On the automorphism groups of q-enveloping algebras of nilpotent Lie algebras.

Stéphane Launois*

Abstract

We investigate the automorphism group of the quantised enveloping algebra $U_q^+(g)$ of the positive nilpotent part of certain simple complex Lie algebras g in the case where the deformation parameter $q \in \mathbb{C}^*$ is not a root of unity. Studying its action on the set of minimal primitive ideals of $U_q^+(g)$ we compute this group in the cases where $g = \mathfrak{sl}_3$ and $g = \mathfrak{so}_5$ confirming a Conjecture of Andruskiewitsch and Dumas regarding the automorphism group of $U_q^+(g)$. In the case where $g = \mathfrak{sl}_3$, we retrieve the description of the automorphism group of the quantum Heisenberg algebra that was obtained independently by Alev and Dumas, and Caldero. In the case where $g = \mathfrak{so}_5$, the automorphism group of $U_q^+(g)$ was computed in [16] by using previous results of Andruskiewitsch and Dumas. In this paper, we give a new (simpler) proof of the Conjecture of Andruskiewitsch and Dumas in the case where $g = \mathfrak{so}_5$ based both on the original proof and on graded arguments developed in [17] and [18].

Introduction

In the classical situation, there are few results about the automorphism group of the enveloping algebra $U(L)$ of a Lie algebra L over \mathbb{C}; except when $\dim L \leq 2$, these groups are known to possess “wild” automorphisms and are far from being understood. For instance, this is the case when L is the three-dimensional abelian Lie algebra \mathfrak{sl}_2 [22], when $L = \mathfrak{sl}_2$ [14] and when L is the three-dimensional Heisenberg Lie algebra [1].

In this paper we study the quantum situation. More precisely, we study the automorphism group of the quantised enveloping algebra $U_q^+(g)$ of the positive nilpotent part of a finite dimensional simple complex Lie algebra g in the case where the deformation parameter $q \in \mathbb{C}^*$ is not a root of unity. Although it is a common belief that quantum algebras are ”rigid” and so should possess few symmetries, little is known about the automorphism group of $U_q^+(g)$. Indeed, until recently, this group was known only in the case where $g = \mathfrak{sl}_3$.

*This research was supported by a Marie Curie Intra-European Fellowship within the 6th European Community Framework Programme held at the University of Edinburgh.
whereas the structure of the automorphism group of the augmented form $\hat{U}_q(b^+)$, where b^+ is the positive Borel subalgebra of \mathfrak{g}, has been described in [9] in the general case.

The automorphism group of $U_q^+(\mathfrak{sl}_3)$ was computed independently by Alev-Dumas, [2], and Caldero, [8], who showed that

$$\text{Aut}(U_q^+(\mathfrak{sl}_3)) \simeq (\mathbb{C}^*)^2 \rtimes S_2.$$

Recently, Andruskiewitsch and Dumas, [4] have obtained partial results on the automorphism group of $U_q^+(\mathfrak{so}_5)$. In view of their results and the description of $\text{Aut}(U_q^+(\mathfrak{sl}_3))$, they have proposed the following conjecture.

Conjecture (Andruskiewitsch-Dumas, [4, Problem 1]):

$$\text{Aut}(U_q^+(\mathfrak{g})) \simeq (\mathbb{C}^*)^{rk(\mathfrak{g})} \rtimes \text{autdiagr}(\mathfrak{g}),$$

where $\text{autdiagr}(\mathfrak{g})$ denotes the group of automorphisms of the Dynkin diagram of \mathfrak{g}.

Recently we proved this conjecture in the case where $\mathfrak{g} = \mathfrak{so}_5$, [16], and, in collaboration with Samuel Lopes, in the case where $\mathfrak{g} = \mathfrak{sl}_4$, [18]. The techniques in these two cases are very different. Our aim in this paper is to show how one can prove the Andruskiewitsch-Dumas Conjecture in the cases where $\mathfrak{g} = \mathfrak{sl}_3$ and $\mathfrak{g} = \mathfrak{so}_5$ by first studying the action of $\text{Aut}(U_q^+(\mathfrak{g}))$ on the set of minimal primitive ideals of $U_q^+(\mathfrak{g})$ - this was the main idea in [16] -, and then using graded arguments as developed in [17] and [18]. This strategy leads us to a new (simpler) proof of the Andruskiewitsch-Dumas Conjecture in the case where $\mathfrak{g} = \mathfrak{so}_5$.

Throughout this paper, \mathbb{N} denotes the set of nonnegative integers, $\mathbb{C}^* := \mathbb{C} \setminus \{0\}$ and q is a nonzero complex number that is not a root of unity.

\section{Preliminaries.}

In this section, we present the \mathcal{H}-stratification theory of Goodearl and Letzter for the positive part $U_q^+(\mathfrak{g})$ of the quantised enveloping algebra of a simple finite-dimensional complex Lie algebra \mathfrak{g}. In particular, we present a criterion (due to Goodearl and Letzter) that characterises the primitive ideals of $U_q^+(\mathfrak{g})$ among its prime ideals. In the next section, we will use this criterion in order to describe the primitive spectrum of $U_q^+(\mathfrak{g})$ in the cases where $\mathfrak{g} = \mathfrak{sl}_3$ and $\mathfrak{g} = \mathfrak{so}_5$.

\subsection{Quantised enveloping algebras and their positive parts.}

Let \mathfrak{g} be a simple Lie \mathbb{C}-algebra of rank n. We denote by $\pi = \{\alpha_1, \ldots, \alpha_n\}$ the set of simple roots associated to a triangular decomposition $\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}^+$. Recall that π is a basis of an euclidean vector space E over \mathbb{R}, whose inner product is denoted by $(\ , \)$ (E is usually
denoted by \mathfrak{h}_a in Bourbaki). We denote by W the Weyl group of \mathfrak{g}, that is, the subgroup of the orthogonal group of E generated by the reflections $s_i := s_{\alpha_i}$, for $i \in \{1, \ldots, n\}$, with reflecting hyperplanes $H_i := \{\beta \in E \mid (\beta, \alpha_i) = 0\}$, $i \in \{1, \ldots, n\}$. The length of $w \in W$ is denoted by $l(w)$. Further, we denote by w_0 the longest element of W. We denote by R^+ the set of positive roots and by R the set of roots. Set $Q^+ := \mathbb{N}\alpha_1 \oplus \cdots \oplus \mathbb{N}\alpha_n$ and $Q := \mathbb{Z}\alpha_1 \oplus \cdots \oplus \mathbb{Z}\alpha_n$. Finally, we denote by $A = (a_{ij}) \in M_n(\mathbb{Z})$ the Cartan matrix associated to these data. As \mathfrak{g} is simple, $a_{ij} \in \{0, -1, -2, -3\}$ for all $i \neq j$.

Recall that the scalar product of two roots (α, β) is always an integer. As in [5], we assume that the short roots have length $\sqrt{2}$.

