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Preface

Computer technology changes with frightening speed; the fundamentals, however,
remain remarkably static. The architecture of the standard computer is hardly changed
from the machines which were built half a century ago, even though their size and
power are incomparably different from those of today.

In programming, modern ideas like object-orientation have taken decades to
move from the research environment into the commercial mainstream. In this light,
a functional language like Haskell is a relative youngster, but one with a growing
influence to play, particular as we move to multicore chips as the norm in all kinds
of computing device. So, why is it a good idea to learn a functional programming
language like Haskell?

• Functional languages are used to build secure, error-free, systems that are
used in practice by thousands of people every day. For example, the Xmonad
window manager for linux systems (xmonad.org) is written entirely in Haskell,
and the Cryptol language (www.cryptol.net), used to design cryptographic
systems in C and VHDL, is itself implemented using Haskell.

• Functional languages are general purpose programming languages, but also
provide the ideal toolkit for building Domain Specific Languages (DSLs) which
give users in a particular application area – such as hardware design or finan-
cial modelling – a language particularly suited to their needs.

• Functional languages provide a laboratory in which the crucial ideas of mod-
ern programming are presented in the clearest possible way. This accounts
for their widespread use in teaching computing science and also for their in-
fluence on the design of other languages. A case in point is the design the
generics in Java, which are directly modelled on polymorphism in Haskell.

• Functional languages help you think about programming in a different way
from Java, C#, C++ and so forth: even if you are never going to write any large
programs in Haskell, what you have learned will make you a better Java, C#
or C++ programmer, because you can see a bigger space of possibilities for
writing your code.

• Finally, it may well be that you will find yourself working with a functional
language after all, even if it is not Haskell. Microsoft now provide the F# func-
tional language as a standard part of their Visual Studio suite, and this is in

xiii
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increasing use in a number of sectors, particularly finance. Erlang, the concur-
rent functional language, is used to provide scalable infrastructure for many
web-based systems, including Facebook chat and other services from Amazon
and Yahoo!

This book provides a tutorial introduction to functional programming in Haskell.
The remainder of the preface begins with a brief explanation of functional program-
ming, Haskell and GHCi, and continues by describing the intended audience for
the book. To give a sense of how the book differs from others in the area we then
summarise its distinctive points before giving a chapter-by-chapter summary of its
contents. We then summarise how this edition differs from earlier ones, look at how
the book can be read, and conclude by presenting a summary of the case studies it
contains.

What is functional programming?

Functional programming offers a high-level view of programming, giving its users
a variety of features which help them to build elegant yet powerful and general li-
braries of functions. Central to functional programming is the idea of a function,
which computes a result that depends on the values of its inputs.

An example of the power and generality of the language is the map function,
which is used to transform every element of a list of objects in a specified way. For
example, map can be used to double all the numbers in a sequence of numbers or to
invert the colours in each picture appearing in a list of pictures.

The elegance of functional programming is a consequence of the way that func-
tions are defined: an equation is used to say what the value of a function is on an
arbitrary input. A simple illustration is the function addDouble which adds two in-
tegers and doubles their sum. Its definition is

addDouble x y = 2*(x+y)

where x and y are the inputs and 2*(x+y) is the result.
The model of functional programming is simple and clean: to work out the value

of an expression like

3 + addDouble 4 5

the equations which define the functions involved in the expression are used, so

3 + addDouble 4 5
; 3 + 2*(4+5)
; 3 + 2*9
; 3 + 18
; 21

This is how a computer would work out the value of the expression, but it is also pos-
sible to do exactly the same calculation using pencil and paper, making transparent
the implementation mechanism.
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It is also possible to discuss how the programs behave in general. In the case of
addDouble we can use the fact that x+y and y+x are equal for all numbers x and
y to conclude that addDouble x y and addDouble y x are equal for all x and y.
A property like this can be tested against random data, or indeed we can formally
prove something like this from the definition of addDouble. Random testing and
proof for properties like this are much more practical for Haskell than for traditional
imperative and object-oriented (OO) languages.

Haskell and GHCi

This text uses the programming language Haskell, which has freely available com-
pilers and interpreters for most types of computer system. Here we use the GHCi
interpreter which provides an ideal platform for the learner, with its fast compile cy-
cle, simple interface and free availability for Windows, Unix and Macintosh systems.

Haskell began life in the late 1980s as an intended standard language for lazy
functional programming, and since then it has gone through various changes and
modifications. This text is written in Haskell 2010, which is the latest standard for
the language at the time of writing. The standard for Haskell is under yearly review,
but it is likely that the parts of the language discussed here will be stable in future
versions of the standard..

While the book covers most aspects of Haskell 2010, it is primarily a program-
ming text rather than a language manual. Details of the language and its libraries as
well as a wealth of other material about Haskell are available from the Haskell home
page, www.haskell.org.

Who should read this book?

This text is intended as an introduction to functional programming for computer
science and other students, principally at university level. It can be used by begin-
ners to computer science, or more experienced students who are learning functional
programming for the first time; either group will find the material to be new and
challenging.

The book can also be used for self-study by programmers, software engineers
and others interested in gaining a grounding in functional programming.

The text is intended to be self-contained, but some elementary knowledge of
commands, files and so on is needed to use any of the implementations of Haskell.
Some logical notation is introduced in the text; this is explained as it appears. In
Chapter 20 it would help to have an understanding of the graphs of the log, n2 and
2n functions.

What is distinctive about the book?

Introductory programming texts will always have a lot in common, but each has its
distinct ethos. These are the key aspects of Haskell: The Craft of Functional Pro-
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gramming:

• Haskell has a substantial library of built-in functions, particularly over lists,
and we exploit this, encouraging readers to use these functions before seeing
the details of their definitions. This allows readers to progress more quickly,
and also accords with practice: most real programs are built using substantial
libraries of pre-existing code, and it is therefore valuable experience to work
in this way from the start.

• From the start we introduce property-based testing with QuickCheck. This
has shown itself to be a lightweight yet effective way of improving program
quality, and examples throughout the book illustrate just that.

• The text gives a thorough treatment of reasoning about functional programs,
beginning with reasoning about list-manipulating functions. These are cho-
sen in preference to functions over the natural numbers for two reasons: the
results one can prove for lists seem substantially more realistic, and also the
structural induction principle for lists seems to be more acceptable to stu-
dents. From the start, property-based testing and proof are compared and
contrasted.

• The Picture case study is introduced in Chapter 1 and revisited throughout
the text; this means that readers see different ways of programming the same
function, and so get a chance to reflect on and compare different designs. The
same interface for pictures is also implemented using browser-based graphics
for realistic presentation.

• There is an emphasis on Haskell as a practical programming language, with
an early introduction of modules, and the do notation for I/O. Other monadic
programs are deferred to later in the book.

• Types play a prominent role in the text. Every function or object defined has
its type introduced at the same time as its definition. Not only does this pro-
vide a check that the definition has the type that its author intended, but also
we view types as the single most important piece of documentation for a def-
inition, since a function’s type describes precisely how the function is to be
used.

• A number of case studies are introduced in stages through the book: the pic-
ture example noted above, the game of Rock - Paper - Scissors, an interac-
tive calculator program, regular expression processing, a coding and decod-
ing system based on Huffman codes and a small queue simulation package.
These are used to introduce various new ideas and also to show how existing
techniques work together. There’s an overview of what each case study covers
on page xxi.

• A particular emphasis is laid on using Haskell for embedded domain-specific
languages, with a chapter discussing this and giving a number of examples of
monadic and combinator-based DSLs.
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• Support materials on Haskell, including a substantial number of Web links, are
included in the concluding chapter. Various appendices contain other backup
information including details of the availability of implementations, common
GHCi errors and a comparison between functional, imperative and OO pro-
gramming.

• Other support materials appear at www.haskellcraft.com

Outline

The introduction in Chapter 1 covers the basic concepts of functional programming:
functions and types, expressions and evaluation, definitions, proof and property-
based testing with QuickCheck. Some of the more advanced ideas, such as higher-
order functions and polymorphism, are previewed here from the perspective of the
example of pictures built from characters. A second implementation of pictures
illustrates a discussion about domain-specific languages, which are the subject of
Chapter 19. The picture examples is one of the running examples in the book, which
we revisit a number of times to illustrate new concepts as they are introduced.

Chapter 2 looks at the practicalities of GHCi, the interactive version of the Glas-
gow Haskell Compiler. GHCi comes as a part of the Haskell platform, which is also
introduced here. After looking at the basics of the module system, the standard pre-
lude and the Haskell libraries, we look at a first exercise using an SVG implemen-
tation of the Picture type. These two chapters together cover the foundation on
which to build a course on functional programming in Haskell.

Information on how to build simple programs over numbers, characters, strings
and Booleans is contained in Chapter 3. The basic lessons are backed up with ex-
ercises, as is the case for all chapters from here on. With this basis, Chapter 4 steps
back and examines the various strategies which can be used to define functions,
such as auxiliary functions, local definitions and recursion. This chapter also in-
troduces the simplest data types in the form of enumerated types. These types are
used in the first discussion of the Rock - Paper - Scissors game which is another case
study which we return to later in the book.

Structured data, in the form of tuples, lists and algebraic types come in Chapter
5. Algebraic types are used to represent products and sums, so giving records and
variant records in other terminology. After introducing the idea of lists, program-
ming over lists is performed using two resources: the list comprehension, which ef-
fectively gives the power of map and filter; and the first-order prelude and library
functions.

Nearly all the list prelude functions are polymorphic, and so polymorphism is
introduced at the start of Chapter 6, which also examines the list functions in the
standard prelude, and then uses them in various extended examples, and only in
Chapter 7 is primitive recursion over lists introduced, and a text processing case
study provides a more substantial case study of how recursion is used in defining
list functions.

Chapter 8 shows how simple terminal IO is handled in Haskell: to do this the
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do notation for writing programs of type (IO a) is introduced as an extension of
Haskell’s syntax, with the explanation of what underlies it being postponed to Chap-
ter 18, where monads are covered. An interactive version of the Rock - Paper - Scis-
sors game is used to illustrate IO in practice.

Chapter 9 introduces reasoning about list-manipulating programs, on the ba-
sis of a number of introductory sections giving the appropriate logical background.
Guiding principles about how to build inductive proofs are presented, together with
a more advanced section on building successful proofs from failed attempts. The
chapter also describes the links between property-based testing and proof.

Higher-order functions are introduced in Chapters 10 and 11. First functional
arguments are examined, and it is shown that functional arguments allow the im-
plementation of many of the ‘patterns’ of computation identified over lists at the
start of the chapter. Chapter 11 covers functions as data, defined both as lambda-
expressions and by partial application. These ideas are illustrated in Chapter 12 by
revisiting a number of running examples, including pictures and the RPS game, as
well as introducing new case studies of regular expression processing and index cre-
ation.

Type classes allow functions to be overloaded to mean different things at dif-
ferent types; Chapter 13 covers this topic as well as surveying the various classes
built into Haskell, and exploring the way in which types are checked in Haskell. In
general, type checking is a matter of resolving the various constraints put upon the
possible type of the function by its definition.

Algebraic types like trees are the subject of Chapter 14, which covers all aspects of
algebraic types from design and proof to their interaction with type classes, as well as
introducing numerous examples of algebraic types in practice. These examples are
consolidated in Chapter 15, which contains the case study of coding and decoding
of information using a Huffman-style code. The foundations of the approach are
outlined before the implementation of the case study. Modules are used to break
the design into manageable parts, and the more advanced features of the Haskell
module system are introduced at this point.

An abstract data type (ADT) provides access to an implementation through a
restricted set of functions. Chapter 16 explores the ADT mechanism of Haskell and
gives numerous examples of how it is used to implement queues, sets, relations and
so forth, as well as giving the basics of a simulation case study.

Chapter 17 introduces lazy evaluation in Haskell which allows programmers a
distinctive style incorporating backtracking and infinite data structures. As an ex-
ample of backtracking there is a parsing case study, and infinite lists are used to give
‘process style’ programs as well as a random-number generator.

Haskell programs can perform input and output by means of the IO types, first
introduced in Chapter 8. Chapter 18 revises this, and illustrates some larger-scale
examples, including an interactive front-end to the calculator. The foundations of
the do notation lie in monads, which can also be used to do action-based program-
ming of a number of different flavours, some of which are examined in the second
half of the chapter.

Domain–specific languages are one area where Haskell has been used very effec-
tively. Chapter 19 explains what is a DSL, how a DSL can be embedded in a language
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like Haskell, and the distinction between shallow and deep embeddings. Example
DSLs build on earlier examples, as well as introducing new ones such as the genera-
tor language for QuickCheck, which neatly illustrates a monadic DSL.

The text continues with an examination in Chapter 20 of program behaviour, by
which we mean the time taken for a program to compute its result, and the space
used in that calculation. It also explains the basics of how to measure the run-time
behaviour of Haskell programs. Chapter 21 concludes by surveying various appli-
cations and extensions of Haskell as well as looking at further directions for study.
These are backed up with web and other references.

The appendices cover various background topics. The first examines links with
functional and OO programming, and the second gives a glossary of commonly used
terms in functional programming. The others include a summary of Haskell op-
erators and GHCi errors, together with details of the various implementations of
Haskell. The final appendix contains suggestions for larger-scale Haskell projects.

The Haskell code for all the examples in the book, as well as other background
materials, can be downloaded as explained on www.haskellcraft.com.

What has changed from the second edition?

The third edition has seen changes throughout. Material, particularly by way of
new examples, has been added to every chapter, and the order of presentation has
changed in response to feedback on the previous edition. In detail the changes are
these:

• QuickCheck is used throughout to test Haskell functions. Properties are devel-
oped right from the start, and QuickCheck is used to verify them – or indeed
to show that properties can be erroneous too. HUnit is also introduced, but is
used less intensively.

• QuickCheck is presented as complementary to proof, which has always been
included in the book: QuickCheck can provide strong evidence for a property
holding, while proof can establish its validity. Some custom generators are
supplied in the code base for the book so that programmers can test their code
before the details of how generators are defined are discussed in Chapter 19.

• A number of new examples have been included, some in a single place and
others running through a number of chapters. These include the Rock - Paper
- Scissors (RPS) game, card games in general, an SVG rendering of Pictures and
regular expression. There is a particular emphasis on using functions as data:
they appear as strategies in RPS and as recognisers for regular expressions.

• One area where Haskell has been particularly successful is in providing the
substrate for developing embedded domain-specific languages (DSLs) and Chap-
ter 19 is devoted to this. It begins by explaining the reasons for developing
DSLs, and then examines the difference between shallow and deep embed-
dings, looking at the examples of pictures and regular expressions. It con-
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cludes with a discussion of monadic DSLs, exemplified by naming in a pic-
tures DSL and by the generators of QuickCheck.

• The text has been reordered so that some material comes earlier than it did
previously.1 Material on data types comes substantially earlier, with enumer-
ated types coming into Section 4.3 and non-recursive types into Section 5.3.
Programming for IO interactions is introduced in Chapter 8 to support the
Rock - Paper - Scissors example: this treatment simply presents the do no-
tation as the way that IO is programmed, and delays an explanation of the
underlying mechanism to Chapter 18. Finally, local definitions first come into
Section 4.2.

• The second edition used Hugs as its preferred implementation; in this edition
we have moved to using GHCi, which comes as a part of the Haskell Platform.
As well as introducing GHCi, we have added detailed discussions of how to
leverage the best from Haskell libraries and packages through using Hackage,
Cabal, Hoogle and Hayoo!

• A realistic implementation of pictures – using the SVG / HTML5 capabilities
of modern web browsers – has been added to the ‘ASCII art’ implementation
of the second edition.

• The discussions in Chapter 20 on performance have been supplemented with
material on how to measure the performance of real programs in GHC.

• A collection of project suggestions has been added as an appendix. Further
support materials are available at the homepage www.haskellcraft.com,
and solutions to exercises are available to bona fide instructors by application
to the publishers.

What changed from the first edition to the second?

These changes were reported in detail in the preface to the second edition, but in
summary the changes were these.

• The approach to defining functions over lists. To avoid the situation in which
students try to define each new function over lists by recursion, we first intro-
duced list comprehensions and list library functions, only introducing recur-
sion after that. The jury is out over whether it effected the change it was meant
to.

• The introduction of the Pictures case study as a running theme, giving vi-
sual feedback on programs, and also showing the role of higher-order, poly-
morphic functions in general-purpose Haskell list processing. An example I
still like, but seen by some as making Haskell look lame.

1It is intriguing that requests to move material forward outnumber those to delay it by a factor of
more than ten to one: perhaps the ideal book introduces all its material in the first chapter, and uses the
remaining twenty to discuss and expand on it?
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• The edition was Haskell 98 compliant, and in particular used standard names
for standard functions. It also contained an introduction to the Hugs inter-
preter, which was the implementation of choice for the book

• Using the do notation , rather than the functional notation of >>= and return,
for I/O programs and monadic programs in general.

• A more thorough treatment of Haskell typing and the mechanics of type check-
ing in practice.

• The addition of some material on a problem-solving approach to getting started
with programming, loosely based on Polyá’s work.

How to read this book

This introduction to functional programming in Haskell is designed to be read from
start to finish. New material comes in though the book, and is illustrated as it is
introduced by a mixture of new examples and running case studies. Some parts
of the text stand apart from the general flow, and can safely be omitted to build a
shorter course:

Program proof The book emphasises program proof, in a thread starting with Chap-
ter 9, and followed up in Sections 11.6, 14.7, 16.10 and 17.9.

Program performance Similarly, Chapter 20 gives a self-contained treatment of pro-
gram time and space behaviour.

The case studies in the book are designed to illustrate particular points and con-
structs as well as to give examples of larger programs than single function defini-
tions.

Pictures This is used to show the utility of lists in modelling, as well as the value of
the higher-order and polymorphic functions over lists, such as zipWith, map
and (++). Pictures are also used to illustrate shallow and deep embeddings of
domain-specific languages in Chapter 19, with a variant of ‘named’ pictures
giving an example of a monadic DSL.

Rock - Paper - Scissors In this example, we see Move as a first example of an enu-
merated type in Section 4.3, and strategies as an example of ‘functions as data’
in Section 8.1. It also provides an example of an IO interaction later in that
chapter.

Calculator The calculator example begins in Section 14.2 with the Expr type, a re-
cursive algebraic data type describing numerical expressions. Chapter 16 in-
troduces the abstract type of Store used to model the values of the variables.
In Section 17.5 we see how to parse text into numerical expressions and finally
in Section 18.3 we give an interactive read-evaluate-print loop for calculation.
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Library database When this is introduced in Section 5.7 it shows how to build pro-
grams over lists using list comprehensions, without using explicit recursion.

Supermarket billing This example comes in Section 6.7 and again illustrates the
utility of the list library functions independently of explicit recursive defini-
tions.

Text processing In text processing, Section 7.6, we present an example where ex-
plicit recursion over lists is necessary, in contrast to the previous two.

Regular expressions Regular expressions are first introduced as an example of ‘func-
tions as data’, and then discussed again in Chapter 19 when a deep embedding
is developed to contrast with the earlier treatment, a shallow embedding.

Huffman codes Chapter 15 is devoted to this multi-module application. The prin-
cipal purpose of this is to show a larger example of programming in practice.

Other examples Other examples of simulation, relations and graphs are used to il-
lustrate lazy evaluation in Chapter 17.
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Chapter 1

Introducing functional
programming

We start with an overview of what functional programming is all about, and what
makes it different from other kinds of programming. In doing this we’ll also begin to
learn some Haskell. The chapter has three aims.

• We will introduce the main ideas underpinning functional programming. We
explain what it means to be a function and a type. We show how to find the
value of an expression, and how we can write down an evaluation ourselves,
step by step. Once we have seen how to use functions, we’ll look at how to
define functions for ourselves. To understand how functions behave we’ll look
at how to test functions, but also how we can use a mathematical proof to
show that a function behaves in a particular way.

• To see how this all works in practice we’ll introduce a case study of pictures.
We do this not only because it gives us a chance to preview aspects of Haskell
in practice, but also because it’s an example of a domain-specific language
(DSL), for which Haskell is very well suited.

• Finally, we want to give a preview of some of the more powerful and distinc-
tive ideas in functional programming, and contrast them with other program-
ming paradigms like object-oriented programming. We can then show why
functional programming is the approach of choice for many practising pro-
grammers in the financial sector, in Web 2.0 and in efficient multicore pro-
gramming for example. We’ll also explain why a knowledge of functional pro-
gramming will make you a better programmer, whatever area you eventually
work in.

Where it makes sense we give pointers to later chapters of the book where the ideas
are explained in more detail and illustrated by other examples. Many of the topics
we cover are of more general interest and apply to other functional languages, as

1
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discussed in Chapter 21; nevertheless, this book is principally intended to be a text
on functional programming in the Haskell language.

1.1 Computers and modelling

In the last sixty years computers have moved from being enormous, expensive, scarce,
slow and unreliable to being small, cheap, common, fast and relatively depend-
able. The first computers were ‘stand-alone’ machines, but now computers are net-
worked across the world, as well as being embedded in domestic machines like cars
and washing machines, and forming the heart of smart phones and other personal
devices.If you’re still to be convinced of how important computers are, just take
a minute to think of what the effect would be of all computers stopping working:
things would descend into chaos overnight.

The fundamental purpose of computing – to process and manipulate symbolic
information – hasn’t changed over time. This information can represent a simple
situation, such as the items bought in a supermarket shopping trip, or more com-
plicated ones, like the weather system above Europe. Given this information, we
are required to perform tasks like calculating the total cost of a supermarket trip, or
producing a 24-hour weather forecast for southern England.

How are these tasks achieved? We need to write a description of how the infor-
mation is manipulated. This is called a program and it is written in a programming
language. A programming language is a formal, artificial language used to give in-
structions to a computer. In other words the language is used to write the software
which controls the behaviour of the hardware.

Despite them shrinking from room- to pocket-size, the way that computers work
– the assembly of gates and other circuits, put together to form processing elements
and memory – has changed very little; on the other hand, the ways in which they are
programmed have developed dramatically. Initially programs were written using
instructions which controlled the hardware directly, whereas modern programming
languages aim to work at the level at which the programmer will herself think about
the problem rather than at the level of the machine itself.

The programming language is made to work on a computer by an implementa-
tion, which is itself a program and which runs programs written in the higher-level
language on the computer in question.The purpose of this text is to teach you about
how to write functional programs, so we shall be occupied with the upper half of the
diagram above, and not the details of implementation, which are covered in detail
in a number of texts (Peyton Jones 1987; Peyton Jones and Lester 1992)).

Our subject here is functional programming, which is one of a number of differ-
ent programming styles or paradigms; others include object-oriented (OO), struc-
tured and logic programming. How can there be different paradigms, and how do
they differ? One very fruitful way of looking at programming is that it is the task
of modelling situations – either real-world or imaginary – within a computer. Each
programming paradigm will provide us with different tools for building these mod-
els; these different tools allow us – or force us – to think about situations in different
ways. A functional programmer will concentrate on the relationships between val-
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ues, while an OO programmer will concentrate on the objects, say. Before we can say
anything more about functional programming, we need first of all to explain what it
means to be a function; this we do now.

1.2 What is a function?

A function is something which we can picture as a box with some inputs and an
output, like this:

The function gives an output value which depends upon the input value(s). We will
often also use the term result for the output, and the terms arguments or parame-
ters for the inputs.

A simple example of a function is addition, +, over numbers. Given input values
12 and 34 the corresponding output will be 46.

inputs
output

+
12

34
46

The process of giving particular inputs to a function is called function application,
and (12 + 34) represents the application of the function + to 12 and 34.

Addition is a mathematical example, but there are also functions in many other
situations; examples of these include

• a function giving the distance by road (output) between two cities (inputs);

• a supermarket check-out program, which calculates the bill (output) from a
list of bar codes scanned in (input); and

• a process controller, which controls valves in a chemical plant. Its inputs are
the information from sensors, and its output the signals sent to the valve ac-
tuators.

Different paradigms are characterized by the different tools which they provide for
modelling. In a functional programming language we’ll focus on values – such as
bar codes and bills – and the functions which work over them – giving the total of
a bill, say. We’ll also see this in our running example of pictures, which we look at
next.
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1.3 Pictures and functions

Let’s take our first look at how pictures might be modelled. First of all, we want to
show that many common relationships between pictures are modelled by functions;
in the remainder of this section we consider a series of examples of this.

Reflection in a vertical mirror will relate two pictures, and we can model this by
a function flipV:

flipV

where we have illustrated the effect of this reflection on the ‘horse’ image. In a sim-
ilar way we have a function flipH to represent flipping in a horizontal mirror. An-
other function models the inversion of the colours in a (monochrome) image:

invertColour

Some functions will take two arguments, among them a function to scale images,

scale
2

a function to put one picture above another,

above
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and a function to place two pictures side by side.

beside

All the functions here show that functions take a number of inputs (or arguments,
parameters) and produce an output (or result) that depends on those inputs. What’s
more, this result only depends on those inputs, and will always give the same result
for the same inputs.

Before we can fully explain functional programming in Haskell, we have to ex-
plain types, which we do now.

1.4 Types

The functions which we use in functional programs will involve all sorts of different
kinds of value: the addition function + will combine two numbers to give another
number; flipV will transform a picture into a picture; scale will take a picture and
a number and return a picture, and so on.

A type is a collection of values, such as numbers or pictures, grouped together
because although they are different – 2 is not the same as 567 – they are the same
sort of thing, in that we can do the same things to them. In particular, we can apply
the same functions to them. For instance, we can find the larger of any two numbers,
but it doesn’t make sense to do this for two pictures or a number and a picture.

Each of the functions we have looked at so far will accept inputs from particular
types, and give a result of a particular type too. If we look at the addition function,
+, it only makes sense to add two scnumbers but not two pictures, say. This is an
example of the fact that the functions we have been talking about themselves have
a type, and indeed we can illustrate this diagrammatically:

Integer
+

Integer

Integer

The diagram indicates that + takes two whole numbers (or Integers) as arguments
and gives an Integer as a result. In a similar way, we can label the scale function
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Picture
scale

Picture

Integer

to indicate that its first argument is a Picture and its second is an Integer, with its
result being a Picture. We can see an example of this here, where above is correctly
applied to two Pictures

above

but when applied to a Picture and an Integer a type error occurs, indicating that
we have made a mistake:

above
2

<interactive>:1:12:
    No instance for (Num Picture)
      arising from the literal `2' at <interactive>:1:12
    Possible fix: add an instance declaration for (Num Picture)
    In the second argument of `above', namely `2'
    In the expression: above horse 2
    In the definition of `it': it = above horse 2

We have now explained two of the central ideas in functional programming: a type
is a collection of values, like the whole numbers or integers; a function is an opera-
tion which takes one or more arguments to produce a result. The two concepts are
linked: functions will operate over particular types: a function to scale a picture will
take two arguments, one of type Picture and the other of type Int, and return a
Picture.

In modelling a problem situation – often called a problem domain – types rep-
resent the things1 in the domain, while functions will represent what can be done

1I have not used the word ‘object’ here because that has a technical meaning in OO languages; you
could use it, but just remember it’s meant in the non-technical sense here.
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to transform or manipulate the objects. In the case of pictures, we’ll have a type
Picture to represent the pictures themselves, and functions give operations on pic-
tures, such as placing one above another, or scaling a picture.

A rough and ready rule is that types correspond to nouns, while functions, which
transform or combine values from these types, are like verbs. We come back to types
in Section 1.9 below.

1.5 The Haskell programming language

Haskell (Marlow 2010) is the particular functional programming language which we
use in this text. Haskell was first defined in 1990, and it has undergone a series of
changes since then: the version as I write is Haskell 2010.

Haskell is named after Haskell B. Curry, who was one of the pioneers of the ∏
calculus (lambda calculus), a mathematical theory of functions that has been an
inspiration to designers of a number of functional languages.

The best place to find out about everything to do with Haskell – including the
language definition itself, implementations, libraries, resources, mailing lists, news
and Haskell jobs – is the haskell.org website:

http://www.haskell.org/

There are various implementations of Haskell; in this text we shall use GHCi (2010).
‘GHCi’ is an abbreviation for ‘Glasgow Haskell Compiler interactive’: work on the
compiler was started when Simon Peyton Jones and Simon Marlow were at Glasgow
University; they are now both at Microsoft Research in Cambridge. GHCi provides
an excellent environment for the learner, since it is freely available for PC, Linux and
Mac OS X systems, it is efficient and compact and has a flexible user interface.

GHCi is an interpreter – which means loosely that it evaluates expressions step-
by-step as we might on a piece of paper – but it can also load code that has been
compiled into machine language. So, GHCi combines the flexibility of an interpreter
with the efficiency of a compiler, allowing its programs to run with a speed similar to
those written in more conventional languages like C and C++. Details of other differ-
ent implementations of Haskell can be found in Appendix D, and a full description
of all of them is available at the haskell.org page.

GHCi comes as a part of the Haskell Platform (Haskell Platform 2010), a stan-
dard distribution of the compiler and a selection of commonly-used libraries. Other
libraries are available from an extensive online database, HackageDB (Hackage 2010).
The Cabal (Cabal 2010) packaging and distribution infrastructure, which comes as
part of the Haskell Platform, makes it easy to download and install these libraries.
We describe how to work with the interactive version of GHC in the next chapter,
and how to use Hackage and Cabal in Chapter 6.

All the programs and examples used in the text can be downloaded as theCraft3e
package from Cabal and from the website for this book,

http://www.haskellcraft.com/
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This site also pulls together a collection of resources, further reading and other back-
ground materials for this text. The site will also keep track of how the book can be
used with later versions of the Haskell Platform.

1.6 Expressions and evaluation

In our first years at school we learn to evaluate an expression like (7 - 3) * 2

(7-3)*2 8

expression value

evaluation

4*2

to give the value 8. Expressions are built up by applying functions to numbers and
other expressions built in the same way. In this particular example, the functions
are subtraction - and multiplication *, and the numbers 7, 3 and 2; the value of the
expression is a number. This process of evaluation is automated in an electronic
calculator.

In functional programming we do exactly the same: we evaluate expressions to
give values, but in those expressions we use functions which model our particular
problem. For example, in modelling pictures we will want to evaluate expressions
whose values are pictures. If the picture

is called horse, then we can form an expression by applying the function flipV to
the horse. This function application is written by putting the function followed by
its arguments, like this:

flipV horse

and then evaluation will give

flipV horse

expression value

evaluation

flipV

A more complicated expression is
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invertColour (flipV horse)

the effect of which is to give a horse reflected in a vertical mirror – flipV horse as
shown above – and then to invert the colours in the picture to give

invertColour (flipV horse)

expression

value

ev
al
ua

tio
n

invertColour

invertColour (flipV      )

To recap, in functional programming, we compute by evaluating expressions which
use functions in our area of interest. We can see an implementation of a functional
language as something like an electronic calculator: we supply an expression, and
the system evaluates the expression to give its value. The task of the programmer is
to write the functions which model the problem area.

So, a functional program is made up of a series of definitions of functions and
other values. We will look at how to write these definitions now.

1.7 Definitions

A functional program in Haskell consists of a number of definitions. A Haskell def-
inition associates a name with a value of a particular type. We often use the word
‘identifier’ instead of ‘name’: they mean exactly the same thing.

In the simplest case a definition will look like this
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name :: type
name = expression

as in the example

size :: Integer
size = 12+13

which associates the name on the left-hand side, size, with the value of the expres-
sion on the right-hand side, 25, a value whose type is Integer, the type of whole
numbers or integers. The symbol ‘::’ can be read as “is a / is an”, so the first line
of the last definition reads ‘size is an Integer’. Note also that names for functions
and other values begin with a small letter, while type names begin with a capital
letter.

Suppose that we are supplied with the definitions of horse and the various func-
tions over Picture mentioned earlier – we will discuss in detail how to download
these and use them in a program in Chapter 2 – we can then write definitions which
use these operations over pictures. For example, we can say

blackHorse :: Picture
blackHorse = invertColour horse

so that the Picture associated with blackHorse is obtained by applying the func-
tion invertColour to the horse, thus giving

Another example is the definition

rotateHorse :: Picture
rotateHorse = flipH (flipV horse)

where Figure 1.1 illustrates the evaluation of the right-hand side, assuming that the
function flipH has the effect of reflecting a Picture in a horizontal mirror. The
effect of these two reflections is to rotate the picture through 180±.

In Section 1.6 we explained that GHCi works rather like a calculator in evaluating
expressions. How will it evaluate an expression like

size - 17

for instance? Using the definition of size given earlier, we can replace the left-hand
side – size – with the corresponding right-hand side – 12+13; this gives us the ex-
pression

(12+13) - 17

and so by doing some arithmetic we can see that the value of the expression is 8.
The definitions we have seen so far are simply of constant values; we now turn

find out how functions are defined.
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flipV

flipH

Figure 1.1: Calculating a rotation

1.8 Function definitions

We can also define functions, and we look at some simple examples now. To square
an integer we can say

square :: Integer -> Integer
square n = n*n

where diagrammatically the definition is represented by

Integer
square

Integer
n n*n

The first line of the Haskell definition of square declares the type of the thing being
defined. The arrow -> signifies that this is a function, with one input, an Integer,
appearing before the arrow, and, coming after the arrow, a result of type Integer.
So, we can read square :: Integer -> Integer as

“square is a function taking an Integer to an Integer”
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The second line gives the definition of the function: the equation says that when
square is applied to an unknown or variable n, then the result is n*n. How should
we read an equation like this? Because n is an arbitrary, or unknown value, it means
that the equation holds whatever the value of n, so that it will hold whatever integer
expression we put in the place of n, so that, for instance

square 5 = 5*5

and

square (2+4) = (2+4)*(2+4)

This is the way that the equation is used in evaluating an expression which uses
square. If we need to evaluate square applied to the expression e, we replace the
application square e with the corresponding right-hand side, e*e.

In general a simple function definition will take the form

name x1 x2 ... xk = e

the name of 
the function 
being defined

the formal 
parameters

the result, defined 
in terms of the 
formal parameters

The variables used in an equation defining a function stand for arbitrary values: the
definition holds for whatever value is chosen for these inputs. These variables are
called the formal parameters of the function because they stand for arbitrary values
of the parameters: the actual parameters are supplied when the function is applied,
as in square 7, where 7 is the actual parameter to square. We’ll only use ‘formal’
and ‘actual’ in the text when we need to draw a distinction between the two; in most
cases it will be obvious what is meant when ‘parameter’ is used.

Accompanying the definition of the function is a statement or declaration of its
type. That will look like this, using the scale function over pictures as an example:

scale :: Picture -> Integer -> Picture

the name of 
the function 
being defined

the types of 
the formal 
parameters

the type of 
the result

In the general case we have
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name :: t1 -> t2 -> ... -> tk -> t

the name of 
the function 
being defined

the types of 
the formal 
parameters

the type of 
the result

The definition of rotateHorse in Section 1.7 suggests a general definition of a ro-
tation function. To rotate any picture we can perform the two reflections, and so we
define

rotate :: Picture -> Picture
rotate pic = flipH (flipV pic)

We can read the definition like this:

To rotate a picture pic, we first apply flipV to form (flipV pic); we
then apply flipH to reflect this in a horizontal mirror, giving the result
flipH (flipV pic).

Given this definition, we can replace the definition of rotateHorse by

rotateHorse :: Picture
rotateHorse = rotate horse

which states that rotateHorse is the result of applying the function rotate to the
picture horse.

The pattern of definition of rotate – ‘apply one function, and then apply an-
other to the result’ – is so common that Haskell gives a way of combining functions
directly in this way. We define

rotate :: Picture -> Picture
rotate = flipH . flipV

The ‘.’ in the definition signifies function composition, in which the output of one
function becomes the input of another. In pictures,

flipH.flipV

flipV flipH

we see the creation of a new function by connecting together the input and output
of two given functions: obviously this suggests many other ways of connecting to-
gether functions, many of which we will look at in the chapters to come.
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The direct combination of functions is one example of the power of functional
programming: we are able to combine functions using an operator like ‘.’ just as
we can combine numbers using ‘+’. We use the term ‘operator’ here rather than
‘function’ since ‘.’ is written between its arguments rather than before them; we
discuss operators in more detail in Section 3.7.

The direct combination of functions by means of the operator ‘.’ which we have
seen here is not possible in other programming paradigms, or at least it would be an
‘advanced’ aspect of the language, rather than appearing on page 13 of an introduc-
tory text.

1.9 Types and functional programming

What is the role of types in functional programming? Giving a type to a function first
of all gives us crucial information about how it is to be used. If we know that

scale :: Picture -> Integer -> Picture

we know two things immediately.

• First, scale has two arguments: the first is a Picture and the second an
Integer; this means that scale can be applied to horse and 3.

• The result of applying scale to this Picture and Integer will be a Picture.

The type thus does two things. First, it expresses a constraint on how the function
scale is applied: it must be applied to a Picture and an Integer. Second, the type
tells us what the result is if the function is correctly applied: in this case the result is
a Picture.

Giving types to functions and other things not only tells us how they can be used;
it is also possible to check automatically that functions are being used in the right
way and this process – which is called type checking – takes place in Haskell. If we
use an expression like

scale horse horse

we will be told that we have made an error in applying scale to two pictures when
a picture and a number are what was expected. Moreover, this can be done without
knowing the values of scale or horse – all that we need to know to perform the
check is the types of the things concerned. Thus, type errors like these are caught
before programs are used or expressions are evaluated.

It is remarkable how many errors, due either to mistyping or to misunderstand-
ing the problem, are made by novices and experienced programmers alike. The
Haskell type system therefore helps us to write correct programs, and to avoid a large
proportion of programming pitfalls, both obvious and subtle, typos and misunder-
standings. This is something which you particularly appreciate if you do use other
languages without this kind of type checking, where you need to trace back from a
particular error that happens during evaluation to its source.
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Type abstraction

Before moving on, there is another important point which we’ll explore later in the
book. In Sections 1.7 and 1.8 we gave definitions of

blackHorse :: Picture
rotate :: Picture -> Picture

which use the type Picture and some functions already defined over it: flipH and
flipV. We were able to write the definitions of blackHorse and rotate without
knowing anything about how the type of Pictures or the functions working with
Pictures were actually defined. We can use these functions because we know their
types, so we know what they have to be applied to, and what type their results will
be.

Treating the type Picture in this way is called type abstraction: as users of the
type we don’t need to concern ourselves with how the type is defined. The advantage
of this is that the definitions we give apply however pictures are modelled. We might
choose to model them in different ways in different situations; whatever the case,
the function composition flipH . flipV will rotate a picture through 180±. We’ll
see this in practice in Section 1.13 where we give two, very different, models of pic-
tures; Chapter 16 discusses this in more detail, and explains the Haskell mechanism
to support type abstraction.

1.10 Calculation and evaluation

We have explained that GHCi can be seen as a general calculator, using the functions
and other things defined in a functional program. When we evaluate an expression
like

23 - (double (3+1)) (‡)

we need to use the definition of the function:

double :: Integer -> Integer
double n = 2*n (dbl)

This we do by replacing the unknown n in the definition (dbl) by the expression
(3+1), giving

double (3+1) = 2*(3+1)

Now we can replace double (3+1) by 2*(3+1) in (‡), and evaluation can con-
tinue.

One of the distinctive aspects of functional programming is that such a simple
‘calculator’ model is a complete description of computation in Haskell. Because the
model is so straightforward, we can perform evaluations in a step-by-step manner;
in this text we call these step-by-step evaluations calculations. As an example, we
now show the calculation of the expression with which we began the discussion.
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23 - (double (3+1))
; 23 - (2*(3+1)) using (dbl)
; 23 - (2*4) arithmetic
; 23 - 8 arithmetic
; 15 arithmetic

where we have used ‘; ’ to indicate a step of the calculation, and on each line we
indicate at the right-hand margin how we have reached that line. For instance, the
second line of the calculation:

; 23 - (2*(3+1)) using (dbl)

says that we have reached here using the definition of the double function, (dbl).
In writing a calculation it is sometimes useful to underline the part of the expres-

sion which gets modified in transition to the next line. This is, as it were, where we
need to focus our attention in reading the calculation. The calculation above will
have underlining added like this:

23 - (double (3+1))
; 23 - (2*(3+1)) using (dbl)
; 23 - (2*4) arithmetic
; 23 - 8 arithmetic
; 15 arithmetic

In what is to come, when we introduce a new feature of Haskell we shall show how
it fits into this line-by-line model of evaluation. This has the advantage that we can
then explore new ideas by writing down calculations which involve these ideas.

1.11 The essence of Haskell programming

We’ve learned enough about functional programming in Haskell to compare it with
other kinds of programming paradigm, particularly OO and other imperative lan-
guages. First we’ll summarise the essentials of Haskell, and then look at how it differs
from others approaches.

So, what makes functional programming in Haskell special? Working in Haskell
we concentrate on using a rich collection of data types – including functions them-
selves, as well as types defined by the user – to model the objects in the problem
domain. Programming over these is done by writing functions: functions are de-
fined by equations like

rotate :: Picture -> Picture
rotate pic = flipH (flipV pic) (rotate)

Finally, computing with these functions is done by calculation, or evaluation, using
the definitions to calculate a result as we saw in the last section. In a equation like
(rotate), pic is a variable, in the mathematical sense of something that stands for
an arbitrary Picture.
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If you know Java, or another OO or imperative language like C, C++ or C#, then
you need to understand that Haskell variables are very different from variables in
these languages. A Java variable is like a box, where values can be stored: the value is
changed by making an assignment. In Java we compute by changing these contents,
or thestate as it is called. Methods which change state are said to have side-effects.

By contrast, Haskell variables don’t vary, and the way we program is to write
functions which describe how particular data values are related. These functions
don’t have side-effects, and there is no state in Haskell. We’ll find about how all of
this works in the chapters to come, we can summarize the important advantages
now.

• Haskell programs are higher-level: they can be read as a direct description of
what are the relationships between input and output data, rather than cover-
ing the details of how a result is computed in a series of steps that change the
values of variables.

• Functions in Haskell can themselves be passed around just like any other data.
So, we can use functions as well as all the other Haskell types when we’re mod-
elling complex problems.

• Haskell functions are without side-effects, but in Haskell it’s possible to do I/O,
work with files, and inter-operate with other programming languages. We can
do this using monads which allow these ‘computational effects’ to be embed-
ded inside Haskell and its type system.

• Haskell programs are easy to parallelise, and to run efficiently on multicore
hardware, because there is no state to be shared between different threads.
In Java different treads share the same state, and it’s very hard to make sure
that a Java program will run efficiently – or even correctly – in a multicore
environment.

• If definitions are equations, then it’s possible to think of them as expressing
properties of programs, and we can use these to write proofs of other proper-
ties our programs have, and so validate what they do.

• There are often many different ways of solving the same problem, and when
we begin to try to solve a problem it can be very hard to know which approach
to take. Because Haskell programs are free of side-effects it’s much easier to
transform or refactor our programs to have a different design, as we might
need to do before extending or modifying our program.

Taking these together, we can see why Haskell is popular for many tasks, and partic-
ularly for writing domain-specific languages, which we look at now.

1.12 Domain-specific languages

Haskell is a general-purpose programming language: it can be used to solve any
kind of programming problem. Other languages, called domain-specific languages
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(DSLs) or little languages, are designed to solve problems in a particular domain.
For example, this book has been written using LATEX, a language for typesetting; other
DSls are used for hardware design (Verilog), statistics (R, Excel) and graph layout
(GraphViz). Stand-alone DSLs like these have the advantage that everything about
them, from the way that programs are written to the details of what they mean, can
be adapted to the particular domain. On the other hand, all the infrastructure has
to be built from scratch.

A different approach is not to build the DSL from scratch, but instead to embed it
in an existing programming language. These embedded domain-specific languages
can take advantage of everything that the programming language provides, while
expressing the concepts of the particular domain as well. Haskell has been partic-
ularly successful as a basis for embedding DSLs, including Lava (Bjesse, Claessen,
Sheeran, and Singh 1998) for circuit simulation and layout, Paradise (Augustsson,
Mansell, and Sittampalam 2008) for pricing financial products and Orc (Launchbury
and Elliott 2010) for orchestrating scientific computations.

