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Abstract. In this paper, we discuss the relationship between multi-attribute utility 

theory and DEA models without explicit inputs (DEA-WEI), including dual models 

and some theoretical analysis of DEA-WEI models. We then propose generic 

DEA-WEI models with quadratic utility terms. Finally, we provide illustrative 

examples to show that DEA-WEI with suitable quadratic utility terms are able to 

reflect some value judgments that the standard DEA models cannot.  

Keywords. DEA, DEA without explicit input, value judgment, multiple attribute 

utility 

1. Introduction 

Since its introduction in 1978, DEA has been widely used in the performance analysis 

of many business and nonprofit evaluation procedures. One unique feature of DEA is 

that it allows assessed DMUs to assign their most favourable weights to maximise 

their scores in the assessments. Therefore, if a DMU is classified as inefficient under 

the weights that are the most favourable to this DMU, it can hardly be argued that its 

inefficiency is due to an unfair weight selection. There exist many DEA models, 

among the most well known of which include the CCR model (Charnes et al. 1978), 

the BCC model (Banker et al. 1984), the Additive model (Charnes et al. 1985), and 

the Cone Ratio model (Charnes et al. 1989). Excellent reviews on DEA theory and 

applications may be found in several recent books, e.g., Cooper et al. (2000, 2004, 

2006), Cook et al. (2009). These DEA models are all formulated for desired inputs 

and outputs to measure the technical efficiency of DMUs. 
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In many applications, however, there are no explicit input data available. In practice, 

there may be two types of motivations to employ DEA models without explicit inputs. 

First, in some business and management studies, several ratio indicators, such as GDP 

per capita, the revenue-expenditure ratio, value-added per employee and profit per 

cost, are often used to measure performance. In this case, it is clearly difficult or 

sometimes impossible to reformulate the data into original inputs and outputs and then 

apply the classic DEA models to measure the performance of DMUs. Second, there 

are indeed many multi-criteria decision and evaluation problems that do not need to 

consider input (sometimes output) variables (such as the evaluation of national overall 

power). For more details, the readers are referred to the study by Liu et al. (2011) for a 

literature review.  

The first systematic study on these DEA models is that by Lovell and Pastor (1999), 

who in their paper “DEA models without inputs.” They attempt to demonstrate the 

following conclusions: “(i) a CCR model without inputs (or without outputs) is 

meaningless; (ii) a CCR model with a single constant input (or with a single constant 

output) coincides with the corresponding BCC model.” In our recent work (Liu et al., 

2011), systematic studies are conducted for this group of DEA models, which are 

called DEA models without explicit inputs (DEA-WEI models). 

It is well known that the classic DEA is to measure the technical efficiency of the 

input-output system of the DMUs, while in general DEA-WEI does not reflect this. 

Therefore, it is important to clarify its theoretical foundation. This study is the first 

attempt in this direction. In this paper, we continue our investigation on DEA-WEI 

and link DEA-WEI models with multi-attribute utility theory. As one possible 

application, we show that it is useful to use nonlinear utility to reflect the value 

judgment of the decision-makers (DMs). 

The paper is organised as follows: Section 2 presents the relationship between 

DEA-WEI models and multi-attribute utility theory. In Section 3, we study quadratic 

DEA-WEI models. Section 4 presents an empirical study of quadratic DEA-WEI 

models, and the conclusion is provided in Section 5. 

 

2. The relationship between utility theory and DEA-WEI models 

2.1 Extended utility function with variable weights 
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Multiple Attribute Utility Theory (MAUT) is one of the major analytical tools used in 

the field of decision analysis. An excellent review of MAUT is provided in studies by 

Keeney and Raiffa (1976) and von Winterfeldt and Edwards (1986).  

General utility functions are to be estimated for any real application. Given 

1 2( ,  y ,  ...,  y )nY y , 2n , if iy  is “utility independent” of jy  for all j i , then 

the following multi-linear utility function is appropriate (see Keeney and Raiffa 

1976): 

1 2

1 1 1

123... 1 1 2 2

( ) ( ) ( ) ( ) ( ) ( ) ( )
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n n n

i i i ij i i j j ijm i i j j m m
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      

  

 

   
 

where ( )i iu y  is a single-attribute utility function scaled from 0 to 1, iw  is the fixed 

weight for attribute i , where 0 1iw  , and ijw , ijmw , 123...nw  represent the impact 

of the interactions between attributes on preferences. In applications, DMs must firstly 

determine the form of the utility (e.g., the order of the utility), and then the weights 

are to be estimated to apply the MAUT in applications.  