For all $i \in \{1, \ldots, n\}$, set $q_i := q^{(\alpha_i, \alpha_i)/2}$ and

$$\begin{bmatrix} m \\ k \end{bmatrix}_i = \frac{(q_i - q_i^{-1}) \cdots (q_i^{m-1} - q_i^1)(q_i^m - q_i^{-m})}{(q_i - q_i^{-1}) \cdots (q_i^k - q_i^{-k})(q_i - q_i^{-k})(q_i^m - q_i^{-m})}$$

for all integers $0 \leq k \leq m$. By convention,

$$\begin{bmatrix} m \\ 0 \end{bmatrix}_i := 1.$$

The quantised enveloping algebra $U_q(\mathfrak{g})$ of \mathfrak{g} over \mathbb{C} associated to the previous data is the \mathbb{C}-algebra generated by the indeterminates $E_1, \ldots, E_n, F_1, \ldots, F_n, K_i^{\pm 1}, \ldots, K_n^{\pm 1}$ subject to the following relations:

$$K_i K_j = K_j K_i$$

$$K_i E_j K_i^{-1} = q_i^{a_{ij}} E_j$$

$$K_i F_j K_i^{-1} = q_i^{-a_{ij}} F_j$$

$$E_i F_j - F_j E_i = \delta_{ij} \frac{K_i - K_i^{-1}}{q_i - q_i^{-1}}$$

and the quantum Serre relations:

$$\sum_{k=0}^{1-a_{ij}} (-1)^k \begin{bmatrix} 1 - a_{ij} \\ k \end{bmatrix}_i E_i^{1-a_{ij}-k} E_j E_i^k = 0 \quad (i \neq j)$$

(1)

and

$$\sum_{k=0}^{1-a_{ij}} (-1)^k \begin{bmatrix} 1 - a_{ij} \\ k \end{bmatrix}_i F_i^{1-a_{ij}-k} F_j F_i^k = 0 \quad (i \neq j).$$

We refer the reader to [5, 13, 15] for more details on this (Hopf) algebra. Further, as usual, we denote by $U_q^+(\mathfrak{g})$ (resp. $U_q^-(\mathfrak{g})$) the subalgebra of $U_q(\mathfrak{g})$ generated by E_1, \ldots, E_n (resp. F_1, \ldots, F_n) and by U_q^0 the subalgebra of $U_q(\mathfrak{g})$ generated by $K_1^{\pm 1}, \ldots, K_n^{\pm 1}$. Moreover, for all $\alpha = a_1 \alpha_1 + \cdots + a_n \alpha_n \in Q$, we set

$$K_{\alpha} := K_1^{a_1} \cdots K_n^{a_n}.$$
As in the classical case, there is a triangular decomposition as vector spaces:

\[U_q^-(\mathfrak{g}) \otimes U^0 \otimes U_q^+(\mathfrak{g}) \simeq U_q(\mathfrak{g}). \]

In this paper we are concerned with the algebra \(U_q^+(\mathfrak{g}) \) that admits the following presentation, see [13, Theorem 4.21]. The algebra \(U_q^+(\mathfrak{g}) \) is (isomorphic to) the \(\mathbb{C} \)-algebra generated by \(n \) indeterminates \(E_1, \ldots, E_n \) subject to the quantum Serre relations (1).

1.2 PBW-basis of \(U_q^+(\mathfrak{g}) \).

To each reduced decomposition of the longest element \(w_0 \) of the Weyl group \(W \) of \(\mathfrak{g} \), Lusztig has associated a PBW basis of \(U_q^+(\mathfrak{g}) \), see for instance [19, Chapter 37], [13, Chapter 8] or [5, I.6.7]. The construction relates to a braid group action by automorphisms on \(U_q^+(\mathfrak{g}) \). Let us first recall this action. For all \(s \in \mathbb{N} \) and \(i \in \{1, \ldots, n\} \), we set

\[
[s]_i := \frac{q_i^s - q_i^{-s}}{q_i - q_i^{-1}} \quad \text{and} \quad [s]_i! := [1]_i \cdots [s - 1]_i [s]_i,
\]

As in [5, I.6.7], we denote by \(T_i \), for \(1 \leq i \leq n \), the automorphism of \(U_q^+(\mathfrak{g}) \) defined by:

\[
T_i(E_i) = -F_i K_i,
\]

\[
T_i(E_j) = \sum_{s=0}^{-a_{ij}} (-1)^{s-a_{ij}} q_i^{-s} E_i^{(-a_{ij}-s)} E_j E_i^{(s)}, \quad i \neq j
\]

\[
T_i(F_i) = -K_i^{-1} E_i,
\]

\[
T_i(F_j) = \sum_{s=0}^{-a_{ij}} (-1)^{s-a_{ij}} q_i^s E_i^{(s)} E_j F_i^{(-a_{ij}-s)}, \quad i \neq j
\]

\[
T_i(K_\alpha) = K_{s_i(\alpha)}, \quad \alpha \in Q,
\]

where \(E_i^{(s)} := \frac{E_i^s}{[s]_i!} \) and \(F_i^{(s)} := \frac{F_i^s}{[s]_i!} \) for all \(s \in \mathbb{N} \). It was proved by Lusztig that the automorphisms \(T_i \) satisfy the braid relations, that is, if \(s_i s_j \) has order \(m \) in \(W \), then

\[
T_i T_j T_i \cdots = T_j T_i T_j \cdots,
\]

where there are exactly \(m \) factors on each side of this equality.

The automorphisms \(T_i \) can be used in order to describe PBW bases of \(U_q^+(\mathfrak{g}) \) as follows.

It is well-known that the length of \(w_0 \) is equal to the number \(N \) of positive roots of \(\mathfrak{g} \). Let \(s_{i_1} \cdots s_{i_N} \) be a reduced decomposition of \(w_0 \). For \(k \in \{1, \ldots, N\} \), we set \(\beta_k := s_{i_1} \cdots s_{i_{k-1}}(\alpha_{i_k}) \). Then \(\{\beta_1, \ldots, \beta_N\} \) is exactly the set of positive roots of \(\mathfrak{g} \). Similarly, we define elements \(E_{\beta_k} \) of \(U_q(\mathfrak{g}) \) by

\[
E_{\beta_k} := T_{i_1} \cdots T_{i_{k-1}}(E_{i_k}).
\]

Note that the elements \(E_{\beta_k} \) depend on the reduced decomposition of \(w_0 \). The following well-known results were proved by Lusztig and Levendorskii-Soibelman.
Theorem 1.1 (Lusztig and Levendorskii-Soibelman)

1. For all $k \in \{1, \ldots, N\}$, the element E_{β_k} belongs to $U_q^+(\mathfrak{g})$.
2. If $\beta_k = \alpha_i$, then $E_{\beta_k} = E_i$.
3. The monomials $E_{\beta_1}^{k_1} \cdots E_{\beta_N}^{k_N}$, with $k_1, \ldots, k_N \in \mathbb{N}$, form a linear basis of $U_q^+(\mathfrak{g})$.
4. For all $1 \leq i < j \leq N$, we have

 \[E_{\beta_j} E_{\beta_i} - q^{-(\beta_i, \beta_j)} E_{\beta_i} E_{\beta_j} = \sum a_{k_{i+1}, \ldots, k_j-1} E_{\beta_{i+1}}^{k_{i+1}} \cdots E_{\beta_{j-1}}^{k_{j-1}}, \]

 where each $a_{k_{i+1}, \ldots, k_{j-1}}$ belongs to \mathbb{C}.

As a consequence of this result, $U_q^+(\mathfrak{g})$ can be presented as a skew-polynomial algebra:

\[U_q^+(\mathfrak{g}) = \mathbb{C}[E_{\beta_1},E_{\beta_2},\ldots,E_{\beta_N};\sigma_1,\delta_1] \cdots [E_{\beta_N};\sigma_N,\delta_N], \]

where each σ_i is a linear automorphism and each δ_i is a σ_i-derivation of the appropriate subalgebra. In particular, $U_q^+(\mathfrak{g})$ is a noetherian domain and its group of invertible elements is reduced to nonzero complex numbers.

