when traversed depth-first. . . . . . . 87

xv



5.2 Example subtree mutation where a dynamic syntax is supported.

The syntax updates prior to the mutation point are applied to

construct the syntax from which the subtree is created. . . . . . . 90

5.3 Example subtree crossover where a dynamic syntax is supported,

with crossover points highlighted in the parent programs. C2 de-

clares the V1 variable and C3 declares the V2 variable. The first child

program is left with 2 dangling variables because the declaration for

V1 is moved to the second program and the V2 variable is inserted

from the second program without its associated declaration. . . . 91

5.4 Performance curves for each of the test problems in the SFGP ex-

periment. With the exception of the curves for the Fibonacci prob-

lem, these are reproduced from chapter 4. P (M, i) is the success

rate and I(M, i, z) is the number of individuals to process to find

a solution with 99% confidence. . . . . . . . . . . . . . . . . . . . 100

5.5 Performance curves for each of the test problems in the LOOP

experiment. P (M, i) is the success rate and I(M, i, z) is the number

of individuals to process to find a solution with 99% confidence. . 101

5.6 Performance curves for each of the test problems in the DECL

experiment. P (M, i) is the success rate and I(M, i, z) is the number

of individuals to process to find a solution with 99% confidence. . 102

5.7 Performance curves for each test problem where the SFGP+MVR

experimental setup is used and MVR is enabled. P (M, i) is the

success rate and I(M, i, z) is the number of individuals to process

to find a solution with 99% confidence. . . . . . . . . . . . . . . . 107

5.8 Performance curves for each test problem where the DECL+MVR

experimental setup is used with variable declarations and MVR is

enabled. P (M, i) is the success rate and I(M, i, z) is the number

of individuals to process to find a solution with 99% confidence. . 109

xvi



6.1 Example metric chart, which shows the relationship between a met-

ric and either the fitness or evaluation time property of individuals

on a problem. The metric values are grouped along the x axis and

split into 5 bars representing 10 generations each, where the height

of the bars is for the fitness or evaluation time property. . . . . . 118

6.2 Example metric chart with generational data removed. Each hor-

izontal bar indicates the mean fitness or evaluation time of the

individuals in that group. The individuals are split in to groups

based on their value for the metric being studied, with each group

covering an equal range of metric values. . . . . . . . . . . . . . . 119

6.3 Example metric chart showing generational data with horizontal

(average) bars removed. Each group is divided in to 5 bars based

on the generation the individuals were discovered in. The first bar

in each group shows the average metric value for the individuals in

that group that were discovered in generations 1–10. . . . . . . . 120

6.4 Length × Fitness. Charts showing the relationship between the

program length metric and the fitness of individuals . . . . . . . . 121

6.5 Length × Time. Charts showing the relationship between the pro-

gram length metric and the time required to evaluate individuals . 122

6.6 Boxplot showing the distribution of program lengths for programs

that solved all the training cases on each of the test problems . . 123

6.7 Depth × Fitness. Charts showing the relationship between the

program depth metric and the fitness of individuals . . . . . . . . 124

6.8 Depth × Time. Charts showing the relationship between the pro-

gram depth metric and the time required to evaluate individuals . 125

6.9 Boxplot showing the distribution of depth values for programs that

solved all the training cases on each of the test problems . . . . . 126

6.10 Statements × Fitness. Charts showing the relationship between

the number of statements metric and the fitness of the individuals 127

xvii



6.11 Statements × Time. Charts showing the relationship between the

number of statements metric and the time required to evaluate

individuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.12 Boxplot showing the distribution of number of statement metric

values for programs that solved all the training cases on each of the

test problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.13 Cyclomatic × Fitness. Charts showing the relationship between

the cyclomatic complexity metric and the fitness of the individuals 130

6.14 Cyclomatic × Time. Charts showing the relationship between the

cyclomatic complexity metric and the time required to evaluate

individuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.15 Boxplot showing the distribution of cyclomatic complexity values

for programs that solved all the training cases on each of the test

problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.16 Effort × Fitness. Charts showing the relationship between the

program effort metric and the fitness of the individuals . . . . . . 133

6.17 Effort × Time. Charts showing the relationship between the pro-

gram effort metric and the time required to evaluate individuals . 134

6.18 Boxplot showing the distribution of program effort metric values

for programs that solved all the training cases on each of the test

problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.19 Prather × Fitness. Charts showing the relationship between the µ

metric and the fitness of the individuals . . . . . . . . . . . . . . . 137

6.20 Prather × Time. Charts showing the relationship between the µ

metric and the time required to evaluate individuals . . . . . . . . 138

6.21 Charts for the even-n-parity problem, showing the relationship be-

tween Prather’s measure µ metric and both the fitness and time

required to evaluate individuals, where outliers are removed . . . 139

xviii



6.22 Boxplot showing the distribution of µ values for programs that

solved all the training cases on each of the test problems. As ex-

plained in the text, the prather metric produces some extreme val-

ues for µ on the even-n-parity problem, so on this problem only,

outliers have been removed. . . . . . . . . . . . . . . . . . . . . . 140

6.23 NPATH × Fitness. Charts showing the relationship between the

NPATH metric and the fitness of the individuals . . . . . . . . . . 141

6.24 NPATH × Time. Charts showing the relationship between the

NPATH metric and the time required to evaluate individuals . . . 142

6.25 Boxplot showing the distribution of NPATH metric values for pro-

grams that solved all the training cases on each of the test problems 144

xix



List of Algorithms

2.1 Example grammar in backus-naur form (BNF) notation, expressing

the syntax of simple arithmetic expressions . . . . . . . . . . . . . 25

4.1 High-level pseudocode of the initialisation procedure in SFGP. dt,

nt and depth are the required data-type, node-type and maximum

depth. The filterNodes(S, dt, nt, depth) function is defined to re-

turn a set comprised of only those nodes in the available syntax,

S, with the given data-type and node-type and with non-terminals

removed if depth = 0. . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Java source code generated from the AST in Figure 4.5 using the

source code templates for the Java programming language, listed

in Table 4.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Pascal source code generated from the AST in Figure 4.5 using the

source code templates for the Pascal programming language, listed

in Table 4.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Python source code generated from the AST in Figure 4.5 using

the source code templates for the Python programming language,

listed in Table 4.7. . . . . . . . . . . . . . . . . . . . . . . . . . . 63

xx



5.1 High-level pseudocode of the SFGP initialisation procedure with

modifications to support variable declarations. dt, nt and depth

are the required data-type, node-type and maximum depth. The

filterNodes(S, dt, nt, depth) function is defined to return a set com-

prised of only those nodes in S with the given data-type and node-

type, and with non-terminals removed if depth = 0. The function

updateSyntax(S, r, i) performs the task of updating the available

syntax, S, as defined for the ith position of the node-type r. . . . 88

xxi



From so simple a beginning endless forms

most beautiful and most wonderful have been,

and are being, evolved.

CHARLES DARWIN



Chapter 1

Introduction

Genetic Programming (GP) [32, 87] is a technique which uses an evolutionary

metaphor to automatically generate computer programs. Biological evolution has

demonstrated itself to be an excellent optimisation process, producing structures

as diverse as a snail’s shell and the human eye, each life form filling a niche to

which they are remarkably well adapted. Evolutionary algorithms aim to replicate

this success, to produce solutions to a specified problem. The GP evolutionary

algorithm uses a population of individuals that represent computer programs, with

a well defined encoding, which are progressively improved by applying operations

that are based on biological reproduction. Although GP proclaims to evolve

computer programs, historically it has been used to produce code which more

closely resembles mathematical formulae than the well structured programs that

programmers aim to produce. The objective of this thesis is to explore the use

of GP in generating high-level imperative programs and to present some novel

techniques to progress this aim.

Many of today’s most commonly used programming languages can be described

as both high-level and imperative, such as C, PHP and Javascript. Even object-

oriented languages such as Java and C++ have an imperative core. However,

evolving high-level imperative programs with GP is challenging. High-level code

is required to abide by strict and often complex structural rules. Furthermore,

1
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programs typically make use of constructs such as iteration and variable decla-

rations which add additional complexity. Despite these difficulties, the potential

reward of being able to automatically generate code that is comparable to that

produced by human programmers make this a worthwhile direction for research.

In this thesis, it is demonstrated that a set of simple extensions to a commonly

used variant of GP can allow it to support the evolution of program trees with

a high-level imperative program structure. Experiments are conducted which ex-

plore the performance advantages and the impact on the search-space of these

extensions. Further modifications are also presented with the aim of supporting

program constructs that declare limited-scope variables. A number of new types

of non-terminal node are proposed which make use of this, including some that

represent loops which more closely resemble iteration as used by human program-

mers. The use of these new nodes is experimentally compared to non-declarative

alternatives and there is some discussion of the advantages.

As the scale and complexity of the programs that GP can evolve increases,

the more human programming methods become relevant to the GP algorithm.

Similarly, the evolution of high-level imperative programs raises the possibility of

using tools and techniques associated with these languages. In this thesis, the

application of one such tool is considered: software metrics. Software metrics

have found many applications throughout the software development process and

it is possible that they may have applications in the automatic development of

software with techniques like GP. Previous research in GP has only made very

limited use of simple measures such as program length or depth. In this thesis,

a detailed analysis of programs evolved with GP is conducted using a series of

popular software metrics and potential applications are discussed.
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1.1 Motivations for Evolving High-Level

Imperative Programs

Koza listed seven reasons for choosing to evolve programs in the Lisp programming

language [87, chapter 4.3]. The first six of these reasons all focus on aspects of

Lisp that make it a convenient choice and easier to implement. They include

reasons such as a Lisp program being equivalent to its own parse tree and point

to features such as the built-in EVAL and PRINT functions, which make it simple

to evaluate a Lisp program that was created and print it presentably. Choosing

to use Lisp because of the ease of implementation is a reasonable reason for early

work with genetic programming, but it is not necessarily the best choice for all

applications now.

The primary motivation for evolving high-level imperative programs is their

popularity. All of the top ten programming languages listed by the TIOBE Index

as the most popular can be described as imperative [156]. The software develop-

ment industry overwhelmingly favours imperative programming languages. For

many applications of GP, this is irrelevant. But, for the development of software,

the advantages of being able to produce code that is comparable to that produced

by human programmers is significant. In a scenario where GP is used to generate

fragments of code or complete modules of a larger software system, this would

allow automatically generated code to more easily interact with existing modules

and to be tested and maintained by human programmers alongside their existing

codebase. This point is well demonstrated by the success of recent work using GP

to perform tasks such as bug-fixing with commercial imperative programs [164].

Koza’s seventh reason for choosing Lisp was that a large range of programmer

tools were available for it. The popularity of imperative languages such as Java,

C/C++, PHP and Javascript, means that all have received substantial invest-

ment, with a vast range of tools available and so this reason very much applies to

these imperative languages as well.
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Even without applications to software development, there are still motivations

for researching the evolution of imperative programs. Often, the Lisp programs

produced with tree-based GP are deeply nested and can be incomprehensible. But

the clearer structure and the wide familiarity with imperative programs could po-

tentially make them easier to read and reason about. There is also the possibility

that the more structured programs could result in performance advantages and

the use of high-level imperative programming constructs, such as for-loops and

for-each-loops, have much potential for finding smaller and more general solu-

tions.

1.2 Terminology

Throughout this thesis, a number of terms are used which may be unfamiliar or

ambiguous for the reader. The following definitions are used:

− Node – programs are represented as trees composed of nodes, where each

node represents a programming construct.

− Arity – the number of child nodes a node has or requires. A node of arity 0

is a terminal or leaf node.

− Terminal set – the set of nodes supplied to the system that require no inputs

and so will have no child nodes (arity 0).

− Non-terminal set – the set of nodes supplied to the system that require one

or more inputs (arity >0). This term is preferred to the widely used term,

function set, because in most cases the elements of the set are components

of an imperative style, not functions.

− Syntax – there is often no need to distinguish between the terminal and

non-terminal sets, so we frequently use the term syntax to refer to the union

of these two sets.
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1.3 Contributions

The following major contributions are made by this thesis:

− Extensions to an existing GP system to evolve programs with stricter con-

straints. Current versions of Strongly Typed Genetic Programming support

only data-type constraints. The proposed modifications to this system sup-

port a high degree of structural constraint in the classic tree representation.

− Application of new structural constraints to evolve high-level imperative

program trees. Demonstrations are made of how a high-level imperative

program structure can be enforced on programs evolved with a tree-based

representation and how standard imperative programming constructs can

be supported.

− Support for the evolution of programs with limited-scope variable declara-

tions. Modifications are proposed to allow a dynamic syntax, where the

available terminals and non-terminals are modified by a program. New pro-

gram constructs are proposed that create and add variables to the available

syntax and these are experimentally tested.

− Simple performance enhancement for when evolving programs with a high-

level imperative structure. A trivial modification is made to the fitness

evaluation procedure which provides a significant performance improvement

under specific circumstances. The extent of the improvement is experimen-

tally tested.

− Analysis and application of software complexity metrics to evolved program

code. A detailed analysis is presented of programs generated with GP us-

ing software complexity metrics. Seven different metrics are examined and

compared. Potential applications of software metrics in GP are discussed.
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1.4 Thesis Overview

Chapter 2 gives the background to the evolution of high-level imperative programs.

It provides an overview of the genetic programming algorithm and discusses some

of the key issues in current GP research. The chapter also outlines some of the

common program representations in use and in particular covers existing research

into evolving imperative programs in each of the representations.

Chapter 3 outlines the common methodologies used throughout this thesis. A

set of six test problems are described, as used in the experimental work reported

in this thesis, along with a listing of the training and test data used. Some existing

attempts at solving each of the problems are reviewed. The chapter also describes

the general approach used to conduct experiments and present the results.

Chapter 4 describes a novel method for introducing structural constraints into

a tree-based GP system. It is demonstrated how this system can be used to

support the evolution of programs with new programming constructs and how the

shape of the program trees can be constrained to a natural high-level imperative

structure. The performance impact of using this structure is experimentally tested

and a comparison is made to an equivalent setup without structural constraints.

The use of the structural constraints is shown to reduce the search-space and to

have a mostly positive impact on performance.

Chapter 5 outlines two extensions to the original system that was described

in chapter 4 to specifically target the evolution of high-level imperative programs.

The first adds support for a dynamic syntax which allows the evolution of pro-

grams with constructs that declare limited-scope variables. This is experimentally

shown to have a problem dependent impact upon performance, but discussion

focuses on other benefits, such as reducing the need for insight into the solution

space. The second extension is a simple method to improve the efficiency of fitness

evaluation by evaluating multiple variants of the same program. This technique

is shown to significantly improve the performance of the algorithm where it can

be applied.
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Chapter 6 provides a detailed analysis of evolved programs with software met-

rics. Results are presented which compare seven common software metrics, in-

cluding complexity metrics such as cyclomatic complexity and commonly used

GP program measures such as program depth. The relationship between these

metrics and and a program’s fitness and evaluation duration is explored and po-

tential applications of software metrics in GP are considered. It is found that

these metrics are of little value for application to improve the success rates of GP.

Chapter 7 summarises the results of this thesis and the contributions made.

Conclusions are drawn based upon analysis of the presented research and areas

for future work are discussed.

Appendix A provides a complete listing of source code templates to convert a

program tree evolved with the system described in chapter 4 to valid Java syntax.

1.5 Publications

During the course of this research a number of contributions were made to the

genetic programming literature.

Peer-Reviewed Conference Papers

− T. Castle and C.G. Johnson. Positional Effect of Crossover and Mutation

in Grammatical Evolution. In Proceedings of the 13th European Conference

on Genetic Programming (EuroGP 2010), pages 26–37. Lecture Notes in

Computer Science 6021, Springer, April 2010.

− T. Castle and C.G. Johnson. Evolving High-Level Imperative Program Trees

with Strongly Formed Genetic Programming. In Proceedings of the 15th

European Conference on Genetic Programming (EuroGP 2012), pages 1–12.

Lecture Notes in Computer Science 7244, Springer, April 2012.
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− T. Castle and C.G. Johnson. Evolving Program Trees with Limited Scope

Variable Declarations. In Proceedings of the IEEE Congress on Evolutionary

Computation (CEC 2012), pages 1–8. IEEE Press, June 2012.

Workshop Contributions

− F.E.B. Otero, T. Castle and C.G. Johnson. EpochX: Genetic Programming

in Java with Statistics and Event Monitoring. In Proceedings of the 14th

Annual Conference Companion on Genetic and Evolutionary Computation

(GECCO 2012), pages 93–100. ACM Press, July 2012.

− L. Vaseux, F.E.B. Otero, T. Castle and C.G. Johnson. Event-based Graph-

ical Monitoring in the EpochX Genetic Programming Framework. In Pro-

ceedings of the 15th Annual Conference Companion on Genetic and Evolu-

tionary Computation (GECCO 2013). ACM Press, July 2013.



Chapter 2

Background

2.1 Introduction to Genetic Programming

Evolutionary Algorithms (EA) are a class of optimisation algorithm that use the

metaphor of Darwinian evolution to generate solutions to a predefined problem.

A varied population of potential solutions to a problem is maintained and pro-

gressively improved by a process of selection, modification and reproduction. The

use of Evolutionary Algorithms to evolve computer programs using a flexible tree

representation was first suggested by Cramer [32]. This work was extensively ex-

panded by Koza [85,87], who initiated and popularised the term Genetic Program-

ming (GP). Since Koza’s initial work, a vast range of modifications and extensions

have been applied to his algorithm, some of which will be described in the follow-

ing sections. We follow the trend of using the term Genetic Programming to refer

to all examples of evolutionary algorithms applied to computer programs, regard-

less of program representation. To distinguish Koza’s specific example of GP, we

refer to it as standard GP. Standard GP represents individual programs as trees

and follows the basic algorithm shown in the flowchart in Figure 2.1 to evolve the

population. The GP algorithm is non-deterministic and is not guarenteed to find

an optimal solution.

9
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The GP algorithm is controlled by a number of configuration parameters which

guide its progress and determine its capability to solve a given problem. The

principal parameters used are:

− Population size – the number of individuals to use within each generation

of the algorithm.

− Maximum generations – termination criterion based upon the number of

iterations of the algorithm performed.

− Initialisation - the random program construction procedure to use for gen-

erating the first population of individuals.

− Selection – the selection mechanism for choosing individuals to undergo

genetic operators.

− Genetic operators – one or more operators able to produce new program

trees based upon one or more existing programs.

− Operator probability – the probability of performing each genetic operator.

− Maximum depth – the maximum depth allowable for program trees created

by the initialisation procedure and genetic operators (sometimes a separate

initial-maximum-depth setting is used for the first population).

− Syntax (terminal and non-terminal sets) – the available components that

programs may be composed of.

− Elites – whether the practice of elitism should be used and the number of

elites to be automatically placed into the next population each generation.

An initial population of computer programs is randomly generated, with each

program in the population composed of components taken from the available syn-

tax supplied in the terminal and non-terminal sets. Each of these programs is

evaluated according to some quantitive measure of quality and assigned a fitness
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Create Initial
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Evaluate Fitness

Termination
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Choose Genetic
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Perform Genetic
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Figure 2.1: Flowchart illustrating the main steps of the genetic programming
algorithm
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score. The fitness score is typically a numeric value which must either be max-

imised or minimised by the algorithm1. A new population of computer programs

is created from the previous population, by applying a number of genetic operators

to the best programs, selected probabilistically based upon their fitness. These

steps are repeatedly performed until some termination criterion is satisfied, such

as a solution is found, or a maximum number of generations has been reached.

Since the algorithm is inherently stochastic, no guarantee can be made about

the quality of its results. However, this random quality is the source of its key

strength, that it is potentially capable of escaping local optima to provide a good

heuristic method for searching complex solution spaces.

2.1.1 Representation

Standard GP represents each individual candidate solution as a program tree,

describing Lisp S-expressions. Although programs in virtually all programming

languages can be described using trees, the simple structure of Lisp S-expressions

are very naturally represented as a tree. Each leaf node in a program tree rep-

resents a variable or a constant and each non-leaf node represents a function.

Koza’s terminology refers to these as terminals and functions, but this could lead

to confusion when discussing imperative programs, so the terms terminal and

non-terminal are preferred in this thesis and the term syntax is used to apply to

the union of these two sets of nodes. Figure 2.2 shows an example program tree

which represents the expression ((2 + x) ∗ (3 − x)), or (∗ (+ 2 x) (− 3 x)) when

expressed using the prefix notation more typical for S-expressions.

The evaluation of a program tree occurs with a depth-first traversal of the tree.

Starting with the root node, each node’s arguments must first be evaluated, down

to terminal nodes which when evaluated return their value. Each non-terminal

node uses its arguments, performs some operation and then returns a value as

1minimisation is used in all cases throughout this thesis.
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*

+

2 x

-

3 x

Figure 2.2: Example GP program tree representing the arithmetic expression
((2+x)∗ (3−x)). It can be evaluated with a depth-first traversal of the tree, with
each node performing the associated operation upon the results of evaluation of
its subtrees.

input to its parent node. The result of evaluating the root node is returned as the

result of the program tree.

Other representations have been used and gained some popularity. Linear

GP [17, 113] represents individuals as a sequence of instructions, graph-based

GP [145,153] uses potentially cyclical graph structures and grammar-guided GP [105,

121, 166] uses concrete syntax trees derived from a language grammar. Some of

these representations are described in detail later in this chapter.

2.1.2 Initialisation

The initial population of individuals is constructed using an initialisation proce-

dure that is capable of producing random tree constructions from the available

syntax specified in the terminal and non-terminal sets. The most commonly used

initialisation method is ramped-half-and-half, as introduced by Koza [87]. It uses

two tree generation methods, full and grow, which are alternately employed to con-

struct programs to a maximum depth that is gradually increased from some min-

imum value up to the maximum allowable depth. The full initialisation method

constructs full program trees where all branches extend to the same maximum

allowable depth. Program trees that are grown, have branches that may extend

to any depth within the maximum allowable setting. The ramped-half-and-half

technique is intended to increase population diversity and Koza reinforced this by

ensuring that no syntactically duplicate programs are added to the initial popu-

lation.
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Numerous alternative initialisation procedures have been proposed and are of-

ten claimed to be superior to ramped-half-and-half [14,72]. However, a comparison

of different initialisation procedures by Luke [96] found little if any fitness advan-

tage was gained by using these alternative approaches. One key advantage that

ramped-half-and-half holds in practice is simplicity, but it does provide little con-

trol over the tree construction in comparison to these other methods. Ultimately,

different tree generation methods perform better on different problems [130].

Studies into the effect of diversity in GP [20,57] imply that increased diversity

in the exploratory phase of the algorithm, including initialisation, is important

for evolutionary progress. This does supply some support for the ramped-half-

and-half measure, but it is important to be aware that population diversity can

be measured in many different ways. In particular, it can be based upon either

syntactic or semantic traits. Ramped-half-and-half ensures a degree of syntactic

variety, but it is entirely possible that many of the programs generated may be

semantically identical. Other authors have sought to increase behavioural diver-

sity in the initial population [12] and found this to be beneficial to both success

rates and the required computational effort.

2.1.3 Fitness Evaluation and Selection

Having been randomly constructed with no intelligent thought to solving the given

problem besides in the selection of the control parameters, the initial population is

likely to contain programs which are very poor solutions. However, it is expected

that some individuals may perform slightly less poorly than others. The quality of

programs are evaluated using a fitness function and typically allocated a numeric

fitness score. In GP this commonly involves evaluating each program on multiple

training cases in order to judge the program’s ability to correctly process a range

of inputs.

It is widely reported that program evaluation is the most time consuming ele-

ment of the GP algorithm [62,100,134]. This is unsurprising since it is not unusual
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for several million program evaluations to be required in the course of identify-

ing one complete solution. Therefore, program evaluation has frequently been

identified as a key step to undergo performance tuning. Teller and Andre [152]

proposed a sophisticated algorithm they called Rational Allocation of Trials, for

identifying the minimum number of fitness cases per program that are required.

Other techniques include caching of subtree evaluations, where subtrees are likely

to reappear again and again throughout a population [28] and fitness approxima-

tion, where only a small proportion of individuals are evaluated in the normal way,

while others are assigned a fitness which is estimated based upon more cheapily

calculated metrics such as the average fitness of its parents [74].

One of the strengths of the GP algorithm is that it is particularly well suited

to parallelisation. It is normally the case that each program is evaluated indepen-

dently from all others (exceptions to this include co-evolutionary approaches [86])

and so the evaluation of an entire population may be split across multiple proces-

sors [127], machines [150] or even continents [26]. A recent trend is the application

of the many processors often found in graphics processing units (GPUs) to sci-

entific computation and a number of studies have looked to apply mass market

GPUs to improve the performance of GP evaluation [11,25,62].

As with biological evolution, the best individuals are allowed to reproduce,

creating new individuals, while the weaker individuals die out. Some form of se-

lection method is used to probabilistically choose individuals from the population

to undergo genetic operators with a bias towards those of better fitness. The ex-

tent of this bias determines the degree of selection pressure. Too much selection

pressure degrades the evolutionary algorithm into a simple hill-climber, but too

little selection pressure leads to an undirected search of the search-space. Some

of the more established selection methods include fitness-proportionate, rank and

tournament selection [87, chapter 6.4]. Tournament selection works by randomly

plucking x individuals from the population to take part in a tournament, with the

best individual in that tournament selected. Varying the value of x provides a
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simple mechanism for modifying the level of selection pressure. Also, since tour-

nament selection only considers whether one individual is better than another,

not the degree to which it is better, it provides a constant selection pressure that

cannot be excessively biased towards one substantially better individual. This is

important to avoid the population being overwhelmed by one individual.

2.1.4 Genetic Operators

Two main genetic operators are used: crossover and mutation based on sexual and

asexual reproduction respectively. Crossover operators typically require two par-

ent individuals to be selected from the existing population and produce two new

child programs to be inserted into the next population, while mutation operators

involve the manipulation of just one program. Wide variations in the implemen-

tation of genetic operators are possible and they are heavily dependent upon the

representation in use. Subtree crossover is commonly used with tree represen-

tations. Two individuals are selected from the population using some selection

measure, then undergo an exchange of genetic material. A node is then randomly

selected in each of the individuals’ program trees and the subtrees rooted at those

two points are swapped.

The justification for subtree crossover is that some subtrees may encapsulate

useful behaviour, which when transferred to a new individual may benefit that

program [107]. This is based upon the idea of building blocks, adopted from genetic

algorithms [54,69]. However, it has been suggested that crossover may in fact be

little more than a form of macro-mutation [7]. It is certainly true that crossover

operations, as with mutation operations, are largely destructive [75,116]. That is,

a high proportion of genetic operations result in reduced fitness from the parents

to their children, or otherwise have no impact upon fitness. The destructive effect

of crossover can be reduced with context-aware crossover [101], which replaces the

random selection of crossover points with a more measured approach, whereby a

subtree is inserted into all possible locations to identify the best position. The
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Figure 2.3: Example illustrating subtree crossover. Two parent programs are
selected from the population using a selection method which favours fitter indi-
viduals. Subtrees are randomly selected in both parent programs (as highlighted)
and are exchanged to produce two new child programs.

authors claim that this sufficiently improves the performance of the algorithm to

warrant the additional computational expense.