Why has Haskell been particularly successful for embedding DSLs? The rich set
of data types – including functions and user-defined data types – which can be used
to model the underlying domains; the absence of side-effects makes it possible to
write models which focus on the data, independent of any state. More advanced as-
pects of Haskell also help the DSL writer. Some are beyond the scope of this text, but
we’ll cover three important features. Polymorphism and type classes are two differ-
ent mechanisms to make it possible for functions to be used over multiple types: this
allows a DSL to be interpreted in different ways; for example, this allows a hardware
DSL can be used both for simulation and layout of circuits. Monads allow DSLs to
have side-effects in a controlled way. We’ll come back to this discussion as we look
at DSLs in Haskell in Chapter 19.

1.13 Two models of Pictures

This section looks at the pictures example as a small DSL, and gives two models – or
implementations – of the pictures DSL.

The Picture DSL

We can describe the DSL for Pictures by giving the type declarations of its con-
structs.

horse :: Picture

flipH :: Picture -> Picture
flipV :: Picture -> Picture
invertColour :: Picture -> Picture

above :: Picture -> Picture -> Picture
beside :: Picture -> Picture -> Picture
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Figure 1.2: Viewing Pictures in a web browser

scale :: Picture -> Integer -> Picture

We form complex pictures by combining these into expressions, such as

horse ‘above‘ (flipH horse)

but because the DSL is embedded in Haskell we can use all the facilities of Haskell
too. We might make a complicated calculation of how much we want to scale a
picture,

scale (horse ‘above‘ (flipH horse)) (complicated Integer calculation)

but we can also use the facilities of Haskell for naming Pictures
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.......##... ......##.... ...##.......

.....##..#.. .....#.#.... ..#..##.....

...##.....#. ....#..#.... .#.....##...

..#.......#. ...#...#.... .#.......#..

..#...#...#. ..#...#..... .#...#...#..

..#...###.#. .#....#..##. .#.###...#..

.#....#..##. ..#...###.#. .##..#....#.

..#...#..... ..#...#...#. .....#...#..

...#...#.... ..#.......#. ....#...#...

....#..#.... ...##.....#. ....#..#....

.....#.#.... .....##..#.. ....#.#.....

......##.... .......##... ....##......

horse flipH horse flipV horse

Figure 1.3: ASCII-art pictures

bigPic = scale (horse ‘above‘ (flipH horse)) 42

and defining other functions

mirror pic = pic ‘beside‘ (flipV pic)

SVG pictures

The pictures we’ve seen so far in this chapter are from a model of pictures which can
be displayed in web browsers supporting the SVG standard(SVG 2010), as shown
in Figure 1.2. The web page allows you to view pictures “rendered from” Haskell
descriptions; we’ll come back to the details of how this is done in Section 2.6, page
35. For now the message is that you can use the DSL just knowing the types of the
functions, as they tell you all you need to know to use them: for each function they
tell us the types of the inputs they should be applied to and the type of the result.

Pictures and lists

We include this section in the first chapter of the book for two reasons. To start with,
we want to describe a second way in which Pictures can be modelled in Haskell.
Secondly, we want to provide an informal preview of a number of aspects of Haskell
which make it a powerful and distinctive programming tool. As we go along we will
indicate the parts of the book where we expand on the topics first introduced here.

Our model consists of two-dimensional, monochrome pictures built from char-
acters. Characters are the individual letters, digits, spaces and so forth which can
be typed at the computer keyboard and which can also be shown on a computer
screen. In Haskell the characters are given by the built-in type Char. This model
has the advantage that it is straightforward to view these pictures on a computer
terminal window.
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Our version of the horse picture, and the same picture flipped in horizontal and
vertical mirrors are shown in Figure 1.3, where we use dots to show the white parts
of the pictures.

How are the pictures built from characters? In our model we think of a picture as
being made up of a list of lines, that is a collection of lines coming one after another
in order. Each line can be seen in a similar way as a list of characters. Because we
often deal with collections of things when programming, lists are built into Haskell.
More specifically, given any type – like characters or lines – Haskell contains a type
of lists of that type, and so in particular we can model pictures as we have already
explained, using lists of characters to represent lines, and lists of lines to represent
pictures.

With this model of Pictures, we can begin to think about how to model func-
tions over pictures. A first definition comes easily; to reflect a picture in a horizontal
mirror each line is unchanged, but the order of the lines is reversed: in other words
we reverse the list of lines:

flipH = reverse

where reverse is a built-in function to reverse the order of items in a list. How do
we reflect a picture in a vertical mirror? The ordering of the lines is not affected, but
instead each line is to be reversed. We can write

flipV = map reverse

since map is the Haskell function which applies a function to each of the items in
a list, individually. In the definitions of flipH and flipV we can begin to see the
power and elegance of functional programming in Haskell.

• We have used reverse to reverse a list of lines in flipH and to reverse each
line in flipV: this is because the same definition of the function reverse can
be used over every type of list. This is an example of polymorphism, or generic
programming, which is examined in detail in Section 6.1.

• In defining flipV we see the function map applied to its argument reverse,
which is itself a function. This makes map a very general function, as it can
have any desired action on the elements of the list, specified by the function
which is its argument. This is the topic of Chapter 10.

• Finally, the result of applying map to reverse is itself a function. This covered
in Chapter 11.

The last two facts show that functions are ‘first-class citizens’ and can be handled
in exactly the same way as any other sort of object like numbers or pictures. The
combination of this with polymorphism means that in a functional language we can
write very general functions like reverse and map, which can be applied in a multi-
tude of different situations.

The examples we have looked at here are not out of the ordinary. We can see that
other functions over pictures have similarly simple definitions. We place one picture
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above another simply by joining together the two lists of lines to make one list. This
is done by the built-in operator ++, which joins together two lists:2

above = (++)

To place two pictures beside each other we have to join corresponding lines
together, thus

.......##... ++ ......##....

.....##..#.. ++ .....#.#....

...##.....#. ++ ....#..#....

..#.......#. ++ ...#...#....

..#...#...#. ++ ..#...#.....

..#...###.#. ++ .#....#..##.

.#....#..##. ++ ..#...###.#.

..#...#..... ++ ..#...#...#.

...#...#.... ++ ..#.......#.

....#..#.... ++ ...##.....#.

.....#.#.... ++ .....##..#..

......##.... ++ .......##...

and this is defined using the function zipWith. This function is defined to ‘zip to-
gether’ corresponding elements of two lists using – in this case – the operator ++.

beside = zipWith (++)

We shall return to these examples in Chapter 11.

1.14 Tests, properties and proofs

How can we be sure that a program we have written does what it should? The tradi-
tional answer is to test the program on a selection of inputs, and of course we can –
and should – do this for Haskell programs. We’ve got two other more powerful op-
tions, property-based testing and proof, and we’ll introduce those in this section,
and follow them up in the rest of the book.

Tests and properties

Let’s look at the example of Pictures from the last section: how do we test this? One
way of doing this is to write tests of the form:

“apply this function to this input . . . the output should be this”

Given the picture library, we can also look at how the functions work together, and
a simple way of doing this is to check how a combination of applications works. For
example,

2The operator ++ is surrounded by parentheses (...) in this definition so that it is interpreted as a
function; we say more about this in Section 3.7.
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flipV

flipH

flipV

flipH

Figure 1.4: Reflection in vertical and horizontal mirrors

• if we flip a picture twice in a mirror we should get back the original picture;

• if we flip a picture in both a horizontal and vertical mirror, it shouldn’t matter
the order in which we do this, as illustrated in Figure 1.4, page 23.

These tests can be defined in Haskell, where the equality operator ‘==’ is used to
check whether two values are equal, returning the result True or False. These two
values are the two elements of the Boolean type, Bool, which we come back to in
the next chapter. Here are the tests:

test_rotate, test_flipV, test_flipH :: Bool

test_rotate = flipV (flipH horse) == flipH (flipV horse)
test_flipV = flipV (flipV horse) == horse
test_flipH = flipH (flipV horse) == horse

The first two tests pass, and give the answer True. The third fails, because we made
a mistake in writing flipV when we should have written flipH; if we correct the
test, it will pass as well.

These tests work for a single input, and though horse is as good as any ex-
ample, we ought to think of making more tests than this. Property-based testing
in QuickCheck (Claessen and Hughes 2000) allows us to check whether a property
holds for a whole collection of randomly generated inputs.
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Test Property Proof

Figure 1.5: Coverage of testing, property-based testing and proof

What do we mean by a property? Informally, it’s something like the explanation
we gave earlier “if we flip a picture twice in a mirror we expect to get back the original
picture” where the “picture” could be any picture. We can formalise these as Haskell
functions:

prop_rotate, prop_flipV, prop_flipH :: Picture -> Bool

prop_rotate pic = flipV (flipH pic) == flipH (flipV pic)
prop_flipV pic = flipV (flipV pic) == pic
prop_flipH pic = flipH (flipV pic) == pic

These properties are just like the tests, except that they are applied to an arbitrary
pic rather than the horse. If we apply quickCheck to these properties like this

quickCheck prop_rotate

and evaluate this in Haskell, we get the result

+++ OK, passed 100 tests.

for the first two tests. In the final test we’ve replicated the error from earlier on, and
we get this output

*** Failed! Falsifiable (after 3 tests and 3 shrinks):
["ab"]

This tells us two things: it tells us that the property isn’t always true, and it also gives
us an example of when it goes wrong. In fact we get the simplest case where it goes
wrong, through “shrinking”: this is a picture with one line and two characters!

This testing is automatic: once we have written the properties to test, the data
are generated randomly from the type – Picture in this case. Through the book
we’ll see more complex examples of using QuickCheck, and find ways that we can
control how QuickCheck works.

Coverage

Property-based testing has replaced one test with a hundred, but we might still be
unlucky, and miss the failing cases in the random data. On the other hand, having a
proof gives us complete certainty that a function is correct.
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Figure 1.5 illustrates the coverage given by the different mechanisms. Testing
will check how the program behaves at a few, well-chosen, points; property-based
testing expands this to hundreds of randomly-generated points, which, it is hoped,
are representative, but a point where an error occurs may be missed3; proof covers
all cases, no exceptions.

Proof

A proof is a logical or mathematical argument to show that something holds in all
circumstances. For example, given any particular right-angled triangle

a

b

c

we can check whether or not a2=b2+c2 holds. In each case we check, this formula
will hold, but this is not in itself enough to show that the formula holds for all a, b
and c. A proof of Pythagoras’s Theorem, on the other hand, is a general argument
which establishes that a2=b2+c2 holds whatever right-angled triangle we choose.

How is proof relevant to functional programming? To answer this we go back to
the example of flipping in horizontal and vertical mirrors. As we saw in Figure 1.4,
the order of reflection looks as though is not significant, and we can express this as
the property:

prop_rotate :: Picture -> Bool
prop_rotate pic = flipV (flipH pic) == flipH (flipV pic)

Moreover, we can look at our implementations of flipV and flipH and give a logical
proof that these functions have the property prop_rotate above for any picture
pic. The crux of the argument is that the two functions operate independently:

• the function flipV affects each line but leaves the lines in the same order
while

• the function flipH leaves each line unaffected, while reversing the order of
the list of lines.

Because the two functions affect different aspects of the list it is immaterial which is
applied first, since the overall effect of applying the two in either case is to

• reverse each line and reverse the order of the list of lines.

Proof is possible for most programming languages, but it is substantially easier for
functional languages than for any other paradigm. Proof of program properties will
be a theme in this text, and we start by exploring proof for list-processing functions
in Chapter 9.

3We’ll see an example of this in Chapter 9
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What benefit is there in having a proof of a property like prop_rotate? It give
us certainty that our functions have a particular property. Contrast this with tradi-
tional and property-based testing. In both cases the test only gives us the assurance
that the function has the property we seek at the test points, and in principle tells
us nothing about the function in other circumstances. There are safety-critical sit-
uations in which it is highly desirable to be sure that a program behaves properly,
and proof has a role here. We are not, however, advocating that testing is unimpor-
tant – merely that testing and proof have complementary roles to play in software
development.

More specifically, prop_rotate means that we can be sure that whatever order
we apply the functions flipH and flipV they will have the same effect. We could
therefore transform a program containing ... (flipH (flipV ...)) ... into
one using the functions in the reverse order, ... (flipV (flipH ...)) ..., and
be certain that the new program will have exactly the same effect as the old. Ideas
like this can be used to good effect within implementations of languages, and also
in developing programs themselves, as we shall see in Section 11.6.

Summary

As we said at the start, this chapter has three aims. We wanted to introduce some
of the fundamental ideas of functional programming; to illustrate them with the ex-
ample of pictures, and also to give a flavour of what it is that is distinctive about
functional programming. To sum up the definitions we have seen,

• a function is something which transforms its inputs to an output;

• a type is a collection of objects of similar sort, such as whole numbers (inte-
gers) or pictures;

• every object has a clearly defined type, and we state this type on making a
definition;

• functions defined in a program are used in writing expressions to be evaluated
by the implementation; and

• the values of expressions can be found by performing calculation by hand, or
by using GHCi.

In the remainder of the book we’ll explore different ways of defining new types and
functions, as well as following up the topics of polymorphism, functions as argu-
ments and results, data abstraction and proof which we have touched upon in an in-
formal way here. We’ll also make sure that we validate our programs using property-
based testing in QuickCheck as well as proof. Finally, we’ll see how Haskell is used
in defining domain-specific languages.



Chapter 2

Getting started with Haskell and
GHCi

Chapter 1 introduced the foundations of functional programming in Haskell. We are
now ready to use GHCi to do some practical programming, and we introduce it here.

In beginning to program we will also learn the basics of the Haskell module sys-
tem, under which programs can be written in multiple, interdependent files, and
which can use the ‘built-in’ functions in the prelude and libraries.

Our programming examples will concentrate on using the Picture example in-
troduced in Chapter 1 as well as some simple numerical examples. In support of this
we will look at how to get hold of the programs and other background materials for
the book, as well as how to obtain and install GHCi as a part of the Haskell Platform.

We conclude by briefly surveying the kinds of error message that can result from
typing something incorrect into GHCi.

2.1 A first Haskell program

We begin the chapter by giving a first Haskell program or script, which consists of
the numerical examples from Chapter 1. This is the file FirstScript.hs, shown in
Figure 2.1. Haskell scripts are stored in files with the extension ‘.hs’.

As well as definitions, a script will contain comments. A comment in a script
is a piece of information of value to a human reader rather than to a computer. It
might contain an informal explanation of how a function works, how it should or
should not be used, the overall design philosophy of a library and so on. Everything
in a program file is interpreted as program text, except where it is explicitly indicated
that it is a comment.

Comments are indicated in two ways. The symbol ‘--’ begins a comment which
occupies the part of the line to the right of the symbol. Comments can also be en-
closed by the symbols ‘{-’ and ‘-}’. These comments can be of arbitrary length,
spanning more than one line, as well as enclosing other comments; they are there-
fore called nested comments.
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{- #########################################################
FirstScript.hs
Simon Thompson, August 2010.

######################################################### -}

module FirstScript where

-- The value size is an integer (Integer), defined to be
-- the sum of twelve and thirteen.

size :: Integer
size = 12+13

-- The function to square an integer.

square :: Integer -> Integer
square n = n*n

-- The function to double an integer.

double :: Integer -> Integer
double n = 2*n

-- An example using double, square and size.

example :: Integer
example = double (size - square (2+2))

Figure 2.1: An example script, FirstScript.hs.

2.2 Using Haskell in practice

The Glasgow Haskell Compiler (GHC) is an industrial-strength compiler for Haskell.
GHC interactive (GHCi) is an interactive interpreter based on GHC, which supports
program development by allowing programmers to evaluate Haskell expressions in-
teractively as they develop programs.

GHC and GHCi are available stand alone, but they also come
as part of the Haskell Platform. In addition to GHC and
GHCi, this contains a selection of standard libraries and tools
for Haskell. Included in the tools is cabal, a package for dis-
tributing Haskell code and libraries, and which we use for dis-
tributing the code for the book; we come back to cabal in
Chapter 6. The platform also includes tools for interfacing
with programs written in other languages, as well as haddock
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Figure 2.2: A GHCi session in Mac OS X

for documentation generation.

The libraries included with the Haskell Platform give comprehensive support for
practical programming in Haskell. The home page for the platform is here:

http://hackage.haskell.org/platform/

and full details of the libraries in the platform are found at

http://hackage.haskell.org/platform/contents.html

Further information about downloading and installing the Haskell Platform may be
found in Appendix D; we discuss how to find out more about the functions and li-
braries in the Haskell Platform in Chapter 6.

2.3 Using GHCi

In this text we describe the terminal-style interface to GHCi, illustrated in Figure
2.2, because this is common to Windows, Mac OS X and Linux. Once they have
understood how GHCi itself works, experienced PC users should have little difficulty
in using the WinGHCi system, shown in Figure 2.3, which gives a Windows-style
interface to the GHCi commands.

GHCi documentation

On Mac OS X documentation for GHCi and other systems is found at
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Figure 2.3: A WinGHCi session in Windows XP

file:///usr/share/doc/ghc/html/index.html

Linux systems differ: for example, in Ubuntu 9.10 the path to the Haskell documen-
tation is:

/usr/share/doc/ghc6-doc

Links to the documentation are found in the Haskell Platform program group on
Windows systems.

Starting GHCi

To start GCHi on OS X and Linux, type ghci to the prompt; to launch GHCi using a
particular file, type ghci followed by the name of the file in question, as in

ghci Chapter2

On a Windows system, GHCi is launched by choosing it from the appropriate place
on the Start menu; if you have the standard installation of the Haskell Platform it will
be in the Haskell Platform program group. Double clicking a Haskell file will open
that file in GHCi.1

1This assumes that the appropriate registry entries have been made; we work here with the standard
installation of GHCi as discussed in Appendix D.
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Haskell scripts carry the extension .hs; only such files can be loaded, and their
extensions can be omitted when they are loaded either when GHCi is launched or
by a :load command within GHCi.

Evaluating expressions in GHCi

As we said in Section 1.6, GHCi will evaluate expressions typed at the prompt. We
see in Figure 2.2 the evaluation of double (square 29) to 1682, like this

*Chapter2> double (square 29)
1682
*Chapter2>

where we have indicated the machine output by using a slanted font; user input
appears in unslanted form. The prompt here, *Chapter2> , will be explained in
Section 2.5 below. As can be seen from the examples, we can evaluate expressions
which use the definitions in the current script. In this case it is Chapter2.hs.

One of the advantages of the GHCi interface is that it is easy to experiment with
functions, trying different evaluations simply by typing the expressions at the key-
board. If we want to evaluate a complex expression, we could add it to the program,
as in definition

cube :: Integer -> Integer
cube n = n*n*n

but we can also input these definitions directly into GHCi by prefacing them with
the keyword let, as seen in Figure 2.2. Of course, this definition will be lost when
we close GHCi, so if we want to keep a record of it, then we should add it to a Haskell
module as well.

GHCi commands

GHCi commands begin with a colon, ‘:’. A summary of the main commands is given
in Figure 2.4. When a GHCi command can be abbreviated to their initial letter this
is shown in the table in Figure 2.4. Outline information about other commands is
given by the :help command, and comprehensive details can be found in the on-
line GHCi documentation discussed above.

Editing scripts

GHCi can be connected to a default text editor, so that GHCi commands such as
:edit use this editor. This may well be determined by your local set-up (e.g. in the
EDITOR variable), or can be set using the :set command in GHCi.

Using the GHCi :edit command causes the editor to be invoked on the appro-
priate file. When the editor is quit, the updated file is loaded automatically. However,
it can be more convenient to keep the editor running in a separate window and to
reload the file by:
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Command (abbrev.) Action

:load Parrot :l Load the Haskell module Parrot.hs; the file ex-
tension .hs can be omitted.

:reload :r Repeat the last :load command.
:type exp :t Give the type of the expression exp; e.g. typing

:type size+2 gives size+2 :: Integer.
:info name :i Give information about the thing called name.
:browse Name Give information about the definitions in the mod-

ule Name, if it is loaded.
:quit :q Quit the system.
:help :h,:? Give a complete list of the GHCi commands.
:! command Escape to perform a Unix or DOS command.
:edit First.hs :e Edit the file First.hs in the default editor. Note

that the file extension .hs is needed in this case.
See the following section for more information on
editing.

:set editor vi :s Set the editor to be vi.
", # Move up (") and down (#) the command history.
!| Name and command completion: complete mod-

ule or file names, or GHCi commands.
let s = exp Give s the value of exp within this GHCi session.

Figure 2.4: Principal GHCi commands

• writing the updated file from the editor (without quitting it), and then

• reloading the file in GHCi using :reload or :reload filename.

In this way the editor is still open on the file should it need further modification.
Alternatively some editors allow GHCi to be called from within the editor, as a

part of the Haskell mode for the editor. A popular Haskell editor is emacs, with vari-
ants such as Aquamacs for Mac OS X. These editors will provide facilities such as
syntax highlighting, and embedded evaluation. In Haskell mode for emacs, ˆC ˆB
opens GHCi and ˆC ˆL (re)loads the current module in GHCi.

A first GHCi session

Let’s get started with GHCi by doing some introductory exercises.

Task 1

Load the file FirstScript.hs into GHCi, and evaluate the following expressions

square size
square
double (square 2)
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it
square (double 2)
let d = double 2
square d
23 - double (3+1)
23 - double 3+1
it + 34
13 ‘div‘ 5
13 ‘mod‘ 5

On the basis of this can you work out the purpose of it and let?

Task 2

Use the GHCi command :type to tell you the type of each of these, apart from it.

Task 3

What is the effect of typing each of the following?

double 2 3
double square
2 double

Try to give an explanation of the results that you obtain.

Task 4

Edit the file FirstScript.hs to include definitions of functions from integers to
integers which behave as follows.

• The function should double its input and square the result of that.

• The function should square its input and double the result of that.

Your solution should include declarations of the types of the functions.

2.4 The standard prelude and the Haskell libraries

We saw in Chapter 1 that Haskell has various built-in types, such as integers and lists
and functions over those types, including the arithmetic functions and the list func-
tions map and ++. Definitions of these are contained in a file, the standard prelude,
Prelude.hs. When Haskell is used, the default is to load the standard prelude, and
this can be seen by trying the GHCi command

:browse Prelude
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let in GHCi

It is possible to make temporary definitions in GHCi using let like this:

let s = 23

and once you have done this you can use s in any expressions you evaluate. You can
define any Haskell value this way, too.

Beware! These definitions are lost if you redefine s or when you leave GHCi, so it
often best to put definitions into a file, so that they are saved and you can edit them
subsequently.

GHCiUser
expression

result

Module

Libraries
Module

Module Prelude

Figure 2.5: A GHCi session

which will list the types of all the functions in the Prelude.hs module.
As Haskell has developed over the last decade, the prelude has also grown. In or-

der to make the prelude smaller, and to free up some of the names used in it, many
of the definitions have been moved into standard libraries, which can be included
when they are needed. We shall say more about these libraries as we discuss partic-
ular parts of the language.

As well as the standard libraries, the Haskell Platform includes various contributed
libraries which support concurrency, functional animations and so forth. Again, we
will mention these as we go along. Other libraries are available using the Cabal in-
stallation system: see Chapter 6 for details. In order to use the libraries we need to
know something about Haskell modules, which we turn to now.

2.5 Modules

A typical piece of computer software will contain thousands of lines of program text.
To make this manageable, we need to split it into smaller components, which we call
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modules.
A module has a name and will contain a collection of Haskell definitions. To

introduce a module called Ant we begin the program text in the file thus:

module Ant where
...

A module may also import definitions from other modules. The module Bee will
import the definitions in Ant by including an import statement, thus:

module Bee where
import Ant

...

The import statement means that we can use all the definitions in Ant when making
definitions in Bee. In dealing with modules in this text we adopt the conventions
that

• there is exactly one module per file;

• the file Blah.hs contains the module Blah.

The module mechanism supports the libraries we discussed in Section 2.4, but we
can also use it to include code written by ourselves or someone else.

The module mechanism allows us to control how definitions are imported and
also which definitions are made available or exported by a module for use by other
modules. We look at this in more depth in Chapter 15, where we also ask how mod-
ules are best used to support the design of software systems.

In the light of what we have seen so far, Figure 2.5 illustrates a GHCi session. like
this: The current module will have access to the standard prelude, and to those mod-
ules which it imports; these might include modules from the standard libraries,
which are found in the same directory as the standard prelude. The user interacts
with GHCi, providing expressions to evaluate and other commands and receiving
the results of the evaluations.

The next section revisits the picture example of Chapter 1, which is used to give
a practical illustration of modules.

2.6 A second example: pictures

The running example in Chapter 1 was of pictures, and we saw there that there are
two implementations of these functions, one in Pictures.hs giving an ‘ASCII art’
version, and the other in PicturesSVG.hs rendering pictures in a web browser.

• To use PicturesSVG.hs, open GHCi on this module like this:

ghci PicturesSVG.hs
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module Pictures where

type Picture = ....

-- The horse example used in Craft3e, and a white picture.

horse , white :: Picture
horse = ....
white = ....

-- Getting a picture onto the screen.

printPicture :: Picture -> IO ()
printPicture = ....

-- Reflection in vertical and horizontal mirrors.

flipV , flipH :: Picture -> Picture
flipV = map reverse
flipH = reverse

-- One picture above another. To maintain the rectangular
-- property, the pictures need to have the same width.

above :: Picture -> Picture -> Picture
above = (++)

-- One picture next to another. To maintain the rectangular
-- property, the pictures need to have the same height.

beside :: Picture -> Picture -> Picture
beside = zipWith (++)

-- Superimpose two pictures (assumed to be same size).

superimpose :: Picture -> Picture -> Picture
superimpose = ....

-- Invert the black and white in the picture.

invertColour :: Picture -> Picture
invertColour = ....

Figure 2.6: A view of the Pictures module.
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and in your web browser of choice2 open the file refresh.html in the same
directory.

To show a picture in the browser, evaluate it using render as in

render (horse ‘beside‘ (flipV horse))

This will give a browser display as shown in Figure 1.2, page 19. The image in
the browser will update automatically; if you would prefer to do this manually,
use the file showPic.html instead.

• To use the ‘ASCII art’ version, run

ghci Pictures.hs

To show a picture in the terminal you need to use the function

printPicture :: Picture -> IO ()

which is used to display a Picture on the screen. The type IO is a part of
the Haskell mechanism for input/output (I/O). We examine this mechanism
in detail in Chapter 8; for the present it is enough to know that if horse is
the name of the picture used in the earlier examples, then the effect of the
function application printPicture horse is the display

.......##...

.....##..#..

...##.....#.

..#.......#.

..#...#...#.

..#...###.#.

.#....#..##.

..#...#.....

...#...#....

....#..#....

.....#.#....

......##....

first seen in Chapter 1. Any Picture can be printed in a similar way. The
Pictures module is shown in Figure 2.6.

In the remainder of this section we present a series of practical exercises designed to
use either of the modules Pictures.hs and PicturesSVG.hs.

2Both Firefox and Google Chrome work with SVG on all platforms; Safari on Mac OS X works apart
from invertColour. Internet Explorer 8 doesn’t support SVG, but IE9 is predicted to.
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Exercises

2.1 Define a module UsePictures which imports Pictures (or PicturesSVG)
and contains definitions of blackHorse and rotateHorse which can use the
definitions imported from the pictures module.

In the remaining questions you are expected to add other definitions to your
module UsePictures.

2.2 How could you make the picture

Try to find two different ways of getting the result. It may help to work with
pieces of white and black paper.

Using your answer to the first part of this question, how would you define a
chess (or checkers) board, which is an 8£8 board of alternating squares?

2.3 Three variants of the last picture which involve the ‘horse’ pictures are

How would you produce these three?

2.4 Give another variant of the ‘horse’ pictures in the previous question, and show
how it could be created. Note: a nice variant is
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2.7 Errors and error messages

No system can guarantee that what you type is sensible, and GHCi is no exception.
If something is wrong, either in an expression to be evaluated or in a script, you will
receive an error message. Try typing

2+(3+4

to the GHCi prompt. The error here is in the syntax, and is like a sentence in English
which does not have the correct grammatical structure, such as ‘Fishcake our camel’.

The expression has too few parentheses: after the ‘4’, a closing parenthesis is
expected, to match with the opening parenthesis before ‘3’. The error message says
that something is wrong, but in fact it’s not to do with indentation, but rather the
lack of a closing parenthesis:

<interactive>:1:6: parse error (possibly incorrect indentation)

In a similar way typing 2+(3+4)) results in the message

<interactive>:1:7: parse error on input ‘)’

which this time says that (one of) the closing parentheses causes a problem. Now
try typing the following expression.

double square

This gives a type error, since double is applied to the function square, rather than
an integer:

Couldn’t match expected type ‘Integer’
against inferred type ‘Integer -> Integer’

In the first argument of ‘double’, namely ‘square’
In the expression: double square
In the definition of ‘it’: it = double square

The message indicates that something of type Integer was expected, but some-
thing of type Integer -> Integer was present instead. That’s correct: double
expects something of type Integer as its argument, but square of type Integer
-> Integer is found in the place of an integer.

When you get an error message like the one above you need to look at how the
term, in this case square of type Integer -> Integer, does not match the con-
text in which it is used: the context is given in the second line (double square) and
the type required by the context, Integer, is given in the last line.

Type errors do not always give rise to such well-structured error messages. Typ-
ing either 4 double or 4 5 will give rise to a message like

No instance for (Num ((Integer -> Integer) -> t))
arising from the literal ‘4’ at <interactive>:1:0-7

Possible fix:
add an instance declaration for (Num ((Integer -> Integer) -> t))

In the expression: 4 double
In the definition of ‘it’: it = 4 double
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We will explore the technical details behind these messages in a later chapter; for
now it is sufficient to read these as ‘Type Error!’. One thing we can focis on, though, is
the place that it says the error occurs: suppose that this was inside a larger program,
it would still indicate the appearance of 4 double as giving rise to the problem. So,
always take note of where an error is said to occur.

The last kind of error we will see are program errors. Try the expression

4 ‘div‘ (3*2-6)

We cannot divide by zero (what would the result be?) and so we get the message

*** Exception: divide by zero

indicating that a division of 4 by 0 has occurred. More details about the error mes-
sages produced by GHCi can be found in Appendix E.

Summary

The main aim of this chapter is practical, to acquaint the reader with the GHCi im-
plementation of Haskell. We have seen how to write simple Haskell programs, to
load them into GHCi and then to evaluate expressions which use the definitions in
the module.

Larger Haskell programs are structured into modules, which can be imported
into other modules. Modules support the Haskell library mechanism and we illus-
trate modules in the case study of Pictures introduced in Chapter 1.

We concluded the chapter with an overview of the possible syntax, type and pro-
gram errors in expressions or scripts submitted to GHCi.

The first two chapters have laid down the theoretical and practical foundations
for the rest of the book, which explores the many aspects of functional programming
using Haskell and GCHi.



Chapter 3

Basic types and definitions

We have now covered the basics of functional programming and have shown how
simple programs are written, modified and run in GHCi. This chapter covers Haskell’s
most important basic types and also shows how to write definitions of functions
which have multiple cases to cover alternative situations. We conclude by looking at
some of the details of the syntax of Haskell.

Haskell contains a variety of numerical types. We have already seen the Integer
type in use; we shall cover this as well as the (related) Int type and the floating-point
fractional numbers, Float.

Often in programming we want to make a choice of values, according to whether
or not a particular condition holds. These conditions include tests of whether one
number is greater than another; whether two values are equal, and so on. The re-
sults of these tests – True if the condition holds and False if it fails – are called the
Boolean values, after the nineteenth-century logician George Boole, and they form
the Haskell type Bool. In this chapter we cover the Booleans, and how they are used
to give choices in function definitions by means of guards.

Next, we look at the types of characters and strings. Characters – individual let-
ters, digits, spaces and so forth – are given by the Haskell type Char. Strings of letters
and other characters make up strings, in the Haskell type String.

The chapter provides reference material for the basic types; a reader may skip
the treatment of Float and much of the detail about Char and String, referring
back to this chapter when necessary.

Each section here contains examples of functions, and the exercises build on
these. Looking ahead, this chapter gives a foundation on top of which we look at
a variety of different ways that programs can be designed and written, which is the
topic of the next chapter.

3.1 The Booleans: Bool

The Boolean values True and False represent the results of tests, which might, for
instance, compare two numbers for equality, or check whether the first is smaller

41
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than the second. The Boolean type in Haskell is called Bool. The Boolean operators
provided in the language are:

&& and
|| or
not not

Because Bool contains only two values, we can define the meaning of Boolean oper-
ators by truth tables which show the result of applying the operator to each possible
combination of arguments. For instance, the third line of the first table says that the
value of False && True is False and that the value of False || True is True.

t1 t2 t1 && t2 t1|| t2
T T T T
T F F T
F T F T
F F F F

t1 not t1
T F
F T

Defining Boolean functions

Booleans can be the arguments to or the results of functions. We look at some ex-
amples now.

The ‘built-in or’, ||, is called ‘inclusive’ because it returns True if either one or
both of its arguments are True. ‘Exclusive or’ is the function which returns True
when exactly one but not both of its arguments has the value True; it is like the ‘or’
of a restaurant menu: you may choose vegetarian moussaka or fish as your main
course, but not both! The definition here mirrors the definition: the result is true if
either x or y is true (x || y), and they are not both true (not (x && y)):

exOr :: Bool -> Bool -> Bool
exOr x y = (x || y) && not (x && y)

We can picture the function definition using boxes for functions, and lines for
values, as we saw in Chapter 1. Lines coming into a function box represent the argu-
ments, and the line going out the result.

||

&& not

&&

x

y

Boolean values can also be compared for equality and inequality using the operators
== and /=, which both have the type
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Bool -> Bool -> Bool

Note that /= is the same function as exOr, since both return the result True when
exactly one of their arguments is True.

Literals and definitions

Expressions like True and False, and also numbers like 2, are known as literals.
These are values which are given literally, and which need no evaluation; the result
of evaluating a literal is the literal itself.

We can use the literals True and False as arguments, in defining not for our-
selves:

myNot :: Bool -> Bool
myNot True = False
myNot False = True

We can also use a combination of literals and variables on the left-hand side of equa-
tions defining exOr:

exOr True x = not x
exOr False x = x

Here we see a definition of a function which uses two equations: the first applies
whenever the first argument to exOr is True and the second when that argument is
False.

Definitions which use True and False on the left-hand side of equations are of-
ten more readable than definitions which only have variables on the left-hand side.
This is a simple example of the general pattern matching mechanism in Haskell,
which we look at in detail in Chapter 5.

Testing

We can write some QuickCheck properties to test our new implementation of not
and our multiple implementations of exclusive or. We test myNot against the built in
function, and test our exclusive or functions – let’s call them exOr and exOr1:

prop_myNot :: Bool -> Bool

prop_myNot x =
not x == myNot x

prop_exOrs :: Bool -> Bool -> Bool

prop_exOrs x y =
exOr x y == exOr1 x y

and running them gives the results that we expect:
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*Chapter3> quickCheck prop_myNot
+++ OK, passed 100 tests.
*Chapter3> quickCheck prop_exOrs
+++ OK, passed 100 tests.

We can also check the earlier assertion that exOr and /= have the same behaviour
over Booleans with this property:

prop_exOr2 :: Bool -> Bool -> Bool

prop_exOr2 x y =
exOr x y == (x /= y)

Exercises

3.1 Give another version of the definition of ‘exclusive or’ which works informally
like this: ‘exclusive or of x and y will be True if either x is True and y is False,
or x is False and y is True’.

3.2 Give the ‘box and line’ diagram corresponding to your answer to the previous
question.

3.3 Using literals on the left-hand side we can make the truth table for a function
into its Haskell definition. Complete the following definition of exOr in this
style.

exOr True True = ...
exOr True False = ...

...

3.4 Give your own definitions of the built-in && and ||. If you want to use the
same operator for &&, say, you will need to make sure you hide its import. You
can do this by adding it to the list of what is hidden, thus:

import Prelude hiding (max,(&&))

after the module declaration at the start of the Chapter3 module.

3.5 Give two different definitions of the nAnd function

nAnd :: Bool -> Bool -> Bool

which returns the result True except when both its arguments are True. Give
a diagram illustrating one of your definitions.

3.6 Give line-by-line calculations of

nAnd True True
nAnd True False
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for each of your definitions of nAnd in the previous exercise.

3.7 Write QuickCheck properties to test the functions you have written in the ear-
lier exercises. You might be able to check one version of a function against
another, or perhaps think up different properties for your functions.

3.2 The integers: Integer and Int
The Haskell type Integer contains the integers, which are the whole numbers, pos-
itive, zero and negative, used for counting; they are written like this:

0
45
-3452
2147483647

Integers in the Integer type can be as large as you wish: looking back at the GHCi
screenshots in Figures 2.2 and 2.3 you can see examples of this. We do arithmetic on
integers using the following operators and functions.

+ The sum of two integers.
* The product of two integers.
ˆ Raise to the power; 2ˆ3 is 8.
- The difference of two integers, when infix: a-b; the

integer of opposite sign, when prefix: -a.
div Whole number division; for example div 14 3 is 4.

This can also be written 14 ‘div‘ 3.
mod The remainder from whole number division; for ex-

ample mod 14 3 (or 14 ‘mod‘ 3) is 2.
abs The absolute value of an integer; remove the sign.
negate The function to change the sign of an integer.

Note that ‘mod‘ surrounded by backquotes is written between its two arguments,
is an infix version of the function mod. Any function can be made infix in this way.

In what follows we will use the term the natural numbers for the non-negative
integers: 0, 1, 2, . . . .

Relational operators

There are ordering and (in)equality relations over the integers, as there are over all
basic types. These functions take two integers as input and return a Bool, that is
either True or False. The relations are

> greater than (and not equal to)
>= greater than or equal to
== equal to
/= not equal to
<= less than or equal to
< less than (and not equal to)
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Negative literals

Negative literals cause problems in Haskell, because of the way that they have been
defined. For example the number minus twelve is written as -12, but the prefix ‘-’
can often get confused with the infix operator to subtract one number from another
and can lead to unforeseen and confusing type error messages. For example, the
application

negate -34

is interpreted as ‘negate minus 34’ and leads to a GHCi error message: we discuss
how to interpret that in the next note.

If you are in any doubt about the source of an error and you are dealing with negative
numbers you should enclose them in parentheses, thus: negate (-34); it will do
no harm! See Section 3.7 for more details.

A simple example using these definitions is a function to test whether three Integers
are equal.

threeEqual :: Integer -> Integer -> Integer -> Bool
threeEqual m n p = (m==n) && (n==p)

Exercises

3.8 Explain the effect of the function defined here:

mystery :: Integer -> Integer -> Integer -> Bool
mystery m n p = not ((m==n) && (n==p))

Hint: if you find it difficult to answer this question directly, try to see what the
function does on some example inputs.

3.9 Define a function

threeDifferent :: Integer -> Integer -> Integer -> Bool

so that the result of threeDifferent m n p is True only if all three of the
numbers m, n and p are different.

What is your answer for threeDifferent 3 4 3? Explain why you get the
answer that you do.

3.10 This question is about the function

fourEqual :: Integer -> Integer -> Integer -> Integer -> Bool
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Understanding GHCi error messages

When you first see an error message like this

No instance for (Num (a -> a))
arising from a use of ‘-’ at <interactive>:1:0-9

Possible fix: add an instance declaration for (Num (a -> a))
In the expression: negate - 34
In the definition of ‘it’: it = negate - 34

you could be forgiven for being bemused, because it talks about things we’ve not
covered yet.

Don’t despair! What you can do is extract some useful information from it, partic-
ularly from the parts highlighted with a white background. The first one says that
there’s something wrong with a use of ‘-’ on the line typed interactively; the second
one says it’s because of the expression negate - 34, where you can see that the
system has mis-interpreted your use of -34.

So, you need to be a detective, pulling out all the clues that you can find. These will
usually be some indication of where the error occurs and the reason for it. If nothing
else, it should give you a clue of where to look.

which returns the value True only if all four of its arguments are equal.

Give a definition of fourEqual modelled on the definition of threeEqual
above. Now give a definition offourEqualwhich uses the functionthreeEqual
in its definition. Compare your two answers.

3.11 Give line-by-line calculations of

threeEqual (2+3) 5 (11 ‘div‘ 2)
mystery (2+4) 5 (11 ‘div‘ 2)
threeDifferent (2+4) 5 (11 ‘div‘ 2)
fourEqual (2+3) 5 (11 ‘div‘ 2) (21 ‘mod‘ 11)

3.12 Devise QuickCheck tests for the functions that you have defined here.

3.3 Overloading

Integers, Ints and Booleans can all compared for equality, and the same symbol
== is used for all these operations, even though they are different. Indeed, == will be
used for equality over any type t for which we are able to define an equality operator.
This means that (==) will have the type

Int -> Int -> Bool
Integer -> Integer -> Bool
Bool -> Bool -> Bool
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Fixed-size integers: the Int type

The Int type represents integers in a fixed amount of space, and so can only rep-
resent a finite range of integers. The value maxBound gives the greatest value in the
type, which happens to be 2147483647.

For many integer calculations these fixed size numbers are suitable, and they have
the advantage of being more efficient, but if larger numbers may be required it’s
better to use the Integer type, which can accurately represent whole numbers of
any size.

The reason that we introduce Int at all is that because some of the standard Haskell
functions which we introduce later in the chapter use the Int type, rather than
Integer.

What functions and operators can we use over Int? All the functions we have already
given for Integer, in fact, because these functions are overloaded: we look at this in
Section 3.3. We can also covert between the two types using

fromInteger :: Integer -> Int
toInteger :: Int -> Integer

and indeed t -> t -> Bool if the type t carries an equality.
Using the same symbol or name for different operations is called overloading.

A number of symbols in Haskell are overloaded, and we will see in Chapter 13 how
overloading is handled in the type system of Haskell, and also how users can define
their own overloaded operators or names.

The type for equality

The type for equality, t -> t -> Bool for any type t carrying an equality, doesn’t
allow us to compare elements from different types for equality. So, if we evaluate

2 == True

we get an error message from GHCi. Of course, there’s not much point in comparing
values of different types, because they will never be equal! We’ll come back to this in
Chapter 13.

3.4 Guards

Here we explore how conditions or guards are used to give alternatives in the defini-
tions of functions. A guard is a Boolean expression, and these expressions are used
to express various cases in the definition of a function.

We take as a running example in this section functions which compare integers
for size, and start by looking at the example of the function to return the maximum
value of two integers. When the two numbers are the same then we call their com-
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mon value the maximum.

max :: Integer -> Integer -> Integer
max x y

| x >= y = x
| otherwise = y

How do we read a definition like this, which appears in the Haskell prelude?

max :: Integer -> Integer -> Integer
max x y 
  | x >= y     = x
  | otherwise  = y

If the guard is 
False then the 
result is y

If this guard is 
True then the 
result is x

In general, if the first guard (here x>=y) is True then the corresponding value is the
result (x in this case). On the other hand, if the first guard is False, then we look at
the second, and so on. An otherwise guard will hold whatever the arguments, so
that in the case of max the result is x if x>=y and y otherwise, that is in the case that
y>x.

An example in which there are multiple guards is a definition of the maximum
of three inputs.

maxThree :: Integer -> Integer -> Integer -> Integer
maxThree x y z

| x >= y && x >= z = x
| y >= z = y
| otherwise = z

How does this definition work? The first guard

x >= y && x >= z

tests whether x is the maximum of the three inputs; if it is True the corresponding
result is x. If the guard fails, then x is not the maximum, so there has to be a choice
between y and z. The second guard is therefore

y >= z

If this holds, the result is y; otherwise the result is z. We will go back to the example
of maxThree in Section 4.1.