1.3 Prime and primitive spectra of $U_q^+(\mathfrak{g})$.

We denote by $\text{Spec}(U_q^+(\mathfrak{g}))$ the set of prime ideals of $U_q^+(\mathfrak{g})$. First, as q is not a root of unity, it was proved by Ringel \[21\] (see also \[10\] Theorem 2.3) that, as in the classical situation, every prime ideal of $U_q^+(\mathfrak{g})$ is completely prime.

In order to study the prime and primitive spectra of $U_q^+(\mathfrak{g})$, we will use the stratification theory developed by Goodearl and Letzter. This theory allows the construction of a partition of these two sets by using the action of a suitable torus on $U_q^+(\mathfrak{g})$. More precisely, the torus $\mathcal{H} := (\mathbb{C}^*)^n$ acts naturally by automorphisms on $U_q^+(\mathfrak{g})$ via:

\[(h_1, \ldots, h_n).E_i = h_i E_i \text{ for all } i \in \{1, \ldots, n\}. \]

(\text{It is easy to check that the quantum Serre relations are preserved by the group \mathcal{H}.})

Recall (see \[\text{[14]}\] 3.4.1) that this action is rational. (We refer the reader to \[\text{[3]}\] II.2.] for the definition of a rational action.) A non-zero element x of $U_q^+(\mathfrak{g})$ is an \mathcal{H}-eigenvector of $U_q^+(\mathfrak{g})$ if $h.x \in \mathbb{C}^* x$ for all $h \in \mathcal{H}$. An ideal I of $U_q^+(\mathfrak{g})$ is \mathcal{H}-invariant if $h.I = I$ for all $h \in \mathcal{H}$. We denote by $\mathcal{H}\text{-Spec}(U_q^+(\mathfrak{g}))$ the set of all \mathcal{H}-invariant prime ideals of $U_q^+(\mathfrak{g})$. It turns out that this is a finite set by a theorem of Goodearl and Letzter about iterated Ore extensions, see \[\text{[11]}\] Proposition 4.2. In fact, one can be even more precise in our situation. Indeed, in \[\text{[12]}\], Gorelik has also constructed a stratification of the prime spectrum of $U_q^+(\mathfrak{g})$ using tools coming from representation theory. It turns out that her stratification coincides with the \mathcal{H}-stratification, so that we deduce from \[\text{[12]}\] Corollary 7.1.2 that

Proposition 1.2 (Gorelik) $U_q^+(\mathfrak{g})$ has exactly $|W|$ \mathcal{H}-invariant prime ideals.
The action of \mathcal{H} on $U_q^+(g)$ allows via the \mathcal{H}-stratification theory of Goodearl and Letzter (see [5, II.2]) the construction of a partition of $\text{Spec}(U_q^+(g))$ as follows. If J is an \mathcal{H}-invariant prime ideal of $U_q^+(g)$, we denote by $\text{Spec}_J(U_q^+(g))$ the \mathcal{H}-stratum of $\text{Spec}(U_q^+(g))$ associated to J. Recall that $\text{Spec}_J(U_q^+(g)) := \{ P \in \text{Spec}(U_q^+(g)) \mid \cap_{h \in \mathcal{H}} h.P = J \}$. Then the \mathcal{H}-strata $\text{Spec}_J(U_q^+(g))$ $(J \in \mathcal{H}-\text{Spec}(U_q^+(g)))$ form a partition of $\text{Spec}(U_q^+(g))$ (see [5, II.2]):

$$\text{Spec}(U_q^+(g)) = \bigsqcup_{J \in \mathcal{H}-\text{Spec}(U_q^+(g))} \text{Spec}_J(U_q^+(g)).$$

Naturally, this partition induces a partition of the set $\text{Prim}(U_q^+(g))$ of all (left) primitive ideals of $U_q^+(g)$ as follows. For all $J \in \mathcal{H}-\text{Spec}(U_q^+(g))$, we set $\text{Prim}_J(U_q^+(g)) := \text{Spec}_J(U_q^+(g)) \cap \text{Prim}(U_q^+(g))$. Then it is obvious that the \mathcal{H}-strata $\text{Prim}_J(U_q^+(g))$ $(J \in \mathcal{H}-\text{Spec}(U_q^+(g)))$ form a partition of $\text{Prim}(U_q^+(g))$:

$$\text{Prim}(U_q^+(g)) = \bigsqcup_{J \in \mathcal{H}-\text{Spec}(U_q^+(g))} \text{Prim}_J(U_q^+(g)).$$

More interestingly, because of the finiteness of the set of \mathcal{H}-invariant prime ideals of $U_q^+(g)$, the \mathcal{H}-stratification theory provides a useful tool to recognise primitive ideals without having to find all its irreducible representations! Indeed, following previous works of Hodges-Levasseur, Joseph, and Brown-Goodearl, Goodearl and Letzter have characterised the primitive ideals of $U_q^+(g)$ as follows, see [11, Corollary 2.7] or [5, Theorem II.8.4].

Theorem 1.3 (Goodearl-Letzter) $\text{Prim}_J(U_q^+(g))$ $(J \in \mathcal{H}-\text{Spec}(U_q^+(g)))$ coincides with those primes in $\text{Spec}_J(U_q^+(g))$ that are maximal in $\text{Spec}_J(U_q^+(g))$.

2 Automorphism group of $U_q^+(g)$.

In this section, we investigate the automorphism group of $U_q^+(g)$ viewed as the algebra generated by n indeterminates E_1, \ldots, E_n subject to the quantum Serre relations. This algebra has some well-identified automorphisms. First, there are the so-called torus automorphisms; let $\mathcal{H} = (\mathbb{C}^*)^n$, where n still denotes the rank of g. As $U_q^+(g)$ is the \mathbb{C}-algebra generated by n indeterminates subject to the quantum Serre relations, it is easy to check that each $\lambda = (\lambda_1, \ldots, \lambda_n) \in \mathcal{H}$ determines an algebra automorphism ϕ_λ of $U_q^+(g)$ with $\phi_\lambda(E_i) = \lambda_i E_i$ for $i \in \{1, \ldots, n\}$, with inverse $\phi_\lambda^{-1} = \phi_{\lambda^{-1}}$. Next, there are the so-called diagram automorphisms coming from the symmetries of the Dynkin diagram of g. Namely, let w be an automorphism of the Dynkin diagram of g, that is, w is an element of the symmetric group S_n such that $(\alpha_i, \alpha_j) = (\alpha_{w(i)}, \alpha_{w(j)})$ for all $i, j \in \{1, \ldots, n\}$. Then one defines an automorphism, also denoted w, of $U_q^+(g)$ by: $w(E_i) = E_{w(i)}$. Observe that

$$\phi_\lambda \circ w = w \circ \phi(\lambda_{w(1)}, \ldots, \lambda_{w(n)}).$$
We denote by G the subgroup of $\text{Aut}(U_+^q(\mathfrak{g}))$ generated by the torus automorphisms and the diagram automorphisms. Observe that

$$G \simeq \mathcal{H} \rtimes \text{autdiagr}(\mathfrak{g}),$$

where $\text{autdiagr}(\mathfrak{g})$ denotes the set of diagram automorphisms of \mathfrak{g}.