Subtree mutation operates similarly to subtree crossover. One individual se-

lected from the population undergoes the operation, with a node in its program

tree selected at random. The subtree rooted at this node is then replaced with a

newly generated subtree, constructed using some form of initialisation procedure.

Different rates of each genetic operator may be used, so that more of a population

is produced by one operator than another. Common practice in the GA litera-

ture is to predominately use crossover. Koza advocated similar practice. In fact,

much of Koza’s work uses no mutation operator at all. A thorough comparison

of subtree crossover and subtree mutation was performed in [98], which demon-

strated that subtree crossover performed better when larger population sizes were

used, but that subtree mutation outperformed subtree crossover in some cases



CHAPTER 2. BACKGROUND 18

-

*

x +

1 y

*

x y

(a) Parent program.

+

x x

(b) Random subtree.

-

*

x +

x x

*

x y
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Figure 2.4: Example illustrating subtree mutation. One parent program is selected
from the population using a selection method which favours more fit individuals. A
subtree in that program is randomly selected (as highlighted) and is then replaced
with a randomly generated subtree to produce a new child program.

with smaller populations. Variations of subtree crossover and subtree mutation

are used in much of the work throughout this thesis.

A desirable trait of genetic operators in all evolutionary algorithms is that

they should exhibit high locality; small genotypic changes should result in simi-

larly small changes in the phenotype and the fitness of the individuals [137, 138].

This allows the algorithm to more smoothly navigate the search space. This is

more difficult to enforce in systems that use separate genotype and phenotype rep-

resentations such as Grammatical Evolution [21, 23, 139]. Other operators have

been designed that seek to increase locality [158] and these have been demon-

strated to improve performance and reduce bloat. The term bloat is used to refer

to the often seen characteristic of GP runs where the average size of individuals
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increases as the run progresses and is an issue that has received substantial inter-

est in the GP literature. Discussions of bloat revolve around the appearance of

unused or unnecessary fragments of code known as introns. Techniques for reduc-

ing bloat are varied, but many focus on the use of genetic operators designed for

the purpose [90,97,154].

2.1.5 Data-types, Closure and Sufficiency

Because of the random nature of the construction and manipulation of program

trees, some consideration must be given to the available syntax, to ensure that

all program trees are valid. The syntax may include functions such as arithmetic

operations (+, −, ∗, /), boolean operations (AND, OR, NOT ) and conditional

operators (IF , IF − ELSE). If all possible combinations of these functions are

to be allowed, then some form of procedure needs to be in place to handle the

potential mismatch of data-types. Koza’s solution was the closure property, which

requires each function node in the syntax to be designed so that it can work with

any possible set of inputs that it may receive. For example, a function node which

performs a greater-than comparison of two integer values can be defined to return

+1/-1 instead of true/false boolean values, so its output would be valid input to

an arithmetic function. Some functions may also require protection from specific

values, for example division by zero has no sensible result, so some integer value

(typically +1 or 0) is designated as the result of this expression.

The use of the closure property requires some substantial engineering of the

syntax in many cases. Alternative solutions include discarding or penalising indi-

viduals that do not evaluate correctly, but these are rarely used unless the closure

property is difficult to impose. More elegant solutions have since been proposed to

overcome many of the issues by enforcing data-type constraints to maintain valid

programs with mixed data-types [13, 109, 177]. These will be discussed in more

detail in section 2.3, in relation to their use in evolving imperative programs.

A second consideration in the selection of terminals and non-terminals for the

syntax is the sufficiency property. The search space is comprised of all possible
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program trees that can be created by compositions of the available syntax. So, if

no solution can be described with the components available in the syntax, then

no solution can ever be found; the syntax is insufficient. Designing the syntax

to be sufficient to solve a given problem requires a certain level of insight into

what a solution may look like. The difficulty of this task is problem dependent

and not always trivial. A related issue is that of extraneous components, where

the syntax contains variables or non-terminals that are not required for solving

the problem. Each additional component supplied increases the size of the search

space exponentially and so the effect is significantly reduced success rates and

increased computational effort, although the degradation is found to be linear

rather than exponential [87].

2.2 Evolving Imperative Programs

The GP literature is dominated by the generation of functional Lisp programs.

Koza lists seven reasons for his choice of using Lisp [87], all of which revolve

around the idea that the features of the Lisp language make it easier to evolve

than the alternatives. But an easier implementation, does not necessarily mean

better or more useful programs. In contrast, the vast majority of computer pro-

grams written by human programmers today are written in high-level imperative

programming languages such as C/C++, Java and Python. So, for an automatic

programming system to be useful for the development of software, it should be

capable of generating high-level imperative code. Most languages described as im-

perative share five features: assignment, variable declaration, sequence, test and

loop [40]. However, there are some substantial challenges involved with evolving

programs with these features using GP, including:

− Handling mixed data-types

− Supporting limited scope variables

− Supporting complex constructs such as loops
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− Maintaining a sequential structure

The rest of this section will discuss some of the existing work into evolving im-

perative programs using some of the more common program representations, with

reference to how they approach some of these challenges.

2.2.1 Tree-Based Genetic Programming

Although the majority of the work presented by Koza [87] made use of a complex

nesting of Lisp S-expressions, he did experiment with the use of a more imperative

style, such as in solving the Artificial Ant problems. On these problems, evolved

programs were composed of instructions strung together with ProgN nodes, where

each instruction enacts a side-effect upon external elements (an ant within a 2-

dimensional environment), rather than returning a value. Although using an

imperative style, this work neglects to use mixed data-types or any of the standard

high-level programming constructs such as loops. The imperative structure is also

rather superficial, with ProgN nodes introducing a sequential ordering without a

control structure that corresponds to any standard imperative construct [104].

In general, the benchmark problems that have been widely used in the GP

literature have been expressed so as to avoid the need for imperative constructs.

For example, the Artificial Ant problems used by Koza and since by many others,

prescribe that the program controlling the ant should be executed multiple times

until a set number of time steps is used up. This builds the looping concept into

the problem, rather than requiring it of the solution. Another technique commonly

used, is to supply specially crafted functions, such as an if-food-ahead node, which

will conditionally execute a number of instructions if food is in the facing cell. No

such construct exists in any general purpose programming languages, but in this

case the problem of mixed data-typing is side-stepped.

Koza [87] suggested an approach for adding additional constraints for handling

multiple data types with what he described as constrained syntactic structures.

These constraints were imposed with a set of rules defined for each non-terminal
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stating which other terminals or non-terminals may be used as its children. The

generation of new individuals and genetic operators were modified to support

the rules throughout the algorithm. These extensions were demonstrated as a

way of finding solutions to symbolic regression problems with multiple dependent

variables, where the result can be returned as an ordered list.

Other researchers have proposed more powerful mechanisms for overcoming

the closure requirement. The most notable of these is Strongly Typed Genetic

Programming (STGP) [109] which introduces explicit data-types that each termi-

nal and non-terminal are required to declare and which an enhanced algorithm is

able to enforce. STGP is of special relevance to this thesis so will be described in

greater detail in section 2.3. Other similar efforts include PolyGP [30,177], which

provides a polymorphic typing system using a parse tree syntax based upon λ-

calculus. The authors assert that PolyGP is superior to STGP because it does

away with the lookup table required for tree creation and because it is able to

support higher-order functions which they claim STGP is unable to (in fact Mon-

tana describes how STGP can evolve and use higher-order functions in his paper).

Binard and Felty [13] proposed a similar system, System F, also based upon λ-

calculus which was intended to improve upon PolyGP by removing the need for a

type unification algorithm by annotating terms in place with all necessary infor-

mation. They claim that System F has better support for recursion and is able

to evolve new types alongside other program elements. Both PolyGP and System

F use an expression-based approach which makes them inherently functional in

nature and unsuitable for representing the high-level imperative programs with

which this thesis is concerned. The Strongly Typed Evolutionary Programming

System (STEPS) [78] is another modified form of STGP that was proposed for the

generation of functional logic programs in the Escher programming language. It

has primarily been used by Kennedy for tackling concept learning problems. Spe-

cialised genetic operators ensure the evolved programs are variable consistent as

well as type consistent. Local variables are given restricted scope and are required

to be used once quantified.
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The data-type constraints enforced by strongly typed evolutionary systems

go some of the way to supporting the restrictions required for evolving high-

level imperative programs, but none of the systems mentioned above include any

explicit mechanism for constraining the structure of program trees in the way

that is necessary. One particularly popular way of constraining the structure

of solutions in an evolutionary system is with the use of grammars. Grammar

guided approaches to GP are discussed in 2.2.3. Techniques based upon the more

standard tree-based GP are less established. McGaughran and Zhang [104] used

a tree based representation to generate imperative (non-object oriented) C++

programs. They enforced an imperative structure by chaining statements together

to form a sequential ordering for execution.

2.2.2 Linear Genetic Programming

Some of the earliest attempts at evolving imperative programs were with a linear

representation [17, 113]. In linear GP, programs are comprised of a sequence of

either machine code or interpreted higher-level instructions that manipulate the

value of machine registers. At the lowest level, almost all computer architectures

represent programs as sequences of instructions that are executed consecutively, so

intuitively it is a sensible form to represent programs under evolution. Programs

are initialised as random constructions from the target processor’s instruction set

and manipulated by genetic operators that exchange fragments of code between

programs. The operators would normally be constrained to ensure crossover points

only occur at word boundaries and that only a restricted set of instructions from

the instruction set may appear, in the same way that only a restricted syntax is

made available in standard GP.

The primary incentive for using linear GP is faster execution speed, since the

programs may often be executed directly on hardware with little or no interpre-

tation. In order to achieve this, each instruction should consist of a machine code

instruction for a real computer. Crepeau [34] generated code for the Z80 and



CHAPTER 2. BACKGROUND 24

Nordin [113] used his CGPS system to evolve RISC code for the SUN SPARC ar-

chitecture and later CISC code on Intel’s x86 [115]. CGPS (later AIM-GP), was

shown to be approximately 1000 times faster than interpreted GP representations

at evaluating individuals.

Although beneficial in terms of speed, the concern with evolving machine code

instructions is that the solution programs are closely tied to that specific architec-

ture. However, there is some suggestion that using an interpreted form of linear

GP can still be more efficient than an interpreted tree-based system [130]. A

linear program is also potentially easier to analyse for purposes such as identify-

ing and removing ineffectual instructions (introns) [16]. In other studies [67, 99],

byte code has been evolved for the Java virtual machine, making greater platform

independence possible.

2.2.3 Grammar-Guided Genetic Programming

The term grammar-guided genetic programming refers to a number of different

techniques for introducing language grammars into the evolutionary algorithm,

such that the syntactic structure of programs may be constrained [105]. This

makes them very suitable for introducing both data-type constraints and the nec-

essary structural constraints required by high-level imperative programs. In the

rest of this section, some of the most popular grammar-guided GP approaches will

be outlined, as well as those attempts at evolving programs with an imperative

structure that have used such approaches.

Whigham proposed context-free grammar genetic programming (CFG-GP) [166],

which makes use of grammars using the Backus-Naur Form (BNF) notation. BNF

grammars are context-free, so are unable to contain any of the formal semantic

constraints of a language. An example BNF grammar is shown in Algorithm 2.1.

Whigham’s modifications from the standard GP algorithm, construct solutions

which are represented as parse trees by stepping through the grammar, randomly

selecting from the available set of productions in each rule. All solutions are thus

created valid according to the grammar. This syntactic validity is maintained by
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genetic operators which replace subtrees with parse trees rooted at the same non-

terminal, either randomly generated in the same way as the initial construction

(for mutation) or copied from another individual in the population (crossover).

An additional benefit of the use of grammars that Whigham explores in his work

is modifying the grammar to bias specific constructs.

Algorithm 2.1 Example grammar in backus-naur form (BNF) notation, express-
ing the syntax of simple arithmetic expressions
〈expr〉 ::= ’(’ 〈expr〉 〈op〉 〈expr〉 ’)’
| 〈var〉
| 〈literal〉

〈op〉 ::= ’+’ | ’-’ | ’*’

〈var〉 ::= ’x’ | ’y’

〈literal〉 ::= ’1.0’ | ’2.0’

Grammatical Evolution (GE) [122] is an alternative grammar based approach

which uses a separate genotype and phenotype representation. The genotype

representation, which is the representation modified by the genetic operators, is

a simple sequence of codons, where each codon is an integer (or bit string rep-

resenting an integer). During evaluation a mapping operation is used, whereby

the phenotypic parse tree representation is constructed from the grammar by se-

lecting productions in the grammar rules according to the value of codons. One

of the key advantages of GE over other grammar-guided approaches is that the

simple linear genotypic representation is very simple and inexpensive to modify

by genetic operators. However, GE has undergone some criticism on the topic

of locality [21, 23, 139], because its search operators appear to exhibit low local-

ity, where a small modification in the genotype results in a large change to the

phenotype and the resulting fitness of individuals.

The use of grammars provides a powerful mechanism for constraining the struc-

ture of solutions that can be used for introducing a more naturally imperative

control structure. This was demonstrated in O’Neill and Ryan’s work on evolving
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(a) Concrete Syntax Tree
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Figure 2.5: Example computer program represented as both a concrete syntax
tree(CST) and an abstract syntax tree(AST). In the CST, the actual syntax of the
program can be read from left to right in the leaf nodes. The AST uses a higher
level of abstraction to represent the semantics of the program.
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multi-line C programs in GE to generate caching algorithms [119] and to solve

the Santa Fe ant trail problem [120]. It has been suggested that complete BNF

grammars for languages such as C can be “easily plugged in to GE” [121]. But

no known attempts of this appear in the literature. It seems likely that in prac-

tice it is far from easy to use GE with such large and complex grammars. One

difficulty is that the context-free grammars used by GE and CFG-GP lack the ex-

pressiveness to describe the semantic constraints associated with many high-level

programming constructs. For example, variable declarations needing to precede

any use of a variable. Other authors [31, 37, 125] have described extensions to

GE that do use context-sensitive grammars, but none have used the extensions to

evolve imperative programs.

Other grammar-based approaches have been designed to make use of context-

sensitive grammars, such as DCTG-GP [136] and LOGENPRO [172, 173] which

uses definite clause grammars to induce programs in a range of languages, includ-

ing imperative C programs. Definite clause grammars allow symbols to include

arguments that can be used to enforce context-dependency. Wong and Leung

demonstrate using the additional context information to enforce data-type con-

straints [173] and to evolve recursive structures that solve the general even-n-parity

problem [174].

The parse trees used to represent programs in CFG-GP, GE and other grammar-

based systems are concrete syntax trees(CST), as opposed to the abstract syntax

trees (AST) used in other GP representations. Concrete syntax trees contain ex-

plicit elements of a language’s syntax, while abstract syntax trees are abstracted

from the specific syntax of any one language and instead model the semantic con-

structs themselves. In this way, ASTs are a higher level abstraction than CSTs

and they can be interpreted to represent any of a number of syntactic structures.

Which means that a computer program represented as an AST can be very simply

converted to source code in any programming language that supports the same

programming constructs, regardless of the syntax used to express them. Figures
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2.5a and 2.5b show comparable CST and AST representations of the same pro-

gram.

2.3 Strongly Typed Genetic Programming

Strongly Typed Genetic Programming (STGP) [109] was introduced as an al-

ternative to maintaining the closure property, by supporting explicit data-type

constraints. This was demonstrated to make GP applicable to a wider range of

problems but also shown to improve performance, which Montana suggested is

due to the reduced search space associated with constraining which nodes may

be joined together. The operation of STGP is of some significant relevance to

this thesis, since in later chapters extensions upon STGP will be introduced, so

the STGP algorithm will be described in some depth here. Montana describes

two forms of STGP. Basic STGP and a more advanced form supporting generic

functions, which we shall refer to as polymorphic STGP. Since the basic form is

essentially a simplified form of the polymorphic version, only the full polymorphic

version shall be described here. But note that any further references to basic

STGP are referring to STGP without support for generic functions.

STGP requires all terminal nodes (variables and literal values) to be assigned

a data-type, and all non-terminal nodes are required to define a data-type for each

argument and for its return value. Modifications to the algorithm enforce these

type constraints to ensure all programs are formed valid, such that all program

trees have a root node that returns a value of the data-type required by the

problem and that all other nodes return a value which matches the data-type

required by its parent node. Modifications must be made to the tree creation

procedure and any genetic operators.

The responsibility of the initialisation operator is to create new program trees

that abide by the given type restrictions, that is, all nodes have a return value

of the data-type expected by their parent’s argument or the required data-type

for the problem, in the case of the root node. Initialisation is also responsible for
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ensuring that each program tree is valid according to the max-depth parameter.

These requirements are achieved with the use of a lookup table which is con-

structed in advance based upon the available syntax. The lookup table contains

one row for each possible depth from 1 to max-depth. Each row contains a list of

all those data-types that are valid return types from a subtree of that depth. Con-

structing a valid program tree using the lookup table is achieved by recursively

selecting each node from the set of nodes that are able to return the required

data-type given inputs of any combination from the lookup table at depth − 1.

Some generic functions may have a one-to-many relationship between a return

type and sets of argument types. That is, more than one set of argument types

may produce the same return type. In these cases, one of the set of argument

types must be selected from at random to determine what the required return

types of the child nodes will be.

The lookup table is constructed only once for a given syntax. Row 1 contains

the data-types of all terminal nodes only, since they are the only valid subtrees that

may be constructed within a depth of 1. The process for filling all other rows from

2 to max-depth is to check the return type of each non-terminal with all possible

combinations of argument types, as taken from the table at row depth− 1. In the

case of a grow initialisation procedure, the data-types of any terminal nodes should

also be added to each row, since branches are not required to extend right down

to the maximum depth allowable. Therefore, a ramped-half-and-half initialisation

procedure, which makes use of both full and grown trees, will require two separate

lookup tables.

The mutation operator can use the same initialisation algorithm to generate

a new subtree that can replace an existing (randomly selected) subtree from the

program. The only modification from a standard subtree operator is that the

new subtree is constructed to return the same data-type as the original deleted

subtree. Similarly, the crossover operator requires only a minor modification from

a standard subtree crossover operator. The first crossover point is still selected at

random from all nodes in the first parent, but the crossover point in the second
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parent is selected only from those subtrees that return the same data-type as the

subtree from the first parent. These two subtrees are exchanged as normal. In the

case that there are no subtrees of the same data-type in the second parent, then

Montana advises returning the parents or nothing (and presumably selecting an

alternative genetic operator).

STGP has been widely used and a number of extensions have been suggested.

Haynes et al [68] added type inheritence and Harris [66] explored uses for STGP

in constraining hierarchical structure.

2.4 Search-Based Software Engineering

A growing area of research is the application of search-based techniques, including

genetic programming, to software engineering tasks. A detailed survey of such

research in 2009 [65], found that of more than 500 papers on search-based software

engineering (SBSE), over 60 used some form of GP technique. In this section some

of the more interesting or significant applications of GP to SBSE will be explored.

Most aspects of the traditional software development process have received

some attention from research on using metaheuristic algorithms, but by far the

greatest focus of their use has been with application to testing. GP is particularly

well adapted for the generation of test cases, where the order of method calls is of

significance. Emer and Vergilio [42, 43] used a grammar-guided GP approach to

generate valid imperative C code to use as mutants in a mutation2 testing strategy.

More recently, the testing of object-oriented programs has received attention [132,

133,141,162,163].

Arcuri [9] evolved programs that conformed to a given specification while si-

multaneously evolving a population of unit-tests that tested a program’s confor-

mity to that same specification. A co-evolutionary approach to fitness evaluation

was used whereby individuals in the testing population were rated according to

2The term ‘mutation’ is used here in reference to the well known software testing strategy,
with no association to the mutation genetic operator implied.
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their ability to make programs fail, while individuals in the program population

were evaluated according to the number of unit tests they were able to pass.

A similar co-evolutionary technique was used to automatically fix bugs [8, 10],

where a specification guides both unit tests and programs towards an improved

solution, with the addition of an aspect of the fitness being associated with struc-

tural difference from the original (defective) program. Automatic bug-fixing of

real bugs discovered in commercial software has been demonstrated by Weimer

et al. [48, 164] using a novel GP technique where existing statements taken from

elsewhere in the same program supply the genetic material. They also make full

use of any available unit tests to identify a path of execution that contains the bug

and therefore substantially reduce the search space by isolating the evolutionary

modification to that path.

Genetic programming has also been used to refactor existing correct code to

produce a semantically equivalent program with an improvement to some non-

functional property of the code. Ryan [140] explored the use of GP for automatic

parallelisation of sequential programs. The improvement of other properties of

software, such as power consumption and memory usage was tackled by White et

al [168], with the use of multi-objective optimisation. They demonstrated their

approach with application to pseudo-random number generators, in particular for

embedded systems. Jensen and Cheng [73] applied GP to produce substantial

refactorings of object-oriented software to apply standard design patterns.

The SBSE field also contains a substantial bulk of work on topics of only

marginal interest to this thesis, including the use of metaheuristic algorithms for

project management tasks such as software development effort estimation [19,39,

142] and quality classification [45,80,81,94].

2.5 Summary

This chapter has introduced the genetic programming algorithm and reviewed the

related literature. The problems associated with evolving high-level imperative
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programs with GP have been outlined, along with a discussion of the existing

methods for tackling them. Several of the more common alternative program

representations were described, including linear GP and grammar-guided GP, with

reference to their strengths and weaknesses, particularly in relation to the task

of evolving imperative programs. Finally, an overview of the developing search-

based software engineering field was presented, where search-based optimisation

algorithms are used to identify solutions to software engineering tasks.
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Methodology

Throughout the work outlined in the following chapters, a number of experiments

are carried out to analyse various properties of the systems and operations under

discussion. This chapter outlines the common properties of the experimental set

ups as used in these experiments.

3.1 General Configuration

Some of the GP configuration options are set consistently throughout this thesis

for all problems and on all experiments. These are listed in Table 3.1. All other

control parameters are specified for each experiment and are listed in parameter

tableau for each problem. These parameter values were chosen arbitrarily. It is

likely that better parameters could be chosen experimentally.

All experiments are conducted over 500 evolutionary runs on each problem,

with a different random seed used for each run. This is more runs than is typically

used in GP, but a large sample size like this allows us to produce much narrower

confidence intervals and more statistically significant results. This is only practical

because the GP system and extensions used are sufficiently fast to perform each

run in several seconds in most cases. Each run continues until either the maximum

number of generations is reached or a solution is found which successfully solves

all training and all test cases.

33
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Table 3.1: Listing of the control parameter settings that are used for all of the six
test problems

Number of runs: 500
Population size: 500
Maximum generations: 50
Elites: 1
Selection: Tournament selection, size 7
Crossover probability: 0.9
Mutation probability: 0.1

3.2 Software and Hardware

In all cases, experiments were conducted using the open source EpochX evolution-

ary framework [22, 126], with extensions implemented according to the specifica-

tions defined within this thesis. Both EpochX and our extensions are written in

the Java programming language and where applicable make use of Java’s primitive

data-types. Where the duration of program evaluation is recorded, it is measured

using Java’s System.nanoTime() method. According to the Java documentation,

this method has nano-second precision, but not necessarily nano-second accuracy.

It is therefore important that all timings for comparison are carried out using the

same Java Virtual Machine, on the same physical machine. Large sample sizes are

also particularly valuable to reduce the impact of this potential lack of accuracy

on our conclusions. In most cases, statistical calculations are based upon tens of

thousands of programs or more. All non-deterministic behaviour was controlled

by an implementation of the Mersenne twister pseudo-random number generator,

as supplied in the EpochX framework.

3.3 Presentation of Results

The results of those experiments that are intended to demonstrate the perfor-

mance of an algorithm or configuration option are presented in a consistent man-

ner throughout this thesis. A table which summarises the results is given which

includes information about the success rates and required computational effort to

solve the problem. For an example of a typical results table, see Table 4.14. The
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Figure 3.1: Example performance curves for a set of runs. The P (M, i) curve
shows the cumulative success rate and the I(M, i, z) curve shows the number of
individuals that must be processed to find a solution with 99% confidence.

Train% column lists the proportion of runs that produced at least one program

which correctly solved all the training cases for the problem, while the Test% col-

umn lists the proportion of runs that produced at least one solution which solved

all the test cases as well as the training cases. The Effort column describes the

computational effort to solve each problem. Computational effort is a calculation

of the number of individuals that must be processed in order to produce a so-

lution with 99% confidence. It is calculated in the manner of Koza [87, chapter

8] but with the ceiling operator removed, as recommended by Christensen and

Oppacher [27]. Confidence intervals are supplied for the computational effort, in

the 95% CI column, which are calculated using the Wilson ‘score’ method [159].

The final Evals column gives the total number of program executions that are

required to find a solution, which is a product of the computational effort and

the number of training inputs. Where multiple experiments are under comparison

and listed in the same table, the entry with the highest success rates and lowest

computational effort for a problem are listed in bold.
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In addition to the results tables, performance curves are displayed which show

the relationship between the number of generations and both the probability of

success and the number of individuals that must be processed to yield a solution.

Figure 3.1 shows an example of a performance curve. This type of graph is

commonly found throughout the literature and provides a useful portrait of the

evolutionary progress on a problem. The P (M, i) curve shows the proportion

of successful runs by generation, this is effectively a cumulative listing of the

Test% column over the generations. The I(M, i, z) curve follows the required

computational effort at each generation. A vertical line is plotted on the chart

to intersect the curves at the generation with the minimum computational effort.

The line is labelled with the generation and the number of individuals that must be

processed to find a solution with 99% confidence, which is the minimum required

computational effort.

We consider computational effort to be a more important characteristic of the

results than probability of success. Success rates can be a misleading gauge of

quality since they are so easily manipulated by increases to the population size

and the number of allowable generations. In contrast, the computational effort

incorporates this information and a low value indicates that few computational

resources were required to produce each solution.

3.4 Test Problem Set

In each experiment we are concerned primarily with the generation of high-level

imperative programs and so the problem test suite is composed of problems requir-

ing use of standard imperative programming constructs, including loops, arrays

and variable declarations. Each of the problems have also been used elsewhere in

the literature, as described below.
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3.4.1 Factorial

The task to be solved here is an implementation of the factorial function. One

input is provided, which is the integer variable i, where i! is the expected result.

The first 20 factorials (0! – 19!) were used to evaluate the quality of solutions,

with a normalised sum of the error used as an individual’s fitness score. The

fitness function is defined in (3.1), where n is the size of the training set, i is

the ith training case, f(i) is the correct result for training case i and g(i) is the

estimated result for training case i returned by the program under evaluation.

