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Abstract Any population of components produced by manufacturer might

be composed of two sub-populations: weak components in a small propor-

tion are less reliable, and deteriorate faster, whereas strong components in

a large proportion are more reliable, and deteriorate slower. When select-

ing an approach to classifying the two sub-populations, one could build a

criterion aiming at minimizing the expected mis-classification cost due to

mis-classifying weak (strong) components as strong (weak). However, in

practice, the unit mis-classification cost, such as the cost of mis-classifying

a strong component as weak, can not be estimated precisely. Minimizing

the expected mis-classification cost becomes more difficult. This problem

is considered in this paper by using ROC (Receiver Operating Character-

istic) analysis, which is widely used in medical decision making community

to evaluate the performance of diagnostic tests, and in machine learning to
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select among categorical models. The paper also uses ROC analysis to deter-

mine the optimal time for burn-in in order to remove the weak population.

The presented approaches can be used for the scenarios when the following

information cannot be estimated precisely:

(1) life distributions of the sub-populations,

(2) mis-classification cost, and

(3) proportions of sub-populations in the entire population.

Index Terms—Mixed distribution, classification, Receiver Operating Char-

acteristic (ROC) analysis, burn-in.

NOMENCLATURE

α(t) probability of mis-classifying a strong component to be weak at time t

β(t) probability of mis-classifying a weak component to be strong at time t

Cα cost of mis-classifying a positive (strong) observation to be negative

(weak)

Cβ cost of mis-classifying a negative (weak) observation to be positive

(strong)

p proportion of the negative (or weak) observations in the entire population

tk check time in a burn-in test, where k = 1, ..., n

1 Introduction

This paper utilizes receiver operating characteristic (ROC) analysis to select

optimal approaches to distinguish weak & strong components in a population
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when precise information about the life distribution of sub-populations, and

mis-classification costs in the entire population might not be available. It is

well-known that components produced by a manufacturer can be composed

of two sub-populations: weak & strong. The weak components in a small

proportion are less reliable, and deteriorate faster, whereas the strong com-

ponents in a large proportion are more reliable, and deteriorate slower. In

order to improve the reliability of such populations, the weak components

need weeding out from the entire population. This can be achieved by many

approaches, from which people can select optimal ones. Burn-in is such a

method commonly used in electronics industry. In selecting such an ap-

proach, one could minimize the expected mis-classification cost incurred due

to mis-classifying weak (strong) components as strong (weak). However, in

practice, the unit mis-classification cost, such as the cost on mis-classifying

a strong component as weak, can not be estimated precisely. Minimizing

the expected mis-classification cost becomes difficult. In the decision making

community, there often exist classification problems where the outcomes are

binary. For example, doctors usually have to establish whether a patient

carries a kind of virus (negative) or not (positive). Such a decision may lead

to two types of mistake: mis-classifying a positive (negative) to be negative

(positive), which are known as type-I & type-II errors in statistics. These

mistakes incur mis-classification cost. In order to select optimal models with

the minimum mis-classification cost, one needs information such as the pro-

portion of the negative (or positive ) patients - aka, class distribution, and

unit mis-classification cost. When such information is not available, ROC

analysis can be used to select optimal models, and discard suboptimal ones
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independently from (and prior to specifying) the cost context or the class

distribution (see [1] for a comprehensive overview).

ROC analysis is related in a direct & natural way to cost analysis of

diagnostic decision making. It is derived from signal detection theory [2]

where it is used to determine if an electronic receiver is able to satisfactorily

distinguish between signal & noise. It has been used in medical imaging &

radiology [3], psychiatry [4], non-destructive testing [5], and machine learning

[6].

Burn-in is a widely used approach for weeding out weak components

before they are delivered to customers. The components that fail during the

burn-in procedure will be scrapped or repaired, and only those that survived

the burn-in time will be considered to be of good quality.

A burn-in procedure is commonly associated with three steps: estimating

a lifetime distribution for a given population, assessing the suitability of a

burn-in procedure based on the property of the lifetime distribution, and

selecting a burn-in optimization criterion in order to determine the duration

of the burn-in. Burn-in optimization criteria usually include performance-

based methods [7, 8], and cost-based methods [9, 10]. For a given population,

a performance-based optimization criterion might be either to maximize the

mean residual life [7], or to achieve pre-defined reliability target [8]. A cost-

based optimization criterion is to minimize a cost function considering all

kinds of costs associated with the burn-in procedure [9, 10]. For some other

recent research on burn-in, see, e.g., [11, 12, 13].

The cost-based optimization criteria are usually chosen to determine the

optimal burn-in time for a mixture of two sub-populations. Two-mixed dis-
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tributions in the reliability literature are usually used to model the lifetime of

a mixture of sub-populations. For example, a two-mixed Weibull distribution

was applied to fit failure data of electronic tubes by Kao [14], Boardman &

Colvert [15], and Kim [16]; a two-mixed exponential distribution was studied

by Perlstein et. al. [17, 18].