We first gave a general form for simple function definitions in Chapter 1; we can
now strengthen this to give a general form for function definitions with guards in
Figure 3.1. Note that the otherwise is not compulsory.

We also saw in Chapter 1 that we can write down line-by-line calculations of the
values of expressions. How do guards fit into this model? When we apply a function
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name x1 x2 ... xk
  | g1         = e1
  | g2         = e2
    ...
  | otherwise  = e

Name of the function 
being defined

Formal 
parameters

Guards Results

Figure 3.1: The general form for function definitions with guards.

to its arguments we need to know which of the cases applies, and to do this we need
to evaluate the guards until we find a guard whose value is True; once we find this,
we can evaluate the corresponding result. Taking the example of maxThree, we give
two examples in which we perform the evaluation of guards on lines beginning ‘??’.

maxThree 4 3 2
?? 4>=3 && 4>=2
?? ; True && True
?? ; True

; 4

In this example the first guard we try, 4>=3 && 4>=2, gives True and so the result is
the corresponding value, 4. In the second example we have to evaluate more than
one guard.

maxThree 6 (4+3) 5
?? 6>=(4+3) && 6>=5
?? ; 6>=7 && 6>=5
?? ; False && True
?? ; False
?? 7>=5
?? ; True

; 7

In this example we first evaluate the first guard, 6>=(4+3) && 6>=5, which results
in False; we therefore evaluate the second guard, 7>=5, which gives True, and so
the result is 7.

Once we have calculated the value of the second argument, (4+3), we do not
re-calculate its value when we look at it again. This is not just a trick on our part;
the GHCi system will only evaluate an argument like (4+3) once, keeping its value
in case it is needed again, as indeed it is in this calculation. This is one aspect of lazy
evaluation, which is the topic of Chapter 17.
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Conditional expressions

Guards are conditions which distinguish between different cases in definitions
of functions. We can also write general conditional expressions by means of the
if. . .then. . .else construct of Haskell. The value of

if condition then m else n

is m if the condition is True and is n if the condition is False, so that the expres-
sion if False then 3 else 4 has the value 4, and in general

if x >= y then x else y

will be the maximum of x and y. This shows that we can write max’ in a different
way thus:

max’ :: Integer -> Integer -> Integer
max’ x yMax

= if x >= y then x else y

We tend to use the guard form rather than this, but we will see examples below where
the use of if ... then ... else ... is more natural.

Testing

We can test our implementations of ‘maximum’ by checking that they have the same
behaviour, as we did earlier, writing a QuickCheck property like this:

prop_compareMax :: Integer -> Integer -> Bool
prop_compareMax x y =

max x y == max’ x y

But this is not the only way of writing properties. We can often write down a collec-
tion of properties which together say what a function should do. In the case of max
we can say two things

• The maximum of x and y will be greater than or equal to both x and y.

• The maximum of x and y will actually be equal to one (or both) of x and y.

We can write these two as QuickCheck properties,

prop_max1, prop_max2 :: Integer -> Integer -> Bool

prop_max1 x y =
x <= max x y && y <= max x y

prop_max2 x y =
x == max x y || y == max x y

and check whether they hold.



52 CHAPTER 3. BASIC TYPES AND DEFINITIONS

Properties can be wrong too

Sometimes we make mistakes writing properties. Suppose we’d written the property
prop_max2 like this instead:

prop_max3 x y =
(x == max x y) ‘exOr‘ (y == max x y)

recall that QuickCheck will give us a counterexample, that is, an example of where
the test fails:

*Chapter3> quickCheck prop_max3
*** Failed! Falsifiable (after 1 test):
0
0

The example shows that the property fails when the two arguments are the same.
That’s the fault of the property, as we’d forgotten about this particular case. So, when
a property fails, we need to look both at the functions it is meant to test, and at the
property itself.

Exercises

3.13 Give calculations of

max (3-2) (3*8)
maxThree (4+5) (2*6) (100 ‘div‘ 7)

3.14 Give definitions of the functions

min :: Int -> Int -> Int
minThree :: Int -> Int -> Int -> Int

which calculate the minimum of two and three integers, respectively.

3.15 Define QuickCheck properties to test the functionsmaxThree, min andminThree.

3.5 Characters and strings

People and computers communicate using keyboard input and screen output, which
are based on sequences of characters, that is letters, digits and ‘special’ characters
like space, tab, newline and end-of-file. Haskell contains a built-in type of charac-
ters, called Char. Sequences or strings of characters form the Haskell String type.
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Redefining prelude functions

The max function is defined in the prelude, Prelude.hs, and if a definition

max :: Integer -> Integer -> Integer

appears in a script then this definition will conflict with the prelude definition, lead-
ing to a GHCi error messages like this

Ambiguous occurrence ‘max’
It could refer to either ‘Chapter3.max’, defined at ...

or ‘Prelude.max’, imported from Prelude ...

To redefine the prelude functions max and min, say, the line

import Prelude hiding (max,min)

which overrides the usual import of the prelude should be included at the top of the
module, after its module statement.
Many of the functions defined in this text are in fact included in the prelude, and so
this technique needs to be used whenever you want to redefine one of these.

Characters: Char

Literal characters are written inside single quotes, thus ’d’ is the Haskell represen-
tative of the character d. Similarly ’3’ is the character three. Some special charac-
ters are represented as follows

tab ’\t’
newline ’\n’
backslash (\) ’\\’
single quote (’) ’\’’
double quote (") ’\"’

There is a standard coding for characters as integers, called the ASCII coding. The
capital letters ’A’ to ’Z’ have the sequence of codes from 65 to 90, and the small
letters ’a’ to ’z’ the codes 97 to 122. The character with code 34, for example, can
be written ’\34’, and ’9’ and ’\57’ have the same meaning. ASCII has recently
been extended to the Unicode standard, which contains characters from other char-
acter sets than English.

There are conversion functions between characters and their numerical codes
which convert an integer into a character, and vice versa.

fromEnum :: Char -> Int
toEnum :: Int -> Char

The coding functions can be used in defining functions over Char. To convert a
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small letter to a capital an offset needs to be added to its code:

offset :: Int
offset = fromEnum ’A’ - fromEnum ’a’

toUpper :: Char -> Char
toUpper ch = toEnum (fromEnum ch + offset)

Note that the offset is named, rather than appearing as a part of toUpper, as in

toUpper ch = toEnum (fromEnum ch + (fromEnum ’A’ - fromEnum ’a’))

This is standard practice, making the program both easier to read and to modify. To
change the offset value, we just need to change the definition of offset, rather than
having to change the function (or functions) which use it.

Characters can be compared using the ordering given by their codes. So, since
the digits 0 to 9 occupy a block of adjacent codes 48 to 57, we can check whether a
character is a digit thus:

isDigit :: Char -> Bool
isDigit ch = (’0’ <= ch) && (ch <= ’9’)

The standard library Data.Char contains a number of conversion functions like
toUpper, and discrimination functions like isDigit.

Exercises

3.16 Define a function to convert small letters to capitals which returns unchanged
characters which are not small letters.

3.17 Define the function

charToNum :: Char -> Int

which converts a digit like ’8’ to its value, 8. The value of non-digits should
be taken to be 0.

Strings: String

The String type is made up of sequences of characters, written between double
quotes like this: "This is a string!". In the last section we showed how to write
the special characters such as newline and tab using the ‘escapes’ ’\n’ and ’\t’.
These characters can form part of strings, as in the examples

"baboon"
""
"\99a\116"
"gorilla\nhippo\nibex"
"1\t23\t456"
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Names, strings and characters

It is easy to confuse a, ’a’ and "a". To summarize the difference,

a is a name or a variable, if defined it may have any
type whatever;

’a’ is a character, so of type Char;
"a" is a string, and of type String, which just happens

to consist of a single character.

Similarly, there is a difference between

emu a Haskell name or variable;
"emu" a string of type String.

If we evaluate one of these strings in GHCi, the result is exactly the same as the input.
In order to resolve the escape characters and to lose the double quotes we have to
perform an output operation. This is done using the primitive Haskell function

putStr :: String -> IO ()

with the effect of putting the argument string on the screen. Applying putStr to
each of the strings above gives output as follows:

baboon

cat
gorilla
hippo
ibex
1 23 456

Strings can be joined together using ++, so that "cat"++"\n"++"fish" prints as

cat
fish

We’ll cover strings in more detail – in particular seeing how we can write func-
tions to create and manipulate strings – in Chapter 5 below.

Strings and values

Built into Haskell are the overloaded functions show and read, which convert from
a value to a String and vice versa; for instance,

show (2+3) ; "5"
show (True || False) ; "True"

In the opposite direction, the function read is used to convert a string to the value
it represents, so that
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read "True" ; True
read "3" ; 3

In some situations it will not be clear what should be the result type for read – it is
then possible to give a type to the application, as in

(read "3") :: Int

the result of which will be 3 and its type, Int. A full explanation of the types of read
and show can be found in Chapter 13.

Exercises

3.18 Define a function

onThreeLines :: String -> String -> String -> String

which takes three strings and returns a single string which when printed shows
the three strings on separate lines.

3.19 Define a function

romanDigit :: Char -> String

which converts a digit to its representation in Roman numerals, so at ’7’ it
will have the value "VII" and so on.

3.6 Floating-point numbers: Float
In Section 3.2 we introduced the Haskell type Int of integers. In calculating we also
want to use numbers with fractional parts, which are represented in Haskell by the
floating-point numbers which make up the type Float. We do not use Float heav-
ily in what follows, and so this section can be omitted on first reading and used as
reference material to be consulted when necessary.

Internal to the Haskell system there is a fixed amount of space allocated to rep-
resenting each Float. This has the effect that not all fractions can be represented
by floating-point numbers, and arithmetic over them will not always be exact. It
is possible to use the type of double-precision floating-point numbers, Double for
greater precision, or for full-precision fractions built from Integer there is the type
Rational. As this is a programming tutorial we restrict our attention to the types
Int and Float but we shall survey the numerical types briefly in Chapter 13.

Literal floats in Haskell can be given by decimal numerals, such as

0.31426
-23.12
567.347
4523.0
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+ - * Float -> Float -> Float Add, subtract, multiply.
/ Float -> Float -> Float Fractional division.
ˆ Float -> Integer -> Float Exponentiation xˆn = xn for a

natural number n.
** Float -> Float -> Float Exponentiation x**y = xy.
==,/=,<,>, Float -> Float -> Bool Equality and ordering opera-

tions.
<=,>=

abs Float -> Float Absolute value.
acos,asin Float -> Float The inverse of cosine, sine
atan and tangent.

ceiling Float -> Integer Convert a fraction to an integer
floor by rounding up, down, or to the
round closest integer.

cos,sin Float -> Float Cosine, sine and tangent.
tan

exp Float -> Float Powers of e.
fromInteger Integer -> Float Convert an Integer to a Float.
fromIntegral Int -> Float Convert an Int (or any integral

value) to a Float.
log Float -> Float Logarithm to base e.
logBase Float -> Float -> Float Logarithm to arbitrary base, pro-

vided as first argument.
negate Float -> Float Change the sign of a number.
pi Float The constant pi.
signum Float -> Float 1.0, 0.0 or -1.0 according to

whether the argument is positive,
zero or negative.

sqrt Float -> Float (Positive) square root.

Figure 3.2: Floating-point operations and functions.

The numbers are called floating point because the position of the decimal point is
not the same for all Floats; depending upon the particular number, more of the
space can be used to store the integer or the fractional part.

Haskell also allows literal floating-point numbers in scientific notation. These
take the form below, where their values are given in the right-hand column of the
table

231.61e7 231.61£107 = 2,316,100,000
231.6e-2 231.61£10°2 = 2.3161
-3.412e03 °3.412£103 =°3412

This representation is more convenient than the decimal numerals above for very
large and small numbers. Consider the number 2.1444. This will need well over a
hundred digits before the decimal point, and this would not be possible in decimal
notation of limited size (usually 20 digits at most). In scientific notation, it will be
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Non-numerical results

Some calculations over floating point numbers don’t give numerical results. These
could be signalled in a variety of ways; Haskell will return an indication that the re-
sult is ‘not a number’, NaN, or infinite, Infinity. These give an indication of what
has gone wrong, but can’t be used in further calculations: once a value is ‘not a num-
ber’ any calculation with it will have the same result.

Converting integers to floating-point numbers

Although literals are overloaded, there is no automatic conversion from Integer to
Float. In general if we wish to add an integer quantity, like floor 5.6, to a float,
like 6.7, we will receive an error message if we type

(floor 5.6) + 6.7

since we are trying to add quantities of two different types. We have to convert the
Integer to a Float to perform the addition, thus:

fromIntegral (floor 5.6) + 6.7

where fromIntegral takes anything of integral type (that is Int, Integer etc.) to
the corresponding Float.

written as 1.162433e+143.

Haskell provides a range of operators and functions over Float in the standard pre-
lude. The table in Figure 3.2 gives their name, type and a brief description of their
behaviour. Included are the

• standard mathematical operations: square root, exponential, logarithm and
trigonometric functions;

• functions to convert integers to floating-point numbers: fromInt, and vice
versa: ceiling, floor and round.

Haskell can be used as a numeric calculator. Try typing the expression which follows
to the GHCi prompt:

sin (pi/4) * sqrt 2

Overloaded literals and functions

In Haskell the numbers 4 and 2 belong to both Int and Float; they are overloaded,
as discussed in Section 3.3. This is also true of some of the numeric functions; ad-
dition, for instance, has both the types

Int -> Int -> Int
Float -> Float -> Float



Floating-point numbers: Float 59

and the relational operators == and so forth are available over all basic types. We
shall explore this idea of overloading in more detail when we discuss type classes
below in Chapter 13.

Exercises

3.20 Give a function to return the average of three integers

averageThree :: Integer -> Integer -> Integer -> Float

Using this function define a function

howManyAboveAverage :: Integer -> Integer -> Integer -> Integer

which returns how many of its inputs are larger than their average value.

3.21 How would you write QuickCheck properties to test the functionsaverageThree
and howManyAboveAverage?

The remainder of the questions look at solutions to a quadratic equation

a*X2 + b*X + c = 0.0

where a, b and c are real numbers. The equation has

• two real roots, if b2 > 4.0*a*c;

• one real root, if b2 == 4.0*a*c; and

• no real roots, if b2 < 4.0*a*c.

This assumes that a is non-zero — the case which we call non-degenerate. In the
degenerate case, there are three sub-cases:

• one real root, if b /= 0.0;

• no real roots, if b == 0.0 and c /= 0.0;

• every real number a root, if b == 0.0 and c == 0.0.

Exercises

3.22 Write a function

numberNDroots :: Float -> Float -> Float -> Integer

that given the coefficients of the quadratic, a, b and c, will return how many
roots the equation has. You may assume that the equation is non-degenerate.

3.23 Using your answer to the last question, write a function

numberRoots :: Float -> Float -> Float -> Integer
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that given the coefficients of the quadratic, a, b and c, will return how many
roots the equation has. In the case that the equation has every number a root
you should return the result 3.

3.24 The formula for the roots of a quadratic is

-b±
p
b2- 4ac
2a

Write definitions of the functions

smallerRoot, largerRoot :: Float -> Float -> Float -> Float

which return the smaller and larger real roots of the quadratic. In the case that
the equation has no real roots or has all values as roots you should return zero
as the result of each of the functions.

3.25 How would you write QuickCheck properties to test the functionssmallerRoot
and largerRoot?

Hint: one thing you would expect is that the result of the first function is
less than or equal to the second. Another thing you should expect is that
if you substitute the roots back into the equation, the result should be zero.
However, because floating-point calculation is only approximate, you need to
check whether the result of substituting a root is close to zero, rather than be-
ing actually equal to it.

3.7 Syntax

The syntax of a language describes all the properly formed programs. This section
looks at various aspects of the syntax of Haskell, and stresses especially those which
might seem unusual or unfamiliar at first sight.

Definitions and layout

A script contains a series of definitions, one after another. How is it clear where
one definition ends and another begins? In writing English, the end of a sentence is
signalled by a full stop, ‘.’. In Haskell the layout of the program is used to state where
one definition ends and the next begins.

Formally, a definition is ended by the first piece of text which lies at the same
indentation or to the left of the start of the definition.

When we write a definition, its first character opens up a box which will hold the
definition, like so

mystery x = x*x
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Whatever is typed in the box forms part of the definition . . .

mystery x = x*x

        +x

             +2

. . . until something is found which is on the line or to the left of the line. This closes
the box, like this

mystery x = x*x

        +x

             +2

next y = ...

In writing a sequence of definitions, it is therefore sensible to give them all the same
level of indentation. In our scripts we shall always write top-level definitions starting
at the left-hand side of the page, and in literate scripts we will indent the start of each
definition by a single ‘tab’.

This rule for layout is called the offside rule because it is reminiscent of the idea
of being ‘offside’ in soccer. The rule also works for conditional equations such as max
and maxThree which consist of more than one clause.

There is, in fact, a mechanism in Haskell for giving an explicit end to part of a
definition, just as ‘.’ does in English: the Haskell ‘end’ symbol is ‘;’. We can, for
instance, use ‘;’ if we wish to write more than one definition on a single line, thus:

answer = 42 ; facSix = 720

Recommended layout

The offside rule permits various different styles of layout. In this book for definitions
of any size we use the form

fun v1 v2 ... vn
| g1 = e1
| g2 = e2
...
| otherwise = er ( or | gr = er)

for a conditional equation built up from a number of clauses. In this layout, each
clause starts on a new line, and the guards and results are lined up. Note also that
by convention in this text we always specify the type of the function being defined.
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Layout errors

If we break the offside rule like this:

funny x = x+
1

we receive an error message like this:

Chapter3.hs:33:0:
parse error (possibly incorrect indentation)

Failed, modules loaded: none.

which indicates that the indentation may well be the problem. The position 33:0 is
the position of the digit 1, which is in row 33 and column 0 of the file Chapter3.hs.

If any of the expressions ei or guards gi is particularly long, then the guard can
appear on a line (or lines) of its own, like this

fun v1 v2 ... vn
| a long guard which may

go over a number of lines
= very long expression which goes

over a number of lines
| g2 = e2
...

If you use an editor which is Haskell-aware, e.g. emacs with Haskell mode, then the
editor will help you to indent your code. In this particular case, hitting the tab key
repeatedly will cycle through a set of suggested indentations of the line that you are
currently working on, based on its contents.

Names in Haskell

Thus far in the book we have seen a variety of uses of names in definitions and ex-
pressions. In a definition like

addTwo :: Int -> Int -> Int
addTwo first second = first+second

the names or identifiers Int, addTwo, first and second are used to name a type,
a function and two variables. Identifiers in Haskell must begin with a letter – small
or capital – which is followed by an optional sequence of letters, digits, underscores
‘_’ and single quotes.

The names used in definitions of values must begin with a small letter, as must
variables and type variables, which are introduced later. On the other hand, capital
letters are used to begin type names, such as Int; constructors, such as True and
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False; module names and also the names of type classes, which we shall encounter
below.

An attempt to give a function a name which begins with a capital letter, such as

Funny x = x+1

gives the error message:

Chapter3.hs:32:0:
Not in scope: data constructor ‘Funny’

There are some restrictions on how identifiers can be chosen. There is a small col-
lection of reserved words which cannot be used; these are

case class data default deriving do else if import in infix
infixl infixr instance let module newtype of then type where

The special identifiers as, qualified, and hiding have special meanings in certain
contexts but can be used as ordinary identifiers.

By convention, when we give names built up from more than one word, we cap-
italize the first letters of the second and subsequent words, as in ‘maxThree’.

The same identifier can be used to name both a function and a variable, or both
a type and a type constructor; we recommend strongly that this is not done, as it can
only lead to confusion.

If we want to redefine a name that is already defined in the prelude or one of the
libraries we have to hide that name on import; details of how to do this are given on
page 53.

Haskell is built on top of the Unicode character description standard, which al-
lows symbols from fonts other than those in the ASCII standard. These symbols can
be used in identifiers and the like, and Unicode characters – which are described
by a 16-bit sequence – can be input to Haskell in the form \uhhhh where each of
the h is a hexadecimal (4 bit) digit. In this text we use the ASCII subset of Unicode
exclusively.

Operators

The Haskell language contains various operators, like +, ++ and so on. Operators are
infix functions, so that they are written between their arguments, rather than before
them, as is the case for ordinary functions.

In principle it is possible to write all applications of an operator with enclosing
parentheses, thus

(((4+8)*3)+2)

but expressions rapidly become difficult to read. Instead two extra properties of
operators allow us to write expressions uncluttered by parentheses.
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Associativity

If we wish to add the three numbers 4, 8 and 99 we can write either 4+(8+99) or
(4+8)+99. The result is the same whichever we write, a property we call the asso-
ciativity of addition. Because of this, we can write

4+8+99

for the sum, unambiguously. Not every operator is associative, however; what hap-
pens when we write

4-2-1

for instance? The two different ways of inserting parentheses give

(4-2)-1 = 2-1 = 1 left associative
4-(2-1) = 4-1 = 3 right associative

In Haskell each non-associative operator is classified as either left or right associa-
tive. If left associative, any double occurrences of the operator will be parenthesized
to the left; if right associative, to the right. The choice is arbitrary, but follows custom
as much as possible, and in particular ‘-’ is taken to be left associative.

Binding powers

The way in which an operator associates allows us to resolve expressions like

2ˆ3ˆ2

where the same operator occurs twice, but what is done when two different opera-
tors occur, as in the following expressions?

2+3*4
3ˆ4*2

For this purpose the binding power or fixity of the operators need to be compared.
* has binding power 7 while + has 6, so that in 2+3*4 the 3 sticks to the 4 rather than
the 2, giving

2+3*4 = 2+(3*4)

In a similar way, ˆ with binding power 8 binds more tightly than *, so

3ˆ4*2 = (3ˆ4)*2

A full table of the associativities and binding powers of the predefined Haskell op-
erators is given in Appendix C. In the section ‘Do-it-yourself operators’ below we
discuss how operators are defined in scripts and also how their associativity and
binding power can be set or changed by declarations.
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Function application

Binding most tightly is function application, which is given by writing the name of
the function in front of its argument(s) thus: f v1 v2 ... vn. This binds more
tightly than any other operator, so that f n+1 is interpreted as f n plus 1, (f n)+1,
rather than f applied to n+1, f (n+1). If in doubt, it is sensible to parenthesize each
argument to a function application.

Similarly, as ‘-’ is both an infix and a prefix operator, there is scope for confusion.
f -x will be interpreted as x subtracted from f, rather than f applied to -x; the
solution again is to bracket the argument, giving f (-x).

Operators and functions

Infix operators can be written before their arguments, by enclosing the operator in
parentheses. We therefore have, for example,

(+) :: Integer -> Integer -> Integer

so that

(+) 2 3 = 2 + 3

This conversion is needed later when we make functions into arguments of other
functions. We can also convert functions into operators by enclosing the function
name in backquotes, thus ‘name‘. We therefore have, using the maximum function
defined earlier,

2 ‘max‘ 3 = max 2 3

This notation can make expressions involving binary or two-argument functions
substantially easier to read.

The fixity and associativity of these operators can be controlled; see Appendix C.

Do-it-yourself operators

The Haskell language allows us to define infix operators directly in exactly the same
way as functions. Operator names are built from the operator symbols which in-
clude the ASCII symbols

! # $ % & * + . / < = > ? \ ˆ | : - ˜
together with the Unicode symbols. An operator name may not begin with a colon.

To define the operator &&& as an integer minimum function, we write

(&&&) :: Integer -> Integer -> Integer
x &&& y

| x > y = y
| otherwise = x

The associativity and binding power of the operator can be specified; for details see
Appendix C.
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Exercises

3.26 Rewrite your solutions to the earlier exercises to use the recommended layout.

3.27 Given the definitions

funny x = x+x
peculiar y = y

explain what happens when you remove the space in front of the peculiar.

Summary

This chapter has introduced the base types Integer, Int, Float, Char and Bool
together with various built-in functions over them. We have seen how Boolean ex-
pressions – called guards – allow definitions which have various cases, and this was
exemplified by the function returning the maximum of two integer arguments. This
definition contains two cases, one which applies when the first argument is the
larger and the other when the second is the larger.

Finally, we have seen how the layout of a Haskell program is significant – the end
of a definition is implicitly given by the first piece of program text ‘offside’ of the start
of the definition; we have also given an overview of operators in Haskell.

This material, together with what we have seen in earlier chapters, gives us a
toolkit which we can use to solve programming problems. In the next chapter we
will explore various ways of using that toolkit to solve practical problems.



Chapter 4

Designing and writing programs

In this chapter we step back from discussing the details of Haskell and instead look at
how to build programs. We present some general strategies for program design; that
is we talk about how programs can be planned before we start to write the details.
The advice we give here is largely independent of Haskell and will be useful whatever
programming language we use.

Two particular aspects of Haskell help with program design, and we introduce
each of these in this chapter. First, we talk about local definitions, which we can use
in solving problems – that is defining functions – step by step. Secondly we start our
discussion of how to define types for ourselves, using Haskell data types.

We follow this by discussing recursion. We begin by concentrating on explaining
why recursion works, and follow this by looking at how to find primitive recursive
definitions, extending what we have said about design. We conclude with an op-
tional examination of more general forms of recursion.

Once we have written a definition we need to ask whether it does what it is in-
tended to do. We conclude the chapter by discussing the principles of program test-
ing and examining a number of examples. We use the unit testing framework HUnit
as well as QuickCheck for presenting and performing tests.

4.1 Where do I start? Designing a program in Haskell

One theme which we want to emphasize in this book is how we can design programs
to be written in Haskell. Design is used to mean many different things in computing;
the way that we want to think of it is like this:

definition 4.1 Design is the stage before we start writing detailed Haskell code.

In this section we will concentrate on looking at examples, and on talking about the
different ways we can try to define functions, but we will also try to give some general
advice about how to start writing a program. These are set out as questions we can
ask ourselves when we are stuck with a programming problem.

67
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Do I understand what I need to do?

Before we can start to solve a programming problem we need to be clear about what
we have to do. Often problems are described in an informal way, and this can mean
that the problem either is not fully stated or cannot be solved as it is described.

Suppose we are asked to return the middle of three numbers. It is clear that given
the numbers 2, 4 and 3we should return 3, but when presented with 2, 4 and 2 there
are two possible responses.

• We could say that 2 is the middle number because when we write the numbers
in order: 2 2 4, then 2 is the number that appears in the middle.

• Alternatively we could say that there is no middle number in this case, since 2
is the lower and 4 the higher, and that we therefore cannot return any result.

What can we learn from this illustration?

• First, that even in simple problems there can be things we have to think about
before we start programming.

• Secondly, it is important to realize that there is no right answer among the
two options given just now: it is up to the person wanting the program written
and the programmer to work out between them what is wanted.

• Thirdly, a very good way of thinking about whether we understand the prob-
lem is to think about how we expect it to work out in various examples.

• Finally, it is worth realizing that often difficulties like this come out at the pro-
gramming stage, when we have already written a whole lot of definitions; the
sooner we spot a problem like this, the more wasted effort we can save.

Another example of this came up in the definition of max in Section 3.4, where we
had to say what the function should return when its two arguments were the same.
In that case it was sensible to think of the maximum of, say, 3 and 3 as being 3.

Can I say anything about types at this stage?

One thing we can think about at this stage is the types of the various things we are
thinking about. We can write

middleNumber :: Integer -> Integer -> Integer -> Integer

as the name and type of the function returning the middle of three numbers without
having any idea about how we are going to define the function itself. Nevertheless,
it is progress, and also it gives us something to check our definition against when
we have written it: if we manage to write a function middleNumber but it does not
have the type Integer -> Integer -> Integer -> Integer, then the function
cannot be doing what it should.

It might be that the built-in types of Haskell don’t suit the problem: we can then
think of defining types for ourselves. We’ll begin to do that in Section 4.3.
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What do I already know? How can I use this information?

These are crucial questions for a designer of a program. We need to know what re-
sources are available to us for solving the problem at hand: what definitions have
we already written which could be useful, what does the language provide in its pre-
lude and libraries? We will obviously learn more about the latter as we go along,
but even when we have written only a small number of programs we should always
think about how these might help us solve the problem at hand. For instance, in
trying to define the function maxThree introduced in Section 3.4, we know that we
have already got the max function, giving the maximum of two numbers.

As well as knowing our resources we also need to know how we can use them;
this we look at now. There are two different ways that a definition we already have
can be helpful.

We can take the definition of a function as a model for what we want to do

In defining maxThree we have the resource of already having defined the function
max. We can think of its definition as a model for how we might define maxThree.

In max we give the result x on condition that it is the maximum of the two, that is

x >= y

Our definition of maxThree does a similar thing, replacing the condition for two
values with the condition for three, namely:

x >= y && x >= z

This way of using max is probably the first to spring to mind, but it is not the only
way that max can help us in defining maxThree.

We can use a function we have already defined within the new definition

We are trying to find the maximum of three numbers, and we are already provided
with a function max to give us the maximum of two. How could we use max to give
us the result we want? We can take the maximum of the first two, and then the
maximum of that and the third. In pictures,

max
max

x

z
y

and in Haskell

maxThree x y z = max (max x y) z
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or writing the max in its infix form, ‘max‘,

maxThree x y z = (x ‘max‘ y) ‘max‘ z

Using max in this way has some advantages.
The definition of maxThree is considerably shorter and easier to read than the

original. If at some point we changed the way that max was calculated – perhaps
making it a built-in function – then this definition would get the benefit of the ‘new’
max. This is not such an advantage in a small example like this, but can be of consid-
erable benefit in a larger-scale system where we can expect software to be modified
and extended over its lifetime.

Can I break the problem down into simpler parts?

If we cannot solve a problem as it stands, we can think about breaking it down into
smaller parts. This principle of ‘divide and conquer’ is the basis of all larger-scale
programming: we solve aspects of the problem separately and then put them to-
gether to give an overall solution.

How do we decide how to break a problem down into parts? We can think of
solving a simpler problem and then building the full solution on top, or we can ask
ourselves the question here.

What if I had any functions I wanted: which could I use in writing the solution?

This what if . . . ? is a central question, because it breaks the problem into two parts.
First we have to give the solution assuming we are given the auxiliary functions we
want and thus without worrying about how they are to be defined. Then, we have
separately to define these auxiliary functions.

Starting point

Goal

Starting point

Goal

What if…? functions

Instead of a single jump from the starting point to the goal, we have two shorter
jumps, each of which should be easier to do. This approach is called top-down as we
start at the top with the overall problem, and work by breaking it down into smaller
problems.

This process can be done repeatedly, so that the overall problem is solved in a
series of small jumps. We now look at an example; more examples appear in the
exercises at the end of the section.

Suppose we are faced with the problem of defining

middleNumber :: Integer -> Integer -> Integer -> Integer
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according to the first of the alternatives described on page 68. A model is given by
the definition of maxThree, in which we give conditions for x to be the solution, y to
be the solution and so on. We can therefore sketch out our solution like this

middleNumber x y z
| condition for x to be solution = x
| condition for y to be solution = y
....

Now, the problem comes in writing down the conditions, but here we say what if we
had a function to do this. Let us call it between. It has three numbers as arguments,
and a Boolean result,

between :: Integer -> Integer -> Integer -> Bool

and is defined so that between m n p is True if n is between m and p. We can com-
plete the definition of middleNumber now:

middleNumber x y z
| between y x z = x
| between x y z = y
| otherwise = z

The definition of the function between is left as an exercise for the reader.
This section has introduced some of the general ideas which can help us to get

started in solving a problem. Obviously, because programming is a creative activity
there is not going to be a set of rules which will always lead us mechanically to a so-
lution to a problem. On the other hand, the questions posed here will get us started,
and show us some of the alternative strategies we can use to plan how we are going
to write a program.

We’ll follow this up in the next section, where we look at another way we can
break problems down and solve them in steps. After that we’ll take a first look at
how to define our own data types in solving problems. We take up the discussion
again in Chapter 12.

Exercises

4.1 This question is about the function

maxFour :: Integer -> Integer -> Integer -> Integer -> Integer

which returns the maximum of four integers. Give three definitions of this
function: the first should be modelled on that of maxThree, the second should
use the functionmax and the third should use the functionsmax andmaxThree.
For your second and third solutions give diagrams to illustrate your answers.
Discuss the relative merits of the three solutions you have given.

4.2 Give a definition of the function
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between :: Integer -> Integer -> Integer -> Bool

discussed in this section. The definition should be consistent with what we
said in explaining how middleNumber works. You also need to think carefully
about the different ways that one number can lie between two others. You
might find it useful to define a function

weakAscendingOrder :: Integer -> Integer -> Integer -> Bool

so that weakAscendingOrder m n p is True exactly when m, n and p are in
weak ascending order, that is the sequence does not go down at any point. An
example of such a sequence is 2 3 3.

4.3 Give a definition of the function

howManyEqual :: Integer -> Integer -> Integer -> Integer

which returns how many of its three arguments are equal, so that

howManyEqual 34 25 36 = 0
howManyEqual 34 25 34 = 2
howManyEqual 34 34 34 = 3

Think about what functions you have already seen – perhaps in the exercises
– which you can use in the solution.

4.4 Give a definition of the function

howManyOfFourEqual :: Integer -> Integer -> Integer -> Integer -> Integer

which is the analogue of howManyEqual for four numbers. You may need to
think what if . . . ?.

4.2 Solving a problem in steps: local definitions

In this section we’ll look at a way that we can make local definitions as a part of mak-
ing a function definition: these might be definitions of useful functions, or of values
which we can use in defining our answers. We start by looking at some examples,
and then discuss some of the details of the where and let constructs.

Examples
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The example we will follow is to define a func-
tion over pictures, as implemented in the module
PicturesSVG.hs. Suppose we want to define a function
that takes a picture like horse, and delivers the picture
first shown in Figure 1.2 on page 19.

One way to tackle it is to start this way:

fourPics :: Picture -> Picture

fourPics pic =
left ‘beside‘ right

where
left = ...
right = ...

where we define what left and right mean in the local definitions that follow the
where. The reason these are called ‘local’ is that they can only be used in the defini-
tion of the fourPics function, and nowhere else.

So, we have broken the problem down into two parts, each simpler than the
whole problem. Let’s look at the left first. We get this by putting the pic above
an inverted version, so giving us

fourPics :: Picture -> Picture

fourPics pic =
left ‘beside‘ right

where
left = pic ‘above‘ invertColour pic
right = ...

Now, there are a number of ways of finishing off the definition. Let’s look at three of
these now.

• Let’s start by defining right from scratch, like this

fourPics :: Picture -> Picture

fourPics pic =
left ‘beside‘ right

where
left = pic ‘above‘ invertColour pic
right = invertColour (flipV pic) ‘above‘ flipV pic

• We could modify this solution so that we add another local definition to help
us. In this case we define flipped as the original pic flipped in a vertical
mirror. We do this because we can use this in defining the right hand side in a
similar way to how we defined the left.



74 CHAPTER 4. DESIGNING AND WRITING PROGRAMS

fourPics :: Picture -> Picture

fourPics pic =
left ‘beside‘ right

where
left = pic ‘above‘ invertColour pic
right = invertColour flipped ‘above‘ flipped
flipped = flipV pic

• We could use the definition of left in defining right: we get right from
left by reflecting it in a vertical mirror, and then inverting the colour (or the
other way around), so giving the definition

fourPics :: Picture -> Picture

fourPics pic =
left ‘beside‘ right

where
left = pic ‘above‘ invertColour pic
right = invertColour (flipV left)

• Finally, we could define a local function; this is a function we can use only
within the definition of fourPics, and not elsewhere. The function stack
will put a picture above its inverted version; we’ll then use stack in defining
the left and right parts of the picture.

fourPics :: Picture -> Picture

fourPics pic =
left ‘beside‘ right

where
stack p = p ‘above‘ invertColour p
left = stack pic
right = stack (invertColour (flipV pic))

As you can see from this example, there’s often more than one way of solving a prob-
lem, but a very useful tool in each of these solutions was to use local definitions.

Another more mathematical example is given by a function to calculate the area
of a triangle with sides a, b and c. The formula for this is

p
s*(s-a)*(s-b)*(s-c)

where s is (a+b+c)/2. As a definition in Haskell this becomes

triArea :: Float -> Float -> Float -> Float

triArea a b c
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let expressions

It is also possible to make definitions local to an expression, rather than local to a
function clause as for where. For instance, we can write

let x = 3+2 in xˆ2 + 2*x - 4

giving the result 31. If more than one definition is included in one line they need to
be separated by semi-colons, thus:

let x = 3+2 ; y = 5-1 in xˆ2 + 2*x - y

We shall find that we use this form only occasionally.

| possible = sqrt(s*(s-a)*(s-b)*(s-c))
| otherwise = 0
where

s = (a+b+c)/2
possible = ... for you to define ...

Defining possible is left as an exercise: this value should be Trueonly if it’s possible
to have a triangle with those sides. Each of the numbers should be positive, and each
side should satisfy the triangle inequality: the length of the side is less than the sum
of the other two sides.

Calculation with local definitions

We look at how to calculate with local definitions by taking the example of a function
which is to return the sum of the squares of two integers.

sumSquares :: Integer -> Integer -> Integer

sumSquares n m
= sqN + sqM

where
sqN = n*n
sqM = m*m

where the where clause is used to find the two squares.
The way in which calculations are written can be extended to deal with where

clauses. The sumSquares function in the previous section gives, for example

sumSquares 4 3
= sqN + sqM

where
sqN = 4*4 = 16
sqM = 3*3 = 9

= 16 + 9
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= 25

The values of the local definitions are calculated beneath the where if their values
are needed. All local evaluation below the where is indented. To follow the top-level
value, we just have to look at the calculation at the left-hand side.

The vertical lines which appear are used to link the successive steps of a calcula-
tion when these have intermediate where calculations. The lines can be omitted.

Layout

In definitions with where clauses, the layout is significant. The offside rule is used
by the system to determine the end of each definition in the where clause.

The where clause must be found in the definition to which it belongs, so that the
where must occur somewhere to the right of the start of the definition. Inside the
where clause, the same rules apply as at the top level: it is therefore important that
the definitions are aligned vertically – if not, an error will result. Our recommended
layout is therefore

f p1 p2 ... pk
| g1 = e1
...

| otherwise = er
where
v1 a1 ... an = r1
v2 = r2
....

The where clause here is attached to the whole of the conditional equation, and so
is attached to all the clauses of the conditional equation.

This example also shows that the local definitions can include functions – here
v1 is an example of a local function definition. We have given type declarations
for all top-level definitions; it is also possible to give type declarations for where-
defined objects in Haskell. In cases where the type of a locally defined object is not
obvious from its context, our convention is to include a declaration of its type.

Scopes

A Haskell script consists of a sequence of definitions. The scope of a definition is
that part of the program in which the definition can be used. All definitions at the
top-level in Haskell have as their scope the whole script that they are defined in: that
is, they can be used in all the definitions the script contains. In particular they can
be used in definitions which occur before theirs in the script, as in

isOdd, isEven :: Int -> Bool

isOdd n
| n<=0 = False
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| otherwise = isEven (n-1)

isEven n
| n<0 = False
| n==0 = True
| otherwise = isOdd (n-1)

Local definitions, given by where clauses, are not intended to be ‘visible’ in the
whole of the script, but rather just in the conditional equation in which they ap-
pear. The same is true of the variables in a function definition: their scope is the
whole of the conditional equation in which they appear.

Specifically, in the example which follows, the scope of the definitions of sqx,
sqy and sq and of the variables x and y is given by the large box; the smaller box
gives the scope of the variable z.

maxsq x y
| sqx > sqy = sqx
| otherwise = sqy

where
sqx = sq x
sqy = sq y
sq :: Int -> Int
sq z = z*z

In particular it is important to see that

• the variables appearing on the left-hand side of the function definition – x and
y in this case – can be used in the local definitions; here they are used in sqx
and sqy;

• local definitions can be used before they are defined: sq is used in sqx here;

• local definitions can be used in results and in guards as well as in other local
definitions.

It is possible for a script to have two definitions or variables with the same name. In
the example below, the variable x appears twice. Which definition is in force at each
point? The most local is the one which is used.

maxsq x y
| sq x > sq y = sq x
| otherwise = sq y

where
sq x = x*x
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In the example, we can think of the inner box cutting a hole in the outer, so that the
scope of the outer x will exclude the definition of sq. When one definition is con-
tained inside another the best advice is that different variables and names should be
used for the inner definitions unless there is a very good reason for using the same
name twice.

Finally note that it is not possible to have multiple definitions of the same name
at the same level; one of them needs to be hidden if a clash occurs due to the com-
bination of a number of modules.

Exercises

4.5 Give two other ways of completing the definition of fourPics given in this
section.

4.6 Another way of solving the problem is to break it down into one picture above
another, as in

fourPics :: Picture -> Picture

fourPics pic =
top ‘above‘ bottom

where
top = ...
bottom = ...

Give three different ways of completing this definition.

4.7 Give two other ways of defining the fourPics function.

4.8 Define the possible value as used in the triArea function.

4.9 Define the function

maxThreeOccurs :: Int -> Int -> Int -> (Int,Int)

which returns the maximum of three integers paired with the number of times
it occurs among the three. A natural solution first finds the maximum, and
then investigates how often it occurs among the three. Discuss how you would
write your solution if you were not allowed to use where-definitions.

4.10 Give sample calculations of

maxThreeOccurs 4 5 5
maxThreeOccurs 4 5 4

using your definition of maxThreeOccurs from the previous question.
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4.3 Defining types for ourselves: enumerated types

Often the first thing we need to do in solving a problem is to find the right types to
model the problem domain. While Haskell comes with a comprehensive set of basic
data types, which we discussed in Chapter 3, and ways of building complex types
from simpler ones, which we’ll discuss in the coming chapters, it also makes sense
to define types which directly model the problem domain. This is done with Haskell
data types: this section introduces the simplest cases of these types in the context
of a gaming example.

Rock - Paper - Scissors

Two players choose one of Rock, Paper and
Scissors after counting to three and making
one of these gestures:

• A clenched fist which represents a rock.

• A flat hand representing a piece of paper.

• Index and middle figure extended which
represents a pair of scissors.

If they choose the same gesture, neither wins;
if not, the result is decided this way:

• Rock defeats scissors, because a rock will blunt a pair of scissors.

• Paper defeats rock, because a paper can wrap up a rock.

• Scissors defeat paper, because scissors cut paper.

Suppose that we want to model this in Haskell. One option would be to use integers,
characters or strings (which we’ll find out about later), but none of these is ideal, for
a number of reasons.

• A choice may well be arbitrary: what numbers should we associate with ‘rock’,
which with ‘scissors’?

• The type we would choose would have lots of other elements which don’t cor-
respond to anything in the game.

So, instead, we will define a data type with three members

data Move = Rock | Paper | Scissors

where we list the members separated by a vertical bar. We can also put the different
members on different lines, like this:

data Move = Rock |
Paper |
Scissors
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Whatever the case, we add another line – some ‘Haskell magic’ which we’ll explain
in Chapter 13 – which allows us to compare elements of this type for equality, and
also to be able to see them printed out (or ‘shown’), like so:

data Move = Rock | Paper | Scissors
deriving (Show,Eq)

Now we can begin to define functions using the Move type. Let’s write a function
which tells us the move to beat a particular move:

beat :: Move -> Move

beat Rock = Paper
beat Paper = Scissors
beat Scissors = Rock

and also the move that will lose against a particular move.

lose :: Move -> Move

lose Rock = Scissors
lose Paper = Rock
lose _ = Paper

In the definition of lose we’ve used a wildcard ‘_’ instead of Scissors in the final
clause of the definition. That is because this clause is only matched when the others
don’t, and that will only happen for the value Scissors.

We will come back to this example in Section 8.1 once we have covered lists in
Haskell, when we’ll look at some of the strategies for playing (and winning!) Rock -
Paper - Scissors.

Exercises

4.11 Define a data type Result which represents the outcome of a round of rock -
paper - scissors, which will either be a win. lose or draw.

