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SUMMARY

Testing of multiple hypotheses involves statistics that are strongly dependent in some appli-
cations, but most work on this subject is based on the assumption of independence. We propose
a new method for estimating the false discovery rate of multiple hypothesis tests, in which the
density of test scores is estimated parametrically by minimizing the Kullback–Leibler distance
between the unknown density and its estimator using the stochastic approximation algorithm,
and the false discovery rate is estimated using the ensemble averaging method. Our method is
applicable under general dependence between test statistics. Numerical comparisons between our
method and several competitors, conducted on simulated and real data examples, show that our
method achieves more accurate control of the false discovery rate in almost all scenarios.

Some key words: Ensemble averaging; False discovery rate; Microarray data analysis; Multiple hypothesis testing;
Stochastic approximation.

1. INTRODUCTION

In microarray data analysis and elsewhere, one often needs to test a large number of hypotheses
simultaneously, and frequentist methods and empirical Bayes methods have been developed to
control the probability of erroneously rejecting true null hypotheses.

Let H1, . . . , HN denote the collection of N null hypotheses, P1 . . . , PN denote the correspond-
ing p-values of the N tests and Zi = �−1(1 − Pi ) denote the corresponding test scores, where �

is the standard normal cumulative distribution function. For the outcome of the multiple tests, let
V and U denote, respectively, the numbers of true null hypotheses that are erroneously rejected
and correctly accepted, and let T and S denote, respectively, the numbers of false null hypotheses
that are erroneously accepted and correctly rejected.

Among the frequentist methods, the false discovery rate control method (Benjamini &
Hochberg, 1995) has received much attention, where the false discovery rate,

FDR ≡ E
(

V

R
| R > 0

)
pr(R > 0),
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in which R = V + S denotes the total number of rejected hypotheses, is the expected proportion
of false positive findings among all the rejected hypotheses. Under the assumption that the null
p-values, i.e. the p-values for which the null hypotheses are true, are independent and uniformly
distributed on [0, 1], Benjamini & Hochberg (1995) and Benjamini & Liu (1999) proposed several
testing procedures which can control FDR at a given level. These procedures were further improved
by Storey (2002), Storey et al. (2004) and Benjamini et al. (2006) by incorporating information
about n/N into the test, where n denotes the total number of true hypotheses. Benjamini &
Yekutieli (2001, 2005) and Genovese & Wasserman (2002) provide more discussion of these
methods. Dependence between test statistics has been considered by Benjamini & Yekutieli
(2001), Storey et al. (2004) and Benjamini et al. (2006). The main difficulty with the frequentist
methods comes from the unrealistic assumption that the null p-values are uniformly distributed.
When this assumption is violated, the resulting estimator of FDR may be unreliable, being either
too liberal or too conservative (Pounds & Cheng 2006).

The empirical Bayes methods (Efron et al., 2001; Efron, 2004, 2007) overcome this difficulty
by using an empirical null distribution estimated from the data. The methods assume that the test
scores follow a mixture density

f (z) = π0 f0(z) + (1 − π0) f1(z), (1)

where π0 is the prior probability that a null hypothesis is true, f0 is the empirical null distribution
and f1 is the alternative distribution. In contrast to the empirical null distribution, the standard
normal distribution is called the theoretical null distribution in this context. Bordes et al. (2006)
show that the model (1) is nonidentifiable in general even if one component is completely
specified. To achieve identifiability, some constraints, such as symmetry, have to be imposed on
the unknown component. In this paper, f (z) is modelled by a multiple-component parametric
mixture distribution which is identifiable, so that f0 and f1 are identifiable under some clustering
criterion on the components of the mixture distribution. Section 2 provides the details of the
estimation of the model.

In the empirical Bayes methods, the differentially expressed genes are usually identified on the
basis of the local false discovery rate (Efron et al., 2001), which is defined as

FDR(zi ) = π0 f0(zi )

f (zi )
.

The procedure developed by Efron (2004) allows for dependence between test scores. Many
articles focus on the mixture model, including Allison et al. (2002), Pan et al. (2003), Do et al.
(2005) and Liang et al. (2007).

In this paper, we extend Efron’s work to model f (z) by a mixture of exponential power
distributions, and estimate the parameters of the mixture distribution by minimizing the Kullback–
Leibler distance

KL( fθ , f ) ≡ −
∫

log
{

f (z | θ)

f (z)

}
f (z)dz, (2)

where f (z | θ) denotes the density of the mixture distribution and θ is the vector of the parameters.
Jensen’s inequality implies that KL( fθ , f ) � 0. We show that the Kullback–Leibler distance can
be minimized using the stochastic approximation method (Robbins & Monro, 1951), which allows
general dependence between test scores. Pan et al. (2003) and Do et al. (2005) use a mixture of
normal distributions, but in both articles, the models are estimated based on the assumption of
mutual independence between test scores. Pan et al. (2003) employed the EM algorithm, and Do
et al. (2005) used Markov chain Monte Carlo simulation.
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2. ESTIMATION OF THE FALSE DISCOVERY RATE

2·1. The false discovery rate

As discussed by Efron et al. (2001), the methods for controlling the false discovery rate and the
empirical Bayes methods are closely related. Let F(z) and F0(z) be the cumulative distribution
functions corresponding to the densities f (z) and f0(z), respectively, let the test scores be
transformed from p-values via the function Zi = �−1(1 − Pi ), and consider a rejection rule
� = {Zi � z0}. The conditional expectation of FDR(z) given � is then

FDR(�) =
∫ ∞

z0
FDR(z) f (z)dz∫ ∞
z0

f (z)dz
= π0{1 − F0(z0)}

1 − F(z0)
,

which corresponds to Benjamini and Hochberg’s tail-area false discovery rate and is also called
the ‘Bayesian false discovery rate’ in Efron (2004). When the test scores are independently and
identically distributed, FDR(�) reduces to the positive false discovery rate introduced by Storey
(2002). One natural estimator of FDR(�) is

ˆFDR(�) = N π̂0{1 − F̂0(z0)}
#{zi : zi � z0} ,

where #{zi : zi � z0} denotes the number of tests with scores greater than z0, and π̂0 and F̂0

denote the estimators of π0 and F0, respectively. The quantity ˆFDR(�) can be interpreted as the
expected proportion of null cases among those having zi � z0. This estimator has been used in
Liang et al. (2007) and Efron (2007). Similarly to Storey (2002), we define the q-value as

q(z) ≡ inf
{�:z∈�}

FDR(�), (3)

which we call the Bayesian q-value and which can be used as a reference quantity for the decision
in multiple hypothesis tests. In the remainder of this section, we describe how to estimate q(z)
when f (z) is fitted by a mixture of exponential power distributions.

