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Twisted Poincaré duality for some quadratic Poisson algebras

Stéphane Launois∗ and Lionel Richard†

Abstract

We exhibit a Poisson module restoring a twisted Poincaré duality between Poisson homol-
ogy and cohomology for the polynomial algebra R = C[X1, . . . , Xn] endowed with Poisson
bracket arising from a uniparametrised quantum affine space. This Poisson module is ob-
tained as the semiclassical limit of the dualising bimodule for Hochschild homology of the
corresponding quantum affine space. As a corollary we compute the Poisson cohomology of
R, and so retrieve a result obtained by direct methods (so completely different from ours) by
Monnier.

2000 Mathematics subject classification: 17B63, 17B55, 17B37, 16E40

Key words: Poisson (co)homology, Hochschild (co)homology, Poincaré duality.

1 Introduction

Given a Poisson algebra, its Poisson cohomology provides important information about
the Poisson structure (the Casimir elements are reflected by the degree zero cohomology, Poisson
derivations modulo Hamiltonian derivations by the degree one,...). Computing this cohomology
is in general difficult. It has been achieved in some particular cases, see for instance [19] and
references therein. One way to study a Poisson algebra is to consider a deformation. If the
deformation is “nice”, its properties should reflect the corresponding properties of the original
Poisson algebra. Results in this spirit have been obtained for instance in [10], or in the framework
of symplectic varieties in [3] and recently in [2], where roughly speaking the Poisson homology is
shown to match the Hochschild homology of the deformation at least in small degrees.

The aim of this paper is to illustrate this idea that quantisation can provide some intu-
ition on the study of Poisson (co)homology. More precisely, we consider the polynomial algebra
R = C[X1, . . . ,Xn] endowed with the bracket {Xi,Xj} = aijXiXj , where (aij) ∈ Mn(Z) is a
skew-symmetric matrix. The Poisson cohomology of this algebra has been computed in [17] by
direct computation. Another approach in order to compute this Poisson cohomology consists
in establishing a duality between Poisson homology and cohomology. In general such a duality
does not occur. For instance for n = 2 and a12 = 1 the cohomology spaces in degree 0,1 and 2
have respectively dimension 1,2,2, whereas the homology space of degree 2 is null, and infinite-
dimensional in degree 0 and 1. Note that this lack of nontrivial Poisson homology in the higher
degrees explains the “dimension drop” appearing in the Hochschild homology of the quantum
plane (see [15], [26], [23], [11], [6], [8] for details on dimension drop in this and other situations).

∗This research was supported by a Marie Curie Intra-European Fellowship within the 6th European Community
Framework Programme

†Supported by EPSRC Grant EP/D034167/1
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The starting point of this work was the following question: knowing that there is no Poincaré
duality between Poisson homology and cohomology in this case (see the paper [22] for n = 2), can
it be replaced by a “twisted duality”? Such a twisted duality for Poisson (co)homology appears in
the literature (see for instance [13], [9], [27]), in a somewhat abstract way. In the present paper
we make this twisted duality explicit on the complexes that are used to compute the Poisson
(co)homology of the Poisson algebra under consideration.

Our method here relies on the fact that the Poisson algebra R is the semiclassical limit
of a uniparametrised quantum affine space U admitting a dualising bimodule for Hochschild
(co)homology. This bimodule is easily defined as the algebra U itself, with product twisted on the
left by an automorphism. This allows us to define a Poisson module M over R as the semiclassical
limit of the dualising bimodule of U . Then we show that the Poisson cohomology of R is dual to
the Poisson homology with values in M ; in other words, M is a “Poisson dualising module” in
the sense that it restores a duality between Poisson homology and cohomology. Finally we use
this twisted Poisson duality to compute the Poisson cohomology of R, retrieving so a result of
Monnier.

Although we work here with the semiclassical limit of quantum affine space, it is likely that
this method will apply to other algebras admitting a “twisted” Poincaré duality for the Hochschild
homology at the quantised level, at least when the automorphism used for this twisting can be
expressed simply as multiplying generators by a power of the parameter q. This is the case for
instance for quantised coordinate rings of semisimple complex algebraic groups, as proved in [6].
Starting from the Van den Bergh duality, [25], at the quantum level, it would be very interesting
to retrieve this twisted Poisson duality for semiclassical limits thanks to spectral sequences à la
Brylinski, [7], see also [16]. We plan to go back to these questions in a subsequent paper.

The plan of this paper is as follows. First, we show that the automorphism provided by
Sitarz to solve the “dimension drop” for the Hochschild homology of the quantum space provides a
twisted duality. Next, we produce a Poisson module providing duality between Poisson homology
and cohomology of the semiclassical limit R. Finally, we compute the Poisson homology with
values in this module.

Throughout this paper we will use the usual following notation for a monomial: if x1, . . . , xn

are variables and α = (α1, . . . , αn) ∈ Nn then xα = xα1
1 . . . xαn

n . We will also denote by ǫi the ith
vector of the canonical basis of Zn.

2 Twisted Poincaré duality in Hochschild (co)homology.

In the paper [23], Sitarz provides an automorphism of quantum affine space restoring what
one should expect as the “good” Hochschild dimension of these algebras. Namely, Wambst proved
in [26] that in the generic case all Hochschild homology groups are null in degree greater than
1. Sitarz proved in his paper that the “twisted” Hochschild homology, for a particular choice of
twisting automorphism, provides a vector space of dimension 1 for the homology group of degree
n of the quantum affine n-space.