A burn-in procedure for such populations may cause the following burn-in

errors: a strong (weak) component is classified as a weak (strong ) compo-

nent. Some researchers determine optimal burn-in times by targeting at

minimising the cost due to the burn-in errors. Kim [16] defines a criterion

considering the costs of burn-in errors for a two-mixed Weibull distribution.

Tseng et al. [19], Tseng & Tang [20], and Tseng & Peng [21] use Wiener

processes to describe the continuous degradation path of the quality char-

acteristic of highly reliable products, with a consideration of the costs of

burn-in errors. In order to obtain the optimal burn-in times, they assume

that the following information is given:

(A) mis-classification cost for an individual component, or called unit mis-

classification cost, and

(B) proportion of the sub-population (weak & strong), or called class dis-

tribution in the following.

The unit mis-classification cost in (A) is commonly associated with the

various costs including replacement (or repair) cost, and maybe warranty

cost. Therefore, precisely estimating the unit mis-classification cost can be

very difficult. In the case the unit mis-classification cost is randomly dis-

tributed, using the approaches introduced by [16, 19, 20, 21] to determine
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the optimal burn-in time will become impossible. Furthermore, precisely

estimating the class distribution in (B) can be questionable in practice.

This paper presents approaches to classifying weak components from

strong components. It utilizes ROC analysis to determine the optimal burn-

in times for the scenarios where information on mis-classification costs &

class distribution are not available.

The paper is structured as follow. Section 2 introduces concepts of the

ROC space, ROC curves, and the area under the ROC curve. Section 3

presents a new cost model considering mis-classification costs, and discusses

the cost models derived by [19, 20, 21]. Section 4 introduces novel approaches

to obtaining optimal burn-in times when the cost context and/or class dis-

tribution are not available. Section 5 studies a case originally from [20, 21].

Section 6 concludes our findings of the paper.

2 ROC analysis

In classifying whether a patient carries a kind of virus, a model (or doctor)

can choose one decision from four possible ones which consist of two types of

errors when comparing the model result with the real situation of a patient

as shown in Table 1. If both the real situation and model are positive, it

is called a true positive (TP). If the real situation is positive whereas the

model is negative, it is called a false negative (FN). False positive (FP) &

true negative (TN) are defined similarly.

Define

Tr =
the number of true positives

the number of true positives + the number of false negatives
=

TP

TP + FN
,
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Table 1: Contingency table
Actual situation

Positive Negative
model Positive TP (True Positives) FP (False Positives)
result Negative FN (False Negatives) TN (True Negatives)

and

Fr =
the number of false positives

the number of true negatives + the number of false positives
=

FP

TN + FP
.

For any decision, we hope that their Fr’s are small, and Tr’s are large,

which is a two criterion optimization problem. Instead of optimizing the

two-criterion problem, one can minimize the following cost function:

Cα(1− p)(1− Tr) + CβpFr. (1)

For example, given a dataset containing 100 patients, 80 of whom do not

carry the virus (positive), and the rest do (negative). Two models, say, A &

B, are developed to classify the patients. We have the following results for

the two models.

• Model A classifies 70 positives & 12 negatives correctly, which means

TP=70, TN=12, FP=8, and FN=10. Then we have

– Fr=FP/(FP+TN)=8/20, and

– Tr=TP/(TP+FN)=70/80.

• Model B classifies 65 positives & 16 negatives correctly, which means

TP=65, TN=16, FP=4, and FN=15. Then, we have

– Fr=FP/(FP+TN)=4/20, and
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– Tr=TP/(TP+FN)=65/80.

According to (1), when values p, Cα, and Cβ are available, for example,

one can choose Model B if 10
80

Cα(1 − p) + 8
20

Cβp > 15
80

Cα(1 − p) + 4
20

Cβp.

Otherwise, model A will be selected.

However, the values p, Cα, and Cβ might be unknown, hence, one might

hope to choose optimal models simply based on the values of Tr & Fr. This

goal can be achieved by using ROC analysis,.

ROC analysis studies positions of points or curves in a two-dimensional

space, called ROC space, in which Tr’s are plotted on the Y axis & Fr’s on the

X axis. Each point (or curve if one links the points, which is shown as follow)

in the space represents a model. The ROC space depicts relative trade-offs

between benefits (true positives) and costs (false positives). ROC analysis is

usually associated with model selection when both the class distribution and

mis-classification cost distribution are unknown at the model development

time.

On the basis of their outputs, classification models can be categorized

into:

Discrete model: If a model classifies a positive (negative) observation to

either positive or negative, it is called a discrete model.

Continuous model: For a given sample with n observations, if a model

classifies all of the n observations to be positive with predicted scores

νi (0 ≤ νi ≤ 1 & i = 1, ..., n), it is called a continuous model.

