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Summary: This paper describes how to perform classification of complex, high-dimensional func-

tional data using the functional mixed model (FMM) framework. The FMM relates a functional

response to a set of predictors through functional fixed and random effects, which allows it to

account for various factors and between-function correlations. Classification is performed through

training the model treating class as one of the fixed effects, and then predicting on the test data

using posterior predictive probabilities of class. Through a Bayesian scheme, we are able to adjust

for factors affecting both the functions and the class designations. While the method we present

can be applied to any FMM-based method, we provide details for two specific Bayesian approaches:

the Gaussian, wavelet-based functional mixed model (G-WFMM) and the robust, wavelet-based

functional mixed model (R-WFMM). Both methods perform modeling in the wavelet space, which

yields parsimonious representations for the functions, and can naturally adapt to local features

and complex nonstationarities in the functions. The R-WFMM allows potentially heavier tails for

features of the functions indexed by particular wavelet coefficients, leading to a down weighting of

outliers that makes the method robust to outlying functions or regions of functions. The models are

applied to a pancreatic cancer mass spectroscopy data set and compared with some other recently

developed functional classification methods.
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1. Introduction

In recent years, an increasing number of application areas yield functional data, which consist

of curves observed on some fine grid. The scope of functional data includes quantitative image

data: images whose pixel intensities represent some quantitative measure that can be viewed

as functions on a higher dimensional domain. While functional data can have many different

characteristics, they are increasingly high-dimensional, with automated measurements taken

on finer and finer grids, and also more complex, with many applications yielding functions

that are highly structured and have many local features.

One important problem of interest in functional data analysis is classification, whereby one

wishes to assign an individual to a predefined discrete class based on the observed functional

or image data. Existing methods for functional data classification can be organized into the

following categories: (1) Density-based. The functional data are first projected to some

finite dimensional feature space (through functional principal component analysis (FPCA),

splines, etc.) on which the densities of each class are estimated, either parametrically (e.g.,

linear discriminant analysis) or non-parametrically (e.g., kernel density estimation (KDE) or

using Bayesian nonparametrics). Classification of new observations is performed based on the

estimated densities (see Hall, Poskitt and Presnell (2001), James (2001), Ferraty and Vieu

(2003), etc.). Alternatively, the joint distribution of class and function can be estimated

and used to perform classification (Bigelow and Dunson (2009)). (2) Regression-based.

A regression model is constructed linking categorical responses with functional predictors,

frequently through generalized linear models. The model parameters are estimated and used

for classification (e.g., James (2002), Müller and Stadtmüller (2005), Müller (2005), Leng

and Müller (2005), Zhu, Vannucci and Cox (2010)). (3) Algorithmic-based. Dimension

reduction is performed to transform to a multivariate problem, and then one of a variety of
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nonparametric classification tools such as k-nearest neighbor or support vector machines are

applied for classification (see Ramsay (2000), Li and Yu (2008)) .

While there are a large number of methods for functional data classification in the current

literature, there are still important aspects that are not simultaneously handled by existing

methods, including adjustment for covariates affecting either the function or the class,

classification of subjects based on multiple observed functions, robustness to outliers in

classification, and the ability to handle complex, extremely high dimensional functional and

image data. Most density-based approaches in current literature assume i.i.d. functions, and

so do not naturally provide a way to classify subjects based on multiple observed functions

that are expected to be correlated; furthermore, the approaches do not adjust for factors af-

fecting the functions nor for other predictors of class. Similarly, algorithmic-based approaches

tend not to account for other factors influencing the class or the observed functions when

performing classification and cannot easily handle multiple correlated functional predictors.

Regression-based methods can naturally accommodate other predictors of class and can be

robustified through introducing heavier-tailed link functions or error distributions, but they

typically do not adjust for factors affecting the functions and typically cannot handle multiple

correlated functional predictors. Furthermore, many current methods do not scale up to the

setting of complex, high-dimensional data, either because their functional representations

are not flexible enough to capture complex features of the functions or because they cannot

be feasibly applied to extremely high-dimensional functions.

In this paper, we introduce a novel method for functional data classification using the

functional mixed model (FMM) framework which, as we will demonstrate, is able to account

for all of these factors simultaneously. The FMM relates a functional response to a set of

predictors through functional fixed and random effects, and is typically used to estimate

and perform inference on fixed effect functions characterizing, for example, the systematic
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difference in the mean functions between groups. Here, we will show how to perform classi-

fication in this framework by first fitting an FMM to the training data with class as one of

the fixed effect predictors and then performing classification of the test data using posterior

predictive probabilities of class membership. This approach has numerous advantages, and if

the particular FMM used is flexible enough to capture the relevant features in the observed

functions, it has the potential to outperform other standard approaches.

The inclusion of general fixed and random effect covariates allows one to adjust for the

effects of confounding factors on the function, which can be of high importance in many

applications. For example, in mass spectrometry proteomics, it has been shown that observed

functions collected in different time blocks can differ systematically. By modeling the block

effects, the FMM can automatically adjust for these factors when building the classification

model. Similarly, effects of factors such as gender, age, and hospital on the function can be

taken into account. The inclusion of fixed and random effects makes it possible to model

multiple functions from the same individual, and thus take into account the within-subject

correlations among the functions when performing classification. In our proposed method,

we not only model the covariates that affect the functional data, but also are able to

hierarchically model the covariates that directly affect the class designation. A generalization

of this approach can be used to integrate information across multiple predictors, both

functional and scalar, in performing classification.

In contrast with most regression-based classification methods, the FMM treats functional

observations as responses and class labels as predictors, and therefore can be considered a

density-based method. Efron (1975) showed that in simple multivariate settings, classification

based on normal likelihood (referred to as the normal discriminant procedure) is asymptoti-

cally more efficient than that based on regression (generalized linear models), but generally

is not as robust since it may be more susceptible or sensitive to model misspecification. By
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analogy, one might expect that, relative to functional regression approaches, density-based

classification approaches modeling the function as response may improve efficiency in the

functional classification setting as long as the model is flexible enough to capture the true

features of the functional data. Thus, it is interesting to consider classification based on

FMM-based methods with flexible representations for the functions.