4.12 Define a function

outcome :: Move -> Move -> Result

so that this gives the outcome of a round for the first player. For example, we
should expect that outcome Rock Scissors should be a win.

4.13 We have added some ‘magic’ to the Chapter4 module to allow QuickCheck
properties to be tested over the Move type. Define a QuickCheck property
which connects the results of beat and lose.

4.14 How would you define a QuickCheck property to test the outcome function?
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Standard types

We can see some standard types as being defined in this way. In particular, we could
define Bool like this:

data Bool = False | True
deriving (Show, Eq, Ord)

Deriving Ord means that the elements have an ordering defined on them; in this
case False < True.

Exercises

4.15 Define a type of seasons, Season, and give a function from seasons to temper-
ature given by the type

data Temp = Cold | Hot
deriving (Eq, Show, Ord)

In defining this function assume that you’re in the UK.

4.16 Define a type Month and a function from this type to Season, assuming that
you’re in the northern hemisphere.

4.4 Recursion

Recursion is an important programming mechanism, in which a definition of a func-
tion or other object refers to the object itself. This section concentrates on explain-
ing the idea of recursion, and why it makes sense. In particular we give two com-
plementary explanations of how primitive recursion works in defining the factorial
function over the natural numbers. In the section after this we look at how recursion
is used in practice.

Getting started: a story about factorials

Suppose that someone tells us that the factorial of a natural number is the prod-
uct of all natural numbers from one up to (and including) that number, so that, for
instance

fac 6 = 1*2*3*4*5*6

Suppose we are also asked to write down a table of factorials, where we take the
factorial of zero to be one. We begin thus

n fac n
0 1
1 1
2 1*2 = 2
3 1*2*3 = 6
4 1*2*3*4 = 24
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but we notice that we are repeating a lot of multiplication in doing this. In working
out

1*2*3*4

we see that we are repeating the multiplication of 1*2*3 before multiplying the re-
sult by 4

1*2*3 *4

and this suggests that we can produce the table in a different way, by saying how to
start

fac 0 = 1 (fac.1)

which starts the table thus

n fac n
0 1

and then by saying how to go from one line to the next

fac n = fac (n-1) * n (fac.2)

since this gives us the lines

n fac n
0 1
1 1*1 = 1
2 1*2 = 2
3 2*3 = 6
4 6*4 = 24

and so on.
What is the moral of this story? We started off describing the table in one way,

but came to see that all we needed was the information in (fac.1) and (fac.2).

• (fac.1) tells us the first line of the table, and

• (fac.2) tells us how to get from one line of the table to the next.

The table is just a written form of the factorial function, so we can see that (fac.1)
and (fac.2) actually describe the function to calculate the factorial, and putting
them together we get

fac :: Integer -> Integer
fac n

| n==0 = 1
| n>0 = fac (n-1) * n

A definition like this is called recursive because we actually use fac in describing
fac itself. Put this way it may sound paradoxical: after all, how can we describe
something in terms of itself? But, the story we have just told shows that the definition
is perfectly sensible, since it gives
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• a starting point: the value of fac at 0, and

• a way of going from the value of fac at a particular point, fac (n-1), to the
value of fac on the next line, namely fac n.

These recursive rules will give a value to fac n whatever the (positive) value n has –
we just have to write out n lines of the table, as it were.

Recursion and calculation

The story in the previous section described how the definition of factorial

fac :: Integer -> Integer
fac n

| n==0 = 1 (fac.1)
| n>0 = fac (n-1) * n (fac.2)

can be seen as generating the table of factorials, starting from fac 0 and working
up to fac 1, fac 2 and so forth, up to any value we wish.

We can also read the definition in a calculational way, and see recursion justified
in another way. Take the example of fac 4

fac 4
; fac 3 * 4

so that (fac.2) replaces one goal – fac 4 – with a simpler goal – finding fac 3 (and
multiplying it by 4). Continuing to use (fac.2), we have

fac 4
; fac 3 * 4
; (fac 2 * 3) * 4
; ((fac 1 * 2) * 3) * 4
; (((fac 0 * 1) * 2) * 3) * 4

Now, we have got down to the simplest case (or base case), which is solved by (fac.1).

; (((1 * 1) * 2) * 3) * 4
; ((1 * 2) * 3) * 4
; (2 * 3) * 4
; 6 * 4
; 24

In the calculation we have worked from the goal back down to the base case, using
the recursion step (fac.2). We can again see that we get the result we want, be-
cause the recursion step takes us from a more complicated case to a simpler one,
and we have given a value for the simplest case (zero, here) which we will eventually
reach.

We have now seen in the case of fac two explanations for why recursion works.

• The bottom-up explanation says that the fac equations can be seen to gener-
ate the values of fac one-by-one from the base case at zero.
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• A top-down view starts with a goal to be evaluated, and shows how the equa-
tions simplify this until we hit the base case.

The two views here are related, since we can think of the top-down explanation gen-
erating a table too, but in this case the table is generated as it is needed. Starting
with the goal of fac 4 we require the lines for 0 to 3 also.

Technically, we call the form of recursion we have seen here primitive recursion.
We will describe it more formally in the next section, where we examine how to start
to find recursive definitions. Before we do that, we discuss another aspect of the fac
function as defined here.

Undefined or error values

Our definition of factorial covers zero and the positive integers. What will be the
effect of applying fac to a negative number? On evaluating fac (-2) in GHCi we
receive the error message

*** Exception: Chapter4.hs:(106,0)-(108,33):
Non-exhaustive patterns in function fac

because fac is not defined on the negative numbers, since the patterns in the defi-
nition of fac don’t cover the case of negative numbers.

We could if we wished extend the definition to zero, on the negative numbers,
thus

fac n
| n==0 = 1
| n>0 = fac (n-1) * n
| otherwise = 0

or we could include our own error message, as follows

fac n
| n==0 = 1
| n>0 = fac (n-1) * n
| otherwise = error "fac only defined on natural numbers"

so that when we evaluate fac (-2) we receive the message

Program error: fac only defined on natural numbers

The error message here is a Haskell string, as discussed in Chapter 5.

Exercises

4.17 Define the function rangeProduct which when given natural numbers m and
n returns the product

m*(m+1)*...*(n-1)*n
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You should include in your definition the type of the function, and your func-
tion should return 0 when n is smaller than m.
Hint: you do not need to use recursion in your definition, but you may if you
wish.

4.18 As fac is a special case of rangeProduct, write a definition of fac which uses
rangeProduct.

4.5 Primitive recursion in practice

This section examines how primitive recursion is used in practice by examining a
number of examples.

The pattern of primitive recursion says that we can define a function from the
natural numbers 0, 1, . . . by giving the value at zero, and by explaining how to go
from the value at n-1 to the value at n. We can give a template for this

fun n
| n==0 = .... (prim)
| n>0 = .... fun (n-1) ....

where we have to supply the two right-hand sides.
How can we decide whether a function can be defined in this way? Just as we did

earlier in the chapter, we frame a question which summarizes the essential property
we need for primitive recursion to apply.

What if we were given the value fun (n-1). How could we define fun n from it?

We see how this form of recursion works in practice by looking at some examples.

Example

1. Suppose first that we are asked to define the function to give us powers of two
for natural numbers

power2 :: Integer -> Integer

so that power2 n is 2n, that is 2 multiplied by itself n times. The template is

power2 n
| n==0 = ....
| n>0 = .... power2 (n-1) ....

In the zero case the result is 1, and in general 2n is 2n-1 multiplied by 2, so we define

power2 n
| n==0 = 1
| n>0 = 2 * power2 (n-1)
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2. As the next example we take the function

sumFacs :: Integer -> Integer

so that

sumFacs n = fac 0 + fac 1 + ... + fac (n-1) + fac n

If we are told that sumFacs 4 is 34 then we can work out sumFacs 5 in one step: we
simply add fac 5, that is 120, giving the result 154. This works in general, and so
we can fill in the template like this:

sumFacs :: Integer -> Integer
sumFacs n

| n==0 = 1
| n>0 = sumFacs (n-1) + fac n

In fact this pattern works for any function f of type Integer -> Integer in the
place of fac, so we can say

sumFun :: (Integer -> Integer) -> Integer -> Integer
sumFun f n

| n==0 = f 0
| n>0 = sumFun f (n-1) + f n

where the function whose values are being added is itself an argument of the sumFun
function. A sample calculation using sumFun is

sumFun fac 3
; sumFun fac 2 + fac 3
; sumFun fac 1 + fac 2 + fac 3
; sumFun fac 0 + fac 1 + fac 2 + fac 3
; fac 0 + fac 1 + fac 2 + fac 3
; ...
; 10

and we can define sumFacs from sumFun thus:

sumFacs n = sumFun fac n

We briefly introduced the idea of functions as data in Chapter 1, and we will
revisit it in detail in Chapter 10. As we mentioned in Chapter 1, having functions
as arguments is powerful and sumFun gives a good example: one definition serves
to sum the values of any function of type Integer -> Integer over the range of
arguments from 0 to n.

3. As a last example we look at a geometrical problem. Suppose we want to find out
the maximum number of pieces we can get by making a given number of straight-
line cuts across a piece of paper. With no cuts we get one piece; what about the
general case? Suppose we have n-1 lines already, and that we add one more.
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We will get the most new regions if we cross each of these lines; because they are
straight lines, we can only cut each one once. This means that the new line crosses
exactly n of the regions, and so splits each of these into two. We therefore get n
new regions by adding the nth line. Our function definition is given by filling in the
template (prim) according to what we have said.

regions :: Integer -> Integer
regions n

| n==0 = 1
| n>0 = regions (n-1) + n

Exercises

4.19 Using the addition function over the natural numbers, give a recursive defini-
tion of multiplication of natural numbers.

4.20 The integer square root of a positive integer n is the largest integer whose
square is less than or equal to n. For instance, the integer square roots of 15
and 16 are 3 and 4, respectively. Give a primitive recursive definition of this
function.

4.21 Given a function f of type Integer -> Integer give a recursive definition of
a function of type Integer -> Integer which on input n returns the maxi-
mum of the values f 0, f 1, . . . , f n. You might find the max function defined
in Section 3.4 useful.

To test this function, add to your script a definition of some values of f thus:

f 0 = 0
f 1 = 44
f 2 = 17
f _ = 0
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and so on; then test your function at various values.

4.22 Given a function f of type Integer -> Integer give a recursive definition of
a function of type Integer -> Bool which on input n returns True if one or
more of the values f 0, f 1, . . . , f n is zero and False otherwise.

4.23 Can you give a definition of regions which instead of being recursive uses the
function sumFun?

4.24 [Harder] Find out the maximum number of pieces we can get by making a
given number of flat (that is planar) cuts through a solid block. It is not the
same answer as we calculated for straight-line cuts of a flat piece of paper.

4.6 Extended exercise: pictures

This section looks at how recursion over integers can be used to describe geomet-
rical patterns, using pictures as implemented in PicturesSVG (or Pictures). We
start by giving a definition of a line of n black squares:

blackSquares :: Integer -> Picture

blackSquares n
| n<=1 = black
| otherwise = black ‘beside‘ blackSquares (n-1)

or diagrammatically,

`beside`

Suppose that we want to build a line of alternating black and white squares: we get
this by putting a black square on the front of a line beginning with a white square:

blackWhite :: Integer -> Picture

blackWhite n
| n<=1 = black
| otherwise = black ‘beside‘ whiteBlack (n-1)

where whiteBlack is the function that builds a line of alternating squares, begin-
ning with a white. Diagrammatically this is given by

`beside`
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Using these functions we can build chessboards of any shape:

blackChess :: Integer -> Integer -> Picture

blackChess n m
| n<=1 = blackWhite m
| otherwise = blackWhite m ‘above‘ whiteChess (n-1) m

where the corresponding function whiteChess builds a board with a white square
in the top left-hand corner. Diagrammatically,

`above`

Exercises

4.25 Complete the definitions of whiteBlack and whiteChess.

4.26 How would you define a function to give a column of pictures,

column :: Picture -> Integer -> Picture

so that the result of column horse 3 is as shown to the right.

4.27 Give a Haskell function which takes an integer n and returns an nby n
white square with a diagonal black line from top left to bottom right,
as in.
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4.28 Give a Haskell function which takes an integer n and returns an n by
n white square with a diagonal black line from top right to bottom
left, as in.

4.29 Give a Haskell function which takes an integer n and returns an n by
n white square with both diagonals coloured black, as in.

4.30 Can you give a direct recursive definition of a function

chessBoard :: Integer -> Picture

so that

chessBoard n = ... chessBoard (n-1) ...

Hint: you might want to use some of the functions defined here, or
variants of them, in writing your definition.

4.7 General forms of recursion

As we explained in Section 4.4, a recursive definition of a function such as facwould
give the value of fac n using the value fac (n-1). We saw there that fac (n-1)
is simpler in being closer to the base case fac 0. As long as we preserve this prop-
erty of becoming simpler, different patterns of recursion are possible and we look
at some of them in this section. These more general forms of recursion are called
general recursion. In trying to use recursion to define a function we need to pose
the question:
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In defining f n which values of f k would help me to work out the answer?

Example

1. The sequence of Fibonacci numbers starts with 0 and 1, and subsequent values
are given by adding the last two values, so that we get 0+1=1, 1+1=2 and so forth.
This can be given a recursive definition as follows

fib :: Integer -> Integer
fib n

| n==0 = 0
| n==1 = 1
| n>1 = fib (n-2) + fib (n-1)

where we see in the general case that fib n depends upon not only fib (n-1) but
also fib (n-2).

This gives a clear description of the Fibonacci numbers, but unfortunately it
gives a very inefficient program for calculating them. We can see that calculating
fib n requires us to calculate both fib (n-2) and fib (n-1), and in calculating
fib (n-1) we will have to calculate fib (n-2) again. We look at ways of overcom-
ing this problem in Section 5.2.

2. Dividing one positive integer by another can be done in many different ways.
One of the simplest ways is repeatedly to subtract the divisor from the number being
divided, and we give a program doing that here. In fact we will define two functions

remainder :: Integer -> Integer -> Integer
divide :: Integer -> Integer -> Integer

which separately give the division’s remainder and quotient.
In trying to find a definition it often helps to look at an example. Suppose we

want to divide 37 by 10. We expect that

remainder 37 10 = 7
divide 37 10 = 3

If we subtract the divisor, 10, from the number being divided, 37, how are the values
related?

remainder 27 10 = 7
divide 27 10 = 2

The remainder is the same, and the result of the division is one less. What happens
at the base case? An example is

remainder 7 10 = 7
divide 7 10 = 0

Using these examples as a guide, we have
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remainder m n
| m<n = m
| otherwise = remainder (m-n) n

divide m n
| m<n = 0
| otherwise = 1 + divide (m-n) n

These definitions also illustrate another important point: a general recursive
function does not always give an answer; instead an evaluation may go on forever.
Look at what happens if we evaluate

remainder 7 0
; remainder (7-0) 0
; remainder 7 0
; ....

This calculation will loop for ever, and indeed we should expect problems if we try
to divide by zero! However, the problem also appears if we try to divide by a negative
number, for instance

divide 4 (-4)
; divide (4-(-4)) (-4)
; divide 8 (-4)
; ...

The lesson of this example is that in general there is no guarantee that a function de-
fined by recursion will always terminate. We will have termination if we use prim-
itive recursion, and other cases where we are sure that we always go from a more
complex case to a simpler one; the problem in the example here is that subtracting
a negative number increases the result, giving a more complex application of the
function.

Exercises

4.31 Give a recursive definition of a function to find the highest common factor of
two positive integers.

4.32 Suppose we have to raise 2 to the power n. If n is even, 2*m say, then

2n = 22*m = (2m)2

If n is odd, 2*m+1 say, then

2n = 22*m+1 = (2m)2*2

Give a recursive function to compute 2n which uses these insights.
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4.8 Program testing

Just because a program is accepted by the Haskell system, it does not mean that it
necessarily does what it should. How can we be sure that a program behaves as it is
intended to? One option, first aired in Section 1.14, is to prove in some way that it
behaves correctly. Proof is, however, an expensive business, and we can get a good
deal of assurance that our programs behave correctly by testing the program.

If we are not to use proof, then we can use QuickCheck to test properties of
functions using randomly generated data. This has a number of advantages – we
don’t have to select input data, for example – but we do need to define the properties
to be tested, and it is not always clear how to do this. So, we can also do traditional
testing, where we specify the inputs and expected result for a function.

The art of testing is then to choose the inputs to be as comprehensive as possible.
That is, we want to test data to represent all the different ‘kinds’ of input that can be
presented to the function.

How might we choose test data? There are two possible approaches. We could
simply be told the specification of the function, and devise test data according to
that. This is called black box testing, as we cannot see into the box which contains
the function. On the other hand, in devising white box tests we can use the form of
the function definition itself to guide our choice of test data. We will explore these
two in turn, by addressing the example of the function which is to return the maxi-
mum of three integers,

maxThree :: Integer -> Integer -> Integer -> Integer

Black box testing

How can we make a rational choice of test data for a function, rather than simply
picking (supposedly) random numbers out of the air?

What we need to do is try to partition the inputs into different testing groups
where we expect the function to behave in a similar way for all the values in a given
group. In picking the test data we then want to make sure that we choose at least
one representative from each group.

We should also pay particular attention to any special cases, which will occur on
the ‘boundaries’ of the groups. If we have groups of positive and negative numbers,
then we should pay particular attention to the zero case, for instance.

What are the testing groups for the example of maxThree? There is not a single
right answer to this, but we can think about what is likely to be relevant to the prob-
lem and what is likely to be irrelevant. In the case of maxThree it is reasonable to
think that the size or sign of the integers will not be relevant: what will determine
the result is their relative ordering. We can make a first subdivision this way

• all three values different;

• all three values the same;

• two items equal, the third different. In fact, this represents two cases
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– two values equal to the maximum, one other;

– one value equal to the maximum, two others.

We can then pick a set of test data thus

6 4 1
6 6 6
2 6 6
2 2 6

If we test our definition in Section 3.4 with these data then we see that the program
gives the right results.

We can code these tests in the HUnit unit testing framework, like this:

testMax1 = TestCase (assertEqual "for: maxThree 6 4 1" 6 (maxThree 6 4 1))
testMax2 = TestCase (assertEqual "for: maxThree 6 6 6" 6 (maxThree 6 6 6))
testMax3 = TestCase (assertEqual "for: maxThree 2 6 6" 6 (maxThree 2 6 6))
testMax4 = TestCase (assertEqual "for: maxThree 2 2 6" 6 (maxThree 2 2 6))

-- To run the tests, type
-- runTestTT testsMax

testsMax = TestList [testMax1, testMax2, testMax3, testMax4]

Let’s look at what is going on here. The final line collects all the tests into a list, which
allows us to run the tests in one go, as we see below. Each test case involves some
‘boilerplate’ code, but the crucial parts are the three arguments to assertEqual
(which says we’re doing a test of two things being equal):

• A String printed in case the test fails, e.g. "for: maxThree 6 4 1".

• The expected result, e.g. 6.

• The expression we want to evaluate, e.g. maxThree 6 4 1.

We can run the tests in GHCi like this:

*Chapter4> runTestTT testsMax
Cases: 4 Tried: 4 Errors: 0 Failures: 0
Counts {cases = 4, tried = 4, errors = 0, failures = 0}

The following program also meets these tests:

mysteryMax :: Integer -> Integer -> Integer -> Integer
mysteryMax x y z

| x > y && x > z = x
| y > x && y > z = y
| otherwise = z

so should we conclude that mysteryMax computes the maximum of the three in-
puts? If we do, we are wrong, for we have that
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mysteryMax 6 6 2 ; 2

If we add the following test case to the test set:

testMax5 = TestCase (assertEqual "for: mysteryMax 6 6 2" 6 (mysteryMax 6 6 2))
testsMMax = TestList [testMMax1, testMMax2, testMMax3, testMMax4, testMMax5]

and run the tests, we get these results:

*Chapter4> runTestTT testsMMax
### Failure in: 4
for: mysteryMax 6 6 2
expected: 6
but got: 2

Cases: 5 Tried: 5 Errors: 0 Failures: 1
Counts {cases = 5, tried = 5, errors = 0, failures = 1}

This is an important example: it tells us that testing alone cannot assure us that a
function is correct. How might we have spotted this error in designing our test data?
We could have said that not only did we need to consider the groups above, but that
we should have looked at all the different possible orderings of the data, giving

• all three values different: six different orderings;

• all three values the same: one ordering;

• two items equal, the third different. In each of the two cases we consider three
orderings.

The final case generates the test data 6 6 2 which find the error.
We mentioned special cases earlier: we could see this case of two equal to the

maximum in this way. Clearly the author of mysteryMax was thinking about the
general case of three different values, so we can see the example as underlining the
importance of looking at special cases.

White box testing

In writing white box test data we will be guided by the principles which apply to
black box testing, but we can also use the form of the program to help us choose
data.

• If we have a function containing guards, we should supply data for each case
in the definition. We should also pay attention to ‘boundary conditions’ by
testing the equality case when a guard uses >= or >, for example.

• If a function uses recursion we should test the zero case, the one case and the
general case.

In the example of mysteryMax we should be guided to the data 6 6 2 since the first
two inputs are at the boundaries of the guards

x > y && x > z y > x && y > z

We take up the ideas discussed in this section when we discuss proof in Chapter 9.



96 CHAPTER 4. DESIGNING AND WRITING PROGRAMS

QuickCheck with Int and Integer

Suppose we define

fact :: Int -> Int
fact n

| n>1 = n * fact (n-1)
| otherwise = 1

we would expect this property to be true whatever the input n:

prop_fact n =
fact n > 0

But if we try this out, we get this result

*Chapter4> quickCheck prop_fact
*** Failed! Falsifiable (after 14 tests and 2 shrinks): 17

and we can see that this is indeed true:

*Chapter4> fact 17
-288522240

This is because Int is a fixed-size representation of integers, and when numbers
become big enough, they ‘wrap around’ into the negative.

The lesson of this example is that if you expect the integers in your program to be-
have like the ‘real’ integers, then you should use Integer rather than Int.

Exercises

4.33 Devise test data for a function

allEqual :: Integer -> Integer -> Integer -> Bool

intended to test whether its three integer inputs are equal.

4.34 Use the test data from the previous question to test the function

solution m n p = ((m+n+p)==3*p)

Discuss your results.

4.35 The function

allDifferent :: Integer -> Integer -> Integer -> Bool

should return True only if all its inputs are different. Devise black box test data
for this function.
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4.36 Test the following function

attempt m n p = (m/=n) && (n/=p)

using the test data written in the previous question. What do you conclude on
the basis of your results?

4.37 Devise test data for a function

howManyAboveAverage :: Integer -> Integer -> Integer -> Integer

which returns how many of its three integer inputs are larger than their aver-
age value.

4.38 Devise test data for a function to raise two to a positive integer power.

4.39 Repeat these exercises to define QuickCheck properties which can be used to
test these functions.

Summary

This chapter has introduced some general principles of program design.

• We should think about how best to use what we already know. If we have al-
ready defined a function f we can make use of it in two ways.

– We can model our new definition on the definition of f.

– We can use f in our new definition.

• We should think about how to break the problem into smaller, more easily
solved, parts. We should ask What if I had ...?.

– This could be another function, which we can define separately.

– It could also be a local definition, defined in a where clause.

• We can define data types to model our problem domain. We’ll come back
to this in later chapters, where we’ll discover ways of building complex types
from simpler ones, as well as how to define more complex data types.

• We can use recursion to define functions.

We also explained the basics of recursion, and saw how it is used in practice to define
a variety of functions. We shall see many more illustrations of this when we look at
recursion over lists in Chapter 7.

We concluded by showing that it was possible to think in a principled way about
designing test data for function definitions rather than simply choosing the first data
that came to mind.
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Chapter 5

Data types, tuples and lists

Thus far we have looked at programs which work over the basic types Integer, Int,
Float, Bool and Char, and we have also seen how to design enumerated types like
the Move type in the Rock - Paper - Scissors game. We’ve also looked at strategies
for designing programs in general, including breaking problems down into smaller
problems to solve them in steps. However, in practical problems we will want to
represent more complex things, as we saw with our Picture example in Chapter 1.

This chapter introduces two ways of building compound data built into Haskell;
these are the tuple and the list, and in particular the String type. We’ll also look
again at ways of defining data types for ourselves. Together they are enough to let
us represent many different kinds of ‘structured’ information. We shall meet other
ways of defining data types for ourselves in Chapters 14 and 16.

After looking at these various types, we’ll explain how to manipulate tuples and
lists, and in particular we introduce the ‘list comprehension’ notation to write down
descriptions of how lists may be formed from other lists, and use this in a database
case study.

In the chapters to come we look at the range of built-in list processing functions,
aw well as how list-manipulating functions can be defined from scratch.

5.1 Introducing tuples and lists

Both tuples and lists are built up by combining a number of pieces of data into a
single object, but they have different properties.

• In a tuple, we combine a fixed number of values of fixed types – which might
be different – into a single object.

• In a list we combine an arbitrary number of values – all of the same type – into
a single object.

Let’s look at an example to clarify the difference. Suppose that we want to make a
simple model of a supermarket, and as part of that model we want to record the
contents of someone’s shopping basket.

99
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Individual items

A given item has a name and a price (in pence), and we therefore need somehow to
combine these two pieces of information. We do this in a tuple, such as

("Salt: 1kg",139)
("Plain crisps",25)

where in each tuple a String is combined with an Int.

• The String gives the name of the item.

• The Int gives its price, in pence.1

We can give names to types in Haskell, so that types are made easier to read, and we
name this tuple type ShopItem like this:

type ShopItem = (String,Int)

Now we can say that ‘("Salt: 1kg",139) is a ShopItem’ or

("Salt: 1kg",139) :: ShopItem

The shopping basket

How are the contents of the basket represented? We know that we have a collec-
tion of items, but we do not know in advance how many we have; one basket might
contain ten items, another one three; a third might be empty. Each item is repre-
sented in the same way, as a member of the ShopItem type, and so we represent the
contents of the basket by a list of these, as in the list

[ ("Salt: 1kg",139) , ("Plain crisps",25) , ("Gin: 1lt",1099) ]

This is a member of the list type

[ (String,Int) ]

which we can also write

[ ShopItem ]

Other members of this list type include the empty list, [], and the basket above with
a second packet of crisps replacing the gin:

[ ("Salt: 1kg",139) , ("Plain crisps",25) , ("Plain crisps",25) ]

We can give a name to this type too:

type Basket = [ShopItem]

1We use an Int here rather than an Integer because we can be sure that prices of individual items,
and also totals for shopping bills, will always be ‘small’ integers.
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Tuples, lists and type checking

Every member of the ShopItem type will have two components – a String and an
Int – as specified in the type (String,Int). If we are given a member of this type
we can therefore predict what type its components will have, and this means that
we can check that these components are used in an appropriate way: we can check
that we deal with the second half as an Int and not a Bool, for example.

Turning to the Basket type, since every member of the list has the same type, we
can predict the type of any item chosen from the list: it will be a ShopItem.

Suppose instead that Haskell allowed lists whose members could have different
types: if we choose the first element of such a list we cannot predict its type, and
so we lose the ability to type-check programs before they are run. Because we want
to keep this important property, Haskell is designed so that lists have to contain ele-
ments of the same type, but different lists will contain elements of different types.

We therefore keep the property, first mentioned in Chapter 1, that we can type-check
all programs prior to execution, and so any type errors in a program can be found
before a program is actually executed.

Naming types

As we have seen, we can give names to types in Haskell, as in the definition

type ShopItem = (String,Int)

The keyword type introduces the fact that this is the definition of a type rather than
a value. We can also tell this because the type names ShopItem and Basket begin
with capital letters, as noted in Section 3.7. Built into the system is the definition

type String = [Char]

so Haskell treats strings as a special case of the list type. Names such as ShopItem
and String are synonyms for the types which they name.

A type definition like this is treated as shorthand in Haskell – wherever a name like
ShopItem is used, it has exactly the same effect as if (String,Int) had been writ-
ten. Definitions like this make programs more readable and also lead to more com-
prehensible type error messages.

We now look at tuple types in more detail, and examine some examples of how tu-
ples are used in practice.

5.2 Tuple types

The last section introduced the idea of tuple types. In general a tuple type is built up
from components of simpler types. The type

(t1,t2,...,tn)
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consists of tuples of values

(v1,v2,...,vn)

in which v1::t1, . . . , vn::tn. In other words, each component vi of the tuple has
to have the type ti given in the corresponding position in the tuple type.

The reason for the name ‘tuple’ is that these objects are usually called pairs,
triples, quadruples, quintuples, sextuples and so on. The general word for them
is therefore ‘tuple’. In other programming languages, these types are called records
or structures; see Appendix A for a more detailed comparison.

We can model a type of supermarket items by the ShopItem type defined by

type ShopItem = (String,Int)

and we saw above that its members include items like ("Gin, 1lt",1099). How
else are tuple types used in programs? We look at a series of examples now.

Example

1. First, we can use a tuple to return a compound result from a function, as in the
example where we are required to return both the minimum and the maximum of
two Integers

minAndMax :: Integer -> Integer -> (Integer,Integer)
minAndMax x y

| x>=y = (y,x)
| otherwise = (x,y)

2. Secondly, suppose we are asked to find a (numerical) solution to a problem
when it is uncertain whether a solution actually exists in every case: this might be
the question of where a straight line meets the horizontal or x-axis, for instance.

One way of dealing with this is for the function to return a (Float,Bool) pair.
If the boolean part is False, this signals that no solution was found; if it is like
(2.1,True), it indicates that 2.1 is indeed the solution.

Pattern matching

Next we turn to look at how functions can be defined over tuples. Functions over
tuples are usually defined by pattern matching. Instead of writing a variable for an
argument of type (Integer,Integer), say, a pattern, (x,y) is used.
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addPair :: (Integer,Integer) -> Integer
addPair (x,y) = x+y

On application the components of the pattern are matched by the corresponding
components of the argument, so that on applying the function addPair to the argu-
ment (5,8) the value 5 is matched to x, and 8 to y, giving the calculation

addPair (5,8)
; 5+8
; 13

Patterns can contain literals and nested patterns, as in the examples

addPair (0,y) = y
addPair (x,y) = x+y

shift :: ((Integer,Integer),Integer) -> (Integer,(Integer,Integer))
shift ((x,y),z) = (x,(y,z))

Functions which pick out particular parts of a tuple can be defined by pattern match-
ing. For the ShopItem type, the definitions might be

name :: ShopItem -> String
price :: ShopItem -> Int

name (n,p) = n
price (n,p) = p

Haskell has these selector functions on pairs built in. They are

fst (x,y) = x
snd (x,y) = y

Given these selector functions we can avoid pattern matching if we so wish. For
instance, we could redefine addPair like this

addPair :: (Integer,Integer) -> Integer
addPair p = fst p + snd p

but generally a pattern-matching definition is easier to read than one which uses
selector functions instead.

Example

3. We first introduced the Fibonacci numbers

0, 1, 1, 2, 3, 5, ... , u, v, (u+v), ...

in Section 4.7, where we gave an inefficient recursive definition of the sequence.
Using a tuple we can give an efficient solution to the problem. The next value in the
sequence is given by adding the previous two, so what we do is to write a function
which returns two consecutive values as a result. In other words we want to define a
function fibPair so that it has the property that
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fibPair n = (fib n , fib (n+1))

then given such a pair, (u,v) we get the next pair as (v,u+v), which is exactly the
effect of the fibStep function:

fibStep :: (Integer,Integer) -> (Integer,Integer)
fibStep (u,v) = (v,u+v)

This gives us the definition of the ‘Fibonacci pair’ function

fibPair :: Integer -> (Integer,Integer)
fibPair n

| n==0 = (0,1)
| otherwise = fibStep (fibPair (n-1))

and we can define

fastFib :: Integer -> Integer
fastFib = fst . fibPair

where recall that ‘.’ composes the two functions, passing the output of fibPair to
the input of fst, which picks out its first component.

One pair or two arguments?

It is important to distinguish between the functions

fibStep :: (Integer,Integer) -> (Integer,Integer)
fibStep (x,y) = (y,x+y)

fibTwoStep :: Integer -> Integer -> (Integer,Integer)
fibTwoStep x y = (y,x+y)

fibStep has a single argument which is a pair of numbers, while fibTwoStep has
two arguments, each of which is a number. We shall see later that the second func-
tion can be used in a more flexible way than the first; for the moment it is important
to realize that there is a difference, and that type errors will result if we confuse the
two and write

fibStep 2 3 fibTwoStep (2,3)

We say more about the relationship between these two functions in Section 11.4.

Exercises

5.1 Give a definition of the function

maxOccurs :: Integer -> Integer -> (Integer,Integer)

which returns the maximum of two integers, together with the number of
times it occurs. Using this, or otherwise, define the function
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maxThreeOccurs :: Integer -> Integer -> Integer -> (Integer,Integer)

which does a similar thing for three arguments.

5.2 Give a definition of a function

orderTriple :: (Integer,Integer,Integer) -> (Integer,Integer,Integer)

which puts the elements of a triple of three integers into ascending order. You
might like to use the maxThree, middle and minThree functions defined ear-
lier.

5.3 Define the function which finds where a straight line crosses the x-axis. You
will need to think about how to supply the information about the straight line
to the function.

5.4 Design test data for the preceding exercises; explain the choices you have
made in each case. Give a sample evaluation of each of your functions.

5.3 Introducing algebraic types

We have already seen that it’s useful to be able to define our own enumerated types,
such as a move in the Rock - Paper - Scissors game, a day of the week, or a season of
the year. In this section we’ll see that we can use data types for much more general
combinations of values.

Algebraic data type definitions are introduced by the keyword data, followed by
the name of the type, an equals sign and then information about how elements are
constructed by applying constructors. The names of the type and the constructors
begin with capital letters.

We give a sequence of examples of increasing complexity, first recapping enu-
merated types, then looking at single constructor product types, and finally looking
at types which contain a number of alternative ‘shapes’ of data. We look again at
data types in Chapter 14.

Enumerated types

We have already seen examples of this, such as the type modelling a move in the
Rock - Paper - Scissors game, in Section 4.3. Recall that the definition lists the ele-
ments of the type, thus:

data Move = Rock | Paper | Scissors
deriving (Eq,Show)

and we can define functions by pattern matching over the values, as in

score :: Move -> Move -> Integer
score Rock Rock = 0
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score Rock Paper = -1
score Rock Scissors = 1
score Paper Rock = 1

As we noted in Section 4.3 we can derive definitions of functions like equality using
a ‘deriving’ clause in the definition of a data type so that we don’t need to define
these functions for ourselves when we introduce a new data type definition. We will
talk about the details of what underlies this in Section 14.6.

Product types

Instead of using a tuple we can define a data type with a number of components or
fields, often called a product type. An example might be

data People = Person Name Age (People)
deriving (Eq,Show)

where Name is a synonym for String, and Age for Int, written thus:

type Name = String
type Age = Int

The definition of People should be read as saying

To construct an element of type People, you need to supply two values; one, st
say, of type Name, and another, n say, of type Age. The element of People formed
from them will be Person st n.

Example values of this type include

Person "Electric Aunt Jemima" 77
Person "Ronnie" 14

As before, functions are defined using pattern matching. Any element of typePeople
will have the form Person st n, and so we can use this pattern on the left-hand side
of a definition,

showPerson :: People -> String
showPerson (Person st n) = st ++ " -- " ++ show n

(recall that show gives a textual form of an Int). For instance,

showPerson (Person "Electric Aunt Jemima" 77)
= "Electric Aunt Jemima -- 77"

Elements of the People type are made (or constructed) by applying the construc-
tor Person. This is called a binary constructor because it takes two values to form a
value of type People. For the enumerated types like Move the constructors are called
nullary (or 0-ary) as they take no arguments.

The constructors introduced by algebraic type definitions can be used just like
functions, so that Person st n is the result of applying the function Person to the
arguments st and n; we can interpret the definition (People) as giving the type of
the constructor, here
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Tuples and data types

An alternative definition of the type of people is given by the type synonym

type People = (Name,Age)

The advantages of using an algebraic type are threefold.

• Each object of the type carries an explicit label of the purpose of the element;
in this case that it represents a person.

• It is not possible accidentally to treat an arbitrary pair consisting of a string
and a number as a person; a person must be constructed using the Person
constructor.

• The type will appear in any error messages due to mis-typing; a type synonym
might be expanded out and so disappear from any type error messages.

There are also advantages of using a tuple type, with a synonym declaration.

• The elements are more compact, and so definitions will be shorter.

• Using a tuple, especially a pair, allows us to reuse many polymorphic functions
such as fst, snd and unzip over tuple types; this will not be the case for the
algebraic type.

In each system that we model we will have to choose between these alternatives: our
decisions will depend exactly on how we use the products, and on the complexity of
the system.
The approach here works equally well with unary constructors, so we might say

data Age = Years Int

whose elements are Years 45 and so on. It is clear from a definition like this that 45
is here being used as an age in years, rather than some unrelated numerical quantity.
The disadvantage is that we cannot use functions defined over Int directly over Age.

Person :: Name -> Age -> People

The examples of types given here are a special case of what we look at next.

Alternatives

A shape in a simple geometrical program is either a circle or a rectangle. These al-
ternatives are given by the type

data Shape = Circle Float | (Shape)
Rectangle Float Float
deriving (Eq,Ord,Show)
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Type and constructor names

We can use the same name, for instance Person, for both the type and the construc-
tor of a type, as in the definition

data Person = Person Name Age

We choose not to do this, as using the same name for two related but different ob-
jects can easily lead to confusion, but it is an idiom used by a number of Haskell
programmers and in many Haskell libraries.

which says that there are two ways of building an element of Shape. One way is to
supply the radius of aCircle; the other alternative is to give the sides of aRectangle.
Example objects of this type are

Circle 3.0
Rectangle 45.9 87.6

Pattern matching allows us to define functions by cases, as in

isRound :: Shape -> Bool
isRound (Circle _) = True
isRound (Rectangle _ _) = False

and also lets us use the components of the elements:

area :: Shape -> Float
area (Circle r) = pi*r*r
area (Rectangle h w) = h*w

Another way of reading the definition (Shape) is to say that there are two construc-
tor functions for the type Shape, whose types are

Circle :: Float -> Shape
Rectangle :: Float -> Float -> Shape

These functions are called constructor functions because the elements of the type
are constructed by applying these functions.

Extensions of this type, to accommodate the position of an object, are discussed
in the exercises at the end of this section.

The general form of algebraic type definitions

The general form of the algebraic type definitions which we have seen so far is

data Typename (Typename)
= Con1 t11 ... t1k1 |

Con2 t21 ... t2k2 |
....

Conn tn1 ... tnkn
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type and data definitions

Before we move on, it is worth contrasting type and data definitions. A synonym
given by type is simply a shorthand, and so a synonym type can always be expanded
out, and therefore removed from the program.

On the other hand, a data definition creates a new type. Because synonyms are
simply shorthand, a synonym definition cannot be recursive; data definitions can
be and often are recursive, as we shall discover in Chapter 14.

Each Coni is a constructor, followed by ki types, where ki is a non-negative inte-
ger which may be zero. We build elements of the type Typename by applying these
constructor functions to arguments of the types given in the definition, so that

Coni vi1 ... viki

will be a member of the type Typename if vij is in tij for j ranging from 1 to ki.
Reading the constructors as functions, the definition (Typename) gives the con-

structors the following types

Coni :: ti1 -> ... -> tiki -> Typename

In Chapter 14 we shall see two extensions of the definitions seen already.

• The types can be recursive; we can use the type we are defining, Typename, as
(part of) any of the types tij. This gives us lists, trees and many other data
structures.

• The Typename can be followed by one or more type variables which may be
used on the right-hand side, making the definition polymorphic.

Recursive polymorphic types combine these two ideas, and this powerful mixture
provides types which can be reused in many different situations – the built-in type
of lists is an example of this kind of type. We look at these in Chapter 14.

For the moment, however, we’ll deal with the simple cases we have covered in
this section, which are enough to model a wide variety of different problem do-
mains, particularly in conjunction with tuples and lists.

Exercises

5.5 Define a function to give the length of the perimeter of a geometrical shape, of
type Shape. What is the type of this function?

5.6 Re-define the Item type for supermarket products so that it uses a data defi-
nition rather than a type definition.

5.7 Add an extra constructor toShape for triangles, and extend the functionsisRound,
area and perimeter to include triangles.
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5.8 Define a function which decides whether a Shape is regular: a circle is regular,
a square is a regular rectangle and being equilateral makes a triangle regular.

5.9 Investigate the derived definitions for Move and Shape: what form do the show
functions take, for example?

5.10 Define an == function over Shape so that all circles of negative radius are
equated. How would you treat rectangles with negative sides?

5.11 The type Shape takes no account of the position or orientation of a shape.
After deciding how to represent points, how would you modify the original
definition of Shape to contain the centre of each object? You can assume that
rectangles lie with their sides parallel to the axes, thus:

(Rectangle h w ...)

h

w

5.12 Calling the new shape type NewShape, define a function

move :: Float -> Float -> NewShape -> NewShape

which moves a shape by the two offsets given:

move x y (Rectangle h w ...)

y

x

5.13 Define a function to test whether two NewShapes overlap.

5.14 Some houses have a number; others have a name. How would you implement
the type of ‘strings or numbers’ used as a part of an address? Write a function
which gives the textual form of one of these objects. Give a definition of a type
of names and addresses using the type you have defined.
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5.4 Our approach to lists

Lists are a remarkably expressive data type. We can represent a text as a list of lines,
each of which is a list of words; we can represent a collection of information, like a
supermarket bill, as a list of individual items of data; we can represent a collection of
readings from a measuring device as a list of Floats, to mention but three potential
applications.

At the same time, there are many different things which we can do to lists, some
of which first came out in our implementation of Pictures by lists in Chapter 1.
Given a list we can split it up according to various criteria, we can sort it, select items
from it and transform all its members in a particular way. We can combine lists by
joining them together or by coalescing corresponding elements. We can combine all
the members of a list together – by taking their sum, maximum or conjunction, say
– among many other operations. Haskell contains many built-in list functions and
operators in the standard prelude Prelude.hs and also various library modules,
including List.hs.

Because Haskell has so many list functions built in, we can approach our discus-
sion of lists in two very different ways. We could argue that we should start by defin-
ing list-manipulating functions for ourselves, and only use library functions after
we have understood their definitions.2 On the other hand, we could adopt a ‘toolkit’
approach, and simply discuss the library functions and how they can be used. What
we aim to do here is to combine the two approaches, often introducing and using
functions before they are defined explicitly, but then looking ‘under the bonnet’ to
see how these functions are defined and how we can define other functions for our-
selves.

In the remainder of this chapter we introduce some of the facilities for list ma-
nipulation within Haskell, particularly list comprehensions which give a flexible no-
tation for transforming and selecting elements of lists. This is followed in Chapter
6 with an overview of the list functions available to the Haskell programmer, and in
Chapter 7 we see how to define these and other functions for ourselves.

5.5 Lists in Haskell

A list in Haskell is a collection of items from a given type. For every type t there is a
Haskell type [t] of lists of elements from t.

[1,2,3,4,1,4] :: [Integer]
[True] :: [Bool]

We read these as ‘[1,2,3,4,1,4] is a list of Integer’ and ‘[True] is a list of Bool’.
String is a synonym for [Char] and the two lists which follow are the same.

[’a’,’a’,’b’] :: String
"aab" :: String

2This was essentially the approach taken in the first edition of this book.
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We can build lists of items of any particular type, and so we can have lists of func-
tions and lists of lists of numbers, as in

[fastFib,fastFib] :: [ Integer -> Integer ]
[[12,2],[2,12],[]] :: [ [Integer] ]

As can be seen, the list with elements e1, e2, e3, e4 and e5 is written by enclosing
the elements in square brackets, separated by commas, like this

[e1,e2,e3,e4,e5]

As a special case the empty list, [], which contains no items, is an element of every
list type.