A discrete model only has one Fr & one Tr; it can therefore be represented
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by a point in the ROC space (see Figure 1)1. For a continuous model, a cutoff

point can divide the predicted scores of the model into two parts: positive

or negative. For example, set a cutoff point to be 0.5, the observations

with predicted scores larger than 0.5 are positive, otherwise negative, and

the model with this cutoff point can be represented by a point in the ROC

space. Apparently, different cutoff points create different points in the ROC

space, hence, a continuous model can produce many points on the ROC space

with different Fr’s & Tr’s. Sequentially linking all of the points, one can draw

a curve (see Figure 2). As a consequence, a continuous model is represented

by a curve in the ROC space.

In the following, approaches to selecting optimal models for both discrete

and continuous models are presented.

2.1 Discrete Models

Figure 1 shows the ROC space with five discrete models: A(0.3, 0.6), B(0.1,

0.7), C(0.4, 0.4), D(0.34, 0.9), and E(0.6, 0.9).

We call the convex hull constructed by the points in the ROC space the

ROC convex hull (ROCCH) of the corresponding set of models. Figure 3

shows the ROC curve of models A, B, C, D, and E. Model C is clearly not

optimal. Perhaps surprisingly, model E can never be optimal because it does

not lie on the convex hull, according to the following Lemma [6].

Lemma 1. For any set of cost & class distributions, Fr, Tr, Cα, Cβ, there is

a point on the ROCCH with minimum expected cost.

1 Aside from Figure 6, in all of figures in this paper, X-axes represent Fr’s, and Y-axes
represent Tr’s.
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Figure 1: An ROC space with five models in.

Figure 2: An ROC curve for a continuous model.

From the above Lemma, only the points (or models) on the ROCCH are

optimal. For example, in Figure 3, models B & D are potentially optimal.

Now the problem is how to select the optimal model from Model B & Model
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Figure 3: ROC convex hull of models A, B, C, D, and E.

D. A commonly used method in the ROC analysis is to choose the one with

the largest area of rectangle constructed by the point representing the model,

points (0,0), (1,0), and (1,1). Figure 4 shows the area constituted by model

B. If we assume Cα(1−p) = Cβp, then comparing the rectangles areas (which

equals to 0.5(1+Tr−Fr)) built by different models, is equivalent to comparing

the values Cα(1− p)(1− Tr) + CβpFr.

2.2 Continuous models

For a continuous model, let x denote the values of Fr’s & 1 − y denote the

values of Tr’s. Suppose there is a relationship: y = f(x). Then the expected

cost in x of (1) can be given by∫ 1

0

(Cα(1− p)(1− y) + Cβpx)dx

= Cα(1− p) +
1

2
Cβp− Cα(1− p)

∫ 1

0

f(x)dx.
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Figure 4: AUC of model B.

Therefore, in case p, Cα, Cβ are not available, one can compare values
∫ 1

0
f(x)dx,

which defines the Area Under the ROC Curve (AUC). Apparently, a good

model should have a large AUC. AUC=1 means there is a cutoff point such

that the corresponding classification model has a 100% accuracy. The shad-

owy area in Figure 5 is approximately equivalent to the integral
∫ 1

0
f(x)dx

by the Trapezoidal integration rule.

In sum, the main approaches to comparing models using ROC analysis

are as follows.

• Among discrete models, only models on the convex hull are optimal

models. When no information about unit mis-classification cost & class

distribution are given, a model—on the ROC convex hull—with the

largest area of the rectangle constructed by the model itself, points

(0,0), (1,0), and (1,1) is the optimal model.
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Figure 5: AUC of the ROC curve of a continuous model.

• Among continuous models, a model with the largest AUC is the optimal

model.

The above approaches can be utilized in the case when weak & strong

components need be classified.

There is considerable research on ROC analysis in both statistics in

medicine, and machine learning. For a more comprehensive understanding

of ROC analysis, the reader is referred to Provost & Fawcett [6], Flach &

Wu [22], Wu & Flach [23] in machine learning and data mining, and Zweig

& Campbell [24] in medical decision making community.

3 A cost model for burn-in optimization

Suppose a population is composed of two sub-populations: a weak population

with a proportion of p, and a strong population with a proportion of 1− p.

Suppose that t1, ..., tn (t1 < t2 < ... < tn) are the check times in a burn-in test:
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each product in the test is checked at time point tk (k = 1, ..., n). If a product

is checked failed, it is removed from the test; otherwise, it will continue to

stay in the test. The expected mis-classification cost, which includes the

costs of mis-classifying a strong product as weak, and mis-classifying a weak

product as strong, is given by

C(t) = Cα(1− p)α(t) + Cβpβ(t), (2)

where α(t) = 1− Tr, β(t) = Fr.

The contingency table of the decision at burn-in time t, is shown in Table

2.

Table 2: Contingency table.
Burn-in results Strong population Weak population

Survive 1− α(t) β(t)
Fail α(t) 1− β(t)

The model in (2) has been utilized by [16, 19, 20, 21].