The group $\text{Aut}(U_+^q(\mathfrak{sl}_3))$ was computed independently by Alev and Dumas, see [2, Proposition 2.3], and Caldero, see [8, Proposition 4.4]; their results show that, in the case where $\mathfrak{g} = \mathfrak{sl}_3$, we have

$$\text{Aut}(U_+^q(\mathfrak{sl}_3)) = G.$$

About ten years later, Andruskiewitsch and Dumas investigated the case where $\mathfrak{g} = \mathfrak{so}_5$, see [4]. In this case, they obtained partial results that lead them to the following conjecture.

Conjecture (Andruskiewitsch-Dumas, [4, Problem 1]):

$$\text{Aut}(U_+^q(\mathfrak{g})) = G.$$

This conjecture was recently confirmed in two new cases: $\mathfrak{g} = \mathfrak{so}_5$, [16], and $\mathfrak{g} = \mathfrak{sl}_4$, [18]. Our aim in this section is to show how one can use the action of the automorphism group of $U_+^q(\mathfrak{g})$ on the primitive spectrum of this algebra in order to prove the Andruskiewitsch-Dumas Conjecture in the cases where $\mathfrak{g} = \mathfrak{sl}_3$ and $\mathfrak{g} = \mathfrak{so}_5$.

2.1 Normal elements of $U_+^q(\mathfrak{g})$.

Recall that an element a of $U_+^q(\mathfrak{g})$ is normal provided the left and right ideals generated by a in $U_+^q(\mathfrak{g})$ coincide, that is, if

$$aU_+^q(\mathfrak{g}) = U_+^q(\mathfrak{g})a.$$

In the sequel, we will use several times the following well-known result concerning normal elements of $U_+^q(\mathfrak{g})$.

Lemma 2.1 Let u and v be two nonzero normal elements of $U_+^q(\mathfrak{g})$ such that $\langle u \rangle = \langle v \rangle$. Then there exist $\lambda, \mu \in \mathbb{C}^*$ such that $u = \lambda v$ and $v = \mu u$.

Proof. It is obvious that units λ, μ exist with these properties. However, the set of units of $U_+^q(\mathfrak{g})$ is precisely \mathbb{C}^*. \qed
2.2 N-grading on $U^+_q(\mathfrak{g})$ and automorphisms.

As the quantum Serre relations are homogeneous in the given generators, there is an \mathbb{N}-grading on $U^+_q(\mathfrak{g})$ obtained by assigning to E_i degree 1. Let

$$U^+_q(\mathfrak{g}) = \bigoplus_{i \in \mathbb{N}} U^+_q(\mathfrak{g})_i$$

be the corresponding decomposition, with $U^+_q(\mathfrak{g})_i$ the subspace of homogeneous elements of degree i. In particular, $U^+_q(\mathfrak{g})_0 = \mathbb{C}$ and $U^+_q(\mathfrak{g})_1$ is the n-dimensional space spanned by the generators E_1, \ldots, E_n. For $t \in \mathbb{N}$ set $U^+_q(\mathfrak{g})_{\geq t} = \bigoplus_{i \geq t} U^+_q(\mathfrak{g})_i$ and define $U^+_q(\mathfrak{g})_{\leq t}$ similarly.

We say that the nonzero element $u \in U^+_q(\mathfrak{g})$ has degree t, and write $\deg(u) = t$, if $u \in U^+_q(\mathfrak{g})_{\leq t} \setminus U^+_q(\mathfrak{g})_{\leq t-1}$ (using the convention that $U^+_q(\mathfrak{g})_{\leq -1} = \{0\}$). As $U^+_q(\mathfrak{g})$ is a domain, $\deg(uv) = \deg(u) + \deg(v)$ for $u, v \neq 0$.

Definition 2.2 Let $A = \bigoplus_{i \in \mathbb{N}} A_i$ be an \mathbb{N}-graded \mathbb{C}-algebra with $A_0 = \mathbb{C}$ which is generated as an algebra by $A_1 = \mathbb{C}x_1 \oplus \cdots \oplus \mathbb{C}x_n$. If for each $i \in \{1, \ldots, n\}$ there exist $0 \neq a \in A$ and a scalar $q_{i,a} \neq 1$ such that $x_i = q_{i,a} ax_i$, then we say that A is an \mathbb{N}-graded algebra with enough q-commutation relations.

The algebra $U^+_q(\mathfrak{g})$, endowed with the grading just defined, is a connected \mathbb{N}-graded algebra with enough q-commutation relations. Indeed, if $i \in \{1, \ldots, n\}$, then there exists $u \in U^+_q(\mathfrak{g})$ such that $E_i u = q^\bullet u E_i$ where \bullet is a nonzero integer. This can be proved as follows. As \mathfrak{g} is simple, there exists an index $j \in \{1, \ldots, n\}$ such that $j \neq i$ and $a_{ij} \neq 0$, that is, $a_{ij} \in \{-1, -2, -3\}$. Then s_is_j is a reduced expression in W, so that one can find a reduced expression of w_0 starting with s_is_j, that is, one can write

$$w_0 = s_is_js_i3 \cdots s_{iN}.$$

With respect to this reduced expression of w_0, we have with the notation of Section 1.2

$$\beta_1 = \alpha_i \quad \text{and} \quad \beta_2 = s_i(\alpha_j) = \alpha_j - a_{ij}\alpha_i$$

Then it follows from Theorem 1.1 that $E_{\beta_1} = E_i$, $E_{\beta_2} = E_{\alpha_j - a_{ij}\alpha_i}$ and

$$E_i E_{\beta_2} = q^{(\alpha_i, \alpha_j - a_{ij}\alpha_i)} E_{\beta_2} E_i,$$

that is,

$$E_i E_{\beta_2} = q^{-(\alpha_i, \alpha_j)} E_{\beta_2} E_i.$$

As $a_{ij} \neq 0$, we have $(\alpha_i, \alpha_j) \neq 0$ and so $q^{-(\alpha_i, \alpha_j)} \neq 1$ since q is not a root of unity. So we have just proved:

Proposition 2.3 $U^+_q(\mathfrak{g})$ is a connected \mathbb{N}-graded algebra with enough q-commutation relations.
One of the advantages of \(N\)-graded algebras with enough \(q\)-commutation relations is that any automorphism of such an algebra must conserve the valuation associated to the \(N\)-graduation. More precisely, as \(U_q^+(g)\) is a connected \(N\)-graded algebra with enough \(q\)-commutation relations, we deduce from [18] (see also [17, Proposition 3.2]) the following result.

Corollary 2.4 Let \(\sigma \in \text{Aut}(U_q^+(g))\) and \(x \in U_q^+(g)_d \setminus \{0\}\). Then \(\sigma(x) = y_d + y_{>d}\) for some \(y_d \in U_q^+(g)_d \setminus \{0\}\) and \(y_{>d} \in U_q^+(g)_{>d+1}\).

2.3 The case where \(g = \mathfrak{sl}_3\).

In this section, we investigate the automorphism group of \(U_q^+(g)\) in the case where \(g = \mathfrak{sl}_3\). In this case the Cartan matrix is

\[
A = \begin{pmatrix}
2 & -1 \\
-1 & 2
\end{pmatrix},
\]

so that \(U_q^+(\mathfrak{sl}_3)\) is the \(C\)-algebra generated by two indeterminates \(E_1\) and \(E_2\) subject to the following relations:

\[
E_1^2E_2 - (q + q^{-1})E_1E_2E_1 + E_2E_1^2 = 0 \quad (3)
\]

\[
E_2^2E_1 - (q + q^{-1})E_2E_1E_2 + E_1E_2^2 = 0 \quad (4)
\]

We often refer to this algebra as the quantum Heisenberg algebra, and sometimes we denote it by \(\mathbb{H}\), as in the classical situation the enveloping algebra of \(\mathfrak{sl}_3^+\) is the so-called Heisenberg algebra.