For simplicity, if we let  rf Y  be the value of DMUj’s partial utility function. The 

function may then be written as follows: 

                  
1

( )
s

i i
i

u Y w f Y


                        (1) 

where 0 1iw  .  

For simplicity, we may consider a multi-criteria problem with s criteria 1 2( , ,..., )sy y y , 

where every criterion 0ry   and behaves such that “larger is better”. In addition, 

there are n DMUs or alternatives, denoted by 1,  ..., ,...,j nY Y Y . Decision-makers (DM) 

must now assign weights to each attribute. There are two types of approaches used to 

identify weights: subjective approaches, such as the Analytic Hierarchy Process 

(Saaty 1980, 1986; Forman and GASS, 1999), and data-based approaches, such as the 

Entropy method (see Hwang and Yoon, 1981; Zeleny, 1982) and Principal 

Components Analysis. It is well documented (Fishburn, 1970) that in real applications, 

the most widely used form remains linear utility, although the additivity assumption 

can hardly be verified.  
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DEA-WEI is generally used for evaluation purposes, although as mentioned before, it 

may not reflect technical efficiencies of the DMUs. However it can be observed that 

the functional form of its objective function shares a family resemblance of the classic 

utility function, and thus now we will discuss the possible relationship between them. 

Unlike in the classic utility theory, here only the functional form of the objective 

function (i.e., what terms in U(Y) should be included in the evaluation) is determined 

by the DMs of the evaluation to reflect a subjective emphasis on the evaluation, 

whereas the (DMs of) DMUs determine the coefficients of the terms by DEA-style 

programming to present their own advantages. In this sense, the formulation can be 

regarded as an extended utility. This utility can only be understood as a pricewise 

function, unlike the standard utility functions, and each DMU uses its different 

marginal utilities at different parts (vertices), as the weights are no longer global but 

local. The classic DEA-WEI simply uses the linear terms, and all of the outputs are 

considered to be equally important in the DEA-style programming. However, it is 

possible to include higher-order terms to reflect some value judgments of DMs as is 

illustrated in the empirical studies, offered below, where the decision-makers for the 

evaluations chose to add a quadratic term in ( )u Y  to reflect their subjective value 

judgments, whereas the coefficients are determined by DMUs to present their own 

advantages in evaluation.  

Therefore it is possible to determine the weights from another point of view (DEA 

approach): we will allow the weights to differ between DMUs; that is, different 

DMUs may be assigned different weights so that ( )u Y  in fact has a piecewise 

formulation, in which DMUs may obtain their optimal weights by themselves. If we 

use some truncations of ( )u Y , then the model may be formulated as follows: 

    

 

 

*
0

1

1

 m a x     

         s.t.       1,   1,...,

                    0,   1,...,







 

 





t

r r
r

t

r r j
r

r

h u f Y

u f Y j n

u r t

          (2)  

This approach is referred to as “utility DEA-WEI model” in this paper. For the 

simplest form, where  r j rjf Y y  has been studied already, see the study by Liu et al. 

(2011). This maximisation formulation may decide the weight for each DMU. More 
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generally, this approach may be formulated as follows: 

    
*

0 m a x     ( )

         s.t.    w S,  ( ) 1,   1,..., .j

h u Y

u Y j n


  

            (3) 

where w is the weight vector and S is the weight constraint set.  

 

2.2 The dual models 

We will now consider the dual model of DEA model (2). We first introduce the 

Envelopment form of utility DEA-WEI model: 

   

*

0
1

1
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           s.t.     , 1,...,
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j r j r
j
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j j
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f Y f Y r t

Ȝ , j ,...,n

 

 
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
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 

  


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         (4) 

This model has also appeared in several applications, such as that by Yang and Kuo 

(2003), who apply a BCC model without inputs to solve the facilities layout 

performance frontiers problem. Lovell and Pastor (1999) regard this model as the 

output-oriented BCC model, with the inputs being assumed equal to unity. In our 

opinion, this argument is not quite precise. In fact, we find that because all the inputs 

have been assumed to be unity or because the data are index data, it is meaningless to 

consider the Production Possibility Set (PPS) and return to the scale problem as one 

would with the standard DEA models. Here we will show the relationship between 

models (2) and (4). 