Re-interpreting certain results of [21] in terms of “twisted” Poincaré duality (see [25], [6]),
we show here that the automorphism determined by Sitarz actually provides such a duality. This
could be as well seen as a corollary of Van den Bergh’s results, [25, Proposition 2], but we make
it explicit here at the level of the complexes themselves. The method used, in terms of “up to a
sign” commuting diagrams, is the same as the one we are going to use for Poisson homology. The
following computations are done for quantum affine space, but one can easily check that they
remain valid for the “mixed crossed algebras” defined in [21].
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2.1 Resolution

We say that a matrix Q = (qij) ∈ Mn(C) is multiplicatively skew-symmetric if qijqji =
qii = 1 for all i, j. Let us recall here the following two quantum algebras.

Definition 2.1.1. Let V be a C-vector space of dimension n with basis (v1, . . . , vn), and let
Q = (qij)1≤i,j≤n ∈Mn(C∗) be a multiplicatively skew-symmetric matrix.

1. The quantum affine space SQV = OQ(Cn) is the C-algebra generated by n generators
v1, . . . , vn with relations vivj − qijvjvi for all 1 ≤ i, j ≤ n.

It is well-known that SQV is a noetherian domain, and admits the monomials {vα}α∈Nn as
a PBW-basis.

2. The quantum exterior algebra ΛQV is the C-algebra generated by n generators v1, . . . , vn

with relations vivj = −qijvjvi for all 1 ≤ i, j ≤ n. It admits the monomials {vβ}β∈{0,1}n as
a C-linear basis.

Remark 2.1.2. This definition of the quantum exterior algebra differs from the one given in [5]
for instance. However, it is the one provided in [26], giving rise to the quantum Koszul complex
described below.

Set U = SQV . It follows from [26, Proposition 10.3] that the following is a free resolution
of U as a U e = U ⊗ Uop-module.

The vector space ΛQV is N-graded, by defining the degree of a monomial vβ1
1 ∧ . . .∧ vβn

n to
be |β|. For all ∗ ∈ N, one denotes by Λ∗

QV the homogeneous subspace of ΛQV of degree ∗. Then
the space U ⊗ΛQV ⊗U is graded by the degree of ΛQV , and U ⊗ΛQV ⊗U becomes a differential
complex, with the differential ∂ defined for all a, b ∈ U by:

∂(a⊗ vi1 ∧ . . . ∧ vi∗ ⊗ b) =
∗∑

k=1

(−1)k−1

((∏

s<k

qis,ik

)
avik ⊗ vi1 ∧ . . . ∧ v̂ik ∧ . . . ∧ vi∗ ⊗ b

−
(∏

s>k

qik,is

)
a⊗ vi1 ∧ . . . ∧ v̂ik ∧ . . . ∧ vi∗ ⊗ vikb

) (1)

where vi1 ∧ . . . ∧ v̂ik ∧ . . . ∧ vi∗ is the outer product vi1 ∧ . . . ∧ vi∗ without vik .

2.2 Hochschild homology, cohomology

We recall some of the homological framework that is used in [26], [23].

Definition 2.2.1. Let A be a C-algebra. An automorphism σ of A is said to be a scaling
automorphism if there exists a basis {ai}i∈I of A as a vector space such that σ(ai) = piai with
pi ∈ C∗ for all i ∈ I.

Definition 2.2.2. Consider a C-algebra A, σ an automorphism of A, and let σA be the Ae-
module that is A as a vector space with module structure: b.(a0, a1) = σ(a0)ba1. Denote by K(A)
a projective resolution of A by Ae-modules.

1. The invariant twisted Hochschild homology is the homology of the subcomplex of

σA⊗Ae K(A) consisting only of σ-invariant elements.

3



2. The twisted Hochschild homology is the homology of the quotient of the (usual) Hochschild
complex by the image of the map 1 − σ.

Lemma 2.2.3 ([23], Lemma 2.2). For any scaling automorphism σ the corresponding invariant
twisted Hochschild homology is isomorphic to the twisted Hochschild homology.

So the twisted Hochschild homology is computed as the σ-invariant part of the Hochschild
homology with values in σA. Thus we are interested here in H(U, σU). The following scaling
automorphism for the algebra SQV is defined in [23].

Definition 2.2.4. The automorphism σ of SQV defined by σ(vi) = pivi, with pi =
∏n

j=1 qj,i is a
scaling automorphism, called the canonical scaling automorphism.

Let us recall - with adapted notation - the results obtained in [26, Section 6] and [23,
Section 3]. The twisted Hochschild homology of SQ is given by the complex below:

Kσ(SQV ) =
⊕

α ∈ N
n

γ ∈ {0, 1}n

C.vα ⊗ vγ ,

d(vα ⊗ vγ) =

n∑

i=1

ΩQ(α, γ; i)vα+[i] ⊗ vγ−[i], (2)

with coefficients:

ΩQ(α, γ; i) = (−1)

P

k<i

γk

(∏

k<i

qγk

k,i

)(∏

k>i

qαk

k,i

)
×

(
1 − pi

(
n∏

k=1

qαk+γk

i,k

))
if γi = 1,

and
ΩQ(α, γ; i) = 0 if γi = 0.

(3)

Proposition 2.2.5 ([23], Proposition 3.5). The complex (Kσ(SQV ), d) above computes the twisted
Hochschild homology of SQV , and deg(vα⊗vγ) = α+γ defines a Nn-grading on it. Moreover, set
Cσ(Q) = {ρ ∈ Nn | ∀i, ρi = 0 or piviv

ρ = vρvi}. Then for all ρ ∈ Nn \Cσ(Q), the homogeneous
subcomplex of (K(SQV ), d) of degree ρ is acyclic. Further, the twisted Hochschild homology of
SQ(V ) in degree k is given by

Hk(SQV, σ(SQV )) =
⊕

γ ∈ {0, 1}n

|γ| = k

⊕

α ∈ N
n

α + γ ∈ Cσ(Q)

C.vα ⊗ vγ .