We now make explicit a PBW basis of \(\mathbb{H}\). The Weyl group of \(\mathfrak{sl}_3\) is isomorphic to the symmetric group \(S_3\), where \(s_1\) is identified with the transposition \((1\ 2)\) and \(s_2\) is identified with \((2\ 3)\). Its longest element is then \(w_0 = (13)\); it has two reduced decompositions: \(w_0 = s_1s_2s_1 = s_2s_1s_2\). Let us choose the reduced decomposition \(s_1s_2s_1\) of \(w_0\) in order to construct a PBW basis of \(U_q^+(\mathfrak{sl}_3)\). According to Section \[1.2\] this reduced decomposition leads to the following root vectors:

\[
E_{\alpha_1} = E_1, \quad E_{\alpha_1+\alpha_2} = T_1(E_2) = -E_1E_2 + q^{-1}E_2E_1 \quad \text{and} \quad E_{\alpha_2} = T_1T_2(E_1) = E_2.
\]

In order to simplify the notation, we set \(E_3 := -E_1E_2 + q^{-1}E_2E_1\). Then, it follows from Theorem \[1.3\] that

- The monomials \(E_1^{k_1}E_3^{k_3}E_2^{k_2}\), with \(k_1, k_2, k_3\) nonnegative integers, form a PBW-basis of \(U_q^+(\mathfrak{sl}_3)\).

- \(\mathbb{H}\) is the iterated Ore extension over \(C\) generated by the indeterminates \(E_1, E_3, E_2\) subject to the following relations:

\[
E_3E_1 = q^{-1}E_1E_3, \quad E_2E_3 = q^{-1}E_3E_2, \quad E_2E_1 = qE_1E_2 + qE_3.
\]

In particular, \(\mathbb{H}\) is a Noetherian domain, and its group of invertible elements is reduced to \(C^*\).
It follows from the previous commutation relations between the root vectors that E_3 is a normal element in H, that is, $E_3 H = HE_3$.

In order to describe the prime and primitive spectra of H, we need to introduce two other elements. The first one is the root vector $E_3' := T_2(E_1) = -E_2 E_1 + q^{-1} E_1 E_2$. This root vector would have appeared if we have chosen the reduced decomposition $s_2 s_1 s_2$ of w_0 in order to construct a PBW basis of H. It follows from Theorem 1.1 that E_3' q-commutes with E_1 and E_2, so that E_3' is also a normal element of H. Moreover, one can describe the centre of H using the two normal elements E_3 and E_3'. Indeed, in [3, Corollaire 2.16], Alev and Dumas have described the centre of $U_q(sln)$; independently Caldero has described the centre of $U_q^+(g)$ for arbitrary g, see [7]. In our particular situation, their results show that the centre $Z(H)$ of H is a polynomial ring in one variable $Z(H) = \mathbb{C}[\Omega]$, where $\Omega = E_3 E_3'$.

We are now in position to describe the prime and primitive spectra of $H = U_q^+(sl(3))$; this was first achieved by Malliavin who obtained the following picture for the poset of prime ideals of H, see [20, Théorème 2.4]:

\[
\begin{align*}
\langle\langle E_1, E_2 - \beta \rangle\rangle & \quad \langle\langle E_1, E_2 \rangle\rangle & \quad \langle\langle E_1 - \alpha, E_2 \rangle\rangle \\
\langle E_1 \rangle & \quad \langle E_2 \rangle & \\
\langle\langle E_3 \rangle \rangle & \quad \langle\langle \Omega - \gamma \rangle \rangle & \quad \langle\langle E_3' \rangle \rangle \\
\langle 0 \rangle & \quad & \end{align*}
\]

where $\alpha, \beta, \gamma \in \mathbb{C}^*$.

Recall from Section 1.3 that the torus $H = (\mathbb{C}^*)^2$ acts on $U_q^+(sl(3))$ by automorphisms and that the H-stratification theory of Goodearl and Letzter constructs a partition of the prime spectrum of $U_q^+(sl(3))$ into so-called H-strata, this partition being indexed by the H-invariant prime ideals of $U_q^+(sl(3))$. Using this description of $\text{Spec}(U_q^+(sl(3)))$, it is easy to identify the $6 = |W|$ H-invariant prime ideals of H and their corresponding H-strata. As E_1, E_2, E_3 and E_3' are H-eigenvectors, the 6 H-invariant primes are:

$\langle 0 \rangle, \langle E_3 \rangle, \langle E_3' \rangle, \langle E_1 \rangle, \langle E_2 \rangle$ and $\langle E_1, E_2 \rangle$.

Moreover the corresponding H-strata are:

$\text{Spec}_{\langle 0 \rangle}(H) = \{\langle 0 \rangle\} \cup \{\langle \Omega - \gamma \rangle \mid \gamma \in \mathbb{C}^*\}$,
\[\text{Spec}_\mathcal{G}(\mathbb{H}) = \{ \langle E_3 \rangle \}, \]
\[\text{Spec}_\mathcal{G}(\mathbb{H}) = \{ \langle E'_3 \rangle \}, \]
\[\text{Spec}_\mathcal{G}(\mathbb{H}) = \{ \langle E_1 \rangle \} \cup \{ \langle E_1, E_2 - \beta \rangle \mid \beta \in \mathbb{C}^* \}, \]
\[\text{Spec}_\mathcal{G}(\mathbb{H}) = \{ \langle E_2 \rangle \} \cup \{ \langle E_1 - \alpha, E_2 \rangle \mid \alpha \in \mathbb{C}^* \} \]
and \[\text{Spec}_\mathcal{G}(\mathcal{G}_1, \mathcal{G}_2)(\mathbb{H}) = \{ \langle E_1, E_2 \rangle \}. \]

We deduce from this description of the \(\mathcal{H} \)-strata and the fact that primitive ideals are exactly those primes that are maximal within their \(\mathcal{H} \)-strata, see Theorem 1.3, that the primitive ideals of \(U_q^+(\mathfrak{sl}_3) \) are exactly those primes that appear in double brackets in the previous picture.

We now investigate the group of automorphisms of \(\mathbb{H} = U_q^+(\mathfrak{sl}_3) \). In that case, the torus acting naturally on \(U_q^+(\mathfrak{sl}_3) \) is \(\mathcal{H} = (\mathbb{C}^*)^2 \), there is only one non-trivial diagram automorphism \(w \) that exchanges \(E_1 \) and \(E_2 \), and so the subgroup \(G \) of \(\text{Aut}(U_q^+(\mathfrak{sl}_3)) \) generated by the torus and diagram automorphisms is isomorphic to the semi-direct product \((\mathbb{C}^*)^2 \rtimes S_2 \). We want to prove that \(\text{Aut}(U_q^+(\mathfrak{sl}_3)) = G \).

In order to do this, we study the action of \(\text{Aut}(U_q^+(\mathfrak{sl}_3)) \) on the set of primitive ideals that are not maximal. As there are only two of them, \(\langle E_3 \rangle \) and \(\langle E'_3 \rangle \), an automorphism of \(\mathbb{H} \) will either fix them or permute them.

Let \(\sigma \) be an automorphism of \(U_q^+(\mathfrak{sl}_3) \). It follows from the previous observation that

\[\text{either } \sigma(\langle E_3 \rangle) = \langle E_3 \rangle \text{ and } \sigma(\langle E'_3 \rangle) = \langle E'_3 \rangle, \]

or \(\sigma(\langle E_3 \rangle) = \langle E'_3 \rangle \text{ and } \sigma(\langle E'_3 \rangle) = \langle E_3 \rangle \).