2·2. Distribution modelling for test scores

Efron (2004, 2007) argued that correlations between test statistics can considerably widen
or narrow the theoretical null distribution, and thus suggested the use of a general normal
distribution as the null distribution. In our study of microarray data, we found that even this
suggestion is inappropriate for some datasets. For example, for the dark-dark dataset studied
in § 4·3, an exponential power distribution is apparently more appropriate than is a normal
distribution because the decay rate of the tail area of the histogram, see Fig. 2(d), is much lower
than that of any normal distribution.

We model f (z) by a mixture of exponential power distributions,

f (z | θ̃ ) =
m∑

i=1

ωiϕi (z | µi , αi , βi ), (4)

where θ̃ = (µ1, α1, β1; . . . ; µm, αm, βm ; ω1, . . . , ωm−1) contains all the parameters of the model,
m is the total number of components, ωi is the weight of the i th component, with 0 < ωi � 1
and

∑m
i=1 ωi = 1, and

ϕi (z | µi , αi , βi ) = βi

2αi	(1/βi )
exp

{−(| z − µi | /αi )
βi

}
, −∞ < µi < ∞, αi > 0, βi > 1,

(5)
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where the location parameter µi represents the centre of the distribution, the scale parameter αi

represents the dispersion and the shape parameter βi represents the rate of exponential decay.
For βi = 2, the distribution (6) is N (µi , α

2
i /2); for 1 < βi < 2, the distributed is heavy-tailed;

and for βi > 2, the distribution is light-tailed. To avoid singularity of the Kullback–Leibler
distance, we restrict βi to be bounded above. To make the components of the mixture distribution
identifiable, we impose the constraint µ1 < · · · < µm on the means of the components in (5).
The identifiability of a finite mixture of exponential power distributions has been established by
Holzmann et al. (2006). For mathematical simplicity, we use the reparameterization α∗

i = log(αi ),
β∗

i = log(βi − 1) and ωi = exp(ω∗
i )/

∑m
j=1 exp(ω∗

j ), for i = 1, . . . , m − 1, with ω∗
m = 0. For

uniformity of notation, we define µ∗
i ≡ µi . In what follows, we denote f (z | θ̃ ) by f (z | θ),

where θ = (µ∗
1, α

∗
1 , β∗

1 ; · · · ; µ∗
m, α∗

m, β∗
m ; ω∗

1, . . . , ω
∗
m−1) lies in the space R

4m−1.
Given the number of components, the mixture distribution can be estimated by minimizing the

Kullback–Leibler distance defined in (2). The Kullback–Leibler distance is a suitable measure for
density estimation and unsupervised machine learning (White, 1989). Since the true density f (z)
is unknown, the stochastic approximation method can be used to solve this indirectly solvable
problem. After differentiating KL( fθ , f ) with respect to θ , we have

∂KL( fθ , f )

∂µ∗
i

= −
∫

P(i | z)

{
(−1)I (z<µi ) βi

αi

∣∣∣∣ z − µi

αi

∣∣∣∣βi −1
}

d F(z), (6)

∂KL( fθ , f )

∂α∗
i

= −
∫

P(i | z)

{
− 1

αi
+ βi

αi

( |z − µi |
αi

)βi
}

αi d F(z), (7)

∂KL( fθ , f )

∂β∗
i

= −
∫

P(i | z)

{
1

βi
+ 1

(βi )2

	′(1/βi )

	(1/βi )
−

∣∣∣∣ z − µi

αi

∣∣∣∣βi

log
∣∣∣∣ z − µi

αi

∣∣∣∣
}

(βi − 1)d F(z),

(8)

∂KL( fθ , f )

∂ω∗
i

= −
∫

{P(i | z) − ωi } d F(z), (9)

where I (·) is the indicator function, the index i ranges from 1 to m in equations (6)–(8) and
from 1 to m − 1 in equation (9); P(i | z) = ωiϕi (z | µi , αi , βi )/ f (z | θ); and 	′(x)/	(x) =
−1/x − υ + ∑∞

k=1{1/k − 1/(k + x)} with υ � 0·577216 being Euler’s constant. Define

Hµ∗
i
(θ, z) = P(i | z)

{
(−1)I (z<µi ) βi

αi

∣∣∣∣ z − µi

αi

∣∣∣∣βi −1
}

, (10)

Hα∗
i
(θ, z) = P(i | z)

{
− 1

αi
+ βi

αi

( |z − µi |
αi

)βi
}

αi , (11)

Hβ∗
i
(θ, z) = P(i | z)

{
1

βi
+ 1

(βi )2

	′(1/βi )

	(1/βi )
−

∣∣∣∣ z − µi

αi

∣∣∣∣βi

log
∣∣∣∣ z − µi

αi

∣∣∣∣
}

(βi − 1), (12)

Hω∗
i
(θ, z) = P(i | z) − ωi , (13)

where the index i ranges from 1 to m in (10)–(12) and from 1 to m − 1 in (13).
Let {z1, . . . , zN } denote a finite set of samples drawn from F(z). Conditioned on the samples

{z1, . . . , zN }, the following stochastic approximation algorithm is used to solve the system of
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equations ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫
Hµ∗

i
(θ, z)d F(z) = 0 (i = 1, . . . , m),∫

Hα∗
i
(θ, z)d F(z) = 0 (i = 1, . . . , m),∫

Hβ∗
i
(θ, z)d F(z) = 0 (i = 1, . . . , m),∫

Hω∗
i
(θ, z)d F(z) = 0 (i = 1, . . . , m − 1).