The proof of this result relies on a homotopy hQ given by the linear map hQ : Kσ
∗ → Kσ

∗+1

defined by hQ(vα ⊗ vβ) = 1
||α+β||

∑n
k=1 ωQ(α, β, i)vα−ǫi ⊗ vβ+ǫi , with

ωQ(α, β, i) =





0 if α+ β ∈ Cσ(Q)
0 if βi = 1
0 if αi = 0
ΩQ(α− ǫi, β + ǫi, i)

−1 otherwise

(4)

where ||γ|| is the cardinal of {k | σ(vk)vγ 6= vγvk and γk 6= 0}, see the proof of [26, Theorem 6.1]
and [23, Proposition 3.5].
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From the free resolution U ⊗ Λ∗
QV ⊗ U of U we derive a complex (R∗, t∂) which computes

the Hochschild cohomology of U with values in a bimodule M . As a C-vector space,

R∗ = HomUe(U ⊗ Λ∗
QV ⊗ U,M),

and the differential is the transposition of the differential

∂ : U ⊗ Λ∗+1
Q V ⊗ U → U ⊗ Λ∗

QV ⊗ U,

that is:
t∂ : R∗ → R∗+1

ϕ 7→ ϕ ◦ ∂.

Then HH∗(U) = H∗(R, t∂).

2.3 Duality

We present in this section the links between the Hochschild homology and cohomology of
the algebra SQV . This section is mainly inspired from Section 6 of [21], although the notation
we use is slightly different. We recall the following easy result, which will be our main tool in the
following.

Lemma 2.3.1 ([21], Lemma 6.2.1). Let (C∗, d) be a C-differential complex, and let M∗ be a
graded C-vector space, such that there exists an isomorphism Φ of graded vector spaces of degree
0, with source C∗ and target M∗. Then the map d̃ = Φ ◦ d ◦Φ−1 is such that d̃2 = 0, and (M∗, d̃)
is a differential complex. The map Φ is then an isomorphism of complexes, and one has:

H∗(C, d) = H∗(M, d̃).

Let us apply this result to the complexes (R∗, t∂) and (Kσ
∗ , d) described above. We just

give formulae here, the proofs can be found in Section 6 of [21]. Note that the quantum affine
space we consider here is just a particular case of the “mixed crossed algebras” studied in [21],
and that all the following could apply verbatim to these algebras.

There is an isomorphism Φ1,∗ from HomUe(U ⊗ Λ∗V ⊗ U,U) onto Homk(Λ
∗
QV,U) defined

for all ϕ ∈ HomUe(U ⊗ Λ∗V ⊗ U,U) by:

Φ1,∗(ϕ)(vi1 ∧ . . . ∧ vi∗) = ϕ(1 ⊗ vi1 ∧ . . . ∧ vi∗ ⊗ 1).

Then one computes the conjugate D = Φ1,∗+1 ◦
t∂ ◦ Φ−1

1,∗ of t∂ by Φ1. Set

L∗ = Homk(Λ
∗
QV,U).

Then one has
D : L∗ → L∗+1

ϕ 7→ D(ϕ),

where D(ϕ) is defined by:

D(ϕ)(vi1 ∧ . . . ∧ vi∗+1) =

∗+1∑

k=1

(−1)k−1
(
(
∏

s<k

qis,ik)vikϕ(vi1 ∧ . . . v̂ik . . . ∧ vi∗+1)

−(
∏

s>k

qik,is)ϕ(vi1 ∧ . . . v̂ik . . . ∧ vi∗+1)vik

)
.

(5)
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By construction, the complex (R∗, t∂) and the complex (L∗,D) above are isomorphic, and
the diagram below commutes:

R∗
t∂ //

Φ1,∗

��

	

R∗+1

Φ1,∗+1

��
Hom(Λ∗

QV,U) D // Hom(Λ∗+1
Q V,U)

Next, we prove a similar result for the complex (Kσ
∗ , d), the homology of which is the

Hochschild homology of U with values in σU . Recall that Kσ
∗ = U ⊗ Λ∗

QV as a vector space and
that the differential d is given by formula (2).

Lemma 2.3.2 ([21], Lemma 6.2.3). The canonical map ψ∗ : Λ∗
QV ⊗ Λn−∗

Q V → k ⊗ v1 ∧ . . . ∧ vn

defined by ψ∗(vi1 ∧ . . . ∧ vi∗ ⊗ vj1 ∧ . . . ∧ vjn−∗) = vi1 ∧ . . . ∧ vi∗ ∧ vj1 ∧ . . . ∧ vjn−∗ induces an
isomorphism ψ∗ : Λn−∗

Q V → (Λ∗
QV )′ defined by

ψ∗(vj1 ∧ . . . ∧ vjn−∗) = ψ∗(· ⊗ vj1 ∧ . . . ∧ vjn−∗).