Each individual which successfully handles all training inputs (fitness of 0) is

tested for generalisation using a test set consisting of elements 21 to 50 of the

sequence.

Fitness =
n∑
i=0

|f(i)− g(i)|
|f(i)|+ |g(i)| (3.1)

Solutions to the factorial problem have been evolved using various representa-

tions. Object-oriented GP (OOGP) [4] uses a constrained tree structure to evolve

object-oriented Java programs. OOGP produced solutions to the factorial prob-

lem with 74% probability, but they rely on large population sizes of 7,000-12,000

and so the required computational effort remains high where 600,000 individuals

must be processed to find a solution with 99% confidence. The authors also note

that their approach, which relies upon Java’s Reflection mechanism, is computa-

tionally expensive, requiring several hours to perform just one evolutionary run.

Wang et al [161] used a novel system called Function Sequence Genetic Program-

ming (FSGP), with a linear representation and reported success rates of 75%.

However, that figure is based upon only 20 runs and required 200,000 generations,

so it seems likely that the required computational effort will be very high, even

with a population of just 100. Other attempts have similarly required substan-

tial computational resources, with the graph based system, GRAPE, achieving

a success rate of 69% with 59% generalising, but requiring 2.5 million evalua-

tions [145]. All these attempts have made use of recursive structures, but Wan et
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al [160] compared several different loop structures within a tree GP system. Their

experiments found only one loop construct that was able to produce any solutions

to the factorial problem and still with only 14 of 75 runs successful.

3.4.2 Fibonacci

The Fibonacci problem is posed in a similar form as factorial, with an integer

variable input i and an expected output which is the ith element of the Fibonacci

sequence. Two further inputs are also provided in the form of variables containing

the value of the first two elements of the sequence; 0 and 1. The same function

(3.1) is also used to determine an individual’s fitness, with the training inputs

comprised of the first 20 elements of the Fibonacci sequence. A test set made up

of elements 21 to 50 of the sequence is used to test the generalisation of successful

programs. The Fibonacci sequence begins:

1 1 2 3 5 8 13 21 34 55 89 144 ...

Previous attempts at evolving recursive structures that can generate the Fi-

bonacci sequence include Harding et al [63], who used Self-Modifying Cartesian

GP to generate both the first 12 and first 50 elements of the sequence with success

rates up to 90.8% and up to 94.5% of those able to generalise to 74 elements of the

sequence. In [170], a Linear GP system was used to achieve success rates up to

92% and solutions which generalised in 78% of cases. Another linear GP system

that evolved machine language programs required over 1 million evaluations, using

elements 1 to 10 of the sequence as training inputs, but with all solutions shown

to generalise to the infinite series [71]. OOGP was also applied to the Fibonacci

problem with success rates of only 25% on the first 10 elements of the sequence

and requiring a minimum computational effort of 2 million. Weaker results still

were presented in [145], with a success rate of only 6% on their test set.
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3.4.3 Even-n-parity

The boolean parity problems are widely used as a benchmark task in the GP

literature [17, 23, 87]. However, they have only occasionally been tackled in the

general form; for all values of n. A program which successfully solves the even-n-

parity problem, must receive as input an array of booleans, arr, of unknown length

and must return a boolean true value if an even number of the elements are true,

otherwise it must return false. All eight boolean arrays of length 3 are used for

training data. The fitness of an individual is then a simple count of how many of

inputs are incorrectly classified. It is perhaps surprising that such a restricted set

of inputs is able to produce solutions to the general problem. However, the same

set of test inputs were successfully used by Wong and Leung [174] and they require

considerably less evaluations per program than larger sets of inputs comprised of

multiple sizes. A test set consisting of all possible input arrays of lengths 4 to 10

is used to test the generalisation of solutions that successfully solve the training

cases (fitness of 0).

The even-parity problems are considered to be difficult problems for GP to

solve [51,64]. Koza’s experiments required 1,276,000 individuals to be processed to

yield a solution to just the 4-bit version of the problem and was unable to solve the

problem with any higher number of bits without the use of automatic functions.

Other research has tackled the general even-n-parity problem. OOGP [4] required

680,000 individuals to be processed, where they used all the inputs for the even-

2-parity and even-3-parity problems as training data. In contrast, Wong and

Leung [174] used LOGENPRO, their logic grammar-guided system, with just the

3-bit training inputs and found its required computational effort to be only 220,000

individuals.

3.4.4 Reverse List

A solution to the list reversion problem must receive as input a list of any length

and return a list of the same length, with the order of the elements reversed. In the
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experiments in this thesis a list of characters is used, but any element data-type

could equally have been used. The same five randomly generated lists of lengths

9..10 elements are used as the training inputs in all experiments:

[U,V,B,L,N,U,G,D,A,H] [X,I,D,L,O,I,R,P,W] [I,A,D,B,E,G,K,U,D]

[C,R,T,U,U,U,P,W,N,M] [U,E,Q,W,G,U,O,M,O]

A further 30 randomly constructed lists of lengths 10..20 are used to test gener-

alisation. The fitness of an individual is calculated as the sum of the Levenshtein

distances [92], between the returned lists and the expected reverted lists. The

Levenshtein distance is calculated as the minimum number of edits needed to

transform one string into another, where insertion, deletion and substitution are

the allowable transformations.

The list reversion problem has been extensively used as a test problem in the

Inductive Programming (IP) field, where computer programs are derived from

specifications. However, it has only rarely been attempted with Genetic Pro-

gramming, most likely because it requires much the same approach as sorting a

list, but it lacks the general appeal of sorting algorithms, which are more widely

seen in the GP literature. Shirakawa et al [145] used GRAPE with training lists

of lengths 5..10 and found programs that were able to correctly reverse these lists

in 71% of runs and in 65% a solution generalised to correctly reverse a test set

made up of lists of lengths 11..15. They allowed each run to progress to 2.5 mil-

lion evaluations. Another use of list reversion is found in [171], where the authors

test a new representation with a separate linear genotype and statement based

phenotype. Their results found solutions in 44 out of 50 runs, in an average of

117 generations. PushGP [148] has also been used to successfully evolve list re-

versing programs, but unfortunately the authors do not report their success rates

or required computational effort.



CHAPTER 3. METHODOLOGY 41

3.4.5 Sort List

The task of sorting a list involves arranging the elements of a given list into

order. Sorting algorithms attract much attention within computer science and

are widely studied. Many different algorithms are known and established, with

different compromises made with regards to complexity, run-time and memory

usage. Some of the more well known sorting algorithms include bubble sort,

quicksort, merge sort and insertion sort. The problem as we propose it for GP,

requires the sorting of a list into ascending order. The quality of a solution is

judged in a similar way as used for the reverse list problem. Five randomly

generated training lists of lengths 9..10 elements are used, with the Levenshtein

distance between the returned list and the correctly sorted list used as the fitness

score. Generalisation is determined based upon a further 30 random lists of lengths

10..20 elements. Lists of characters (A..Z) are used, although any data-type with

a natural ordering could equally have been used. To ensure consistency and fair

comparisons, the same five lists are used in all experiments:

[T,E,L,K,R,D,B,O,M,L] [U,C,L,B,A,E,R,D,E] [B,K,Q,E,D,O,R,H,Q,K]

[U,U,Z,T,Q,P,R,Q,K] [C,O,F,R,N,X,T,B,D,I]

The evolution of sorting algorithms have been attempted on numerous oc-

casions in the literature [2, 3, 5, 82, 83, 123, 124, 144, 148]. Many of the earliest

attempts had limited success. O’Reilly and Oppacher [123] were unable to find

any solutions that correctly sorted all their training cases, with their runs suffering

from premature convergence. Although they suggest the problem was with the

available syntax, it seems likely that their results were at least in part caused by

the use of a rather coarsely grained fitness function that only rewarded for ele-

ments that were correctly positioned. This view is validated by Kinnear’s [82,83]

work which used a more subtle measure based upon the disorder of the sequence

and was able to reliably produce sorting programs that could generalise to his

test set of 300 random lists of lengths up to 40 elements. However, he does use

some problem specific operations such as order, which swaps two elements if the
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first is larger than the second. Abbott and Parviz [2] criticise this approach, al-

though they do use an insertAsc method (which inserts an element in the correctly

sorted position) in their own experiments. They justify the use of this method by

demonstrating that the OOGP system they use is capable of evolving this method

separately.

More recent efforts have focused on improving the efficiency of the evolved sort-

ing programs, by moving away from bubble sort like algorithms based upon simply

swapping elements, or other O(n2) näıve sorting algorithms. In [3] a sorting algo-

rithm of O(n× log(n)) time complexity was evolved. They used a recursive rather

than an iterative approach and supplied a filter method, which is a higher-order

function used in the implementation of quicksort. In a second set of experiments

they co-evolved the filter method. Their success rates were up to 46% with a

minimum I(M, i, z) of 3,360,000. All solutions were shown to generalise against a

test set of 200 random lists of lengths up to 100. The work that we present here

uses sorting as a test problem and does not use the efficiency or time complexity

of the algorithm as an objective. We do however consider it important to avoid

supplying problem specific components.

3.4.6 Triangles

This problem is based upon an exercise from an introductory programming text-

book [56]. It is an appealing notion to try to learn solutions to the sorts of

problems that novice human programmers begin with. One integer input, n, is

supplied which identifies the height and width of the triangle that should be pro-

duced. The program is then required to construct a string which when printed

would form a triangle of the correct dimensions. To our knowledge, this problem

has not been attempted with GP previously. The correct responses for values of

n from 1 to 5 would be:
* * * * *

** ** ** **
*** *** ***

**** ****
*****
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The fitness function for the triangles problem is based upon the number of

incorrect rows and the number of incorrect characters in each row. The total

fitness score is a sum of the score obtained on each of the training cases, obtained

using the function defined in (3.2). e is the estimated triangle produced by the

program under evaluation for this training case and r is the correct result. The

function m(x, y) is the maximum number of rows in triangles x and y, where rows

are defined as being separated by new line characters. xi refers to the ith row of

x and len(xi) is the length, or number of characters in row xi.

Training case score =
m(e,r)∑
i=1
|len(ei)− len(ri)| (3.2)

Earlier fitness functions that were attempted included treating the outputs as

a simple string and simply counting the number of incorrect characters or using

the Levenshtein distance. However, these approaches led to simple programs

(using only one level of iteration) that produced solutions of the correct length

being rewarded excessively. There was little incentive towards inserting new line

characters in the correct positions, which is the most challenging aspect of the

problem. The fitness function that was used rewards based upon both the number

of rows and the length of those rows.



Chapter 4

Strongly Formed Genetic

Programming

4.1 Introduction

In this chapter, we introduce Strongly Formed Genetic Programming (SFGP), a

novel approach to constraining the structure of the program trees evolved with

GP. Currently, the most reliable way of constraining the structure of programs

evolved with GP is with a grammar-guided approach, where a syntax grammar

defines the allowable syntax. However, one of the disadvantages of grammar-

based systems is that they require a grammar to be provided for each problem.

This is a particular weakness if the aim is automatic generation of software, since

it merely shifts the problem of writing a program to one of writing a grammar.

Tree-based systems avoid this issue as the components only need to be written

once and for each problem it is simply a case of choosing which components to

include. However, no techniques currently exist for supporting a similar level of

structural constraint in the classic tree representation as are found in grammar

GP. We propose SFGP as a solution to this.

SFGP extends previous work by Montana, with Strongly Typed Genetic Pro-

gramming [109] and combines it with constraints similar to those used by Koza

in his work on constrained syntactic structures [87]. The addition of structural

44
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constraints opens a range of possibilities, including the support of more powerful

iterative programming constructs and the enforcement of a program structure that

corresponds to a programming paradigm other than the usual functional style. Its

use for these purposes will be explored throughout this chapter, with emphasis on

evolving programs with a naturally imperative structure and supporting common

high-level imperative constructs such as loops, arrays and variable assignment. A

series of experiments will also be conducted to investigate the performance impact

of these modifications.

4.2 The Algorithm

Strongly Formed Genetic Programming (SFGP) is a technique for evolving pro-

gram trees that conform to strict structural constraints. It inherits strong data-

typing restrictions from Montana’s Strongly Typed Genetic Programming (STGP)

system, which it extends. STGP provides a mechanism for constraining the data-

type of each non-terminal node’s inputs. However, no limitation may be placed

on which terminal or non-terminal is attached as the child node that provides

that input. This is most easily explained with an example. Consider a type of

node that performs the variable assignment operation. Any non-trivial imperative

program is likely to require such a node. This Assignment node will require two

children: a variable and an expression, which returns a value of the same data-

type which is to be assigned to that variable. STGP can easily constrain these

two children to be of the same data-type, but requires additional constraints to

limit the first child to be a Variable node, rather than any other node of that

data-type. Similarly, it is not possible to constrain a code-block construct to con-

tain only statements, or loop constructs that require a variable to update with an

index or element. This is the issue that SFGP provides a solution to.

STGP imposes a requirement of all terminals and non-terminals to define the

data-type of their return value and a further requirement of all non-terminals to

define the required data-type of each of their arguments. SFGP has the same
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requirements, with one addition: all non-terminals must also define the required

node-type for each of their arguments. The node-type property of an argument is

defined as being the required terminals or non-terminals that can be a child node

at this point, which when evaluated will return the value of the specified data-

type. These constraints are then satisfied throughout the evolutionary process by

modifications to the initialisation, mutation and crossover operators, as will be

described in the rest of this section. This provides a mechanism for both ensuring

certain constructs have access to the components they require and for imposing

an explicit structure upon the program trees that are generated. In the case of

the Assignment example, these constraints are sufficient to state that the first

child must not only be of the same data-type as the second, but must specifically

be a Variable node.

4.2.1 Initialisation

SFGP uses a grow initialisation procedure [87, chapter 6.2] to construct random

program trees. Each node is selected at random from those with a compatible

data-type and node-type required by its parent (or the problem itself for the root

node). Montana’s grow initialisation operator [109] made use of lookup tables to

check whether a data-type is valid at some depth, but the addition of a second

constraint excessively complicates these tables. The alternative is to allow the al-

gorithm to backtrack when no valid nodes are possible for the required constraints.

At each step, if no valid nodes are possible within the available depth, then the

function returns an error and if the construction of a subtree fails with an error

then an alternative node is chosen and a new subtree generated at that point.

This approach is simpler than the one taken by Montana, but it does reduce the

algorithm’s potential to support generic functions. This is discussed further in

section 4.4.1. The algorithm ensures that all program trees that are generated

satisfy all data-type and node-type limitations and that each tree is within the

maximum-depth parameter.
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Pseudo-code for the grow initialisation algorithm is listed in Algorithm 4.1.

The generateTree function is initially called with a dt parameter that is the

required return type for the problem and an nt parameter which defines the node-

type required for the root of the program tree. A full initialisation procedure [87,

chapter 6.2] would also be possible, by adapting the grow initialisation algorithm

to select only non-terminal nodes, if available, until the maximum-depth −1 is

reached. The grow initialisation procedure is preferred here for its simplicity and

its tendency to produce a more diverse range of depths to the full method.

Algorithm 4.1 High-level pseudocode of the initialisation procedure in SFGP.
dt, nt and depth are the required data-type, node-type and maximum depth. The
filterNodes(S, dt, nt, depth) function is defined to return a set comprised of only
those nodes in the available syntax, S, with the given data-type and node-type
and with non-terminals removed if depth = 0.

1: function generateTree(dt, nt, depth)
2: V ← filterNodes(S, dt, nt, depth)
3: while V not empty do
4: r ← removeRandom(V )
5: for i← 1 to arity(r) do
6: dti← required data-type for ith child
7: nti← required node-type for ith child
8: subtree← generateTree(dtr, nti, depth− 1)
9: if subtree 6= err then

10: attach subtree as ith child
11: else
12: break and continue while
13: end if
14: end for
15: return r . Valid subtree complete
16: end while
17: return err . No valid subtrees exist
18: end function

As an example, consider the syntax in table 4.1, with one A non-terminal, two

B non-terminals and three terminal C nodes. The initialisation procedure would

then construct individuals in the following way, with the partial program tree at

each stage shown in Figure 4.1. The root node in this example is required to have

a node-type of A and a data-type of Integer.
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A1

(a)

A1

C2

(b)

A1

C2 B1

(c)

A1

C2 B1

C3

(d)

A1

C2 B1

C3 C1

(e)

Figure 4.1: Example illustrating the steps of the SFGP grow initialisation proce-
dure, using the syntax from table 4.1. The small, empty nodes indicate nodes yet
to be filled by the algorithm.

(a) The initialisation procedure starts by choosing a root node. Only one of the

five nodes in the syntax has the required node-type and data-type, so A is

selected as the root. It requires two child nodes.

(b) The type list shows that the first child of A1 must be of node-type C and

data-type Integer. Three nodes have an appropriate data-type, but only C2

and C3 also have the required node-type. One of these two possible nodes is

selected at random, in this case C2. It requires no child nodes.

(c) The initialisation procedure returns to the root, to fill the second child. This

node must have a node-type of B with a Boolean data-type. There are two

nodes in the syntax, B1 and B2, that match these type requirements. One of

these is randomly chosen and set as the second child of the root. In this case

B1 has been selected. It requires two child nodes.

(d) The first child of all B1 nodes must have a node-type of C and a data-type of

Integer. These are the same requirements as in step (b) and the same two



CHAPTER 4. STRONGLY FORMED GENETIC PROGRAMMING 49

nodes from the syntax match the required types. This time the C3 node is

randomly chosen. It requires no child nodes.

(e) Finally, the second child of the B1 node is selected. The type list shows that it

must be a Boolean node with a node-type of C. There are three nodes in the

syntax with the required data-type, B1, B2 and C1, but only the last of these

has the required node-type, so C1 is set as the second child. It requires no child

nodes and so the initialisation procedure returns the completed program.

4.2.2 Mutation

The mutation operator employs the initialisation algorithm to grow new subtrees

of the same data-type and node-type as an existing randomly selected node in

a program tree. This node is then replaced with the newly generated subtree.

Assuming the set of available nodes is unchanged, then it will always be possible

to generate a legal replacement subtree for any existing node, but it is possible that

the replacement is syntactically or semantically identical to the existing subtree.

It is possible that this could lead to a high degree of neutral mutation if the

syntax contains little variety, which may mean an inefficient search of the fitness

landscape. In the example, shown in Figure 4.2, the second child of the root A1

node has been selected to be replaced. The list of type constraints for the example

Table 4.1: Type list for an example syntax, showing the data-type and node-type
constraints for each type of node

Node Data-type Child data-types Child node-types
A1 Integer Integer

Boolean
C
B

B1 Boolean Integer
Boolean

C
C

B2 Boolean Integer
Boolean

C
C

C1 Boolean
C2 Integer
C3 Integer
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A1

C2 B1

C3 C1

(a) Parent program

B2

C2 C1

(b) Random subtree

A1

C2 B2

C2 C1

(c) Child program

Figure 4.2: Example illustrating the SFGP subtree mutation operator

syntax, shown in Table 4.1, shows that the second child of an A1 node is required

to have a node-type of B and a data-type of Boolean. The initialisation procedure

is used to randomly produce a subtree which is rooted at a node with these type

properties. The original subtree is then substituted with this new one, to create

the new child. Had the C1 node been selected as the mutation point, the resulting

child program would have been identical to the parent, because there is only one

possible node in the syntax with the required data-type and node-type.

4.2.3 Crossover

The subtree crossover operator has been modified to maintain the node-type con-

straint while exchanging genetic material between two program trees. A node

is selected at random in one of the programs. Then a second node is chosen at

random from those nodes in the other program that are of the same data-type and

node-type as the first node. The subtrees rooted at these two selected nodes are

then exchanged. Those resultant child programs that have depths that exceed the
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A1

C2 B1

C3 C1

(a) First parent program

A1

C3 B2

C2 C1

(b) Second parent program

A1

C2 B2

C2 C1

(c) First child program

A1

C3 B1

C3 C1

(d) Second child program

Figure 4.3: Example illustrating the SFGP subtree crossover operator. The
crossover point in the first parent is selected at random and the crossover point in
the second parent is selected from those with a compatible data-type and node-
type.

maximum depth parameter are discarded. Figure 4.3 shows an example crossover,

performed on two programs formed from the syntax in Table 4.1. Once the B1 node

is chosen as the crossover point in the first parent, there is only one valid crossover

point in the second parent, which has the required data-type and node-type. It

is possible that the second parent in a crossover may not have any compatible

crossover points, in which case an alternative crossover point is selected from the

first parent. Once there are no further crossover points to attempt, the crossover

is discarded and new individuals are selected.

4.3 Enhanced Iteration and Variable Assignment

Repetition of a process is a fundamental concept within computer programming.

However, the use of repetition in GP has often been avoided due to the problem of
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potentially infinite loops. Due to the undecidable nature of the halting problem,

this is ensured to be a non-trivial task. Wijesinghe and Ciesielski [169] propose

that there are two approaches to using repetition in GP: implicitly and explicitly.

They explain that implicit repetition is integrated into the problem and involves

a solution being executed multiple times. This is the typical approach taken

for artificial ant problems such as the Santa Fe trail [87], where programs are

repeatedly executed until a set number of timesteps are used up. This completely

avoids the need for any looping constructs undergoing the evolutionary process,

but is only appropriate for a limited number of problems and it imposes the same

looping structure on all programs. On the other hand, an explicit approach puts

the repetitive behaviour into a node that may be harnessed by the algorithm. In

this research we consider only the explicit approach.

There are examples of both recursion and loops being used in GP, with various

approaches taken to ensure all programs terminate. The more common techniques

include limiting the number of iterations of each loop [29,47,88] or the total num-

ber of iterations in a program [83]. In other cases, restrictions are not used, but

programs are penalised or even removed from the population entirely, if their ex-

ecution time is excessive [70, 174]. Maxwell [102] experimented with unbounded

iteration, where programs were evaluated in parallel and assigned partial fitness

based upon their progress in relation to other programs. This allowed programs

with infinite loops to not only be tolerated but to participate in the evolutionary

process based upon their partial fitness score. Recursion is a more typical method

for introducing repetition to functional programs, so has been the preferred ap-

proach for a number of studies [4,18,167,174]. However, according to Brave [18],

recursion is difficult to evolve not just because of the possibility of infinite recur-

sion, but also because the recursive structure suffers from low locality, where small

variations to it can result in a large fitness change. This fragility is reiterated by

Moraglio et al. [110], who describe an approach where a non-recursive solution is

evolved first and used as scaffolding to produce an optimum recursive solution.
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Because of the emphasis on evolving imperative programs in this thesis, iterative

techniques are of more relevance here than recursive ones.

Reproducing even the bounded iterative constructs from modern imperative

programming languages is not simple. There is no mechanism for a GP node

which represents a loop to declare its own variable, that it can use for supplying

an index or element. In some cases this has led to very simplified loop forms

being used, which just repeatedly evaluate an expression a set number of times,

without supplying access to context information such as the index or element [109].

Elsewhere, an improved approach has been used, where an existing variable in the

syntax is assigned to be used by the loop for providing the relevant context [29,

83,88]. Although a substantial improvement, this can be rather intricate in more

complex cases involving multiple nested loops and the variable used by a loop

structure is not subject to evolution. A comparable situation exists for variable

assignment.

In his paper on STGP [109], Montana explains how a SET-VAR-x operator can

be supplied for each variable, x, to make that variable updateable. This was an

extension of the SET-SV function suggested by Koza [87, chapter 18.2]. Having

to supply an additional operator per variable is a little unwieldy. A preferable

situation would be if the operator could be disconnected from the variable, so that

it could be used with any variable. This would be even more useful in a situation

where new variables can be declared by the evolved programs, an issue which will

be tackled in chapter 5 of this thesis. With structural constraints enforced by

SFGP, this is at least partially solvable. One of the child nodes of an assignment

operator can be constrained to be a Variable node of the same data-type as the

value to be assigned to it. It is then a simple process for the value of that variable

to be updated with the value to be assigned. The same solution applies to loop

constructs, where one of the children can be restricted to being a Variable of an

integer data-type in order to hold an index, or the element data-type of the array

to be iterated over. That Variable can then be updated upon each iteration.
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New iteration and assignment constructs based on these ideas will be outlined

in the following section and used in the experimental work throughout this thesis.

In section 4.6, an experimental study will be also be performed which compares

SFGP with these operators to the alternative approach where assignment opera-

tors are associated with specific variables.

4.4 Evolving High-Level Imperative Programs

High-level imperative programs can be represented as trees and often are rep-

resented as trees as part of the parsing and compilation/interpretation process.

So, evolving program trees that represent high-level imperative programs should

be possible with tree-based genetic programming. However, the many structural

rules that must be abided by make them difficult to evolve. It is for this rea-

son that functional programs comprised solely of nested expressions are the norm

for tree-based genetic programming representations. However, the mechanism for

enforcing structural constraints that have been presented in this chapter make it

possible to evolve programs that abide by the necessary rules.

We consider the main structural components of an imperative program to be

statements, blocks and sub-routines. A sub-routine is composed primarily of a

block, which may or may not need to return a value, depending on whether it is a

function or a procedure. A block is a sequential list of one or more statements and

a statement is an instruction with a side-effect. A statement may also contain one

or more nested blocks. In all the work presented here, an individual represents a

sub-routine1. In this section, the SFGP nodes used to represent these components

and achieve the imperative structure are presented.

1where used, the term ‘program’ to refer to an individual can be considered to be synonymous
with ‘sub-routine’ and ‘individual’
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4.4.1 Polymorphism and Generic Functions

SFGP supports a simple form of polymorphism for both the data-type and node-

type constraints. Figure 4.4 shows the basic structure of all imperative programs

generated in the work presented in this thesis. The ReturnBlock node is shown

to have a sequence of children with a Statement node-type. In an object-oriented

implementation, this could be interpreted as any object that is an instance of

the Statement class, or any sub-class. Nodes such as Assignment, IfStatement

and ForLoop may then be implemented as sub-classes of Statement and may all

appear in this position. In fact, it makes little sense to create a node of the type

Statement itself, it is merely used to maintain the hierarchy of node-types. We

refer to such node-types as abstract node-types. Expression is also an abstract

node-type, as is Node. Node is the parent type of all nodes and so can be used to

specify that there is no node-type constraint to enforce. Data-type constraints can

make use of the same polymorphic properties. If Integer and Float are both

sub-classes of a class called Number, then either may appear where a required

data-type of Number is specified. Note that the object-oriented approach we refer

to here is a property of the implementation, rather than of the evolved programs,

which are not themselves object-oriented.

In contrast to this, STGP supports full generic functions which are able to

handle multiple sets of input data-types and return values of a variety of data-

types. This is made possible with the use of a lookup table that defines the

data-types that can potentially be returned given a certain depth. Constructing

such a table that also incorporates information about the node-types that can

provide each data-type is possible, but it substantially complicates the process.