The order of the items in a list is significant, as is the number of times that an
item appears. The three lists of numbers which follow are therefore all different:

[1,2,1,2,2]
[2,1,1,2,2]
[2,1,1,2]

The first two have length 5, while the third has length 4; the first element of the first
list is 1, while the first element of the second is 2. A set is another kind of collection
in which the ordering of items and the number of occurrences of a particular item
are not relevant; we look at sets in Chapter 16.

There are some other ways of writing down lists of numbers, characters and
other enumerated types

• [n .. m] is the list [n,n+1,...,m]; if n exceeds m, the list is empty.

[2 .. 7] ; [2,3,4,5,6,7]
[3.1 .. 7.0] ; [3.1,4.1,5.1,6.1,7.1]
[’a’ .. ’m’] ; "abcdefghijklm"

• [n,p .. m] is the list of numbers whose first two elements are n and p and
whose last is m, with the numbers ascending in steps of p-n. For example,

[7,6 .. 3] ; [7,6,5,4,3]
[0.0,0.3 .. 1.0] ; [0.0,0.3,0.6,0.8999999999999999]
[’a’,’c’ .. ’n’] ; "acegikm"

• In both cases it can be seen that if the step size does not allow us to reach m
exactly, the last item of the list is the element in the sequence that is closest
to m, even if it appears to “overshoot” the limit. It can also be the case that
rounding errors on Float lead to lists being different from what is anticipated;
an example is given in the exercises.

In the next section we turn to a powerful method of writing down lists which we can
use to define a variety of list-manipulating functions.



5.6. LIST COMPREHENSIONS 113

The String type

We first introduced the string type String in Section 3.5, and saw there that strings
are sequences of characters, that is sequences of Chars. In fact, the String type is a
special case of lists,

type String = [Char]

and all the polymorphic prelude functions in Figure 6.1 can be used over strings.
We saw in Section 3.5 how to write the special characters such as newline and tab
using the ‘escapes’ ’\n’ and ’\t’, and also how we could join strings using ‘++’: of
course, we can use that operator on any list type. Other functions over strings can
be found in the library Data.String.

Built into Haskell are the overloaded functions show and read, which convert
from a value to a String and vice versa; for instance,

show (2+3) ; "5"
show (True || False) ; "True"

In the opposite direction, the function read is used to convert a string to the value
it represents, so that

read "True" ; True
read "3" ; 3

In some situations it will not be clear what should be the result type for read – it is
then possible to give a type to the application, as in

(read "3") :: Integer

the result of which will be 3 and its type, Integer.
We saw in Section 3.5 that show and read could be used to and from String

from other types; a full explanation of the types of read and show can be found in
Chapter 13.

Exercises

5.15 What value has the expression [0, 0.1 .. 1]? Check your answer in GHCi
and explain any discrepancy there might be between the two.

5.16 How many items does the list [2,3] contain? How many does [[2,3]] con-
tain? What is the type of [[2,3]]?

5.17 What is the result of evaluating [2 .. 2]? What about [2,7 .. 4]? Try eval-
uating [2,2 .. 2]; to interrupt evaluation in GHCi under Windows or Unix
you need to type Ctrl-C.

5.6 List comprehensions

One of the distinct features of a functional language is the list comprehension nota-
tion, which has no parallels in other paradigms.
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In a list comprehension we write down a description of a list in terms of the el-
ements of another list. From the first list we generate elements, which we test and
transform to form elements of the result. We will describe list comprehensions with
a single generator in this section; Section 17.3 covers the general case. Nevertheless,
the simple case we look at here is very useful in writing a variety of list-processing
programs. We introduce the topic by a series of examples.

Example

1. Suppose that the list ex is [2,4,7], then the list comprehension

[ 2*n | n<-ex] (1)

will be

[4,8,14]

as it contains each of the elements n of the list ex, doubled: 2*n. We can read (1) as
saying

‘Take all 2*n where n comes from ex.’

where the symbol <- is meant to resemble the mathematical symbol for being an
element, ‘2’. We can write the evaluation of the list comprehension in a table, thus:

[ 2*n | n <- [2,4,7] ]

n = 2 4 7
2*n = 4 8 14

2. In a similar way,

[ isEven n | n<-ex ] ; [True,True,False]

if the function isEven has the definition

isEven :: Integer -> Bool
isEven n = (n ‘mod‘ 2 == 0)

In list comprehensions n<-ex is called a generator because it generates the data
from which the results are built. On the left-hand side of the ‘<-’ there is a variable, n,
while on the right-hand side we put the list, in this case ex, from which the elements
are taken.

3. We can combine a generator with one or more tests, which are Boolean expres-
sions, thus:

[ 2*n | n <- ex , isEven n , n>3 ] (2)

(2) is paraphrased as
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‘Take all 2*n where n comes from ex, n is even and greater than 3.’

Again, we can write the evaluation in tabular form.

[ 2*n | n <- [2,4,7] , isEven n , n>3 ]

n = 2 4 7
isEven n = T T F

n>3 = F T
2*n = 8

The result of (2) will therefore be the list [8], as 4 is the only even element of
[2,4,7] which is greater than 3.

4. Instead of placing a variable to the left of the arrow ‘<-’, we can put a pattern.
For instance,

addPairs :: [(Integer,Integer)] -> [Integer]
addPairs pairList = [ m+n | (m,n) <- pairList ]

Here we choose all the pairs in the list pairList, and add their components to give
a single number in the result list. For example,

[ m+n | (m,n) <- [(2,3),(2,1),(7,8)] ]

m = 2 2 7
n = 3 1 8

m+n = 5 3 15

giving the result

addPairs [(2,3),(2,1),(7,8)] ; [5,3,15]

5. We can add tests in such a situation, too:

addOrdPairs :: [(Integer,Integer)] -> [Integer]
addOrdPairs pairList = [ m+n | (m,n) <- pairList , m<n ]

so that with the same input example,

[ m+n | (m,n) <- [(2,3),(2,1),(7,8)] , m<n ]

m = 2 2 7
n = 3 1 8

m<n = T F T
m+n = 5 15

giving

addOrdPairs [(2,3),(2,1),(7,8)] ; [5,15]

since the second pair in the list, (2,1), fails the test.
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6. Note that we can simply test elements, with the effect that we filter some of the
elements of a list, according to a Boolean condition. To find all the digits in a string
we can say

digits :: String -> String
digits st = [ ch | ch<-st , isDigit ch ]

where the function

isDigit :: Char -> Bool

imported from the module Data.Char is True on those characters which are digits:
’0’, ’1’ up to ’9’.

7. A list comprehension can form a part of a larger function definition. Suppose
that we want to check whether all members of a list of integers are even, or all are
odd. We can write

allEven xs = (xs == [x | x<-xs, isEven x])
allOdd xs = ([] == [x | x<-xs, isEven x])

We will see list comprehensions in practice in the next section when we examine a
simple library database.

8. The pattern on the left-hand side of an arrow need not match everything in the
list: take the example

totalRadii :: [Shape] -> Float
totalRadii shapes = sum [r | Circle r <- shapes]

The effect of this is to match only the circles in the shapes list, and to ignore any
other shapes, so that, for example

totalRadii [Circle 2.1, Rectangle 2.1 3.2, Circle 4.7] ; 6.8

This also applies to patterns for built-in types, so we can define

sings :: [[Integer]] -> [Integer]
sings xss = [x | [x] <-xss ]

which extracts all singleton elements from a list of lists:

sings [[],[1],[2,3],[4],[5,6,7],[8]] ; [1,4,8]

Exercises

5.18 Give a definition of a function

doubleAll :: [Integer] -> [Integer]

which doubles all the elements of a list of integers.
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5.19 Give a definition of a function

capitalize :: String -> String

which converts all small letters in a String into capitals, leaving the other
characters unchanged. How would you modify this function to give

capitalizeLetters :: String -> String

which behaves in the same way except that all non-letters are removed from
the list?

5.20 Define the function

divisors :: Integer -> [Integer]

which returns the list of divisors of a positive integer (and the empty list for
other inputs). For instance,

divisors 12 ; [1,2,3,4,6,12]

A prime number n is a number whose only divisors are1 andn. Usingdivisors
or otherwise define a function

isPrime :: Integer -> Bool

which checks whether or not a positive integer is prime (and returns False if
its input is not a positive integer).

5.21 Define the function

matches :: Integer -> [Integer] -> [Integer]

which picks out all occurrences of an integer n in a list. For instance,

matches 1 [1,2,1,4,5,1] ; [1,1,1]
matches 1 [2,3,4,6] ; []

Using matches or otherwise, define a function

elem :: Integer -> [Integer] -> Bool

which is True if the Integer is an element of the list, and False otherwise.
For the examples above, we have

elem 1 [1,2,1,4,5,1] ; True
elem 1 [2,3,4,6] ; False
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Since elem is a prelude function, you need to hide it as described on page 53.

5.22 Define a function

onSeparateLines :: [String] -> String

which takes a list of strings and returns a single string which when printed
shows the strings on separate lines.

5.23 Give a function

duplicate :: String -> Integer -> String

which takes a string and an integer, n. The result is n copies of the string joined
together. If n is less than or equal to 0, the result should be the empty string,
"", and if n is 1, the result will be the string itself.

5.24 Give a function

pushRight :: String -> String

which takes a string and forms a string of lengthlinelengthby putting spaces
at the front of the string. Iflinelengthwere12 thenpushRight "crocodile"
would be " crocodile". How would you make linelength a parameter
of this function?

5.25 Can you criticize the way the previous function is specified? Look for a case in
which it is not defined what it should do – it is an exceptional case.

5.26 Define a function

fibTable :: Integer -> String

which produces a table of Fibonacci numbers. For instance, the effect ofputStr
(fibTable 6) should be

n fib n
0 0
1 1
2 1
3 2
4 3
5 5
6 8
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5.7 A library database

This section presents a simple model of the loan data kept by a library, and illustrates
how list comprehensions are used in practice.

A library uses a database to keep a record of the books on loan to borrowers; we
first look at which type to use to model the database, and then look at the functions
which extract information from a database. This is followed by a discussion of how
to model changes to the database, and we conclude by exploring how the database
functions can be tested.

Types

In modelling this situation, we first look at the types of the objects involved. People
and books are represented by strings

type Person = String
type Book = String

The database can be represented in a number of different ways, including the fol-
lowing four possibilities:

• We could record each loan as a (Person,Book) pair.

• We could define a data type for loans, like this:

data Loan = Loan Person Book

and then record each loan in the form Loan "Alice" "Asterix".

• We could associate with each person the list of books that they have borrowed,
using a pair (Person,[Book]).

• We could record a list of borrowers with each book, thus: ([Person],Book),

Here we choose to make the database a list of (Person,Book) pairs. If the pair
("Alice" , "Asterix") is in the list, it means that "Alice" has borrowed the
book called "Asterix". We therefore define

type Database = [ (Person , Book) ]

We have chosen this representation because it is simple, and also treats people and
books in the same way, rather than grouping data in an asymmetrical way.

An example object of this type is

exampleBase :: Database
exampleBase
= [ ("Alice" , "Tintin") , ("Anna" , "Little Women") ,

("Alice" , "Asterix") , ("Rory" , "Tintin") ]

After defining the types of the objects involved, we consider the functions which
work over the database.
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• Given a person, we want to find the book(s) that he or she has borrowed, if
any.

• Given a book, we want to find the borrower(s) of the book, if any. (It is assumed
that there may be more than one copy of any book.)

• Given a book, we want to find out whether it is borrowed.

• Given a person, we may want to find out the number of books that he or she
has borrowed.

Each of these lookup functions will take a Database, and a Person or Book, and
return the result of the query. Their types will be

books :: Database -> Person -> [Book]
borrowers :: Database -> Book -> [Person]
borrowed :: Database -> Book -> Bool
numBorrowed :: Database -> Person -> Int

Note that borrowers and books return lists; these can contain zero, one or more
items, and so in particular an empty list can signal that a book has no borrowers, or
that a person has no books on loan.

Two other functions need to be defined. We need to be able to model a book be-
ing loaned to a person and a loaned book being returned. The functions modelling
these will take a database, plus the loan information, and return a different database,
which is the original with the loan added or removed. These update functions will
have type

makeLoan :: Database -> Person -> Book -> Database
returnLoan :: Database -> Person -> Book -> Database

Defining the lookup functions

We concentrate on the definition of the function

books :: Database -> Person -> [Book]

which forms a model for the other lookup functions. For the exampleBase, we have

books exampleBase "Alice" = [ "Tintin" , "Asterix" ]
books exampleBase "Rory" = [ "Tintin" ]

How are these found? In the"Alice" case we need to run through the listexampleBase
finding all the pairs whose first component is "Alice"; for each of these we return
the second component. As a list comprehension, we have

[ book | (person,book) <- exampleBase , person=="Alice" ]

person = "Alice" "Anna" "Alice" "Rory"
book = "Tintin" "Little Women" "Asterix" "Tintin"

(person== = T F T F
"Alice")
book = "Tintin" "Asterix"
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Variables in list comprehensions

There is an important pitfall to do with the behaviour of variables in list com-
prehensions. The definition (books.1) of books above might appear to be over-
complicated. We might imagine that we could say

books dBase findPerson
= [ book | (findPerson,book) <- dBase ] (books.2)

The effect of this is to return all the books borrowed by all borrowers, not just the
particular borrower findPerson.
The reason for this is that the findPerson in (findPerson,book) is a new variable,
and not the variable on the left-hand side of the definition, so in fact (books.2) has
the same effect as

books dBase findPerson = [ book | (new,book) <- dBase ]

where it is clear that there is no constraint on the value of new to be equal to
findPerson.

We make this into a general function by saying

books :: Database -> Person -> [Book] (books.1)
books dBase findPerson

= [ book | (person,book) <- dBase , person==findPerson ]

Note that in this definitionPerson is a type whileperson is a variable of typePerson.
As we said at the start, books forms a model for the other lookup functions,

which we leave as an exercise.

Defining the update functions

The database is modified, or updated, by the functions makeLoan and returnLoan.
Making a loan is done by adding a pair to the database, which can be done simply
by adding an extra pair to the front of the list of pairs.

makeLoan :: Database -> Person -> Book -> Database
makeLoan dBase pers bk = [ (pers,bk) ] ++ dBase

We have used the ++ operator here to join two lists, namely the one element list
[(pers,bk)] and the ‘old’ database dBase.

To return a loan, we need to check through the database, and to remove the pair
(pers,bk). We therefore run through all the pairs in the database, and retain those
which are not equal to (pers,bk), thus

returnLoan :: Database -> Person -> Book -> Database
returnLoan dBase pers bk

= [ pair | pair <- dBase , pair /= (pers,bk) ]
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Note that we have used a simple variable pair rather than a pattern to run over the
pairs in the dBase. This is because we do not need to deal with the components
separately; all we do is check whether the whole pair is equal to the pair (pers,bk).
On the other hand we could use a pattern thus:

[ (p,b) | (p,b) <- dBase , (p,b) /= (pers,bk) ]

and get exactly the same result.
As we have defined it, the returnLoan function will remove all pairs (pers,bk)

from the database. We will return to this point in the exercises in Section 9.3.

Testing

A Haskell interpreter acts like a calculator, and this is useful when we wish to test
functions like those in the library database. Any function can be tested by typing
expressions to the GHCi prompt. For example,

makeLoan [] "Alice" "Rotten Romans"

To test more substantial examples, it is sensible to put test data into a script, so we
might include the definition of exampleBase as well as various tests

test1 :: Bool
test1 = borrowed exampleBase "Asterix"

test2 :: Database
test2 = makeLoan exampleBase "Alice" "Rotten Romans"

and so on. Adding them to the script means that we can repeatedly evaluate them
without having to type them out in full each time. Another device which can help is
to use it, which is short for ‘the last expression evaluated’ in GHCi. The following
sequence makes a loan, then another, then returns the first.

makeLoan exampleBase "Alice" "Rotten Romans"
makeLoan it "Rory" "Godzilla"
returnLoan it "Alice" "Rotten Romans"

To make the tests repeatable it is possible to define a sequence of Database val-
ues, and to describe as HUnit tests using these database values. We leave that as an
exercise for the reader.

Testing in QuickCheck

We can use QuickCheck to test the database, too. The Chapter5 module has a num-
ber of properties, but here we include two basic ones:

• If we loan bk to pers and then lookup the books loaned to pers, then bk
should be in that list:
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prop_db1 :: Database -> Person -> Book -> Bool

prop_db1 dBase pers bk =
elem bk loanedAfterLoan == True

where
afterLoan = makeLoan dBase pers bk
loanedAfterLoan = books afterLoan pers

• If we return the loan of bk to pers and then lookup the books loaned to pers,
then bk should be not in that list:

prop_db2 :: Database -> Person -> Book -> Bool

prop_db2 dBase pers bk =
elem bk loanedAfterReturn == False

where
afterReturn = returnLoan dBase pers bk
loanedAfterReturn = books afterReturn pers

Exercises

5.27 Go through the calculation of

books exampleBase "Charlie"
books exampleBase "Rory"

5.28 Define the functionsborrowers, borrowed andnumBorrowed. To definenumBorrowed
you will probably need the length function which returns the length of a list.

5.29 Give calculations of

returnLoan exampleBase "Alice" "Asterix"
returnLoan exampleBase "Alice" "Little Women"

5.30 How would you have to modify the database functions if you had used the type

data Loan = Loan Person Book

to model individual loans, rather than the tuple type?

5.31 How would you express this as a QuickCheck property:

“Suppose that a particular bk is not loaned to a pers. Now make a ran-
dom loan of bk2 to pers2. bk should still not be loaned to pers.”

Would you expect this property to hold? If so, why? If not, why not, and how
would you modify it so that it does hold?
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5.32 Discuss how you would implement the database functions had you used the
representation[(Person,[Book])] rather than[(Person,Book)]for the database.

5.33 How would the tests for the database have to be modified to work with the im-
plementation defined in the previous question? Would the QuickCheck prop-
erties have to be modified: if so, how? If not, why not?

5.34 Define functions to give more readable output from the database operations
of this section.

Summary

This chapter has introduced the structured types of tuples and lists, and explained
their differences: in a given tuple type, (t1,...tn) the elements all have the same
form, namely (v1,...vn), with each component vi being a member of the corre-
sponding typeti. The list type[t]on the other hand contains elements[e1,...,en]
of different lengths but in which all the values ei have the same type t.

Over tuples we introduced the notion of pattern matching – in which a pattern
such as (x,y) could be used to stand for an arbitrary member of a pair type – and
saw how this led to more readable definitions.

We also saw how we could define our own data types to model product types –
like tuples – and sums, which can represent types containing a number of different
alternative elements.

The bulk of the chapter was an account of the facilities which Haskell provides
for working with lists. These include various ways of writing lists of elements of base
type, including ranges like [2,4..12], and list comprehensions, in which the mem-
bers of a list are generated, tested and transformed from the elements of another
list, as exemplified by

[ toUpper ch | ch <- string , isAlpha ch ]

which selects the alphabetic characters from a string, and converts them to up-
per case, using functions imported from the module Data.Char. We also saw that
String is the list type [Char].

In the chapters to come we will use the list functions given here in making our
own definitions, as well as finding out about the prelude and library functions for
lists, and how they are themselves defined.



Chapter 6

Programming with lists

The aim of this chapter is to introduce the operations on lists contained in the pre-
lude and the libraries that come with Haskell 2010. In order to understand the types
of these library functions we have to examine how generic or polymorphic func-
tions. Polymorphism is the mechanism by which a Haskell function can act over
more than one type: the length function on lists can be used over any list type, for
instance.

After doing this we’re in a position to review the functions in the prelude, in the
Haskell 2010 libraries, those which are available in the Haskell Platform and those
others which appear on Hackage. All these are reviewed, and in particular we look
at how we can discover functions with the type or behaviour that we’re looking for.

To make use of these library functions, we then introduce a series of extended
exercises to stretch the reader rather more than the small exercises we have given
thus far. These include extensions of the Picture functions and a billing program
for a supermarket checkout, which has to produce a formatted bill from the list of
bar codes scanned in at a checkout. Finally we include the example of card games,
which shows the importance of type design in writing non-trivial programs.

6.1 Generic functions: polymorphism

Before looking in detail at the functions on lists provided in the Haskell prelude and
libraries we need to look at the idea of polymorphism, which literally means ‘has
many shapes’. A function is polymorphic if it ‘has many types’, and this is the case
for many list-manipulating functions. An example is the length function, which
returns the length of a list, an Int. This function can be applied to any type of list,
so that we can say

length :: [Bool] -> Int
length :: [[Char]] -> Int

and so forth. How do we write down a type for length which encapsulates this? We
say

125
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length :: [a] -> Int

where a is a type variable. Any identifier beginning with a small letter can be used
as a type variable; conventionally, letters from the beginning of the alphabet, a, b, c,
. . . are used. Just as in the definition

square x = x*x

the variable x stands for an arbitrary value, so a type variable stands for an arbitrary
type, and so we can see all the types like

[Bool] -> Int [[Char]] -> Int

as coming about by replacing the variable a by particular types: here Bool and
[Char].

Types like [Bool] -> Int are called instances of the type [a] -> Int, and be-
cause every type for length is an instance of [a] -> Int we call this type the most
general type for length. The type of the function to join together two lists, ++, is

[a] -> [a] -> [a]

The variable a stands for ‘an arbitrary type’, but we should be clear that all the a’s
stand for the same type, just as in

square x = x*x

the x’s all stand for the same (arbitrary) value. Instances of [a]->[a]->[a] will
include

[Integer]->[Integer]->[Integer]

but not the type

[Integer]->[Bool]->[Char]

This makes sense: we cannot expect to join a list of numbers and a list of Booleans
to give a string!

On the other hand, the functions zip and unzip convert between pairs of lists
and lists of pairs, and their types involve two type variables:

zip :: [a] -> [b] -> [(a,b)]
unzip :: [(a,b)] -> ([a],[b])

because the types of the lists being (un)zipped are not related. Now, instances of the
type of zip include

[Integer]->[Bool]->[(Integer,Bool)]

where a and b are replaced by different types (Integer and Bool, here). It is, of
course, possible to replace both variables by the same type, giving

[Integer]->[Integer]->[(Integer,Integer)]

and the general type [a] -> [a] -> [(a,a)].
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Types and definitions

How is a polymorphic function defined? Consider the definition of the identity func-
tion,

id x = x

which returns its argument unchanged. In the definition there is nothing to con-
strain the type of x – all we know about x is that it is returned directly from the
function. We know, therefore, that the output type is the same as the input, and so
the most general type will be

id :: a -> a

At work here is the principle that a function’s type is as general as possible, consis-
tent with the constraints put upon the types by its definition. In the case of the id
function, the only constraint is that the input and output types are the same.

In a similar way, in defining

fst (x,y) = x

neither x nor y is constrained at all, and so they can come from different types a and
b, giving the type

fst :: (a,b) -> a

A final example is given by

mystery (x,y) = if x then ’c’ else ’d’

Here we see that x is used as a Bool in the if x then ..., whereas y is not used at
all, and so is not constrained in the definition, giving mystery the type

(Bool,a) -> Char

We shall examine the definitions of many of the Prelude and library functions in
Chapter 7, and see there that, as outlined above, a function or other object will have
as general as possible a type, consistent with the constraints put upon the types by
its definition. We look in more depth at the mechanics of type checking in Chapter
13.

GHCi can be used to give the most general type of a function definition, using
the :type command. If you have given a type declaration for the function, this can
be commented out before asking for the type.

Polymorphism and overloading

Polymorphism and overloading are both mechanisms by which the same function
name can be used at different types, but they have an important difference.

A polymorphic function like fst has the same definition, namely

fst (x,y) = x
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at all types, so that it is the same function at all its instances.
On the other hand, an overloaded name like == has different definitions over

different types, so that the same name is being used to mean different but similar
functions at different types. For example, == over Integer is built in, whereas over
pairs it will be defined by

(n,m) == (p,q)
= (n==p) && (m==q)

More details about overloading can be found in Chapter 13.

Exercises

6.1 Give the most general types for the functions snd and sing defined by

snd (x,y) = y
sing x = [x]

6.2 Explain why

[[a]] -> [[a]]

is a type for id but why it is not the most general type for this function.

6.3 Earlier in the chapter we saw the example of

shift :: ((Integer,Integer),Integer) -> (Integer,(Integer,Integer))
shift ((x,y),z) = (x,(y,z))

What is the most general type for shift, if the type declaration is omitted?

6.2 Haskell list functions in the Prelude
Armed with the insight provided by the previous section we can look at the descrip-
tions of the polymorphic list operations from Prelude given in Figure 6.1. In this
table we give the name of the function or operator, its type, a brief description of its
effect and an example, as in the description of length

length [a] -> Int The length of the list.
length "word" ; 4

As well as the polymorphic functions in Figure 6.1, the standard prelude provides
various operations over specific types; some of these can be seen in Figure 6.2. The
types of the functions sum and product, which are overloaded, will be discussed
further in Chapter 13.
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: a -> [a] -> [a] Add a single element to the front of a list.
3:[2,3] ; [3,2,3]

++ [a] -> [a] -> [a] Join two lists together.
"Ron"++"aldo"; "Ronaldo"

!! [a] -> Int -> a xs!!nreturns the nth element of xs, starting
at the beginning and counting from 0.
[14,7,3]!!1; 7

concat [[a]] -> [a] Concatenate a list of lists into a single list.
concat [[2,3],[],[4]]; [2,3,4]

length [a] -> Int The length of the list.
length "word" ; 4

head,last [a] -> a The first/last element of the list.
head "word" ; ’w’

last "word" ; ’d’

tail,init [a] -> [a] All but the first/last element of the list.
tail "word" ; "ord"

init "word" ; "wor"

replicate Int -> a -> [a] Make a list of n copies of the item.
replicate3 ’c’ ; "ccc"

take Int -> [a] -> [a] Take n elements from the front of a list.
take 3 "Peccary"; "Pec"

drop Int -> [a] -> [a] Drop n elements from the front of a list.
drop 3 "Peccary"; "cary"

splitAt Int -> [a] -> ([a],[a]) Split a list at a given position.
splitAt 3 "Peccary"; ("Pec","cary")

reverse [a] -> [a] Reverse the order of the elements.
reverse [2,1,3] ; [3,1,2]

zip [a]->[b]->[(a,b)] Take a pair of lists into a list of pairs.
zip [1,2] [3,4,5] ; [(1,3),(2,4)]

unzip [(a,b)] -> ([a],[b]) Take a list of pairs into a pair of lists.
unzip [(1,5),(3,6)]; ([1,3],[5,6])

Figure 6.1: Some polymorphic list operations from Prelude.hs.
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and [Bool] -> Bool The conjunction of a list of Booleans.
and [True,False] ; False

or [Bool] -> Bool The disjunction of a list of Booleans.
or [True,False] ; True

sum [Integer] ->
Integer

The sum of a numeric list.

[Float] -> Float sum [2,3,4] ; 9

product [Integer] ->
Integer

The product of a numeric list.

[Float] -> Float product [0.1,0.4 .. 1] ; 0.028

Figure 6.2: Some monomorphic list operations from the Prelude.

The importance of types

The single most useful piece of information about a function is its type, and this is
particularly true when we look at the polymorphic types of functions in a library like
Figure 6.1. Suppose we are looking for a function to make a list from a number of
copies of a single element. It must take the item and a count and give a list, so its
type will be one of

Integer -> a -> [a] a -> Integer -> [a]

Looking at Figure 6.1 we can quickly locate one function, replicate, which does
have one of these types and is indeed the function which we seek. If we want a
function to reverse a list it will have type [a] -> [a] and although there is more
than one function with this type, the search is very much narrowed by looking at
types. We’ll see a little later on (page 137) that there’s a web service called hoogle to
look up functions by type.

This insight is not confined to functional languages, but is of particular use when
a language supports polymorphic or generic functions and operators as we have
seen here.

Further functions

We have not described all the functions in the prelude for two different reasons.
First, some of the general functions are higher-order and we postpone discussion
of these until Chapter 10; secondly, some of the functions, such as zip3, are obvious
variants of things we have discussed here. Similarly, we have not chosen to enumer-
ate the functions in the library Data.List; readers should consult the library file
itself, which contains type information and comments about the effects of the func-
tions, as well as the Haddock documentation for the library: we talk in detail about
documentation in the next section.
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Glasgow Haskell Compiler 

The Haskell Platform

HackageDB / Cabal

Figure 6.3: The Haskell infrastructure

6.3 Finding your way around the Haskell libraries

Haskell comes with some great libraries which will allow you to get started writing
programs in all sorts of different application areas without having to build up every-
thing from scratch yourself, thanks to the contributions of thousands of people in
the Haskell community.

What libraries are there?

Libraries are found in the Haskell 2010 standard, including thePrelude, in the Haskell
Platform and on the Hackage database. We first describe the libraries in some more
detail, and then explain how to find out more about them.

Prelude The Prelude is a part of the language standard and gives definitions of
standard types, functions and classes (which we come to later). The Prelude
is listed in full in the Haskell 2010 Language Report.

The Prelude is special because it is imported into all modules by default. We
have seen this already: if we want to re-define a Prelude function, then we
have to import the Prelude explicitly, but hiding that function.

Haskell 2010 The standard libraries in Haskell 2010 use hierarchical names: see the
note on module names on page 132 for more details of this.

The libraries are grouped by name, and are described in depth in the Haskell
2010 Language Report:

Control The Control.Monad library contains definitions which underly the
IO mechanism in Haskell, as well as structuring side-effecting computa-
tions and DSL definitions.
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A note on module names and exports

Module names in Haskell 2010 are “hierarchical” in style, and consist of a sequence
of identifiers beginning with capital letters, separated with dots. Examples in the
standard libraries include Foreign.Marshal.Alloc, Data.Bool and Foreign. To
quote from the report

Module names can be thought of as being arranged in a hierarchy in
which appending a new component creates a child of the original mod-
ule name. For example, the module Control.Monad.ST is a child of the
Control.Monad sub-hierarchy. This is purely a convention, however,
and not part of the language definition.

However, that’s not quite the end of the story, because some modules are defined
in such a way as to (re-)export all their “children”: an example of this is the module
Foreign.C (quoting again from the report)

The module Foreign.C combines the interfaces of all modules provid-
ing C-specific marshalling support, namely

module Foreign.C.Types
module Foreign.C.String
module Foreign.C.Error

while other modules export a subset of that functionality:

The module Foreign combines the interfaces of all modules providing
language-independent marshalling support, namely

module Data.Bits
module Foreign.Ptr
...

Data These libraries contain additional data types, e.g. Data.Array, or addi-
tional operations on existing types, such as the bitwise operations on inte-
gers in Data.Bit.

Foreign The Foreign libraries provide support for interworking with other
programming languages. This includes support for the communication of
data between languages in Foreign.C and Foreign.Marshal, as well as
facilities for pointers to foreign entities.

Numeric The Numeric library contains functions to read and print numbers
in a variety of formats.

System The System libraries have support for various forms of IO handling
(in System.IO and System.IO.Error), and functions to interact with the
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Packages and Hackage

Hackage is an online repository for Haskell programs, bundled as a package. The
simplest package is a collection of Haskell modules, but more complex packages can
contain C code, documentation, test cases and so forth. Moreover, Hackage has the
great advantage that it keeps track of dependencies between packages and indeed
package versions.
Combined with the Cabal it makes up an awesome infrastructure: in comparison
with five years ago, Haskell now provides a simple mechanism for downloading and
maintaining sets of libraries. Cabal has facilities for package developers and main-
tainers, but we confine ourselves to user-facing features here.

Packages have a globally unique package name and a version number, such as
HaRe-0.6.0.1. Each package will expose some of the Haskell modules it contains.
Crucially, the package will state which other packages it depends on, typically in
as general as possible a way. The HaRe package mentioned earlier has this depen-
dency: base >4 && <= 5 so that it can use any version of the base package in that
range, including ‘fractional’ versions, of course. Further details of how packages are
specified is available at the Hackage website.

http://hackage.haskell.org/

A typical package description page in Hackage is shown in Figure 6.4.

command line and signals in Unix.

The Haskell Platform The Haskell Platform is a bundled distribution of GHCi, some
standard tools, including Cabal for building, distributing and downloading li-
braries and the Hsc2hs preprocessor to assist in Haskell/C interworking.

The Haskell Platform also comes with a large collection of packages: we’ll talk
about that terminology later in this section when we discuss Cabal and Hack-
age. These packages include the following areas.

• Data and control structures, such as sets, finite maps, bytestrings and hash
tables.

• Concurrency. including lightweight threads, MVars for thread synchronisa-
tion and channels.

• Testing and debugging, including HUnit and QuickCheck as we use here.

• Network, system and web programming. These include facilities for HTTP
and socket programming, as well as access to many OS and lower-level op-
erations.

• Other packages cover text processing, graphics and math programming.

HackageDB HackageDB provides an online repository for sharing and distributing
Haskell packages and libraries. There are 2787 packages on Hackage at the
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Cabal

Cabal is a command-line tool for installing packages – and the packages that they
depend on – in your system. Cabal is itself installed as a part of the Haskell Platform.
As a user you’ll need to know these cabal commands.

cabal update
Update the (cached) list of available packages. It’s sensible to do this each time
you start using the cabal command.

cabal list string
List all the packages whose descriptions contain a match of the string; all
packages are listed if the string is omitted.

cabal install pkg
Install the package pkg; you can also supply a list of packages here.

cabal install foo-1.0
Install specific version of a package.

cabal install ’foo < 2’
Install version with constrained version number.

cabal install pkg --dry-run
Dry run what happens if you install a particular pkg.

cabal help
Give a summary of all the available cabal commands.

ghc-pkg list
List all the packages that are currently installed.

Further information about the system, including how to install it manually if you are
not using the Haskell Platform, is available at these sites:

http://haskell.org/haskellwiki/Cabal-Install
http://hackage.haskell.org/trac/hackage/wiki/CabalInstall

time of writing1, a testament to the strength and engagement of the Haskell
developer community. The variety and number of packages make it impossi-
ble to give a summary of what’s there: you’ll need to consult the documenta-
tion to find out more. We turn to looking at that now.

Figure 6.3 illustrates the layers of libraries available.

1Early August 2010
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Figure 6.4: The HackageDB description of the agum package

Where do I find out more?

You can find out about the Haskell libraries in a number of different places, some
bundled with GHC and the Haskell Platform locally on your machine, and others
online. Much of the online documentation is generated using the Haddock system,
which itself comes bundled with the Haskell Platform. Haddock documents are hy-
perlinked for ease of navigation, and also provide links from the documentation into
the source code, so that you don’t have to look at that separately.

We’ll go through these in turn now.

System documentation As part of the Haskell Platform distribution there is an in-
dex page for documentation. On Mac OS X systems it is installed at

file:///usr/share/doc/ghc/html/

On linux systems the default installation is in /usr or /usr/local. On Win-
dows systems there are links to the documentation in the Haskell Platform
programs group accessible from the All Programs menu.

Libraries Haddock documentation for many libraries is available from the Libraries
link on the system documentation page, or directly at

file:///usr/share/doc/ghc/html/libraries/index.html
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Figure 6.5: Haddock documentation for the agum package

This is also inked from the Haskell Platform programs group on Windows.

Prelude In particular, documentation for the Prelude, including descriptions of
and examples for many of the functions, is available within the library docu-
mentation, or directly at

file:///usr/share/doc/ghc/html/libraries/base-XXXXX/Prelude.html

Here XXXXX is the particular version of the base libraries: for the Haskell Plat-
form at the time of writing it is base-4.2.0.2.

Hackage Haddock documentation is available for many packages on Hackage. This
will be accessible from

http://hackage.haskell.org/package/

which is listed by category, but also searchable. A typical package page is
shown in Figure 6.4: documentation for the modules making up the pack-
age is linked from the list of modules below the Module header, towards the
bottom of the page; an example is shown in Figure 6.5.
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Figure 6.6: Hoogle in action

Hoogle search Hoogle allows you to search many of the standard libraries: what is
cool about Hoogle is that you can search by type as well as by name. Narrow-
ing down a search by type can lead you very quickly to your answer, or at least
eliminate a lot of “noise” in a search.

http://www.haskell.org/hoogle/

See Figure 6.6 for example results. Be aware, though, that Hoogle doesn’t cover
all the packages in Hackage.

Hayoo! search Hayoo! does search the whole of Hackage, but it is a string-based
search only.

http://holumbus.fh-wedel.de/hayoo/hayoo.html

You can also use google to search the web, for example using a type signature.
This is successful more often than you might think.

GHCi Once you have asked to import a module (Foo, say) into GHCi you can then
find out the types of all its exported functions using the GHCi command

:browse Foo
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Information about a particular function (foo, say) which is in a module loaded
in GHCi is given using the command

:info foo

Online resources You can go online to ask questions: there’s a really lively commu-
nity on the Haskell Cafe mailing list, haskell-cafe@haskell.org: you can
find out more about how to join this list in the Communities section on the
homepage of the Haskell website www.haskell.org: you can also find links
to the Haskell IRC channel and Haskell on Stack Overflow here too.

Online texts Finally, you can find a number of texts online, including Learn You
a Haskell for Great Good, http://learnyouahaskell.com/ and the Haskell
wikibook, http://en.wikibooks.org/wiki/Haskell.

6.4 The Picture example: implementation

In this section we revisit the Picture example, first introduced in Chapter 1 and re-
examined in Section 2.6. What we do here is to look at how to implement some of
the operations over the Picture type, now that we know about list comprehensions
and the list functions in the prelude. We also look at how to write more QuickCheck
properties for the Picture functions.

type Picture = [[Char]]

Some of the operations are defined as library functions. To flip a picture in a hori-
zontal mirror, we simply have to reverse the order of the lines of the picture:

flipH :: Picture -> Picture
flipH = reverse

and to place one picture above another it is sufficient to join the two lists of lines
together:

above :: Picture -> Picture -> Picture
above = (++)

where we have enclosed the operator ++ in parentheses to make it a (prefix) func-
tion.

How do we flip a picture in a vertical mirror? We have to reverse each of the lines,
that is we have to transform each member of a list in some way. This is one of the
features of a list comprehension, so we can say

flipV :: Picture -> Picture
flipV pic

= [ reverse line | line <- pic ]

and we can read off from this program its intended effect:
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“reverse every line in the pic”.

This is an example of the general operation of applying a function f to every element
of a list xs, given by the list comprehension

[ f x | x <- xs ]

We shall see that this operation is itself a higher-order function in Chapter 10 below.
Next we explore how to place two pictures side by side. What we want to do is to

join up the corresponding lines of the two pictures, as illustrated on page 22. How
can we accomplish this? We can see this as like flipV, in that we want to do some-
thing to every pair of lines – namely join them with ++ – but we need to associate
corresponding lines before we do this. That is exactly the purpose of the prelude
function zip, which takes two lists and pairs corresponding elements, and so we
can say

beside :: Picture -> Picture -> Picture
beside picL picR

= [ lineL ++ lineR | (lineL,lineR) <- zip picL picR ]

The effect of zip is to chop the list of pairs to the shorter of the two inputs, and so
beside will clip the bottom lines off whichever picture is the longer; if they are the
same length, then there is no clipping. We can also use the higher-order zipWith to
define beside; we revisit this in Chapter 9.

In our pictures, white is represented by the dot ‘.’ and black by the hash symbol
‘#’. To invert the colour of a single character we define

invertChar :: Char -> Char
invertChar ch

= if ch==’.’ then ’#’ else ’.’

The characters ‘.’ and ‘#’ are swapped by this definition (and any other character is
transformed into ‘.’, too). Now, how do we invert the colours in a whole picture? We
need to invert each character in a line, using

invertLine :: [Char] -> [Char]
invertLine line

= [ invertChar ch | ch <- line ]

and we want to apply this to all the lines in the picture

invertColour :: Picture -> Picture
invertColour pic

= [ invertLine line | line <- pic ]

We could if we wish write this as a single definition, thus

invertColour :: Picture -> Picture
invertColour pic

= [ [ invertChar ch | ch <- line ] | line <- pic ]
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but our use of the auxiliary function invertLine makes the previous definition
more readable.

In the next section we extend our model of pictures to give them a position as
well as some pictorial content.

Tests and properties

We first discussed writing properties for the functions over pictures in Section 1.14;
it’s time to look at this again. In that section we looked at properties of flipH and
flipV, separately and together. Here we look at how these functions interact with
above and beside, and we look at other properties in the exercises.

What happens if we flip pic1 ‘above‘ pic2 in a vertical mirror? The result is
the same as flipping the two pictures separately before putting them together. We
can write this as a property

prop_AboveFlipV :: Picture -> Picture -> Bool

prop_AboveFlipV pic1 pic2 =
flipV (pic1 ‘above‘ pic2) == (flipV pic1) ‘above‘ (flipV pic2)

and test it by typing

quickCheck prop_AboveFlipV

(ensuring that the module Test.QuickCheck is loaded.) Similarly we can write the
property for flipH:

prop_AboveFlipH :: Picture -> Picture -> Bool

prop_AboveFlipH pic1 pic2 =
flipH (pic1 ‘above‘ pic2) == (flipH pic1) ‘above‘ (flipH pic2)

but this fails: why? Can you correct the property? Remember that flipH means that
we’re flipping the picture in a horizontal mirror.

In Section 4.2 we put together four pictures as fourPics. We chose to do this
by putting one picture beside another using beside: we could also have done this
by putting one picture above another, and we could expect that this gives the same
result, as expressed in the property

propAboveBeside :: Picture -> Picture -> Picture -> Picture -> Bool

propAboveBeside nw ne sw se =
(nw ‘beside‘ ne) ‘above‘ (sw ‘beside‘ se)
==
(nw ‘above‘ sw) ‘beside‘ (ne ‘above‘ se)

If we test this, then it fails. Why? Remember that we’re using the built-in facilities
of QuickCheck to generate random values from [String]. If we look at a sample of
the data,2 the results look like this:

2We do this using sample (arbitrary :: Gen [String]).
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[]
["a1","\EOT"]
[]
["","p\DC3=","\229\a\183","\218\SOH\194",""]
["g}","P","_y","\169\131\FS\t","U\nl",":YicLX\194\198","\t3"]
...

The elements are random, the pictures are generally not rectangular – because within
each list the strings are of different length – it is also very likely that four of these cho-
sen randomly will not have the right dimensions to be put together using beside
and above. We’ll see in Section 19.6 how to define random generators of data for
ourselves, and we’ll see there how to generate ‘sensible’ random pictures, built up
from ’.’ and ’#’ in rectangular patterns, and indeed to generate sets of pictures
containing random data but all of the same size.

In the meantime we can say that we only want to check a property when the
generated data satisfy some conditions: let’s take a look at an example.

propAboveBeside3Correct :: Picture -> Picture -> Property

propAboveBeside3Correct w e =
(rectangular w && rectangular e && height w == height e)
==>

(w ‘beside‘ e) ‘above‘ (w ‘beside‘ e)
==

(w ‘above‘ w) ‘beside‘ (e ‘above‘ e)

In writing this property we have used ==> which we can read as ‘implies’. The prop-
erty following the ==> is only checked when the Boolean condition before the arrow
is true. Without the condition the property fails: try it out!

Exercises

6.4 Define a function

superimposeChar :: Char -> Char -> Char

so that the superimposition of ‘.’ with itself gives ‘.’ while any other combi-
nation of characters gives ‘#’.

6.5 Define a function

superimposeLine :: [Char] -> [Char] -> [Char]

which takes two lines – which you can assume are of the same length – and su-
perimposes their corresponding characters using superimposeChar, so that,
for example,

superimposeLine ".##." ".#.#" = ".###"
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You may want to use zip in your solution.

6.6 In a similar way to superimposeLine, define the function

superimpose :: Picture -> Picture -> Picture

which superimposes two pictures, which you may assume have the same di-
mensions.

6.7 Using the function putStr :: String -> IO () and any other functions
you might need, define the function

printPicture :: Picture -> IO ()

so that the effect ofprintPicture [ ".##." , ".#.#" , ".###" , "####" ]
is that

.##.