Remark 2.3.3. In fact ψ∗ is just the linear map sending the element vj1 ∧ . . . ∧ vjn−∗ to
Θ∗(i1, . . . , i∗)(vi1 ∧ . . . ∧ vi∗)

′ where {i1, . . . , i∗} is the complementary ∗-uple of {j1, . . . , jn−∗}
and Θ∗(i1, . . . , i∗) ∈ C∗ is defined by:

Θ∗(i1, . . . , i∗) =
∏

k<i∗, k 6∈{is}

(−qi∗,k)
∏

k<i∗−1, k 6∈{is}

(−qi∗−1,k) . . .
∏

k<i1, k 6∈{is}

(−qi1,k). (6)

The isomorphism ψ∗ induces an isomorphism Φ2,∗ = id⊗ψ∗ from σU ⊗Λn−∗
Q V to the space

σU ⊗ (Λ∗
QV )′. But σU ⊗ Λn−∗

Q V = Kσ
n−∗, and one thus defines a differential ∆ on the complex

σU ⊗ (ΛQV )′, such that the following diagram commutes:

σU ⊗ (Λ∗
QV )′

	

∆ //
σU ⊗ (Λ∗+1

Q )′

Kσ
n−∗

Φ2,∗

OO

d // Kσ
n−∗−1

Φ2,∗+1

OO

The differential ∆ is exactly Φ2,∗+1 ◦ d ◦ Φ−1
2,∗. For all i1 < . . . < i∗, let {j1, . . . , jn−∗} =

{i1, . . . , i∗} be the complementary set. Then

∆(a⊗ (vi1 ∧ . . . ∧ vi∗)
′) = Θ−1

∗ (i1, . . . , i∗)×
n−∗∑

k=1

(−1)k−1
(
(
∏

s<k

qjs,jk
)avjk

− (
∏

s>k

qjk,js)pjk
vjk
a
)

⊗Θ∗+1(i1, . . . , jk, . . . , i∗)(vi1 ∧ . . . vjk
. . . ∧ vi∗)

′.

(7)

Once again, by construction the homology of the above complex is:

H∗(U ⊗ (ΛQV )′) = HHn−∗(U, σU).
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We have transfered the differential complex structures of (Kσ
∗ , d) and (R∗, t∂) onto the

graded vector spaces Hom(Λ∗
QV,U) and U ⊗ (Λ∗

QV )′. There is a natural linear isomorphism
between these two spaces; we use it to compare the two differential complex structures.

Let Φ3,∗ be the isomorphism from U ⊗ (Λ∗
QV )′ to Hom(Λ∗

QV,U) defined by:

Φ3,∗(a⊗ ϕ)(vi1 ∧ . . . ∧ vi∗) = ϕ(vi1 ∧ . . . ∧ vi∗)a. (8)

Then consider the diagram below:

Hom(Λ∗
QV,U) D // Hom(Λ∗+1

Q V,U)

σU ⊗ (Λ∗
QV )′

Φ3,∗

OO

∆ //
σU ⊗ (Λ∗+1

Q V )′

Φ3,∗+1

OO

This diagram does not commute a priori, but we have the following result. The following Propo-
sition relies directly on the computations leading to Lemma 6.3.2 of [21]. But we first must note
that a careful check of these computations show that the formulation of this Lemma is wrong in
the following sense. In expressing ω′

2, the λ̃jk,t must be replaced by λ̃t,jk
. This does not affect

the rest of [21], since the only case considered there is the one where the products among t of
these elements is always equal to 1. Once this is observed, one gets the following.

Proposition 2.3.4. With the notation above, we have: Φ3,∗+1 ◦ ∆ = (−1)∗+1D ◦ Φ3,∗.

Proof. Lemmas 6.3.1 and 6.3.2 from [21] can be rewritten in our context in the following form
(taking care that the Hochschild homology is twisted): Φ3,∗+1 ◦ ∆(a ⊗ (vi1 ∧ . . . ∧ vi∗)

′) is the
linear map which sends the basis element vα1 ∧ . . . ∧ vα∗+1 ∈ Λ∗+1

Q V to:

n−∗∑

k=1

(−1)k−1(ω1(α1, . . . , α∗+1; k)avjk
− pjk

ω2(α1, . . . , α∗+1; k)vjk
a),

and D◦Φ3,∗(a⊗(vi1 ∧ . . .∧vi∗)
′) is the linear map which sends the basis element vα1 ∧ . . .∧vα∗+1 ∈

Λ∗+1
Q V to:

n+r−∗∑

k=1

(−1)k−1(ω′
1(α1, . . . , α∗+1; k)avjk

− ω′
2(α1, . . . , α∗+1; k)vjk

a), (9)

with ω′
1 = (−1)∗+1ω1, and ω′

2 = (−1)∗+1pjk
ω2; so we are done. ⊓⊔

The results of this section can now be gathered together in the following

Proposition 2.3.5. Let U = SQV be a quantum affine space. Then there is a duality between
the Hochschild cohomology of U and its Hochschild homology with values in the bimodule σU :

H∗(U, σU) ≡ Hn−∗(U,U).

This result can be seen as a corollary of Van den Bergh’s Theorem [25]. We present the
proof above in order to show how the duality occurs at the level of the complexes themselves.

7



Remark 2.3.6. Let Λ be an m × m multiplicatively skew-symmetric matrix. Define Q =(
Λ tΛ
tΛ Λ

)
by block, an n × n multiplicatively skew-symmetric matrix with n = 2m. Then

obviously the canonical automorphism σ associated to Q is the identity. The duality result above
implies in particular that for such a matrix Q the Hochschild homology in degree n is nonzero,
so that there is no dimension drop of the Hochschild homology with value in the algebra itself.
This may explain a result by Connes and Dubois-Violette in the setting of smooth functions over
a quantum real affine space R2m parametrised by such a matrix, see [8, Theorem 8].

