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A Triangular Periodic Table of
Elementary Circuit Elements

Frank Z. Wang, Senior Member, IEEE

Abstract—Chua proposed an Elementary Circuit Element
Quadrangle including the three classic elements (resistor, in-
ductor, and capacitor) and his formulated, named memristor as
the fourth element. Based on an observation that this quadrangle
may not be symmetric, I proposed an Elementary Circuit Element
Triangle, in which memristor as well as mem-capacitor and
mem-inductor lead three basic element classes, respectively. An
intrinsic mathematical relationship is found to support this new
classiÞcation. It is believed that this triangle is concise, mathemat-
ically sound and aesthetically beautiful, compared with Chua’s
quadrangle. The importance ofÞnding a correct circuit element
table is similar to that of Mendeleev’s periodic table of chemical
elements in chemistry and the table of 61 elementary particles
in physics, in terms of categorizing theexisting elements and
predicting new elements. A correct circuit element table would
also request to rewrite the 20th century textbooks.

Index Terms—Memristor, circuit elements, circuit theory, future
computing paradigm, modern information technology.

I. CHUA’S ELEMENTARY CIRCUIT ELEMENT QUADRANGLE

I N 1971 LEON Chua presented an elementary circuit ele-
ment quadrangle including the three classic elements (re-

sistor, inductor, and capacitor)and his formulated, named mem-
ristor (short for memoryresistor) as the fourth element [1]. As
shown in Fig. 1, Chua noted that there are six different mathe-
matical relations connecting pairs of the four fundamental cir-
cuit attributes: electric current , voltage , charge , and mag-
netic ßux . One of these relations, the charge as the time in-
tegral of the current, is determined from the deÞnitions of two
of the attributes, and another, theßux as the time integral of the
electromotive force, orvoltage, is determined from Faraday’s
Law of Induction. Thus, there should be four elementary circuit
elements described by the remaining relations between the at-
tributes [1]–[4]. The memristor, with memristance, provides
a constitutive relation between chargeand ßux as given
under memristance.

What was still missing in 1971 was an engineering realization
of the memristor as a new “electronic element.” In 2008, a team
from HP linked the memory behavior of thinÞlms of titanium
dioxide with the theory of memristors [5].

In Chua’s Elementary Circuit Element Quadrangle (Fig. 1),
the memristor is not simply one more electronic element among
others but the closure of the system of electronics as we know
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Fig. 1. Chua’s Elementary Circuit Element Quadrangle (redrawn based
on [3]–[5]). Chua thought a fourth element existed to provide conceptual
symmetry and this quadrangle historically helped Chua in inventing his named
memristor (memory resistor).

it as a whole. Before the invention of the memristor there was
still a systematical gap in the table of elements [6]. In 2003,
Chua presented a “Four-Element Torus,” which is different from
his circuit element quadrangle and includes resistor, inductor,
capacitor and negative resistor ([3, Fig. 32]). Using the above
torus as a seed, Chua generated a 55 periodic table of circuit
elements that is periodic modulo ([3, Fig. 31] and [4, Fig.
11]).

II. I S CHUA’S QUADRANGLE BASIC AND SYMMETRIC?

If you observe carefully Chua’s quadrangle as well as its
variant/enlargement, you mayÞnd the following asymmetries
and anomalies:

1) Unit: Memristance is measured in the same units (ohms)
as resistors, whereas the standard 3 circuit elements each have
their own units of measure.

2) Nonlinearity: It is clear that the four elements in Chua’s
quadrangle naturally fall into two groups. One group is the
classic resistor, capacitor, and inductor. This group contains
only “linear” elements. The other group is the new memristor
only, which has to benonlinear otherwise it degenerates to a
resistor [1], [2].

3) Internal Links: There are two internal links within the
quadrangle: oneis , the other is . I think
these two internal links completely destroy the fairness and the
symmetry. One should not introduce any internal link in such
an elementary element table. A table of elementary elements
should only link basic physical attributes, not derived attributes.
If and are basic, and should be viewed as “derived at-
tributes” that are not independent. A table linking mixed basic
and derived attributes may result in asymmetries.