While the proposed classification approach can be used with any FMM-based method,

we will provide details using two specific FMM approaches: the Gaussian, wavelet-based

functional mixed model (G-WFMM, Morris and Carroll (2006)) and the robust, wavelet-

based functional mixed model (R-WFMM, Zhu, Brown and Morris (2011)). Both demon-

strate outstanding flexibility and computational feasibility for modeling complex, high-

dimensional functional data. These methods perform modeling in the wavelet space, which

yields parsimonious representations for the functions, can naturally adapt to local features in

the functions, and accommodates various nonstationarities in the within-function covariance

surfaces, including different variances and varying smoothness at different parts of the

functions or images. Further, both of these methods are computationally convenient, having

been applied to extremely large functional and image data sets using available automated

code in which the user simply provides the functional responses and covariate design matrices

if they are satisfied with the supplied automated choices of wavelet basis and vague proper

priors. The R-WFMM has the additional advantage of modeling with a more flexible class

of likelihoods, allowing potentially heavier tails for features of the functions indexed by

particular wavelet coefficients, as determined by the data, and leading to a down weighting

of outliers that makes the method robust to outlying functions or regions of functions. Both

of these approaches naturally extend to functions with higher dimensional domains (e.g.,

quantitative image data (see Morris, et al. (2011)), so the methods we describe here can also

be applied to classify individuals based on image data.
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The outline for the rest of the paper is as follows: Section 2 introduces the general FMM-

based classification approach. Implementation details are discussed in Section 3. Two specific

methods, the Gaussian WFMM and the Robust WFMM, are presented in Section 3.1 and

Section 3.2, respectively. The method is applied to a pancreatic cancer mass spectrometry

application and compared with some alternative methods in Section 4, with conclusions

and a discussion following in Section 5. The online supplementary materials contain some

derivations, further computational details, and further results.

2. FMM-based Classification

2.1 Classification using FMM Framework

Let Yi(t), i = 1, . . . , n be functional observations on a compact set T , and ci ∈ {1, ..., q}

be the corresponding class labels. A functional data classification model aims to find a

“rule” to assign new observation Y 0(t) to one of the q classes. To adjust for commonly

encountered issues in many applications, we include the possibility of two types of covariates:

xi = (xi1, . . . , xip)
T are covariates corresponding to factors that influence the functional

observations, and zi = (zi1, . . . , zim)
T are covariates indicating a possible clustering structure

within the data induced by the experimental design. We treat xi as covariates for fixed

effects and zi as covariates for random effects. Covariates for fixed effects are usually profile

variables such as the age of patients, the types of tissue, etc. Random effect covariates are

usually variables indicating subgroup designation, such as the family the observation belongs

to, the hospital at which the measurement was made, block structure from the experimental

design, or subject indicators when there are multiple functions per subject. We model the

relationship between the functional observations, their class labels and all other covariates

through the following functional mixed model:

Yi(t) = vT
i G(t) + xT

i B(t) + zTi U(t) + Ei(t), (1)

where vi is a vector with the cthi component 1 and 0 elsewhere, andG(t) = (G1(t), . . . , Gq(t))
T

denotes the functions of the group mean for the q classes. Here B(t) = (B1(t), . . . , Bp(t))
T
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and U(t) = (U1(t), . . . , Um(t))
T are the coefficient functions of fixed effects and random

effects, respectively. Ei(t) is the residual error function. The random effect coefficients and

the error terms are assumed to be mean zero with covariance functions Cov{Uj(t)} = ΣU(s, t)

and Cov{Ei(t)} = ΣE(s, t), independently across j, i, respectively, and withU (t) andE(t) =

(E1(t), . . . , En(t))
T independent of each other.

DenoteY(t) = (Y1(t), . . . , Yn(t))
T ,V = (v1, . . . ,vn)

T ,X = (x1, . . . ,xn)
T ,Z = (z1, . . . , zn)

T .

In a typical classification problem, the data are split into a training set and a test set. In

the training set, the class labels (therefore the covariates V) are known, while in the test

set V need to be predicted. In this paper, we aim to estimate the regression coefficients and

covariance parameters, denoted as Θ = {G(t),B(t),U (t),ΣU(s, t),ΣE(s, t)} based on the

training set, and predict the class labels c0 (or v0) for future functional observation Y 0(t)

(test data). Note that because V are known in the training data, the coefficients G(t) and

B(t) are both treated as fixed effects.

The approach for fitting model (1) depends on the specifics of the chosen FMM-based

method, including how the random functions are represented. For now, assume we have

some training process yielding estimates Θ, and that the prediction for new observations

can be summarized in two cases:

(1) The random effect for the new observation is available in the test data. This

happens when the new observation is drawn from a population from which all or part of

the training data are drawn. In this case, we can compute the posterior odds of c0 = j

versus c0 = 1 as

Odds(j) =
f(Y 0 | c0 = j,x0, z0,Y,V,X,Z)

f(Y 0 | c0 = 1,x0, z0,Y,V,X,Z)
· f(c

0 = j)

f(c0 = 1)
(2)

for j = 2, . . . , q. Here f(c0 = j) and f(c0 = 1) are the pre-specified prior probabilities for

the class designation, f(·| c0,x0, z0,Y,V,X,Z) represents of the posterior predictive

density of the new function Y 0, and {Y,V,X,Z} represent the training data. The
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posterior predictive density is obtained by∫
f(Y 0 | c0,x0, z0,Θ) f(Θ|Y,V,X,Z) dΘ, (3)

with f(Θ|Y,V,X,Z) being the posterior density of the parameters. Detailed computa-

tion of the density of a random process depends on how the functional data is modeled

and how the model is estimated, which will be discussed in detail in Section 3.