As it is clear that the diagram automorphism \(w \) permutes the ideals \(\langle E_3 \rangle \) and \(\langle E'_3 \rangle \), we get that there exists an automorphism \(g \in G \) such that

\[g \circ \sigma(\langle E_3 \rangle) = \langle E_3 \rangle \text{ and } g \circ \sigma(\langle E'_3 \rangle) = \langle E'_3 \rangle \].

Then, as \(E_3 \) and \(E'_3 \) are normal, we deduce from Lemma 2.1 that there exist \(\lambda, \lambda' \in \mathbb{C}^* \) such that

\[g \circ \sigma(E_3) = \lambda E_3 \text{ and } g \circ \sigma(E'_3) = \lambda' E'_3. \]

In order to prove that \(g \circ \sigma \) is an element of \(G \), we now use the \(\mathbb{N} \)-gradation of \(U_q^+(\mathfrak{sl}_3) \) introduced in Section 2.2. With respect to this graduation, \(E_1 \) and \(E_2 \) are homogeneous of degree 1, and so \(E_3 \) and \(E'_3 \) are homogeneous of degree 2. Moreover, as \((q^{-2} - 1)E_1E_2 = E_3 + q^{-1}E'_3 \), we deduce from the above discussion that

\[g \circ \sigma(E_1E_2) = \frac{1}{q^{-2} - 1} (\lambda E_3 + q^{-1}\lambda' E'_3) \]

has degree two. On the other hand, as \(U_q^+(\mathfrak{sl}_3) \) is a connected \(\mathbb{N} \)-graded algebra with enough \(q \)-commutation relations by Proposition 2.3, it follows from Corollary 2.4 that \(\sigma(E_1) = a_1E_1 + a_2E_2 + u \) and \(\sigma(E_2) = b_1E_1 + b_2E_2 + v \), where \((a_1, a_2), (b_1, b_2) \in \mathbb{C}^2 \setminus \{(0, 0)\} \), and \(u, v \in U_q^+(\mathfrak{sl}_3) \) are linear combinations of homogeneous elements of degree greater than one. As \(g \circ \sigma(E_1), g \circ \sigma(E_2) \) has degree two, it is clear that \(u = v = 0 \). To conclude that
follows from Theorem 1.1 that $g \circ \sigma \in G$, it just remains to prove that $a_2 = 0 = b_1$. This can be easily shown by using the fact that $g \circ \sigma (-E_1 E_2 + q^{-1} E_2 E_1) = g \circ \sigma (E_3) = \lambda E_3$; replacing $g \circ \sigma (E_2)$ by $a_1 E_1 + a_2 E_2$ and $b_1 E_1 + b_2 E_2$ respectively, and then identifying the coefficients in the PBW basis, leads to $a_2 = 0 = b_1$, as required. Hence we have just proved that $g \circ \sigma \in G$, so that σ itself belongs to G the subgroup of $\text{Aut}(U^+_q(\mathfrak{sl}_3))$ generated by the torus and diagram automorphisms. Hence one can state the following result that confirms the Andruskiewitsch-Dumas Conjecture.

Proposition 2.5 $\text{Aut}(U^+_q(\mathfrak{sl}_3)) \simeq (\mathbb{C}^*)^2 \rtimes \text{autdiagr}(\mathfrak{sl}_3)$

This result was first obtained independently by Alev and Dumas, [2 Proposition 2.3], and Caldero, [8, Proposition 4.4], but using somehow different methods; they studied this automorphism group by looking at its action on the set of normal elements of $U^+_q(\mathfrak{sl}_3)$.

2.4 The case where $g = \mathfrak{so}_5$.

In this section we investigate the automorphism group of $U^+_q(\mathfrak{g})$ in the case where $\mathfrak{g} = \mathfrak{so}_5$. In this case there are no diagram automorphisms, so that the Andruskiewitsch-Dumas Conjecture asks whether every automorphism of $U^+_q(\mathfrak{so}_5)$ is a torus automorphism. In [16] we have proved their conjecture when $\mathfrak{g} = \mathfrak{so}_5$. The aim of this section is to present a slightly different proof based both on the original proof and on the recent proof by S.A. Lopes and the author of the Andruskiewitsch-Dumas Conjecture in the case where \mathfrak{g} is of type A_3.

In the case where $\mathfrak{g} = \mathfrak{so}_5$, the Cartan matrix is $A = \begin{pmatrix} 2 & -2 \\ -1 & 2 \end{pmatrix}$, so that $U^+_q(\mathfrak{so}_5)$ is the \mathbb{C}-algebra generated by two indeterminates E_1 and E_2 subject to the following relations:

\begin{align*}
E_1^3 E_2 - (q^2 + 1 + q^{-2}) E_1^2 E_2 E_1 + (q^2 + 1 + q^{-2}) E_1 E_2^2 + E_2 E_1^3 & = 0 \\
E_2^3 E_1 - (q^2 + 1 + q^{-2}) E_2 E_1 E_2 + E_1 E_2^3 & = 0
\end{align*}

We now make explicit a PBW basis of $U^+_q(\mathfrak{so}_5)$. The Weyl group of \mathfrak{so}_5 is isomorphic to the dihedral group $D(4)$. Its longest element is $w_0 = -id$; it has two reduced decompositions: $w_0 = s_1 s_2 s_1 s_2 = s_2 s_1 s_2 s_1$. Let us choose the reduced decomposition $s_1 s_2 s_1 s_2$ of w_0 in order to construct a PBW basis of $U^+_q(\mathfrak{so}_5)$. According to Section 1.2, this reduced decomposition leads to the following root vectors:

\begin{align*}
E_{a_1} & = E_1, \quad E_{2a_1+a_2} = T_1(E_2) = \frac{1}{(q + q^{-1})} (E_1^2 E_2 - q^{-1}(q + q^{-1}) E_1 E_2 E_1 + q^{-2} E_2 E_1^2), \\
E_{a_1+a_2} & = T_1 T_2(E_1) = -E_1 E_2 + q^{-2} E_2 E_1 \quad \text{and} \quad E_{a_2} = T_1 T_2 T_1(E_2) = E_2.
\end{align*}

In order to simplify the notation, we set $E_3 := -E_{a_1+a_2}$ and $E_4 := E_{2a_1+a_2}$. Then, it follows from Theorem 1.1 that

- The monomials $E_1^{k_1} E_2^{k_2} E_3^{k_3} E_4^{k_4}$, with k_1, k_2, k_3, k_4 nonnegative integers, form a PBW-basis of $U^+_q(\mathfrak{so}_5)$.
• $U_q^+(\mathfrak{so}_5)$ is the iterated Ore extension over \mathbb{C} generated by the indeterminates E_1, E_4, E_3, E_2 subject to the following relations:

\begin{align*}
E_4E_1 &= q^{-2}E_1E_4 \\
E_3E_1 &= E_1E_3 - (q + q^{-1})E_4, \quad E_3E_4 = q^{-2}E_4E_3, \\
E_2E_1 &= q^2E_1E_2 - q^2E_3, \quad E_2E_4 = E_4E_2 - \frac{q^2-1}{q+q^{-1}}E_3^2, \quad E_2E_3 = q^{-2}E_3E_2.
\end{align*}