4) Negative Elements:Chua’s periodic table and “Four-Ele-
ment Torus” include an element category of negative resistor
and its counterparts along a diagonal line [3], [4]. Although
some elements under this category have found useful applica-
tions in active circuit design (an ampliÞer, an oscillator, or a

1549-8328/$31.00 © 2013 IEEE
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computer), a table linking mixed passive and active elements
may not appear harmonic and consistent.

From the above observations, it appears that Chua’s quad-
rangle may not be pedagogically appealing as originally thought
to be. Consequently we argue against that a memristor is the
4th elementary circuit element. A dilemma of claiming mem-
ristor as the 4th element is that mem-capacitor, mem-inductor,
and other high-order elements may have to be claimed as the
5th, 6th, and so on [3], [6], which would be an endless game.
As will be elaborated in the following sections, memristor will
actually have a more important role to play than being only the
fourth element.

III. M Y ELEMENTARY ELEMENT TRIANGLE

As mentioned above, within a certain context,and should
be more basic than and . Physically, magneticßux, , and
electric charge, , are fundamental features to describe an ob-
ject. In other words, and are internal features associated with
the device material and its physical operating mechanism. Con-
trarily, voltage, , and current, , could be derived from and

via (Faraday’s Law) and (by deÞni-
tion). Although conveniently used in practice, voltage and cur-
rent only exhibit external measures of an object. Voltage and
current should not be chosen to generate new elements as they
are not physically basic (e.g., voltageis always a “difference”
when you measure it; currentis always the movement of elec-
tric charge ).

We canÞnd at least three evidences to support the claim that
are physically intrinsic and basic.

The Þrst evidence is the fact that or exhibits a memory
feature in a memristor, mem-capacitor, or a mem-inductor [4].
This is why they are called (“mem” is short for “memory,” math-
ematically the time integral ofor ). For example, in a mem-
ristor, when the power is switched off, bothvoltage and cur-
rent become zero instantaneously but the memristor does not
lose its value of and (holding the value unchanged forever)
[5]. Actually, or is viewed as an ideal memristor’s “state,”
which remembers what has happened in the past.

Another evidence is our work on a so-called “Delayed
Switching” phenomenon, i.e., the switching of a memristor
takes place with a time delay [7]. The physical interpretation
is that charge or ßux possesses certain inertia with the
tendency to remain unchanged (settle to some equilibrium
state). It cannot respond as rapidly as the fast variation in the
excitation waveform or and always takes aÞnite but small
time interval for the memristor tochange its resistance value.
Needless to say, this natural feature of could be very
useful in future computing paradigms and modern informa-
tion technology such as memristor-based computer memories
[7], memristor-based neural networks, and memristor-based
neuro-mophic engineering [8].

The third evidence is the- loci’s frequency dependence. As
frequency of an excitation or moves towards , the hys-
teresis loop - shrinks and eventually collapses into a straight
line through the origin [5], [4]. In contrast, an intrinsic attribute
should not vary from the measurement.

In summary, I think that “ ” and “ ” are not only deÞned
mathematically but also with physical interpretations. They are

basic and intrinsic. It is unreasonable to deÞne a new element
based on and , the latter two of which are only deÞned
mathematically. Hence, I will choose only two attributes
to deÞne a new element.

Although there are no rigorous ways to identify what a new
circuit element would have to look like, I think an elementary
element represents a “relation” between a pair of physical at-
tributes. This relation should be unique and not synthesized. My
deÞnition of a new (two-terminal) circuit element is as follows:

An elementary electronic circuit element should link two
physical attributes, at leastone of which should be basic.