Theorem 1: The optimal value of model (2) is the reciprocal of that of model (4); that 

is, * *1h  . 

Proof: Then, the dual model of (2) is as follows: 

   

1

0
1
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            (5) 
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Notice, by the constraints of model (5), we may find that 
1

0
n

jj



 . If we let 

1

n

jj
t 


  and '

j j t  , then model (5) may be transformed to the following 

model: 
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1
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1
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1, 0,  1,..., .
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        (6) 

If we let 1/t   and substitute thej for '
j , then model (6) may be transformed into 

model (4). Because the optimal value of model (6) equals those of models (5) and (2), 

and because the optimal value of model (4) equals the reciprocal of that of model (6), 

we may easily conclude that the optimal value of model (4) is the reciprocal of that of 

model (2).  

 

3. Quadratic DEA-WEI models based on quadratic utility terms  

Generally, utility functions are to be estimated for any real application. Although the 

linear truncation is the most widely used form in practice, linearity cannot reflect 

evidence enhancement (Yang et al., 1994, 2002), as illustrated below.  

For example, suppose that there are two utility functions: one of them is the additive 

linear form 1 1 2( )f x x x  , and another is the quadratic item2 1 2( )f x x x , where 1 2,x x  

are two examination results (0-5 in 5 scale) for the same subject. When using the 

linear model, one may obtain reasonable overall scores so long as the examined score 

in either subject is very good. This is not the case for the nonlinear model – one would 

have very poor overall scores if either examined score is so. Therefore, if in some 

applications we must emphasise two or more indicators, one cannot simply use the 

standard DEA models directly. In this section, we will examine DEA-WEI models 

with quadratic terms.  

Following the general form of a utility function, the generic quadratic DEA-WEI 

reads as follows:  
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   
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 
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             (9) 

where   , 1,..., rk j rj kjf Y y y j n . Sometimes the weights have further restrictions.  

The meaning of the above quadratic items  0rk rka f Y  may be viewed as the surface 

area of axis ,  r k , and rka  represents half of the value of the sine of the angle 

between ,  r k  and rka  axes. Alternatively, we may rewrite (9) as follows: 

0 0 0Max             

         s.t.              1, 1,...,

                    0,  ( ) 0,  

                    0,  .




  

  

 

T T

T T
j j j

ij s s

ij

W Y Y AY

W Y Y AY  j n

W A a

a i j

             (10) 

Model (10) appears similar to the multiple objective quadratic-linear problem 

introduced by Rhode and Webber (1981). However, model (10) remains a linear 

programming model. Similarly, we may also obtain the dual form of the quadratic 

DEA-WEI as follows: 

  

                                                                      

*

0
1

0 0
1

      

         s.t.            , 1,...,

, 1,..., , ,...,

                     1,


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



 

  







n

rj j r
j

n

rj kj j r k
j

Max

y y r s

y y y y r s k r s

r

1

1,..., , ,...,

                     1,   0. 


 

 
n

j j
j

s k r s

  (11)  

To increase the discriminatory power of the model, Kuosmanen and Post (2002) 

introduce a single second-order term sufficient to consider a wide range of 

non-convexities that only have an Tx x item. Therefore, a unit matrix A is adopted in 

our model. In general, a non-complete DEA-WEI model is as follows: 
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Note that here if 0rka  , the corresponding term will not appear in the DEA model. In 

addition, similar to the DEA-WEI models, there are radial and non-radial measures in 

the quadratic DEA-WEI models. Obviously, Model 12 is quadratic DEA-WEI model 

with radial measurement. To eliminate indicator slack, we may use the quadratic 

DEA-WEI model with Russell measurement (output-based) as follows (Model 13), in 

which Pareto preference is implied. 
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When all the quadratic terms disappear, we have the DEA-WEI model with Russell 

measurement (output-based), following Liu et al. (2011):  
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As we know, Russell measurement is more discriminating than radial measurement at 

estimating inefficiencies, so quadratic DEA-WEI models with the Russell measure 

may be more discriminative, as will be seen later.  

4. Empirical studies  
In this section, we present two illustrative examples of quadratic DEA-WEI models, 

including an example of the economic performance of 27 Chinese cities and an 

example of institutes’ evaluation practices in the Chinese Academy of Sciences (CAS) 

in 2006. 