Denote

L(t) =

{
g1(t) + σB(τ(t)) for weak products
g2(t) + σB(τ(t)) for strong products,

(3)

where g2(t) > g1(t) > 0, gi(t) = exp{−ηit
δ} (i = 1, 2), τ(t) = tγ, and B(.)

denotes the standardized Brownian motion.

Tseng & Tang [20], and Tseng & Peng [21] classify the strong products

from the weak ones, considering the following conditions: the NCD (Non-

cumulative Degradation) & CD (Cumulative Degradation).

The NCD method [20] classifies a product to be strong at time t if

G0(t) ≥ ξ0(t), (4)
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where G0(t) = L(t).

The CD method [21] classifies a product to be strong at time t if

G1(t) ≥ ξ1(t), (5)

and G1(t) =
∫ t

0
L(s)ds.

Both ξ0(t) in (4) and ξ1(t) in (5) are obtained by minimizing the mis-

classification cost in (2).

However, there exist some weaknesses in the work of Kim [16], and Tseng

et al. [20, 21].

• They all assume that precise mis-classification costs, Cα & Cβ in (2),

are given. However, in practice, it is rare for the costs of mis-classifying

components to be known precisely. For example, mis-classifying a weak

component as strong might incur warranty cost, and business losses due

to the failure within operating time. As these costs evolve over time,

it is hard to estimate them precisely.

• Kim [16] assumes that the life distributions of the weak & strong popu-

lation can be estimated. However, due to technological innovation, and

products becoming more reliable, there might not be enough failures

during the burn-in test for estimating the life distributions of weak &

strong populations.

Therefore, there is a need to determine the optimal burn-in time for the

scenarios where the mis-classification costs, and life distributions might not

be specified.
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In what follows, assume the burn-in procedure: at time 0, M components

are put into a burn-in environment, where M = Mn +Mw, & Mn (Mw) is the

size of the strong (weak) population. At a check time point tk (k = 1, 2, ..., n),

mk (or wk) components from the strong (or weak) population are found

failed until time tk, and (mk + wk) ≤ M , which means, β(tk) = 1 − wk

Mw
,

and α(tk) = mk

Mn
. With the burn-in time progresses, data collected at tk

(k = 1, ..., n) accumulate; hence, the life distributions of both strong & weak

components estimated at tk, k = 1, ..., n, can be different, see [21] as an

example. Assume that the life distribution of strong (weak) components at

time tk is Nk(t) (Wk(t)). β(tk) & α(tk) can be estimated through either a

test procedure (see [16] as an example) or a statistical method (see [21] as

an example).

In selecting an optimal burn-in time or optimal times from the candidates

{t1, ..., tn} using ROC analysis, the following four scenarios are considered:

(1)
Cβ

Cα
& p can be specified,

(2)
Cβ

Cα
& p cannot be specified,

when the following two cases are taken into consideration,

(1) Nk(t) & Wk(t) can be estimated,

(2) Nk(t) & Wk(t) cannot be estimated, but α(tk) & β(tk) are available.

Obviously, when Nk(t) & Wk(t) are available, ROC analysis for continuous

models will be used. When only α(tk) & β(tk) are available, ROC analysis

for discrete models will be used.
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4 Determining the optimal burn-in time un-

der different scenarios

In general, if the burn-in aims to remove the weak population from the entire,

then two objectives are set. The first is to remove all of the weak components

through burn-in, as weak components survived from burn-in may incur larger

costs during the warranty time. The second is to keep all of the strong com-

ponents within burn-in, as incorrect burn-in may cause strong components

failed within burn-in time, and incur unnecessary costs. In achieving these

two goals, one hopes that in Table 2, β(t) can be minimized, and 1 − α(t)

can be maximized. ROC analysis can help to achieve these goals.

Recall the expected mis-classification cost in (2):

C(t) = Cα(1− p)α(t) + Cβpβ(t). (6)

Assume α(t) = N(t) & β(t) = 1−W (t), where N(t) & W (t) are the cumu-

lative distribution functions.

Denote x = β(t) = 1−W (t), and y = 1− α(t) = 1−N(t). Then

y = 1−N(W−1(1− x)). (7)

We can draw a curve, or an ROC curve on the ROC space, with β(t) on the

X-axis, and 1− α(t) on the Y-axis (where 0 ≤ t < ∞).