This seemingly simple deÞnition eliminates the possibility to
synthesize an elementary element from other basic elements. In
other words, even an element links one basic attribute and one
derived attribute but the relation is still unique. Such an ele-
mentary element is irreducible, similar to those chemical ele-
ments in Mendeleev’s periodic table. Note that, while deÞning
a new element, I am not considering a differentiation, ,
as it may transform a non-linear function to a linear one (e.g.,

) and hence lose the generality (i.e., a generic case
should be nonlinear). Therefore there will be the following three
basic element classes:

1. A basic element class linkingand with an unit of or
Ohm(This is a basic class because bothand are basic.
I will mathematically prove that this class includes mem-
ristor and its higher order or lower order counterparts);

2. A basic element class linking and with an unit of
or Farad(Although is derived, is basic so this is still
an independent class. I will mathematically prove that this
class includes mem-capacitor and its higher order or lower
order counterparts);

3. A basic element class linking and with an unit of
or Henry(Although is derived, is basic so this is still
an independent class. I will mathematically prove that this
class includes mem-inductor and its higher order or lower
order counterparts).

My basic element triangle is depicted in Fig. 2.and
are thought to be two basic physical attributes that generate
elementary circuit elements. Sharing the same SI unit, each
apex represents a class of basic elements, which is equivalent
to a “Group” in Mendeleev’s Periodic Table of the Chemical
Elements. Furthermore each apex includes more subclasses
(equivalent to “Period” in Mendeleev’s Table). Instead of being
only the fourth element, memristor has a more important role to
play: leading a basic element class. Similarly, mem-capacitor
and mem-inductor will lead another two classes, as shown in
Fig. 2.

This triangle can also be inÞnitely expanded inwards and out-
wards to have the apexes’ higher order or lower order counter-
parts .

Note that the element linking and is not elementary
because both and are derived. The exclusion of
is decisive otherwise the Chua’s quadrangle will not collapse to
a triangle.

Also note that negative resistor is not given a place in my
triangle because my triangularperiodic table is purely a collec-
tion of passive elementary circuit elements. The exclusion of the
negative elements is important in terms of reducing the period-
icity from “four” in Chua’s periodic table to “three” in mine.
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Fig. 2. My Triangular Periodic Table of Elementary Circuit Elements.and are thought to be a pair of complementary basic attributes that generate elementary
circuit elements. Sharing the same SI unit, each apex represents an exclusive class of elements. The periodicity of the layout (it is periodic modulo if you count
all the apexes triangle by triangle spirally) inspires me to henceforth call it the triangular periodic table of elementary circuit elements.

To cover all higher order or lower order counterparts, Chua
introduced - to conveniently deÞne an element,
where and can be any positive integer (representing

th-order or th-order differential w.r.t. time), any negative
integer (representing th-order or th-order integral w.r.t.
time), or zero [3]. In Chua’s system, every element is
a resistor, is an inductor, is a capacitor and

is a memristor.
As mentioned above, I use only to deÞne a new ele-

ment. The shift from the pair (that is the “origin” of Chua’s
Periodic Table) to the pair (that is the “origin” of mine)
may be analogous to that from “Earth-centered Universe” to
“Sun-centered Universe.” I use - to deÞne an el-
ement. For example, in my periodic table, every element
is a (0th-order) mem-resistor, is a resistor, is a
1st-order memristor, is a mem-inductor and is
a mem-capacitor.

It is easy to prove that any class shares the same unit (ele-
ments are assumed to be linear, which does not affect the de-
duction on units) because

(1)

Similarly

(2)

(3)

For convenience, division is being used in Formulae (1), (2),
and(3), theßux and charge may go through 0 at certain times,
which may not be mathematically sound but does not affect the

generic characterization of theelement categories. The above
charge-controlled cases could be extended toßux-controlled
cases.

IV. M ATHEMATIC LINKAGE WITHIN EACH CLASS

Based on the above observation thatand are basic phys-
ical attributes, I will focus my study on the- plane and its
transformation to the - plane. Although and are thought
to be “mathematically derived” rather than “physically basic,”
they are conveniently used in daily life and the features de-
scribed in the - plane is easily understood (e.g., Ohm’s Law).

As shown in Fig. 3, an arbitrary curve in the
- plane represents a generic memristor. This curve should

be origin-crossing as . Note that the mem-
ristor shown in Fig. 3 is charge-controlled but principles found
here should be applicable to another type of theßux-controlled
memristor. In Fig. 3, and are continuous and
piecewise-differentiable functions with bounded slopes [4]. The
notation may be misleading as it implies an algebraic
(memory-less) relation between voltage and current. Note that
the voltage is not only a function of but also of and thereby

should be a double-valued function of the currentdis-
playing dependence on history.