(14)

Let θt = (µ∗
1

(t), α∗
1

(t), β∗
1

(t); · · · ; µ∗
m

(t), α∗
m

(t), β∗
m

(t); ω∗
1

(t), . . . , ω∗
m−1

(t)) denote the working esti-
mate of θ obtained at iteration t . One iteration of the algorithm is as follows.

Stage 1. Draw Zt from the set {z1, . . . , zN } at random and with replacement.

Stage 2. Update θt in the following equations:

µ∗
i

(t+1) = µ∗
i

(t) + γt Hµ∗
i
(θt , Zt ) (i = 1, . . . , m),

α∗
i

(t+1) = α∗
i

(t) + γt Hα∗
i
(θt , Zt ) (i = 1, . . . , m),

(15)
β∗

i
(t+1) = β∗

i
(t) + γt Hβ∗

i
(θt , Zt ) (i = 1, . . . , m),

ω∗
i

(t+1) = ω∗
i

(t) + γt Hω∗
i
(θt , Zt ) (i = 1, . . . , m − 1).

In a supporting document, available from http://www.stat.tamu.edu/∼fliang, we show that, as
t → ∞, θt converges to a solution of (14) almost surely conditioned on the set {z1, . . . , zN },
where the test scores can be generally dependent. In practice, the convergence can be diagnosed
by checking the positive definiteness of the Hessian matrix of (2), under the assumption that the
Hessian matrices exist and are positive definite at the solution points. It follows from the main
theorem of Furrer (2002) that the resulting M-estimator is consistent under regularity conditions.
In equation (15), γt is called the gain factor and is subject to the conditions

γt > 0, lim
t→ γt = 0,

∞∑
t=1

γt = ∞,

∞∑
t=1

γ 1+ε
t < ∞,

where ε > 0 can be any positive number. In this paper, we set

γt = γ0t0
max(t0, t)

(t = 1, 2, . . .),

for some values of t0 > 1 and γ0 > 0. The default setting is t0 = 10 000 and γ0 = 0·02. In
addition, we set a default value of 500 × N for the total number of iterations, where N =
#{z1, . . . , zN } is the number of genes in the dataset.

The subject of stochastic approximation was founded by Robbins & Monro (1951), and
convergence of the algorithm has been studied by Kushner (1981), Yin & Zhu (1989), Tadić
(1997) and Chen (1998), among others. A common condition required by them is that the
functions Hµ∗

i
(θ, z), Hα∗

i
(θ, z), Hβ∗

i
(θ, z) and Hω∗

i
(θ, z) be locally Lipschitz-continuous with

respect to θ in R
d , where d is the dimension of θ . It is easy to see that this condition is not

satisfied by the above algorithm, where Hµ∗
i
(θ, z) is not locally Lipschitz-continuous with respect

to µ. In the supporting document, we establish convergence of the algorithm under the condition
of Hölder continuity, which extends the range of applications.

2·3. Estimation of π0

Since the test scores are transformed from p-values via the function Zi = �−1(1 − Pi ), a
larger test score gives more evidence that the alternative hypothesis is true. Thus, the components
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included in f0(z) should have smaller means than those included in f1(z). Given f (z | θ̂ ), where
θ̂ denotes an estimator of θ , the problem of estimating FDR is reduced to a clustering problem: we
evaluate the distances between the neighbouring components of f (z | θ̂) and propose a clustering
criterion for the components. Suppose that the components of f (z | θ̂ ) have been ordered such
that µ̂1 � · · · � µ̂m . The distance between two neighbouring components is defined as

dKL(ϕ̂i , ϕ̂i+1) =
{

KL(ϕ̂i , ϕ̂i+1) + KL(ϕ̂i+1, ϕ̂i )

2

}
(i = 1, . . . , m − 1), (16)

where ϕ̂ j denotes component j of f (z | θ̂). Expression (16) has been used by Cook & Weisberg
(1992, p. 163) as a distance measure between two distributions. Since dKL(ϕ̂i , ϕ̂i+1) is not ana-
lytically available for exponential power distributions, it is estimated using Metropolis–Hastings
samples simulated from ϕ̂i and ϕ̂i+1. Given the distance sequence, we cluster the first m0 com-
ponents into the group f0 with

m0 = min

{
i : dKL(ϕ̂i , ϕ̂i+1) > max{dKL(ϕ̂i+1, ϕ̂i+2), dKL(ϕ̂i−1, ϕ̂i )},

(17)

µi − µb >

{
	(3/β̂b)

	(1/β̂b)

}1/2

α̂b, i = b + 1, . . . , m − 1

}
,

where dKL(ϕ̂0, ϕ̂1) = dKL(ϕ̂m, ϕ̂m+1) = 0, b = arg maxi ω̂i corresponds to the component with
the largest probability, (µ̂b, α̂b, β̂b) are the parameters of component b and {	(3/β̂b)/	(1/β̂b)}α̂2

b
is the variance of component b (Johnson et al., 1980). Under the criterion (18), dKL(ϕ̂m0, ϕ̂m0+1)
corresponds to a local maximum of the distance sequence. Given m0, π0 can then be simply
estimated by π̂0 = ∑m0

i=1 ωi . The inequality constraint on the distance between µi and µb reflects
our belief that π0 is around or greater than 0·9. This constraint is only enforced when m is large
enough such that the major component has only a small proportion value. Hence, it robustifies
the estimation of π0 to the choice of m. We also tried the criterion

m0 = arg max
i

dKL(ϕ̂i , ϕ̂i+1), (18)

but found that the estimator of π0 based on (18) is less robust to the choice of m than is the
estimator based on (17). When m is very large, π0 tends to be overestimated under the criterion
(18) because of the unreliable estimators for the components with small proportion values. Other
distance measures, such as the Hellinger distance, could be used in place of the Kullback–Leibler
distance.