4.1 Precise values of
Cβ

Cα
& p are given

The luckiest scenario is that precise values of
Cβ

Cα
& p are specified. However,

in order to obtain the optimal burn-in time, one should estimate the life

distributions of the strong & weak populations.
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4.1.1 Nk(t) (or Wk(t)) are from an identical distribution

Suppose that Nk(t) & Wk(t) are from an identical distributions, say, N(t) &

W (t)), respectively. This assumption has been made by most authors (see

[16, 17] for example). Replacing β(t) & α(t) with 1 − N(t) & W (t) in (6),

respectively, we obtain

C(t) = Cα(1− p)N(t) + Cβp(1−W (t)). (8)

Based on (8), the optimal burn-in time should satisfy the following equation,

dC(t)

dt
= Cα(1− p)

dN(t)

dt
− Cβp

dW (t)

dt
= 0. (9)

Therefore the optimal burn-in time, t∗, satisfies

dN(t)
dt

dW (t)
dt

=
pCβ

(1− p)Cα

. (10)

Equation (10) can only be used when
pCβ

(1−p)Cα
and N(t), and W (t) are

available. This approach has been utilized by [16, 20, 19, 21].

One can select the optimal burn-in time, t∗k, that is close to t∗.

4.1.2 Only α(tk) & β(tk) are available

Denote l =
pCβ

(1−p)Cα
. According to (2), then one can choose the optimal

burn-in time, t∗ ∈ {t1, t2, ..., tn}, that satisfies

α(t∗) + lβ(t∗) = min
1≤k≤n

(α(tk) + lβ(tk)). (11)

4.2 Precise values of
Cβ

Cα
& p are not given

The unluckiest scenario is that no information about
Cβ

Cα
& p is available,

which might rarely happen in practice. However, it is useful for practitioners,
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for example, product designers, to obtain more knowledge about the burn-in

cost & burn-in time of their products.

Following (7), at different check points tk, the expected cost in value

x(= 1−Wk(t)) is given by

CE(tk) =

∫ 1

0

(Cα(1− p)(1− y) + Cβpx) dx

=
1

2
pCβ + (1− p)Cα − (1− p)Cα

∫ 1

0

ydx, (12)

where y = 1−Nk(W
−1
k (1− x)). Therefore, minimizing the quantity CE(tk)

is equivalent to maximizing
∫ 1

0
ydx, which is the AUC (Area Under the ROC

Curve) of y = 1−Wk(N
−1
k (1− x)), that is

AUC(tk) =

∫ 1

0

ydx. (13)

Hence, (12) can be re-written as

CE(tk) =
1

2
pCβ + (1− p)Cα − (1− p)CαAUC(tk). (14)

4.2.1 Nk(t) & Wk(t) are available

The AUC can be used when one wants to compare the performance of burn-in

in different time tk.

Plotting x = 1 −Wk(t) on the X-axis, and y = 1 −Nk(t) on the Y-axis,

one can draw ROC curves y = 1−Nk(W
−1
k (1− x)). By comparing the AUC

values of the ROC curves at times tk (k = 1, ..., n), one can choose optimal

burn-in times with the largest AUC values.

However, the p values in (14) might be different at different time tk (k =

1, ..., n) (see [21] for example). The following Lemma can be used to compare

CE(tk) values with different p’s.
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Lemma 2. Suppose the probabilities of mis-classifying a strong (weak) com-

ponent as weak (strong ) are 1 − yi (xi) at time ti, and 1 − yj (xj) at time

tj, respectively. Then

1. CE(ti) > CE(tj) if p̂i > p̂j, and 1-(1- AUC(ti))ρ < AUC(tj), and

2. CE(ti) < CE(tj) if p̂i < p̂j, and 1-(1- AUC(ti))ρ > AUC(tj),

where ρ =
(1−p̂i)p̂j

p̂i(1−p̂j)
.

Proof.

CE(ti) =

∫ 1

0

(Cα(1− p̂i)(1− yi) + Cβ p̂ix) dx

=
p̂i

p̂j

∫ 1

0

(Cα(1− p̂j)(1− (1− ρ + ρyi)) + Cβ p̂jx) dx

=
p̂i

p̂j

{
1

2
p̂jCβ + (1− p̂j)Cα − (1− p̂j)Cα

∫ 1

0

(1− ρ + ρyi)dx

}
=

p̂i

p̂j

{
1

2
p̂jCβ + (1− p̂j)Cα − (1− p̂j)Cα(1− (1− AUC(ti))ρ)

}
.(15)

Hence,

CE(ti)

CE(tj)
=

pi

p̂j

1
2
p̂jCβ + (1− p̂j)Cα − (1− p̂j)Cα(1− (1− AUC(ti))ρ)

1
2
p̂jCβ + (1− p̂j)Cα − (1− p̂j)CαAUC(tj)

. (16)

If p̂i > p̂j, and 1-ρ(1- AUC(ti)) < AUC(tj), we have CE(ti)
CE(tj)

> 1, or CE(ti) >

CE(tj). If p̂i < p̂j, and 1-ρ(1- AUC(ti)) > AUC(tj), we have CE(ti)
CE(tj)]

< 1, or

CE(ti) < CE(tj).