It is convenient to assume a sinusoidal charge function to
cover the full operating range of this memristor.

Note that a full range scanning is necessary to expose a dis-
tinctive “Þngerprint” otherwise the obtainedÞngerprint is in-
complete. This function is deÞned by

(4)

where the initial charge .
Its corresponding current, as a testing signal across the

memristor, is

(5)
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Fig. 3. Based on a “differential conformal transformation” that preserves an-
gles between and , Projection Line 1, 2, and 3 denotes a
simple graphic method to project a given curve in the - plane onto the

- plane.

For convenience, it is assumed that and so
the full operating range of the memristor is and

, as plotted in Fig. 3.
There must be a correspondence between the- plane and

the - plane because the coordinates of the latter is the differ-
ential (with respect to time) of the coordinates of the former [4],
[9]. It is easy to have

(6)

That is to say, the slope of the line tangent to the
curve at an operating point in the - plane is

equal to the slope of a straight line connecting the corre-
sponding point to the origin in the loci (on the
same scale as the- plane) [4]. Similar to (elementary-func-
tions-based) Conformal Transformation [9], this transformation
from a - space to its differential - space preserves angles.
The resemblance inspires me to name it “Differential Conformal
Transformation,” in which I think a lot of interesting studies re-
main about its mathematical features, e.g., its frequencyde-
pendency and irreversibility.

The above “Differential Conformal Transformation” can be
simpliÞed as follows: Linearizing at the operating
point corresponding to (Fig. 3) via series expansion,

is obtained which is the equation
for the tangent at . Differentiating the above equation
for the tangent w.r.t. time is obtained
which is the equation of the line joining the origin to the oper-
ating point at in the - plane. So the slopes match.

Fig. 4. If a curve is an anti-symmetric function with respect to its
mid-point, its corresponding loci becomes a single-valued function.
The element behaves like a nonlinear resistor .

I found a simple graphic method to draw the voltage-current
loci corresponding to the above given
curve in Fig. 3: 1) Getting at an operating point in
the curve, one would draw a straight line through
the origin in the - plane whose slope is ; 2) Projecting
the point from the - plane onto the - plane by
following Projection Line and , one would eventually end
up with the same time point in the - plane by meeting
Projection Line with the drawn line in theÞrst step.

As shown in Fig. 3, an arbitrary curve (that should
be continuous and differentiable) results in a generic memristor
meeting the distinctive “Þngerprint” deÞned by Chua [4]: 1.
Zero-crossing or pinched; 2. (Double-valued) LissajousÞgure

.
Observing Fig. 3, it is found that the chord (a straight line

connecting a point to the origin) sweeps in theÞrst quadrant
during theÞrst half cycle , and then reverses the
sweep in asymmetric manner in the third quadrant during the
second half cycle , resulting in an anti-symmetric
pinched hysteresis loop. Because the outgoing path

overlaps the returning path in ,
the corresponding pinched LissajousÞgure is anti-
symmetric with respect to the origin.

If the curve is split into two branches (the outgoing
path doesn’t overlap the returning path), the pinchedÞgure

will become asymmetric with respect to the origin.
This actually represents a wide range of practical memristors
with an asymmetric bi-polar or uni-polar pinched Lissajous
Þgure [10]–[14].

If a curve is an anti-symmetric function with re-
spect to its mid-point of the operating range (in this case it is the
origin) one could imagine that its corresponding loci
will collapse from a (double-valued) pinched LissajousÞgure
(as shown in Fig. 3) to a single-valued function, as shown in
Fig. 4. The element with such an anti-symmetric curve
behaves like a nonlinear resistor (current-con-
trolled in this case).
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Its mathematical proof is as below.
By deÞnition of anti-symmetry and

we have

(7)

for a pair of points that are anti-symmetric against
the mid-point (the origin in Fig. 4). We then have

(8)

(9)

The above two anti-symmetric points in the -
plane overlap in the- plane and therefore becomes
a single-valued function.