Example 1: We adopt data in this example from Charnes et al. (1989) to evaluate 

relative efficiencies in the economic performance of Chinese cities. In this example, 

we use the data of 27 Chinese cities in 1984. There are 9 index indicators as follows:  

1
/

j
I GIOV Labor ; 2

/
j

I PT Labor ; 3
/

j
I RS Labor  

4
/

j
I GIOV WF ; 5

/
j

I PT WF ; 6
/

j
I RS WF  

7
/

j
I GIOV INV ; 8

/
j

I PT INV ; 9
/

j
I RS INV  

where (1) Labour denotes the number of labour force, (2) GIOV denotes the annual 

gross industrial output value, (3) PT denotes the annual total profit payment and tax 

turnover, (4) RS denotes the total volume of retail sales, (5) WF denotes annual 

working capital, and (6) INV denotes investment in production capacity enlargement.  

The formula used to standardise these indexes is max , 1...9
rj rj rj

j
y y y r  . In this 

example, to illustrate our idea, we suppose that indexes I1j and I2j are of key 

importance for the DMs and thus must both be high for a city to exhibit excellent 

performance. Therefore, DMs choose to include the quadratic item I1j*I 2j in the utility 

function. The standardised indexes are presented in Table A in the appendix.  

Here we use quadratic DEA-WEI models with radial and Russell measures (Model 12, 
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Model 13, respectively) and a DEA-WEI model with Russell measurement (Model 14) 

to evaluate these 27 Chinese cities. Table A shows the standardised indexes and 

efficiency scores of 27 Chinese cities in Models 12, 14 and 13. 

First, from Table A it is clear that the efficiency scores in Model 13 are often much 

smaller than those in Model 12, which may demonstrate that the quadratic DEA-WEI 

with Russell measurement is more discriminative.  

Second, comparing the efficiency scores using the quadratic Model 13 with those 

using the linear Model 14, we find that the efficiency scores of 12 DMUs (Beijing, 

Tianjin, Wuhan, Guangzhou, Nanjing, Taiyuan, Dalian, Qingdao, Lanzhou, Jinan, 

Fushun, Kunming) of the 27 Chinese cities increase because the values of the 

quadratic term (I1j*I 2j) of these DMUs are relatively high. On the other hand, the 

efficiency scores of 5 DMUs (Shenyang, Haerbin, Chongqing, Xi’an, Changchun) 

decrease due to the relatively low values of quadratic term (I1j*I 2j). Taking Dalian and 

Changchun as examples, Changchun is more efficient than Dalian in Model 14 but 

less efficient than Dalian in Model 13. This difference exists because Dalian is far 

more efficient than Changchun on the quadratic term (I1j*I 2j; Dalian 0.3430; 

Changchun 0.1101). See Table A for the details.  

To understand those changes more clearly, we look into the changes for the peers on 

the frontier by comparing the reference points of evaluated DMUs in Model 14 and 

Model 13 as shown in Table 1 below: 

Table 1: The DMUs whose reference points have changed 

DMU Model 14 Model 13 (I1j*I 2j)  

Efficiency 

scores 

Rank Reference points Efficiency 

scores 

Rank Reference points 

3 Shenyang 0.2341 17 
LAMDA 22=0.4552 
LAMDA 27=0.5448 

0.2278 19 LAMDA 21=1.0000 

4 Wuhan 0.2450 15 
LAMDA 21=0.1014 
LAMDA 22=0.8986 

0.2579 14 LAMDA 21=1.0000 

5 Guangzhou 0.1787 25 
LAMDA 21=0.3834 
LAMDA 22=0.0935 
LAMDA 27=0.5231 

0.1916 25 
LAMDA 21=0.9599 
LAMDA 27=0.0401 

6 Haerbin 0.2063 20 LAMDA 22=1.0000 0.1939 24 LAMDA 21=1.0000 
7 Chongqing 0.2336 18 LAMDA 22=1.0000 0.2317 17 LAMDA 21=1.0000 