4.2.2 Only α(tk) & β(tk) are available

When the p values in (6) are equivalent at different time tk (k = 1, ..., n), the

following approach can be used.
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Plot n points (β(tk), 1 − α(tk)) (k = 1, ..., n) on the ROC space, then

construct line Lk by linking points (0,0), (β(tk), 1 − α(tk)), and line L′
k by

linking points (β(tk), 1−α(tk)), and (1,1). Lk, L′
k, a line linked from (0,0) to

(1,0)), and a line linked from (1,0) to (1,1), construct a rectangle. The area

of this rectangle represents the performance of burn-in at time tk. The time

point with the largest area among the burn-in times (t1, ..., tn) is the optimal

time burn-in time. Table 5 presents the algorithm of searching the optimal

burn-in time t∗.

When the p values in (6) are different with time tk (k = 1, ..., n), the

following approach can be used. Selecting the largest value, p∗, from pk

(k = 1, 2, ..., n), for a time point tk,

C(tk) = Cα(1− pk)α(tk) + Cβpkβ(tk)

= Cα(1− p∗)

(
(1− pk)

1− p∗
α(tk)

)
+ Cβp∗

(
pk

p∗
β(tk)

)
. (17)

Hence the algorithm from Table 5 can be used to search the optimal points

among points (pk

p∗
β(tk), 1−1−pk

1−p∗
α(tk)). This approach subjects to (1−pk)

1−p∗
α(tk) <

1.

4.3 ROC analysis to models developed by Tseng et al.
[20, 21]

Tseng et al. [20, 21] obtain (10) by minimizing (2). Then they determine

the optimal burn-in time by choosing a time point from tk (for example,

tk = 2, 4, 8, 16, 32, 64, 128 in Tseng et al. [21]) that minimizes the following

equation.

C1(t) = Cα(1− p)α(t) + Cβpβ(t) + Copet + Cmea(log2 t + 2), (18)
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where Cope & Cmea denote unit cost of operating the degradation test and

the cost of measuring data on a unit, respectively.

Tseng & Peng [21] give the mean and variance of gi(t)+σB(τ(t)) (i = 1, 2)

are gi(t) & σ2τ(t), respectively. The mean & variance of
∫ t

0
gi(s)+σB(τ(s))ds

(i = 1, 2) are
∫ t

0
gi(s)ds & 2σ2

∫ t

0
(t− s)τ(s)ds, respectively.

Denote

∆0(t) =
g2(t)− g1(t)√

σ2τ(t)
,

and

∆1(t) =

∫ t

0
(g2(s)− g1(s))ds√

2σ2
∫ t

0
(t− s)τ(s)ds

.

According to Hanley & McNeil [25], the values of the AUC for the NCD &

CD method are given by

AUC0 = Φ(
∆0√

2
), (19)

and

AUC1 = Φ(
∆1√

2
), (20)

respectively. Here Φ denotes the cumulative distribution function of a stan-

dard normal distribution.

Based these two AUC values, we have

Lemma 3. If ∆0(t) < ∆1(t) for all t, then the CD method is preferable to

the NCD method, and vice versa.

Proof. If ∆0(t) < ∆1(t) for all t, then from (19) & (20), AUC0 > AUC1.

According to (14), the larger value of the AUC is, the smaller the value of

the expected mis-classification cost.
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The results from Lemma 2 is the same as the results of Theorem 3 in the

paper [21] which, however, takes a long proof.

For a fixed t, the probabilities of mis-classifying are

α0 = Φ

(
ξ∗0(t)− g2(t)√

σ2τ(t)

)
, β0 = 1− Φ

(
ξ∗0(t)− g1(t)√

σ2τ(t)

)
, (21)

for the NCD method and

α1 = Φ

 ξ∗1(t)−
∫ t

0
g2(s)ds√

2σ2
∫ t

0
(t− s)τ(s)ds

 , β1 = 1− Φ

 ξ∗1(t)−
∫ t

0
g1(s)ds√

2σ2
∫ t

0
(t− s)τ(s)ds

 ,

(22)

for the CD method, respectively.

For time point tk, one can draw an ROC curve that represents the change

of the values 1 − α(tk) over β(tk). Given n time points, n curves can be

drawn, and n values of AUC of the corresponding curves can be calculated.

If p, Cope

Cα

Cmea

Cα
can be estimated, and

α′(t) = α(t) +
Copet + Cmea(log2 t + 2)

Cα(1− p)
< 1, (23)

then C1(t) in (18) can be re-written as

C1(t) = Cα(1− p)α′(t) + Cβpβ(t). (24)

One can draw an ROC curve by plotting β(t) on the X-axis, and 1−α′(t) on

the Y-axis, and selects possible optimal burn-in times on the ROC convex

hull. (24) hold only if (23) is held. Examples from [19, 21] satisfies the

condition (23).

As the values of α(t) might be so small that all of points (β(t), 1− α(t))

are close to the line y = 1, which makes it hard to compare the points and
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draw an ROC convex hull. However, if one constitutes a new ROC space

properly, it is possible to magnify the space, which is the part of our interest.