.#.#

.###
####

is printed at the terminal window. Hint: it is enough to transform this list of
strings to the single string

".##.\n.#.#\n.###\n####\n"

and to pass that to putStr.

6.8 [Harder] Define a function

rotate90 :: Picture -> Picture

which rotates a picture through 90± clockwise. For instance, the effect ofrotate90
on the picture in the previous exercise would be to give

#...
####
##.#
###.

Hint: you need to make a line of the new picture by picking out the ith el-
ements in each of the lines of the original picture, reflected in a horizontal
mirror.

6.9 Usingrotate90or otherwise, define a function which rotates a picture through
90± anticlockwise.
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6.10 [Harder] Define the function

scale :: Picture -> Int -> Picture

which scales the input picture by the integer provided as the second argument.
For instance, if exPic is the picture

#.#
..#

then the result of scale exPic 2 should be

##..##
##..##
....##
....##

In the case of a zero or negative scale factor, you should return an empty pic-
ture.

6.11 Correct the property prop_AboveFlipH given earlier.

6.12 Define properties which describe howbeside interacts withflipH andflipV.

6.13 One property we can show holds is that if we take the same picture and put
four copies of it together using beside and above in the two different ways,
then the results are the same. Express this as a quick check property.

6.14 You can test your implementation of rotate90 using QuickCheck. Can you
think of properties which only use rotate90 and others that use rotate? You
may want to impose a condition that any picture involved is rectangular: the
function is given in the program code for this chapter.

6.15 What property would you expect invertColour to have? Can you be sure that
this will hold for randomly generated data?

6.16 [Harder] Write the analogue of propAboveBeside3Correct where two pic-
tures are again used, but with two the same at the top (call them n) and two
the same at the bottom (s, say). Do you need the condition in this case?

6.5 Extended exercise: alternative implementations of
pictures

This section looks again at the pictures example, and explores alternative imple-
mentations. First we look at extending the implementation so that two pictures
don’t have to be of compatible size when joining them together into one. After that
we look at various alternative implementations of pictures as lists.
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.......##..........##...

.....##..#.......##..#..

...##.....#....##.....#.

..#.......#...#.......#.

..#...#...#...#...#...#.

..#...###.#...#...###.#.

.#....#..##..#....#..##.

..#...#.......#...#.....

...#...#.......#...#....

....#..#........#..#....

.....#.#.........#.#....

......##..........##....

.......##...

.....##..#..

...##.....#.

..#.......#.

..#...#...#.

..#...###.#.

.#....#..##.

..#...#.....

...#...#....

....#..#....

.....#.#....

......##....

Figure 6.7: ‘Ragged’ picture

Incompatible combinations

In earlier discussions of the Picture type, we have made the assumption that binary
functions like above have been called on arguments of compatible size: in the case
of above this would mean that the width of the two arguments was the same. What
should be done if this is not the case?

We could reasonably assume that each picture was rectangular and define the
functions so that this invariant was preserved by the binary functions. In the exam-
ple of above this requires that pictures can be padded in an appropriate way. Let’s
take the specific example of

(horse ‘beside‘ horse)
‘above‘

horse

as shown in Figure 6.7. To preserve the rectangular picture, we need to pad out the
lower as shown in Figure 6.8.

Exercises
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.......##..........##...

.....##..#.......##..#..

...##.....#....##.....#.

..#.......#...#.......#.

..#...#...#...#...#...#.

..#...###.#...#...###.#.

.#....#..##..#....#..##.

..#...#.......#...#.....

...#...#.......#...#....

....#..#........#..#....

.....#.#.........#.#....

......##..........##....

.......##...............

.....##..#..............

...##.....#.............

..#.......#.............

..#...#...#.............

..#...###.#.............

.#....#..##.............

..#...#.................

...#...#................

....#..#................

.....#.#................

......##................

Figure 6.8: “Padded’ picture

6.17 Redefine the functions over pictures to pad pictures in the way just described.
One way to solve the problem is to use the function

replicate :: Int -> a -> [a]

replicate n x returns a list containing n xs, so replicate 3 ’g’ is "ggg".

6.18 How would you work with basic pictures that were not rectangular? Define a
function which will take a picture - as a list of Strings – and return a rectan-
gular list of strings, padding out each line as necessary. Once you start with
rectangular pictures the functions you defined in the first part of this exercise
should be enough to preserve them as rectangular.

Alternative representations

In this section we look at a number of different ways that these "low fi" pictures can
be represented.
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Exercises

6.19 An alternative representation of Picture is the type

[[Bool]]

where True and False represent black and white points in a picture. How
would you have to modify the functions working over Picture to accommo-
date this change? What are the advantages and disadvantages of the two rep-
resentations?

6.20 We have represented pictures as a list of rows: how would you redefine the
functions working over pictures if they are represented as a list of columns.

6.21 [Harder] How would you re-implement the function printPicture, defined
in the solution to exercise 6.7, so that it works over this column-based repre-
sentation?

6.22 It would be possible to represent a Picture as a single list of characters, with
’\n’ terminating each line of the picture, as in

".##.\n.#.#\n.###\n####\n"

How would you redefine the picture manipulating functions over this repre-
sentation? Which functions become easier to define? Which more difficult?

Run-length encoding

A more compact representation is given by run-length encoding of Pictures, which
will code a repeated character run like "###" as a pair, (3,’#’), and a picture is
represented as a member of [[(Int,Char)]]. For example, the picture

.##.

.#.#

.###
####

is represented like this

[ [(1,’.’), (2,’#’), (1,’.’)],
[(1,’.’), (1,’#’), (1,’.’), (1,’#’)],
[(1,’.’), (3,’#’)],
[(4,’#’)] ]

using run-length encoding for each row of the picture.
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Exercises

6.23 Re-implement the functions over pictures to work with this new representa-
tion. In particular, how would you print pictures which were represented in
this way?

6.24 Is it the case that all your answers to the last question give the most compact
representation, so that you don’t have adjacent runs of the same character, as
in

[(1,’.’), (2,’.’), (1,’#’)]

which could be given more compactly as

[(3,’.’), (1,’#’)]

If this can happen with your functions, how could you change your definitions
to avoid it?

6.25 Take another look at the QuickCheck properties you wrote to test pictures:
rewrite these for your alternative implementations. How many of the proper-
ties carry over to the alternative implementations without alteration, and how
many have to be modified in some way?

6.26 [Harder] The run-length encoding above works a line at a time, but it would
be possible to give a more compact representation which combines runs in
different lines. The earlier example could then be given by

[(1,’.’), (2,’#’), (2,’.’),
(1,’#’), (1,’.’), (1,’#’),
(1,’.’), (7,’#’)]

This representation loses the length of the rows, so you would have to keep
information about the row length in the type too, giving

type Picture = (Int, [(Int,Char)] )

as the representation. Re-implement the picture functions to work over this
type.

6.27 [Harder] If you know that only the characters ’.’ and ’#’ are used in a pic-
ture, how could you make the representation of the previous question even
more compact?

6.28 [Harder] Define two more representations of pictures yourself, and re-implement
the picture functions over these types.
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Figure 6.9: An example Image.

6.6 Extended exercise: positioned pictures

The pictures that we have modelled using the type Picture are not anchored at
any particular point in space: we can think of them concretely as being on pieces of
paper which can be joined together, superimposed, rotated and so on.

A different model of pictures gives each picture a Position in space: we can
then think of moving these pictures, of superimposing two of these pictures to give
another picture, and so on.

Basics

How can we represent pictures with positions? First we need to think about how we
model positions on an integer grid. A Position is given by a pair of integers,

type Position = (Int,Int)

We will use the term Image for a picture with a position, and so we define

type Image = (Picture,Position)

An example, in which we position the horse with its bottom left-hand corner or
reference point at position (31,23), is given in Figure 6.9.

The remainder of this section is a collection of exercises to write functions which
manipulate these Images; you can use any of the list functions introduced in the
previous chapter and also the functions over Picture which we have already de-
fined.

Exercises

6.29 Define a function
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Figure 6.10: The geometrical view of flipV and rotate.

makeImage :: Picture -> Position -> Image

which makes an Image from a Picture and a Position.

6.30 Define a function

changePosition :: Image -> Position -> Image

which takes an Image and returns a new Image whose Picture is unchanged
but whose Position is given by the second argument to changePosition.

6.31 Give a definition of the function

moveImage :: Image -> Int -> Int -> Image

so that the effect of moveImage img xMove yMove is to move img by xMove
in the horizontal (x) direction and by yMove in the vertical (y) direction.

6.32 Define a function

printImage :: Image -> IO ()

whose action is the analogue of printPicture for pictures.

Transformations

We can extend the transformations over the type Picture to the Image type, but we
need to think about the effect of these transformations on the position. One way
to lift the transformations from pictures to images is simply to say that the pictures
stay in the same position – we call this the naive view.
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Figure 6.11: Superimposing two Images.

If we think of reflections and rotations going on in space, then the results are
more likely to be as shown in Figure 6.10, where we see that the position of the re-
sulting image has changed. Rotation is about the reference point, and reflection is
in the horizontal or vertical line through the reference point; in general these op-
erations will change the reference point. We call this the geometrical view of the
transformations.

Exercises

6.33 Implement for Image the analogues of flipH, flipV, rotate and rotate90
under the naive view of how to lift the transformations.

6.34 Implement for Image the analogues of flipH, flipV, rotate and rotate90
under the geometrical view.

Superimposition

When pictures have positions, superimposition can be more complex. Consider the
example illustrated in Figure 6.11; here we see one way of superimposing the two
images is to use Picture superimposition on two pictures which have first been
‘padded out’ with white space as shown in the figure.
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Haskell Stores

Dry Sherry, 1lt...........5.40
Fish Fingers..............1.21
Orange Jelly..............0.56
Hula Hoops (Giant)........1.33
Unknown Item..............0.00
Dry Sherry, 1lt...........5.40

Total....................13.90

Figure 6.12: A supermarket bill

Exercises

6.35 Define functions to ‘pad out’ a Picture with an amount of white space, as
shown in Figure 6.11.

You will need to think carefully about the intended effect of the functions be-
fore you start to implement them. You will need to have function parameters
for the amount of padding to the left, right, bottom and top of the image.

Note, in particular, that the Position of an Image might change as a result of
padding.

6.36 Using the padding functions, define a superimposition function for the Image
type.

6.37 How would you use Image superimposition to give analogues of above and
beside for Images?

6.38 Define QuickCheck properties to check the implementation of the functions
over the Image type. How many carry over from the Picture type, and how
many have to be re-defined?

6.7 Extended exercise: supermarket billing

This collection of exercises looks at supermarket billing.3 The idea is to use the list-
manipulating techniques presented in Chapter 5. In particular we will be using list
comprehensions and also the prelude functions mentioned there. We will also ex-
pect local definitions – as explained in Section 4.2 – to be used when appropriate.

The problem

A scanner at a supermarket checkout will produce from a basket of shopping a list
of bar codes, like

3I am grateful to Peter Lindsay et al. of the Department of Computer Science at the University of New
South Wales, Australia, for the inspiration for this example, which was suggested by their lecture notes.
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[1234,4719,3814,1112,1113,1234]

which has to be converted to a bill as shown in Figure 6.12 We have to decide first
how to model the objects involved. Bar codes and prices (in pence) can be modelled
by integers; names of goods by strings. We say therefore that

type Name = String
type Price = Int
type BarCode = Int

The conversion will be based on a database which links bar codes, names and prices.
As in the library, we use a list to model the relationship.

type Database = [ (BarCode,Name,Price) ]

The example database we use is

codeIndex :: Database
codeIndex = [ (4719, "Fish Fingers" , 121),

(5643, "Nappies" , 1010),
(3814, "Orange Jelly", 56),
(1111, "Hula Hoops", 21),
(1112, "Hula Hoops (Giant)", 133),
(1234, "Dry Sherry, 1lt", 540)]

The object of the script will be to convert a list of bar codes into a list of(Name,Price)
pairs; this then has to be converted into a string for printing as above. We make the
type definitions

type TillType = [BarCode]
type BillType = [(Name,Price)]

and then we can say that the functions we wish to define are

makeBill :: TillType -> BillType

which takes a list of bar codes to a list of name/price pairs,

formatBill :: BillType -> String

which takes a list of name/price pairs into a formatted bill, and

produceBill :: TillType -> String

which will combine the effects of makeBill and formatBill, thus

produceBill = formatBill . makeBill

The length of a line in the bill is decided to be 30. This is made a constant, thus

lineLength :: Int
lineLength = 30

Making lineLength a constant in this way means that to change the length of a
line in the bill, only one definition needs to be altered; if 30 were used in each of
the formatting functions, then each would have to be modified on changing the line
length. The rest of the script is developed through the sequences of exercises which
follow.
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Formatting the bill

First we develop the formatBill function from the bottom up: we design functions
to format prices, lines, and the total, and using these we finally build theformatBill
function itself.

Exercises

6.39 Given a number of pence, 1023 say, the pounds and pence parts are given by
1023 ‘div‘ 100 and 1023 ‘mod‘ 100. Using this fact, and the show func-
tion, define a function

formatPence :: Price -> String

so that, for example, formatPence 1023 = "10.23"; you need to be careful
about cases like "12.02".

6.40 Using the formatPence function, define a function

formatLine :: (Name,Price) -> String

which formats a line of a bill, thus

formatLine ("Dry Sherry, 1lt",540)
= "Dry Sherry, 1lt...........5.40\n"

Recall that ’\n’ is the newline character, that ++ can be used to join two
strings together, and that length will give the length of a string. You might
also find the replicate function useful.

6.41 Using the formatLine function, define

formatLines :: [ (Name,Price) ] -> String

which applies formatLine to each (Name,Price) pair, and joins the results
together.

6.42 Define a function

makeTotal :: BillType -> Price

which takes a list of (Name,Price) pairs, and gives the total of the prices. For
instance,

makeTotal [(" ... ",540),(" ... ",121)] = 661

6.43 Define the function
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formatTotal :: Price -> String

so that, for example,

formatTotal 661 = "\nTotal.....................6.61"

6.44 Using the functions formatLines, makeTotal and formatTotal, define

formatBill :: BillType -> String

so that on the input

[("Dry Sherry, 1lt",540),("Fish Fingers",121),
("Orange Jelly",56),("Hula Hoops (Giant)",133),
("Unknown Item",0),("Dry Sherry, 1lt",540)]

the example bill at the start of the section is produced.

Making the bill: bar codes into names and prices

Now we have to look at the database functions which accomplish the conversion of
bar codes into names and prices.

Exercises

6.45 Define a function

look :: Database -> BarCode -> (Name,Price)

which returns the (Name,Price) pair corresponding to the BarCode in the
Database. If the BarCode does not appear in the database, then the pair
("Unknown Item", 0) should be the result.

Hint: using the ideas of the library database you might find that you are re-
turning a list of (Name,Price) rather than a single value. You can assume
that each bar code occurs only once in the database, so you can extract this
value by taking the head of such a list if it is non-empty.

6.46 Define a function

lookup :: BarCode -> (Name,Price)

which uses look to look up an item in the particular database codeIndex.
This function clashes with a function lookup defined in the prelude; consult
page 53 for details of how to handle this.

6.47 Define the function
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Haskell Stores

Dry Sherry, 1lt...........5.40
Fish Fingers..............1.21
Orange Jelly..............0.56
Hula Hoops (Giant)........1.33
Unknown Item..............0.00
Dry Sherry, 1lt...........5.40

Discount..................1.00

Total....................12.90

Figure 6.13: Bills with ‘multibuy’ discounts.

makeBill :: TillType -> BillType

which applies lookup to every item in the input list. For instance, when ap-
plied to [1234,4719,3814,1112,1113,1234] the result will be the list of
(Name,Price) pairs given in Exercise 6.25. Note that 1113 does not appear
in codeIndex and so is converted to ("Unknown Item",0).

This completes the definition of makeBill and together with formatBill
gives the conversion program.

Extending the problem

We conclude with some further exercises.

Exercises

6.48 You are asked to add a discount for multiple buys of sherry: for every two bot-
tles bought, there is a 1.00 discount. From the example list of bar codes

[1234,4719,3814,1112,1113,1234]

the bill should be as illustrated in Figure 6.13. You will probably find it helpful
to define functions

makeDiscount :: BillType -> Price
formatDiscount :: Price -> String

which you can use in a redefined

formatBill :: BillType -> String
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6.49 Design functions which update the database of bar codes. You will need a
function to add a BarCode and a (Name,Price) pair to the Database, while
at the same time removing any other reference to the bar code already present
in the database.

6.50 Re-design your system so that bar codes which do not appear in the database
give no entry in the final bill. There are (at least) two ways of doing this.

• Keep the function makeBill as it is, and modify the formatting functions,
or

• modify the makeBill function to remove the ‘unknown item’ pairs.

6.51 [Harder] How appropriate would it be to test your supermarket billing system
using QuickCheck? Could you check parts of the system using QuickCheck?
Could you use it to test the whole system, or could you do both?

6.52 [Project] Design a script of functions to analyse collections of sales. Given a
list of TillType, produce a table showing the total sales of each item. You
might also analyse the bills to see which pairs of items are bought together;
this could assist with placing items in the supermarket.

6.8 Extended exercise: cards and card games

An British deck (or pack) of cards has four suits:
spades (ƒ), hearts (~), diamonds (}) and clubs
(|).

Each suit contains cards 2 to 10, and the
court cards, Jack, Queen, King and Ace. The
values of the cards increase in the same order,
so, for example, a 9 beats a 2, a King beats a 10,
and an Ace beats everything (in this discussion
we’re taking “Aces high”).

Exercises

6.53 Define a type Suit to represent suits and a type Value to represent the value
of cards. Using these or otherwise, define a type Deck to represent a deck of
cards. You may use type synonyms (type) or data type definitions (data), or
both.

6.54 Try to give a rationale for the choices you have made in answering the previous
question: if you can, give alternative definitions which use the other mecha-
nism, and compare your solutions.
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Many card games involve the idea of each player playing one card
in turn, called a trick. Traditionally for games like whist and bridge
the players are called after the points of the compass: North, South,
East and West. The play is in clockwise order: if East is the player to
start (to lead) then the players South, West and North follow in that
order.

Exercise 6.55

Define a type Player to represent the four players.

There is an important rule about how players should choose cards to play. A player
should follow suit: that is, if they can, they must play a card from the same suit as
the card that was led (the card played by the person starting). A player can only play
from a different suit if she has no cards left in the suit that was led.

♠ A,2
♡ K,7
♢ 3
♣

♠ 3
♡ J
♢ 7,2
♣ 9

♠ 6
♡ 
♢ 9,5
♣ K,8

♠ K,Q,J
♡ 2
♢ 
♣ A

Let’s have a look at an example. Suppose that each of the
players has five cards left, as shown to the right. Suppose
also that East is to lead and that she plays the Jack of Hearts.
South has no choice: he has to play the 2 of Hearts. West has
no Hearts, so she can choose any other card to play. Finally,
North has a choice of two Hearts: the King or the 7, let’s sup-
pose that he plays the King.

Who wins the trick? Let’s suppose first that there is no
trump suit. The highest Heart will win the trick, and that’s
the King. Why Hearts? Because a Heart was led by East.

If there is a trump suit, then the highest trump card wins
if any trumps have been played, but remember that you can
only play a trump if you’re unable to follow suit. If Spades were trumps in this case,
then West could win the trick by playing the 6 of Spades, no one else can play a
trump as they are able to follow suit.

Exercises

6.56 How would you represent a trick? Define a type Trick, using either a type or
a data definition. Remember that you need to know which player has played
which card, and also who led.

6.57 Define a function

winNT :: Trick -> Player

which decides the winner of a trick, assuming that there is no trump suit.

6.58 Define a function

winT :: Suit -> Trick -> Player

which decides the winner of a trick, assuming that there is a trump suit, which
is passed in as the first argument.
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6.59 Define a type Hand which represents the collection of cards held by a player at
one point during a game. In the earlier example, the hand held by North is ƒA,
2; ~K, 7; }3 (and no | cards).

6.60 Define a type Hands which describes the hands held by the four players at one
point in the game. This should represent the four hands shown in the diagram
above, for example.

6.61 Define a function

checkPlay :: Hands -> Trick -> Bool

which checks whether the play in a particular trick is both possible and legal.
It should be possible in the sense that the card played by each player (given in
the Trick) should be in their hand, as given in the Hands. It should be legal in
following the rule that players should follow suit if they can.

What does a game look like? As there are 52 cards, when dealt to four players this re-
sults in each player receiving 13 cards. There will therefore be thirteen tricks played.
In whist and bridge pairs of players – North/South and East/West – play together, so
in an game of 13 tricks one side or the other will win.

Exercises

6.62 Define a type Team to represent the two teams North/South and East/West.
Define a function

winnerNT :: [Trick] -> Team

which will give the winning team from the list of tricks, assuming that there
are no trumps. Also define the function

winnerT :: Suit -> [Trick] -> Team

where the trump suit is passed in as the first argument.

6.63 [Harder] Define a function

checkPlay :: [Trick] -> Bool

which checks whether the play in each trick is both possible and legal. Hint:
you will need to deduce the hand in each case from the cards played subse-
quently: once you have done this, you can use checkPlay as defined earlier.
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Summary

This chapter has shown how the combination of list comprehensions and the built-
in functions from the prelude give us a powerful repertoire of tools with which to
build definitions over particular list types. This was evident in the Picture exam-
ple as well as in the case studies, and these also gave an opportunity to see the way
in which a larger program was built as a collection of related functions. returning
a member of the same list type. The example in Section 6.8 particularly empha-
sised the process of choosing types to represent the various entities in the domain
in question.

Section 6.3 contains vital information about the libraries available in Haskell,
including how to download them, how to find out more about their contents and
how to search for functions performing particular tasks.

In the next chapter we’ll find out about how to define functions over lists for
ourselves.
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Chapter 7

Defining functions over lists

We have already seen how to define a variety of functions over lists using a combina-
tion of list comprehensions and the built-in list processing functions in the Haskell
prelude and libraries. This chapter looks ‘under the bonnet’ and explains how func-
tions over lists can be defined by means of recursion. This will allow us to define the
prelude functions we have already been using, as well as letting us look at a wider
class of applications, including sorting and a case study of text processing.

The chapter begins with a summary of the mechanism of pattern matching, and
continues with a justification and explanation of recursion echoing the discussion
in Chapter 4. We then explore a variety of examples both of functions defined by
primitive recursion and of more general recursive functions, and conclude with the
case study mentioned earlier.

7.1 Pattern matching revisited

We have seen that function definitions take the form of conditional equations like

mystery :: Integer -> Integer -> Integer
mystery x y

| x==0 = y
| otherwise = x

where a choice of two alternatives is made by guards; we can rewrite this into two
equations, thus

mystery 0 y = y (mystery.1)
mystery x y = x (mystery.2)

where we distinguish between the two cases by using a pattern – here the literal 0 –
instead of a variable. Just as for guards, the equations are applied sequentially, and
so (mystery.2) will only be used in cases that (mystery.1) does not apply.

Another aspect of this definition is that y is not used on the right-hand side of
(mystery.2). Because of this we do not need to give a name to the second argu-

161
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ment in this case, and so we can replace the variable y with the wildcard ‘_’ which
matches anything, thus

mystery 0 y = y
mystery x _ = x

We have therefore seen that pattern matching can be used for distinguishing be-
tween certain sorts of cases in function definitions. We have also seen pattern match-
ing used to name the components of tuples, as in

joinStrings :: (String,String) -> String
joinStrings (st1,st2) = st1 ++ "\t" ++ st2

where the variables st1 and st2 will be matched with the components of any argu-
ment.

We can see the case switching and extracting components in action together in
the definition of the function to give the area of a Shape, first seen in Section 5.3:

area :: Shape -> Float
area (Circle r) = pi*r*r
area (Rectangle h w) = h*w

The two equations apply to different kinds of shape, and within each equation the
appropriate information is extracted: from a circle its radius, r, and from a rectangle
its height, h, and width, w. We see exactly this combination of case switching and
component extraction in working with lists too, as we see in the next section.

Summarizing patterns

A pattern can be one of a number of things:

• A literal value such as 24, ’f’ or True; an argument matches this pattern if it
is equal to the value.

• A variable such as x or longVariableName; any argument value will match
this.

• A wildcard ‘_’; any argument value will match this.

• A tuple pattern (p1,p2,...,pn). To match this, an argument must be of
the form (v1,v2,...,vn), and each vk must match pk.

• A constructor applied to a number of patterns (C p1 p2,...,pn). To
match this the argument must be an application of the constructor C to n
arguments: each of the each vk must match the corresponding pattern pk.
We’ll look at this case again in the next section.

In a function definition we have a number of conditional equations, each of which
will have a left-hand side in which the function is applied to a number of patterns.
When the function is applied we try to match the arguments with the patterns in
sequence, and we use the first equation which applies; pattern matching in Haskell
is thus sequential, in a similar way to the conditions expressed by guards.
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7.2 Lists and list patterns

Every list is either empty, [], or is non-empty. In the latter case – take the example
[4,2,3] – then it can be written in the form x:xs, where x is the first item in the list
and xs is the remainder of the list; in our example, we have 4:[2,3]. We call 4 the
head of the list and [2,3] the tail.

What is more, every list can be built up from the empty list by repeatedly apply-
ing ‘:’, and indeed Haskell lists are represented in that way internally. Our example
list can be thought of as being built step-by-step from the right, like this

[] 3:[] = [3] 2:[3] = [2,3] 4:[2,3] = [4,2,3]

and we can write the list using ‘:’ repeatedly like this:

4:2:3:[]

Note that here we use the fact that ‘:’ is right associative, so that for any values of x,
y and zs,

x:y:zs = x:(y:zs)

It is also not hard to see that 4:2:3:[] is the only way that [4,2,3] can be built
using ‘:’. The operator ‘:’, of type

a -> [a] -> [a]

therefore has a special role to play for lists: it is a constructor for lists, since every list
can be built up in a unique way from [] and ‘:’. For historical reasons we sometimes
call this constructor cons. Not all functions that build lists are constructors: ++ can
be used to build lists, but this construction will not be unique, since, for example

[1] ++ [2,3] = [1,2,3] = [1,2] ++ [3]

Pattern-matching definitions

If we want to make a definition covering all cases of lists we can write

fun xs = ....

but more often than not we will want to distinguish between empty and non-empty
cases, as in the prelude functions

head :: [a] -> a
head (x:_) = x

tail :: [a] -> [a]
tail (_:xs) = xs

null :: [a] -> Bool
null [] = True
null (_:_) = False
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Patterns and Parentheses

A pattern involving a constructor like ‘:’ will always have to be parenthesized, since
function application binds more tightly than any other operation. This means that
writing

f x:xs

will be interpreted as

(f x):xs

and not as

f (x:xs)

as we would like.

where head takes the first item in a non-empty list, tail takes all but the head of a
non-empty list and null checks whether or not a list is empty.

In the definition of null the pattern (_:_) will match any non-empty list, but
it gives no names for the head and tail; when we need to name one of these, as in
tail, then a different pattern, (_:xs), is used.

It has become an informal convention in the Haskell community to write vari-
ables over lists in the form xs, ys (pronounced ‘exes’, ‘whyes’) and so on, with vari-
ables x, y, . . . ranging over their elements. We will – when using short variable names
– often use that convention.

We can now go back to the final case of pattern matching. A constructor pat-
tern over lists will either be [] or will have the form (p:ps) where p and ps are
themselves patterns.

• A list matches [] exactly when it is empty.

• A list will match the pattern (p:ps) if it is non-empty, and also if its head
matches the pattern p and its tail the pattern ps.

In the case of the pattern (x:xs), it is sufficient for the argument to be non-empty
to match the pattern; the head of the argument is matched with x and its tail with
xs. Let’s look at some examples in more detail.

• The list [2,3,4] will match (p:ps), because 2 is matched with p and [3,4]
with ps.

• The list [2,3,4] will match (q:(p:ps)), because 2 is matched with q, 3 is
matched with p and [4] with ps.

• The list [5] will not match (q:(p:ps)); this is because 5 can match with q,
but [] cannot be matched with (p:ps).



7.2. LISTS AND LIST PATTERNS 165

The case construction

So far we have seen how to perform a pattern match over the arguments of functions;
sometimes we might want to pattern match over other values. This can be done by
a case expression, which we introduce by means of an example.

Suppose we are asked to find the first digit in the string st, returning ’\0’ in
case no digit is found. We can use the function digits of Section 5.6 to give us the
list of all the digits in the string: digits st. If this is not empty, that is if it matches
(x:_), we want to return its first element, x; if it is empty, we return ’\0’.

We therefore want to pattern match over the value of (digits st) and for this
we use a case expression as follows:

firstDigit :: String -> Char

firstDigit st
= case (digits st) of

[] -> ’\0’
(x:_) -> x

A case expression has the effect of distinguishing between various alternatives –
here those of an empty and a non-empty list – and of extracting parts of a value, by
associating values with the variables in a pattern. In the case of matching e with
(x:_) we associate the head of e with x; as we have used a wild-card pattern in
(x:_), the tail of e is not associated with any variable.

So, case is a way of defining an expression using pattern matching, whereas up
to now we have used pattern matching in defining a function. Both mechanisms are
useful, and we will use them as appropriate. We can avoid using case by defining a
function instead, but that is not always the best way of defining what we want.

In general, a case expression has the form

case e of
p1 -> e1
p2 -> e2
...
pk -> ek

where e is an expression to be matched in turn against the patterns p1, p2, . . . , pk.
If pi is the first pattern which e matches, the result is ei where the variables in pi
are associated with the corresponding parts of e.

Exercises

7.1 Give a pattern-matching definition of a function which returns the first integer
in a list plus one, if there is one, and returns zero otherwise.

7.2 Give a pattern-matching definition of a function which adds together the first
two integers in a list, if a list contains at least two elements; returns the head
element if the list contains one, and returns zero otherwise.
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7.3 Give solutions to the previous two questions without using pattern matching,
using built-in functions instead.

7.4 Give a definition of the firstDigit function without using a case expression.

7.3 Primitive recursion over lists

Suppose we are to find the sum of a list of integers. Just as we described calculating
factorial in Section 4.4, we can think of laying out the values of sum in a table thus:

sum [] = 0
.... sum [5] = 5 ....
.... sum [7,5] = 12 ....
.... sum [2,7,5] = 14 ....
.... sum [3,2,7,5] = 17 ....
....

and just as in the case of factorial, we can describe the table by describing the first
line and how to go from one line to the next, as follows:

sum :: [Integer] -> Integer
sum [] = 0 (sum.1)
sum (x:xs) = x + sum xs (sum.2)

This gives a definition of sum by primitive recursion over lists. In such a definition
we give

• a starting point: the value of sum at [], and

• a way of going from the value of sum at a particular point – sum xs – to the
value of sum on the next line, namely sum (x:xs).

There is also a calculational explanation for why this form of recursion works; again,
this is just like the case put forward in Section 4.4. Consider the calculation of sum
[3,2,7,5]. Using the equation (sum.2) repeatedly we have

sum [3,2,7,5]
; 3 + sum [2,7,5]
; 3 + (2 + sum [7,5])
; 3 + (2 + (7 + sum [5]))
; 3 + (2 + (7 + (5 + sum [])))

and now we can use the equation (sum.1) and integer arithmetic to give

; 3 + (2 + (7 + (5 + 0)))
; 17

We can see that the recursion used to define sum will give an answer on any finite list
since each recursion step takes us closer to the ‘base case’ where sum is applied to
[].

In the next section we look at a collection of examples of definitions by primitive
recursion, before we do that we talk about a nice way of using QuickCheck to test
functions from the Prelude or any other library which we re-implement.
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Testing re-implemented functions using QuickCheck

Suppose we re-implement a function like sum which is already implemented in the
Prelude. We need to make sure that we hide the Prelude definition, but we can also
test our re-implementation against the original, using the qualified name of the hid-
den function. So, putting it all together we have

module Chapter7 where

import Prelude hiding (...,sum,...)
import qualified Prelude

import Test.QuickCheck

sum = ... our definition ...

prop_sum xs = sum xs == Prelude.sum xs

Of course, this is also something we can do when we have ourselves written two
different implementations of a particular function: test that they always give the
same value using a QuickCheck property.

Exercises

7.5 Define the function

product :: [Integer] -> Integer

which gives the product of a list of integers, and returns 1 for an empty list;
why is this particular value chosen as the result for the empty list?

7.6 Define the functions

and, or :: [Bool] -> Bool

which give the conjunction and disjunction of a list of Booleans. For instance,

and [False, True] = False
or [False, True] = True

On an empty list and gives True and or gives False; explain the reason for
these choices.

7.4 Finding primitive recursive definitions

We saw in the last section how primitive recursion over lists works, by means of two
explanations: tabulating a function and calculating the result of a function. In this
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section we present a series of examples of primitive recursive definitions over lists.
A template for a primitive recursive definition over lists is

fun [] = ....
fun (x:xs) = .... x .... xs .... fun xs ....

The crucial question to ask in trying to find a primitive recursive definition is:

What if we were given the value fun xs. How could we define fun (x:xs) from
it?

We explore how definitions are found through a series of examples.

Example

1. By analogy with sum, many other functions can be defined by ‘folding in’ an op-
erator. The prelude functions product, and and or are examples; here we look at
how to define the prelude function concat,

concat :: [[a]] -> [a] (concat.0)

with the effect that

concat [e1,e2,...,en] = e1++e2++...++en

We can begin our definition

concat [] = []
concat (x:xs) = ....

How do we find concat (x:xs) if we are given concat xs? Look at the example
where (x:xs) is the list [e1,e2,...,en]. The value of concat xs is going to be

e2++...++en

and the result we want is e1++e2++...++en, and so we simply have to join the list
x to the front of the joined lists concat xs, giving the definition

concat [] = [] (concat.1)
concat (x:xs) = x ++ concat xs (concat.2)

Looking at the definition here we can see that (x:xs) is a list of lists, since its ele-
ment is joined to another list in (concat.2); the type of x will be the type of the re-
sult. Putting these facts together we can conclude that the type of the input is [[a]]
and the type of the output is [a]; this agrees with the type given in (concat.0).

2. How is the function ++ which we used in the previous example itself defined?
Can we use primitive recursion? One strategy we can use is to look at examples, so,
taking 2 for x and [3,4] for xs we have

[2,3,4] ++ [9,8] = [2,3,4,9,8]
[3,4] ++ [9,8] = [3,4,9,8]
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so we get [2,3,4] ++ [9,8] by putting 2 on the front of [3,4] ++ [9,8]. In the
case that the first list is empty,

[] ++ [9,8] = [9,8]

These examples suggest a definition

(++) :: [a] -> [a] -> [a]

[] ++ ys = ys
(x:xs) ++ ys = x:(xs++ys)

Note that the type of ++ allows lists of arbitrary type to be joined, as long as the two
lists are of the same type.

3. A third example is to check whether an Int is an element of an Integer list,

elem :: Integer -> [Integer] -> Bool

Clearly, no value is an element of [], but under what circumstances is x an element
of (y:ys)? If you are not sure about how to answer this question, now is the point
to stop and look at an example or two.

Returning to the question, since (y:ys) is built by adding y to the front of ys, x
can be an element of y:ys either

• by being equal to y, or

• by being an element of ys.

It is this second case where we use the value elem x ys, and we make the following
primitive recursive definition of elem.

elem x [] = False (elem.1)
elem x (y:ys) = (x==y) || (elem x ys) (elem.2)

Repeated variables in patterns

Another candidate definition of elem is

elem x (x:ys) = True (elem.3)
elem x (y:ys) = elem x ys

in which the equality check is done by repeating the variable x on the left-hand side
of (elem.3). Unfortunately, repeated variables like this are not permitted in Haskell
patterns.

4. Suppose we wish to double every element of an integer list

doubleAll :: [Integer] -> [Integer]

The neatest solution is to use a list comprehension
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doubleAll xs = [ 2*x | x<-xs ]

but we could ask whether this can be done ‘by hand’, as it were, using primitive
recursion. Looking at some examples, we expect that

doubleAll [2,3] = [4,6]
doubleAll [4,2,3] = [8,4,6]

so that to double all the elements of (x:xs) we need to double all the elements of
xs, and to stick 2*x on the front. Formally, we have

doubleAll [] = [] (doubleAll.1)
doubleAll (x:xs) = 2*x : doubleAll xs (doubleAll.2)

5. Suppose that we want to select the even elements from an integer list.

selectEven :: [Integer] -> [Integer]

Using a list comprehension, we can say

selectEven xs = [ x | x<-xs , isEven x ]

but can we give a primitive recursive definition of this function? For an empty list,
there are no elements to select from,

selectEven [] = [] (selectEven.1)

but what happens in the case of a non-empty list? Consider the examples

selectEven [2,3,4] = [2,4] = 2 : selectEven [3,4]
selectEven [5,3,4] = [4] = selectEven [3,4]

It is thus a matter of taking selectEven xs, and adding x to (the front of) this only
when x is even. We therefore define

selectEven (x:xs) (selectEven.2)
| isEven x = x : selectEven xs
| otherwise = selectEven xs

6. As a final example, suppose that we want to sort a list of numbers into ascending
order. One way to sort the list

7 3 9 2

is to sort the tail [3,9,2] to give

3 92

It is then a matter of inserting the head, 7, in the right place in this list, to give the
result

3 92 7

This gives the definition of iSort – the ‘i’ is for insertion sort.
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iSort :: [Integer] -> [Integer]

iSort [] = [] (iSort.1)
iSort (x:xs) = ins x (iSort xs) (iSort.2)

This is a typical example of top-down definition, first discussed in Section 4.1. We
have defined iSort assuming we can define ins. The development of the program
has been in two separate parts, since we have a definition of the function iSort
using a simpler function ins, together with a definition of the function ins itself.
Solving each sub-problem is simpler than solving the original problem itself.

Now we have to define the function

ins :: Integer -> [Integer] -> [Integer]

To get some guidance about how ins should behave, we look at some examples.
Inserting 7 into [2,3,9] was given above, while inserting 1 into the same list gives

3 921

Looking at these two examples we see that

• in the case of 1, if the item to be inserted is no larger than the head of the list,
we cons it to the front of the list;

• In the case of 7, if the item is greater than the head, we insert it in the tail of
the list, and cons the head to the result, thus:

7 93 2 :

The function can now be defined, including the case that the list is empty.

ins x [] = [x] (ins.1)
ins x (y:ys)

| x <= y = x:(y:ys) (ins.2)
| otherwise = y : ins x ys (ins.3)

We now show the functions in action, in the calculation of iSort [3,9,2]:

iSort [3,9,2]
; ins 3 (iSort [9,2]) by (iSort.2)
; ins 3 (ins 9 (iSort [2])) by (iSort.2)
; ins 3 (ins 9 (ins 2 (iSort []))) by (iSort.2)
; ins 3 (ins 9 (ins 2 [])) by (iSort.1)
; ins 3 (ins 9 [2]) by (ins.1)
; ins 3 (2 : ins 9 []) by (ins.3)
; ins 3 [2,9] by (ins.1)
; 2 : ins 3 [9] by (ins.3)
; 2 : [3,9] by (ins.2)
; [2,3,9]



172 CHAPTER 7. DEFINING FUNCTIONS OVER LISTS

Developing this function has shown the advantage of looking at examples while try-
ing to define a function; the examples can give a guide about how the definition
might break into cases, or the pattern of the recursion. We also saw how using top-
down design can break a larger problem into smaller problems which are easier to
solve.

In the next section we look at definitions by more general forms of recursion.

Exercises

7.7 Test your implementations against the built-in definitions, using the method
outlined on page 167.

7.8 Using primitive recursion over lists, define a function

elemNum :: Integer -> [Integer] -> Integer

so that elemNum x xs returns the number of times that x occurs in the list xs.

Can you define elemNum without using primitive recursion, using list compre-
hensions and built-in functions instead?

7.9 Define a function

unique :: [Integer] -> [Integer]

so that unique xs returns the list of elements of xs which occur exactly once.
For example, unique [4,2,1,3,2,3] is [4,1]. You might like to think of two
solutions to this problem: one using list comprehensions and the other not.

7.10 Can you write a property which links elemNum and unique from the previous
two questions? Check to see whether this property does hold using QuickCheck.

7.11 Give primitive recursive definitions of the prelude functionsreverse andunzip.

7.12 Can you use the iSort function to find the minimum and maximum elements
of a list of numbers? How would you find these elements without using iSort?

7.13 Design test data for the ins function. Your data should address different pos-
sible points of insertion, and also look at any exceptional cases.

7.14 Define a function

isSorted :: [Integer] -> Bool

which is true when its argument is sorted in ascending order. How could you
use this to write QuickCheck properties to check your iSort and ins func-
tions?
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7.15 [Harder] Is it enough to test that the result of iSort is sorted? What other
property should a sorting function have? Can you write a QuickCheck prop-
erty to check this?

7.16 By modifying the definition of the ins function we can change the behaviour
of the sort, iSort. Redefine ins in two different ways so that

• the list is sorted in descending order;

• duplicates are removed from the list. For example,

iSort [2,1,4,1,2] = [1,2,4]

under this definition.

7.17 Would you need to redefine your function isSorted to deal with the two dif-
ferent variations of sorting discussed in the last question? If so, how would you
modify it; if not, explain why not.

7.18 Design test data for the duplicate-removing version of iSort, explaining your
choices.

7.19 By modifying the definition of the ins and iSort functions, define a function
to sort lists of pairs of numbers. The ordering should be lexicographic – the
dictionary ordering. This ordering first looks at the first halves of the pairs;
only if these values are equal are the second halves compared. For instance,
(2,73) is smaller than (3,0), and this is smaller than (3,2).

7.5 General recursions over lists

Just as we argued in Section 4.7, a recursive definition of a function need not always
use the value of the function on the tail; any recursive call to a value on a simpler list
will be legitimate, and so a number of different patterns of recursion are available for
finding function definitions over lists. In trying to use recursion over lists to define a
function we need to pose the question:

In definingf (x:xs)which values off yswould help me to work out the answer?

Example

1. It is possible to use recursion over two arguments simultaneously, an example
being the definition of the prelude function zip. Recall that here we turn two lists
into a list of pairs,

zip :: [a] -> [b] -> [(a,b)]

with the examples

zip [1,5] [’c’,’d’] = [(1,’c’), (5,’d’)]
zip [1,5] [’c’,’d’,’e’] = [(1,’c’), (5,’d’)]
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If each of the lists is non-empty, we form a pair from their heads, and then zip their
tails, giving

zip (x:xs) (y:ys) = (x,y) : zip xs ys (zip.1)

but in all other cases – that is when at least one of the lists is empty – the result is
empty:

zip _ _ = [] (zip.2)

Note that we rely on the sequential nature of pattern matching here; we can give the
patterns for (zip.2) explicitly if we wish, thus:

zip (x:xs) (y:ys) = (x,y) : zip xs ys
zip (x:xs) [] = []
zip [] zs = []

and in the second definition we see the three separate cases given in three separate
equations. Using the original definition, an example calculation gives

zip [1,5] [’c’,’d’,’e’]
; (1,’c’) : zip [5] [’d’,’e’] by (zip.1)
; (1,’c’) : (5,’d’) : zip [] [’e’] by (zip.1)
; (1,’c’) : (5,’d’) : [] by (zip.2)
; (1,’c’) : [ (5,’d’) ] by defn of :
; [ (1,’c’) , (5,’d’) ] by defn of :

Note that we have used the fact that ‘:’ is right associative in writing this calculation.