The posterior predictive density estimated by (3), based on a Bayesian approach, inte-

grates over the posterior uncertainty of the parameters. If a frequentist approach is used,

then a point estimate of Θ can be obtained (denoted as Θ̂), and the posterior predictive

density in (2) can be replaced by the conditional predictive density f(Y 0 | c0,x0, z0, Θ̂).

Of course, an advantage of using the posterior predictive density is that it takes into

account the variability of estimated parameters.

(2) The random effect for the new observation is not available in the test data.

For instance, the new observation corresponds to a patient from a new hospital. In this

case, we simply replace the first factor of the integrand in (3) with f(Y 0 | c0,x0, Θ̃),

with Θ̃ being a subset of Θ with U(t) omitted. In other words, with z0 unknown, we

work with the marginal likelihood of Y 0 with the random effects integrated out.

With the odds computed using equation (2), the posterior predictive probabilities for

class designations can be computed straightforwardly using

Pr(c0 = j | Y 0,x0, z0,Y,V,X,Z) =


Odds(j)

1+
∑

j Odds(j)
for j = 2, . . . , q.

1

1+
∑

j Odds(j)
for j = 1.

2.2 Prediction on Correlated Functions

The previous section deals with prediction of class based on a single function. It applies

when all new observations in the test set are independent (i.e., none share the same random

effect). In other situations, multiple new observations may share the same random effect, for

example, subjects from the same subgroup or settings with multiple functions per subject.

This induces correlation among the test functions that one may want to take into account
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when performing prediction. This can be done using the joint likelihood of the correlated

functions when computing the posterior predictive odds ratio. Here we discuss two cases: one

in which all individual units within the block share the same class label and one in which

they do not.

(a) The correlated observations all share the same class label. This is this case,

for example, in the setting in which we want to classify individuals based on replicate

functions. We compute the joint likelihood of the multiple new observations, and the odds

ratio can be computed as described above. In particular, assume there are L correlated

observations from the test set, denoted as {Y 0,l,x0,l, z0,l}, l = 1, . . . , L. Let c0 be the

common class label. The posterior odds can be computed by

Odds(j) =
f({Y 0,l}l | c0 ≡ j, {x0,l, z0,l}l,Y,V,X,Z)
f({Y 0,l}l | c0 ≡ 1, {x0,l, z0,l}l,Y,V,X,Z)

· f(c
0 ≡ j)

f(c0 ≡ 1)
.

When z0,l are available in the test data, the joint likelihood of {Y 0,l}l is conditionally

independent. When z0,l are not available, we need to compute the joint likelihood of the

correlated observations by integrating out the random effects.

(b) The correlated observations do not necessarily share the same class label.

In this case, the joint posterior predictive density will be conditional on a vector c0 =

(c0,l, . . . , c0,L)T of class designation. There will be qL possible choices of c0, and therefore

qL − 1 posterior odds to compute.

2.3 Incorporating Direct Covariates in FMM-based Classification

In some applied settings, one may wish to account for covariates that directly affect the

class designation but not necessarily the functional predictor itself. For example, in clinical

applications one may wish to condition on known scalar clinical factors in addition to a

functional response from a genomic or proteomic assay. Here we describe how to account for

these when classifying using the FMM framework.

Suppose x̃i are factors that directly affect class designation ci through parameter vectors η,
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and thatΘ are the parameters in the FMM. Assuming that f(Y(t), ci|Θ) ∝ f(Y(t)|ci,X,Z,Θ)

f(ci|x̃i,η), we can handle the direct covariates x̃i by first fitting a model for f(ci|x̃i,η) (e.g.,

using a generalized linear model) and then substituting the f(c0 = j|x̃0) = Pr(c0 = j | x̃0, η̂)

for f(c0 = j) in equation (2). If the modelM is fitted using a Bayesian approach, its posterior

predictive distribution can be easily computed by

f(c0 = j | x̃0, {ci, x̃i}i) =
∫
f(c0 = j | x̃0,η)f(η|{ci, x̃i}i)dη. (4)

Then the combined posterior predictive probability will become

f(c0 = j | Y 0,x0, x̃0, z0,Y,X,Z, {ci, x̃i}i)

∝ f(Y 0 | c0 = j,x0, z0,Y(t),V,X,Z) · f(c0 = j | x̃0, {ci, x̃i}i).

Note that, using this approach, we can combine information across a series of different

functional or scalar predictors to perform classification as long as we can write a series of

conditionally independent models for each.

3. Specific Implementation Details for G-WFMM/R-WFMM

Note that model (1) is not completely specified since no distributional assumptions are

made for U (t) and E(t), no structure has been assumed on the functional quantities, and

no assumption has been made on the covariances ΣU(t, s) and ΣE(t, s), which in high-

dimensional settings have too many parameters to estimate in an unstructured fashion.

Different methods for specifying these details and fitting the FMM have been considered. Guo

(2002) made Gaussian assumptions, represented the functions through smoothing splines and

made simple, stationary covariance assumptions, and fit the model using Kalman filters.

Morris and Carroll (2006) made Gaussian assumptions, represented the functions using

wavelets, and used heteroscedastic diagonal covariances in the wavelet space to accommodate

nonstationary covariance features, and fit the model using a fully Bayesian approach with

shrinkage priors to induce adaptive smoothing of the fixed effect functions. Zhu, Brown and

Morris (2011) also used Bayesian modeling and wavelet-space representations, but assumed
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double exponential distributions in the wavelet space, which corresponds to mixtures of

double exponentials in the data space, leading to robust estimates of fixed and random

effect functions that naturally down weight outliers. Aston, Chiou and Evans (2010) made

Gaussian assumptions, represented the data using a principal component (PC) decomposition

of the marginal covariance function, used heteroscedastic diagonal covariances in the PC score

space, and fit the model using restricted maximum likelihood. While the classification method

described in this paper can be used with any FMM-based method, in this section we provide

implementation details based on G-WFMM (Morris and Carroll 2006) and R-WFMM (Zhu,

Brown, and Morris 2011).