2·4. Estimation

It is necessary to determine m, the number of components of the mixture distribution. Rather
than choosing a single value of m, we choose a range of m and then use the ensemble averaging
method, discussed by Wolpert (1992) and Hashem (1997), to estimate FDR.

Let x denote the new input data of a model, let y denote the corresponding response, and
let S1(x), . . . , SL (x) denote L input-output functions realized by the model based on the same
training dataset. These functions can vary in various respects, such as model structure and training
conditions. The ensemble averaging method uses a combined predictor,

SEA(x) =
L∑

i=1

λi Si (x),

to predict E(Y | X = x), where λi is called the ensemble weight of Si (x), 0 � λi � 1, for all i ,
and

∑L
i=1 λi = 1. The choice of λ can depend on the predictors S1(x), . . . , SL (x). The simplest
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approach is to set λi = 1/L for i = 1, . . . , L; the resulting predictor SEA(x) will have a smaller
variance than any Si (x). Another use of ensemble averaging is to reduce the prediction bias caused
by underfitting or overfitting by averaging over different models. We use ensemble averaging to
estimate FDR as follows.

Step 1. Determine the model range M = Ml, . . . , Mu .

Step 2. For each value of m, run the stochastic approximation algorithm Lm times inde-
pendently. Let ˆFDRm,i (�) denote the Bayesian estimate of FDR resulting from the i th run, for
i = 1, . . . , Lm .

Step 3. Evaluate the final estimate of FDR(�) as

ˆFDREA(�) =
Mu∑

m=Ml

λm

Lm

Lm∑
i=1

ˆFDRm,i (�),

where 0 � λm � 1 and
∑Mu

m=Ml
λm = 1.

In Step 1, the model range can be determined by some pilot runs. First, run the stochastic
approximation algorithm with different choices of m and calculate the statistic

˜BICm = − 1

N

N∑
i=1

log f (m)(zi | θ̂) + pm log(N )

2N
,

where f (m)(·) denotes the mixture density of exponential power distributions with m components,
and pm = 4m − 1 is the number of parameters in f (m)(·). Since the test scores can be generally
dependent, we call ˜BICm the pseudo-BIC statistic. Next, identify the value of m that minimizes the
pseudo-BIC values. Set mc = arg minm ˜BICm , Ml = max{2, mc − h} and Mu = mc + h, where h
is a positive integer and is usually set to be 1 or 2. Although BIC is defined for independent data,
we expect it to give a rough estimate of the order of models for dependent data.

For simplicity, we set Lm = 1 in Step 2 and λm = 1/(Mu − Ml + 1) in Step 3, although this
setting may not be optimal. It may be better to link the setting of λm with ˜BICm , perhaps setting
λm ∝ exp{− ˜BICm/ts}, where ts > 0 is a scale parameter. When ts is large, each model in the
ensemble is approximately equally weighted; when ts is small, the models with smaller values of
˜BICm tend to be heavily weighted.

Given ˆFDREA(�), the Bayesian q-value can be estimated using the plug-in method by

q̂EA(z) = inf
{�:z∈�}

ˆFDREA(�), (19)

for any z. In this paper, q̂EA(z) is used as a reference quantity for the decision of multiple
hypothesis tests.

3. SIMULATION EXAMPLES

3·1. Example I

This example was modified from a microarray example in Qiu et al. (2005). The datasets
were generated as follows. First, we generated a 1255 × 40 matrix X = (xi j ), i = 1, . . . , 1255,
j = 1, . . . , 40. The xi j were all stochastically independent, but the elements with i = 1, . . . , 125
and j = 1, . . . , 21 were drawn from N (2, 1), and the others from N (0, 1). The first 125 rows
model the differentially expressed genes. Next, we generated a 40-dimensional random vector,
a = (a1, . . . , a40), with elements drawn independently from N (0, 1). Define

yi j = ρ1/2a j + (1 − ρ)1/2xi j (i = 1, . . . , 1255, j = 1, . . . , 40).
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Thus, we have corr(yi1, j , yi2, j ) = ρ for any i1 
= i2 and any j . For each gene, a two-sample t-test
was employed to test whether or not its mean expression levels were different under the two
experimental conditions, that is, the first 21 columns were compared to the other 19 columns.
The corresponding p-values were calculated and test scores were transformed via the function
Z = �−1(1 − P). For each of the correlation coefficients ρ = 0, 0·3 and 0·6, 50 independent
datasets were generated by repeating the above process with different random seeds. To examine
the effect of correlations on the performance of our method, the independent case, ρ = 0, is
included.

For all of the datasets, the minimum pseudo-BIC values from our stochastic approximation
method are attained at m = 2 or 3. Hence, we set Ml = 2 and Mu = 4 for this example.
Figure 1(a)–(c) summarizes the computational results for a dataset generated with ρ = 0·6.
The sharp increase in the number of significant genes at q = 0·0, as shown in Fig. 1(b), implies
the effectiveness of our method. The 125 differentially expressed genes can be identified even
with a very small Bayesian q-value. The approximate equality of the true false discovery rate
and the Bayesian q-value, as shown in Fig. 1(c), implies the validity of the Bayesian q-value as a
reference quantity for the decision of multiple tests.
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Fig. 1. Computational results for the stochastic approximation method for two simulated datasets, panels (a)–(c) for
a dataset generated in Example I with ρ = 0·6, and panels (d)–(f) for a dataset generated in Example II. Panels (a) and
(d) show histograms of test scores and the fitted density curve of f0(z). Panels (b) and (e) show numbers of significant

genes versus Bayesian q-values. Panels (c) and (f) show true false discovery rates versus Bayesian q-values.
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Table 1. Simulation study. Computational results for the datasets generated with ρ = 0 and
ρ = 0·6. The values are averages and estimated standard deviations, in parentheses, based on
50 datasets. Here �(q) denotes a rejection region with the nominal value of FDR equal to q. For
different methods, q has different meanings: for the SA method, q refers to qEA given in (19);
for E-spline, q refers to the Bayesian q-value given in (3); for S-FDR, q refers to the q-value
defined in Storey (2002); and for the two-stage method, q refers to FDR as defined in Benjamini