The following Lemma proves that such procedure can not change the relative

positions among the points in the two ROC spaces.

Lemma 4. If we define a new ROC space as (Xn, Yn) based on the original

ROC space (Xo, Yo), set Xn = λXo & Yn = Yo − 1 + λ with 0 < λ ≤ 1,

(β(tk), 1−α(tk)) on the ROC convex hull in the original ROC space (Xo, Yo)

will be still on the ROC convex hull in the new ROC space (Xn, Yn).

Proof. If the angle between the X-axis and the line constituted by linking

points (β(ti), 1−α(ti)) & (β(tj), 1−α(tj)) does not change, or changes with

an identical proportion from the original ROC space (Xo, Yo) to the new

ROC space (Xn, Yn), then points on an ROC convex hull in the original

ROC space will still on an ROC convex hull in the new ROC space. The

angle made in the orignal ROC space can be expressed as
α(ti)−α(tj)

β(tj)−β(ti)
. Hence,

we have

α(toi)− α(toj)

β(toj)− β(toi)
=

α(tni)− 1 + λ− α(tnj) + 1− λ

λβ(tnj)− λβ(tni)

=
1

λ

α(tni)− α(tnj)

β(tnj)− β(tni)
, (25)

where α(toi), α(toj), β(toi), and β(toj) are for the original ROC space, and

α(tni), α(tnj), β(tni), and β(tnj) are for the new ROC space.

This proves that the procedure does not change the relative positions of

the points in the ROC spaces.
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5 Illustrative examples

This section gives one numerical example to illustrate the validity of the

approaches introduced in the paper. We first determine the optimal burn-in

times for the cases when W (t) & N(t) are available, but Cα, Cβ & p are not

available. It uses ROC analysis to compare the expected mis-classification

cost in (14) when the distributions W (t) & N(t) are available. Lemma 1

re-exams the illustrative examples from [21] are also used in this example.

Then we assume that further information including p, Cβ & Cα are available,

and select optimal burn-in times on the ROC convex hull for the example

given by [21].

Tseng & Peng [21] give an illustrative example on obtaining the optimal

burn-in time. It optimizes the burn-in time for a kind of new LED lamps

which are developed for copy/fax machines. The cost criterion is set as in

(18). They investigate two cases: γ = 0.6 & γ = 0.1. For simplicity, here we

only study the case with γ = 0.6. Relevant parameters shown in Table 6 are

given in [21].

Using Lemma 2, we set i = 1, 2, 3, 4, 5, 6, 7, p̂j = p6 = 0.0569 for the

NCD method. p6 is the smallest one, i.e., p̂j < p̂i, whereas the AUC value

at t6 (0.8467) is larger than that at t7 (0.8439), therefore, CE(t6) > CE(t7)

(see Table 3). This suggests t = 128 should not be considered as an optimal

burn-in time with any costs of Cα, Cβ, Cmea, and Copt.

Similarly, for the CD method, we have p6 < p7 & CE(t6) > CE(t7) (see

Table 3). According to Lemma 1, we suggest t = 128 should not be considered

as an optimal burn-in time with any costs of Cα, Cβ, Cmea, and Copt.
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Table 3 also tells us that the CD method is superior to the NCD method

because the AUC value at each time point of the CD method is larger than

that of the NCD method.

All of the above results in this Example are reached when no cost infor-

mation is used. This can be verified as follows, when cost information about

Cα, Cβ, Copt, and Cmea are available.

The cost of Coptt + Cmea(log2 t + 2) at time ti (i = 1, ..., 7) are 0.34, 0.48,

0.66, 0.92, 1.34, 2.08, and 3.46, respectively. Comparing these cost with cost

in Table 6 of the CD & NCD methods, we can draw two curves of mis-

classification cost versus time ti, as shown in Figure 6, which is obtained

based on removing the operating & measuring cost from the total burn-in

cost. Although the mis-classification cost at time ti (i = 1, ..., 5) is larger

than at time t6 (see Figure 6), we cannot conclude that burn-in cost at time

ti (i = 1, ..., 5) is less than time t6. This is because the operating & measuring

cost is cheaper at time ti (i = 1, ..., 5) . At time t7, however, both the mis-

classification cost, and operating & measuring cost are larger than time t6,

it is concluded that the burn-in cost at t6 = 64 is less than that at time

t7 = 128. This verifies that our results are correct.

Table 3: AUC values for γ = 0.6.
t = 21 t = 22 t = 23 t = 24 t = 25 t = 26 t = 27

AUC (NCD method) 0.9254 0.8963 0.8761 0.8599 0.8554 0.8467 0.8439
AUC (CD method) 0.9443 0.9108 0.8900 0.8698 0.8652 0.8581 0.8521

In the following, we have used cost information including Cα & Cβ.