For a non-linear resistor, the slope at in general
varies with the time evolution. However, one can keep the slope
approximately constant over time by choosing a sufÞciently
small amplitude while Þxing the frequency , assuming the

- curve is continuous at that time point. Under this small-
signal condition, the slope at any operating point on the single-
valued curve in the - plane is called small-signal re-
sistance. It may become negative due to the phase lag between
the peak of the voltage waveform and the peak of the current
waveform [4], as shown in Fig. 4.

Different from the above small-signal resistance, the “chord
resistance” represents large-signal resistance. In the- plane,
the chord resistance at equals the slope of the chord
connecting an operating point to the origin (0,0).
In the - plane, the chord resistance is equal to the slope of the
line drawn tangent to the curve at the corresponding
point (differential conformal transformation).

In many occasions, the large-signal chord resistance and the
small-signal resistance are complementary and equally impor-
tant. The chord resistance could be used to design a biasing cir-
cuit to Þx a (static) working point whereas the small-signal re-
sistance reßects a dynamic behavior under the condition that a
small signal is applied on top of that biasing voltage or current.
The chord resistance is also widely used by neuro-biologists, in-
cluding Hodgkin and Huxley [15].

Although the - plane reserves the chord resistance info (the
slope of the chord), it should be noted that the- plane cannot
replace the - plane to describe a non-linear resistor compre-

Fig. 5. If the curve becomes a straight line through the origin, the-
element degenerates to a classic (linear) resistor, which represents the simplest
case.

hensively, e.g., the small-signal resistance info has been lost in
the - plane.

Note that the above deduction is not intended to challenge or
replace the strict deÞnition of nonlinear elements in nonlinear
circuit theory. Nonlinear circuit theory is a well-developed non-
trivial discipline with a solid mathematical foundation [3]. The
deÞnition of a “nonlinear resistor” is: A 2-terminal element is
called a nonlinear resistor if and only if, for “any” excitation
voltage (resp. current ), and corresponding response

(res. ), the graph of (resp., is
a “Þxed” single-valued function (resp., ).
The key concept here is that one must “always” get the “same”
single-valued function for “all” possible excitation waveforms.
The reader should use (4)–(5) to verify that changing the param-
eter , or , or changing the waveforms of would result in
different - curves.

The reason the deÞnition requires that one must have the
“same” graph for all input waveforms is that a model, by deÞ-
nition, must be able to predict the response for any given input
waveform. This will not be possible if one’s graph changes with
the input waveform. This is a fundamental concept—called a
“constitutive relation”—in system theory [3], [4]. It follows that
the “anti-symmetric” curve in Fig. 4 just “behaves like”
a nonlinear resistor.

If the curve becomes a straight line through the
origin, we have

(10)

that represents the simplest degenerate case of a classic (linear)
resistor, as shown in Fig. 5. Because it is impossible to distin-
guish a linear resistor from a linear memristor, it does not matter
to study its feature in the- plane or - plane although, in prin-
ciple, a two-terminal resistor should be deÞned by a constitutive
relation in the - plane.
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TABLE I
A LAYOUT TO ORGANIZE ELEMENTARY CIRCUIT ELEMENTS BASED ON AN INTRINSIC MATHEMATICAL RELATION. THE SHAPE OF THECORRESPONDINGCURVE
RETROGRESSESMATHEMATICALLY , WHICH DETERMINESWHICH SUBCLASS AN ELEMENT SHOULD GO TO. A POSITIVE INTEGER REPRESENTS TH-ORDER

DIFFERENTIAL (W.R.T. TIME) WHEREAS A NEGATIVE REPRESENTS TH-ORDER INTEGRAL (W.R.T. TIME)

The above principles summarized for the- class should be
applicable to the class and the class. A detailed
discussion of all the relevant classes is outside the scope of this
paper.