9 Xi’an 0.1736 26 
LAMDA 22=0.2734 
LAMDA 27=0.7266 

0.1691 26 LAMDA 21=1.0000 

11 Changchun 0.2464 14 LAMDA 22=1.0000 0.2282 18 LAMDA 21=1.0000 

14 Qingdao 0.3571 12 
LAMDA 21=0.4368 
LAMDA 22=0.5414 

0.3753 12 
LAMDA 21=0.5476 
LAMDA 22=0.4524 

16 Jinan 0.2805 13 LAMDA 22=1.0000 0.2826 13 LAMDA 21=1.0000 
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19 Kunming 0.1883 23 
LAMDA 21=0.3448 
LAMDA 22=0.2499 
LAMDA 27=0.4054 

0.2001 23 
LAMDA 21=0.6557 
LAMDA 27=0.3443 

26 Yichang 0.4678 11 LAMDA 22=1.0000 0.4547 11 
LAMDA 21=0.1564 
LAMDA 22=0.8436 

From Table 1, we observe 11 DMUs (Shenyang, Wuhan, Guangzhou, Haerbin, 

Chongqing, Xi'an, Changchun, Qingdao, Jinan, Kunming and Yichang) whose peer 

mixtures have changed due to the nonlinear terms. In Table A, we find that the value 

of the product term (I1j*I 2j) of DMU21 is the largest (-0.8414), indicating that DMU21 

gains more weight in the peer mixtures of non-efficient DMUs in Model 13, which 

may demonstrate that the direction of the performance improvement of non-efficient 

DMUs shifts due to the quadratic term (I1j*I 2j), as is clearly observed in Table 1.  

Example 2: In this example, we conduct another comparative empirical study, 

applying the quadratic DEA-WEI model with Russell measurement (Model 13) to 

evaluate the efficiencies of 12 basic research institutes in the Chinese Academy of 

Sciences (CAS) in 2006.  

Since 2005, CAS headquarter has built up Comprehensive Quality Evaluation (CQE) 

system for institutes’ evaluation in CAS. The results of the evaluation are expressed as 

multi-dimensional feedback data, used as the tools to provide a basis of 

comprehensive analysis and decision-making and to provide institutes with targeted 

evaluation information and diagnostic comments.  

In the framework of CQE, the basic research institutes in CAS are monitored using 

several quantitative indicators. In this paper, we use the same index indicators 

proposed in Liu et al. (2011) for 12 basic research institutes in CAS; that is,  

1 j
y =SCI Pub./staff; 

2 j
y =SCI Pub./Res.Expen.; 

3 j
y =High Pub./staff; 

4 j
y =High Pub./Res.Expen.; 

5 j
y =Exter.Fund./staff; 

6 j
y =Grad.Enroll./staff. 

where (1) SCI Pub. denotes publications including the international papers indexed by 

the Science Citation Index, (2) High Pub. denotes high-quality papers published in top 

research journals, (3) Exter. Fund denotes external research funding, (4) Grad. Enroll. 

denotes graduate students’ enrolment, (5) Staff denotes the number of full-time 

research staff and (6) Res. Expen. denotes total research expenditures. In this 

evaluation, the CAS wishes to emphasise the importance of training graduates and 

obtaining external funding for the sustainable development of its institutes. 
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Consequently, the CAS has chosen to add a quadratic term y5j*y6j in the utility 

function to reflect its emphasis on training and external grant, Therefore, we add the 

quadratic term y5j*y6j in Model 13. 

The formula used to standardise these indexes is max , 1...6
rj rj rj

j

y y y r  . See Table 2 for 

details. 

Table 2: Index data of 12 basic research institutes in CAS in 20061 

DMU y1j y2j y3j y4j y5j y6j y5j*y6j 

Unit1 1 0.8178 0.8330 0.4915 0.4041 1 0.4041 

Unit2 0.2618 0.4021 0.4604 0.5102 0.1928 0.5720 0.1103 

Unit3 0.5184 0.8756 0.8205 1 0.2416 0.6550 0.1583 

Unit4 0.3813 0.3031 0.8738 0.5011 0.3867 0.2723 0.1053 

Unit5 0.1494 0.1765 0.3055 0.2605 0.2961 0.2783 0.0824 

Unit6 0.3605 0.5608 0.1376 0.1544 0.1122 0.2296 0.0258 

Unit7 0.4106 0.4533 0.9135 0.7277 0.3501 0.3928 0.1375 

Unit8 0.3268 0.3141 0.5117 0.3549 0.3704 0.1945 0.0720 

Unit9 0.5333 0.6120 0.6950 0.5755 0.5333 0.1869 0.0997 

Unit10 0.3487 0.3149 0.2606 0.1698 0.3956 0.5390 0.2132 

Unit11 0.8217 1 1 0.8782 0.5670 0.5187 0.2941 

Unit12 0.5846 0.3852 0.7065 0.3359 1 0.8517 0.8517 

Here we use the quadratic DEA-WEI model with Russell measurement (Model 13) to 

evaluate 12 CAS basic research institutes listed above and compare the results with 