In particular, $U_q^+(\mathfrak{so}_5)$ is a Noetherian domain, and its group of invertible elements is reduced to \mathbb{C}^*. Before describing the automorphism group of $U_q^+(\mathfrak{so}_5)$, we first describe the centre and the primitive ideals of $U_q^+(\mathfrak{so}_5)$. The centre of $U_q^+(\mathfrak{g})$ has been described in general by Caldero, [7]. In the case where $\mathfrak{g} = \mathfrak{so}_5$, his result shows that $Z(U_q^+(\mathfrak{so}_5))$ is a polynomial algebra in two indeterminates

$$Z(U_q^+(\mathfrak{so}_5)) = \mathbb{C}[z, z'],$$

where

$$z = (1 - q^2)E_1E_3 + q^2(q + q^{-1})E_4$$

and

$$z' = -(q^2 - q^{-2})(q + q^{-1})E_4E_2 + q^2(q^2 - 1)E_3^2.$$

Recall from Section 1.3 that the torus $\mathcal{H} = (\mathbb{C}^*)^2$ acts on $U_q^+(\mathfrak{so}_5)$ by automorphisms and that the \mathcal{H}-stratification theory of Goodearl and Letzter constructs a partition of the prime spectrum of $U_q^+(\mathfrak{so}_5)$ into so-called \mathcal{H}-strata, this partition being indexed by the $8 = |W| \mathcal{H}$-invariant prime ideals of $U_q^+(\mathfrak{so}_5)$. In [15], we have described these eight \mathcal{H}-strata. More precisely, we have obtained the following picture for the poset $\text{Spec}(U_q^+(\mathfrak{so}_5))$, 13
where $\alpha, \beta, \gamma, \delta \in \mathbb{C}^*$, $E_3' := E_1E_2 - q^2E_2E_1$ and

$$I = \{\langle P(z, z') \rangle \mid P \text{ is a unitary irreducible polynomial of } \mathbb{C}[z, z'], \ P \neq z, z'\}.$$

As the primitive ideals are those primes that are maximal in their \mathcal{H}-strata, see Theorem 1.3, we deduced from this description of the prime spectrum that the primitive ideals of $U_q^+(\mathfrak{so}_5)$ are the following:

- $\langle z - \alpha, z' - \beta \rangle$ with $(\alpha, \beta) \in \mathbb{C}^2 \setminus \{(0, 0)\}$.
- $\langle E_3 \rangle$ and $\langle E_3' \rangle$.
- $\langle E_1 - \alpha, E_2 - \beta \rangle$ with $(\alpha, \beta) \in \mathbb{C}^2$ such that $\alpha\beta = 0$.

(They correspond to the “double brackets” prime ideals in the above picture.)

Among them, two only are not maximal, $\langle E_3 \rangle$ and $\langle E_3' \rangle$. Unfortunately, as E_3 and E_3' are not normal in $U_q^+(\mathfrak{so}_5)$, one cannot easily obtain information using the fact that any automorphism of $U_q^+(\mathfrak{so}_5)$ will either preserve or exchange these two prime ideals. Rather than using this observation, we will use the action of $\text{Aut}(U_q^+(\mathfrak{so}_5))$ on the set of maximal ideals of height two. Because of the previous description of the primitive spectrum of $U_q^+(\mathfrak{so}_5)$, the height two maximal ideals in $U_q^+(\mathfrak{so}_5)$ are those $\langle z - \alpha, z' - \beta \rangle$ with $(\alpha, \beta) \in \mathbb{C}^2 \setminus \{(0, 0)\}$. In [16, Proposition 3.6], we have proved that the group of units of the factor algebra $U_q^+(\mathfrak{so}_5)/\langle z - \alpha, z' - \beta \rangle$ is reduced to \mathbb{C}^* if and only if both α and β are nonzero. Consequently, if σ is an automorphism of $U_q^+(\mathfrak{so}_5)$ and $\alpha \in \mathbb{C}^*$, we get that:

$$\sigma(\langle z - \alpha, z' \rangle) = \langle z - \alpha', z' \rangle \text{ or } \langle z, z' - \beta' \rangle,$$
where \(\alpha', \beta' \in \mathbb{C}^* \). Similarly, if \(\sigma \) is an automorphism of \(U^+_q(\mathfrak{so}_5) \) and \(\beta \in \mathbb{C}^* \), we get that:

\[
\sigma(\langle z, z' - \beta \rangle) = \langle z - \alpha', z' \rangle \text{ or } \langle z, z' - \beta' \rangle,
\]

where \(\alpha', \beta' \in \mathbb{C}^* \).

We now use this information to prove that the action of \(\text{Aut}(U^+_q(\mathfrak{so}_5)) \) on the centre of \(U^+_q(\mathfrak{so}_5) \) is trivial. More precisely, we are now in position to prove the following result.

Proposition 2.6 Let \(\sigma \in \text{Aut}(U^+_q(\mathfrak{so}_5)) \). There exist \(\lambda, \lambda' \in \mathbb{C}^* \) such that

\[
\sigma(z) = \lambda z \quad \text{and} \quad \sigma(z') = \lambda' z'.
\]

Proof. We only prove the result for \(z \). First, using the fact that \(U^+_q(\mathfrak{so}_5) \) is noetherian, it is easy to show that, for any family \(\{\beta_i\}_{i \in \mathbb{N}} \) of pairwise distinct nonzero complex numbers, we have:

\[
\langle z \rangle = \bigcap_{i \in \mathbb{N}} P_{0, \beta_i} \quad \text{and} \quad \langle z' \rangle = \bigcap_{i \in \mathbb{N}} P_{\beta_i, 0},
\]

where \(P_{\alpha, \beta} := \langle z - \alpha, z' - \beta \rangle \). Indeed, if the inclusion

\[
\langle z \rangle \subseteq I := \bigcap_{i \in \mathbb{N}} P_{0, \beta_i}
\]

is not an equality, then any \(P_{0, \beta_i} \) is a minimal prime over \(I \) for height reasons. As the \(P_{0, \beta_i} \) are pairwise distinct, \(I \) is a two-sided ideal of \(U^+_q(\mathfrak{so}_5) \) with infinitely many prime ideals minimal over it. This contradicts the noetherianity of \(U^+_q(\mathfrak{so}_5) \). Hence

\[
\langle z \rangle = \bigcap_{i \in \mathbb{N}} P_{0, \beta_i} \quad \text{and} \quad \langle z' \rangle = \bigcap_{i \in \mathbb{N}} P_{\beta_i, 0},
\]

and so

\[
\sigma(\langle z \rangle) = \bigcap_{i \in \mathbb{N}} \sigma(P_{0, \beta_i}).
\]

It follows from (7) that, for all \(i \in \mathbb{N} \), there exists \((\gamma_i, \delta_i) \neq (0, 0) \) with \(\gamma_i = 0 \) or \(\delta_i = 0 \) such that

\[
\sigma(P_{0, \beta_i}) = P_{\gamma_i, \delta_i}.
\]

Naturally, we can choose the family \(\{\beta_i\}_{i \in \mathbb{N}} \) such that either \(\gamma_i = 0 \) for all \(i \in \mathbb{N} \), or \(\delta_i = 0 \) for all \(i \in \mathbb{N} \). Moreover, observe that, as the \(\beta_i \) are pairwise distinct, so are the \(\gamma_i \) or the \(\delta_i \).