3.1 Classification using Gaussian Wavelet-based FMM (G-WFMM)

Based on model (1), let the components of Y (t) take values on a common interval T . The G-

WFMM fits the model based on Gaussian assumptions for the random effects and errors. In

particular, U(t) is assumed to be a mean zero multivariate Gaussian process with an m×m

between-function covariance matrix P and a within-function covariance surface Q(t1, t2) ∈

T × T , denoted as U(t) ∼ N (P, Q). This implies that Cov{Ul(t1), Uk(t2)} = PlkQ(t1, t2).

The residual error is assumed to be E(t) ∼ N (R, S) independent of U (t). A useful special

case of this model is to let P = R = I (i.e., the components of U(t), respectively E(t), are

independent). Note that, if desired, the covariance parameters P, R, Q, and S can all be

allowed to vary by class c, for which we will discuss details in Section 3.3.

If the functional responses Yi(t) are all measured on the same equally-spaced fine grid of

length T , a discretized version of model (1) on the grid can be represented in matrix form:

Y = VG+XB+ ZU+ E, (5)

with Y,G,B,U, and E each having T columns, and each column corresponding to one

position on the grid. The random effects and error distributions become mean-zero normal

random matrices: U ∼ N (P,Q), E ∼ N (R,S), with Q and S matrices of size T × T .
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The discrete wavelet transform (DWT) can then be applied to the rows of Y,G,B,U, and

E. Whereas in practice this is generally done using a fast recursive algorithm, for didactic

purposes the DWT can be represented as a linear transformation by matrix W, which for

most choices of wavelets is either orthogonal or nearly orthogonal (i.e., D = YWT , G∗ =

GWT , B∗ = BWT , U∗ = UWT and E∗ = EWT ). This induces a wavelet-space functional

mixed model :

D = VG∗ +XB∗ + ZU∗ + E∗, (6)

where rows of D,G∗,B∗,U∗, and E∗ correspond to the DWT of the rows of Y,G,B,U, and

E, respectively, and the columns correspond to the individual wavelet coefficients, double-

indexed by their resolution levels j = 1, . . . , J and locations k = 1, . . . , Kj. The induced

distributional assumptions are U∗ ∼ N (P,Q∗) and E∗ ∼ N (R,S∗), with Q∗ = WQWT

and S∗ = WSWT . The whitening property of the wavelet transform (e.g., Vidakovic (1999),

pages 10-13) tends to induce decorrelation of the model coefficients in the wavelet domain,

so that one might make reasonable independence assumptions for the covariance matrices

of U∗ and E∗ across their columns ( i.e., Q∗ = diag({q∗jk}), S∗ = diag({s∗jk})). By indexing

these wavelet-space variance components by both j and k, this model is parsimonious yet

flexible enough to accommodate important types of nonstationarities in Q and S.

To induce adaptive regularization of Gc(t), c = 1, . . . , q and Ba(t), a = 1, . . . , p, spike-slab

priors are assumed for the fixed effects in the wavelet space G∗
cjk, the c

th component in the

(j, k)th column of G∗, and B∗
ajk, the a

th component in the (j, k)th column of B∗. That is,

G∗
cjk = γGcjkN(0, τGcj)+(1−γGcjk)I0, and γGcjk ∼ Bernoulli(πG

cj). Similarly, B∗
ajk = γBajkN(0, τBaj)+

(1−γBajk)I0, and γBajk ∼ Bernoulli(πB
aj). Here π

G
cj, π

B
aj, τ

G
cj , and τ

B
aj are regularization parameters

that can be estimated using conditional maximum likelihood in an empirical Bayes approach,

or given hyperpriors themselves (e.g., set πG
cj ∼ Beta(aG, bG), πB

aj ∼ Beta(aB, bB), τGcj ∼

IG(αG, βG), and τBaj ∼ IG(αB, βB)). A Markov chain Monte Carlo (MCMC) scheme is used
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to obtain posterior samples for the quantities in model (6), which are then projected back

to the data space using the inverse discrete wavelet transform (IDWT) to yield posterior

samples in model (1).

The following steps build the G-WFMM using training data and then use it to perform

classification for test data.

Step 1. Applying G-WFMM to the training data, obtainM posterior samples for the model

parameters, denoteΘ =
{
G∗,B∗,U∗, {qjk}, {sjk}, {γGcjk}, {γBajk}, {τGcj}, {τBaj}, {πG

cj}, {πB
aj}

}
.

Step 2. Prediction on the test set. Assume that an observation from the test set has response

Y 0 (with wavelet coefficients d0) and covariates x0, z0, and denote the unknown class

designation vector as v0. Furthermore, denote c0 as the class label for this observation.

Then v0 = ejif and only if c0 = j, where ej is the unit vector of length q with the jth

component equal to 1 and 0 elsewhere. The posterior predictive density in equation (2)

can be computed by

f(Y 0 | c0 = j,x0, z0,Y,V,X,Z)

= f(d0 | c0 = j,x0, z0,D,V,X,Z)

=

∫
f(d0 | c0 = j,x0, z0,Θ)f(Θ|D,V,X,Z)dΘ

=

∫ [∏
j,k

f(d0jk | c0 = j,x0, z0,Θjk)

]
f(Θ|D,V,X,Z)dΘ, (7)

where Θjk are the parameters in Θ indexed by (j, k), and d0jk is the (j, k)th component

of d0. The integration in equation (7) can be numerically approximated by averaging

over the joint posterior samples from the MCMC,∫ [∏
j,k

f(d0jk | c0 = j,x0, z0,Θjk)

]
f(Θ|D,V,X,Z)dΘ

≈ 1

M

M∑
t=1

∏
j,k

f(d0jk | c0 = j,x0, z0,Θ
(t)
jk ), (8)

where Θ
(t)
jk denote the tth posterior samples of Θjk from Step 1. Typically, we would
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compute these likelihoods by combining information across all wavelet coefficients (j, k).