3 Twisted Poincaré duality for the semiclassical limit of a quan-
tum affine space

Now, we consider the uniparametrised case, by which we mean that the entries qij of the
matrix Q are all powers of a generic q. Denote qij = qaij , with aij ∈ Z. As q is generic, we have
aii = aij + aji = 0 for all i, j. The semiclassical limit, [5, Section III.5.4], of the quantum affine
space SQV is the commutative algebra R = C[X1, . . . ,Xn] endowed with the Poisson bracket
defined by {Xi,Xj} = aijXiXj .

The canonical Poisson homology and cohomology are defined respectively thanks to the
Kähler differentials and the multiderivations of R. We will denote the homology and cohomology
spaces by HP∗(R) and HP ∗(R). The complexes computing these homology groups are explicitly
written down in the case where n = 2 for instance in [22] (see also [20]), where the Poisson
cohomology is computed for the affine plane for any Poisson structure defined by a homogenous
polynomial.

In this section we proceed as follows. First, we consider the semiclassical limit M of the
twisted bimodule structure of the quantum space σ(SQV ). It turns out that M is a Poisson
dualising R-module, in the sense that there is a twisted Poincaré duality between the Poisson
cohomology of R and its Poisson homology with values in M :

HPk(R,M) ≃ HPn−k(R). (10)

Next, we compute the Poisson homology of R with values in M . As a consequence, we compute
the Poisson cohomology of R thanks to the above isomorphism (10), and so retrieve a result of
Monnier, [17].

3.1 Poisson algebra and Poisson module.

A commutative algebra R endowed with a Lie bracket {., .} such that, for all r ∈ R, the
map {r, .} : R → R is a C-linear derivation of R is called a Poisson algebra. From [16, 18], a
Poisson module over the Poisson algebra R is a C-vector space M endowed with two bilinear
maps . and {., .}M such that

1. (M, .) is a (right) module over the commutative algebra R,

2. (M, {., .}M ) is a (right) module over the Lie algebra (R, {., .}),

3. x.{a, b} = {x, a}M .b− {x.b, a}M for all a, b ∈ R and x ∈M .

4. {x, ab}M = {x, a}M .b+ {x, b}M .a for all a, b ∈ R and x ∈M .

8



Starting from SQV , we will now exhibit the Poisson structure on the polynomial algebra
R = C[X1, . . . ,Xn] that arises from the semiclassical limit process, see [5, Section III.5.4]. Let
A = (aij) ∈ Mn(Z) be antisymmetric and set qij := qaij , where q is generic. The semiclassical
limit, [5, Section III.5.4] of the quantum affine space SQV is the commutative algebra R =
C[X1, . . . ,Xn] endowed with the Poisson bracket defined on the generators of R as follows:

{Xi,Xj} := ([vi, vj ]/(q − 1))|q=1 = ((1 − qaji)/(q − 1))|q=1XiXj = aijXiXj.

Our aim in this section is to construct a Poisson module over the Poisson algebra R (with
the Poisson structure as above) that will restore a duality between Poisson homology and Poisson
cohomology. As the dualising bimodule is σ(SQV ) in the quantum setting, we will now consider
the semiclassical limit of this bimodule. In Section 3.4, we will show that the Poisson module
resulting from this procedure is actually a “dualising Poisson module”.

We denote by M the semiclassical limit of the twisted bimodule structure of the quantum
space σ(SQV ). As a vector space, M = C[X1, . . . ,Xn] = R, and M is endowed with the following
two actions of R:

• the external product “.” is just the usual product of R.

• the external bracket {., .}M is defined by

{m,Xi}M :=
mvi − σ(vi)m

q − 1

∣∣∣∣
q=1

for all m ∈M and i ∈ {1, . . . , n}. In particular, when m = Xα1
1 . . . Xαn

n is a monomial

{Xα1
1 . . . Xαn

n ,Xi}M =
vαvi − σ(vi)v

α

q − 1

∣∣∣∣
q=1

=
(
∏

j>i q
αj

ji −
∏

j qji
∏

j<i q
αj

ij )vα+ǫi

q − 1

∣∣∣∣∣
q=1

.

Recall that qij = qaij ; so

(
∏

j>i

q
αj

ji −
∏

j

qji
∏

j<i

q
αj

ij ) =
∏

j>i

q
αj

ji (1 − q
P

j aij(αj−1)),

and finally {Xα1
1 . . . Xαn

n ,Xi}M = −
∑

j aij(αj − 1)Xα+ǫi .

One can easily check that M is a Poisson module over R. Further, observe that

{m,Xi}M = −{Xi,m} +

(
n∑

l=1

ail

)
Xim, (11)

for all m ∈M .

3.2 Poisson homology

Let M be a Poisson module over a Poisson algebra R. Then one defines a chain complex
on the R-module CPoiss

∗ (R,M) = ⊕k∈NC
Poiss
k (R,M), where CPoiss

k (R,M) := M ⊗R Ωk(R) and
Ωk(R) denotes the so-called Kähler differential k-forms, as follows, [16]. The boundary operator
∂k : CPoiss

k (R,M) → CPoiss
k−1 (R,M) is defined by

∂k(m⊗ da1 ∧ · · · ∧ dak) =
k∑

i=1
(−1)i+1{m,ai}M ⊗ da1 ∧ · · · ∧ d̂ai ∧ · · · ∧ dak

+
∑

1≤i<j≤k

(−1)i+jm⊗ d{ai, aj} ∧ da1 ∧ · · · ∧ d̂ai ∧ · · · ∧ d̂aj ∧ · · · ∧ dak,

9



where we have removed the expressions under the hats in the previous sums and d denotes the
exterior differential.