& Hochberg (1995)
Method π̂0 Measure � (0·3) � (0·2) � (0·1) � (0·05)

ρ = 0

SA tFDR 0·306 (0·005) 0·202 (0·005) 0·101 (0·003) 0·052 (0·003)
0·9003

Specificity 0·951 (0·001) 0·972 (0·001) 0·988 (0·001) 0·994 (0·0)
(0·0002)

Sensitivity 1·0 (0·0) 1·0 (0·0) 1·0 (0·0) 1·0 (0·0)

E-Spline tFDR 0·336 (0·014) 0·229 (0·011) 0·124 (0·007) 0·065 (0·004)
0·8883

Specificity 0·940 (0·004) 0·966 (0·002) 0·984 (0·001) 0·992 (0·001)
(0·0019)

Sensitivity 1·0 (0·0) 1·0 (0·0) 1·0 (0·0) 1·0 (0·0)

S-FDR tFDR 0·302 (0·007) 0·201 (0·006) 0·101 (0·004) 0·053 (0·003)
0·9010

Specificity 0·951 (0·002) 0·972 (0·001) 0·987 (0·001) 0·994 (0·0)
(0·0084)

Sensitivity 1·0 (0·0) 1·0 (0·0) 1·0 (0·0) 1·0 (0·0)

Two-stage — tFDR 0·208 (0·005) 0·151 (0·005) 0·083 (0·003) 0·047 (0·002)
Specificity 0·971 (0·001) 0·980 (0·001) 0·990 (0·0) 0·995 (0·0)
Sensitivity 1·0 (0·0) 1·0 (0·0) 1·0 (0·0) 1·0 (0·0)

ρ = 0·6
SA tFDR 0·304 (0·004) 0·202 (0·004) 0·099 (0·003) 0·047 (0·002)

0·9003
Specificity 0·951 (0·001) 0·972 (0·001) 0·988 (0·0) 0·994 (0·0)

(0·0002)
Sensitivity 1·0 (0·0) 1·0 (0·0) 1·0 (0·0) 1·0 (0·0)

E-Spline tFDR 0·331 (0·012) 0·226 (0·011) 0·124 (0·008) 0·065 (0·005)
0·8896

Specificity 0·942 (0·003) 0·966 (0·002) 0·984 (0·001) 0·992 (0·001)
(0·0024)

Sensitivity 1·0 (0·0) 1·0 (0·0) 1·0 (0·0) 0·999 (0·0)

S-FDR tFDR 0·184 (0·051) 0·163 (0·049) 0·097 (0·038) 0·059 (0·030)
0·6379

Specificity 0·800 (0·057) 0·822 (0·054) 0·904 (0·041) 0·939 (0·034)
(0·0651)

Sensitivity 0·621 (0·067) 0·605 (0·066) 0·570 (0·066) 0·524 (0·065)

Two-stage — tFDR 0·153 (0·035) 0·103 (0·029) 0·059 (0·024) 0·039 (0·021)
Specificity 0·933 (0·028) 0·950 (0·028) 0·969 (0·021) 0·977 (0·019)
Sensitivity 0·948 (0·023) 0·930 (0·027) 0·899 (0·032) 0·847 (0·039)

tFDR, true false discovery rate; SA, the new stochastic approximation method; E-Spline, Efron’s spline method
(Efron, 2004); S-FDR, Storey et al.’s positive FDR method (Storey et al., 2004); Two-stage, the two-stage method
of Benjamini et al. (2006).

For a thorough assessment, we also calculated the specificity and sensitivity of the tests. The
specificity U/(U + V ) is the proportion of correctly identified genes that were not differentially
expressed, and the sensitivity S/(T + S) is the proportion of correctly identified differentially
expressed genes. The average of the sensitivity values over multiple datasets, reported in Table 1,
provides a natural estimate of the average power (Dudoit et al., 2003), a commonly adopted
measure of the quality of multiple testing. To save space, numerical results for ρ = 0·3 are not
given but are available in a longer version of the paper available from the authors.
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Table 2. Computational results for the datasets generated with ρ = 0·95. See caption to Table 1
for details

Method π̂0 Measure � (0·3) � (0·2) � (0·1) � (0·05)

SA tFDR 0·294 (0·003) 0·192 (0·003) 0·095 (0·002) 0·048 (0·002)
0·9003

Spec. 0·954 (0·001) 0·974 (0·001) 0·988 (0·0) 0·994 (0·0)
(0·0002)

Sens. 1·0 (0·0) 1·0 (0·0) 1·0 (0·0) 1·0 (0·0)

E-Spline tFDR 0·313 (0·010) 0·211 (0·008) 0·108 (0·005) 0·059 (0·003)
0·8928

Spec. 0·948 (0·003) 0·970 (0·002) 0·986 (0·001) 0·993 (0·0)
(0·0018)

Sens. 1·0 (0·0) 1·0 (0·0) 1·0 (0·0) 1·0 (0·0)

S-FDR tFDR 0·036 (0·025) 0·018 (0·018) 0·018 (0·018) 0·018 (0·018)
0·8421

Spec. 0·960 (0·028) 0·980 (0·020) 0·98 (0·020) 0·98 (0·020)
(0·0455)

Sens. 0·040 (0·028) 0·020 (0·020) 0·020 (0·020) 0·020 (0·020)

Two-stage — tFDR 0·109 (0·042) 0·090 (0·039) 0·072 (0·035) 0·072 (0·035)
Spec. 0·880 (0·046) 0·900 (0·043) 0·920 (0·039) 0·92 (0·039)
Sens. 0·233 (0·059) 0·199 (0·054) 0·132 (0·047) 0·098 (0·042)

tFDR, true false discovery rate; Spec., specificity; Sens., sensitivity; SA, the new stochastic approximation method.