The sparsity property of the wavelet coefficients suggests most signals can be efficiently

represented by a relatively small proportion of the total wavelet coefficients. Thus,

if desired, one could perform classification using only the subset of most important

wavelet coefficients. For example, Morris et al. (2011) describe a method to obtain the

smallest subset of wavelet coefficients that simultaneously preserves at least 100(1−α)%

of the total variation in each of the observed functions. By doing this, one can speed

up calculations by a factor of 20 or more while retaining almost all information in the

original functions and simultaneously performing an additional layer of denoising that

could potentially improve classification performance.

When z0 is available, we use U∗ when computing the densities, in particular,

f(d0jk | c0 = j,x0, z0,Θjk) = ϕ(d0jk| eTj G∗
jk + (x0)TB∗

jk + (z0)TU∗
jk, s

∗
jk),

where ϕ(·|µ, σ2) represents the density for normal distribution with mean µ and variance

σ2, and G∗
jk,B

∗
jk, and U∗

jk are the (j, k)th column of G∗,B∗ and U∗, respectively. Note

that here ej is a vector with the jth component 1 and 0 elsewhere. When z0 is not

available, we can compute the densities by integrating out the random effects:

f(d0jk | c0 = j,x0,Θjk) = ϕ(d0jk| eTj G∗
jk + (x0)TB∗

jk, q
∗
jk + s∗jk). (9)

If classifying a block of correlated functions that all share the same class, equation (9)

is replaced by the joint likelihood

f(d0
jk | c0 = j,X0,Θjk) = ϕ(d0

jk| ET
j G

∗
jk +X0B∗

jk, qjkJL + sjkIL)

with d0
jk = (d0,1jk , . . . , d

0,L
jk )T , X0 = (x0,1, . . . ,x0,L)T , Ej = (ej, . . . , ej)

T , JL is an L by L

matrix of ones and IL is an L by L identity matrix.

3.2 Classification using Robust Wavelet-based FMM (R-WFMM)

While the G-WFMM is very flexible in many ways, one rigid aspect of the model is the

Gaussian assumptions made on the residual errors, random effects, and slabs of the spike-
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slab prior distributions to regularize the fixed effect functions. This leads to estimates of

the fixed and random effect functions that are sensitive to outlying curves and regions of

curves, which induce outlying wavelet coefficients that can exercise undue influence on the

classification. Heavier-tailed distributions would better accommodate outliers in the data

and would down weight the influence of outlying wavelet coefficients in the classification,

potentially improving performance.

Zhu, Brown and Morris (2011) introduced R-WFMM, which models using heavier-tailed

distributions in the wavelet space and thus yields robust estimation and inference of the

fixed and random effect functions. Simulation studies revealed that the R-WFMM resulted

in greatly improved fixed and random effect estimates in the presence of outlying curves

and curve regions and did not give away much efficiency relative to the G-WFMM when no

outliers were present. Further, this model led to more adaptive estimates of the fixed and

random effect functions that attenuated spurious features of the functions while retaining

true local features. We describe the model configuration here and provide details for how to

use it to perform FMM-based classification.

Denote the (j, k)th column of model (6) as

djk = Vg∗
jk +Xb∗

jk + Zu∗
jk + e∗jk, (10)

where djk = {Dijk}ni=1, g
∗
jk = {G∗

cjk}
q
c=1, b

∗
jk = {B∗

ajk}
p
a=1, u

∗
jk = {U∗

ljk}ml=1, and e∗jk =

{E∗
ijk}ni=1. We specify the following hierarchical model on these parameters:

E∗
ijk ∼ N(0, λijk), λijk ∼ gE1 (ν

E
jk), νEjk ∼ gE2 (Θ

E),

U∗
ljk ∼ N(0, ϕljk), ϕljk ∼ gU1 (ν

U
jk), νUjk ∼ gU2 (Θ

U),

B∗
ajk ∼ γBajkN(0, ψB

ajk) + (1− γBajk)δ0, ψB
ajk ∼ gB1 (ν

B
aj), ν

B
aj ∼ gB2 (Θ

B), γBajk ∼ Bernoulli(πB
aj),

G∗
cjk ∼ γGcjkN(0, ψG

cjk) + (1− γGcjk)δ0, ψG
cjk ∼ gG1 (ν

G
cj), ν

G
cj ∼ gG2 (Θ

G), γGcjk ∼ Bernoulli(πG
cj),

where δ0 is a point mass at 0 and E∗
ijk, U

∗
ljk, B

∗
ajk, and G∗

cjk are mutually independent.
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The individual scale parameters λijk, ϕljk, ψ
B
ajk, ψ

G
cjk are mutually independent with specified

mixing distributions gE1 , g
U
1 , g

B
1 , and g

G
1 indexed by population scale parameters νUjk, ν

E
jk, ν

B
aj,

and νGcj, which are also mutually independent with prior distributions gE2 , g
U
2 , g

B
2 , and gG2

indexed by specified hyperparameter vectors ΘE,ΘU , ΘB, and ΘG, respectively. Note that

the G-WFMM is a special case of this model, with a degenerate distribution for g1(•),

λijk ∼ δsjk , ϕljk ∼ δqjk , and ψajk = δτaj . The individual scale parameters λijk serve as

wavelet-space outlier weights. A relatively large λijk (across i) suggests curve i is an outlier

with respect to a feature of the curve corresponding to the wavelet basis function (j, k) and

will result in a down weighting of observation Dijk in estimating the corresponding fixed and

random effects. Similarly, relatively large ϕljk (across l) indicate random effect unit l is an

outlier for feature (j, k) and will result in some downweighting of the Dijk corresponding to

random effect unit l, which are those with Zil ̸= 0.