We use the above example to draw a ROC convex hull (see Figure 7) for

searching optimal burn-in times for the case γ = 0.6. Setting p∗ = 0.0646,
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Figure 6: Misclassification cost at different times.

and using (17) based on quantities of αi & βi (i = 0, 1) from Table 6, one

can obtain new probabilities of mis-classifying as shown in Table 4.

From Figure 7, only time point t6 for the CD method is on the ROC

convex hull, which matches the above analytical result, that is, t6 is the

optimal burn-in time for the method CD if the operating & measuring cost

is not considered.

Table 4: 1− α′ & β′ (γ = 0.6 with NCD & CD methods).
t = 21 t = 22 t = 23 t = 24 t = 25 t = 26 t = 27

β′ 0.7414 0.5995 0.5770 0.6036 0.5269 0.5016 0.5390
NCD 1− α′ 0.9717 0.9806 0.9834 0.9850 0.9864 0.9872 0.9860

β′ 0.5411 0.5120 0.5110 0.5622 0.4927 0.4646 0.6069
CD 1− α′ 0.9749 0.9811 0.9834 0.9846 0.9862 0.9870 0.9855
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Figure 7: ROC space with γ = 0.6.

6 Conclusions

When a population of components consists of weak & strong subpopula-

tions, to remove the weak subpopulation can improve the reliability of the

population. This goal can be achieved by many approaches, from which opti-

mal approaches can be selected by minimizing the expected mis-classification

cost. When little information about mis-classification cost & the proportion

of weak & strong components are available, ROC (receiver operating char-

acteristic) analysis is an ideal tool for selecting possible optimal models &

discard suboptimal approaches. This approach is introduced in this paper.

Burn-in is a widely used procedure to remove weak components for a mix-

ture of strong & weak populations. However, performing burn-in for such a

population cannot ensure that all of weak components would be removed (or

all of strong components would be remained), which will incur losses. In
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order to minimize the losses, one can optimize the burn-in time. Determin-

ing optimal burn-in times might have several steps such as estimating life

distributions of the components, and various costs incurred. The proportion

of the weak (or strong ) population, and associated costs, should be given

in order to estimate the expected burn-in cost for the entire population cor-

rectly. However, in reality, it can be to hard to obtain the life distributions of

the weak (or strong ) population, and costs incurred when a strong (or weak)

component fails through (or survives) burn-in, to optimize burn-in time in

such scenarios is useful and helpful for practical use. However, little research

can be found in the reliability literature to tackle such problems, which was

discussed in this paper.

The main contributions of the paper are

• weak & strong sub-populations are classified using ROC analysis;

• an optimization criterion for minimizing the burn-in error is introduced;

and

• an algorithm is presented to find the optimal burn-in time.
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Table 5: Searching the optimal burn-in time t∗.
Denote l1 as the line linking from (0,0) to (1,0), and l2 from (1,0) to (1,1), respectively

Inputs
ti: burn-in time (where i = 1, ..., n)

wi
Mw

: proportion of weak components failing through survive at time ti
mi
Mn

: proportion of strong components failing through survive at time ti
Outputs

t∗: optimal burn-in time
Steps
1: A ⇐ 0
2: for i = {1, 2, ..., n} do
3: plot Di = (1− wi

Mw
, 1− mi

Mn
) on the ROC space

4: construct the ROC convex hull, select the points on the convex hull, say, Hi

5: draw line l3 and l4 by linking (0,0) to Hi, and (1,1) to Hi, respectively
6: calculate Ai= the area of the rectangle built by lines l1, l2, l3, l4
7: if Ai > A, then A ⇐ Ai

8: end
9: t∗ ⇐ ti if its corresponding AUC=A.
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Table 6: Parameters estimated when γ = 0.6 (see [21]).
t = 21 t = 22 t = 23 t = 24 t = 25 t = 26 t = 27

δ̂ 0.3628 0.3788 0.3758 0.3740 0.3781 0.3782 0.3779
γ̂ 0.8231 0.6846 0.6496 0.5988 0.5939 0.6042 0.5862
η̂1 0.0255 0.0258 0.0254 0.0247 0.0245 0.0243 0.0231
η̂2 0.0164 0.0167 0.0168 0.0169 0.0169 0.0170 0.0170
σ̂ 0.0043 0.0046 0.0047 0.0049 0.0049 0.0049 0.0050
p̂ 0.1102 0.0798 0.0700 0.0659 0.0597 0.0569 0.0646
NCD method
α0 0.0297 0.0197 0.0167 0.0150 0.0135 0.0127 0.0140
β0 0.4346 0.4853 0.5325 0.5917 0.5701 0.5695 0.6390
Cost 6.368 5.146 5.023 5.343 5.224 5.771 8.028
CD method
α1 0.0264 0.0192 0.0167 0.0154 0.0137 0.0129 0.0143
β1 0.3172 0.4145 0.4716 0.5511 0.5331 0.5275 0.6069
Cost 5.011 4.607 4.640 5.122 5.037 5.568 7.868
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