those from the standard DEA model 13. In addition, we compare the above results 

with those of Liu et al. (2011) in the table below, in which a matrix DEA-WEI Model 

(Model 15 in Liu et al. (2011), denoted by Model-LIU in this paper) is used in CAS 

research evaluation, which combines the six indexes into three new equally important 

indexes. Model-LIU has been shown by Liu et al. (2011) to be the most suitable DEA 

model for the evaluation of institutes, as it considers the CAS strategic value 

judgments. Table 3 below shows the efficiency scores (Column 4, Column 6) of 12 

basic research institutes in 2006 evaluated using the quadratic DEA-WEI model with 

Russell measurement (Model 13) and the DEA-WEI model with Russell measurement 

(Model 14). The data in Column 2 show evaluation results using Model-LIU.  

Table 3: The efficiency scores of 12 basic research institutes in 2006 

DMU  Model-LIU  Model 13 (y5j* y6j) Model 14 

Efficiency 
Scores 

Rank Efficiency Scores Rank Efficiency Scores Rank 

Unit1 1.0000  1 1.0000 1 1.0000 1 

                                                        
1 Note: These data were derived from these institutes in the period of Jan. 01, 2005 ʹ Dec. 31, 2005 
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Unit2 0.5013  9 0.3768 9 0.4522 8 

Unit3 0.8591  4 1.0000 1 1.0000 1 

Unit4 0.6888  7 0.4361 7 0.5037 7 

Unit5 0.3498  11 0.2644 11 0.2779 11 

Unit6 0.3250  12 0.1408 12 0.2466 12 

Unit7 0.7245  6 0.5618 5 0.6330 5 

Unit8 0.5136  8 0.2912 10 0.4024 9 

Unit9 0.7478  5 0.4395 6 0.5576 6 

Unit10 0.4791  10 0.3840 8 0.3565 10 

Unit11 1.0000  1 1.0000 1 1.0000 1 

Unit12 1.0000  1 1.0000 1 1.0000 1 

 

To understand the rank changes more clearly, we again examine the changes in the 

peers on the frontier by comparing the reference points of evaluated DMUs in Model 

14 and Model 13, as shown in Table 4 below:  

Table 4: The efficiency scores and reference points of 12 basic research institutes  
DMU Model 14  Model 13 (y5j*y6j ) 