While many different choices can be considered for g1(•) and g2(•), for our calculations

we will assume g1(νjk) = Exp(ν2jk/2) for each model component E,U , B, and G, and choose

g2(•) to be such that {ν2jk} are Gamma distributions, with their parameters determined

using the empirical Bayes approach. This leads to a model that behaves like a Laplace

distribution across i and l, and through mixing over (j, k) in the second level behaves like

a normal-exponential-gamma across j and k at the residual and random effect levels, which

is a distribution that has been shown to have outstanding variable selection and shrinkage

properties (NEG, Griffin and Brown, 2005). Based on the above model setup, an MCMC

algorithm is proposed that yields posterior samples of all model parameters that can be used

to perform Bayesian estimation and inference. The algorithm is efficient enough to handle

large data sets as encountered in practice and is able to run automatically. Computational

details can be found in the supplementary materials.

Classifications based on R-WFMM can be performed using a two-step procedure similar
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to that described in Section 3.1. The MCMC algorithm on the training data leads to M

posterior samples for the model parameters

Θ = {G∗,B∗,U∗, {γGcjk}, {γBajk}, {λijk}, {ϕljk}, {ψB
ajk}, {ψG

cjk}, (11)

{(νEjk)2}, {(νUjk)2}, {(νGcj)2}, {(νBaj)2}, {πG
cj}, {πB

aj}}.

Equations (7) and (8) still describe the posterior predictive densities, except the densities

are not Gaussian. When U0(t) is estimable in the training set, the densities are DE:

f(d0jk | c0 = j,x0, z0,Θjk) = DE(d0jk| eTj G∗
jk + (x0)TB∗

jk + (z0)TU∗
jk, 1/ν

E
jk),

where DE(·|µ, b) represents the density for a DE distribution with mean µ and scale parame-

ter b. When z0 is not available, we can compute the densities by integrating out the random

effects, which gives

f(d0jk | c0 = j, x0,Θjk) =
νEjkν

U
jk

2
(
(νUjk)

2 − (νEjk)
2
) (νUjk exp{−νEjk|d̃0jk|} − νEjk exp{−νUjk|d̃0jk|}

)
,(12)

following the results of Proposition 1. Here d̃0jk = d0jk − eTj G
∗
jk − (x0)TB∗

jk.

Proposition 1. (Density of Sum of Two Independent DE Random Variables) As-

sume that X1 ∼ DE(0, b1), X2 ∼ DE(0, b2), with densities f(xi) = 1/(2bi) exp{−|xi|/bi}, i =

1, 2, and X1 is independent of X2. Let Z = X1 + X2. Then Z has zero mean, variance

2(b21+ b
2
2), and characteristic function ψz(t) = [(1+ b21t

2)(1+ b22t
2)]−1. The density of Z takes

the form:

f(z) =


1

2(b21−b22)

[
b1 exp{− |z|

b1
} − b2 exp{− |z|

b2
}
]

when b1 ̸= b2,

1
4b
exp{− |z|

b
}(1 + |z|

b
) when b1 = b2 = b.

The proof of proposition 1 can be done based on the results of Nadarajah and Kotz

(2005) as well as the results of Griffin and Brown (2010). More details can be found in

the supplementary materials. The formula of the density function can be verified using the

moment generating function method.

If a block of correlated functions that are all sharing the same class is classified, when
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the random effects are being integrated out, each d0,ljk has a marginal density in the form

of equation (12), with covariance matrix 2JL/(ν
U
jk)

2) + 2IL/(ν
E
jk)

2 handling the within-

block correlation. The analytical formula for the density of this multivariate distribution

is not straightforward to obtain. Therefore, we recommend using numerical integration to

approximate this density as follows:

f(d0
jk | c0 = j,X0,Θjk)

=

∫ L∏
l=1

f(d0,ljk | c0 = j,x0,l, uljk, ν
E
jk, G

∗
jk, B

∗
jk)f(u

l
jk|νUjk)duljk . . . duLjk.

≈ 1/N
N∑
s=1

L∏
l=1

f(d0,ljk | c0 = j,x0,l, ul,sjk , ν
λ
jk, G

∗
jk, B

∗
jk),

where {ul,sjk , s = 1, . . . , N} are N samples generated from DE(0,1/νϕjk) for l = 1, . . . , L.

Since this approximation has to be done for each posterior sample Θ
(t)
jk , t = 1, . . . ,M to

get an approximation for the final posterior predictive distribution, the computation can be

intensive when both M and N are large. The computational burden can be ameliorated by

making N,M small or taking subsamples of the M cases.

3.3 Allowing the Covariance to Vary by Class

In both the G-WFMM and R-WFMM discussed in Sections 3.1 and 3.2, we assumed that

the distribution of U(t) and E(t) in model (1) were common for all classes. In some settings,

one may wish the random effect and/or residual error covariances to vary across class, which

would yield more flexible classification rules. This has been previously described for the

G-WFMM (Morris and Carroll, 2006) and involves expanding the variance components

{q∗j,k}, {s∗j,k} to {q∗, c
j,k }, {s∗, c

j,k }, c = 1, . . . , q. For prediction, the posterior predictive proba-

bility needs to be adjusted so that the corresponding variance components of c = j are used

when the likelihood conditions on class label c = j. In the R-WFMM, we allow the popu-

lation scale parameters {νEjk} and {νUjk} to be class specific, i.e., {νE,c
jk }, {νU,cjk }, c = 1, . . . , q.

Correspondingly, their Gamma hyper-prior parameters (αE, βE) and (αU , βU) would also be
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indexed by c. This involves only minor changes of the previously described MCMC algorithm.

Similarly, for prediction, we need to adjust the DE likelihood by plugging in the corresponding

population scale parameters when conditioning on a particular c = j.