There would certainly be some value in considering this in future work, but at this

stage we consider the basic level of polymorphism supplied by class inheritence

to be sufficient for the initial aims of this work. Furthermore, the extensions that

are presented in chapter 5 would not be possible with a system that relies on a

pre-processing step to generate lookup tables.
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SubRoutine

ReturnBlock

Statement Statement Statement Variable

Figure 4.4: The imperative structure imposed on all program trees. All experi-
ments used CodeBlocks requiring 3 statement arguments, except where otherwise
stated.

4.4.2 Syntax

This section itemises the list of nodes that will be used to evolve high-level imper-

ative programs in SFGP, along with their data-type and node-type requirements.

The required root node-type for all the imperative programs that are evolved

here is SubRoutine, which models a sub-routine with a block of statements and

a return value. This means that all programs that are generated have the same

basic imperative structure, as shown in Figure 4.4. Table 4.2 specifies the type

constraints for the nodes that model the structural components which have the

following semantics:

− SubRoutine - upon evaluation, the return-block child is evaluated, with the

result returned as the result of the sub-routine.

− ReturnBlock - semantically the same as a code-block, but with an additional

child Variable which supplies a return value.

− CodeBlock - consists of a series of statements which are evaluated in se-

quence. The number of statements is modifiable, but was arbitrarily chosen

to be three in all cases in this thesis (except where the impact of this setting

is examined in section 4.7.1).

These structural nodes are supplied for all problems to support the desired imper-

ative structure. But, the actual computational work is performed by statements.
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As already mentioned, Statement is an abstract node-type, of which many con-

crete node-types exist. The set of statements provided to SFGP defines the range

of actions that can be performed. The statements that are used in this work are

largely based upon standard programming constructs, that are basic features of

most modern imperative programming languages. The only possible exception to

this is the SwapElements statement, which we consider to be a sufficiently general

component for it to be provided by a common library. The following list details

the semantics of all the statements that are made use of in this chapter, with the

related type constraints outlined in Table 4.3.

− Loop - the first child expression is evaluated to provide a number of itera-

tions to perform (which is capped at 100) and then the code-block child is

evaluated the specified number of times. No variables are manipulated by

this loop construct.

− ForLoop - the second child is evaluated to provide an integer, which is used

as the number of iterations to perform (capped at 100). Then the third child

is evaluated this number of times. The index of the iteration is assigned to

the variable, which is set as the first child, starting at 1.

Table 4.2: Type list for the structural nodes of the imperative syntax, showing
the data-type and node-type constraints for each type of node. d indicates a
pre-specified data-type and a Void data-type indicates that no value is returned.

Node-type Data-type Child data-types Child node-types
SubRoutine d d ReturnBlock
ReturnBlock d Void

Void
Void
d

Statement
Statement
Statement
Variable

CodeBlock Void Void
Void
Void

Statement
Statement
Statement
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− ForEachLoop - the second child is evaluated to provide an array. The third

child is evaluated once per element of that array, with the current element

assigned to the variable supplied as the first child.

− IfStatement - the code-block child is conditionally evaluated only if the

expression evaluates to true.

− Assignment - both inputs are required to have the same data-type specified

upon construction. Upon evaluation, the expression is evaluated and the

result is assigned as the value of the variable.

− ElementAssignment - the variable should be of some pre-specified array

data-type. The second child supplies an integer which is used as an index

into the array, with the value of that element assigned to the value of the

third child. The index is protected from being out of the bounds of the

array. If it is less than zero then zero is used and if it is greater than the

largest element in the array then length-1 is used.

− SwapElements - the two integer arguments are treated as indexes and on

evaluation, the elements of the array (which is given as the first argument)

at the two integer indexes are exchanged. The indexes are protected as for

ElementAssignment.

Many statements make use of expressions which perform some calculation and

return a value. These are modelled as subtypes of an abstract Expression node-

type and each have a non-void data-type. The type constraints for the expressions

used are given in Table 4.4 and the semantics are listed below.

− Add, Subtract, Multiply, Divide - each performs the relevant arithmetic

operation and returns the result. Division is protected against a divisor of

zero and returns a zero value.

− And, Or, Not - perform the relevant boolean operator and return the boolean

result.
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Table 4.3: Type list for the Statement nodes of the imperative syntax, showing
the data-type and node-type constraints for each type of node. d indicates a pre-
specified data-type and d[] indicates an array of elements of the data-type d. A
Void data-type indicates that no value is returned.

Node-type Data-type Child data-types Child node-types
Loop Void Integer

Void
Expression
CodeBlock

ForLoop Void Integer
Integer
Void

Variable
Expression
CodeBlock

ForEachLoop Void d
d[]
Void

Variable
Expression
CodeBlock

IfStatement Void Boolean
Void

Expression
CodeBlock

Assignment Void d
d

Variable
Expression

ElementAssignment Void d[]
Integer
d

Variable
Expression
Expression

SwapElements Void d[]
Integer
Integer

Expression
Expression
Expression
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− GreaterThan - the two input data-types must be comparable. The data-

type is pre-specified, but it is only used with a character data-type here

and only characters A–Z are used. It returns a boolean value which will be

true if the first input is strictly larger than the second, where for alphabetic

characters ‘Z’ is considered larger than ‘A’.

− ArrayLength - it returns an integer value which is the total number of

elements in the given array.

− ArrayElement - returns the element at the specified index. The array data-

type must be specified on construction. The indexes are protected as for

ElementAssignment.

− Concat - the returned string is the received string with the given character

appended.

− Literal - holds a fixed literal value of a given data-type.

− Variable - holds a value of a given data-type which may be modified (by

assignment) throughout evaluation. The data-type of a variable is fixed at

construction.

As stated, a number of these node-types require protection from invalid values

in a way that is a departure from the functionality of any standard programming

language. This is necessary to avoid the need for exception handling which is

currently outside the scope of this work. Although these protected versions of

operations are not generally found in the programming languages themselves,

they can easily be supplied as a common library. It is the assumption that this is

the case with the source examples that are presented.
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Table 4.4: Type list for the Expression nodes from the imperative syntax, show-
ing the data-type and node-type constraints for each type of node. d indicates a
pre-specified data-type and d[] indicates an array of elements of the data-type d.

Node-type Data-type Child data-types Child node-types
Add Integer Integer

Integer
Expression
Expression

Subtract Integer Integer
Integer

Expression
Expression

Multiply Integer Integer
Integer

Expression
Expression

Divide Integer Integer
Integer

Expression
Expression

And Boolean Boolean
Boolean

Expression
Expression

Or Boolean Boolean
Boolean

Expression
Expression

Not Boolean Boolean Expression
GreaterThan Boolean d

d
Expression
Expression

ArrayLength Integer d[] Expression
ArrayElement d d[]

Integer
Expression
Expression

Concat String String
Character

Expression
Expression

Literal d
Variable d



CHAPTER 4. STRONGLY FORMED GENETIC PROGRAMMING 62

4.4.3 Converting to Source

As with standard GP and STGP, programs in SFGP are represented as abstract

syntax trees (ASTs), where each node in the tree represents some language con-

struct. Where the program tree is representing a functional LISP program, there

is a very direct relationship between the structure of the tree and the syntax of

the program. Indeed, this is one of the reasons Koza chose to use LISP. But, this

need not be the case and the syntax required to express the concept represented

by a node may be something far more complex. By using nodes which represent

very general high-level programming concepts, an individual in SFGP may then

be expressed in the syntax of any number of different imperative programming

languages. Given a code template for each possible node-type, which describes

the structure of the source code to express a node of that type in a given lan-

guage, it is a trivial process to convert from a program represented as an AST

to syntactically valid source code in some language. As an example, consider the

AST in Figure 4.5. Using the source code templates in Tables 4.5, 4.6 and 4.7

this program fragment can be converted to Java, Pascal or Python respectively.

The template for a node-type is used by starting at the root node and recursively

replacing the placeholders with the source code for the relevant child, where the

〈child-1 〉 placeholder is the first child and 〈child-n〉 is the nth. The result is the

source code listed in Algorithms 4.2, 4.3 and 4.4.

Throughout this thesis, example solutions are listed using Java syntax, but

could equally have been represented using any number of other imperative pro-

gramming languages. A complete listing of Java code templates for all the node-

types used is given in appendix A.

Algorithm 4.2 Java source code generated from the AST in Figure 4.5 using the
source code templates for the Java programming language, listed in Table 4.5.

i f ( x < y ) {
y = x ;

}
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IfStatement

LessThan

Variable[x] Variable[y]

CodeBlock

Assignment

Variable[y] Variable[x]

Figure 4.5: Example abstract syntax tree representing a conditional statement as
it would be represented in SFGP

Algorithm 4.3 Pascal source code generated from the AST in Figure 4.5 using
the source code templates for the Pascal programming language, listed in Table
4.6.

i f x < y then
y := x ;

Algorithm 4.4 Python source code generated from the AST in Figure 4.5 using
the source code templates for the Python programming language, listed in Table
4.7.

i f x < y :
y = x
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Table 4.5: Example source code templates for the Java programming language,
where 〈child-n〉 is replaced by the source code for the node’s nth child. A complete
listing of templates for the Java programming language is given in appendix A.

IfStatement if( 〈child-1 〉 ) 〈child-2 〉
LessThan 〈child-1 〉 < 〈child-2 〉
CodeBlock { 〈child-1 〉 〈child-2 〉 〈child-n 〉 }
Assignment 〈child-1 〉 = 〈child-2 〉 ;

Table 4.6: Example source code templates for the Pascal programming language,
where 〈child-n〉 is replaced by the source code for the node’s nth child.

IfStatement if 〈child-1 〉 then 〈child-2 〉
LessThan 〈child-1 〉 < 〈child-2 〉
CodeBlock 〈child-1 〉 〈child-2 〉 〈child-n 〉
Assignment 〈child-1 〉 := 〈child-2 〉 ;

Table 4.7: Example source code templates for the Python programming language,
where 〈child-n〉 is replaced by the source code for the node’s nth child.

IfStatement if 〈child-1 〉: 〈child-2 〉
LessThan 〈child-1 〉 < 〈child-2 〉
CodeBlock 〈child-1 〉

〈child-2 〉
〈child-n 〉

Assignment 〈child-1 〉 = 〈child-2 〉
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4.5 Imperative Experiments

To test the ability of SFGP to generate high-level imperative programs, experi-

mental runs were conducted on six non-trivial problems, each requiring the use of

branching and iterative programming constructs.

4.5.1 Experimental Setup

500 runs were performed for each of the six test problems: factorial, Fibonacci,

even-n-parity, reverse list, sort list and triangles, as specified in section 3.4. The

SFGP grow initialisation procedure and subtree crossover and mutation operators

were defined as described earlier in this chapter, in section 4.2. The default

control parameters listed in table 3.1 were used. All other control parameters were

problem dependent and are outlined in Tables 4.8 to 4.13. The maximum depth

parameter was set using an educated guess based on the perceived difficulty of the

problem and the required complexity of a solution. The implications of setting

this parameter too low are that the problem may be difficult or even impossible

to solve. For example, all problems with the exception of factorial and Fibonacci

require a maximum depth greater than 6, because a solution will require at least

two nested constructs (loops or conditional statements) which is only possible

within a node depth of 7 or greater. However, setting an unnecessarily high value

for the maximum tree depth is likely to produce larger, more bloated programs,

which would increase evaluation times. According to [135] smaller programs are

also more likely to generalise. This highlights how the GP algorithm requires the

user to have some insight into possible solutions.

Some care was taken to choose terminal and non-terminal sets that satisfied the

sufficiency property with limited additional extraneous components. In particular

it was considered important to supply only general-purpose components that could

not be considered to be providing a key part of the required program logic. For

example, the SwapElements non-terminal which exchanges two array elements is

deemed acceptable for the sort-list problem, since it encapsulates a programming
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Table 4.8: Listing of the control parameter settings used for SFGP on the factorial
problem

Root data-type: Integer
Root node-type: SubRoutine
Max. depth: 6
Non-terminals: SubRoutine, ReturnBlock, CodeBlock, ForLoop,

Assignment, Add, Subtract, Multiply
Terminals: i, loopV ar, 1

Table 4.9: Listing of the control parameter settings used for SFGP on the Fi-
bonacci problem

Root data-type: Integer
Root node-type: SubRoutine
Max. depth: 6
Non-terminals: SubRoutine, ReturnBlock, CodeBlock, Loop,

Assignment, Add, Subtract
Terminals: i, i0, i1

task which is applicable to many problems, as exemplified by its use on the reverse-

list problem too. In contrast, an intelligent swap, such as has been used elsewhere

in the literature [83], which only exchanges two array elements if the first is larger

than the second, is rejected as having only a very narrow range of problems that

it is applicable for.

4.5.2 Results

A summary of the results are presented in Table 4.14, which lists the success

rates, generalisability and required computational effort found in the experiments.

Performance curves showing the progression of success rates and computational

Table 4.10: Listing of the control parameter settings used for SFGP on the even-
n-parity problem

Root data-type: Boolean
Root node-type: SubRoutine
Max. depth: 8
Non-terminals: SubRoutine, ReturnBlock, CodeBlock,

ForEachLoop, IfStatement, Assignment, And, Or,
Not

Terminals: arr, loopV ar, resultV ar, true, false
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Table 4.11: Listing of the control parameter settings used for SFGP on the reverse
list problem

Root data-type: Character[]
Root node-type: SubRoutine
Max. depth: 8
Non-terminals: SubRoutine, ReturnBlock, CodeBlock, ForLoop,

ArrayLength, Subtract, Divide, SwapElements
Terminals: arr, loopV ar1, loopV ar2, 1, 2

Table 4.12: Listing of the control parameter settings used for SFGP on the sort
list problem

Root data-type: Character[]
Root node-type: SubRoutine
Max. depth: 10
Non-terminals: SubRoutine, ReturnBlock, CodeBlock, ForLoop,

IfStatement, ArrayLength, ArrayElement,
GreaterThan, SwapElements

Terminals: arr, loopV ar1, loopV ar2

Table 4.13: Listing of the control parameter settings used for SFGP on the trian-
gles problem

Root data-type: String
Root node-type: SubRoutine
Max. depth: 8
Non-terminals: SubRoutine, ReturnBlock, CodeBlock, ForLoop,

IfStatement, Assignment, Concat
Terminals: n, resultV ar, loopV ar1, loopV ar2, ‘*’, ‘\n’
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effort over the generations, for each of the sets of runs, are displayed in Figure 4.6.

Solutions which solve all training cases and test cases are found for all problems.

The results show that the similar problems of factorial and Fibonacci are both

solved with little difficulty and it is little surprise that the Fibonacci results exhibit

both lower success rates and higher computational effort. Fibonacci is known to

be a more difficult problem which requires second-order recursion when solved

with a recursive approach [170]. However, as seems to be the case with many

of these problems, the use of a sensible iterative approach seems to have been

beneficial. These computational effort values are considerably lower than those

reported from the other research that was reviewed in section 3.4, but of course

this was not a controlled experimental comparison.

Table 4.14: Summary of the results of using SFGP to solve each of the test
problems with high-level imperative programs. Train% is the percentage of success
on the training cases (as used for fitness) and Test% is the percentage of runs
that found a solution that generalised to the test set. Effort is the required
computational effort to find a solution with 99% confidence and 95% CI is its
confidence interval. Evals is the number of program evaluations required to find a
solution with 99% confidence. The approach used to calculate each of these values
is described in detail in section 3.3.

Train% Test% Effort 95% CI Evals
Factorial 72.8 72.0 25,700 22,700 - 29,200 514,000
Fibonacci 59.0 56.2 40,500 34,800 - 47,400 810,000
Parity 90.2 80.0 29,500 26,000 - 33,700 236,000
Reverse 78.6 77.0 29,200 25,900 - 33,000 146,000
Sort 75.0 71.2 65,200 55,900 - 76,300 326,000
Triangles 69.6 69.6 15,900 13,900 - 18,200 95,400

The results suggest that only 29,500 individuals need be processed to identify

one solution to the general even-n-parity problem. This is in contrast to the more

than 1.2 million individuals Koza’s work required to yield a solution to just the

4-bit version of the problem. With over 80% of runs resulting in a solution to the

even-3-parity training cases that were able to also solve the general even-n-parity

problem, the decision to use just the 3-bit inputs as training data appears to be

vindicated. However, it should be noted that this fact is put under question by

further results presented in section 4.6. The primary reason for SFGP’s greater
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(a) Factorial
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(b) Fibonacci
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(c) Even-n-parity
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(d) Reverse list
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(e) Sort list
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(f) Triangles

Figure 4.6: Performance curves for each of the test problems, where a high-level
imperative structure was enforced with SFGP. P (M, i) is the success rate and
I(M, i, z) is the number of individuals to process to find a solution with 99%
confidence.



CHAPTER 4. STRONGLY FORMED GENETIC PROGRAMMING 70

performance on the even-n-parity problem is likely to be the result of using the

ForEachLoop node, which encapsulates the necessary behaviour of performing an

operation on each element of the array. The other studies described in chapter 3

relied on complex recursive structures developing through evolution.

Solutions were more readily found for the reverse-list problem than the sort-

list problem. Given the components available, it is perhaps surprising that the

sort-list problem is not more easily solved. A solution need only put together

two nested loops with a swap, to produce a full sort. However, the intricacies

of setting up the loops with sensible bounds and different variables proved to be

more difficult than the issues to be overcome to solve list reversion. One of the

main difficulties involved with evolving solutions to the reverse-list problem is

that a near solution which iterates over the whole list, swapping the element at i

with those at (length − 1) − i, will be given a very poor fitness score, since the

resulting list will ultimately be returned to its original condition. Despite being

only one small mutation away from a complete solution, such a program is highly

biased against in the selection procedure. Characteristics such as this lead to a

rugged fitness landscape that is difficult to navigate and are generally less suited

to solving with an evolutionary algorithm. The high success rates suggest this did

not prove to be a significant obstacle though.

Some trial and error (< 10 trials) was used in determining the fitness measure

and training cases for the list-reversion problem. It was discovered that the choice

of training lists was crucial to the performance of the algorithm. Lists of lengths

7 or less were found to lead to a high degree of solutions that did not generalise

and use of a combination of shorter and longer lengths produced low success rates.

The magic number of 7 is due to the use of code-blocks that support 3 statements,

each of which could be a SwapElements statement, to reverse lists up to length 7

without the use of a loop (with an odd length, the middle element of a list need

not be swapped). The use of lists of lengths 9 and 10 forced solutions to make

use of loops, this contributed to the high rates of generalisation that are seen.
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4.5.3 Example Solutions

Solutions to all six of the test problems were identified using the SFGP system.

A few of the typical features of the solutions found will be highlighted in this

section. As was described in section 4.4.3, the program trees that are produced

by SFGP can be easily expressed in the syntax of any programming language

which supports the required constructs. The constructs that were used throughout

these experiments were chosen to be general programming constructs found in

most high-level imperative programming languages, either as standard or easily

provided through code libraries. The example programs in this section will be

expressed using Java syntax, constructed using the source code templates shown

in appendix A.

The following correct solution to the factorial problem was found in generation

23 of one run. Note that for clarity this source code is displayed using Java’s long

data-type, but in practice a BigInteger data-type would be more suitable, due

to the maximum value of the long data-type only being sufficiently large to store

values up to the 21st factorial before overflow occurs. The semantics of the solution

are simple. A loop iterates up to the given argument, multiplying the index of

the loop by a running total. Many of the solutions found to the factorial problem

used a very similar approach. Lines 3–9 are all part of the loop, which requires

additional Java statements to replicate the semantics of our ForLoop construct.

In particular, the loop structure contains the necessary infrastructure to ensure

the index variable is updated but the bounds remain immutable to avoid any

chance of an infinite loop occuring. This program has not undergone any post-

processing, but it could be simplified by static analysis. Most obviously, lines 6,

7 and 10 could all be removed, but the structure of the loop could potentially be

simplified too.

1. public long getFactorial(long i) {

2. loopVar = 1;

3. long upper = i;

4. i = 1L;
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5. for (long x = 1L; x <= upper; x++, i = x) {

6. i = i;

7. loopVar = loopVar;

8. i = (loopVar * i);

9. }

10. loopVar = loopVar;

11. return i;

12. }

The list reversion problem does not require nested loops, but because there is

sufficient depth provided, many of the solutions make use of them. The following

solution was found in generation 11 during one of the runs. Much simpler solutions

are possible that just iterate over half the input array, but most of the solutions

that are discovered take a far more complex approach. This highlights the need

in any practical application for the complexity of solutions to be considered, with

regards to both code complexity and time complexity. This point will be addressed

further in the work with complexity metrics in chapter 6.

1. public char[] reverseList(char[] input) {

2. Utilities.swap(input, (loopVar2 - 2), 1);

3. int upper1 = input.length;

4. loopVar1 = 1;

5. for (int x = 1; x <= upper1; x++, loopVar1 = x) {

6. Utilities.swap(input, 2, 1);

7. int upper2 = loopVar2;

8. loopVar2 = 1;

9. for (int y = 1; y <= upper2; y++, loopVar2 = y) {

10. Utilities.swap(input, loopVar2, 1);

11. Utilities.swap(input, 1, 2);

12. Utilities.swap(input, 1, loopVar2);

13. }

14. Utilities.swap(input, (loopVar1 - loopVar1), 2);

15. }

16. Utilities.swap(input, 1, 2);

17. return loopVar;

18. }
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4.6 A Reduced Search-Space

Montana suggested that one of the benefits of his STGP system is improved

performance due to the potentially reduced search-space, courtesy of the type

constraints. If that is the case, then it could be expected that SFGP, which

introduces even tighter constraints, would reduce the search space even further.

Of course, one of the concerns is that reducing the search-space may reduce the

number of solutions within that space, or make them more difficult to locate

due to a less smooth or disconnected fitness landscape. It is therefore feasible

that performance could be either improved by, or degraded by, the addition of

structural constaints. In order to test this experimentally, a further set of 500 runs

was performed on each of the same problems as in section 4.5, but with node-type

constraints removed. Where possible, identical control parameters were used, as

described in Tables 4.8–4.13. However, with all node-type constraints removed, a

couple of further modifications are unavoidable:

− Loops without node-type constraints are not able to define that they re-

quire a variable as a child and so loop implementations are used where their

variable is predefined. One such loop node is added to the syntax for each

applicable variable in the syntax. The logic of the loops used are identical.

− Similarly, Assignment nodes are unable to specify that the first argument

should be a variable. Instead, SET-VAR-x nodes are supplied for each vari-

able in the same manner as Montana [109].

Removing the node-type constraints removes the imperative structure that is

imposed, so that any node may appear anywhere within a program tree that its

data-type allows. This version of the algorithm is directly equivalent to the basic

form of STGP. This change increases the search-space as it allows any node of

the correct data-type to appear where previously only a node of that data-type

and a specific node-type was allowed. Therefore, the search-space of SFGP can be

shown to be a subset of the search-space of STGP. The results from this set of runs
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is presented in Table 4.15. For comparison, the results from section 4.5.2, where

structural constraints are used, are reproduced here in the rows with ‘SFGP’ listed

in the experiment column. Performance curves are displayed in Figure 4.7.

Table 4.15: Summary of the results comparing SFGP to a system without node-
type constraints, shown in the rows labelled STGP. Train% is the probability of
success on the training cases (as used for fitness) and Test% is the percentage of
runs that found a solution that generalised to the test set. Effort is the required
computational effort to find a solution with 99% confidence and 95% CI is its
confidence interval. Evals is the number of program evaluations required to find a
solution with 99% confidence. The approach used to calculate each of these values
is described in detail in section 3.3.

Exp. Train% Test% Effort 95% CI Evals

Factorial STGP 11.2 11.2 383,000 272,000 - 542,000 7,660,000
SFGP 72.8 72.0 25,700 22,700 - 29,200 514,000

Fibonacci STGP 6.6 6.0 1,360,000 827,000 - 2,249,000 27,200,000
SFGP 59.0 56.2 40,500 34,800 - 47,400 810,00

Parity STGP 20.2 9.0 691,000 438,000 - 1,094,000 5,528,000
SFGP 90.2 80.0 39,500 26,000 - 33,700 236,000

Reverse STGP 99.6 99.6 11,100 9,990 - 12,500 55,500
SFGP 78.6 77.0 29,200 25,900 - 33,000 146,000

Sort STGP 69.0 55.0 115,000 98,900 - 134,000 575,000
SFGP 75.0 71.2 65,200 55,900 - 76,300 326,000

Triangles STGP 31.2 31.2 120,000 93,700 - 153,000 720,000
SFGP 69.6 69.6 15,900 13,900 - 18,200 72,000

It would be unfair to make performance comparisons between SFGP and STGP

based on these results, as STGP may well be able to make better use of alternative

syntax and perform better with different control parameters. However, it serves

to illustrate the potential impact of the reduced search space and some of the

advantages of SFGP. Computational effort is significantly lower where node-type

constraints are used on five of the test problems, but is significantly higher on one

of them, the reverse-list problem. This matches our expectations that the reduced

search space may impact performance either positive or negatively, depending on

the problem and the available syntax.

One of the key reasons for the better performance where the node-type con-

straints were used is that solutions were effectively forced to contain a certain level

of complexity. The root structure (from Figure 4.4) that is enforced, ensures that

all programs contain at least three statements which are highly likely to contain
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(b) Fibonacci
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(c) Even-n-parity
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(d) Reverse list
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(e) Sort list
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(f) Triangles

Figure 4.7: Performance curves for each of the test problems, where structural
constraints are omitted. P (M, i) is the success rate and I(M, i, z) is the number
of individuals to process to find a solution with 99% confidence.
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some degree of program logic. In contrast, the populations where only data-type

constraints were used, contained many solutions that were comprised of very little

complexity and they were unable to make proper use of the constructs available.

In this situation, resources are wasted on non-sensical programs that are unlikely

to contribute anything towards a correct solution. The reverse-list and sort-list

problems suffer much less from this issue, because on these problems the data-type

constraints are nearly sufficient to enforce the same root structure. The syntax for

each of these problems contains only two nodes which are able to return a value

of the correct data-type required for the problem. One of those is the input array

variable, which will be unchanged and so any programs using this as the root

node will receive a very poor fitness score. The other is SubRoutine, which would

result in the same root structure as enforced by the node-type consraints. In our

experiments, the proportion of individuals in the population using the input array

as the root node was approximately half after initialisation, but on most runs it

had dropped to less than 2% of the population after just 3 generations. From this

point, the runs can progress in a very similar manner to those where the node-type

constraints are used, so the performance does not differ as substantially as on the

other problems.