V. CONCLUSIONS ANDDISCUSSIONS

Twenty-Þve hundred years ago, a mystic philosopher of an-
cient China, Lao Zi, postulated “Three gives birth to all things”
[16]. Today we canÞnd many applications of his Taoism.
Television and other computer/video displays use three primary
colors (the RGB model: red, green, and blue) to reproduce a
broad array of colors. InÞnite element method (FEM), a mesh
of triangles is used to form a piecewise linear approximation of
an arbitrary geometric shape.In gastrulation (an early phase in
the embryonic development of most animals), the single-lay-
ered blastula is reorganized into a trilaminar (“three-layered”)
structure known as the gastrula.

Inspired by the postulation, I presented a Triangular Periodic
Table of Elementary Circuit Elements (Fig. 2) based on an in-
trinsic mathematical relationship. The three apexes represent
three different element classes. Furthermore each apex of the tri-
angle includes more subclasses. Playing a more important role
than that in Chua’s quadrangle, memristor, as well as mem-ca-
pacitor and mem-inductor, lead three basic element classes, re-
spectively. Starting from “ßux” and “charge,” I achieve a clas-
siÞcation of the elements which isquite general, reasonable, co-
herent and can include all the circuit elements.

To further elaborate the above triangle, Table I is another way
to organize information based onan intrinsic mathematical rela-
tion. This table is an arrangement of the circuit elements ordered
by a combination of two basic physical attributes in rows (Class
“ - ,” equivalent to “Group” in Mendeleev’s Table) and
columns (Subclass “,” equivalent to “Period” in Mendeleev’s

Table) presented so as to show their periodicity. The proof that a
hysteresis loop in the- plane represents a 1st-order memristor
is omitted here. The reader shouldrepeat a deduction, similar to
that used in Fig. 3, to verify that an arbitrary curve (the con-
stitutive relation of a 1st-order memristor) in the - plane
would lead to a hysteresis loop in the- plane.

The importance ofÞnding a correct circuit element table
in electrical/electronic engineering and physics is similar to
that of Mendeleev’s Periodic Table of Chemical Elements
in Chemistry. A correct circuit element table would help us
understand the complex world of electric circuitries/systems
and also request to rewrite the physics and electrical/electronic
engineering textbooks. Unfortunately, Chua’s Basic Element
Quadrangle is thought to have introduced some intrinsic
asymmetries and anomalies. I believe that my triangle is more
reasonable in the sense that it isconcise, mathematically sound
and aesthetically beautiful. On the other hand, I think my
triangle reserves well “holy trinity” of resistors, capacitor and
inductors, which are the roots of many system theories. For ex-
ample, in Laplace-transformation-based Linear Circuit Theory,
a resistor is expressed by “ ,” an inductor is “ ,”
and a capacitor is “ ,” in which is the Laplace operator.
As can be seen, the “holy trinity” is already mathematically
complete without any room for a fourth element (on the other
hand, a memristor has to be strictly non-linear).

It is worth mentioning that Mendeleev’s original table was
almost circular (Fig. 6) even though most commonly it is not
drawn so [17], which reßects the layout of the periodic table has
evolved over time, as new elements have been discovered, and
new theoretical models have been developed to explain chem-
ical behaviour. Although the present periodic table is almost a
standard now, it may happen in the future that some additional
considerations, such quantum-mechanical, or entirely new
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Fig. 6. Dmitri Mendeleev and his Periodic Table in circular layout.

perspectives arising from the super-symmetry “string” theory
might dictate yet another table.

Another analogue is the table of 61 elementary particles or
fundamental particles in the Standard Model of particle physics.
An elementary particle has no substructure, thus it is one of the
basic building blocks of the universe from which all other par-
ticles are made. This table includes the famous Higgs boson
(often referred to as “the God particle”), named for Peter Higgs
who proposed the mechanism that suggested such a particle and
explained the origin of mass in 1964. On July 4, 2012, after
many years of experimentally searching for evidence of its ex-
istence, the Higgs boson was announced to have been observed
at CERN’s Large Hadron Collider [18]. The discovery of the
last-found Higgs boson is likely to greatly affect human under-
standing of the universe and there may be lessons of history for
us to learn.
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