3.4 Computing a Pointwise Discriminant Function

While it is convenient to compute the posterior predictive probability for the test set in the

wavelet domain directly, as we have described in Sections 3.1 and 3.2, at times one may

wish to compute a pointwise (in the t domain) discriminant function ζj(t) that could be

used as a descriptive summary of which regions of t were primary drivers of the classification

of function j. Here, we define a pointwise discriminate function (denoted as ζj(t)) as the

pointwise log-odds of posterior predictive probability of belonging to class j versus 0,

ζj(t) = ζj(Y
0(t),x0, z0,Y,V,X,Z)

= log
f(c0 = j|Y 0(t),x0, z0,Y,V,X,Z)

f(c0 = 0|Y 0(t),x0, z0,Y,V,X,Z)

= log

∫
f(Y 0(t)|c0 = j,x0, z0,Θ)f(Θ|Y,V,X,Z)dΘ∫
f(Y 0(t)|c0 = 0,x0, z0,Θ)f(Θ|Y,V,X,Z)dΘ

+ log(f(c0 = j)/f(c0 = 0)). (13)

Note that although similar in notation, (13) is different from (2) in that for (13) we are

computing the posterior predictive probability at time t while ignoring any correlation across

t, while (2) is a general formula for computing the overall posterior predictive probabilities.

To estimate ζ(·), we need to first transform the the posterior samples ofΘ to the time domain

by applying the IDWT to G∗, B∗, U∗, Q∗, and S∗ for all of theM MCMC samples, after which

the marginal likelihood of Y 0(t) is computed for each t. It is because ζj(t) effectively ignores

the correlations across t that it should be considered a descriptive summary measure and

not itself used for classification.

In the G-WFMM, it is relatively easy to compute the predictive density in (13) because the

IDWT of Gaussian distributions is again Gaussian. In the R-WFMM, it is not as straight-
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forward. However, one can exploit the fact that the likelihood is Gaussian conditional on

the individual scaling parameters λ0jk to construct an approximate measure based on Monte

Carlo numerical integration. Note that given Λ0 = Diag{λ0jk}j,k, the residual covariance in

the data space is given by Σ0
E =WΛ0W ′, whereW is the DWT matrix. Thus, if we augment

the numerator and denominator of (13) with λ0jk, we are left with∫ ∫
f
(
Y 0(t)|c0 = j,x0, z0,Θ−,Σ0

E(t, t)
)
f
(
Σ0

E(t, t)|Θ−,Y,V,X,Z
)
d Σ0

E(t, t)f
(
Θ−|Y,V,X,Z

)
dΘ.

for the numerator, and an analogous expression for the denominator, where Θ− are the

posterior samples for parameters excluding the {λijk}. A Monte Carlo approximation of

this density can be obtained by averaging over repeated sampling of the individual scaling

parameters λ0jk from their distribution DE{(νEjk)2/2} for each posterior sample of νEjk.

4. Pancreatic Cancer Mass Spectrometry Application

We apply our FMM-based classification methods to predict cancer status using blood serum

proteomics. Matrix assisted laser desorption and ionization, time-of-flight (MALDI-TOF) is

a proteomic method that detects and measures the expression of hundreds of proteins. In

a MALDI-TOF experiment, a biological sample of interest is first mixed with an energy-

absorbing matrix substance, and the mixture is placed on a steel plate. The plate is then

placed into a vacuum chamber, where a laser strikes the plate, desorbing ionized peptides

from the sample. An electric field accelerates the particles into a potential free flight tube

through which they travel at a constant velocity until striking a detector plate. The detector

plate records the abundance of particles striking it over a series of short, fixed intervals of time

indexed by t = (t1, . . . , tT ), yielding a mass spectrum Y (t). Using principles of basic physics,

a quadratic transformation can be used to map the time axis t to a set of corresponding mass-

to-charge ratios (m/z). Each spectrum is characterized by numerous peaks, which correspond

to proteins or protein fragments present in the sample.

The data set we used for this paper was obtained from a pancreatic cancer experiment. In
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this study, blood serum was taken from 139 patients with pancreatic cancer and 117 healthy

controls. The blood serum was fractionated using 25% acetonitrile elutions optimized using

myoglobin, then run on a MALDI-TOF instrument to obtain a proteomic spectrum for each

sample. For this analysis, we consider the region of the spectra between x = 4, 000 and

40, 000 Daltons, containing 6654 observations per spectrum. These 256 samples were run in

four different time blocks over a period of several months. More specifics of the experiment

can be found in Koomen et al. (2005). Our primary goal in this paper is to discriminate

the cancer samples from the controls. It is well established that MALDI-TOF instruments

are very sensitive, which leads to block effects that are manifest in systematic changes in

both the intensities and locations of peaks (i.e., both the x and y axes), and are sometimes

larger in magnitude than the biological effects of interest. Thus, it is important to adequately

model these block effects to properly analyze the data.

The proposed model was applied to this data set for classification, and treats the time

blocks as random effects associated with design matrix Z in model (1). Here Z has com-

ponents Zi,j = 1 indicating the ith spectra is measured in time block j, j = 1, . . . , 4. For

these data, we did not model any other fixed effects X on the functions. We used four-

fold cross validation to assess the method, each time training the model using 3/4 of the

data and testing it on the remaining 1/4. This was done in two different ways: (1) in-block

classification, for which 3/4 of the samples from each of the 4 blocks were randomly selected

for the training data, with the remaining 1/4 from each block serving as the test data, and

(2) out-of-block classification, for which all samples from 3 out of the 4 time blocks were

used for training, with validation done on all samples in the 4th time block. We considered

classification based on all wavelet coefficients, and using compression, considered only the

set of wavelet coefficients preserving at least 90% of the total energy for all of the functions,

which in this case corresponded to a subset of 208 out of the 6655 total wavelet coefficients.
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We sampled “virtual spectra” from the predictive distribution of the fitted model, and found

that they looked just like real spectra (see plots in the supplementary materials), suggesting

that the model is flexible enough to capture the salient features of the MALDI-TOF data.

We evaluated the classification results using several statistics: the area under the receiver

operating characteristic (ROC) curve (AUC), the misclassification rate (MisR), the sensi-

tivity (Sens) and the specificity (Spec). The ROC curve was generated by plotting Sens as

a function of 1-Spec computed at all possible thresholds on the posterior probabilities. The

AUC is the area under the ROC curve computed using numerical integration. The MisR,

the Sens, and the Spec are those values computed when fixing the threshold at 0.5. We list

these statistics for both in-block and out-of-block prediction in Table 1.