Efficiency 
Scores 

Rank Reference points Efficiency 
Scores 

Rank Reference points 

Unit1 1.0000 1 LAMDA 1=1.0000 1.0000 1 LAMDA 1=1.0000 

Unit2 0.4522 8 LAMDA 1=0.1106 
LAMDA 11=0.8894 

0.3768 9 LAMDA 11=0.3214 
LAMDA 12=0.6786 

Unit3 1.0000 1 LAMDA 3=1.0000 1.0000 1 LAMDA 3=1.0000 

Unit4 0.5037 7 LAMDA 1=0.7557 
LAMDA 11=0.2443 

0.4361 7 LAMDA 11=0.5699 
LAMDA 12=0.4301 

Unit5 0.2779 11 LAMDA 11=1.0000 0.2644 11 LAMDA 12=1.0000 

Unit6 0.2466 12 LAMDA 11=1.0000 0.1408 12 LAMDA 11=0.2855 
LAMDA 12=0.7145 

Unit7 0.6330 5 LAMDA 1=0.3891 
LAMDA 11=0.6110 

0.5618 5 LAMDA 11=0.7226 
LAMDA 12=0.2774 

Unit8 0.4024 9 LAMDA 1=1.0000 0.2912 10 LAMDA 11=0.0350 
LAMDA 12=0.9650 

Unit9 0.5576 6 LAMDA 1=0.5838 
LAMDA 11=0.2743 
LAMDA 12=0.1419 

0.4395 6 LAMDA 11=0.4418 
LAMDA 12=0.5582 

Unit10 0.3565 10 LAMDA 1=0.0422 
LAMDA 11=0.9578 

0.3840 8 LAMDA 1=0.0422 
LAMDA 11=0.9578 

Unit11 1.0000 1 LAMDA 11=1.0000 1.0000 1 LAMDA 11=1.0000 

Unit12 1.0000 1 LAMDA 12=1.0000 1.0000 1 LAMDA 12=1.0000 

From efficiency scores in Column 2 and Column 5 in Table 4, we find that Unit1, 

Unit3, Unit11 and Unit12 are efficient institutes among 12 basic research institutes in 

CAS in 2006 when using Model 13 and Model 14. With regard to the 8 inefficient 

institutes, we compare the efficiency scores using the quadratic Model 13 with those 

using the linear Model 14 and find that the efficiency scores of 7 institutes (Unit2, 

Unit4, Unit5, Unit6, Unit7 Unit8 and Unit9) decrease because the values of the quadratic 

term of these institutes are relatively low. On the other hand, the efficiency score of 

Unit10 increases because the value of the quadratic term of Unit10 is the highest 
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(-0.2132) among those 8 inefficient institutes. In addition, the peer mixtures of Unit2, 

Unit4, Unit5, Unit6, Unit7, Unit8 and Unit9 are shifted to increase the weighted product 

term (y5j*y6j). Because the value of the quadratic term of Unit12 is the largest one 

(0.8517), DMU12 gains more weight in the peer mixture of non-efficient DMUs in 

Model 13, which may demonstrate that the direction of the performance improvement 

of non-efficient Units shifts due to the quadratic term (y5j*y6j).  

Let us note that Model-LIU designed in Liu et al. (2011) is considered to be the most 

suitable DEA model for CAS performance evaluation. It uses sophisticate matrix 

preference to reflect the CAS strategic value judgment. It is interesting to see that here 

a simple quadratic DEA-WEI model (model 13) produces almost identical results with 

Model-LIU and that the Pearson correlation coefficient is 0.95.  

5. Conclusions and Discussions  
In this paper, we address a research framework of utility DEA-WEI models and 

discuss the following subjects: (1) We show the relationship between utility theory 

and DEA-WEI models, including dual models and theoretical analysis of utility 

DEA-WEI model, etc. (2) We propose generic quadratic DEA-WEI models, including 

corresponding models with radial and Russell measurements. (3) We provide 

illustrative examples to test the features of quadratic DEA-WEI models to reflect the 

value judgment of DMs, including the illustrative examples of the economic 

performance evaluation of 27 Chinese cities and institutes’ evaluation practices in the 

Chinese Academy of Sciences (CAS) in 2006. Overall, we conclude that by using the 

utility DEA-WEI model it is possible to reflect some value judgments that cannot be 

reflected by simply using the standard DEA models.  
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Appendix 

Table A: Standardised indexes and efficiency scores of 27 Chinese cities 

DMU I1j I2j I3j I4j I5j I6j I7j I8j I9j I1j*I 2j 

Model 12 Model 14 Model 13 
(I1j*I 2j) 