In most cases the level of generalisation has been maintained, but notably the

even-n-parity problem shows a substantial drop, with less than 50% of the runs

that solved the training cases also solving the test cases. This may be a result of

the removal of the enforced nodes in the first couple of levels of the program trees

(SubRoutines and CodeBlock). This allows a greater depth of nested boolean

expressions to be used, which are then capable of expressing a solution to the

even-3-parity problem which is used for training, without any use of iteration. It

seems likely that this would be less of a problem if a greater range of training

inputs were used. This is a suggestion as to why use of just the 3-bit inputs

are sufficient with SFGP; because there is barely sufficient depth available for a

non-iterative solution. Had a greater maximum depth been used for the SFGP

experiments, our results may have suffered.
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4.7 Alternative Parameter Settings

Some of the constructs that have been used in this section have relied upon non-

standard control parameters which were arbitrarily set. In this section, the impact

of these setting values will be briefly examined by comparing the results already

presented to alternative parameter settings. Other standard control parameters,

such as the maximum depth, have already been widely studied in GP [33] so will

not be considered any further here.

4.7.1 Code Block Size

CodeBlock and ReturnBlock nodes require a pre-specified number of Statement

children. In all other experiments in this thesis a code-block size of 3 has been

used, so that three statements are required for each block. Changing this value

directly modifies the maximum allowable size of the program trees. Reducing the

code-block size, reduces the maximum number of statements that may appear in

the whole program, because the depth of the program trees is constrained. It may

be that for some problems, a reduced program size will leave insufficient room for

the sequence of statements required to solve the problem, while on others, there

may be some benefit in reducing the number of possible statements. It may also

be the case that a setting of 3 is already too restrictive for some of the problems.

To explore the impact of the code-block size, 500 runs were performed on each

of the six test problems using alternative code-block sizes of 2 and 4. All other

control parameters were set as used in section 4.5.1. The results of these runs

are presented in Table 4.16, along with the results of using a code-block size of 3,

which are reproduced here for comparison. These results suggest that a smaller

code-block size of 2 is preferable for performance on five of the six problems

studied, while the remaining problem performed better with a code-block size of

3. On only the Fibonacci problem are success rates significantly lower with a

code-block size of 2 than the larger settings tested. It would be interesting to

extend this study to consider a code-block size of 1, particularly as this would
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result in programs without sequentially ordered statements, which is the essential

property of imperative programs.

As with all of the GP control parameters, setting the perfect code-block size

is not straightforward. However, the results do imply a degree of robustness, as

solutions are found to all problems despite non-perfect code-block settings. An

alternative approach, which has not been considered here, is to use a mix of code-

block sizes to cover a sensible range of values. It would be interesting to explore

the impact of this in future work and in practice it may help to relieve the burden

of having yet another control parameter to set.

Table 4.16: Summary of the results comparing code-block sizes of 2, 3 and 4.
The Size column lists the number of statements to a code-block. Train% is the
percentage of success on the training cases (as used for fitness) and Test% is the
percentage of runs that found a solution that generalised to the test set. Effort is
the required computational effort to find a solution with 99% confidence and 95%
CI is its confidence interval. Evals is the number of program evaluations required
to find a solution with 99% confidence. The approach used to calculate each of
these values is described in detail in section 3.3.

Size Train% Test% Effort 95% CI Evals

Factorial
2 78.2 78.0 21,500 19,200 - 24,200 430,000
3 72.8 72.0 25,700 22,700 - 29,200 514,000
4 54.4 53.4 47,100 40,100 - 55,500 942,000

Fibonacci
2 43.4 43.0 97,600 83,300 - 115,000 1,952,000
3 59.0 56.2 40,500 34,800 - 47,400 810,000
4 56.0 52.8 44,700 38,500 - 52,100 894,000

Parity
2 97.0 91.0 15,700 14,100 - 17,600 125,600
3 90.2 80.0 29,500 26,000 - 33,700 236,000
4 74.2 59.2 68,400 56,600 - 83,000 547,200

Reverse
2 94.2 93.2 13,600 12,200 - 15,200 68,000
3 78.6 77.0 29,200 25,900 - 33,000 146,000
4 50.4 48.6 70,000 60,400 - 81,400 350,000

Sort
2 84.0 82.6 58,500 52,300 - 65,900 292,500
3 75.0 71.2 65,200 55,900 - 76,300 326,000
4 68.2 62.4 92,900 80,300 - 108,000 464,500

Triangles
2 77.4 77.4 12,100 10,600 - 13,800 72,600
3 69.6 69.6 15,900 13,900 - 18,200 95,400
4 41.8 41.8 42,000 35,100 - 50,300 252,000
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4.7.2 Maximum Loop Iterations

In order to ensure all loops are bounded to terminate within a reasonable evalu-

ation time, all indexed loop constructs were restricted to performing a maximum

of 100 iterations. This value was arbitrarily chosen and is used consistently on all

problems. However, it may be the case that this value is overly restrictive for some

problems, or indeed some solutions may actually rely upon this bound to func-

tion correctly. Alternatively, this upper bound could be too generous and may be

unnecessarily allowing unfit programs to waste valuable evaluation time without

any benefit for good program solutions. To test the impact of the maximum loop

iterations on the performance of the system, 500 runs were performed on each of

five test problems using alternative settings of 50 and 150. Only five of the six

test problems are used, because a ForEach loop was used for the even-n-parity

problem, which is not constrained by this setting and so the problem is omitted.

The values of 50 and 150 were selected as being simple multiples of the original

setting and they are also both larger than the largest training and test case index

on all problems.

Performance results from these runs are presented in Table 4.17. The results

show little variation between the success rates of the three maximum iteration

settings on all the problems tested and the overlapping confidence intervals sug-

gest that none of the computational effort results are statistically significant. This

suggests that the solutions do not have a strong dependency upon the maximum

iteration parameter being set specifically at 100, as used in this thesis. However,

there are some small variations worth mentioning. In particular, on the sort-list

problem the probability of success on the training cases was highest where the

iterations parameter was set at 150. Yet the proportion of runs finding a gener-

alisable solution was lowest with that same setting. Although these differences

are not statistically significant, they do highlight that a potential implication of

setting this parameter too high or too low is that the level of generalisation may

be reduced.
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Table 4.17: Summary of the results comparing different maximum iteration set-
tings, as listed in the Its. column. Train% is the percentage of success on the
training cases (as used for fitness) and Test% is the percentage of runs that found
a solution that generalised to the test set. Effort is the required computational
effort to find a solution with 99% confidence and 95% CI is its confidence interval.
Evals is the number of program evaluations required to find a solution with 99%
confidence. The approach used to calculate each of these values is described in
detail in section 3.3.

Its. Train% Test% Effort 95% CI Evals

Factorial
50 72.4 72.2 26,300 23,200 - 29,900 526,000
100 72.8 72.0 25,700 22,700 - 29,200 514,000
150 70.4 70.0 27,800 24,600 - 31,500 556,000

Fibonacci
50 59.0 56.6 44,000 37,900 - 51,300 880,000
100 59.0 56.2 40,500 34,800 - 47,400 810,000
150 62.4 60.6 37,700 32,500 - 43,900 754,000

Reverse
50 78.2 76.2 27,700 24,700 - 31,400 138,500
100 78.6 77.0 29,200 25,900 - 33,000 146,000
150 77.6 76.4 28,700 25,600 - 32,300 143,500

Sort
50 73.8 70.4 67,200 57,200 - 79,300 336,000
100 75.0 71.2 65,200 55,900 - 76,300 326,000
150 76.6 69.4 70,400 60,200 - 82,900 352,000

Triangles
50 71.6 71.6 14,400 12,700 - 16,500 86,400
100 69.6 69.6 15,900 13,900 - 18,200 95,400
150 69.8 69.8 14,300 12,600 - 16,400 85,800

Given the comparable performance results, it may be preferable to use a lower

maximum iterations setting to potentially reduce evaluation times. Table 4.18

shows the mean fitness evaluation time with each of the three maximum itera-

tion settings over these runs. As expected, these results mostly show a positive

correlation between the maximum iteration setting and evaluation time, so this

justifies an approach of choosing a smaller number of maximum iterations where

possible. On these problems, which require repetition to solve, there must be a

minimum maximum iterations setting at which the problem is still solvable. It

would be interesting to identify this point for each of the problems and test the

performance impact of values around this point. This remains for future work.
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Table 4.18: Comparison of the mean time required to evaluate an individual with
maximum iterations settings of 50, 100 and 150

Mean Evaluation Time (ns)
50 Iterations 100 Iterations 150 Iterations

Factorial 79753 ± 32 109592 ± 52 139911 ± 79
Fibonacci 51577 ± 18 63909 ± 29 72372 ± 38

Reverse 81375 ± 41 91035 ± 42 93888 ± 46
Sort 542304 ± 228 724187 ± 333 675877 ± 278

Triangles 16087 ± 23 15823 ± 13 16628 ± 30

4.8 Summary

This chapter has introduced a novel mechanism for adding structural constraints

to a tree-based GP representation and has established that these constraints are

sufficient to impose a naturally high-level imperative structure upon the evolved

programs. It was demonstrated how these programs could be converted to the

source code of a number of different high-level imperative programming languages

by using code templates. The solutions which were produced to each of the prob-

lems were found with high success rates and generalised well to wider test inputs,

while using a relatively low amount of computational resources in comparison to

those studies reviewed in chapter 3. The reduced size of the search space caused

by the additional structural constraints was investigated and shown to be bene-

ficial on five out of the six test problems, but there is a warning of the potential

to damage success rates in the reduced performance on the reverse-list problem.

Finally, the impact of two new control parameters, code-block size and maximum

iterations, was explored. The conclusion was that the ideal code-block size is prob-

lem dependent but with a preference for a smaller value. The maximum iterations

setting was discovered to have little impact on results as long as it is higher than

some unknown threshold to solve a given problem, but also that a lower value

does in most cases reduce the average evaluation time, as may be expected.



Chapter 5

High-Level Imperative Extensions

5.1 Introduction

It was demonstrated in chapter 4 that SFGP provides a general mechanism for

constraining the structure of program trees and that those constraints are suffi-

cient to evolve programs with an imperative structure using standard high-level

imperative programming constructs such as loops and arrays. However, more can

be achieved with some additional modifications to the algorithm to specifically

target the evolution of these imperative programs. This chapter will propose two

such extensions. The first adds the feature of a dynamic syntax, which may be

updated by a program to allow new limited scope variables to be declared. The

second is a simple method for improving the evaluation performance of programs

with the imperative structure, by considering multiple variables as candidates for

supplying the return value of a subroutine. The modifications necessary for each

of these extensions will be described and some experimental results will be pre-

sented that demonstrate their impact, along with a discussion of the potential

benefits.

82
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5.2 Limited Scope Variable Declarations

Variables are a fundamental component of computer programs. However, rarely

has a GP system been given the power to construct new variables. Without

variable declarations, all variables must be supplied as inputs to the system, in-

cluding any auxiliary variables required for the computation process that are not

part of the specified inputs or outputs. With complex programs, this can require

a considerable degree of insight into the solution space. By supporting the evolu-

tion of variable declarations, the aim is to lighten this burden without excessively

degrading performance.

It has already been described how the Strongly Formed Genetic Programming

(SFGP) variant of GP can be used to enforce a high-level imperative structure

upon evolved program trees. With a series of simple modifications, SFGP can

include support for allowing operators to declare new limited scope variables.

Limited scope variables are commonly found in modern high-level imperative pro-

gramming languages, but are particularly challenging to incorporate into an evo-

lutionary system. Each variable must not be used prior to being declared, nor

beyond the extent of its scope. Neglecting the limited scope aspect of variable

declarations may simplify the problem. However, this is inconsistent with the way

local variables are used by human programmers and produces programs reliant on

global variables [175].

One of the frequently mentioned issues with genetic programming is the dif-

ficulty in evolving iteration or recursion [4, 29]. If a mechanism for supporting

variable declarations is used, iterative constructs that more closely resemble those

used in high-level imperative programming languages become simple to imple-

ment. These constructs can supply indices or elements through variables that

they declare. Such constructs are commonly used in human written code and it

seems likely that they could help to expand the range and scale of problems to

which GP can be applied.
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5.2.1 Related Work

Variables are widely used in applications of GP for a variety of purposes. The

inputs for programs in a GP population are typically supplied using variables,

with the set of inputs defined by the GP practitioner and would normally be the

same for all programs in a population. There is often no facility for the value

of these variables to be altered. However, Koza [87, chapter 18.2] did propose a

mechanism for assigning the value of a global variable using a SET-SV operator.

He suggested that the use of a settable variable like this was beneficial for the

evolution of building blocks, since the variable provided a way of labelling a useful

computation so that it could be used elsewhere in the program. Koza’s approach

not only treated all variables as global, but also required them to be defined in

advance; no variable declarations here.

Linear GP variants [17, 114] commonly make use of defined memory registers

which can be both assigned to and have values retrieved from them. The number

of available registers is defined in advance to include registers for each input, plus

additional registers for facilitating calculations. Brameier and Banzhaf [17, chap-

ter 2.1] make the point that it is important for a sufficient number of registers

to be provided to avoid valuable information being overwritten. However, too

many registers may spread the computation too widely and make it difficult to

build a solution. As Oltean and Grosan [118] put it, “The number of supplemen-

tary registers depends on the complexity of the expression being discovered. An

inappropriate choice can have disastrous effects on the program being evolved”.

Stack-based GP systems [129,149] provide an alternative approach to memory,

where the result of expressions are pushed onto a stack and popped off as inputs

are required. As such, they are able to support an expandable memory allocation

(within some reasonable bounds). PushGP [149] evolves programs in the specially

designed Push programming language. Push provides a NAME data type, which

maintains its own stack of variable labels, upon which values may be pushed by

a program to define a new variable.
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There has been some limited use of variable declarations with tree-based GP

approaches. The authors of OOGP [1] imply their existence by stating that “new

local variables may occur within block statements”. But they fail to give any addi-

tional details. A far more thorough explanation is given by Kirshenbaum [84], in

his work with statically scoped local variables. He describes a method for support-

ing Lisp’s LET expression, which is able to define variable bindings with limited

scope. This is achieved by adding each LET expression’s bindings to the set of

available operators for each of the expression’s subtrees as they are generated.

We take a similar approach to Kirshenbaum, but must deal with a slightly more

complicated scenario, to cater for an imperative structure based on statements and

blocks. The scope of a variable in an imperative program should not just descend

into the children of the operator that declares it, but should also be accessible

to sibling operators (for example, statements following a declaration, within the

same block).

5.2.2 Syntax Updates

There are two forms of variable declaration that we wish to support, each requiring

different scope, consistent with modern imperative languages such as C/C++,

Java and Python:

− Standard declarations create a new variable and assign it a value according

to some expression. The variable’s scope extends from the statement fol-

lowing the declaration, up until execution leaves the block the declaration

is contained within. The variable is not in-scope for the declaration’s own

subtrees, but is available at any level of nesting for the following statements,

up until it is removed from scope.

− Some more advanced statement types, such as loops, may declare variables

for use only within the body of a child block. This is the case for loop

constructs that declare a new variable to be updated on each iteration with
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the index or element. These variables are available at any level of nesting

within the loop statement that declared them, but not beyond.

To support these types of declaration, we introduce syntax updates. A syntax

update is an opportunity for a node to modify the terminal and non-terminal sets.

These syntax updates can be applied as the initialisation procedure progresses in

order to change the available syntax for the construction of a node’s subtrees or any

following nodes. A syntax update may involve the addition or removal of nodes

from the syntax. For the purpose of supporting variable declarations, the emphasis

here is on modifying the available variables, but the same infrastructure could be

used for other purposes, such as the declaration of extra sub-routines. Each node

is able to define arity+1 syntax updates, which when the tree is traversed depth-

first, are applied before and after each of its child nodes are processed. Figure

5.1 illustrates this, with the dotted branches indicating the points of each syntax

update, which are labelled with the order they would be applied. In this example,

the syntax updates 4, 6 and 8 would all be defined by the B1 node. Both forms

of limited scope variable declarations that have been highlighted can be achieved

using this system.

− The B1 node can declare a new variable just to be available for its child

subtrees by adding the variable in syntax update 4 and then removing it in

syntax update 8. It can also restrict the variable to just one of its two child

subtrees by using the syntax update directly before and after that child.

− The B1 node can declare a new variable to be available only for following

nodes, by adding the new variable in syntax update 8.

With some small modifications to the initialisation, crossover and mutation

operators, programs can be evolved that make use of this dynamic syntax to

declare new variables. The necessary modifications are described in the following

sections.
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Figure 5.1: Example illustrating the position of syntax updates, which are shown
as dotted branches labelled with the order they would be applied. At each syn-
tax update, the available syntax can be modified for the following nodes when
traversed depth-first.

5.2.3 Modified Initialisation

Section 4.2.1 describes the grow initialisation procedure used by SFGP to con-

struct random program trees, where each node is selected at random from those

with a compatible data-type and node-type required by its parent (or the problem

itself for the root node). The only modification necessary is to apply any syntax

updates that are defined for a node as the tree is built. This will ensure that

at each point of the initialisation procedure, the available syntax contains only

those variables that are in-scope at that point. Algorithm 5.1 shows the updated

initialisation algorithm, including the syntax update step on lines 6 and 16. As

an example, consider the program tree in Figure 5.1. Once the root node A1 is

selected, the initialisation will proceed as follows:

1. The A1 node’s 1st syntax updates, labelled 1 in the figure, are applied.

2. A recursive call to the initialisation procedure is made to construct a subtree

as the first child of the A1 node.

3. The A1 node’s 2nd syntax updates, labelled 3 in the figure, are applied.

4. A recursive call to the initialisation procedure is made to construct a subtree

as the second child of the A1 node.

5. The A1 node’s 3rd syntax updates, labelled 9 in the figure, are applied.
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Algorithm 5.1 High-level pseudocode of the SFGP initialisation procedure with
modifications to support variable declarations. dt, nt and depth are the required
data-type, node-type and maximum depth. The filterNodes(S, dt, nt, depth)
function is defined to return a set comprised of only those nodes in S with the
given data-type and node-type, and with non-terminals removed if depth = 0.
The function updateSyntax(S, r, i) performs the task of updating the available
syntax, S, as defined for the ith position of the node-type r.

1: function generateTree(dt, nt, depth)
2: V ← filterNodes(S, dt, nt, depth)
3: while V not empty do
4: r ← removeRandom(V )
5: for i← 1 to arity(r) do
6: S ← updateSyntax(S, r, i)
7: dti← required data-type for ith child
8: nti← required node-type for ith child
9: subtree← generateTree(dti, nti, depth− 1)

10: if subtree 6= err then
11: attach subtree as ith child
12: else
13: break and continue while
14: end if
15: end for
16: S ← updateSyntax(S, r, arity(r))
17: return r . Valid subtree complete
18: end while
19: return err . No valid subtrees exist
20: end function
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5.2.4 Modified Mutation

In the basic form of SFGP, a program tree undergoing subtree mutation has

a node randomly selected and replaced with a newly generated subtree with a

compatible data-type and node-type. The main addition required, in order to

support a dynamic syntax, is for the newly generated subtree to be constructed

from the available syntax at the mutation point after all syntax updates up to

that point have been applied. The available syntax at the mutation point is easily

obtained by performing a partial traversal of the program tree, up to the mutation

point, applying each node’s syntax updates. A subtree can then be constructed

from the syntax at this point, using the initialisation procedure. In Figure 5.2, the

B1 node has been selected as the mutation point. Before a replacement subtree

is generated, all syntax updates prior to this point (1, 2 and 3) are applied to

the syntax. The initialisation procedure can then construct the subtree using this

updated syntax.

There is one further problem that needs to be overcome. No restrictions are

in place upon which subtree may be selected for replacement by the mutation

operator. So, a node which performs a variable declaration could be replaced,

potentially leaving dangling variables. A dangling variable, in this case, is a use

of a variable without an associated declaration. To resolve this issue, a repair

operation is performed, which is described in section 5.2.6. An alternative to

repairing the dangling variables is to simply disallow any mutation operation on

a node which will leave dangling variables. The problem with this approach is

that program trees are liable to accumulate variable declarations which perform

no fitness enhancing functionality without some further mutation that makes use

of the variable.

5.2.5 Modified Crossover

Subtree crossover in SFGP operates on two program trees, by randomly selecting

a node in one program and swapping the subtree rooted at that node with another
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Figure 5.2: Example subtree mutation where a dynamic syntax is supported. The
syntax updates prior to the mutation point are applied to construct the syntax
from which the subtree is created.

from the other program tree, randomly selected from those with compatible data-

type and node-type. No modifications to the basic operation of the crossover

operator are necessary to support a dynamic syntax. However, there are two

specific scenarios that must be handled for variable declarations to be evolved.

(1) As with mutation, the subtree that is removed may contain the declaration for

variables that are used elsewhere in the program tree, so these will be left orphaned

as dangling variables. (2) The subtree that is swapped into the program tree may

also contain dangling variables that were previously supported by declarations

that were not part of the genetic material transferred. Both of these situations

are resolved with the same repair operation, described in section 5.2.6. As with

mutation, an alternative is possible; crossovers that would lead to a situation of

dangling variables could be prevented from occurring, but it seems unlikely that

the algorithm will be able to take advantage of declarations if they are prevented

from being exchanged.
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A1

C2 B1

C3 V1

(a) First parent program

A1

C3 B2

V2 C1

(b) Second parent program

A1

V2 B1

C3 V1

(c) First child program

A1

C3 B2

C2 C1

(d) Second child program

Figure 5.3: Example subtree crossover where a dynamic syntax is supported, with
crossover points highlighted in the parent programs. C2 declares the V1 variable
and C3 declares the V2 variable. The first child program is left with 2 dangling
variables because the declaration for V1 is moved to the second program and the
V2 variable is inserted from the second program without its associated declaration.

To demonstrate how these dangling variables can occur, Figure 5.3 displays an

example crossover. The V nodes are variables of node-type C, with a data-type of

boolean and integer for V1 and V2 respectively. If the C2 node in the first parent is

responsible for declaring the variable V1, then removing it from the program will

leave the variable dangling. This is an example of scenario (1) described above.

Scenario (2) occurs when the V2 variable is swapped in to the first program, where

it is not supported by a declaration. This leaves the first child program with two

dangling variables which must be fixed by the repair operation.

5.2.6 Repair Operation

To remove all dangling variables introduced by the crossover and mutation oper-

ators, a repair operation is applied to each program after undergoing one of these
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Table 5.1: Type list for the declarative Statement node-types, showing the re-
quired data-type and node-type for each type of node. d indicates a pre-specified
data-type and a Void data-type indicates no value is returned.

Node-type Data-type Child data-types Child node-types
ForLoopDecl Void Integer

Void
Expression
CodeBlock

ForEachLoopDecl Void d[]
Void

Expression
CodeBlock

Declaration Void d Expression

genetic operators. The repair operation replaces any dangling variables with an

in-scope variable of a compatible data-type. To do this the program tree is tra-

versed, with each node checked to see if it is a dangling variable. A node is defined

as a dangling variable if it has a Variable node-type and if that variable does

not exist in the updated syntax at that point. To ensure the syntax includes all

in-scope variables, all syntax updates must be applied as the tree is traversed. If

a dangling variable is identified, then an alternative variable is selected at ran-

dom to replace it, from those in the updated syntax with the correct data-type.

If no suitable alternative variables exist in the syntax then the repair operation

fails and the related genetic operator that was performed must be discarded and

reattempted.

5.2.7 New Syntax

The dynamic syntax allows for the support of additional node-types that declare

new variables. The following new node-types are added, which use variables which

are limited in scope as specified. They are all subtypes of the abstract Statement

node-type and have Void data-types. Table 5.1 lists the type constraints, while

the semantic operation of the constructs is specified below:

− ForLoopDecl - adds a new variable, i, of an integer data-type to the avail-

able syntax on the second syntax update and the same variable is removed

from the syntax on the third syntax update. On evaluation, the first child

is evaluated, with the result used as the number of iterations to perform
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(capped at 100). The child code-block is evaluated the given number of

times, with the value of the variable i set to the current index, starting at

1.

− ForEachLoopDecl - adds a new variable, e, of the same data-type as the

elements of the array input, to the available syntax on the second syntax

update. The same variable is removed from the syntax on the third syntax

update. On evaluation, the first child is evaluated to obtain an array to be

iterated over. The second child is evaluated once per element in the array,

with the value of e set to the current element prior to each evaluation.

− Declaration - adds a new variable of the same data-type as the input from

the only child to the syntax in the second syntax update. The value of the

variable is set as the result of evaluating the child expression. Removal of

the variable is left to the code-block the declaration is contained within.

To ensure the scope of variables declared by the Declaration node-type are

limited to the code-block within which they are defined, the CodeBlock and

ReturnBlock node-types are modified. They record the state of the syntax at

the first syntax update and revert the syntax to that state at the final syntax

update, after its last child Statement has been processed. This results in all

variables declared within that block being removed from the syntax.

5.2.8 Experiments

A series of experimental runs were performed to test the impact of the introduction

of variable declarations. Three different scenarios were compared, with the labels

SFGP, LOOP and DECL used to distinguish them. Each one used an identical set

of control parameters, as used in section 4.5.1, with the exception of the terminal

and non-terminal sets. These are listed in Tables 5.2–5.7.

− SFGP - For five of the six test problems, the results in this experiment are

simply reproduced from the SFGP experiments in chapter 4. The exception
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is the Fibonacci problem, which made use of a Loop node in chapter 4. As

the Loop node-type does not use a variable, there is no equivalent declarative

form. To enable a fair comparison, a new set of runs was performed for this

problem with the Loop node replaced with a ForLoop node.

− LOOP - Used the same terminal and non-terminal sets as the SFGP experi-

ment, but each loop node was replaced with the equivalent declarative form.

For instance, ForLoop was replaced with ForLoopDecl, which operates ac-

cording to the same semantics, excepting that it declares its own variable

for storing the iteration index.

− DECL - Used the same terminal and non-terminal sets as the LOOP exper-

iment, but with the addition of a Declaration operator on each problem.

Any auxiliary variables required for the SFGP experiment setup were also supplied

for the LOOP and DECL experiments, even where not required. This was in order

to keep the setups constant, other than the constructs under examination.