For comparison, the positive false discovery rate method of Storey et al. (2004), the two-stage
method of Benjamini et al. (2006) and the spline method of Efron (2004) were also applied to
this example. These methods all allow certain forms of dependence between test statistics. The
software for the first was downloaded from http://faculty.washington.edu/∼jstorey/ and was run
with the default setting. The other two methods were implemented by F. Liang in an unpublished
Texas A&M University technical report. In the third, f (z) was estimated using the log-spline
density estimation method (Kooperberg & Stone, 1992; Stone et al., 1997), but f0(z) and π0 were
estimated by the method proposed by Efron (2004). The log-spline method avoids the issue of
sample interval selection involved in the Poisson regression method.

The numerical results reported in Table 1 indicate that our algorithm outperforms the other
three methods for this example. It produces fairly accurate estimates for π0 and the false discovery
rate, and fairly high specificity and sensitivity values. For the datasets with ρ = 0, Storey’s method
performs as well as ours. This is not surprising as those datasets satisfy all the conditions Storey’s
method requires: the test scores are weakly dependent, and the null p-values are uniformly
distributed on [0, 1]. However, when the correlation coefficient deviates from 0, Storey’s method
performs less well; the true false discovery rate tends to deviate widely from its nominal level,
and both specificity and sensitivity decrease as ρ increases. The two-stage method works well
for the cases ρ = 0 and 0·3: the true false discovery rate is below the nominal level, and the
specificity and sensitivity are fairly high. However, as ρ increases, its performance deteriorates:
both specificity and sensitivity decrease. This can be seen more clearly in Table 2. Since, in the
two-stage method, estimation of π0 depends on the nominal false discovery rate specified by the
user, the estimate of π0 by this method is not reported in the paper. Efron’s method is robust
to the correlations between test scores: neither specificity nor sensitivity is much changed as ρ

increases from 0 to 0·6.
Now we consider an extreme case of this example. Fifty datasets were generated independently

with ρ = 0·95. As a result of the strong correlations between the simulated gene expression data,
the test scores in these datasets tend to separate into two distinct groups, which correspond to
f0(z) and f1(z), respectively, so we set Ml = Mu = 2 in the runs of our method. Different values
of m were tried for our stochastic approximation method, the pseudo-BIC criterion suggesting the
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same setting for the range of models. Table 2 shows that our and Efron’s methods still work well,
whereas the other have very low sensitivity values. Our method worked well even for ρ = 0·99.

Ours and Efron’s methods base inference about the false discovery rate on the empirical null
distribution, whereas the others base inference about the FDR on the theoretical null distribution.
The use of empirical null distributions is important for multiple hypothesis testing, especially
when the correlation between test scores is high. As discussed by Efron (2007), correlations
between test statistics can considerably widen or narrow the theoretical null distribution, and the
use of the empirical null distribution helps to accommodate this.

3·2. Example II

This example was modified from an example studied in Liang et al. (2007). Let xi =
(xi,1, . . . , xi,10) be the expression values simulated for gene i . Suppose that the distribution
of the expression levels can deviate from normal and that there may be dependence among genes.
First, we allow the error distribution to be nonnormal. Let

xi j − µ
(1)
i

σi
∼ t(ν) ( j = 1, . . . , 5),

xi j − µ
(2)
i

σi
∼ t(ν) ( j = 6, . . . , 10), (20)

where µ
(1)
i and µ

(2)
i are the respective mean expression levels of gene i under two different

conditions, and σ 2
i is a random variable drawn from the inverse gamma distribution IG(2·5, 0·5).

The parameters of IG(·, ·) are computed from a real gene expression dataset, the light-dark data
studied in §4. In analyzing the real dataset, we found that the distribution of the gene expression
levels is consistent with a t-distribution, t(ν), with ν ranging from 3 to 5.

Secondly, we create some level of dependence among genes. Conditional on the expression
levels of gene l, we set

xi j − µ
(1)
i j |l

σi |l
∼ t(ν), ( j = 1, . . . , 5),

xi j − µ
(2)
i j |l

σi |l
∼ t(ν), ( j = 6, . . . , 10), (21)

where µ
(a)
i j |l = µ

(a)
i + ρilσi/σl(xl j − µ

(a)
l ) for a = 1, 2, σi |l = σi (1 − ρ2

il)
1/2, and ρil ∼

Un[−1, 1]. If t(ν) is replaced by N (0, 1) in equation (21), then xi j and xl j are normal ran-
dom variables with correlation coefficient ρil . Here xi j and xl j are Student-t random variables.
Our simulation results show that they tend to have stronger correlations than ρil .

We generate the gene expression data xs (s = 1, . . . , N ), by first drawing l from the set
{1, . . . , s} at random. Then, if l = s, we generate xs according to equation (20); otherwise, we
generate xs according to equation (21) conditional on the expression profile of gene l.

A total of 50 datasets were generated independently. Each dataset consists of 2100 genes,
which are generated with υ = 4, µ

(1)
i = 0, for all i , µ

(2)
i = 0, for i = 1, . . . , 2000, and µ

(2)
i ∼

N (5, 1), for i = 2001, . . . , 2100. Thus, the last 100 genes are differentially expressed in this
example.

The four previous methods were applied to this example. For our stochastic approximation
method, we set Ml = 2 and Mu = 3. Figure 1(d)–(f) indicates that, even if the error distribution of
the gene expression values deviates from normal and the gene expression values are dependent,
our method can still work well, and the Bayesian q-value can still work as a valid reference
quantity for multiple hypothesis testing.