One can easily check that ∂k is well-defined and that ∂k−1 ◦ ∂k = 0. The homology of
this complex is denoted by HP∗(R,M). This homology is called the canonical homology in [16]
in reference to the canonical homology defined by Brylinski, [7]. It is also called the Poisson
homology of the Poisson algebra R with values in the Poisson module M .

In the particular case that we will study, R will be a (commutative) polynomial algebra
over C, namely R = C[X1, . . . ,Xn]. In this case, it is clear that Ω∗(R) is the R-module generated
by the wedge products of the 1-differential forms dX1, . . . , dXn.

3.3 Poisson cohomology

We denote by χk(R) the R-module of all skew-symmetric k-linear derivations of R, that
is, the set of all skew-symmetric C-linear maps Rk → R that are derivations in each of their
arguments. Then we set χ∗(R) := ⊕k∈Nχ

k(R), the R-module of so-called skew-symmetric multi-
derivations of R. One can define a cochain complex structure on this R-module as follows. The
Poisson coboundary operator δk : χk(R) → χk+1(R) is defined by

δk(P )(f0, . . . , fk) :=
k∑

i=0

(−1)i
{
fi, P (f0, . . . , f̂i, . . . , fk)

}

+
∑

0≤i<j≤k

(−1)i+jP
(
{fi, fj}, f0, . . . , f̂i, . . . , f̂j , . . . , fk

)

for all P ∈ χk(R). It is easy to check that δk(P ) belongs indeed to χk+1(R) and that δk+1◦δk = 0.
The cohomology of this complex is called the Poisson cohomology of R; it is denoted by HP ∗(R).

3.4 A Poincaré duality result.

For the rest of this paper, we assume that R = C[X1, . . . ,Xn] is endowed with the Poisson
bracket defined by

{Xi,Xj} = aijXiXj ,

where A = (aij) ∈ Mn(Z) is skew-symmetric.
Recall that, thanks to the canonical volume form dX1 ∧ . . . ∧ dXn, the set χk(R) of all

skew-symmetric k-linear derivations of R is isomorphic as a vector space to Ωn−k(R) via an
isomorphism † defined as follows. We denote by Sn the set of all n-permutations. Further, for
all σ ∈ Sn, we denote by ε(σ) its sign and we set σi := σ(i). For all P ∈ χk(R) let †(P ) be the
unique element of Ωn−k(R) defined by

†(P ) =
∑

σ∈Sk,n−k

ǫ(σ)P (Xσ1 , . . . ,Xσk
)dXσk+1

∧ · · · ∧ dXσn ,

where Sk,n−k denotes the set of those permutations σ ∈ Sn such that σ1 < · · · < σk and
σk+1 < · · · < σn.

From now on, M denotes the Poisson R-module defined in Section 3.1. Recall that M =
C[X1, . . . ,Xn] = R as a vector space. Hence, we deduce from the above result that χk(R) is
isomorphic as a vector space to M⊗R Ωn−k(R) via an isomorphism still denoted by † and defined
by:

10



†(P ) =
∑

σ∈Sk,n−k

ǫ(σ)P (Xσ1 , . . . ,Xσk
)dXσk+1

∧ · · · ∧ dXσn

for all P ∈ χk(R). (Observe that we have omitted ⊗ in order to simplify the notation.)
So we have a diagram as follows.

χk(R)

δk

��

† // M ⊗R Ωn−k(R)

∂n−k

��
χk+1(R)

† // M ⊗R Ωn−k−1(R)

In order to prove that there is a (twisted) Poincaré duality between the Poisson homology
of R with values in M and the cohomology of R, we will prove that this diagram is almost
commutative.

Proposition 3.4.1. For all P ∈ χk(R), the following equality holds:

(† ◦ δ)(P ) = (−1)k+1(∂ ◦ †)(P ).

Proof. First, it follows from the definition of δ and † that († ◦ δ)(P ) = U + V , where

U :=
∑

σ∈Sk+1,n−k−1

1≤i≤k+1

ε(σ)(−1)i+1
{
Xσi

, P [Xσ1 , . . . , X̂σi
, . . . ,Xσk+1

]
}
dXσk+2

∧ · · · ∧ dXσn

and

V =
∑

σ∈Sk+1,n−k−1

1≤i<j≤k+1

ε(σ)(−1)i+jP [{Xσi
,Xσj

},Xσ1 , . . . , X̂σi
, . . . , X̂σj

, . . . ,Xσk+1
]dXσk+2

∧· · ·∧dXσn .

We proceed in three steps.

• Step 1: we rewrite U .

For r distinct integers i1, . . . , ir let (i1 . . . ir) be the cyclic permutation sending i1 to i2, . . .,
ir−1 to ir and ir to i1. Let Sk,1,n−k−1 be the set of those permutation τ ∈ Sn such that τ1 < · · · <
τk and τk+2 < · · · < τn. Then, the map (σ, i) ∈ Sk+1,n−k−1 × {1, . . . , k + 1} 7→ τ ∈ Sk,1,n−k−1

given by
τ = σ ◦ (i i+ 1 . . . k + 1)

is well-defined and turns out to be a bijection. Indeed, it is easy to see that these two sets
have each cardinality

(
n

k

)
× (n− k) and that this map is injective. Observe further that ε(τ) =

(−1)k+1−iε(σ). Thus, by means of the change of variables induced by this bijection, we get:

U = (−1)k
∑

τ∈Sk,1,n−k−1

ε(τ)
{
Xτk+1

, P [Xτ1 , . . . ,Xτk
]
}
dXτk+2

∧ · · · ∧ dXτn . (12)
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• Step 2: we rewrite V .