5.2.9 Results & Discussion

The results summary in Table 5.8 lists all the success rates and required com-

putational effort for each problem in the three experiments. The impact of the

Table 5.2: Listing of the control parameter settings used for SFGP with variable
declarations on the factorial problem

Root data-type: Integer
Root node-type: SubRoutine
Max. depth: 6
SFGP syntax: SubRoutine, ReturnBlock, CodeBlock, ForLoop,

Assignment, Add, Subtract, Multiply, i, loopV ar,
1

LOOP syntax: SubRoutine, ReturnBlock, CodeBlock,
ForLoopDecl, Assignment, Add, Subtract,
Multiply, i, loopV ar, 1

DECL syntax: SubRoutine, ReturnBlock, CodeBlock,
ForLoopDecl, Declaration, Assignment, Add,
Subtract, Multiply, i, loopV ar, 1
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Table 5.3: Listing of the control parameter settings used for SFGP with variable
declarations on the Fibonacci problem

Root data-type: Integer
Root node-type: SubRoutine
Max. depth: 6
SFGP syntax: SubRoutine, ReturnBlock, CodeBlock, ForLoop,

Assignment, Add, Subtract, loopV ar, i, i0, i1
LOOP syntax: SubRoutine, ReturnBlock, CodeBlock,

ForLoopDecl, Assignment, Add, Subtract,
loopV ar, i, i0, i1

DECL syntax: SubRoutine, ReturnBlock, CodeBlock,
ForLoopDecl, Declaration, Assignment, Add,
Subtract, loopV ar, i, i0, i1

Table 5.4: Listing of the control parameter settings used for SFGP with variable
declarations on the even-n-parity problem

Root data-type: Boolean
Root node-type: SubRoutine
Max. depth: 8
SFGP syntax: SubRoutine, ReturnBlock, CodeBlock,

ForEachLoop, IfStatement, Assignment, And, Or,
Not, arr, loopV ar, resultV ar, true, false

LOOP syntax: SubRoutine, ReturnBlock, CodeBlock,
ForEachLoopDecl, IfStatement, Assignment, And,
Or, Not, arr, loopV ar, resultV ar, true, false

DECL syntax: SubRoutine, ReturnBlock, CodeBlock,
ForEachLoopDecl, IfStatement, Declaration,
Assignment, And, Or, Not, arr, loopV ar,
resultV ar, true, false

Table 5.5: Listing of the control parameter settings used for SFGP with variable
declarations on the reverse list problem

Root data-type: Character[]
Root node-type: SubRoutine
Max. depth: 8
SFGP syntax: SubRoutine, ReturnBlock, CodeBlock, ForLoop,

ArrayLength, Subtract, Divide, SwapElements,
arr, loopV ar1, loopV ar2, 1, 2

LOOP syntax: SubRoutine, ReturnBlock, CodeBlock,
ForLoopDecl, ArrayLength, Subtract, Divide,
SwapElements, arr, loopV ar1, loopV ar2, 1, 2

DECL syntax: SubRoutine, ReturnBlock, CodeBlock,
ForLoopDecl, Declaration, ArrayLength,
Subtract, Divide, SwapElements, arr, loopV ar1,
loopV ar2, 1, 2
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Table 5.6: Listing of the control parameter settings used for SFGP with variable
declarations on the sort list problem

Root data-type: Character[]
Root node-type: SubRoutine
Max. depth: 10
SFGP syntax: SubRoutine, ReturnBlock, CodeBlock, ForLoop,

IfStatement, ArrayLength, ArrayElement,
GreaterThan, SwapElements, arr, loopV ar1,
loopV ar2

LOOP syntax: SubRoutine, ReturnBlock, CodeBlock,
ForLoopDecl, IfStatement, ArrayLength,
ArrayElement, GreaterThan, SwapElements, arr,
loopV ar1, loopV ar2

DECL syntax: SubRoutine, ReturnBlock, CodeBlock,
ForLoopDecl, Declaration, IfStatement,
ArrayLength, ArrayElement, GreaterThan,
SwapElements, arr, loopV ar1, loopV ar2

Table 5.7: Listing of the control parameter settings used for SFGP with variable
declarations on the triangles problem

Root data-type: String
Root node-type: SubRoutine
Max. depth: 8
SFGP syntax: SubRoutine, ReturnBlock, CodeBlock, ForLoop,

IfStatement, Assignment, Concat, n, resultV ar,
loopV ar1, loopV ar2, ‘*’, ‘\n’

LOOP syntax: SubRoutine, ReturnBlock, CodeBlock,
ForLoopDecl, IfStatement, Assignment, Concat,
n, resultV ar, loopV ar1, loopV ar2, ‘*’, ‘\n’

DECL syntax: SubRoutine, ReturnBlock, CodeBlock,
ForLoopDecl, Declaration, IfStatement,
Assignment, Concat, n, resultV ar, loopV ar1,
loopV ar2, ‘*’, ‘\n’
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declarative constructs varies across the problems. On four out of the six prob-

lems, the LOOP variant produced the best result, with a lower computational

effort than the SFGP version. In two of those cases the results were statistically

significant1. However, on the remaining two problems, the lowest computational

effort was required by the SFGP setup, with one of those cases being statistically

significant1. This problem dependence is, at least in part, explained by the higher

number of variables that are available to programs with the LOOP and DECL

setups. Having extra variables available is beneficial on some problems, to hold

partial calculations, but where they are not useful they only serve to increase the

search space. Because of this, if auxiliary variables had not been supplied for the

LOOP and DECL setups, then it is likely that the performance would have been

better on some problems, but worse on others. There are also problem specific

scenarios that have an impact. For example, on some problems there is a benefit

to using the index variable beyond the loop it is used by. This seems to be the

case on the factorial problem. It is difficult to know, in general, on which prob-

lems variable declarations will be helpful and on which they will be harmful. This

point is well illustrated by the vast difference between the results for the similar

problems of factorial and Fibonacci.

The results for the DECL setup, with Declaration nodes, show a signifi-

cantly worse computational effort on half the problems, but is comparable on the

remaining half. The main problem with Declaration nodes, which only perform

the single task of adding new variables, is that they do not themselves contribute

to fitness. After a mutation which introduces a declaration, the variable that is

added by that declaration will remain unused. For the variable to be utilised by

the program towards solving the problem, a further mutation is necessary that

introduces a reference to the variable. Until that point, the declaration cannot

contribute to the fitness and so is effectively ‘junk’ code. This problem is most

likely to be an issue when tight size bounds are used, because any Declarations

1Statistical significance here is determined by non-overlapping confidence intervals for the
computational effort.



CHAPTER 5. HIGH-LEVEL IMPERATIVE EXTENSIONS 98

that occur do so at the expense of other potentially useful statements. This seems

to be the case with our experimental results, where the worst impact by declara-

tions was on problems where tighter size constraints were used. For example, it is

shown in chapter 6, that the reverse-list and sort-list problems can both be solved

without using the maximum available depth that is allocated in this study and

these problems are not as substantially impacted by declarations. This is unlikely

to be the whole story, but it suggests that using a less restrictive size constraint

could help declarations to be used productively.

Even where performance is degraded by using variable declarations, generalis-

able solutions are still discovered with some reliability. This is important since the

declaration and loop constructs do bring other benefits. The burden of knowing

which auxiliary variables to supply in addition to the inputs is removed. It is

always beneficial to provide a perfect set of components, but the degree of insight

this requires in to the solution space is sometimes impractical. It could also be

argued that variables are used in a manner which is more consistent with how

high-level programming languages are used by human programmers, with loops

that provide their own variables, limited in scope to just the body of that loop.

This could be significant in some scenarios, such as in a software development ap-

plication where the resultant program is to be used as just a fragment of a much

larger human written computer program.

One potential concern with the modifications made to the genetic operators to

support the dynamic syntax is that the repair operation could be damaging. Table

5.9 lists the proportion of genetic operations that required a repair operation to be

performed to resolve dangling variables. It is interesting to note that only a very

small proportion of both crossovers and mutations require the repair operation to

be applied, so any impact upon the performance is likely to be minimal. The table

shows that the number of mutations that introduce dangling variables is zero on

all problems of the LOOP experiment. This is because any mutations that remove

a declarative loop will also remove all references to their variables, since they are

contained within the body of the loop that is being removed. The factorial and



CHAPTER 5. HIGH-LEVEL IMPERATIVE EXTENSIONS 99

Fibonacci problems require a much lower proportion of programs to be repaired,

possibly because a lower maximum depth has been used on this problem, so the

smaller programs are likely to contain fewer declared variables.

Table 5.8: Summary of the results comparing SFGP with and without variable
declarations, where the Exp. column is the experimental setup used. Train% is
the percentage of success on the training cases (as used for fitness) and Test%
is the percentage of runs that found a solution that generalised to the test set.
Effort is the required computational effort to find a solution with 99% confidence
and 95% CI is its confidence interval. Evals is the number of program evaluations
required to find a solution with 99% confidence. The approach used to calculate
each of these values is described in detail in section 3.3.

Exp. Train% Test% Effort 95% CI Evals

Factorial
SFGP 72.8 72.0 25,700 22,700 - 29,200 514,000
LOOP 21.2 21.0 134,000 102,000 - 177,000 2,680,000
DECL 7.8 7.8 519,000 360,000 - 752,000 10,380,000

Fibonacci
SFGP 51.6 49.6 69,300 59,300 - 81,500 1,386,000
LOOP 62.2 60.2 56,600 49,200 - 65,500 1,132,000
DECL 41.0 40.2 167,000 141,000 - 198,000 3,340,000

Parity
SFGP 90.2 80.0 29,500 26,000 - 33,700 236,000
LOOP 99.4 95.6 11,200 10,000 - 12,500 89,600
DECL 98.2 93.4 16,600 14,900 - 18,600 132,800

Reverse
SFGP 78.6 77.0 29,200 25,900 - 33,000 146,000
LOOP 88.4 87.4 19,500 17,500 - 21,900 97,500
DECL 87.2 86.6 20,200 18,100 - 22,700 101,000

Sort
SFGP 75.0 71.2 65,200 55,900 - 76,300 326,000
LOOP 70.8 61.2 86,200 73,800 - 101,000 431,000
DECL 62.6 57.4 93,500 80,900 - 109,000 467,500

Triangles
SFGP 69.6 69.6 15,900 13,900 - 18,200 95,400
LOOP 59.6 59.6 14,200 12,300 - 16,400 85,200
DECL 25.8 25.8 45,600 34,500 - 60,600 273,600
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Figure 5.4: Performance curves for each of the test problems in the SFGP ex-
periment. With the exception of the curves for the Fibonacci problem, these
are reproduced from chapter 4. P (M, i) is the success rate and I(M, i, z) is the
number of individuals to process to find a solution with 99% confidence.
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Figure 5.5: Performance curves for each of the test problems in the LOOP exper-
iment. P (M, i) is the success rate and I(M, i, z) is the number of individuals to
process to find a solution with 99% confidence.
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Figure 5.6: Performance curves for each of the test problems in the DECL exper-
iment. P (M, i) is the success rate and I(M, i, z) is the number of individuals to
process to find a solution with 99% confidence.
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Table 5.9: Summary of repair operations, showing the proportion of program trees
produced by each of the genetic operators that required the repair operation to
fix one or more dangling variables

Exp. Repair Operations
Crossover Mutation

Factorial LOOP 5.7% 0.0%
DECL 4.8% 0.6%

Fibonacci LOOP 7.3% 0.0%
DECL 6.8% 0.6%

Parity LOOP 16.3% 0.0%
DECL 16.3% 1.8%

Reverse LOOP 12.1% 0.0%
DECL 13.3% 1.1%

Sort LOOP 18.3% 0.0%
DECL 20.4% 1.7%

Triangles LOOP 0.6% 0.0%
DECL 6.5% 1.6%

5.3 Multi-Variable Return

As discussed in section 2.1.3, fitness evaluation is generally the most time con-

suming phase of the GP algorithm. Any technique that can improve the efficiency

of fitness evaluation can have a substantial impact. In this section, we describe a

simple method that enhances the evaluation procedure when applied to programs

that are constrained to have the high-level imperative structure that has been

used throughout this thesis.

Given a program with the structure in Figure 4.4, it is possible to evaluate

multiple versions of this program without any additional executions. The value

that is returned from the program is defined by the variable found as a child

to the ReturnBlock. The constraints ensure that the data-type of this variable

is consistent with the required data-type for the problem. Even where variable

declarations are not in use, there may be several variables of the correct data-

type in the syntax which could potentially be positioned at this point. As with

any other node in the tree, the specific variable that is used is initially randomly

selected by the initialisation procedure and is then subject to evolution. However,

there is no need for the evolutionary process to specify just one variable. With

little additional expense, the evaluation procedure can consider all compatible
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variables as potential return values. This effectively evaluates multiple versions

of the same program, just differing by the variable to be returned. No further

executions are required, as the value of each of the variables will have been set

with just one execution for a given set of inputs. We call this technique multi-

variable return (MVR).

In MVR, the fitness evaluation procedure executes each program tree once per

training case as usual; no additional executions are necessary. However, for each

individual, x fitness scores are calculated, where x is the number of variables of

the correct data-type that are in-scope at the point of return. On each training

case, each of the variables is used to update its own separate fitness score, ac-

cording to the fitness function for the problem. Once all training cases have been

handled, the fitness for the individual is assigned to be the minimum of the can-

didate fitnesses and the associated variable is considered to be the variable that is

returned by the program. This technique has some similarity to Multi Expression

Programming [117] and the related ME-CGP technique, described by Cattani and

Johnson [24], for improving the efficiency of evaluation in Linear and Cartesian

GP variants. Although MVR is described here in context of the SFGP system, the

same idea could be applied wherever one of multiple available values is designated

as the return value of a program. For example, Linear GP representations often

designate one memory register as a program’s result.

5.3.1 Experiments

The expectation is that the MVR method of fitness evaluation should improve

performance wherever the imperative root structure is used and multiple variables

of the correct data-type exist. The extent of the improvement may be correlated

with the number of candidate return variables. To test this experimentally, two

sets of evolutionary runs were performed with the MVR technique enabled:
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1. Without variable declarations. To enable comparison, the same setup was

used as for the SFGP experiments from chapter 4 (listed in Tables 4.8 to

4.13), but with the MVR technique enabled

2. With variable declarations. The DECL setup from section 5.2.8 (listed in

Tables 5.2 to 5.7) is used, but with the MVR technique enabled.

The results from each of these are to be compared against the related results

where the MVR method was not enabled. There is no need for the terminal and

non-terminal sets to be changed to support MVR. However, the variable that is

assigned to the subroutine’s ReturnBlock by the evolutionary process is no longer

be used to supply the return value, so is ignored. The use of ReturnBlock could

be replaced with a simple CodeBlock. This approach is not taken here to enable

fair comparison with results without MVR.

Experiment 1

The MVR evaluation procedure relies upon there being multiple potential return

variables of the correct data-type that are in-scope at the point of return. Where

only one variable of the right data-type exists there can be no performance benefit

and the MVR technique is semantically identical to the alternative approach of

evolving the choice of return variable. In the first experiment, no constructs

supporting variable declaration are used, so the only available variables are those

that are supplied as inputs to the system. The number of variables matching the

return data-type on each of the six test problems are:

Factorial: 2

Fibonacci: 3

Even-n-Parity: 2

Reverse List: 1

Sort List: 1

Triangles: 1
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Only the factorial, Fibonacci and even-n-parity problems have more than one

potential return variable, all others are unable to benefit and so are excluded.

Table 5.10 summarises the results for the runs on these three problems with MVR

enabled. The related results from chapter 4 are reproduced for comparison. Per-

formance curves showing the progression of the success rate and computational

effort over the generations are displayed in Figure 5.7. As expected, the results

where MVR was used show higher success rates and lower required computational

effort on all problems, in comparison to the results where MVR was not used. The

non-overlapping confidence intervals suggest the reduced computational effort is

a statistically significant result on all three problems studied.

Table 5.10: Summary of the results of using the MVR method of fitness evaluation.
Rows labelled SFGP+MVR are where the MVR method was used, while the
SFGP rows show the results where MVR was not used for comparison (the setup
was otherwise identical). The approach used to calculate each of these values is
described in detail in section 3.3.

Exp. Train% Test% Effort 95% CI Evals

Factorial SFGP 72.8 72.0 25,700 22,700 - 29,200 514,000
SFGP+MVR 80.4 80.2 18,600 16,500 - 21,000 372,000

Fibonacci SFGP 51.6 49.6 69,300 59,300 - 81,500 1,386,000
SFGP+MVR 70.8 69.2 24,600 21,500 - 28,200 492,000

Parity SFGP 90.2 80.0 29,500 26,000 - 33,700 236,000
SFGP+MVR 96.8 92.4 17,400 15,500 - 19,500 139,200

Experiment 2

As described in the first experiment, the use of the MVR technique is only of

benefit where multiple potential return variables are possible. In the second ex-

periment, variable declarations are enabled, so new return variables can poten-

tially be declared. However, on only the factorial, Fibonacci, even-n-parity and

triangle problems is the data-type of the declarations the same as the required

return value. The remaining two problems are excluded as they are unable to take

advantage of the MVR method with this setup.

A summary of the results for experiment 2 is given in Table 5.11 along with

a listing of the DECL results without MVR enabled for comparison. The related
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Figure 5.7: Performance curves for each test problem where the SFGP+MVR
experimental setup is used and MVR is enabled. P (M, i) is the success rate and
I(M, i, z) is the number of individuals to process to find a solution with 99%
confidence.
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performance curves showing the progression of the success rates and computa-

tional effort are displayed in Figure 5.8. The success rates where the MVR eval-

uation procedure is used are substantially improved on all test problems studied,

in comparison to where MVR is not used. The results for the triangles problem

are of particular interest, because all additional return variables must have been

the result of a variable declaration. On the triangles problem, there is a large

but not statistically significant reduction in computational effort, when MVR is

enabled. Certainly not sufficient to overcome all of the performance disadvantage

that is seen when using Declaration nodes.

Table 5.11: Summary of the results of using the MVR method of fitness evaluation
when variable declarations are used. Rows labelled DECL+MVR are where the
MVR method was used, while the DECL rows show the results where MVR was
not used for comparison (the setup was otherwise identical). The approach used
to calculate each of these values is described in detail in section 3.3.

Exp. Train% Test% Effort 95% CI Evals

Factorial DECL 7.8 7.8 519,000 360,000 - 752,000 10,380,000
DECL+MVR 12.2 12.2 339,000 245,000 - 470,000 6,780,000

Fibonacci DECL 41.0 40.2 167,000 141,000 - 198,000 3,340,000
DECL+MVR 55.4 54.8 77,600 67,400 - 89,800 1,552,000

Parity DECL 98.2 93.4 16,600 14,900 - 18,600 132,800
DECL+MVR 100.0 98.4 8,980 8,080 - 10,100 71,840

Triangles DECL 25.8 25.8 45,600 34,500 - 60,600 273,600
DECL+MVR 29.6 29.6 38,800 29,900 - 50,400 232,800

Table 5.12: Listing of the average number of possible return variables per in-
dividual and the percentage of computational effort where MVR is enabled by
comparison with the case where MVR is not enabled. A percentage of 75 indi-
cates that the computational effort where MVR was enabled was three quarters
of what it was where MVR was not enabled.

Return Vars %Effort
Factorial 2.75 65.3
Fibonacci 4.48 46.5
Parity 2.67 54.1
Triangles 1.86 85.1

It is clear that the MVR technique can improve performance and this is not

surprising, since it increases the area of the solution-space that is searched in a

manner that the original solution space is contained within it. It was suggested
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(d) Triangles

Figure 5.8: Performance curves for each test problem where the DECL+MVR ex-
perimental setup is used with variable declarations and MVR is enabled. P (M, i)
is the success rate and I(M, i, z) is the number of individuals to process to find a
solution with 99% confidence.
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early in this section, that the magnitude of the performance improvement due

to MVR could be expected to be correlated with the number of potential return

variables. This seems to be a reasonable conjecture. Table 5.12 shows the mean

number of potential return variables that were available in each program. Com-

paring these values against the proportional amounts of computational effort with

respect to the baseline case where MVR is not enabled shows some support for

this idea. The results for the Fibonacci problem, which has by far the largest

number of potential return variables, shows the largest proportional drop in com-

putational effort of all the problems and the triangles problem shows the smallest

drop with the smallest number of return variables. However, on the factorial and

even-n-parity problems, where a similar number of potential return variables ex-

isted, there was quite a considerable difference in the change in computational

effort. Part of this disparity may be explained by the high success rates on the

even-n-parity problem, leaving less room for improvement in the computational

effort.

The MVR technique is a very simple way of improving performance with little

computational expense. However, its practical application has the assumption

that the execution of a program tree is computationally expensive, while the cal-

culation of a fitness score from the result is cheap. If there are applications where

the inverse is true, then the practical benefit of MVR would be reduced or even

negated. This is because it introduces more fitness scoring and in this scenario it

may be more efficient to use a larger population size or perform additional runs.

5.4 Summary

Two enhancements to the SFGP algorithm have been proposed in this chapter.

One for the purpose of supporting a new range of program constructs and the

other for improving the evolutionary performance, but both target the evolution

of high-level imperative programs. The concept of a dynamic syntax has been

introduced with the aim of supporting the evolution of programs with new limited
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scope variables. The dynamic syntax is made possible with the use of syntax

updates, which allow nodes to modify the available syntax for their child subtrees

or for successive nodes in the tree. Experiments were conducted which showed the

performance impact of variable declarations could be beneficial on some problems,

but the key motivations for supporting variable declarations are the generation of

programs with more standard programming constructs and reducing the required

insight into the solution space.

The second of the two enhancements covered in this chapter outlined a tech-

nique called Multi-Variable Return, for improving the performance of the algo-

rithm when evolving programs with an imperative structure. MVR makes use

of a simple method to evaluate multiple variations of each program without any

additional executions, by calculating one fitness score per in-scope variable. It

was experimentally shown that where multiple candidates for the return variable

exist, required computational effort was reduced and there is a strong suggestion

that the drop in computational effort is correlated with the number of available

variables.



Chapter 6

An Analysis of

Genetic Programming with

Software Metrics

6.1 Introduction

Human programmers use many tools and techniques to help them produce better

computer programs, such as unit tests, design patterns, program verification and

formal specifications. As the program code that can be evolved with GP becomes

more complex, the methods used by human programmers become more relevant

to the evolutionary process of code production. Harnessing these techniques may

help to overcome the same problems that human programmers use them for, such

as increasing scalablity by producing more structured or modularised code. There

are already examples in the GP literature of borrowing aspects of the software

development process to enhance the GP search, such as the use of unit tests to

evaluate the fitness of individuals [48,164] and the evolution of programs that sat-

isfy formal specifications [9]. Another set of tools which we believe may have some

useful applications in GP are software metrics. Software metrics are quantifiable

measures of some property of software or the software engineering process. Some

112
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very simple software metrics are already widely used within GP, for example, pro-

gram length and depth, which are often used as part of a constraint to tackle

bloat. But, there are many other measures which may have some application to

the GP algorithm.

In this chapter, GP evolved code is analysed with various well established soft-

ware metrics from the software engineering community. To the author’s knowl-

edge, a detailed analysis of this kind has not previously been conducted. The mo-

tivation of this analysis is to identify potential applications for software metrics to

the GP algorithm, to improve the fitness of solutions or reduce the time spent on

program evaluation. If a complexity metric correlates highly with evaluation time

and correct solutions are still consistently found at lower complexities, then the

metric could be used to focus the search effort on areas of lower complexity which

are cheaper to evaluate. This would be particularly valuable on problems where

fitness evaluation is very computationally expensive, such as image processing

applications.

The rest of this chapter will be organised as follows. Section 6.2 will describe

some of the related GP research that this analysis builds on. Then in section

6.3 the subject of software metrics is introduced, with a description of some well

known software metrics for measuring code size and complexity. Seven of these

metrics are described in more detail and are then applied to programs generated

by the SFGP system. The results of this analysis are presented in section 6.4.

Then conclusions are drawn in section 6.6 before the chapter is summarised in

section 6.7.

6.2 Related Work

Some simple metrics for measuring program size are already widely used in GP.

A constraint on program depth or program length is one of the common ways

for controlling the well documented problem of bloat [89, 91, 147]. Without any

restriction, the average size of programs tends to increase rapidly over generations,
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which can have negative implications for the time required to evaluate a program

and leads to programs that are difficult to understand. Crane et al. studied the

effects of program size limits in tree GP [33] and linear GP [106]. They found

that both length and depth were effective methods for controlling the average size

of programs in tree GP, but that limiting program length has less impact on tree

shapes than limiting depth. Beadle and Johnson [12] also considered the number

of functions, the number of terminals and the number of unique terminals, in

their analysis of program size. Other research has sought to measure program

shape [12] or the time complexity of the algorithms that are evolved [3]. Fitness

scores used to guide the selection mechanism are also a form of metric, which

attempt to quantify the quality of a program with respect to a stated problem.

There are examples of software metrics being used with metaheuristic algo-

rithms in a software engineering context. In the search-based software engineer-

ing community there have been a range of studies that looked to apply software

metrics to the problem of program design [15,73,146]. For example, both Simons

et al. [146] and Bowman [15] used multi-objective genetic algorithms to effectively

assign methods and attributes to classes in a class diagram based on a measure of

coupling and cohesion. Jensen and Cheng [73] also used the degree of coupling and

cohesion to guide their use of GP for automatic refactoring of computer programs

to use design patterns. The conclusion of their study was that their system could

successfully refactor programs to introduce design patterns, but it could not be

automated completely, as a human is required to review the range of alternative

design patterns that are possible.

6.3 Introduction to Software Metrics

Software metrics is the subject of measuring properties of software and the soft-

ware engineering process. They have been used for a diverse range of purposes

including the prediction of software quality, performance optimisation and the

management of project resources [46]. One of the main motivations for measuring
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attributes of software is for quality control. Aspects of the code can be measured

to indicate those modules that may be error-prone or more difficult to maintain,

to highlight those areas most likely to benefit from further testing or refactoring.

There are two broad categories of software metric: direct metrics, where the prop-

erty itself is measurable and derived metrics, where there is no way to measure

the property directly (or where the software does not exist yet), so the metric is

a prediction based on a known relationship with other properties which are mea-

surable. In this chapter, we are interested in either direct or derived metrics, but

only those which are dependent on the actual program code. So, measures of the

development process, such as programmer productivity, are not discussed here.

The simplest aspect of code to measure is that of program size. There are a

number of different approaches for measuring size. The number of lines of code

is commonly used, but requires a careful definition of what constitutes a line of

code. For example, should comments and blank lines be included? There is some

evidence that the number of lines of code correlates with the number of defects in

a program [50]. Other attempts to measure size have concentrated on the amount

of functionality that the code delivers [6, 38]. Halstead [59] proposed a range of

code metrics which measured different properties including aspects of program

size. These metrics are discussed in section 6.4.

Many software metrics that have been proposed are based on the control-flow

graph of a program. These are often claimed to measure structural complexity.

The control-flow graph of a program is a graph where each node represents a

series of sequential instructions and edges are used at branching points to in-

dicate the alternative execution paths that are possible. McCabe’s cyclomatic

complexity [103] is probably the most well known of these metrics, but Prather’s

µ measure [131] and NPATH [112] are other complexity measures calculated based

on the control-flow. Each of these metrics are used in our analysis and will be

described in detail in section 6.4. Oviedo [128] used a similar measure derived

from the data flow characteristics of a program. A comparison of cyclomatic com-

plexity, number of statements, Oviedo’s measure and one of Halstead’s metrics
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has been conducted [165]. One conclusion from this study was that both the cy-

clomatic complexity and the number of statements consider the components of

a program to have inherent complexity, while Oviedo’s data-flow measure places

emphasis on the context of components. Halstead’s metric was determined to fit

somewhere between these two situations. Other measures of logical complexity

include a measure of the density of IF statements [52] and a metric proposed

by Thayer et al. [155], which involves summing the number of logic statements,

branches and the loops/IFs at each nesting level.