The numerical results reported in Table 3 indicate that the our new method outperforms the
other three methods for this example, producing very accurate estimates for π0 and the false
discovery rate, and fairly high specificity, sensitivity and power.
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Table 3. Computational results for Example II. The values are averages and estimated standard
deviations, in parentheses, based on 50 datasets. Here �(q) denotes a rejection region with the
nominal value of FDR being q. For different methods, q has different meanings: for the SA method,
q refers to qEA given in (19); for E-spline, q refers to the Bayesian q-value given in (3); for
S-FDR, q refers to the q-value defined in Storey (2002); and for the two-stage method, q refers to

FDR as defined in Benjamini & Hochberg (1995)

Method π̂0 Measure � (0·3) � (0·2) � (0·1) � (0·05)

SA tFDR 0·292 (0·004) 0·200 (0·004) 0·100 (0·004) 0·051 (0·003)
0·9531

Spec. 0·979 (0·0) 0·987 (0·0) 0·994 (0·0) 0·997 (0·0)
(0·0002)

Sens. 0·993 (0·001) 0·991 (0·001) 0·984 (0·002) 0·974 (0·003)

E-Spline tFDR 0·316 (0·023) 0·223 (0·019) 0·127 (0·013) 0·072 (0·008)
0·9519

Spec. 0·969 (0·006) 0·983 (0·003) 0·992 (0·001) 0·996 (0·001)
(0·0066)

Sens. 0·993 (0·001) 0·990 (0·002) 0·984 (0·002) 0·976 (0·003)

S-FDR tFDR 0·243 (0·008) 0·156 (0·007) 0·078 (0·005) 0·038 (0·003)
0·8046

Spec. 0·984 (0·001) 0·991 (0·001) 0·996 (0·0) 0·998 (0·0)
(0·0076)

Sens. 0·992 (0·001) 0·989 (0·002) 0·982 (0·002) 0·974 (0·002)

Two-stage — tFDR 0·148 (0·006) 0·102 (0·005) 0·056 (0·003) 0·029 (0·002)
Spec. 0·991 (0·0) 0·994 (0·0) 0·997 (0·0) 0·999 (0·0)
Sens. 0·987 (0·001) 0·985 (0·002) 0·978 (0·002) 0·970 (0·002)

tFDR, true false discovery rate; Spec., specificity; Sens., sensitivity; SA, the new stochastic approximation method.

In addition to the improper specification of the theoretical null distribution, we suspect that the
poor performance of the Storey’s and the two-stage methods for this example are partly due to the
incorrect p-values. We recalculated the p-values for this example using the permutation t-test,
with all possible permutations, and found that the use of the permutation p-values improves the
performance of both these methods. For example, the true false discovery rates produced by
the two-stage method were 0·223, 0·163, 0·102 and 0·06 for the rejection regions with q = 0·3,
0·2, 0·1 and 0·05, respectively, and the values produced by Storey’s method were similar. The
performance of the two methods on this example is still not perfect. For the two-stage method, the
true false discovery rates overshoot the nominal levels at low significance levels and undershoot
at high significance levels, and the sensitivity is rather low at level 0·05. For Storey’s method, the
sensitivity is also rather low at the level 0·05.

3·3. Example III

In this example, we examine the performance of the stochastic approximation method on
pairwise dependence tests. The datasets were generated as follows. First, we generated a 50 × 30
matrix X = (xi j ). Secondly, we generated a 3 × 30 A = (ai j ). All elements of X and A are
independently and identically distributed standard normal random variables. For j = 1, . . . , 30,
define

yi j = ρ1
1/2a1 j + (1 − ρ1)1/2xi j (i = 1, . . . , 5),

yi j = ρ
1/2
2 a2 j + (1 − ρ2)1/2xi j (i = 6, . . . , 10),

yi j = ρ
1/2
3 a3 j + (1 − ρ3)1/2xi j (i = 11, . . . , 20),

yi j = xi j (i = 31, . . . , 50),
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Table 4. Computational results for Example III. See caption to Table 3 for details

Method π̂0 Measure � (0·3) � (0·2) � (0·1) � (0·05)

SA tFDR 0·302 (0·009) 0·204 (0·009) 0·100 (0·008) 0·049 (0·006)
0·9456

Spec. 0·976 (0·001) 0·986 (0·001) 0·994 (0·001) 0·997 (0·0)
(0·0007)

Sens. 0·972 (0·006) 0·957 (0·008) 0·916 (0·015) 0·877 (0·020)

E-Spline tFDR 0·386 (0·017) 0·285 (0·015) 0·162 (0·012) 0·090 (0·009)
0·9312

Spec. 0·961 (0·003) 0·976 (0·002) 0·989 (0·001) 0·995 (0·001)
(0·0069)

Sens. 0·978 (0·007) 0·964 (0·009) 0·938 (0·013) 0·910 (0·016)

S-FDR tFDR 0·333 (0·013) 0·229 (0·011) 0·126 (0·009) 0·065 (0·007)
0·9408

Spec. 0·971 (0·002) 0·983 (0·001) 0·992 (0·001) 0·996 (0·0)
(0·0096)

Sens. 0·976 (0·005) 0·966 (0·007) 0·939 (0·010) 0·903 (0·015)

Two-stage — tFDR 0·246 (0·011) 0·180 (0·010) 0·106 (0·008) 0·058 (0·007)
Spec. 0·981 (0·001) 0·988 (0·001) 0·994 (0·001) 0·997 (0·0)
Sens. 0·968 (0·007) 0·956 (0·008) 0·929 (0·011) 0·896 (0·015)

tFDR, true false discovery rate; Spec., specificity; Sens., sensitivity; SA, the new stochastic approximation method.

where ρ1 = 0·6, ρ2 = 0·8 and ρ3 = 0·7. For each pair of genes (i1, i2) (i1, i2 = 1, . . . , 50), we
calculate the sample correlation ρ̂i1,i2 and test the hypotheses H0 : ρi1,i2 = 0 versus H1 : ρi1,i2 
= 0
using Fisher’s Z -statistic,

Z∗
i1,i2

= (30 − 3)1/2

2
log

(
1 + ρ̂i1,i2

1 − ρ̂i1,i2

)
,

which is approximately a standard normal random variable when the null hypothesis is true. The
p-values of the tests, Pi1,i2 = 2{1 − �(|Z∗

i1,i2
|)}, are calculated and the test scores are generated

via the transformation Zi1,i2 = �−1(1 − Pi1,i2 ). In this dataset, there are 65 = 2C2
5 + C2

10 true
instances of H1, and 1160 = C2

50 − 65 true instances of H0, where Ck
m is the binomial coefficient

of choosing k from m. As a result of the repeated use of the gene expression data in the calculation
of Z∗

i1,i2
, the test scores have a rather complicated dependence structure. This example mimics

the multiple-comparisons problem encountered in gene network construction.
A total of 50 datasets were generated independently, and the four methods were applied to

these. For the stochastic approximation method, we set Ml = 3 and Mu = 5. The numerical
results reported in Table 4 indicate that it works well for this example. The true FDR values from
the Storey’s and Efron’s methods are significantly higher than their nominal levels, as is also the
case for the two-stage method at significance level 0·3.