We compared the performance of our methods with three types of classification methods:

the functional principal component (FPC) based methods introduced in Hall, Poskitt and

Presnell (2001), the generalized functional linear models (GFLM) of Müller (2005) and

Müller and Stadtmüller (2005), and peak-based methods (Peak) specifically adapted for

mass spectrometry data (see, e.g. Koomen et al. (2005)). The first two types are functional

data classification methods. The third type is not functional data based, but applies stan-

dard multivariate methods to peak intensities after performing peak detection. In the FPC

methods, the dimension of the functions was reduced using truncated Karhunen-Loéve basis

expansions. Classification was then performed using the resulting coefficients through either

kernel density estimations (KDE) or quadratic discriminant analysis (QDA), which we denote

as FPC-KDE and FPC-QDA, respectively. The GFLM method is based on a regression

model with univariate response and functional predictors, where the functional predictors are

approximated by the truncated Karhunen-Loéve expansion. The peak based methods were

performed by first detecting the peaks of the mass spectra using the R package msProcess

(Morris et al. 2005), and then using the detected peaks for classification with methods such as
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penalized generalized linear model (GLM) with lasso (denoted as GLM-Lasso) and K-nearest

neighbor (KNN). All model parameters, such as the penalty parameter in GLM-Lasso and

the K parameter in KNN were determined using nested 4-fold cross validation based on the

training set. Note that some classification methods intended for full rank multivariate data

could not be directly applied to these data given the extremely high dimensionality of the

functions (T = 6654) relative to the sample size (N = 192 for each 3/4 training split).

[Table 1 about here.]

Table 1 shows that the FMM-based classification methods compared favorably to the other

methods considered, with higher AUCs and lower misclassification rates for both the in-block

and out-of-block prediction. As expected, the R-WFMM outperformed the G-WFMM, and

slightly improved results were obtained when applying wavelet compression. Among the

comparison methods, the peak-based methods using GLM-Lasso outperformed others, and

was competitive with the G-WFMM and not far behind the R-WFMM. The estimated ROC

curves for in-block prediction are shown in Figure 1. The ROC plot for out-of-block prediction

can be found in the supplementary materials.

[Figure 1 about here.]

As described in Section 3.4, pointwise discriminant functions provide summary measures

that might help understand regions of the function that are influential to the classification of

individual subjects. We estimated the discriminant function ζ(t) for each observation in the

G-WFMM model. Figure 2 shows ζ(t) for four selected observations, two from the cancer

class (top), two from control class (bottom). The regions above zero are those that suggested

the curve be classified as class 1(cancer), and regions below zero are those that drove the

curve to class 0 (control). Figure 2 shows that the regions of the spectra, and thus the

proteins, driving the classification varied across subjects, as expected.
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[Figure 2 about here.]

5. Discussion

We have proposed an FMM-based method for functional data classification. FMM-based

modeling captures various types of important structures that might be present in the data,

including the adjustment for covariates affecting the functions and the classes, the denoising

of the function, and the modeling of design-induced between-function correlation that equips

it for use to classify subjects based on multiple correlated functional predictors. Coupled

with our Bayesian wavelet-space modeling approach, the method can handle spiky functions

and quantitative image data, and scales up to large data sets using automated code, with

the potential to be even more flexible by allowing different covariances between classes.

When used with the R-WFMM, this method yields robust classification that can downweight

outlying curves and regions of curves in building the discriminator. Another unique benefit

of this FMM-based approach is that the same model fit can be used for both classification

and unified inference on the fixed and random effect functions.

As opposed to functional regression models that seek to model f{c|Y (t)}, our method ef-

fectively uses a functional discriminant analysis involving modeling f{Y (t)|c} and then using

Bayes rule to invert the problem and compute Pr{c0 = j|Y (t)} using posterior predictive

probabilities. This approach is promising for classification in general, not just for functional

predictors, and may be an underappreciated and under-recognized strategy for classification

using Bayesian modeling. The inherent hierarchical modeling approach provides a natural

way to extend this method to combine information across multiple functional, image, and

scalar predictors in performing classification.

One potential downside of this approach is that the classification may be strongly de-

pendent on the parametric assumptions made in the modeling of f{Y (t)|c}. Thus, it is

important to ensure that the models used are flexible enough to capture the key functional
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and distributional features of the data. The WFMM, especially paired with robust modeling,

appears to be flexible enough for the data analyzed in this paper, as the data simulated from

the model look just like real data.
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Figure 1. The empirical ROC curves for in-block prediction compared with other methods.
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Figure 2. Plot of the estimated pointwise discriminant function ζ(t) of cancer (Class 1)
vs. control (Class 0) for four selected observations, two from the cancer class (top), two from
the control class (bottom).
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Table 1
Comparison of Several Classification Approaches

Methods Model Name AUC MisR Sens Spec

FMM GWFMM 0.816 0.270 0.669 0.812
GWFMM90 0.854 0.211 0.719 0.880
RWFMM 0.850 0.231 0.705 0.846
RWFMM90 0.865 0.215 0.727 0.855

In Block FPC FPC-KDE 0.790 0.379 0.331 0.966
FPC-QDA 0.783 0.270 0.626 0.846

FGLM Logit Link 0.805 0.250 0.748 0.761
Peak GLM-Lasso 0.834 0.223 0.755 0.803

KNN 0.774 0.273 0.633 0.838

FMM GWFMM 0.802 0.273 0.612 0.863
GWFMM90 0.815 0.254 0.655 0.855
RWFMM 0.838 0.266 0.619 0.872
RWFMM90 0.830 0.242 0.705 0.829

FPC FPC-KDE 0.765 0.379 0.331 0.966
Out Block FPC-QDA 0.804 0.285 0.619 0.821

GFLM Logit Link 0.766 0.281 0.741 0.692
Peak GLM-Lasso 0.813 0.273 0.719 0.735

KNN 0.729 0.332 0.590 0.761