2. The function take is used to take a given number of values from a list. For in-
stance,

take 5 "Hot Rats" = "Hot R"
take 15 "Hot Rats" = "Hot Rats"

In this example we do recursion over an Int and a list

take :: Int -> [a] -> [a]

There are some special cases, when the Int is zero, or the list is empty

take 0 _ = [] (take.1)
take _ [] = [] (take.2)

What about the general case, when the list is non-empty and the Int greater than
zero? We take n-1 elements from the tail of the list, and place the head on the front,
thus:

take n (x:xs)
| n>0 = x : take (n-1) xs (take.3)

and in the other cases we give an error

take _ _ = error "PreludeList.take: negative argument"
(take.4)
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3. As a final example, we look at another method for sorting lists (of integers). The
quicksort algorithm works by generating two recursive calls to sort. Suppose we are
to sort the list

[4,2,7,1,4,5,6]

we can take off the head, 4, and then split the result [2,7,1,4,5,6] into two parts:

[2,1,4] [7,5,6]

The first contains the elements no larger than 4, the second those exceeding 4. We
sort these two, giving

[1,2,4] [5,6,7]

and then we get an ordered version of the original list thus

[1,2,4] ++ [4] ++ [5,6,7]

We can write this now

qSort :: [Integer] -> [Integer]

qSort [] = [] (qSort.1)
qSort (x:xs)

= qSort [ y | y<-xs , y<=x] ++ [x] ++ qSort [ y | y<-xs , y>x]
(qSort.2)

It is striking to see how close this program is to our informal description of the al-
gorithm, and this expressiveness is one of the important advantages of a functional
approach.

We can see that this recursion will give an answer for every finite list, since in the
recursive calls we apply qSort to two sublists of xs, which are necessarily smaller
than (x:xs).

In Chapter 20 we talk about the efficiency of various algorithms, and show that in
general quicksort will be more efficient than insertion sort. In the following section
we look at a larger example of definitions which use general forms of recursion.

Exercises

7.20 Using the definition of take as a guide, define the prelude functions drop and
splitAt. Write QuickCheck tests for these re-defined functions.

7.21 What is the value of take (-3) [] according to the definition of take given
earlier? How would you modify the definition so that there is an error reported
whenever the Int argument is negative?

7.22 The zip function takes its two arguments separately: we can define this vari-
ant to take the arguments as a pair:
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zip’ :: ([a],[b]) -> [(a,b)]
zip’ (xs,ys) = zip xs ys

There’s a built-in function, which has the reverse effect, taking a list of pairs
into a pair of lists:

unzip :: [(a,b)] -> ([a],[b])

Write a property for zip’ and unzip that expresses that they are the ‘inverse’
of each other: does it matter the order in which they are applied? Try both
ways, and see what happens when you apply quickCheck in each case.

7.23 How would you define a function zip3 which zips together three lists? Try to
write a recursive definition and also one which uses zip instead; what are the
advantages and disadvantages of the two different definitions?

7.24 How would you modify qSort to sort a list into descending order? How would
you ensure that qSort removed duplicate elements?

7.25 One list is a sublist of another if the elements of the first occur in the second,
in the same order. For instance, "ship" is a sublist of "Fish & Chips", but
not of "hippies".

A list is a subsequence of another if it occurs as a sequence of elements next
to each other. For example, "Chip" is a subsequence of "Fish & Chips", but
not of "Chin up".

Define functions which decide whether one string is a sublist or a subsequence
of another string.

7.26 Write QuickCheck properties which test your implementations of the tests for
‘sublist’ and ‘subsequence’.

7.6 Example: text processing

In word processing systems it is customary for lines to be filled and broken automat-
ically, to enhance the appearance of the text. This book is no exception. Input of the
form

The heat bloomed in December
as the carnival season

kicked into gear.
Nearly helpless with sun and glare, I avoided Rio’s brilliant
sidewalks
and glittering beaches,

panting in dark corners
and waiting out the inverted southern summer.

would be transformed by filling to
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The heat bloomed in December as the
carnival season kicked into gear.
Nearly helpless with sun and glare,
I avoided Rio’s brilliant sidewalks
and glittering beaches, panting in
dark corners and waiting out the
inverted southern summer.

To align the right-hand margin, the text is justified by adding extra inter-word spaces
on all lines but the last:

The heat bloomed in December as the
carnival season kicked into gear.
Nearly helpless with sun and glare,
I avoided Rio’s brilliant sidewalks
and glittering beaches, panting in
dark corners and waiting out the
inverted southern summer.

An input file in Haskell can be treated as a string of characters, and so string-manipulating
operations play an important role here. Also, since strings are lists, this example will
exercise general list functions.

Overall strategy

In this section we give an example of bottom-up program development, thinking
first about some of the components we will need to solve the problem, rather than
decomposing the solution in a top-down way.

The first step in processing text will be to split an input string into words, dis-
carding any white space. The words are then rearranged into lines of the required
length. These lines can then have spaces added so as to justify the text. We therefore
start by looking at how text is split into words.

Extracting words

We first ask, given a string of characters, how should we define a function to take the
first word from the front of a string?

A word is any sequence which does not contain the whitespace characters space,
tab and newline.

whitespace = [’\n’,’\t’,’ ’]

In defining getWord we will use the standard function elem, which tests whether an
object is an element of a list. For instance, elem ’a’ whitespace is False.

To guide the definition, consider two examples.

• getWord " boo" should be "" as the first character is whitespace;
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• getWord "cat dog" is "cat". We get this by putting ’c’on the front of "at",
which is getWord "at dog".

The definition is therefore given by:

getWord :: String -> String
getWord [] = [] (getWord.1)
getWord (x:xs)

| elem x whitespace = [] (getWord.2)
| otherwise = x : getWord xs (getWord.3)

Consider an example

getWord "cat dog"
; ’c’ : getWord "at dog" by (getWord.3)
; ’c’ : ’a’ : getWord "t dog" by (getWord.3)
; ’c’ : ’a’ : ’t’ : getWord " dog" by (getWord.3)
; ’c’ : ’a’ : ’t’ : [] by (getWord.2)
; "cat"

In a similar way, the first word of a string can be dropped.

dropWord :: String -> String
dropWord [] = []
dropWord (x:xs)

| elem x whitespace = (x:xs)
| otherwise = dropWord xs

It is easy to check that dropWord "cat dog" = " dog". We aim to use the func-
tions getWord and dropWord to split a string into its constituent words. Note that
before we take a word from the string " dog", we should remove the whitespace
character(s) from the front. The function dropSpace will do this.

dropSpace :: String -> String
dropSpace [] = []
dropSpace (x:xs)

| elem x whitespace = dropSpace xs
| otherwise = (x:xs)

How is a string st to be split into words? Assuming st has no whitespace at the start,

• the first word in the output will be given by applying getWord to st;

• the remainder will be given by splitting what remains after removing the first
word and the space following it: dropSpace (dropWord st).

The top-level function splitWords calls split after removing any whitespace at
the start of the string.

type Word = String
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splitWords :: String -> [Word]
splitWords st = split (dropSpace st)

split :: String -> [Word]
split [] = []
split st

= (getWord st) : split (dropSpace (dropWord st))

Consider a short example.

splitWords " dog cat"
; split "dog cat"
; (getWord "dog cat")

: split (dropSpace (dropWord "dog cat"))
; "dog" : split (dropSpace " cat")
; "dog" : split "cat"
; "dog" : (getWord "cat")

: split (dropSpace (dropWord "cat"))
; "dog" : "cat" : split (dropSpace [])
; "dog" : "cat" : split []
; "dog" : "cat" : []
; [ "dog" , "cat" ]

Splitting into lines

Now we have to consider how to break a list of words into lines. As before, we look
to see how we can take the first line from a list of words.

type Line = [Word]
getLine :: Int -> [Word] -> Line

getLine takes two parameters. The first is the length of the line to be formed, and
the second the list from which the words are taken. The definition uses length to
give the length of a list. The definition will have three cases

• In the case that no words are available, the line formed is empty.

• If the first word available is w, then this goes on the line if there is room for it:
its length, length w, has to be no greater than the length of the line, len.
The remainder of the line is built from the words that remain by taking a line
of length len-(length w+1).

• If the first word does not fit, the line has to be empty.

getLine len [] = []
getLine len (w:ws)

| length w <= len = w : restOfLine
| otherwise = []

where
newlen = len - (length w + 1)
restOfLine = getLine newlen ws
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Why is the rest of the line of length len-(length w+1)? Space must be allocated
for the word w and the inter-word space needed to separate it from the word which
follows. How does the function work in an example?

getLine 20 ["Mary","Poppins","looks","like",...
; "Mary" : getLine 15 ["Poppins","looks","like",...
; "Mary" : "Poppins" : getLine 7 ["looks","like",...
; "Mary" : "Poppins" : "looks" : getLine 1 ["like",...
; "Mary" : "Poppins" : "looks" : []
; [ "Mary" , "Poppins" , "looks" ]

A companion function,

dropLine :: Int -> [Word] -> Line

removes a line from the front of a list of words, just as dropWord is a companion
to getWord. The function to split a list of words into lines of length at most (the
constant value) lineLen can now be defined:

splitLines :: [Word] -> [Line]
splitLines [] = []
splitLines ws

= getLine lineLen ws
: splitLines (dropLine lineLen ws)

This concludes the definition of the function splitLines, which gives filled lines
from a list of words.

Conclusion

To fill a text string into lines, we write

fill :: String -> [Line]
fill = splitLines . splitWords

To make the result into a single string we need to write a function

joinLines :: [Line] -> String

This is left as an exercise, as is justification of lines.

Exercises

7.27 Define the function dropLine specified in the text.

7.28 Give a definition of the function

joinLine :: Line -> String

which turns a line into printable form. For example,
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joinLine [ "dog" , "cat" ] = "dog cat"

7.29 Using the function joinLine, or otherwise, define the function

joinLines :: [Line] -> String

which joins together the lines, separated by newlines.

7.30 In this case study we have defined separate ‘take’ and ‘drop’ functions for words
and lines. Redesign the program so that it uses ‘split’ functions – like the pre-
lude function splitAt – instead.

7.31 [Harder] Modify the function joinLine so that it justifies the line to length
lineLen by adding the appropriate number of spaces between the words.

7.32 Design a function

wc :: String -> (Int,Int,Int)

which when given a text string returns the number of characters, words and
lines in the string. The end of a line in the string is signalled by the newline
character, ’\n’. Define a similar function

wcFormat :: String -> (Int,Int,Int)

which returns the same statistics for the text after it has been filled.

7.33 Define a function

isPalin :: String -> Bool

which tests whether a string is a palindrome – that is whether it is the same
read both backwards and forwards. An example is the string

Madam I’m Adam

Note that punctuation and white space are ignored in the test, and that no
distinction is made between capital and small letters. You might first like to
develop a test which simply tests whether the string is exactly the same back-
wards and forwards, and only afterwards take account of punctuation and
capital letters.

7.34 [Harder] Design a function

subst :: String -> String -> String -> String

so that
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subst oldSub newSub st

is the result of replacing the first occurrence in st of the substring oldSub by
the substring newSub. For instance,

subst "much " "tall " "How much is that?"
= "How tall is that?"

If the substring oldSub does not occur in st, the result should be st.

7.35 [Harder] Define QuickCheck properties which test the behaviour of yoursubst
function, defined in the previous question.

Summary

This chapter has shown how functions can be defined by recursion over lists, and
completes our account of the different ways that list-processing functions can be
defined. In the chapter we have looked at examples of the design principles which
we first discussed in Chapter 4, including ‘divide and conquer’ and general pieces of
advice about designing recursive programs. The text processing case study provides
a broadly bottom-up approach to defining a library of functions.



Chapter 8

Playing the game: I/O in Haskell

This chapter completes the design and implementation of the Rock - Paper - Scissors
game. We start by looking at how strategies can be represented as functions. One of
the real strengths of Haskell is to be able to treat functions just like any other data,
and strategies are the first time we do that in practice.

Next we explore how the simplest kinds of programs, reading and writing to a
terminal, can be developed in Haskell. The model we describe forms the foundation
for more complex interactions like those in a mail system or an operating system.
We start by discussing how in the past I/O has been a problem for the users of a
functional language. The solution in Haskell is to introduce the types IO a, which
we can think of as programs that do some input/output before returning a value of
type a. These programs include simple operations to read and write information, as
well complex programs which are built from a number of IO programs sequenced
into one by means of the do construct.

We conclude the chapter by explaining how to play the Rock - Paper - Scissors
game: we show how to play one strategy against another, as well as how you can play
interactively against a strategy.

8.1 Rock - Paper - Scissors: strategies

Now that we have seen how to define functions
over lists from scratch, as well as making use of
functions in the prelude and other libraries, it
is time to go back to the discussions of games
that we started earlier in the book. In partic-
ular, we go back to the Rock - Paper - Scissors
game, first introduced in Section 4.3.

Scoring the moves

Recall that we defined the Move type like this

183
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data Move = Rock | Paper | Scissors
deriving (Show,Eq)

It’s worth looking back at that section for definitions of the functions beat and lose
as well as the type Result and the function outcome defined in the exercises.

In that section we were concerned with a single move, but here we want to look
at a whole tournament, when two players play a sequence of moves against each
other. We can model a tournament by this type definition

type Tournament = ([Move],[Move])

where the lists model the moves made by the two players: let’s call them A and B. An
example tournament is given by

([Rock,Rock,Paper],[Scissors,Paper,Rock])

Exercises

8.1 Define a function

outcome :: Move -> Move -> Integer

which gives the outcome as 1, 0, or -1 according to whether the first Move
beats, draws with or loses against the second Move. For example, we expect
that

outcome Rock Scissors = 1

8.2 Using the function outcome that you defined in the previous exercise, define
a function

tournamentOutcome :: Tournament -> Integer

which gives the outcome of a tournament, giving positive scores to player A,
the first player. For example, we should expect

tournamentOutcome ([Rock,Rock,Paper],[Scissors,Paper,Rock]) = 1

because the scores for the three rounds are 1, -1 and 1, summing to 1.

Strategies

Suppose we want to build a program to play Rock - Paper - Scissors against an oppo-
nent. We need to find a way to describe how the machine should play, let’s call this
a strategy.

We can describe a strategy in words: something like "echo the last move" but
that’s not a program. Instead we can describe it as a function: the next move that I
will play will depend (potentially) on all the moves that my opponent has played, so
we can say
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type Strategy = [Move] -> Move

Remember that Strategy is just shorthand for [Move] -> Move, so when we talk
about strategies we are talking about functions that take a list of moves and return a
single ‘next’ move. Let’s take a look at some particular strategies now.

Constant strategy. The simplest way of playing is always to play the same thing! So,
as strategies we have

rock, paper, scissors :: Strategy

rock _ = Rock
paper _ = Paper
scissors _ = Scissors

Each of these functions ignores its argument and returns the same move in
every situation: it should be pretty easy to beat this once an opponent realises
what’s going on.

Cycle through the possibilities. Another option is to cycle through the three possi-
bilities in turn. One way of programming that strategy is this:

cycle :: Strategy

cycle moves
= case (length moves) ‘rem‘ 3 of

0 -> Rock
1 -> Paper
2 -> Scissors

How does this work? We look at the number of moves made so far, which is
given by length moves; the remainder on dividing this by 3 cycles through
0, 1, 2 and we use a case expression to map these results to the three options
Rock, Paper, Scissors.

A random choice. We can make a random choice of play.

randomStrategy :: Strategy

This isn’t really a proper function, in fact, because it doesn’t always return the
same result, we should program this using monads, as described in Chap-
ter 18. However, a little bit of ‘under the hood’ work allows us to fake this
in Haskell; the details are in the code for this chapter. We’ll discuss the full
implementation in Section 18.2.

Echo the last move. Given the list of moves made by our opponent, it’s easy to play
by echoing their last move. However, we have to think about one thing first:
how are the moves listed in the list of moves: it could be ‘latest first’, or ‘oldest
first’. It’s actually convenient to choose latest first, so that the list of moves
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[Rock,Rock,Paper]

says that Paperwas played first, followed by two Rockmoves. With this settled
we can define the ‘echo’ strategy:

echo :: Strategy

echo (latest:rest) = latest
echo [] = Rock

We’ve had to say what is the response when there are no previous moves, and
here we’ve made the arbitrary choice of Rock.

More strategies. More strategies are described in the exercises, giving you a chance
to code them as functions of type Strategy for yourself.

Using functions as data

This is an important example, and shows something that’s really distinctive about
functional programming, because it uses functions to model data in a completely
natural way. One way to see this is to try to model strategies without using functions:
give it a try with the examples here and also those in the exercises, and you’ll see that
it’s not possible to do it in as general a way as functions do!

We’ll talk more about functions as data and how they can be the input to and output
from other functions, called higher-order functions in Chapters 11 and 12.

Exercises

8.3 Define a strategy which plays the move which would have won against the
opponent’s last move. Define a strategy which plays the move which would
have lost against the opponent’s last move. Which of these do you think will
be a better strategy in practice? Explain your answer.

8.4 Define a strategy which plays a random choice except when the opponent’s
last two moves have been the same one. In this case we guess that her next
move will not be the same: how does that help? Well, if we know that she’s
only got two choices, we can play not to lose.

Take the concrete example of Rock being played twice by our opponent. We
guess that her next move will be Paper or Scissors: what should we play?
The answer is Scissors, because then we’ll win if she plays Paper or draw if
she also plays Scissors!

8.5 Define a strategy which looks at the frequencies that the opponent has played
the three choices. If you assume they are making random plays, then why not
predict they are about to play the least frequent, and use the trick from the
previous exercise to make a choice.
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8.6 [Harder] Go to the World RPS website – see the box at the end of this section –
to find out more strategies, and try to implement them.

8.7 [Harder] Define a function

alternate :: Strategy -> Strategy -> Strategy

so that the strategy given by

alternate str1 str2

is to combine the two strategies str1 and str2, using them alternately.

8.8 [Hard] Can you write a function which will analyse an arbitrary strategy to
work out what it does? You will need to think about how to represent this
result: is it a string describing what the strategy does, or something a bit less
informal?

8.9 [Hard] Can you use the facilities of QuickCheck – described in more detail in
Section 19.6 – to help to analyse what an arbitrary strategy does?

More information about Rock - Paper - Scissors

In fact the choice of the first move in defining echo is not completely arbitrary: men
are most likely to choose Rock first. This and lots more information about Rock -
Paper - Scissors can be found at the World RPS Society website:

http://www.worldrps.com/

8.2 Why is I/O an issue?

A functional program consists of a number of definitions, such as

val :: Integer
val = 42

function :: Integer -> Integer
function n = val + n

The effect of these definitions is to associate a fixed value with each name; in the
case of val the value is an integer and in the case of function it is a function from
integers to integers. How is an input or an output action to fit into this model?

One approach, taken in Standard ML (Milner et al. 1997) and F# (Smith 2009),
for instance, is to include operations like

inputInt :: Integer
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whose effect is to read an integer from the input; the value read in becomes the
value given to inputInt. Each time inputInt is evaluated it will be given a new
value, and so it is not a fixed integer value as it ought to be according to our original
model.

Allowing this operation into our language may not seem to cause too big a prob-
lem, but examining the example of

inputDiff = inputInt - inputInt (inputDiff)

shows how it has two important consequences for our model of functional program-
ming.

• Suppose that the first item input is 4, and that the next is 3. Depending upon
the order in which the arguments to ‘-’ are evaluated, the value of inputDiff
will be either 1 or -1.

• More seriously, (inputDiff.1) breaks the model of reasoning which we have
used. Up to now we would have thought that subtracting a value from itself
would have given a result of 0, but that is not the case here.

The reason for this is precisely that the meaning of an expression is no longer
determined by looking only at the meanings of its parts, since we cannot give
a meaning to inputInt without knowing where it occurs in a program; as we
saw in the previous point, the first and second occurrences of inputInt in
inputDiff will generally have different values.

As the second point shows, if we take this approach then it will be substantially more
difficult to understand the meaning of any program. This is because any definition
in a program may be affected by the presence of the I/O operations. An example is
the function

funny :: Integer -> Integer
funny n = inputInt + n

from whose definition we can see the dependence on I/O, but potentially any func-
tion may be affected in a similar way.

Because of this, I/O proved to be a thorny issue for functional programmers for
some considerable time, and there have been a number of attempts to find the right
model for I/O – indeed, earlier versions of Haskell included two of these. An illumi-
nating history and overview of functional I/O is given in Gordon (1994).

In this chapter we introduce the basics of I/O using the IO types; Chapter 18
describes the monadic approach to programming which underlies I/O and other
forms of interaction with the ‘world outside’.

8.3 The basics of input/output

In thinking about input/output or I/O it makes more sense to think of actions hap-
pening in sequence. For instance, first some input might be read, and then on the
basis of that some further input might be read, or output might be produced.
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Haskell provides the types IO a of I/O actions of type a or I/O programs of type
a. An object belonging to IO a is a program which will do some I/O and then return
a value of type a. Built into Haskell are some primitive I/O programs, as well as a
mechanism to sequence these I/O programs.

One way of looking at the IO a types is that they provide a small imperative pro-
gramming language for writing I/O programs on top of Haskell, without compro-
mising the functional model of Haskell itself.1

We start by looking at the basic IO capabilities built into the standard prelude,
and then we look at a whole lot of examples to see how to put these components to-
gether using the do notation. In the next section we look at how to write ‘functional
loops’ to form more complex I/O programs.

Reading input

The operation which reads a line of text from the standard input does some I/O and
returns a Stringwhich is the line just read. According to the explanation above, this
should be an object of type IO String, and indeed, the built-in function

getLine :: IO String

reads a line from the standard input. In a similar way,

getChar :: IO Char

will read a single character from the input.

The one-element type

Haskell contains the type (), which contains one element only. This element is also
written (). A value of this type can convey no useful information and so the type
is not often used. However, it is useful in performing IO, as there are cases of IO
programs whose only significance is their I/O actions and not the results they return.
Programs of that sort will have type

IO ()

and they will return the value () as their result.

The Main module and the main program

If we compile a Haskell project using GHC, the Glasgow Haskell Compiler, then this
produces executable program which runs the function

main :: IO t

for some type t: often this is (), so that

1The language is unusual in that it is single assignment, like Erlang (Armstrong 2007; Cesarini and
Thompson 2009); we’ll explain this when we discuss the examples.
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main :: IO ()

By default, this main program is expected to be in the Main module, but it can be
given in any module from the project.

Writing Strings

The operation of writing the string "Hello, World!" will be an object which per-
forms some I/O, but which has nothing of significance to pass back to the program.
It is therefore of type IO ().

The general operation to print a text string will be a function which takes the
string to be written, and gives back the I/O object which writes that string:

putStr :: String -> IO ()

and using this we can write our ‘hello, world’ program.

helloWorld :: IO ()
helloWorld = putStr "Hello, World!"

Using putStr we can define a function to write a line of output.

putStrLn :: String -> IO ()
putStrLn = putStr . (++ "\n")

The effect of this is to add a newline to the end of its input before passing it to
putStr.

Writing values in general

The Haskell prelude provides the class Show with the function

show :: Show a => a -> String

which can be used to write values of many types. For example, we can define a
general print function from the standard prelude thus

print :: Show a => a -> IO ()
print = putStrLn . show

Returning a value: return

Suppose we want to write an I/O action which does no I/O but does return a value –
we will see examples of this in due course. This is achieved by the built-in function

return :: a -> IO a

The effect of return x is to do no I/O, but simply to return the result x.
If we’re writing a program of type IO () then return () has the effect of a

‘skip’ in a traditional language: it’s a command that does nothing. We use this in
cases where we only want to perform an action when a condition holds, like this:

if condition
then action
else return ()
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Running an I/O program

We have written a simple I/O program, namely helloWorld; how is it run? In GHCi
we can evaluate it at the prompt:

Main> helloWorld
Hello, World!
Main> ...

Strictly speaking, the main definition of a Haskell program should be of type IO a
for some a. In GHCi, if we ask to evaluate an expression e of type b then it is wrapped
up as an object of type IO () by applying the print function.

This completes our introduction to the basic I/O functions in the standard prelude
as well as the method by which IO programs are run.

Next we look at how programs are sequenced, and also how to use the values
read in by means of input programs like getLine; this is the topic of the next section.

8.4 The do notation

The do notation gives us a way of building IO programs from the components that
we discussed in the previous section. The do notation supports two things:

• it is used to sequence I/O programs, and

• it is used to name2 the values returned by IO actions; this means that the later
actions can depend on values captured earlier in the program.

Together these ideas make a do expression appear like a simple imperative program,
containing a sequence of commands and assignments; although this analogy is not
complete – we examine how it breaks down in the next section – it shows that the
model of I/O given by the IO types is a familiar one, albeit in a different guise.

Sequencing I/O actions

One purpose of the do construct is to sequence I/O actions and we show how it is
used through a series of examples.

Example

1. We begin by looking at the definition of putStrLn from the standard prelude.
The effect of putStrLn str is to do two things: first the string str is output, then a
newline. This is accomplished by

putStrLn :: String -> IO ()

2or ‘capture’ or ‘bind’
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putStrLn str = do putStr str
putStr "\n"

Here we see the effect of do is to sequence a number of IO actions into a single ac-
tion. The syntax of do is governed by the offside rule, and do can take any number
of arguments. We see an example of more arguments next.

2. We can write an I/O program to print something four times. The first version of
this is

put4times :: String -> IO ()

put4times str
= do putStrLn str

putStrLn str
putStrLn str
putStrLn str

3. So far, we have only seen examples of output, but we can also make inputs a
part of a sequence of actions. For instance, we can read two lines of input and then
output the message "Two lines read." thus:

read2lines :: IO ()

read2lines
= do getLine

getLine
putStrLn "Two lines read."

and by analogy with Example 3 it is not difficult to see that we could write an I/O
program which reads an arbitrary number of lines.

Capturing the values read

As was apparent in Section 8.2, it is necessary to be careful in the way that the results
of input actions are handled. The operation inputInt :: Integer was shown to
be too powerful to fit into the functional model, but some mechanism to handle in-
put values is required. This is the second purpose of the do notation; it is only possi-
ble to use the result of an input within a do expression, and this limitation prevents
the I/O actions from ‘contaminating’ the whole program.

The sequence of examples continues by examining this aspect of the do nota-
tion.

Example
4. The last example read two lines, but did nothing with the results of the getLine
actions. How can we use these lines in the remainder of the I/O program? As part of
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a do program we can name the results of IO a actions. A program to read a line and
then write that line is given by

getNput :: IO ()

getNput = do line <- getLine
putStrLn line

where the ‘line <-’ names the result of the getLine.
If you are familiar with imperative programming you can think of this as like an

assignment to a variable, as in

line := getLine

but you should be aware that there are important differences between the names
in a Haskell I/O program and the variables in an imperative program. The essential
difference is that each ‘var <-’ creates a new variable var, and so the language per-
mits ‘single assignment’ rather than the ‘updatable assignment’ familiar from the
vast majority of modern imperative languages; we look at an example of the differ-
ent in the exercises for Section 8.5.

5. We are not forced simply to output the lines we have read, unchanged, so that
we might define

reverse2lines :: IO ()

reverse2lines
= do line1 <- getLine

line2 <- getLine
putStrLn (reverse line2)
putStrLn (reverse line1)

In this example, we read two lines, and then write them in the opposite order, re-
versed.

Local definitions in a do expression

The notation var <- getLine names the output of the getLine, and so acts like a
definition. It is also possible to make local definitions within a do expression so that
we can revisit the last example, as follows.

Example

6. Example 5 can be redefined to contain local definitions of the reversed lines

reverse2lines :: IO ()

reverse2lines
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= do line1 <- getLine
line2 <- getLine
let rev1 = reverse line1
let rev2 = reverse line2
putStrLn rev2
putStrLn rev1

Reading values in general

Haskell contains the class Read with the function

read :: Read a => String -> a

which can be used to parse a string representing a value of a particular type into that
value.

Example

7. As an example, suppose that we want to write an I/O program to read in an in-
teger value. To read an integer from a line of input we start by saying

do line <- getLine

but then we need to sequence this with an I/O action to return the line interpreted
as an Integer. We can convert the line to an integer by the expression

read line :: Integer

What we need is the IO Integer action which returns this value – this is the purpose
of return introduced in the previous section. Our program to read an Integer is
therefore

getInt :: IO Integer

getInt = do line <- getLine
return (read line :: Integer)

Summary

This section has shown that a do expression provides a context in which to do se-
quential programming. It is possible to program complicated I/O interactions, by
sequencing simpler I/O programs. Moreover, the ‘<-’ allows us to name the value
returned by an action and then to use this named value in the remainder of the I/O
program. It is also possible to make these programs more readable by judicious use
of let definitions to name intermediate calculations.

In the next section we look at how to write repetitive I/O programs, reading all
the lines in the input, for example. We shall see that this can be done by defining a
looping construct recursively. We also discuss the way in which ‘<-’ behaves differ-
ently from the usual assignment operator.
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Exercises

8.10 Write an I/O program which will read a line of input and test whether the input
is a palindrome. The program should ‘prompt’ for its input and also output an
appropriate message after testing.

8.11 Write an I/O program which will read two integers, each on a separate line,
and return their sum. The program should prompt for input and explain its
output.

8.12 Define a function

putNtimes :: Integer -> String -> IO ()

so that the effect of putNtimes n str is to output str, a string, n times, one
per line.

8.13 Write an I/O program which will first read a positive integer, n say, and then
read n integers and write their sum. The program should prompt appropri-
ately for its inputs and explain its output.

8.5 Loops and recursion

In this section we examine how to build I/O programs with a repetitive nature; again
we do this by working through a series of examples, concluding with a general pat-
tern for recursive IO programs. In particular we program a number of different vari-
ations of a function to copy lines from input to output.

Example

8. The simplest copying program loops forever:

copy :: IO ()

copy =
do line <- getLine

putStrLn line
copy

The effect of copy is to read a line, and name the result line; in the next step this is
output, and the final ‘command’ is to call copy again, so looping forever. This can
be run within GHCi simply by typing copy; it can be interrupted by typing Ctrl-C.

Programs like this where the only recursive call to the function is the last state-
ment in the do block are called tail recursive. Typically tail recursive functions are
efficient to implement, because they resemble a loop in an imperative language.
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9. We can control the number of lines that are copied by passing the number as a
parameter:

copyN :: Integer -> IO ()

copyN n =
if n <= 0
then return ()
else do line <- getLine

putStrLn line
copyN (n-1)

The effect of copyN 3 should be to copy three lines of input to output. In general, if
the number of lines to be copied is less then or equal to zero – the then branch – the
program just returns (), which does no IO. On the other hand, in the else branch
we read a line, print it out, and then call copyN (n-1).

The Integer variable here is sometimes called the loop data and the value of
the loop data is usually modified in the tail recursive call. You can think of the value
of the data as like the value of a variable in an imperative language: in this case the
value decreases by one at each call, and so we ‘count down’ to the base case where
the program terminates.

10. We can also control the termination of the loop by a condition on the data; we
will copy lines until an empty line is encountered.

copyEmpty :: IO ()

copyEmpty =
do line <- getLine

if line == ""
then return ()
else do putStrLn line

copyEmpty

Here we first get a line from the input, and call it line. If it is empty we terminate
– just as we did in the last example – by calling return (). If it is not empty, we
output the line, and tail-recursively call copyEmpty.

11. Putting together what we saw in examples 9 and 10, we can count the number
of lines that we have copied, outputting this when we reach an empty line:

copyCount :: Integer -> IO ()

copyCount n =
do line <- getLine

if line == ""
then putStrLn (show n ++ " lines copied.")
else do putStrLn line

copyCount (n+1)
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This behaves like example 10, except that we use the loop data to keep track of the
number of lines copied. We can see this in action here:

*RPS> copyCount 0
foo
foo
bar
bar

2 lines copied.

We will now look at how these ideas can be used to program a Rock - Paper -
Scissors tournament.

Exercises

8.14 Define a wc function which copies input to output until an empty line is read.
The program should then output the number of lines, words and characters
that have been copied. [wc is a standard unix command line program.]

8.15 Define an interactive palindrome checker. You should neglect capitalisation,
white space and punctuation, so that

Madam I’m Adam.

is recognised as a palindrome.

8.16 Write a program which repeatedly reads lines and tests whether they are palin-
dromes until an empty line is read. The program should explain clearly to the
user what input is expected and output is produced.

8.17 Write a program which repeatedly reads integers (one per line) until finding a
zero value and outputs the sum of the inputs read.

8.18 Write a program which repeatedly reads integers (one per line) until finding
a zero value and outputs a sorted version of the inputs read. Which sorting
algorithm is most appropriate in such a case?

8.19 Explain the behaviour of this copy program

copy :: IO ()

copy =
do

line <- getLine
let whileCopy =

do
if (line == "")

then (return ())
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else
do putStrLn line

line <- getLine
whileCopy

whileCopy

where the definition of whileCopy is modelled on a while loop in a traditional
programming language.

8.6 Rock - Paper - Scissors: playing the game

In this section we look at how to play the Rock - Paper - Scissors game, both interac-
tively and by playing one strategy off against another.

Playing interactively

You can play interactively against a particular strategy using the function

play :: Strategy -> IO ()

so that play rock allows you to play against the strategy which always plays Rock.
More interesting to play against is

randomPlay :: IO ()

which makes a random choice of strategy for you to play against: this is much more
of a challenge to play! A typical example in action is shown here, where you jusy
have to hit a single key – r, p, s or R, P, S – to play:

*RPS> randomPlay
r
I play: p you play: r
p
I play: r you play: p
s
I play: s you play: s
r
I play: s you play: r
p
I play: r you play: p
s
I play: p you play: s
s
I play: r you play: s
p
I play: p you play: p
r
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I play: r you play: r

You won: well done!

where the ‘I’ is the machine, and the ‘you’ is the player. So, how do we define these
functions? The top-level definition is

play :: Strategy -> IO ()

play strategy =
playInteractive strategy ([],[])

where the worker function, playInteractive is defined like this:

playInteractive :: Strategy -> Tournament -> IO ()

playInteractive s t@(mine,yours) =
do

ch <- getChar
if not (ch ‘elem‘ "rpsRPS")

then showResults t
else do let next = s yours

putStrLn ("\nI play: " ++ show next ++
" you play: " ++ [ch])

let yourMove = convertMove ch
playInteractive s (next:mine, yourMove:yours)

The pattern here is just like the functions defined in Section 8.5: the function is
tail recursive, and the loop data is of Tournament type, and represents what has
happened in the tournament so far as a pair of lists. The function is called with
the lists (mine,yours); in the recursive call the current plays are added to give
(next:mine, yourMove:yours); remember here that the latest plays go at the
head of the list.

So, what does the function do in detail? We read a character, and call the result
of the read ch. If that’s not one of the playing characters we show the results of the
tournament (see below); if it is one, we calculate what the computer should play, by
applying its strategy s to the list of moves so far, we output what the two moves have
been, and then we call the function recursively with new loop data,

(next:mine, yourMove:yours)

This completes the implementation of the interactive Rock - Paper - Scissors game.

Strategy vs. strategy

We are aiming to define the function playSvsS for ‘play strategy versus strategy’:

playSvsS :: Strategy -> Strategy -> Integer -> Tournament
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let and <- in do blocks

We have used let to name values in the definition of playInteractive, just to
make the definition more readable, but this is not essential: we can get the same
effect replacing the names by the corresponding values, so replacing ‘next’ by ‘s
yours’ everywhere it occurs.

On the other hand, we need to use the name ch for the result of the getChar opera-
tion, as otherwise we have no way of referring to what has been read in. Remember
that

ch <- getChar

gives a name to the result of this IO program, which is of type Char, whereas if we
wrote

let ch = getChar

that would name the program getChar, which is of type IO Char and not Char.

so that playSvsS strat1 strat2 n plays a match of n turns between the two
strategies strat1 and strat2.

What do we need to be able to do to implement this? What will help us is a
function to add a single step to a tournament: once we have this we can apply it
repeatedly to get a game of n moves. So, we need a function like this:

step :: Strategy -> Strategy -> Tournament -> Tournament

and what this has to do is to apply the two strategies to give the next step for both
sides:

step strategyA strategyB ( movesA, movesB )
= ( strategyA movesB : movesA , strategyB movesA : movesB )

As you can see, the next move that A makes is to apply her strategy, strategyA, to
the list of moves made so far by B, movesB. This move is then added to the front of
the list of moves made by A, which we keep ‘latest first’ (remember that we decided
to keep the moves in this order when we discussed the echo strategy on page 185).
Completing the definition of playSvsS is left as an exercise.

Exercises

8.20 Complete the definition of the function playSvsS.

8.21 The result of applying playSvsS is a value of type Tournament. Define a func-
tion which prints out the results of such a tournament, including both the nu-
merical score and the sequences of moves made. Hint: it will be enough to
define a function

showTournament :: Tournament -> String
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You can then print out the result by applying putStr to the string.

8.22 We have chosen to represent a strategy by a function

type Strategy = [Move] -> Move

which takes the list of the opponent’s moves and computes our next move
from that. An alternative definition would be

type Strategy2 = Tournament -> Move

where we have access to both our moves and our opponent’s moves in decid-
ing our next move. What are the advantages of doing this? Are there any dis-
advantages to doing it? Can you define any strategies using Strategy2 that
you couldn’t do using Strategy?

8.23 [Harder] After trying out tournaments of different strategies against each other,
can you conclude anything about what is the best strategy for playing Rock -
Paper - Scissors? Can you turn this strategy into a Strategy?

Summary

The chapter has shown how we can implement the Rock - Paper - Scissors game,
after seeing how functions can be used to represent strategies within the game. This
example has bracketed a discussion of how programs that perform I/O can be writ-
ten in Haskell without compromising its ‘purity’.

This is done by introducing the type IO a of programs which return results of
type a, distinct from the type a, just as a cheque for $100 is not the same as $100
itself: we can cash the cheque to get the money, just as we can run the program to get
its result, but the cheque (or program) and money (or result) are still very different
things.

We introduced programming with IO types through a collection of examples,
building up to writing simple interactive programs, such as echoing input to output,
and playing the Rock - Paper - Scissors game.
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Chapter 9

Reasoning about programs

We gave an introduction to proof in Section 1.14, where we said that a proof is an
argument that a particular proposition holds. Often a proposition will be general
in saying that something holds for all things of a certain sort. In mathematics we
might give a proof of Pythagoras’ theorem, which states that there is a relationship
a2=b2+c2 between the sides of all right-angled triangles.

In programming we can prove that programs have a particular property for all
input values. Having a proof means that we can be certain that the program will be-
have as we require whatever the conditions. Compare this with program testing: a
test assures us that a program behaves as it should on a particular collection of input
values; it can only be an act of faith to infer from this that the program behaves as ex-
pected on every possible input, and no mathematician would accept a proposition
as valid simply because it holds for a limited set of test data.

Property-based testing – as given by QuickCheck – provides much better cover-
age, but it is still possible that the places where an error occurs could be missed by
randomly generating data; proof avoids this, and gives an error ‘nowhere to hide’:
Figure 1.5 on page 24 illustrates this. Even when we are sure that using QuickCheck
shows that a particular property holds, a proof can tell us why that property holds,
not just that it is true.

Central to applying proof within functional programming is the insight that we
can read function definitions as logical descriptions of what they do; we discuss this
in depth at the start of the chapter. After looking again at the relationship of rea-
soning, testing and property-based testing, we look at some background topics in
programming and logic, before introducing the central idea of proof by induction
over finite lists.

Proofs by induction follow a pattern, and we illustrate this by giving a sequence
of examples. We also supply advice on how to go about finding induction proofs.
We also look at the QuickCheck properties that correspond to the propositions we
prove, and indeed check them using QuickCheck. The chapter concludes with a
more challenging example of proof, which you can omits on a first reading.

203
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9.1 Understanding definitions

Suppose that we ask ourselves the seemingly obvious question: ‘how do we under-
stand what a function does?’ There are various ways of answering this.

• We can evaluate what the function does on particular inputs, using an imple-
mentation like GHCi.

• We can do the same thing by hand, performing a line-by-line calculation. This
has the advantage of letting us see how the program gets to its result, but the
disadvantage of being slow and impractical for all but the smallest of pro-
grams.

• We can try to argue about how the program behaves in general.

The third answer, in which we reason about the behaviour of our programs, is the
subject of this chapter, which builds on the introduction of Section 1.14.

Consider a simple functional program like

length [] = 0 (length.1)
length (x:xs) = 1 + length xs (length.2)

Using the definition we can calculate the length of any particular list like [2,3,1]

length [2,3,1]
; 1 + length [3,1] by (length.2)
; 1 + (1 + length [1]) by (length.2)
; 1 + (1 + (1 + length [])) by (length.2)
; 1 + (1 + (1 + 0)) by (length.1)
; 3

We can also read (length.1) and (length.2) as descriptions of how length be-
haves in general.

• (length.1) says what length [] is;

• (length.2) says that whatever values ofx andxswe choose, length (x:xs)
will be equal to 1 + length xs.

In the second case we have a general property of length: it states something about
how length behaves on all non-empty lists. On the basis of these equations we can
conclude that

length [x] = 1 (length.3)

How do we do that? We know that (length.2) holds for all values of x and xs, and
so it will hold in particular when xs is replaced by [], so

length [x]
= length (x:[]) by defn of [x]
= 1 + length [] by (length.2)
= 1 + 0 by (length.1)
= 1
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The lesson of this discussion is that we can read a function definition in (at least)
two different ways.

• We can take the definition as describing how to compute particular results,
such as length [2,3,1].

• We can also take the definition as a general description of the behaviour of
the function in question.

From this general description we are able to deduce other facts, some like(length.3)
being utterly straightforward, and others like

length (xs ++ ys) = length xs + length ys (length.4)

expressing more complicated interactions between two or more functions. We will
prove (length.4) in Section 9.6.

Another way of looking at the proof of (length.3) above is that we are doing
symbolic evaluation; rather than evaluating length at a particular value like [2]
we have replaced the number 2 with a variable x, but used the evaluation rules in
exactly the way that we used them earlier. We will find that symbolic evaluation
forms an important part of our proofs, but we will need to use another principle –
induction – to do most proofs for recursive functions.

To conclude this introduction, we have seen that functional programs ‘describe
themselves’ in a direct way. If you are familiar with an imperative language like Pas-
cal, C or Java, think how you might convince yourself of the analogues of(length.3)
or (length.4) for programs written in that language. It’s very difficult to see how
you might state these properties, and even more difficult to work out how to prove
them valid.

9.2 Testing and proof

When we introduced program testing in Section 4.8 we looked at the example

mysteryMax :: Integer -> Integer -> Integer -> Integer
mysteryMax x y z

| x > y && x > z = x
| y > x && y > z = y
| otherwise = z

which was an attempted solution to the problem of finding the maximum of three
integers.

If I asked you to give me five sets of test data for the function, and for you to
test the function at those points, I would guess that you would conclude that the
implementation works: try it!

We can write a property that expresses that the function does as it should, like
this:

prop_mystery :: Integer -> Integer -> Integer -> Bool
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prop_mystery x y z =
mysteryMax x y z == (x ‘max‘ y) ‘max‘ z

Let’s see what happens when we check this property using QuickCheck:

*Chapter8> quickCheck prop_mystery
*** Failed! Falsifiable (after 91 tests and 2 shrinks):
75
75
0
*Chapter8 Test.QuickCheck> quickCheck prop_mystery
*** Failed! Falsifiable (after 4 tests and 1 shrink):
3
3
0
*Chapter8> quickCheck prop_mystery
+++ OK, passed 100 tests.

The first time we check it, it takes 91 tests to find the error; in the second case we
find it much more quickly, but in the third we don’t catch it at all!

Now let’s try to prove that the function behaves as it should. We need to look at
various cases of the ordering of the values. If we first look at the cases

x > y && x > z
y > x && y > z
z > x && z > y

then in each of these mysteryMax will produce the correct solution. In the other
cases, at least two of the three arguments are equal. If all three are equal,

x == y && y == z

the function also operates correctly. Finally, we start to look at the cases where pre-
cisely two elements are equal. The function behaves correctly when

y == z && z > x

but in the case of

x == y && y > z

we can see that the result will, erroneously, be z.
Now, we can see this process of attempting to prove a result as a general way of

testing the function – it is a form of symbolic testing which will consider all cases
in turn, at least until an error is found. We can therefore see that reasoning can give
us a powerful way of debugging programs by focusing on the reason why we cannot
complete a proof of correctness, as well as the more traditional view that a proof
shows that a program meets the requirements put upon it.