4. AVIAN PINEAL GLAND GENE EXPRESSION DATA

4·1. Introduction

The avian pineal gland contains both circadian oscillators and photoreceptors to produce
rhythms in biosynthesis of the hormone melatonin in vivo and in vitro. It is of great interest
to understand the genetic mechanism driving the rhythms. For this purpose, Dr. V. Cassone’s
laboratory at Texas A&M University measured the expression levels of pineal gland genes under
light-dark and constant darkness, dark-dark, conditions. Under the light-dark condition, the birds
were euthanized at 2, 6, 10, 14, 18 and 22 hours Zeitgeber time to obtain mRNA to produce
adequate cDNA libraries. Four microarray chips per time-point were produced, and there were
two replicates for each gene in each chip. The experiment was then repeated under the dark-dark
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condition. Each chip produced gene expression signals for at least 7400 genes. Throughout the
experiment, samples from the light-dark data with Zeitgeber time of 18 hours were used as
controls. Gene expression levels relative to the controls were recorded and processed. Our goal is
to identify genes that are differentially expressed at different time-points. Mixed-effects analysis
with the fixed effect being the different time-points and the random effects corresponding to
chips and biological batches were applied to the relative gene expression levels in log-scale.
Normalization procedures were adopted but will not be listed here since they are not the focus
of this paper. Under both lighting conditions, p-values, Pi , for testing the existence of different
time effects were produced and transformed to test scores using �−1(1 − Pi ).

4·2. Light-dark data

Our method was applied to the light-dark data. The computational results are summarized
in Fig. 2. In our pilot runs, the minimum pseudo-BIC value was often attained at m = 3. We
thus set Ml = 2 and Mu = 5 for this dataset. Figure 2(a) shows the histogram of the test scores
and the estimated density curve of f0. It suggests that f0 can be well estimated by the stochastic
approximation method. The run was repeated five times, and almost identical results were yielded
in the runs. By averaging over the five runs, we obtained one estimate, π̂0 = 0·865, for π0, with
standard deviation 0·001. By looking at the interaction of the fitted f0 and the histogram, we know
that the genes with test scores greater than 3·5 are suspiciously differentially expressed. Adding
this to the information in Fig. 2(b) and (c), we know that about 1400 genes are suspiciously
differentially expressed. Furthermore, among those genes, about 400 � 1400 × 28% are false
positive and about 1000 genes are really differentially expressed.

4·3. Dark-dark data

Our method was applied to the dark-dark data. Our pilot runs suggest that setting Ml = 2 and
Mu = 5 is also appropriate for this dataset. Figure 2(d) shows that f0 can be well estimated by the
stochastic approximation method, even though it deviates substantially from normal. The run was
repeated five times, yielding five estimates of f0(z) and an estimate π̂0 = 0·982 with standard
deviation 0·002. Figure 2(f) suggests that, at the test level 0·20, the Bayesian q-value, there are
about 80 suspiciously differentially expressed genes, among which only about 65 genes are truly
differentially expressed. All of the suspiciously differentially expressed genes have a test score
greater than 3·8.

Storey’s and Efron’s methods were also applied to this dataset. As a result of the significant
deviation of the empirical null distribution from normality and the dependence between test
scores, both procedures perform less well for this dataset. For example, the estimates of π0

produced by these two methods were 0·410 and 0·859, respectively. These estimates are not
consistent with the histogram of the test scores.

5. DISCUSSION

Prior to preparing this paper, we tried to model f (z) by a mixture of normal distributions.
For Example I, the performance of the stochastic approximation method was not significantly
affected by this change. However, for Example II, this change increased the variability of the false
discovery rate estimates. In Example II, the error distribution of gene expression values deviates
from normal. As a consequence, the distribution f (z) needs to be approximated by a mixture
with more components, and this usually makes the false discovery rate estimate more variable.
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Fig. 2. Computational results for (a)–(c) the light-dark data and (d)–(f) the dark-dark data. Panels (a) and (d) show
histograms of the test scores and the fitted density curve of f0(z) by the stochastic approximation method. Panels (b)
and (e) show Bayesian q-values versus test scores. Panels (c) and (f) show numbers of significant genes versus Bayesian

q-values.

As an alternative estimator of the Bayesian false discovery rate, we also considered

˜FDR(�) = π̂0{1 − F̂0(z0)}
1 − F̂(z0)

,

for a rejection region � = {Zi � z0}, where π̂0, F̂0 and F̂ are estimates of π0, F0 and F produced
by the stochastic approximation method. Our numerical results show that ˜FDR(�) performs as
well as ˆFDR(�) for most of our examples, and it is even better than ˆFDR(�) for Example II.
However, we advocate ˆFDR(�) instead of ˜FDR(�) because ˆFDR(�) has an intuitive interpretation
as the expected proportion of null cases among those with zi � z0. In addition, ˆFDR(�) is more
robust than ˜FDR(�) to the amount and distribution of the differentially expressed genes, as it only
involves an empirical estimate of F(z) instead of a density estimate of f1(z). By nature, f1(z)
tends to have a complicated structure and its estimation is difficult.
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