As {Xσi
,Xσj

} = aσi,σj
Xσi

Xσj
and P is a skew-symmetric multiderivation, one can rewrite

V as follows.

V =
∑

σ∈Sk+1,n−k−1

1≤i<j≤k+1

ε(σ)(−1)i+jaσi,σj
(−1)jXσi

P [Xσ1 , . . . , X̂σi
, . . . ,Xσk+1

]dXσk+2
∧ · · · ∧ dXσn

+
∑

σ∈Sk+1,n−k−1

1≤i<j≤k+1

ε(σ)(−1)i+jaσi,σj
(−1)i+1Xσj

P [Xσ1 , . . . , X̂σj
, . . . ,Xσk+1

]dXσk+2
∧ · · · ∧ dXσn

=
∑

σ∈Sk+1,n−k−1

ε(σ)
∑

1≤i<j≤k+1

(−1)iaσi,σj
Xσi

P [Xσ1 , . . . , X̂σi
, . . . ,Xσk+1

]dXσk+2
∧ · · · ∧ dXσn

+
∑

σ∈Sk+1,n−k−1

ε(σ)
∑

1≤i<j≤k+1

(−1)j+1aσi,σj
Xσj

P [Xσ1 , . . . , X̂σj
, . . . ,Xσk+1

]dXσk+2
∧ · · · ∧ dXσn

=
∑

σ∈Sk+1,n−k−1

ε(σ)

k∑

i=1

(−1)i




k+1∑

j=i+1

aσi,σj


Xσi

P [Xσ1 , . . . , X̂σi
, . . . ,Xσk+1

]dXσk+2
∧ · · · ∧ dXσn

+
∑

σ∈Sk+1,n−k−1

ε(σ)
k+1∑

j=2

(−1)j

(
j−1∑

i=1

aσj ,σi

)
Xσj

P [Xσ1 , . . . , X̂σj
, . . . ,Xσk+1

]dXσk+2
∧ · · · ∧ dXσn

=
∑

σ∈Sk+1,n−k−1

ε(σ)

k+1∑

i=1

(−1)i




k+1∑

j=1

aσi,σj


Xσi

P [Xσ1 , . . . , X̂σi
, . . . ,Xσk+1

]dXσk+2
∧ · · · ∧ dXσn

Hence, using the same change of variables as in the previous step, we get:

V = (−1)k+1
∑

τ∈Sk,1,n−k−1

ε(τ)

(
k∑

l=1

aτk+1,τl

)
Xτk+1

P [Xτ1 , . . . ,Xτk
]dXτk+2

∧ · · · ∧ dXτn (13)

• Step 3: we rewrite (∂ ◦ †)(P ) and conclude.

First, it follows from the definition of ∂ and † that

(∂ ◦ †)(P ) =
∑

σ∈Sk,n−k

ε(σ)

[
n−k∑
i=1

(−1)i+1
{
P [Xσ1 , . . . ,Xσk

],Xσi+k

}
M
dXσk+1

∧ · · · ∧ d̂Xσk+i
∧ · · · ∧ dXσn

+
∑

1≤i<j≤n−k

(−1)i+jP [Xσ1 , . . . ,Xσk
]d
{
Xσk+i

,Xσk+j

}
∧ dXσk+1

∧ · · · ∧ d̂Xσk+i
∧ · · · ∧ d̂Xσk+j

· · · ∧ dXσn

]
.
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Next, using (11) and the fact that
{
Xσk+i

,Xσk+j

}
= aσk+iσk+j

Xσk+i
Xσk+j

, we obtain:

(∂ ◦ †)(P ) =
∑

σ∈Sk,n−k

ε(σ)

n−k∑

i=1

(−1)i
{
Xσi+k

, P [Xσ1 , . . . ,Xσk
]
}
dXσk+1

∧ · · · ∧ d̂Xσk+i
∧ · · · ∧ dXσn

+
∑

σ∈Sk,n−k

ε(σ)

n−k∑

i=1

(−1)i+1

(
n∑

l=1

aσi+kl

)
Xσi+k

P [Xσ1 , . . . ,Xσk
]dXσk+1

∧ · · · ∧ d̂Xσk+i
∧ · · · ∧ dXσn

+
∑

σ∈Sk,n−k

ε(σ)
∑

1≤i<j≤n−k

(−1)i+jaσk+iσk+j
(−1)j−2Xσk+i

P [Xσ1 , . . . ,Xσk
]dXσk+1

∧ · · · ∧ d̂Xσk+i
∧ · · · ∧ dXσn

+
∑

σ∈Sk,n−k

ε(σ)
∑

1≤i<j≤n−k

(−1)i+jaσk+iσk+j
(−1)i−1Xσk+j

P [Xσ1 , . . . ,Xσk
]dXσk+1

∧ · · · ∧ d̂Xσk+j
∧ · · · ∧ dXσn

Then, rewriting the last three sums in the right-hand side leads to

(∂ ◦ †)(P ) =
∑

σ∈Sk,n−k

ε(σ)

n−k∑

i=1

(−1)i
{
Xσi+k

, P [Xσ1 , . . . ,Xσk
]
}
dXσk+1

∧ · · · ∧ d̂Xσk+i
∧ · · · ∧ dXσn

+
∑

σ∈Sk,n−k

ε(σ)
n−k∑

i=1

(−1)i+1

(
k∑

l=1

aσi+kσl

)
Xσi+k

P [Xσ1 , . . . ,Xσk
]dXσk+1

∧ · · · ∧ d̂Xσk+i
∧ · · · ∧ dXσn

Finally, observe that the map (σ, i) ∈ Sk,n−k × {1, . . . , n− k} 7→ τ ∈ Sk,1,n−k−1 given by