Hence, either

\[
\sigma(\langle z \rangle) = \bigcap_{i \in \mathbb{N}} P_{\gamma_i, 0},
\]

15
or
\[\sigma((z)) = \bigcap_{i \in \mathbb{N}} P_{0,i}, \]
that is,
\[\text{either } \langle \sigma(z) \rangle = \sigma(\langle z \rangle) = \langle z' \rangle \text{ or } \langle \sigma(z) \rangle = \sigma(\langle z \rangle) = \langle z \rangle. \]

As \(z, \sigma(z) \) and \(z' \) are all central, it follows from Lemma 2.1 that there exists \(\lambda \in \mathbb{C}^\ast \) such that either \(\sigma(z) = \lambda z \) or \(\sigma(z) = \lambda z' \).

To conclude, it just remains to show that the second case cannot happen. In order to do this, we use a graded argument. Observe that, with respect to the \(\mathbb{N} \)-graduation of \(U_q^+(\mathfrak{so}_5) \) defined in Section 2.2, \(z \) and \(z' \) are homogeneous of degree 3 and 4 respectively. Thus, if \(\sigma(z) = \lambda z' \), then we would obtain a contradiction with the fact that every automorphism of \(U_q^+(\mathfrak{so}_5) \) preserves the valuation, see Corollary 2.4. Hence \(\sigma(z) = \lambda z \), as desired. The corresponding result for \(z' \) can be proved in a similar way, so we omit it. \(\square \)

Andruskiewitsch and Dumas, \([4, \text{Proposition 3.3}]\), have proved that the subgroup of those automorphisms of \(U_q^+(\mathfrak{so}_5) \) that stabilize \(\langle z \rangle \) is isomorphic to \((\mathbb{C}^\ast)^2\). Thus, as we have just shown that every automorphism of \(U_q^+(\mathfrak{so}_5) \) fixes \(\langle z \rangle \), we get that \(\text{Aut}(U_q^+(\mathfrak{so}_5)) \) itself is isomorphic to \((\mathbb{C}^\ast)^2\). This is the route that we have followed in \([16]\) in order to prove the Andruskiewitsch-Dumas Conjecture in the case where \(\mathfrak{g} = \mathfrak{so}_5 \). Recently, with Samuel Lopes, we proved this Conjecture in the case where \(\mathfrak{g} = \mathfrak{sl}_4 \) using different methods and in particular graded arguments. We are now using (similar) graded arguments to prove that every automorphism of \(U_q^+(\mathfrak{so}_5) \) is a torus automorphism (without using results of Andruskiewitsch and Dumas).

In the proof, we will need the following relation that is easily obtained by straightforward computations.

Lemma 2.7 \((q^2 - 1)E_3E'_3 = (q^4 - 1)zE_2 + q^2z'\).

Proposition 2.8 Let \(\sigma \) be an automorphism of \(U_q^+(\mathfrak{so}_5) \). Then there exist \(a_1, b_2 \in \mathbb{C}^\ast \) such that
\[\sigma(E_1) = a_1E_1 \quad \text{and} \quad \sigma(E_2) = b_2E_2. \]

Proof. For all \(i \in \{1, \ldots, 4\} \), we set \(d_i := \deg(\sigma(E_i)) \). We also set \(d'_3 := \deg(\sigma(E'_3)) \). It follows from Corollary 2.4 that \(d_1, d_2 \geq 1, \; d_3, d'_3 \geq 2 \) and \(d_4 \geq 3 \). First we prove that \(d_1 = d_2 = 1 \).

Assume first that \(d_1 + d_3 \geq 3 \). As \(z = (1 - q^2)E_1E_3 + q^2(q + q^{-1})E_4 \) and \(\sigma(z) = \lambda z \) with \(\lambda \in \mathbb{C}^\ast \) by Proposition 2.6, we get:
\[\lambda z = (1 - q^2)\sigma(E_1)\sigma(E_3) + q^2(q + q^{-1})\sigma(E_4). \] (8)

Recall that \(\deg(uv) = \deg(u) + \deg(v) \) for \(u, v \neq 0 \), as \(U_q^+(\mathfrak{g}) \) is a domain. Thus, as \(\deg(z) = 3 < \deg(\sigma(E_1)\sigma(E_3)) = d_1 + d_3 \), we deduce from (8) that \(d_1 + d_3 = d_4 \). As \(z' = -(q^2 - q^{-2})(q + q^{-1})E_4E_2 + q^2(q^2 - 1)E_3^2 \) and \(\deg(z') = 4 < d_1 + d_3 + d_2 = d_4 + d_2 = \)
deg(σ(E_4)σ(E_2)), we get in a similar manner that d_2 + d_4 = 2d_3. Thus d_1 + d_2 = d_3. As d_1 + d_3 > 3, this forces d_3 > 2 and so d_3 + d'_3 > 4. Thus we deduce from Lemma 2.7 that d_3 + d'_3 = 3 + d_2. Hence d_1 + d'_3 = 3. As d_1 ≥ 1 and d'_3 ≥ 2, this implies d_1 = 1 and d'_3 = 2.

Thus we have just proved that d_1 = deg(σ(E_1)) = 1 and either d_3 = 2 or d'_3 = 2. To prove that d_2 = 1, we distinguish between these two cases.

If d_3 = 2, then as previously we deduce from the relation z' = (q^2 - q^{-2})(q + q^{-1})E_4E_2 + q^2(q^2 - 1)E_3^2 that d_2 + d_4 = 4, so that d_2 = 1, as desired.

If d'_3 = 2, then one can use the definition of E'_3 and the previous expression of z' in order to prove that z' = q^{-2}(q^2 - 1)E_3^2 + E_2u, where u is a nonzero homogeneous element of U_q^+(sl_5) of degree 3. (u is nonzero since (z') is a completely prime ideal and E_3 \notin (z') for degree reasons.) As d'_3 = 2 and deg(σ(z')) = 4, we get as previously that d_2 = 1.

To summarise, we have just proved that deg(σ(E_1)) = 1 = deg(σ(E_2)), so that σ(E_1) = a_1E_1 + a_2E_2 and σ(E_2) = b_1E_1 + b_2E_2, where (a_1, a_2), (b_1, b_2) ∈ C^2 \{ (0,0) \}. To conclude that a_2 = b_1 = 0, one can for instance use the fact that σ(E_1) and σ(E_2) must satisfy the quantum Serre relations.

We have just confirmed the Andruskiewitsch-Dumas Conjecture in the case where g = sl_5.

Theorem 2.9 Every automorphism of U_q^+(sl_5) is a torus automorphism, so that

\[
\text{Aut}(U_q^+(sl_5)) \simeq (\mathbb{C}^*)^2.
\]

2.5 Beyond these two cases.

To finish this overview paper, let us mention that recently the Andruskiewitsch-Dumas Conjecture was confirmed by Samuel Lopes and the author, in the case where g = sl_4. The crucial step of the proof is to prove that, up to an element of G, every normal element of U_q^+(sl_4) is fixed by every automorphism. This step was dealt with by first computing the Lie algebra of derivations of U_q^+(sl_4), and this already requires a lot of computations!

Acknowledgments. I thank Jacques Alev, François Dumas, Tom Lenagan and Samuel Lopes for all the interesting conversations that we have shared on the topics of this paper. I also like to thank the organisers of the Workshop "From Lie Algebras to Quantum Groups" (and all the participants) for this wonderful meeting. Finally, I would like to express my gratitude for the hospitality received during my subsequent visit to the University of Porto, especially from Paula Carvalho Lomp, Christian Lomp and Samuel Lopes.

References

Stéphane Launois:
Institute of Mathematics, Statistics and Actuarial Science,
University of Kent at Canterbury, CT2 7NF, UK.
Email: S.Launois@kent.ac.uk