scores rank scores rank scores rank 

1 Beijing  0.4752  0.6998  0.4207  0.4249  0.6247  0.4169  0.0605  0.1019  0.0417  0.3325  0.8263 13 0.1924  21 0.2058  20 
2 Tianjin  0.5819  0.7222  0.3214  0.4629  0.5737  0.2834  0.0760  0.1077  0.0327  0.4202  0.7863 15 0.1870  24 0.2014  22 
3 Shenyang  0.4055  0.3472  0.3053  0.3933  0.3363  0.3282  0.1087  0.1063  0.0637  0.1408  0.5102 25 0.2341  17 0.2278  19 
4 Wuhan  0.4362  0.5189  0.2975  0.3819  0.4535  0.2886  0.1083  0.1472  0.0575  0.2263  0.6006 21 0.2450  15 0.2579  14 
5 Guangzhou  0.4643  0.5137  0.5249  0.3999  0.4418  0.5010  0.0577  0.0730  0.0508  0.2385  0.7384 17 0.1787  25 0.1916  25 
6 Haerbin 0.3184  0.3038  0.3073  0.2662  0.2535  0.2847  0.0889  0.0969  0.0668  0.0967  0.4338 27 0.2063  20 0.1939  24 
7 Chongqing  0.3894  0.3953  0.3409  0.3547  0.3595  0.3441  0.0969  0.1124  0.0660  0.1539  0.5473 23 0.2336  18 0.2317  17 
8 Nanjing  0.4876  0.5850  0.3623  0.4731  0.5667  0.3895  0.0838  0.1149  0.0485  0.2853  0.7338 18 0.2203  19 0.2352  16 
9 Xi’an  0.3448  0.3041  0.3149  0.2870  0.2527  0.2905  0.0711  0.0716  0.0505  0.1048  0.4413 26 0.1736  26 0.1691  26 
10 Chengdu  0.3970  0.4299  1.0000  0.3582  0.3874  1.0000  0.0905  0.1120  0.1774  0.1707  1.0000 1 1.0000  1 1.0000  1 
11 Changchun  0.3131  0.3517  0.4238  0.2805  0.3146  0.4207  0.0920  0.1181  0.0969  0.1101  0.5570 22 0.2464  14 0.2282  18 
12 Taiyuan  0.3633  0.4118  0.2391  0.3808  0.4310  0.2778  0.0466  0.0604  0.0239  0.1496  0.5402 24 0.1153  27 0.1251  27 
13 Dalian  0.5140  0.6672  0.3989  0.4271  0.5536  0.3673  0.0893  0.1325  0.0539  0.3430  0.7611 16 0.2408  16 0.2561  15 
14 Qingdao  0.6148  0.6549  0.4880  0.5853  0.6224  0.5148  0.1469  0.1788  0.0907  0.4026  0.8748 12 0.3571  12 0.3753  12 
15 Lanzhou  0.4647  0.7898  0.2987  0.3109  0.5277  0.2215  0.0705  0.1369  0.0353  0.3670  0.8106 14 0.1909  22 0.2036  21 
16 Jinan  0.4454  0.4709  0.3844  0.4344  0.4586  0.4155  0.1159  0.1400  0.0778  0.2097  0.6606 19 0.2805  13 0.2826  13 
17 Fushun  0.4670  0.8415  0.2529  0.4961  0.8927  0.2977  0.1164  0.2397  0.0491  0.3930  0.9240 11 0.5272  10 0.5492  10 
18 Anshan  0.4846  1.0000  0.2648  0.4853  1.0000  0.2939  0.1006  0.2371  0.0428  0.4846  1.0000 1 1.0000  1 1.0000  1 
19 Kunming  0.3780  0.5253  0.3521  0.3516  0.4879  0.3629  0.0643  0.1020  0.0466  0.1985  0.6565 20 0.1883  23 0.2001  23 
20 Suzhou  0.8260  0.3854  0.5616  0.9752  0.4543  0.7349  0.7710  0.4110  0.4079  0.3183  1.0000 1 1.0000  1 1.0000  1 
21 Hangzhou  0.9380  0.8971  0.6815  0.6176  0.5898  0.4973  0.9152  1.0000  0.5174  0.8414  1.0000 1 1.0000  1 1.0000  1 
22 Ningbo  0.7183  0.4762  0.5770  1.0000  0.6620  0.8903  1.0000  0.7575  0.6251  0.3420  1.0000 1 1.0000  1 1.0000  1 
23 Wuxi  1.0000  0.6294  0.4802  0.9018  0.5668  0.4799  0.8825  0.6346  0.3297  0.6294  1.0000 1 1.0000  1 1.0000  1 
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24 Changzhou  0.9363  0.6441  0.4863  0.9157  0.6290  0.5271  0.7577  0.5955  0.3062  0.6031  1.0000 1 1.0000  1 1.0000  1 
25 Nantong  0.6488  0.2499  0.5870  0.9518  0.3660  0.9544  0.7550  0.3322  0.5315  0.1621  1.0000 1 1.0000  1 1.0000  1 
26 Yichang 0.5126  0.2851  0.2248  0.4225  0.2346  0.2054  0.9867  0.6270  0.3368  0.1461  0.9867 10 0.4678  11 0.4547  11 
27 Changsha  0.3150  0.2393  0.4332  0.3875  0.2939  0.5906  0.9343  0.8111  1.0000  0.0754  1.0000 1 1.0000  1 1.0000  1 

 

 