There are other metrics which have sought to measure system complexity –

the structural design of systems comprised of multiple modules [157, 176, 178].

These cannot be applied to programs of the scale evolved in this thesis, because

we are currently only concerned with the generation of code for individual sub-

routines. Similarly, a range of software metrics have been proposed specifically for

the design of object-oriented programs [58,95]. These may have some application

for those GP systems that claim to be able to evolve object-oriented code, such

as OOGP [2], but are currently out of the scope of this research.

6.4 Analysis of Genetic Programs

There are a vast number of software metrics that have been proposed, only some

of which could be used in this analysis. Many are not applicable to the type of

program that our system produces and many more are difficult to incorporate

in a study for other reasons, such as producing a tuple as a score rather than a

single metric value [61]. The metrics that are used were chosen because they are

relatively widely known and are sufficiently simple to be comparable to the other

metrics in the study. The metrics in this study are: cyclomatic complexity, Hal-

stead’s programming effort, NPATH, Prather’s measure µ and the total number

of statements. In addition, the commonly used GP program metrics of program

depth and program length (number of nodes) are added to the comparison. In

total this gives seven metrics.
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Table 6.1: Pearson linear correlation coefficient between each metric and both the
fitness and the evaluation time. The p-value in all cases is < 2.2× 10−16, except
for the Prather metric on the Parity problem, where p = 4.3× 10−6 for the fitness
property and p = 0.8789 for the time property.

Metric Property Factorial Fibonacci Parity Reverse Sort Triangles

Length Fitness -0.0499 -0.1163 -0.1023 -0.1156 -0.1127 0.0731
Time 0.1636 0.2044 0.3594 0.2112 -0.0840 0.0830

Depth Fitness -0.1035 -0.1360 -0.1266 -0.1750 -0.1510 0.0214
Time 0.0645 0.0732 0.1198 0.1115 0.0609 0.0426

Statements Fitness -0.0737 -0.0702 -0.1098 -0.1134 -0.1000 0.0705
Time 0.1504 0.2320 0.3590 0.2099 0.3157 0.0830

Cyclomatic Fitness -0.0737 -0.0702 -0.0848 -0.1134 -0.1000 0.0705
Time 0.1504 0.2320 0.1388 0.2099 0.3157 0.0830

Effort Fitness 0.0452 -0.1639 -0.0753 0.0226 -0.0075 0.2355
Time 0.0818 0.1367 0.3556 0.2040 -0.0531 0.1736

Prather Fitness -0.0383 -0.0437 0.0020 -0.0922 -0.0840 0.0809
Time 0.1541 0.2334 −6.7× 105 0.2141 0.3261 0.0864

NPATH Fitness -0.0098 -0.0068 -0.0073 -0.0207 -0.0026 0.0820
Time 0.0814 0.1406 0.1398 0.1076 0.2986 0.0726

Data was gathered from 500 runs of each of the six test problems used through-

out this thesis. Each individual across all runs and all generations was recorded,

along with its fitness, the time required to evaluate it, the generation it was found

in and the value of each of the seven metrics when applied to it. The control

parameters used for all problems were as for the SFGP experiments in chapter 4,

shown in Tables 4.8–4.13, with the exception that a maximum depth of 10 was

used for all problems. This was to allow fair comparison between the problems

using the depth metric and to try to reduce the extent to which the complexity

of the programs is restricted by a tight size bound.

6.4.1 Explanation of Metric Charts

Charts are used in this chapter to portray the relationship between a metric and

the fitness and evaluation time properties. Each of these charts contain a lot of

data and require some explanation. Figure 6.1 shows an example of one of these

charts. Each chart displays two sets of data, which are described separately here.
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Figure 6.1: Example metric chart, which shows the relationship between a metric
and either the fitness or evaluation time property of individuals on a problem.
The metric values are grouped along the x axis and split into 5 bars representing
10 generations each, where the height of the bars is for the fitness or evaluation
time property.

Average Data

The thick horizontal bars (shown in Figure 6.2 with the generational data re-

moved), show the relationship between a metric and either the program fitness or

evaluation time. Every individual in the study is sorted into one of 8 groups based

on the value of the metric under investigation. Each of these groups covers an

equal range of metric values, so if the minimum metric value in the sample was 1

and the maximum value was 80, then those individuals with a value of 1–10 would

be inserted in the first group, 1–20 in the second group and so on. Grouping the

individuals by metric value like this allows us to more easily compare the different

metrics which would otherwise be on vastly different scales. Each horizontal bar

on the chart is then the average fitness or evaluation time of the individuals in

that group, with group 1 on the left through to group 8 on the right.

Generational Data

The horizontal bars described in the previous section include all individuals re-

gardless of their generation. However, in GP it is often useful to consider how

trends change throughout the course of a run. To give a more complete picture,

the individuals in each group in our charts are separated into 5 bars which show

10 generations each, so the first bar in each group shows the average fitness or

evaluation time for individuals in that group from generations 1–10, the second

bar from generations 11–20 and so on. By looking just at the first bar in each
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fit
ne
ss
 o
r e
va
lu
at
io
n 
tim
e

Figure 6.2: Example metric chart with generational data removed. Each horizon-
tal bar indicates the mean fitness or evaluation time of the individuals in that
group. The individuals are split in to groups based on their value for the metric
being studied, with each group covering an equal range of metric values.

group it is possible to spot trends that occur only at the beginning of the runs and

then this can be compared to the other bars to see how the situation develops.

Figure 6.3 shows an example of these generational metric bars, with the horizontal

bars removed.

Error bars are included on each of the generation metric bars, showing the

standard error. Where no error bar is present, it indicates that the error was too

small to accurately display. This occurs frequently, as many of the bars show the

mean from a sample of 100,000s of values. However, in a few cases error bars are

absent because the sample size is just 1 or less. An asterisk (*) is displayed at the

base of the bar to indicate this. This is also important to distinguish the scenario

where no individuals were identified in that group, from the case where the mean

property value is zero or close to zero.

6.4.2 Program Tree Length

Program tree length is a measure of program size that is frequently used in genetic

programming. It is a simple count of the number of nodes in a program tree. It is

well established that during the evolutionary process, the average size of programs

grows rapidly [89, 91, 147]. This is known as code bloat. Because of this, the

size of programs are often constrained by properties such as program length and

depth [78, 97]. The impact of these limits has previously been explored [33] and
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Generations 11-20
Generations 21-30
Generations 31-40
Generations 41-50

Figure 6.3: Example metric chart showing generational data with horizontal (av-
erage) bars removed. Each group is divided in to 5 bars based on the generation
the individuals were discovered in. The first bar in each group shows the average
metric value for the individuals in that group that were discovered in generations
1–10.

found to be equally effective at controlling the average program size. Rosca [135]

examined the relationship between generality of programs and program length.

He recognised that small solutions are associated with generalisation, but noted

that it is difficult to produce small solutions with parsimony pressure without

damaging the effectiveness of the algorithm. Rosca’s novel suggestion was to use

a measure of effective code size instead.

Table 6.1 shows the Pearson correlation coefficient between each metric and

both the fitness and evaluation time of a program. It suggests that there is a very

weak negative correlation between the length of a program and the program’s

fitness on all but one of the problems studied. Examining the chart in Figure

6.4 shows a more complete picture. There is a reasonably consistent pattern on

most of the problems. The overall trend seems to be for fitness scores to drop as

program length increases, but possibly with an increase in fitness in the longest

programs, which could be the impact of the depth restrictions. The exception to

this is on the triangles problem, where the problem fitness seems to increase with

program length, although the trend is obscured by very small values. As would

be expected, the generation bars show that in most groups of program lengths

the fitness goes down as the generations progress. One notable exception to this

is on the sort list problem, where the first group of program lengths display high
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Figure 6.4: Length × Fitness. Charts showing the relationship between the pro-
gram length metric and the fitness of individuals

fitness throughout the generations. This is because the program is not solvable

with programs of this length, given the available syntax.

Solutions to all problems are found with a large range of different program

lengths. Figure 6.6 shows the distribution of program lengths of correct solutions

that are found. Most notably solutions to the sort-list problem on average are

found with almost twice as many nodes as for any of the other problems. This

could be seen as an indicator of the difficulty of the problem, but it is also influ-

enced by the syntax that is used for the problem, with some constructs naturally

requiring more nodes because they have more inputs. These results do not illus-

trate the number of nodes that are actually effective, rather than introns that do
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Figure 6.5: Length × Time. Charts showing the relationship between the program
length metric and the time required to evaluate individuals

not contribute, so it is possible that the larger programs would be considerably

shorter if subjected to some post-processing to remove ineffective statements.

As might be expected, a small positive correlation is seen between a program’s

length and its evaluation time. There are some interesting generational features

to be noted in the evaluation time chart in Figure 6.5 though. On several of

the problems, most notably sort-list, evaluation appears to be quicker in later

generations than it is in earlier generations. One explanation for this, is that the

more fit programs of later generations are more likely to set up loops with sensible

upper bounds and to not nest more loops than necessary in comparison to the

less fit individuals in the first generations.
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Figure 6.6: Boxplot showing the distribution of program lengths for programs
that solved all the training cases on each of the test problems

6.4.3 Program Tree Depth

Program tree depth is an alternative measure of program size, which is also widely

used in genetic programming as a size restraint. In all experiments in this thesis,

depth constraints are used to ensure programs can be evaluated within a rea-

sonable time. This is particularly necessary because loops are used, which can

substantially increase evaluation time when they are nested multiple times. The

depth constraint is likely to have an impact on the fitness and evaluation time

of programs that are near to the limit, so ideally the depth constraints would be

removed for our study. However, this would not be possible without adding an

alternative constraint to limit the evaluation time and it is preferable to use the

same constraint as has been used in practice. There is also value in seeing what

the actual impact of the depth constraint is.

Table 6.1 shows that a weak negative correlation exists between program depth

and program fitness on all but one problem. This trend is seen clearly in the charts

for program depth shown in Figure 6.7. Each problem shows several program

depth groups with very high fitness values, regardless of generation, followed by a

downwards trend of fitness. This seems to suggest that, in general, using a greater
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Figure 6.7: Depth × Fitness. Charts showing the relationship between the pro-
gram depth metric and the fitness of individuals

depth should be beneficial for performance. However, there is a positive correlation

between depth and evaluation time which is seen both in the correlations table and

the evaluation time charts in Figure 6.8. The influence of nested loops means that

there is an exponential relationship between the depth and evaluation time at the

greatest depths. In practice, this means that there is a point where the improved

fitness of deeper programs is more than offset by the increased evaluation time and

it might become more efficient to use a larger population or perform additional

runs, than to increase program depth.

Figure 6.9 shows an overview of the distribution of depths for the programs

that solved all training cases. The vast majority of solutions are found at the

maximum allowable depth. The extent to which the lower whisker extends is a
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Figure 6.8: Depth × Time. Charts showing the relationship between the program
depth metric and the time required to evaluate individuals

reasonable indicator of the minimum depth that must be available to represent a

correct solution. This suggests that the maximum depth settings that were used

in the experiments in chapters 4 and 5 did not provide much surplus depth than

what is required to solve the problem. Correct solutions are only discovered with

lower depths than the maximum setting on the reverse list and sort list problems.

6.4.4 Number of Statements

The number of statements or number of lines of code, is another measure of pro-

gram size. It has been used in the software development industry as a simple

estimate of complexity and as a crude measure of programmer productivity. Pro-

gramming guidelines often include recommendations for the maximum number
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Figure 6.9: Boxplot showing the distribution of depth values for programs that
solved all the training cases on each of the test problems

of lines of code to put in a module or subroutine. For example, the Java Code

Conventions state that files longer than 2000 lines should be avoided [151]. The

advantage of using number of lines of code as a simple complexity metric is that it

is so easily calculated, but it has received heavy criticism [76,77]. As a method for

measuring productivity, it is easily manipulated because code can be artificially

bloated. Even when used honestly there are problems, as experienced program-

mers tend to emphasise code reuse and make more efficient use of language features

and libraries, which leads to smaller programs. It also has the weakness of not

being very useful for comparing code written in different languages, as different

languages are naturally more verbose than others.

There are a number of subtle variations in the method of calculating the num-

ber of lines of code. Blank lines and comments may optionally be included in the

count and for different languages different definitions of a statement are possible.

In our calculation in SFGP, the metric value is a count of the number of nodes in

a program tree that are a subtype of the abstract Statement node-type. Number

of statements is an inherently imperative metric and may be considered to be the
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Figure 6.10: Statements × Fitness. Charts showing the relationship between the
number of statements metric and the fitness of the individuals

equivalent of program length or program depth which are not very intuitively ap-

plied to imperative programs. Our results reinforce this idea, with the fitness and

evaluation time charts for the number of statements metric, shown in Figures 6.10

and 6.11, displaying a strong similarity to the program length charts in Figures

6.4 and 6.5. This suggests that for the evolution of imperative programs, a pro-

gram length constraint could be replaced with a number of statements constraint

with similar impact. For imperative programs, a number of statements parameter

would be more intuitive to set than either a parameter for maximum program

depth or maximum number of nodes. The distribution of number of statements

for solutions, in Figure 6.12, is also very similar to the equivalent plot for program

lengths.
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Figure 6.11: Statements × Time. Charts showing the relationship between the
number of statements metric and the time required to evaluate individuals

6.4.5 Cyclomatic Complexity

McCabe’s Cyclomatic Complexity [103] is a well known software complexity met-

ric. It is intended to provide a quantitive measurement of program complexity to

be used as an indicator of how difficult code is to test or maintain. The cyclomatic

complexity of a program is calculated as the number of execution paths through

its flow graph. The flow graph for a program is a directed graph, where a vertex

corresponds to a sequential block of code and edges correspond to branches in the

control flow. The cyclomatic complexity V (G) of a graph G, with n vertices, e

edges and p connected components is given by the formula:

V (G) = e− n+ 2p (6.1)
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Figure 6.12: Boxplot showing the distribution of number of statement metric
values for programs that solved all the training cases on each of the test problems

In practice, the cyclomatic complexity of a piece of code without multiple indepen-

dent modules (connected components) can be easily calculated without reference

to the control graph, as 1 plus the number of branching operations. A branching

operation is any program construct that causes a deviation from the linear flow

of the program. This includes if-statements and loops, but also predicates such as

the boolean AND operation. The resulting score will always be V (G) ≥ 1. McCabe

recommended that programmers should limit the complexity of software modules

to less than 10, with the intention that this would keep the number of independent

paths manageable for testing.

A number of extensions and modifications to cyclomatic complexity have been

proposed. Myers [111] identified that there are two ways of drawing flow dia-

grams, with each obtaining different cyclomatic numbers and suggested that the

complexity of a program could be presented as an interval between these bounds.

Hansen [61] introduced a lexicographically ordered 2-tuple score composed of the

cyclomatic score and a simple count of the number of operators, which he sug-

gested provided a more intuitive ordering of programs by complexity than either

McCabe’s or Myers’s measures. Gong and Schmidt [55] identify another problem
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Figure 6.13: Cyclomatic × Fitness. Charts showing the relationship between the
cyclomatic complexity metric and the fitness of the individuals

with McCabe’s complexity metric. They criticise it for not considering the degree

of nesting, which they argue contributes to the intuitive interpretation of com-

plexity. To correct this, they proposed a method for assigning a value between 0

and 1 to the level of nesting of a program, which is then added to the cyclomatic

number to give a decimal score of the complexity.

Although widely used, there has been some dispute as to the value of cyclo-

matic complexity as an indicator of faulty code. The main criticism is that it is no

more accurate as a predictive measure than the number of lines of code [44,53,143].

Van der Meulen and Revilla [108] studied over 70,000 small C++ programs and

found that cyclomatic complexity correlated highly with the number of lines of

code, but did not correlate well with the number of defects. They do note that a
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Figure 6.14: Cyclomatic × Time. Charts showing the relationship between the
cyclomatic complexity metric and the time required to evaluate individuals

weakness in their research was that the programs studied were small (“dozens to

several hundred lines”), but this is relevant to our study where the programs are

of a similar scale. Our results, in Figures 6.13 and 6.14, corroborate the view that

cyclomatic complexity measures little more than program length. The charts for

both fitness and evaluation time are remarkably similar to the respective charts

for the program length and number of statements metrics. Given the additional

complexity of computing the cyclomatic complexity, in comparison to these sim-

pler size metrics, it seems unlikely that there could be any practical application for

cyclomatic complexity in improving the performance of the GP algorithm. The

caveat to this conclusion is that the situation may be different for larger programs.
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Figure 6.15: Boxplot showing the distribution of cyclomatic complexity values for
programs that solved all the training cases on each of the test problems

Figure 6.15 shows the distribution of cyclomatic complexity values in the cor-

rect solutions that were found for each problem. Solutions for all six problems

are identified below the recommended maximum cyclomatic complexity value of

10 and the mean cyclomatic complexity is also below the recommended limit on

four of the problems. This is promising, but there is quite a range of complexities,

with many solutions considerably higher than the recommended limit. Given two

semantically equivalent programs, it would be preferable to have the one with

lower complexity, so incorporating encouragement for less complex programs in

to the fitness function may be useful. But given the apparent correlation be-

tween cyclomatic complexity and number of statements, minimising the number

of statements might be just as effective. These box plots do not contain details of

program generalisation, so it may be that programs which solve the test cases as

well as the training cases have a different distribution of complexities.

6.4.6 Halstead’s Effort

Halstead proposed a large range of different software metrics for measuring dif-

ferent aspects of software, which he collectively described as software science [59].
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Figure 6.16: Effort × Fitness. Charts showing the relationship between Halstead’s
program effort metric and the fitness of the individuals

These metrics include program difficulty, intended as a measure of the challenge

involved in writing and understanding a program; program volume, to consider

the density of the functionality in a program; and program effort which was de-

signed to be used in estimating the time required to produce the code. Each of

these metrics were based on calculations comprising four simple direct measures

of the code.

− n1 = the number of unique operators

− n2 = the number of unique operands

− N1 = the total number of operators

− N2 = the total number of operands
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Figure 6.17: Effort × Time. Charts showing the relationship between Halstead’s
program effort metric and the time required to evaluate individuals

Halstead laid out exactly which tokens constituted operators and which would

be operands. Operators included tokens such as + - % = and most reserved words,

while all non-reserved word identifiers and literal characters, numerics and string

values were considered to be operands. The following list of derived software

science metrics are based on the direct measures above:

− Program length: N = N1 +N2

− Vocabulary size: n = n1 + n2

− Program volume: V = N ∗ log2(n)

− Difficulty level: D = (n1/2) ∗ (N2/n2)

− Program effort: E = V ∗D
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− Time to implement: T = E/18

− Number of bugs: B = E2/3/3000

Our study looked at the program effort metric, E, which has been demonstrated to

correlate with the number of errors in a module [49] and debugging time [35]. This

suggests it may be a good alternative complexity metric to the cyclomatic com-

plexity measure. However, the results of many of the experiments that suggested

these correlations have since been demonstrated to be statistically flawed [60,93],

so the measure is somewhat controversial.

A comparison of our fitness and evaluation time charts for program effort (in

Figures 6.16 and 6.17), to the equivalent charts for program length and number of

statements, show far less similarity than was the case for cyclomatic complexity.

However, there is little consistency across the problems studied, including similar

problems such as factorial and Fibonacci. Table 6.1 shows that there is a positive

correlation between program effort and program fitness on three of the problems

studied, but a negative correlation on the remaining three. There is slightly more

consistency seen between the program effort and evaluation time, with a positive

correlation clearly identifiable on five of the problems. However, the sort list

problem displays a weak negative correlation, which is suprisingly clear in the

evaluation time charts. Also interesting are the differences between the phases

of the runs; there seems to be no common trend between the metric groups. In

general the results for Halstead’s program effort metric seem to be slightly erratic

and very problem dependent.

6.4.7 Prather’s Measure µ

Prather presented an “axiomatic framework” for software complexity measures [131]

and demonstrated that both McCabe’s and Halstead’s measures satisfy each of

the axioms. A third metric, µ, was proposed and also determined to satisfy the

requirements of the framework. This measure was designed to overcome some of

the criticisms aimed at both of the other metrics, such as too close a correlation
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Figure 6.18: Boxplot showing the distribution of program effort metric values for
programs that solved all the training cases on each of the test problems

with the number of lines of code and no attention given to the degree of program

nesting.

The calculation of µ starts by considering all simple statements as having

a complexity of 1. The following three rules are then applied for each type of

structured construct to produce a complexity score for a complete program.

− µ(S1, S2, Sn) = ∑
µ(Si) - The complexity of a sequence of statements is the

sum of its constituent statements’ complexities.

− µ(if P then S1 else S2) = 2|P | × max(µ(S1), µ(S2)) - The complexity of a

conditional statement is twice the size of which ever has the largest com-

plexity; the if block or the else block. If P is a complex condition composed

of multiple boolean predicates then 2|P | is used, where |P | is the number of

boolean relations.

− µ(while P do S) = 2µ(S) - The complexity of a loop is twice the complexity

of the loop’s body.
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Figure 6.19: Prather × Fitness. Charts showing the relationship between
Prather’s measure µ metric and the fitness of the individuals

Prather recommended a maximum module complexity of 100 and suggested that

the measure be used to guide testing in a similar fashion to the cyclomatic com-

plexity.

Table 6.1 suggests there is very little correlation identifiable between µ and

program fitness. However, there is a positive correlation between µ and the evalu-

ation time. This is also reflected in the charts in Figures 6.19 and 6.20. The results

on the even-n-parity problem are being distorted by extreme values for µ, with

some values as high as 4.14×1010, because of the occurrence of if-statement condi-

tions with a high number of boolean predicates. The second of the three rules for

calculating µ puts a large emphasis on the contribution of multiple predicates to

the complexity of a program. However, an example of these long condition clauses
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Figure 6.20: Prather × Time. Charts showing the relationship between the µ
metric and the time required to evaluate individuals

makes it clear that this highlights an unpleasant characteristic of the programs

that can be produced with this system:

if (((!((loopVar && resultVar) && resultVar) || !resultVar)

&& (true && ((false || !true) && ((loopVar

|| ((resultVar && false) || (resultVar && false)))

&& !((resultVar && loopVar) && !false)))))) {

...

}

Experienced human programmers do not write imperative code like this and any

programs that relied on clauses like this would be frowned upon in a real software

system. Furthermore, it seems that programs like this do not produce solutions,
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as Table 6.4 shows that no solutions are found with these high µ values. This

raises an argument for size constraints for imperative programs that are based on

more sensible properties than program depth, or other encouragements to target

less complex programs. Complexity metrics like µ may have some application in

this area.

To enable any correlations for µ to be more easily seen, a second pair of charts

have been produced for the even-n-parity problem with outliers removed. These

charts are shown in Figure 6.21. The fitness charts across the problems are a

little inconsistent, but there does seem to be a similar trend on at least three

of the problems, with the lowest fitness scores found in the middle groups. The

evaluation time charts suggest that higher µ values tend to be combined with

a longer fitness evaluation. But, the picture is not completely clear and there

are some anomalies. For example, the sort list problem shows a very clear trend

through the metric groups, but the 7th metric group is much lower than the

trend suggests it would be. Despite its exaggeration of the complexity of boolean

predicates, the trends suggest that the Prather measure may have more potential

for application than either the cyclomatic complexity or Halstead’s effort metric.
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Figure 6.21: Charts for the even-n-parity problem, showing the relationship be-
tween Prather’s measure µ metric and both the fitness and time required to eval-
uate individuals, where outliers are removed
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Figure 6.22: Boxplot showing the distribution of µ values for programs that solved
all the training cases on each of the test problems. As explained in the text, the
prather metric produces some extreme values for µ on the even-n-parity problem,
so on this problem only, outliers have been removed.

6.4.8 NPATH Complexity

NPATH [112] was proposed by Nejmeh as a finite measure of the potentially infi-

nite number of execution paths through a program, for the purpose of test cover-

age. The author claims NPATH overcomes several shortcomings with McCabe’s

metric, namely that nesting levels are not considered, that different constructs

are not distinguished between and that a poor relationship exists between the

cyclomatic complexity and the required testing effort of a program.

As with the cyclomatic complexity, the NPATH metric is based on the control

flow graph of a program. It is defined as a count of the number of acyclic execution

paths through a function. To apply NPATH in practice, Nejmeh provided a se-

ries of execution path expressions for common high-level programming constructs.

These can be easily applied to produce a complexity score from the source code

(or syntax tree) of any program. Table 6.2 lists a summary of some of the rel-

evant execution path expressions, where NP (x) is an application of NPATH on

the component x. As an example, the NPATH complexity of an if statement is a

sum of the NPATH complexities of its constituent parts (a boolean expression and
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Figure 6.23: NPATH × Fitness. Charts showing the relationship between the
NPATH metric and the fitness of the individuals

a conditionally executed sequential code block), plus 1. Further explanation and

examples are given in [112]. Based on practical studies, the author recommended

an NPATH threshold of 200 for a function and suggested methods for reducing

complexity below this level.

Nejmeh performed a comparative study of NPATH against McCabe’s cyclo-

matic complexity, number of lines of code and the number of lexical tokens, where

each was computed for 821 different UNIX C functions. A strong correlation was

reported between cyclomatic complexity and the two lexical measures, which it

was suggested leads to the conclusion that they are measuring the same thing.

But NPATH had little correlation, so it was concluded that NPATH is measur-

ing different factors of complexity to these other metrics. Our study seems to
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Figure 6.24: NPATH × Time. Charts showing the relationship between the
NPATH metric and the time required to evaluate individuals

confirm these findings, with little similarity between the fitness and evaluation

time charts in Figures 6.23 and 6.24 and the related charts for the cyclomatic

complexity, number of statements and program length metrics.

Table 6.1 shows that there is very little correlation between the NPATH metric

and program fitness on these problems. Examining the charts in Figures 6.23 and

6.24 highlights one reason for this. Many of the NPATH groupings are empty

or have only very few individuals in them, because the metric does not produce

sufficiently distinct values to distinguish individuals. For example, on the reverse-

list problem, all programs were assigned one of only six different NPATH scores.

This lack of diversity is not a desirable quality, but would likely be less of a
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Table 6.2: Summary of NPATH execution path expressions, where NP (x) is an
application of NPATH on the component x.

if NP (<if -range>) +NP (<expr>) + 1
if-else NP (<if -range>)+NP (<else-range>)+NP (<expr>)
while NP (<while-range>) +NP (<expr>) + 1
for NP (<for-range>) +NP (<expr1>) +

NP (<expr2>) +NP (<expr3>) + 1
return 1
sequential 1
Expressions Number of AND and OR operators in expression
Function call 1
Function ∏i=N

i=1 NP (Statementi)

problem with larger programs. There is a weak positive correlation between the

NPATH metric and the time taken to evaluate an individual.