τ = σ ◦ (k + i . . . k + 1)

is well-defined and is a bijection. Observe further that ε(τ) = (−1)i−1ε(σ). Hence, by means of
the change of variable induced by this bijection, we get

(∂ ◦ †)(P ) = −
∑

τ∈Sk,1,n−k−1

ε(τ)
{
Xτk+1

, P [Xτ1 , . . . ,Xτk
]
}
dXτk+2

∧ · · · ∧ dXτn

+
∑

τ∈Sk,1,n−k−1

ε(τ)

(
k∑

l=1

aτk+1τl

)
Xτk+1

P [Xτ1 , . . . ,Xτk
]dXτk+2

∧ · · · ∧ dXτn

So, we deduce from (12) and (13) that

(∂ ◦ †)(P ) = (−1)k+1(U + V ) = (−1)k+1(† ◦ δπ)(P ),

as desired. ⊓⊔

It follows from Proposition 3.4.1 that the diagram

χk(R)
† //

δk

��

	

M ⊗R Ωn−k(R)

(−1)k+1∂n−k

��
χk+1(R)

† // M ⊗R Ωn−k−1(R)
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is commutative. Naturally, this leads to a (twisted) Poincaré duality between the Poisson homol-
ogy of R with values in M and the Poisson cohomology of R. More precisely, we can now state
the main result of this paper.

Theorem 3.4.2. For all k ∈ N, we have:

HPk(R,M) ≃ HPn−k(R).

3.5 Application to Poisson cohomology.

In view of Theorem 3.4.2, in order to compute the Poisson cohomology of R, it is enough
to compute HPk(R,M). The final part of this paper is dedicated to this computation.

First, if α = (α1, . . . , αn) ∈ Nn, then we set Xα := Xα1
1 . . . Xαn

n . Similary, if β =

(β1, . . . , βn) ∈ Nn, then we set dXβ := dXβ1
1 ∧ · · · ∧ dXβn

n . Then, by following the proof of
[26, Theorem 6.1], we obtain the following result.

Proposition 3.5.1.

HPk(R,M) =
⊕

|β|=k
α+β∈C

CXαdXβ

where

C := {γ ∈ N
n | γi = 0 or

n∑

j=1

aij(γj − 1) = 0}.

Proof. Easy computations show that

∂(XαdXβ) =

n∑

i=1

δ1,βi
Ω(α, β, i)Xα+εidXβ−εi ,

where δ1,βi
is the Kronecker symbol, and

Ω(α, β, i) := (−1)
Pi−1

j=1 βj

n∑

j=1

aij(αj + βj − 1).

Observe that Ω(α, β, i) =
ΩQ(α,β,i)

1−q
|q=1, where Q := (qaij ) and ΩQ(α, β, i) has been defined

in (3). We also set
ω(α, β, i) := (1 − q)ωQ(α, β, i) |q=1,

where ωQ has been defined in (4).
It is clear that XαdXβ is in the homology group of the complex when α+ β ∈ C. Next we

have to prove that there exists an homotopy h such that ∂π,σh+h∂π,σ(XαdXβ) = XαdXβ when
α+ β /∈ C. We set

h(XαdXβ) :=
1

|| α+ β ||

n∑

i=1

ω(α, β, i)Xα−εidXβ+εi .

In order to prove that h is a homotopy, it is enough to prove that certain equalities hold
between the Ω and the ω. As these equalities hold at the quantum level, i.e. the linear map hQ

defined by (4) is a homotopy, the desired equalities also hold at the “semiclassical level” thanks
to a specialisation. ⊓⊔

14



In the case where n = 2 and a12 = 1, we obtain the following result:

HP0(R,M) = C ⊕ CX1X2, HP1(R,M) = CX1dX2 ⊕ CX2dX1, HP2(R,M) = CdX1 ∧ dX2.

In this way, we retrieve the dimensions computed for the cohomology in [22], see also the Intro-
duction of the present work.

Finally, in view of Theorem 3.4.2 and Proposition 3.5.1, we obtain the following result
regarding the Poisson cohomology of R. This result has been previously obtained by a direct
(and so completely different) method in [17].

Corollary 3.5.2.

HP k(R) ≃
⊕

|β|=n−k
α+β∈C

CXαdXβ

where

C := {γ ∈ N
n | γi = 0 or

n∑

j=1

aij(γj − 1) = 0}.
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[14] Kassel, C.: L’homologie cyclique des algèbres enveloppantes, Invent. Math. 91, no. 2, 221–
251 (1988).

[15] Masuda, T., Nakagami, Y. and Watanabe, J.: Noncommutative differential geometry on
the quantum two sphere of Podleś. I. An algebraic viewpoint, K-Theory 5, no. 2, 151–175
(1991).

[16] Maszczyk, T.: Maximal commutative subalgebras, Poisson geometry and Hochschild homol-
ogy, preprint, posted at math.KT/0603386.

[17] Monnier, P.: Formal Poisson cohomology of quadratic Poisson structures, Lett. Math. Phys.
59, 253-267 (2002).

[18] Oh, S.-Q.: Poisson enveloping algebras, Comm. Algebra 27, no. 5, 2181–2186 (1999).

[19] Pichereau, A.: Poisson (co)homology and isolated singularities, J. Algebra 299, no. 2, 747–
777 (2006).

[20] Pichereau, A.: Cohomologie et homologie de Poisson : dualité ?, Oral
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