6.4.9 Summary of Analysis

This section gives a quick summary of the relationships discovered between each

metric and the fitness and evaluation time properties of programs.

Program Length

− Weak negative correlation between length and fitness

− Positive correlation with evaluation time

Program Depth

− Negative correlation with fitness, so deeper programs have better fitness

− Positive exponential correlation with evaluation time

Number of Statements

− Very close similarity to program length and cyclomatic complexity metrics

Cyclomatic Complexity

− Very close similarity to program length and number of statements metrics
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Figure 6.25: Boxplot showing the distribution of NPATH metric values for pro-
grams that solved all the training cases on each of the test problems

Halstead’s Effort

− Problem dependent - no consistency across problems

Prather’s µ

− Some consistency on factorial, Fibonacci and reverse-list problems

− A weak positive correlation between µ and evaluation time

− Exaggeration of the contribution of nested predicates to complexity

NPATH

− Problem dependent - little consistency across problems

− Insufficient variety in metric values, which makes it difficult to distinguish
programs

− Weak positive correlation with evaluation time

6.5 Comparing the Metrics

It has already been mentioned that some of the metrics appear to have a high

correlation with each other. This was noticeable from comparisons of their fitness
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Table 6.3: Correlation between software metrics, as calculated over all programs
using Spearman’s rank correlation. The p-value in all cases is < 2.2× 10−16

Length Depth Statements Cyclomatic Effort Prather NPATH
Length - 0.5553 0.9373 0.8940 0.7918 0.8961 0.8855
Depth 0.5553 - 0.5054 0.4995 0.5103 0.5196 0.4961

Statements 0.9373 0.5054 - 0.9743 0.6992 0.9703 0.9568
Cyclomatic 0.8940 0.4995 0.9743 - 0.7266 0.9857 0.9662

Effort 0.7918 0.5103 0.6992 0.7266 - 0.7273 0.7118
Prather 0.8961 0.5196 0.9703 0.9857 0.7273 - 0.9690
NPATH 0.8855 0.4961 0.9568 0.9662 0.7118 0.9690 -

and evaluation time charts. However, Table 6.3 shows the statistical correlation

between the metrics over all programs that were found on all problems. The cor-

relations were calculated using Spearman’s rank correlation coefficient. There is

some degree of correlation between all of the metrics. This should be expected

since they are all influenced to some degree by program size. The cyclomatic

complexity is often criticised for its high correlation with program size, but inter-

estingly both Prather’s µ measure and NPATH have comparable correlations with

program size, as measured by either program length or the number of statements.

This is a little surprising as both µ and NPATH take account of the degree of nest-

ing and it was expected that this would lead to a more useful metric. It seems to

be the case that the use of a fixed code-block size of 3 results in a close association

between the degree of nesting and the program size, because each if-statement or

loop will always add at least an additional 3 statements. If a range of different

smaller code-block sizes are used, it may help to break this association and reduce

the correlation between the metrics that consider nesting and the program size.

Although the charts for each metric show the trends in fitness values, the

metric values associated with low fitness do not necessarily correspond to the

areas where solutions are identified. Table 6.4 illustrates this point. It shows the

number of programs in each metric group that solve all training cases, per 10,000

individuals. For example, the fitness charts for the even-n-parity problem show

that the point of lowest fitness is with a higher number of statements. Yet, Table

6.4 suggests that a higher density of solutions are found with a lower number of

statements. In general, there is no clear picture that more solutions are found
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at higher complexities or larger program sizes. This is significant as it raises the

possibility of focusing the search efforts to areas of lower complexity which may

be cheaper to evaluate.

Also important is whether the solutions that are found are able to generalise.

Table 6.5 lists the proportion of the solutions that solved all the training cases

which also solved all the test cases. It may be expected that smaller or less

complex programs would be more likely to generalise, but these results suggest

that this may not always be the case on all problems. Whilst the sort list problem

does seem to show the expected trend using any of the metrics, other problems

had little or no trend, or in some cases the opposite of what was expected. On

the even-n-parity problem, a far higher proportion of solutions generalised if they

had a cyclomatic complexity score in group 6 than a lower score in groups 1, 2 or

3. However, the values in this table should be used with caution. Error values are

omitted to avoid cluttering an already saturated table, but all the values in the

table should be considered to be suspicious at best, as the sample size in most cases

is smaller than would be desirable. The number of generalising solutions is severely

limited by the number of runs that are performed, so it would be preferable for

data to be gathered from 1000s of runs rather than just 500. Although of course

this would come at great computational expense.

The authors of many code metrics make suggestions about what a reasonable

value for their metric is, when applied to a set unit of code, such as a sub-routine.

The advice is generally that code which exceeds this threshold should be consid-

ered overly complex and should ideally be refactored. Human programmers are

taught to follow ‘good practice’, such as naming variables appropriately, breaking

up complex expressions and using standard idioms where possible [79, chapter 1].

This helps to produce clear code which is easier to understand and maintain. But

the GP algorithm is unaware of any such guidelines and as a result the programs

it produces are unlikely to conform to the code metric authors’ expectations of

good code. Table 6.6 shows the mean metric value of all the programs on each

problem. This table shows that the even-n-parity has the highest average metric
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Table 6.4: Number of individuals in each group of metric values that solve all
training cases per 10,000 individuals

Metric Problem 1 2 3 4 5 6 7 8

Length

Factorial 1.82 3.63 7.75 0.84 0.51 2.17 - -
Fibonacci 1.12 3.03 4.04 4.03 1.29 0.65 - -
Parity 24.63 43.27 30.41 20.17 14.82 4.27 0.37 -
Reverse 1.29 1.20 0.87 1.02 0.83 0.76 - -
Sort - 1.34 1.85 4.46 2.58 2.35 13.51 -
Triangles 0.41 0.61 0.55 0.38 0.51 - - -

Depth

Factorial - - - 1.72 0.95 8.21 2.16 3.99
Fibonacci - - - 1.68 1.91 1.77 10.95 2.93
Parity - - - - - 53.56 43.70 24.23
Reverse - - - - 0.27 4.89 0.41 0.97
Sort - - - - - - 4.92 2.96
Triangles - - - - - 0.79 0.75 0.55

Statements

Factorial 0.95 5.11 8.07 1.41 0.54 0.82 - -
Fibonacci 0.56 3.00 5.45 1.84 0.08 - - -
Parity 26.21 45.36 26.76 20.20 13.88 7.20 0.47 -
Reverse 1.31 1.21 0.81 1.06 1.03 0.71 - -
Sort - 1.20 1.86 4.59 2.80 2.18 10.84 -
Triangles 0.29 0.63 0.57 0.43 0.54 - - -

Cyclomatic

Factorial 0.95 5.11 8.07 1.41 0.54 0.82 - -
Fibonacci 0.56 3.00 5.45 1.84 0.08 - - -
Parity 20.56 39.28 28.43 17.91 6.35 1.63 - -
Reverse 1.31 1.21 0.81 1.06 1.03 0.71 - -
Sort - 1.20 1.86 4.59 2.80 2.18 10.84 -
Triangles 0.29 0.63 0.57 0.43 0.54 - - -

Effort

Factorial 4.21 3.52 - - - - - -
Fibonacci 0.98 3.39 3.78 3.67 - - - -
Parity 42.15 25.09 15.32 9.01 2.85 0.44 - -
Reverse 1.40 1.10 0.78 - - 3.05 - -
Sort 1.41 3.07 3.49 0.88 - - - -
Triangles 0.50 0.53 0.52 1.65 3.12 3.23 - -

Prather µ

Factorial 3.02 3.83 8.98 0.52 0.42 - - -
Fibonacci 0.73 4.99 3.59 1.61 0.22 - - -
Parity 24.45 - - - - -
Reverse 1.53 0.96 0.98 0.73 0.80 - - -
Sort - 1.54 2.71 4.53 1.65 4.55 3.09 -
Triangles 0.41 0.62 0.57 0.58 0.08 - - -

NPATH

Factorial 3.92 3.14 2.02 - - - - -
Fibonacci 3.01 10.56 - - - - - -
Parity 24.47 - 3.08 - - - - -
Reverse 1.04 0.61 1.23 - - -
Sort 3.45 1.77 3.03 1.27 20.35 - - -
Triangles 0.55 0.08 - - - - - -
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Table 6.5: Proportion of programs which solve all training cases that also solve
all test cases, in each group of metric values

Metric Problem 1 2 3 4 5 6 7 8

Length

Factorial 32.88 3.82 1.13 19.51 0.00 0.00 - -
Fibonacci 77.38 3.22 0.77 1.01 0.00 0.00 - -
Parity 2.19 3.86 3.38 7.77 9.87 17.19 100.00 -
Reverse 11.11 81.89 77.35 36.72 80.00 100.00 - -
Sort - 55.43 43.77 14.26 19.19 18.56 3.17 -
Triangles 100.00 100.00 100.00 100.00 100.00 - - -

Depth

Factorial - - - 100.00 91.30 8.82 17.90 3.23
Fibonacci - - - 97.06 34.88 24.04 1.07 1.79
Parity - - - - - 3.45 3.49 5.57
Reverse - - - - 100.00 25.32 88.89 72.76
Sort - - - - - - 50.00 22.07
Triangles - - - - - 100.00 100.00 100.00

Statements

Factorial 37.47 2.81 1.05 22.58 0.00 0.00 - -
Fibonacci 74.00 2.90 0.60 2.92 0.00 - - -
Parity 2.17 3.58 3.45 8.49 9.34 8.05 100.00 -
Reverse 30.38 81.35 75.33 39.22 80.56 100.00 - -
Sort - 58.59 42.74 15.42 16.88 19.77 2.82 -
Triangles 100.00 100.00 100.00 100.00 100.00 - - -

Cyclomatic

Factorial 37.47 2.81 1.05 22.58 0.00 0.00 - -
Fibonacci 74.00 2.90 0.60 2.92 0.00 - - -
Parity 4.39 3.70 4.49 7.97 20.83 41.18 - -
Reverse 30.38 81.35 75.33 39.22 80.56 100.00 - -
Sort - 58.59 42.74 15.42 16.88 19.77 2.82 -
Triangles 100.00 100.00 100.00 100.00 100.00 - - -

Effort

Factorial 7.45 2.56 - - - - - -
Fibonacci 74.00 2.90 0.60 2.92 0.00 - - -
Parity 3.51 5.02 9.07 16.34 25.71 100.00 - -
Reverse 34.85 74.04 62.20 - - 100.00 - -
Sort 52.87 21.46 13.73 100.00 - - - -
Triangles 100.00 100.00 100.00 100.00 100.00 100.00 - -

Prather µ

Factorial 10.38 3.07 1.45 11.76 0.00 - - -
Fibonacci 39.47 1.15 1.33 0.00 0.00 - - -
Parity 5.49 - - - - -
Reverse 52.94 85.93 53.17 71.43 75.00 - - -
Sort - 62.72 26.56 13.06 25.95 8.47 0.00 -
Triangles 100.00 100.00 100.00 100.00 100.00 - - -

NPATH

Factorial 5.73 0.00 12.50 - - - - -
Fibonacci 4.04 0.00 - - - - - -
Parity 5.48 - 100.00 - - - - -
Reverse 66.81 95.24 100.00 - - -
Sort 22.14 26.15 14.29 25.00 4.17 - - -
Triangles 100.00 100.00 - - - - - -
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value for all of the complexity metrics (but not the size metrics). Part of the rea-

son for this is that the programs are larger, with only the sort-list problem having

higher values for the size metrics, but more significant is the impact of the deeply

nested logical expressions that have already been described. For the metrics that

have recommended maximum values (cyclomatic complexity, Prather’s measure

and NPATH), the mean metric values on most problems is actually below this

threshold.

Table 6.6: Mean software metric value for all programs on each problem with the
standard deviation. The standard deviation for Prather µ on the even-n-parity
problem was 4.77× 109.

Problem (Target) Factorial Fibonacci Parity Reverse Sort Triangles
Length 113.1±66.4 109.6±50.2 192.1±76.3 163.0±74.3 271.6±95.5 101.4±51.3
Depth 9.6±1.1 9.6±1.0 9.9±0.6 9.8±0.8 10.0±0.3 9.4±1.2
Statements 16.1±11.3 21.8±11.1 46.5±19.0 27.6±13.4 49.4±17.5 23.3±12.4
Cyclomatic (<10) 5.4±3.8 7.3±3.7 32.5±13.8 9.2±4.5 16.5±5.8 7.8±4.1
Effort 3468.0±1934.6 3794.0±1678.7 27730.0±20173.0 3145.0±1354.0 9089.0±3694.0 1233±616.4
Prather µ (<100) 55.4±55.0 81.1±56.8 8.2× 106 111.3±67.4 231.4±93.6 85.1±63.0
NPATH (<200) 13.1±26.5 19.4±30.2 533.4±1791.7 32.8±56.8 139.7±151.0 20.0±31.9

6.6 Conclusions

The aim of this analysis was to identify metrics that could be used to focus the GP

search in a way that would improve fitness or reduce evaluation time. However,

none of the set of complexity metrics that have been studied here seem to be very

well suited for these applications. It is a disappointing conclusion, but each of the

metrics suffer from flaws that make them unsuitable. In particular, they have high

correlation with program size and show little consistency across problems. This

is at least in part caused by the underlying fact that these metrics were designed

for human written code. As a result they are distorted by introns and as seen

with the Prather metric, can be overwhelmed by deeply nested expressions which

are typical in evolved code. This highlights a need for a metric that is targeted

specifically at GP programs. Such a metric could ignore introns and take account

of the typical traits of GP evolved programs.
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There are other possible applications for complexity metrics that can be ad-

dressed in future work. It has already been mentioned in this chapter, that pro-

gram depth is not a very intuitive size constraint to set for imperative programs.

Number of statements is a more appropriate measure of program size and this

could be used in place of a maximum depth parameter. However, it would proba-

bly be necessary to combine this with a constraint on the nesting of loops, because

nested loops can cause an exponential increase in evaluation time. Alternatively,

a single complexity metric that incorporates nesting information, such as the

Prather µ measure or NPATH, could be used. The maximum setting for such a

parameter could be set based on recommended maximum values for that metric.

Another possible application of software metrics is to improve the readability

of solutions by reducing complexity. A simple method to encourage less complex

solutions would be to incorporate the complexity into the fitness function. This

approach has previously been used with size metrics to successfully reduce the

size of programs and tackle bloat [36,41]. However, these studies report that this

can result in program size being minimised at the expense of fitness, so must be

combined with measures to increase population diversity. A related application is

the refactoring of existing programs to increase readability. Previous studies have

sought to evolve programs that are functionally equivalent to an existing solution

while improving some property. For example, Ryan and Ivan [140] evolved parallel

versions of existing sequential programs. Complexity metrics could be used to

guide such automated refactorings to produce programs of lower complexity.

6.7 Summary

Software metrics were proposed as a method for improving the fitness and evalua-

tion time of programs in GP. A detailed analysis was performed of seven software

metrics as applied to high-level imperative programs evolved with GP and how

these metrics correlated with fitness and evaluation time. The metrics analysed

included cyclomatic complexity, number of statements and NPATH. Our results
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confirmed previous findings that many complexity metrics correlate highly with

program size and there was also high correlation with each other, suggesting that

they are measuring similar properties. Little consistency was seen in the trends

between the complexity metrics and the fitness. It was concluded that the com-

plexity metrics used in this study do not have qualities that would make them

suitable for applications to improve fitness or evaluation time in GP. Other appli-

cations suggested for future work included replacing maximum depth parameters

with a complexity based constraint and using complexity metrics to increase the

readability of solutions without changing their fitness.



Chapter 7

Conclusions

The research presented in this thesis has sought to tackle the problems associated

with evolving high-level imperative programs using genetic programming with a

tree representation. Historically, the use of GP algorithms has focused on pro-

ducing functional code that more closely resembles mathematical formulae than

the more typical well structured imperative code produced by modern human

programmers. In the course of this thesis, previous work related to the task of

evolving high-level imperative programs has been explored and some novel tech-

niques have been presented to further this goal.

There are complex structural rules that high-level imperative programs must

abide by. For example, code blocks must be made up of a sequential list of state-

ments and many programming constructs operate on specific types of input. This

makes them difficult to evolve because of the random nature of an evolutionary

algorithm in constructing the programs. In this thesis, an original approach to

adding structural constraints to a tree representation was presented. These con-

straints were shown to be sufficient to impose an imperative structure made up of

code-blocks and statements that represent common program language constructs.

Some standard programming constructs have more complex requirements. The

use of iteration in GP has been researched in some detail, but is still largely avoided

because of the complexities involved with using them productively and avoiding

infinite loops. The mechanism for adding structural constraints was shown to
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also be adept at supporting several forms of loop, which make use of variables to

supply context information, such as the current iteration index. It was found that

the use of a tightly constrained high-level imperative structure along with sensible

program constructs was able to easily produce solutions to benchmark problems

such as even-n-parity, which have previously been considered to be difficult for

GP.

Very little previous work has supported the evolution of variable declarations

in the programs produced by a genetic programming system. However, variable

declarations are a fundamental component of imperative computer programs. Al-

lowing the set of available variables to be modified through the evolution removes

some of the burden of foresight required and allows loop constructs to supply their

own variables, rather than relying on variables supplied as inputs. It was demon-

strated that with some small modifications, a dynamic syntax could be supported

in GP, which allows constructs to declare and make use of new limited-scope vari-

ables. Results from experimental comparisons suggest that the use of loops with

variable declarations can also have performance benefits.

Software metrics are widely used in software engineering to guide the soft-

ware development process. However, they have not been explicitly applied to GP

algorithms to any great extent. In this thesis, we considered whether software

metrics may have some useful applications to the evolution of high-level impera-

tive programs. Possible applications included guiding the search towards areas of

the fitness landscape with less complex solutions. The imperative programs gen-

erated with our GP system were analysed with a range of seven software metrics

designed to measure program size or complexity. The results from this analysis

confirmed previous findings from the software metrics literature that some popu-

lar complexity metrics are of little value because they are highly correlated with

simpler size metrics. It was hoped that some of the metrics would have clear and

consistent correlations with fitness and the time required to evaluate programs.

However, this was not the case and any trends were unclear or varied widely across

the problems.
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7.1 Contributions

Chapters 4, 5 and 6 describe the original research of this thesis. In this section, the

contributions this research makes to extend the genetic programming literature

will be summarised.

Montana’s Strongly Typed Genetic Programming system provides a mecha-

nism for constraining data-types within program trees that are evolved. In chapter

4, Strongly Formed Genetic Programming was introduced to extend STGP to add

structural constraints. This was achieved by requiring all non-terminals to addi-

tionally specify a node-type for each of their inputs that would restrict which

nodes could be attached as a child to the non-terminal. These structural con-

straints are powerful enough to satisfy our main motivation of evolving high-level

imperative programs, but also provide a general mechanism to impose structural

constraints on program trees for other purposes.

It was demonstrated that the structural constraints of the SFGP system can

be used to enforce a high-level imperative structure on program trees and to

model common imperative programming constructs, including various forms of

loop. An interesting trait of this approach is that the program trees that are

generated can be directly converted to equivalent source code using the syntax

of any imperative programming language that can support the constructs used.

This is possible because each program tree only represents the syntactic structure

of the program not concrete syntax; it is an abstract syntax tree.

The work presented in chapter 5 makes two main contributions. Firstly, some

modifications to the SFGP system were presented that allow a dynamic syntax to

be supported. A dynamic syntax allows the available syntax to be modified for a

position in the tree, by the nodes that preceed it in the tree. This could have many

applications, but the initial motivation in this thesis was to support contructs that

can declare limited-scope variables. Node-types that model variable declaration

statements and loops that supply their own index/element variables were defined.
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The results of testing these new declarative constructs showed that on some prob-

lems they could significantly improve evolutionary performance. Potentially of

more importance, however, is that programs make use of loop constructs which

more closely resemble those found in common programming languages, which gen-

erally involve variable declarations. Also, the burden of knowing which auxilary

variables to supply in addition to the inputs is removed.

The second contribution of chapter 5 is a simple enhancement to the fitness

evaluation procedure which in certain situations can bring a substantial boost

to success rates. The basic idea of this technique, which we call Multi-Variable

Return (MVR), is to consider each possible variable in a program as if it was

the return variable, rather than just a single variable. It was shown that where

multiple variables of the correct data-type were available, the MVR technique

leads to a statistically significant reduction in the required computational effort

to find a correct solution. This same idea can be extended to apply to any scenario

where one of multiple possible values is normally designated as the return value,

for example, Linear GP representations that designate one memory register as a

program’s result.

A detailed analysis of the high-level imperative programs evolved with SFGP

using software metrics is presented in chapter 6. Seven software metrics are used

which are designed to measure program size or complexity. The analysis attempts

to identify correlations between the metrics and both the fitness of individuals

and the time required to evaluate them. It also looks for trends in how these

correlations change through the generations of a run and what areas of the search-

space, as measured by these metrics, that correct solutions are found in. A study of

this kind has not been conducted previously. The particular metrics studied were

found to be unsuitable for the intended applications of increasing the evolutionary

performance of GP through improvements in fitness or evaluation time. However,

it provides a basis on which other research can build to apply software metrics

to enhance the GP algorithm in other ways or with other metrics. A number of

potential applications were discussed in chapter 6.
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7.2 Further Work

The research presented in this thesis takes a few steps in the direction of evolving

high-level imperative code that more closely resembles the programs written by

human programmers. However, there is further work to be done.

Unlike STGP, SFGP is currently unable to fully support generic functions,

where operators are defined to support inputs with different data-types differently.

There is no doubt that this is a limitation. With support for generic functions

in SFGP, constructs could be implemented to work differently for different sets

of inputs. This is not easy to implement in the same way as in STGP, because

any lookup tables would be substantially complicated by the additional node-

type property. Also, a dynamic syntax, as used to support variable declarations,

is incompatible with the idea of lookup tables that are produced from just the

initial syntax. One possible solution is to use a combination of lookup tables for

the data-type and a backtracking algorithm for the node-type.

One major challenge that should be confronted is to attempt to solve harder

problems. In order to tackle more challenging problems, the range of constructs

that can be supported will need to be expanded. It should be easy to define

node-types that model other common types of bounded loops, but what about

unbounded loops? Another key issue that will need to be addressed, to solve

harder problems, is the topic of scalability. The size of the search-space increases

exponentially with the size of the programs required to solve the problem. A

popular answer to the question of scalability is modularisation. Can the structural

constraints of SFGP be used to produce modular programs? One way may be to

allow multiple sub-routines, where the declaration of a sub-routine is handled in

much the same way as the declaration of a variable.

The depth based size constraints that have been used so far with SFGP are

unwieldy and unintuitive to set. Also, the unbalanced shape of trees that are

constrained within structural bounds means depth constraints have an irregular

impact across a program tree. For high-level imperative programs, it would be



CHAPTER 7. CONCLUSIONS 157

more appropriate to use a size constraint based on the number of statements and

the degree of statement nesting. One possibility raised in chapter 6 is that com-

plexity metrics could be used to provide more useful constraints. Another possible

application of software metrics that could be explored is to improve the readability

of solutions by encouraging lower complexity. With such a vast number of software

metrics available, the analysis that has been performed in this thesis could be ex-

tended by looking at other metrics. However, these metrics were all designed for

human written programs, so better results may be obtained by designing metrics

specifically for application to GP evolved programs. Such a metric could be based

only on executable code, ignoring introns and placing emphasis on key properties,

such as the nesting of loops.



Appendix A

Java Code Templates

Section 4.4.3 describes how code templates can be used to convert the program

trees generated by SFGP into the source code of a specific programming language.

Table A.1 provides a complete listing of the code templates for all node-types for

the Java programming language. There are a few additional complexities that

must be handled in practice:

− The identifier used for all variables must be selected to be unique. This is an

implementation detail, but is important in order to maintain the semantics

of the language.

− The first line of the ForEachLoop template assumes that arrays of length

zero are not possible. Otherwise this assignment will need to be protected

from this scenario to avoid a Java exception.

− The templates for the Loop, ForLoop and ForLoopDecl constructs do not

include the maximum iteration bound. This can easily be added as a second

loop condition, but it would be preferable that a solution would be checked

that it is not dependent upon the constraint and so it could be removed.
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Table A.1: Complete listing of source code templates for the Java programming
language, where 〈child-n〉 is replaced by the source code for the nth child, 〈data-
type〉 is replaced by the data-type of the node and 〈data-type-n〉 is replaced by
the data-type of the nth child.

SubRoutine public 〈data-type 〉 methodName() 〈child-1 〉
ReturnBlock { 〈child-1 〉 〈child-2 〉 〈child-(n-1) 〉 return

〈child-n 〉; }
CodeBlock { 〈child-1 〉 〈child-2 〉 〈child-n 〉 }
Loop for(int i=0; i<〈child-1 〉 i++) 〈child-2 〉
ForLoop 〈child-1 〉 = 1;

for(int i=1; i<=〈child-2 〉; i++,〈child-1 〉=i)
〈child-3 〉

ForEachLoop 〈child-2 〉 = 〈child-1 〉[0];
for(int i=0; i<〈child-1 〉.length;
i++,〈child-2 〉=〈child-1 〉[i]) 〈child-3 〉

ForLoopDecl int varName = 1;
for(int i=1; i<〈child-1 〉; i++,varName=i)
〈child-2 〉

ForEachLoopDecl for(〈data-type-1 〉 varName: 〈child-1 〉) 〈child-2 〉
IfStatement if( 〈child-1 〉 ) 〈child-2 〉
Declaration 〈data-type-1 〉 varName = 〈child-1 〉;
Assignment 〈child-1 〉 = 〈child-2 〉;
ElementAssignment 〈child-1 〉[〈child-2 〉] = 〈child-3 〉;
SwapElements Utilities.swap(〈child-1 〉, 〈child-2 〉);
Add 〈child-1 〉 + 〈child-2 〉
Subtract 〈child-1 〉 - 〈child-2 〉
Multiply 〈child-1 〉 * 〈child-2 〉
Divide Utilities.divide(〈child-1 〉, 〈child-2 〉)
And 〈child-1 〉 && 〈child-2 〉
Or 〈child-1 〉 || 〈child-2 〉
Not !〈child-1 〉
GreaterThan 〈child-1 〉 > 〈child-2 〉
LessThan 〈child-1 〉 < 〈child-2 〉
ArrayLength 〈child-1 〉.length
ArrayElement 〈child-1 〉[〈child-2 〉]
Concat 〈child-1 〉 + 〈child-2 〉
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