On the other hand, as we mentioned in Section 4.8, finding a proof is a difficult
enterprise, and so there are clearly roles for proof, property-based testing and tradi-
tional testing in the development of reliable software.
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9.3 Definedness, termination and finiteness

Before we say anything more about proof, we need to talk about two aspects of pro-
gramming upon which we have only touched so far.

Definedness and termination

Evaluating an expression can have one of two outcomes:

• the evaluation can halt, or terminate, to give an answer; or

• the evaluation can go on forever.

If we make the definition

fact :: Integer -> Integer
fact n

| n==0 = 1
| otherwise = n * fact (n-1)

then examples of the two are given by the expressions

fact 2 fact (-2)

since in the latter case

fact (-2)
; (-2) * fact (-3)
; (-2) * ((-3) * fact (-4))
; ...

In the case that evaluation goes on for ever, we say that the value of the expression
is undefined, since no defined result is reached. In writing proofs we often have to
confine our attention to cases where a value is defined, since it is only for defined
values that many familiar properties hold. One of the simplest examples is given by
the expression

0*e

which we expect to be 0 irrespective of the value of e. That is certainly so if e has a
defined value, but if e is fact (-2), the value of

0 * fact (-2)

will be undefined and not zero.
In many of the proofs we give, we state that results hold for all defined values.

This restriction does not cause problems in practice, since the defined cases will be
exactly those which interest us the vast majority of the time. An undefined value is
of interest when a function does not give a defined value when it is expected to – a
case of symbolic debugging.
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Finiteness

We have said nothing so far about the order in which expressions are evaluated in
Haskell. In fact, Haskell evaluation is lazy, so that arguments to functions are only
evaluated if their values are actually needed. This gives some Haskell programs a
distinctive flavour, which we explore in depth in Chapter 17. What is important for
us here is that lazy evaluation allows the definition and use of infinite lists like

[1,2,3, ... ]

and partially defined lists. In what follows we will mainly confine our attention to
finite lists, by which we mean lists which have a defined, finite length and defined
elements. Examples are

[] [1,2,3] [[4,5],[3,2,1],[]]

Reasoning about lazy programs is discussed explicitly in Section 17.9 below.

Exercises

9.1 Given the definition of fact above, what are the results of evaluating the fol-
lowing expressions?

(4 > 2) || (fact (-1) == 17)
(4 > 2) && (fact (-1) == 17)

Discuss the reasons why you think that you obtained these answers.

9.2 Give a definition of a multiplication function

mult :: Integer -> Integer -> Integer

so that mult 0 (fact (-2)) evaluates to 0.
What is the result of mult (fact (-2)) 0 for your function? Explain why.

9.4 A little logic

In order to appreciate how to reason about functional programs we need not have a
background in formal logic. Nevertheless, it is worth discussing two aspects of logic
before we proceed with our proofs.

Assumptions in proofs

First, we look at the idea of proofs which contain assumptions. Taking a particular
example, it follows from elementary arithmetic that if we assume that petrol costs 27
pence per litre, then we can prove that four litres will cost £1.08.

What does this tell us? It does not tell us outright how much four litres will cost;
it only tells us the cost if the assumption is valid. To be sure that the cost will be
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£1.08, we need to supply some evidence that the assumption is justified: this might
be another proof — perhaps based on petrol costing £1.20 per gallon — or direct
evidence.

We can write what we have proved as a formula,

1 litre costs 27 pence ) 4 litres cost £1.08

where the arrow, ), which is the logical symbol for implication, says that the second
proposition follows from the first.

As we have seen, we prove an implication like A ) B by assuming A in proving
B . If we then find a proof of A, then knowing the implication will guarantee that B is
also valid.

Yet another way of looking at this is to see a proof of A ) B as a process for turning
a proof of A into a proof of B . We use this idea in proof by induction, as one of the
tasks in building an induction proof is the induction step, where we prove that one
property holds assuming another.

Free variables and quantifiers

When we write an equation like

square x = x*x

it is usually our intention to say that this holds for all (defined) values of the free
variable x. If we want to make this ‘for all’ explicit we can use a quantifier like this

8x (square x = x*x)

where we read the universal quantifier, ‘8x’, as saying ‘for all x. . . ’.

We now turn to induction, the main technique we use for proving properties of pro-
grams.

9.5 Induction

In Chapter 7 we saw that a general method for defining lists was primitive recursion,
as exemplified by

sum :: [Integer] -> Integer
sum [] = 0 (sum.1)
sum (x:xs) = x + sum xs (sum.2)

Here we give a value outright at [], and define the value of sum (x:xs) using the
value sum xs. Structural induction is a proof principle which states:

definition 9.1 Principle of structural induction for lists

In order to prove that a logical property P(xs) holds for all finite lists xs we have to
do two things.
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• Base case. Prove P([]) outright.

• Induction step. Prove P(x:xs) on the assumption that P(xs) holds.

In other words P(xs) ) P(x:xs) has to be proved.

The P(xs)here is called the induction hypothesis since it is assumed in proving
P(x:xs).

It is interesting to see that this is just like primitive recursion, except that instead of
building the values of a function, we are building up the parts of a proof. In both
cases we deal with [] as a basis, and then build the general thing by showing how
to go from xs to (x:xs). In a function definition we define fun (x:xs) using fun
xs; in the proof of P(x:xs) we are allowed to use P(xs).

Justification

Just as we argued that recursion was not circular, so we can see proof by induc-
tion building up the proof for all finite lists in stages. Suppose that we are given
proofs of P([]) and P(xs) ) P(x:xs) for all x and xs and we want to show that
P([1,2,3]). The list [1,2,3] is built up from [] using cons like this,

1:2:3:[]

and we can construct the proof of P([1,2,3]) in a way which mirrors this step-by-
step construction,

• P([]) holds;

• P([]) ) P([3]) holds, since it is a case of P(xs) ) P(x:xs);

• Recall our discussion of ‘)’ above; if we know that both P([]) ) P([3])
and P([]) hold, then we can infer that P([3]) holds.

• P([3]) ) P([2,3]) holds, and so for similar reasons we get P([2,3]).

• Finally, because P([2,3]) ) P([1,2,3]) holds, we see that P([1,2,3])
holds.

This explanation is for a particular finite list, but will work for any finite list: if the
list has n elements, then we will have n+1 steps like the four above. To conclude,
this shows that we get P(xs) for every possible finite list xs if we know that both
requirements of the induction principle hold.

A first example

We have mentioned the definition of sum; recall also the function to double all ele-
ments of a list

doubleAll [] = [] (doubleAll.1)
doubleAll (z:zs) = 2*z : doubleAll zs (doubleAll.2)
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Now, how would we expect doubleAll and sum to interact? If we sum a list after
doubling all its elements, we would expect to get the same result as by doubling the
sum of the original list:

sum (doubleAll xs) = 2 * sum xs (sum+dblAll)

We can make this a QuickCheck property, like this:

prop_SumDoubleAll :: [Integer] -> Bool

prop_SumDoubleAll xs =
sum (doubleAll xs) == 2 * sum xs

which is identical except that we use the Boolean equality ‘==’ rather than the math-
ematical equality ‘=’; the property repeatedly passes 100 tests when we QuickCheck
it.

Setting up the induction

How are we to prove this for all xs? According to the principle of structural induction
we get two induction goals. The first is the base case

sum (doubleAll []) = 2 * sum [] (base)

The second is the induction step, in which we have to prove

sum (doubleAll (x:xs)) = 2 * sum (x:xs) (ind)

using the induction hypothesis

sum (doubleAll xs) = 2 * sum xs (hyp)

In all proofs that follow we will label the cases by (base), (ind) and (hyp).

The base case

We are required to prove (base): how do we start? The only resources we have are
the equations (sum.1), (sum.2), (doubleAll.1) and (doubleAll.2), so we have
to concentrate on using these. As we are trying to prove an equation, we can think
of simplifying the two sides separately, so working with the left-hand side first,

sum (doubleAll [])
= sum [] by (doubleAll.1)
= 0 by (sum.1)

Looking at the right-hand side, we have

2 * sum []
= 2 * 0 by (sum.1)
= 0 by *

This shows that the two sides are the same, and so completes the proof of the base
case.
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The induction step

Here we are required to prove (ind). As in the base case we have the defining equa-
tions of doubleAll and sum, but we also can – and usually should – use the induc-
tion hypothesis (hyp).

We work as we did in the base case, simplifying each side as much as we can
using the defining equations. First the left-hand side,

sum (doubleAll (x:xs))
= sum (2*x : doubleAll xs) by (doubleAll.2)
= 2*x + sum (doubleAll xs) by (sum.2)

and then the right

2 * sum (x:xs)
= 2 * (x + sum xs) by (sum.2)
= 2*x + 2 * sum xs by arith.

Now, we have simplified each side using the defining equations. The last step equat-
ing the two is given by the induction hypothesis (hyp), which can be used to carry
on the simplification of the left-hand side, giving

sum (doubleAll (x:xs))
= sum (2*x : doubleAll xs)
= 2*x + sum (doubleAll xs)
= 2*x + 2 * sum xs by (hyp)

and so this final step makes the left- and right-hand sides equal, on the assumption
that the induction hypothesis holds. This completes the induction step, and there-
fore the proof itself.

We use the box, , to signify the end of a proof.

Finding induction proofs

Looking at the previous example, we can glean a number of pieces of advice about
how to find proofs of properties of recursively defined functions.

• As a first step, it is a good idea to state the goal as a QuickCheck property.
Once we have that we can check that it should be possible to prove it: if we
find a counterexample then we’d better try to reformulate the goal, and not
waste our time trying to prove something that doesn’t hold!

• State clearly the goal of the induction and the two sub-goals of the induction
proof: (base) and (hyp) ) (ind).

• If any confusion is possible, change the names of the variables in the relevant
definitions so that they are different from the variable(s) over which you are
doing the induction.
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• The only resources available are the definitions of the functions involved and
the general rules of arithmetic. Use these to simplify the sub-goals. If the sub-
goal is an equation, then simplify each side separately.

• In the case of the induction step, (ind), you should expect to use the induc-
tion hypothesis (hyp) in your proof; if you do not, then it is most likely that
your proof is incorrect.

• Label each step of your proof with its justification: this is usually one of the
defining equations of a function.

In the next section we look at a series of examples.

9.6 Further examples of proofs by induction

In this section we present two more examples of proof by structural induction over
finite lists.

Example

1. length and ++

We begin by looking at the example (length.4) introduced at the start of the chap-
ter.

length (xs ++ ys) = length xs + length ys (length.4)

The Quick Check property expressing this is

prop_lengthPlusPlus :: [a] -> [a] -> Bool

prop_lengthPlusPlus xs ys =
length (xs ++ ys) == length xs + length ys

and this is verified when the property is checked. Recall the definitions of length
and ++

length [] = 0 (length.1)
length (z:zs) = 1 + length zs (length.2)

[] ++ zs = zs (++.1)
(w:ws) ++ zs = w:(ws++zs) (++.2)

where we have chosen new names for the variables so as not to conflict with the
variables in the goal.

There is some question about how to proceed with the proof, since (length.4)
involves two variables, xs and ys. We can be guided by the definitions, where we
see that the definition of ++ is made by recursion over the first variable. We therefore
make the goal a proof of (length.4) for all finite xs and ysby induction over xs; the
proof works for all ys as ys is a variable, which stands for an arbitrary list, just like
the variable x in the earlier proof of (length.3) stood for an arbitrary list element.
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Statement We can now write down the two goals of the induction proof. The
base case requires that we prove

length ([] ++ ys) = length [] + length ys (base)

and in the induction step we have to prove

length ((x:xs) ++ ys) = length (x:xs) + length ys (ind)

from the inductive assumption

length (xs ++ ys) = length xs + length ys (hyp)

Base We look separately at the two sides of (base), left-hand side first,

length ([] ++ ys)
= length ys by (++.1)

length [] + length ys
= 0 + length ys by (length.1)
= length ys

which shows their equality.

Induction First we look at the left-hand side of (ind)

length ((x:xs) ++ ys)
= length (x:(xs ++ ys)) by (++.2)
= 1 + length (xs ++ ys) by (length.2)

We cannot simplify this further with the defining equations, but we can use (hyp)
to give us

= 1 + length xs + length ys by (hyp)

Now, looking at the right-hand side of (ind) we get

length (x:xs) + length ys
= 1 + length xs + length ys by (length.2)

and this shows that (ind) follows from (hyp), completing the second half of the
proof and so the proof itself.

2. reverse and ++

What happens when we reverse the join of two lists, xs++ys? The process is illus-
trated in FigurereverseSwap. Each list is reversed, and they are swapped. In formal
terms,

reverse (xs ++ ys) = reverse ys ++ reverse xs (reverse++)

where we define

reverse [] = [] (reverse.1)
reverse (z:zs) = reverse zs ++ [z] (reverse.2)

We will try to prove (reverse++) for all finite lists xs and ys by induction over xs.
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 xs    ys   

 ys     xs    

Figure 9.1: Reversing the list xs++ys

Statement The base case is

reverse ([] ++ ys) = reverse ys ++ reverse [] (base)

and the induction goal is

reverse ((x:xs) ++ ys) = reverse ys ++ reverse (x:xs) (ind)

which is to be proved using the assumption

reverse (xs ++ ys) = reverse ys ++ reverse xs (hyp)

Base Simplifying both sides of (base) gives us

reverse ([] ++ ys)
= reverse ys by (++.1)

reverse ys ++ reverse []
= reverse ys ++ [] by (reverse.1)

but we can prove the two equal only if we can show that appending an empty list to
the end of a list is an identity operation, that is

xs ++ [] = xs (++.3)

We leave a proof of this by induction over xs as an exercise for the reader.

Induction Again, we look at the two sides of the equation, left-hand side first.

reverse ((x:xs) ++ ys)
= reverse (x:(xs ++ ys)) by (++.2)
= reverse (xs ++ ys) ++ [x] by (reverse.2)
= (reverse ys ++ reverse xs) ++ [x] by (hyp)

Examining the right-hand side, we have
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QuickCheck and properties over [a]

If we test the QuickCheck property

prop_reversePlusPlus :: Eq a => [a] -> [a] -> Bool

prop_reversePlusPlus xs ys =
reverse (xs ++ ys) == reverse ys ++ reverse xs

we find that it holds. Fine, but if we check this property:

prop_reversePlusPlusOops :: Eq a => [a] -> [a] -> Bool

prop_reversePlusPlusOops xs ys =
reverse (xs ++ ys) == reverse xs ++ reverse ys

we find that this holds too!

What is happening here? The problem is that when we check a generic property –
that is one over a polymorphic type – then it is in fact checked over a default type.
This default type is (), which has exactly one element, also (). The incorrect prop-
erty is correct over lists of that type, because all their elements are the same!

In order to restore sanity, it is enough to change the properties to a suitable non-
generic type, using a type declaration like this:

prop_reversePlusPlusOops :: [Integer] -> [Integer] -> Bool

reverse ys ++ reverse (x:xs)
= reverse ys ++ (reverse xs ++ [x]) by (reverse.2)

Now, these two are almost equal, except that the joins are bracketed differently. We
need another general property of ++, namely that it is associative:

xs ++ (ys ++ zs) = (xs ++ ys) ++ zs (++.4)

the proof of which we again leave as an exercise.

This proof is instructive: it shows that often in proofs we use other theorems or lem-
mas (the mathematician’s term for a ‘little theorem’) on the way. If we do any seri-
ous proof we will build up a library of these lemmas, with (++.3) and (++.4) being
basic results about ++ which we will call upon almost without thinking. We would
expect this library to resemble the standard prelude: it would contain all those the-
orems which link the prelude functions and which will be called into use whenever
we use prelude functions. Many of the exercises at the end of the section ask you to
prove theorems concerning prelude functions.

Exercises
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9.3 Prove the properties for functions over Picture first discussed in Section 1.14,
that is, for all finite pic:

flipV (flipH pic) = flipH (flipV pic)
flipV (flipV pic) = pic
flipH (flipV pic) = pic

9.4 Look again at the properties for functions over Picture discussed in Section
6.4, and prove those properties which should hold for all pictures.

9.5 Prove for all finite xs and ys that

sum (xs ++ ys) = sum xs + sum ys (sum++)

9.6 Prove the two rules for ++:

xs ++ [] = xs (++.3)
xs ++ (ys ++ zs) = (xs ++ ys) ++ zs (++.4)

for all finite xs, ys and zs.

9.7 Show for all finite xs that

sum (reverse xs) = sum xs
length (reverse xs) = length xs

What common factors can you see in your two proofs?

9.8 Show for all finite integer lists xs and ys that

elem z (xs ++ ys) = elem z xs || elem z ys

9.9 Show for all finite lists ps that

zip (fst (unzip ps)) (snd (unzip ps)) = ps

Under what conditions on xs and ys is it the case that

unzip (zip xs ys) = (xs,ys)

when unzip is defined by

unzip [] = ([],[])
unzip ((x,y):ps)

= (x:xs,y:ys)
where
(xs,ys) = unzip ps



218 CHAPTER 9. REASONING ABOUT PROGRAMS

Give a proof in that case.

9.10 [Harder] Show for all finite xs and defined n that

take n xs ++ drop n xs = xs

9.11 Write QuickCheck properties for the propositions that you have proved, and
check that they indeed hold.

9.7 Generalizing the proof goal

It is not always easy to build a proof in a straightforward way, by induction over a
goal we set ourselves. In this section we explore an example in which we are able to
build a proof of the property we seek only after two false starts. The section is more
challenging than the rest of the chapter and can safely be omitted on first reading.

The shunting function

The shunt function moves the elements from one list onto another, like this

shunt :: [a] -> [a] -> [a]

shunt [] ys = ys (shunt.1)
shunt (x:xs) ys = shunt xs (x:ys) (shunt.2)

Starting with an empty second argument, we have

shunt [2,3,1] []
; shunt [3,1] [2]
; shunt [1] [3,2]
; shunt [] [1,3,2]
; [1,3,2]

and so we can reverse lists using this function:

rev :: [a] -> [a]
rev xs = shunt xs [] (rev.1)

Now we turn to looking at properties of the rev function.

First proof attempt

Reversing a list twice should give us back the list we started with, and so we aim to
prove that

rev (rev xs) = xs Q(xs)

for all finite lists xs. The base case is easily established, but when we look at the
induction step, we meet our first problem:
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rev (rev (x:xs))
= shunt (shunt (x:xs) []) [] by (rev.1)
= shunt (shunt xs [x]) [] by (shunt.2)

This has no direct relationship to the induction hypothesis, which mentions only
the function rev. A clue to the problem is that rev is not the function defined by
recursion — it is simply a specialization of shunt. Can we find a generalization of
Q(xs) which talks explicitly about shunt and which is to be proved by induction?

In general the effect of shunt xs ys is to give

(reverse xs) ++ ys

If we reverse this list, we should get

(reverse ys) ++ xs

(try some examples!) and so we should be able to prove that

shunt (shunt xs ys) [] = shunt ys xs

When ys is replaced by [], we get Q(xs). We therefore aim to prove this generaliza-
tion.

Second proof attempt

Our aim is to show

shunt (shunt xs ys) [] = shunt ys xs

for all finite lists xs and ys. In the case that xs is [], the proof is simple. Now we
look at the induction step:

shunt (shunt (x:xs) ys) []
= shunt (shunt xs (x:ys)) [] by (shunt.2)

We would now like to claim by induction that this is equal to shunt (x:ys) xs, but
to do this we need the induction hypothesis to give the result that

shunt (shunt xs (x:ys)) [] = shunt (x:ys) xs

rather than

shunt (shunt xs ys) [] = shunt ys xs

To get around this, we strengthen the induction hypothesis to become

shunt (shunt xs zs) [] = shunt zs xs for all finite lists zs

so that in particular it will hold when (x:ys) replaces zs. We now try again.

The successful proof attempt

In logical notation, our goal is to prove

8zs (shunt (shunt xs zs) [] = shunt zs xs)

for all finite xs by induction.
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Statement Now we can state what is required. The base case is

8zs (shunt (shunt [] zs) [] = shunt zs []) (base)

and the induction step is to prove

8zs (shunt (shunt (x:xs) zs) [] = shunt zs (x:xs)) (ind)

assuming the induction hypothesis

8zs (shunt (shunt xs zs) [] = shunt zs xs) (hyp)

Base In the base case we prove

8zs (shunt (shunt [] zs) [] = shunt zs []) (base)

by proving it for an arbitrary zs. The left-hand side simplifies to the right-hand side
in one step.

shunt (shunt [] zs) []
= shunt zs [] by (shunt.1)

Induction As in the base case, we prove

8zs (shunt (shunt (x:xs) zs) [] = shunt zs (x:xs)) (ind)

by proving it for an arbitrary zs. Simplifying the left-hand side, we have

shunt (shunt (x:xs) zs) []
= shunt (shunt xs (x:zs)) [] by (shunt.2)

Now, by (hyp), where we take the particular value (x:zs) to replace the universally
quantified variable zs,

= shunt (x:zs) xs by (hyp)
= shunt zs (x:xs) by (shunt.2)

This is the right-hand side, and so the proof is complete for an arbitrary ys, giving a
proof of (ind), and completing the induction proof.

This example shows that we may have to generalize what has to be proved in order
for induction proofs to work. This seems paradoxical: we are making it harder for
ourselves, apparently. We are in one way, but at the same time we make the induc-
tion hypothesis stronger, so that we have more resources to use when proving the
induction step.

Exercises

9.12 Prove for all finite lists xs and ys that

rev (xs ++ ys) = rev ys ++ rev xs
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9.13 Using the function

facAux :: Integer -> Integer -> Integer
facAux 0 p = p
facAux n p = facAux (n-1) (n*p)

we can define

fac2 n = facAux n 1

Prove that for all defined natural numbers n,

fac n = fac2 n

9.14 Write a property expressing that the old and new reverse functions have the
same behaviour.

9.15 Write a property expressing that the old and new factorial functions have the
same behaviour. What happens to the QuickCheck of the property if you allow
arbitrary integer inputs to the factorial functions? how can you remedy this?

Summary

This chapter has shown that we can give Haskell programs a logical reading which
allows us to reason about them. Central to reasoning about lists is the principle of
structural induction, which does for proof what primitive recursion does for defini-
tions.

We gave a collection of hints about how we can build proofs for functional pro-
grams, and illustrated these by giving a number of results for common prelude func-
tions such as sum, ++ and length, as well as exercises involving others. We also saw
how QuickCheck could be used to check whether or not a property appears to hold:
this is a very useful way of making a ‘sanity check’ of a property before we try to
prove it.
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Chapter 10

Generalization: patterns of
computation

Software reuse is a major goal of the software industry. One of the great strengths
of modern functional programming languages like Haskell is that we can use them
to define general functions which can be used in many different applications. The
Haskell prelude functions over lists, for instance, form a toolkit to which we turn
again and again in a host of situations.

We have already seen one aspect of this generality in polymorphism, under
which the same program can be used over many different types. The prelude func-
tions over lists introduced in Chapter 5 provide many examples of this including
length, ++ and take.

As we said, these functions have the same effect over every argument – length
computes the length of a list of any type, for instance. In this chapter we explore
a second mechanism, by which we can write functions which embody a pattern of
computation; two examples of what we mean follow.

• Transform every element of a list in some way. We might turn every alphabetic
character into upper case, or double every number.

• Combine the elements of a list using some operator. We could add together the
elements of a numeric list in this way, for example.

How can we write general functions which implement patterns like this? We need
to make the transformation or operator into a parameter of the general function;
in other words we need to have functions as arguments of other functions. These
higher-order functions are the topic of this chapter. Complementing this is the abil-
ity to make functions the results of functions; we look at that in the next chapter.

We begin the chapter by examining the patterns of computation over lists which
we have encountered so far, and in the remaining sections of the chapter we show
how these are realized as higher-order Haskell functions. We also re-examine primi-
tive recursive definitions, and see that they generalize the process of combining the
elements of a list using an operator.

223
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Next we look at an example of generalization: taking a function over String into
a polymorphic, higher-order function. We do this by identifying the parts of the
function which make it specific to String and turning those into a parameter of the
function. The example serves as a model for how we can generalize functions in any
situation and so make them applicable in many more contexts.

We conclude by revisiting a number of the case studies we have looked at ear-
lier, and encourage you to look at these again, bearing in mind the new patterns of
computation introduced in this chapter.

10.1 Patterns of computation over lists

Many of the definitions of list processing functions we have seen so far fall into a
small number of different sorts. In this section we look back over the previous chap-
ters and discuss the patterns which emerge. These patterns are realized as Haskell
functions later in the chapter.

Applying to all – mapping

Many functions call for all of the elements of a list to be transformed in some way –
this we call mapping. We have seen examples of this from the first chapter, where
we noted that to flip a picture in a vertical mirror – flipV – we needed to reverse
each line of the Picture, which is a list of lines.

We also saw mapping in Chapter 5 in our first example of a list comprehension
which was to double every element of a list of integers.

doubleAll [2,3,71] = [4,6,142]

Other examples include

• taking the second element of each pair in a list of pairs, as we do in the library
database;

• in the supermarket billing example, converting every item in a list of bar codes
to the corresponding (Name,Price) pair;

• formatting each (Name,Price) pair in a list.

Selecting elements – filtering

Selecting all the elements of a list with a given property is also common. Chapter 5
contains the example of the function which selects the digits from a string

digits "29 February 2004" = "292004"

Among the other cases we have seen are

• select each pair which has a particular person as its first element;

• select each pair which is not equal to the loan pair being returned.
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Combining the items – folding

The first example of primitive recursion in Chapter 7 was sum, which computes the
total of a list of integers. The total of the list is given by folding the function + into
the list, thus:

sum [2,3,71] = 2+3+71

In a similar way,

• ++ can be folded into a list of lists to concatenate it, as is done in the definition
of concat;

• && can be folded into a list of Booleans to take their conjunction: this is the
prelude function and;

• max can be folded into a list of integers to give their maximum.

Breaking up lists

A common pattern in the text processing example of Chapter 7 is to take or drop
items from a list while they have some property. A first example is getWord,

getWord "cat dog" = "cat"

in which we continue to take characters while they are alphabetic. Other examples
include dropWord, dropSpace and getLine. In the last of these the property in
question depends not only upon the particular list item but also on the part of the
list selected so far.

Combinations

These patterns of definition are often used together. In defining books for the library
database, which returns all the books on loan to a given person, we filter out all
pairs involving the person, and then take all second components of the results. The
strength of list comprehensions is that they give this combination of mapping and
filtering, which fits some examples – like the library database – particularly well.

Other combinations of functions are also common.

• In the pictures case study the function invertColour inverts the colour of
every character in a Picture by inverting every line; inverting a line requires
us to invert every character, so here we have two, nested, uses of mapping.

• Formatting the item part of a supermarket bill involves processing each item
in some way, then combining the results, using ++.

Primitive recursion and folding

The form of many definitions is primitive recursive. Sorting by insertion is a classic
example:
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iSort [] = []
iSort (x:xs) = ins x (iSort xs)

Haskell provides a mechanism to turn a prefix function like ins into an infix version.
The name is enclosed by back quotes, ‘ins‘, so

iSort (x:xs) = x ‘ins‘ (iSort xs)

and, in a given example, we have

iSort [4,2,3] = 4 ‘ins‘ 2 ‘ins‘ 3 ‘ins‘ []

Looked at this way, the definition looks like ‘ins‘ folded into the list [4,2,3]. We
shall look at this again in Section 10.3.

The last 10%

The different kinds of definition discussed so far have all been primitive recursive:
we were able to define the result for (x:xs) in terms of the result for xs. It has
been said that at least 90% of all definitions of list processing functions are primitive
recursive. Some are not, however; in Chapter 7 notable examples are quicksort and
the splitLines function,

splitLines [] = []
splitLines ws

= getLine lineLen ws
: splitLines (dropLine lineLen ws)

For a non-empty list of words ws, the result splitLines ws is defined using a recur-
sive call of splitLines not on the tail of ws but on (dropLine lineLen ws). This
form of recursion will terminate because (dropLine lineLen ws) will always be
shorter than ws itself, at least in sensible cases where no word in the list ws is longer
than the line length lineLen.

10.2 Higher-order functions: functions as arguments

A function is higher-order if it takes a function as an argument or returns a function
as a result, or does both. In this section we show how a variety of functions, including
some of the patterns discussed in the last section, can be written using functions as
arguments.

Mapping – the map function

We can double all the elements in an integer list in two ways, either using a list com-
prehension,

doubleAll :: [Integer] -> [Integer]
doubleAll xs = [ 2*x | x <- xs ]
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or using primitive recursion,

doubleAll [] = []
doubleAll (x:xs) = 2*x : doubleAll xs

In both cases, we can see that the specific operation of multiplying by two is applied
to an element of the list in the expression ‘2*x’.

Suppose that we want to modify every element of a list by another operation – for
instance, the function ord that transforms a Char into an Int – we could modify one
of the definitions above by replacing the ‘2*x’ by ‘fromEnum x’ to give a different
definition.

Taking this approach would mean that we would write a whole lot of definitions
which differ only in the function used to make the transformation. Instead of doing
this, we can write a single definition in which the function becomes a parameter of
the definition. Our general definition will be

map f xs = [ f x | x <- xs ] (map.0)

or we can give an explicit primitive recursion

map f [] = [] (map.1)
map f (x:xs) = f x : map f xs (map.2)

The function to double all the elements of a list can now be given by applying map
to two things: the transformation – double – and the list in question.

doubleAll xs = map double xs

where double x = 2*x. In a similar way, the function to convert all the characters
into their codes will be

convertChrs :: [Char] -> [Int]
convertChrs xs = map fromEnum xs

In the Picture case study to flip a picture in a vertical mirror we can write

flipV :: Picture -> Picture
flipV xs = map reverse xs

What is the type of map? It takes two arguments – the first is a function, and the
second is a list – and it returns a list.

map :: (... -> ...) -> [...] -> [...]

The input list is made up 
of elements which we can 
apply the function to. 

The output list is made up 
of elements from the output 
type of the function.

input function input list output list

map :: (a -> b) -> [a] -> [b]
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The figure shows how the types of the functions and lists are related, giving map the
type

map :: (a -> b) -> [a] -> [b]

where recall that a and b are type variables, standing for arbitrary types. Instances
of the type of map include

map :: (Integer -> Integer) -> [Integer] -> [Integer]

as used in the definition of doubleAll, where map is applied to the function double
of type Int -> Int and

map :: (Char -> Int) -> [Char] -> [Int]

as in the definition of convertChrs.

Modelling properties as functions

Before defining the function to filter, or select, those elements of a list having a given
property, we need to think about how such properties are to be modelled in Haskell.
Take the example of filtering the digits from a string – the function digits men-
tioned earlier. How is the property of ‘being a digit’ to be modelled? We have already
seen that the library Data.Char contains a function

isDigit :: Char -> Bool

and we find out whether a particular character like ’d’ is a digit or not by applying
the function to the character to give a Boolean result, that is True or False.

This is the way that we can model a property over any type t. The property is
given by a function of type

t -> Bool

and an element x has the property precisely when f x has the value True. We have
already seen the example of isDigit; other examples include

isEven :: Integer -> Bool
isEven n = (n ‘mod‘ 2 == 0)

isSorted :: [Integer] -> Bool
isSorted xs = (xs == iSort xs)

We usually adopt the convention that the names of properties begin with ‘is’.

Filtering – the filter function

Building on our discussion of properties, we see that the filter function will take a
property and a list, and return those elements of the list having the property:
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filter p [] = [] (filter.1)
filter p (x:xs)

| p x = x : filter p xs (filter.2)
| otherwise = filter p xs (filter.3)

In the case of an empty list, the result is empty. For a non-empty list (x:xs) there are
two cases. If the guard condition p x is true then the element x is the first element
of the result list; the remainder of the result is given by selecting those elements in
xs which have the property p. If p x is False, x is not included, and the result is
given by searching xs for elements with property p.

A list comprehension also serves to define filter,

filter p xs = [ x | x <- xs , p x ] (filter.0)

where again we see that the condition for inclusion of x in the list is that it has the
property p.

Our example digits is defined using filter as follows

digits xs = filter isDigit xs

Other applications of filter give

filter isEven [2,3,4,5] ; [2,4]
filter isSorted [[2,3,4,5],[3,2,5],[],[3]] ; [[2,3,4,5],[],[3]]

What is the type of filter? It takes a property and a list, and returns a list.

filter :: (... -> ...) -> [...] -> [...]

The function is a property: 
it takes a list element to a 
Boolean

The output list is made up of 
elements from the input list; this is 
also the input type of the function.

input function input list output list

filter :: (a -> Bool) -> [a] -> [a]

Combining zip and map – the zipWith function

We have already seen the polymorphic function

zip :: [a] -> [b] -> [(a,b)]

which ‘zips together’ the the elements of two lists into a single list of pairs, pairing
up corresponding elements in the two lists. For instance,

zip [2,3,4] "Frank" = [(2,’F’),(3,’r’),(4,’a’)]
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As the example shows, if the lists are of different lengths, we just drop the elements
in the longer list with no element to pair with.

What happens if we want to do something to two corresponding elements other
than making a pair of them? Recall from Chapter 1 that in our Picture case study
to define beside we wanted to join corresponding lines using (++). To this end we
define the zipWith function, which combines the effect of zipping and mapping:

zipWith f (x:xs) (y:ys) = f x y : zipWith f xs ys
zipWith f _ _ = []

In the first case we see that if both lists are non-empty we apply the function f to
their heads to give the first element of the result, and zip their tails with f in a similar
way. In the second case – when at least one of the inputs is [] – the result is [], just
as it was in the definition of zip.

Returning to the Picture case study, we can then define

beside :: Picture -> Picture -> Picture
beside pic1 pic2 = zipWith (++) pic1 pic2

What is the type of zipWith? The function takes three arguments. The second and
third are lists of arbitrary type, [a] and [b] respectively. The result is also a list of
arbitrary type, [c]. Now, the first argument is applied to elements of the input lists
to give an element of the output list, so it must have type a -> b -> c. Putting this
together, we have

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

In the exercises we look further at the examples defined here, as well as intro-
ducing other higher-order functions.

Exercises

10.1 Write three line-by-line calculations of doubleAll [2,1,7] using the three
different definitions of doubleAll that use a list comprehension, primitive
recursion and map.

10.2 How would you define the length function using map and sum?

10.3 Given the function

addUp ns = filter greaterOne (map addOne ns)

where

greaterOne n = n>1
addOne n = n+1

how would you redefine it using filter before map, as in

addUp ns = map fun1 (filter fun2 ns)
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10.4 Describe the effect of

map addOne (map addOne ns)

Can you conclude anything in general about properties ofmap f (map g xs)
where f and g are arbitrary functions?

10.5 What is the effect of

filter greaterOne (filter lessTen ns)

where lessTen n = n<10? What about the general case of

filter p (filter q xs)

where p and q are arbitrary properties?

10.6 Give definitions of functions to take a list of integers, ns, and

• return the list consisting of the squares of the integers in ns;
• return the sum of squares of items in ns;
• check whether all items of the list are greater than zero.

10.7 Using functions defined already wherever possible, write definitions of func-
tions to

• give the minimum value of a function f on inputs 0 to n;
• test whether the values of f on inputs 0 to n are all equal;
• test if all values of f on inputs 0 to n are greater than zero, and,
• check whether the values f 0, f 1 to f n are in increasing order.

10.8 State the type of and define a function twicewhich takes a function from inte-
gers to integers and an input integer, and whose output is the function applied
to the input twice. For instance, with the double function and 7 as input, the
result is 28. What is the most general type of the function you have defined?

10.9 Give the type of and define a function iter so that

iter n f x = f (f (f ... (f x)...))

where f occurs n times on the right-hand side of the equation. For instance,
we should have

iter 3 f x = f (f (f x))

and iter 0 f x should return x.

10.10 Using iter and double define a function which on input n returns 2n; re-
member that 2n means one multiplied by two n times.
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10.11 Define QuickCheck properties that you would expect to hold for the result of
a filter,

filter p xs

10.12 Suppose that g is the inverse of f, so that

g (f x) ; x
f (g y) ; y

for all x and y, give properties that you would expect to hold for the result of
the map:

map f xs

10.3 Folding and primitive recursion

In this section we look at a particular sort of higher-order function which imple-
ments the operation of folding an operator or function into a list of values. We will
see that this operation is more general than we might first think, and that most prim-
itive recursive functions over lists can, in fact, be defined using a fold.

The functions foldr1 and foldr

Here we look at two sorts of folding function. First we look at a function which folds
a function into a non-empty list; it is defined in GHC.List and is called foldr1; we
will discuss why it is called this later in the section.

The definition of foldr1will have two cases. Folding f into the singleton list [a]
gives a. Folding f into a longer list is given by

foldr1 f [e1,e2,...,ek]
= e1 ‘f‘ (e2 ‘f‘ ( ... ‘f‘ ek)...)
= e1 ‘f‘ (foldr1 f [e2,...,ek])
= f e1 (foldr1 f [e2,...,ek])

The Haskell definition is therefore

foldr1 f [x] = x (foldr1.1)
foldr1 f (x:xs) = f x (foldr1 f xs) (foldr1.2)

and the type of foldr1 will be given by

foldr1 :: (a -> a -> a) -> [a] -> a

The type shows that foldr1 has two arguments.

• The first argument is a binary function over the type a; for example, the func-
tion (+) over Int.
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• The second is a list of elements of type a which are to be combined using the
operator; for instance, [3,98,1]

The result is a single value of type a; in the running example we have

foldr1 (+) [3,98,1] = 102

Other examples which use foldr1 include

foldr1 (||) [False,True,False] = True
foldr1 (++) ["Freak ", "Out" , "", "!"] = "Freak Out!"
foldr1 min [6] = 6
foldr1 (*) [1 .. 6] = 720

The function foldr1 gives an error when applied to an empty list argument.
We can modify the definition to give an extra argument which is the value re-

turned on the empty list, so giving a function defined on all finite lists. This function
is called foldr and is defined as follows

foldr f s [] = s (foldr.1)
foldr f s (x:xs) = f x (foldr f s xs) (foldr.2)

The ‘r’ in the definition is for ‘fold, bracketing to the right’. Using this slightly more
general function, whose type we predict is

foldr :: (a -> a -> a) -> a -> [a] -> a

Binary operation
over type a

Starting value 
of type a

List of values of type 
a to be combined

Result of 
type a

we can now define some of the standard functions of Haskell,

concat :: [[a]] -> [a]
concat xs = foldr (++) [] xs

and :: [Bool] -> Bool
and bs = foldr (&&) True bs

Returning to the start of the section, we can now see why foldr1 is so called: it is
fold function, designed to take a list with at least one element. We can also define
foldr1 from foldr, like this

foldr1 f xs = foldr f (last xs) (init xs) (foldr1.0)

where last gives the last element of a list, and init removes that element.

Folding in general – foldr again

In fact, the most general type of foldr is more general than we predicted. Suppose
that the starting value has type b and the elements of the list are of type a, then
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foldr :: (a -> b -> b) -> b -> [a] -> b

We give a full explanation of how this type is derived in Section 13.7.
With this insight about the type of foldr we can see that foldr can be used to

define another whole cohort of list functions. For instance, we can reverse a list thus:

rev :: [a] -> [a]
rev xs = foldr snoc [] xs

snoc :: a -> [a] -> [a]
snoc x xs = xs ++ [x]

This function is traditionally called snoc because it is like ‘cons’, :, in reverse. We
can also sort a list in this way

iSort :: [Integer] -> [Integer]
iSort xs = foldr ins [] xs

Before we move on, we look for one last time at the definition of foldr

foldr f s [] = s (foldr.1)
foldr f s (x:xs) = f x (foldr f s xs) (foldr.2)

What is the effect of foldr f s? We have two cases:

• the value at the empty list is given outright by s;

• the value at (x:xs) is defined in terms of the value at xs, and x itself.

This is just like the definition of primitive recursion over lists in Chapter 7.1 Because
of this it is no accident that we can define many of our primitive recursive functions
using foldr. It is usually mechanical to go from a primitive recursive definition to
the corresponding application of foldr.

How do the two approaches compare? It is often easier initially to think of a
function definition in recursive form and only afterwards to transform it into an ap-
plication of foldr. One of the advantages of making this transformation is that we
might then recognize properties of the function by dint of its being a fold. We look at
proof for general functions like map, filter and foldr in Section 11.6 and we look
at other fold functions in Chapter 20.

Exercises

10.13 How would you define the sum of the squares of the natural numbers 1 to n
using map and foldr?

10.14 Define a function to give the sum of squares of the positive integers in a list of
integers.

1There is an ambiguity in our original characterization. In defining the function g by primitive recur-
sion the value of g (x:xs) is defined in terms of both x and xs as well as the value g xs itself; this makes
primitive recursion slightly more general than folding using foldr.
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10.15 For the purposes of this exercise you should use foldr to give definitions of
the prelude functions unZip, last and init, where examples of the latter two
are given by

last "Greggery Peccary" = ’y’
init "Greggery Peccary" = "Greggery Peccar"

10.16 How does the function

mystery xs = foldr (++) [] (map sing xs)

behave, where sing x = [x] for all x?

10.17 The function formatLines is intended to format a list of lines using the func-
tion

formatLine :: Line -> String

to format each line in the list. Define a function

formatList :: (a -> String) -> [a] -> String

which takes as a parameter a function of type

a -> String

to format each item of the list which is passed as the second parameter. Show
how formatLines can be defined using formatList and formatLine.

10.18 Define a function

filterFirst :: (a -> Bool) -> [a] -> [a]

so that filterFirst p xs removes the first element of xs which does not
have the property p. Use this to give a version of returnLoan which returns
only one copy of a book. What does your function do on a list all of whose
elements have property p?

10.19 Can you define a function

filterLast :: (a -> Bool) -> [a] -> [a]

which removes the last occurrence of an element of a list without property p?
How could you define it using filterFirst?

10.20 How could you define a function switchMap which maps two functions along
a list, alternating which to apply. For example,
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switchMap addOne addTen [1,2,3,4] ; [2,12,4,14]

where addOne and addTen behave as you would expect. What is the most
general type of switchMap?

10.21 Define functions

split :: [a] -> ([a],[a])
merge :: ([a],[a]) -> [a]

so that spilt will split a list into two lists, picking elements alternately, while
merge will interleave the two lists; for example,

split [1,2,3,4,5] ; ([1,3,5],[2,4])
merge ([1,3,5],[2,4]) ; [1,2,3,4,5]

10.22 Can you formulate QuickCheck properties which characterise the way that
split and merge work together?

10.23 [Harder] Suppose that the function g is associative, that is

g x (g y z) = g (g x y) z

give a QuickCheck property that you would expect foldr1 g (xs ++ ys) to
have. Can you think of a similar property for foldr g s (xs ++ ys)? Hint:
you will need to think about what property s needs to obey.

10.4 Generalizing: splitting up lists

As a final example in this chapter we look at how we can generalize the function
getWord into a polymorphic, higher-order function. This serves as a model for sim-
ilar generalizations in many different circumstances.

Many list manipulating programs involve splitting up lists in some way, as a part
of their processing. One way of doing this is to select some or all the elements with
a particular property – this we have seen with filter. Other ways of processing
include taking or dropping elements of the list from the front – this we saw in the
text processing example. If we know the number of elements to be dropped, we can
use

take, drop :: Int -> [a] -> [a]

where take n xs and drop n xs are intended to take or drop n elements from the
front of the list xs. These functions are defined in Chapter 7.

Also in Chapter 7 we looked at the example of text processing, in which lists were
split to yield words and lines. The functions getWord and dropWord defined there
were not polymorphic, as they were designed to split at whitespace characters.
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It is a general principle of functional programming that programs can often be
rewritten to use more general polymorphic and/or higher-order functions, and we
illustrate that here.

The function getWord was originally defined thus:

getWord :: String -> String
getWord [] = [] (getWord.1)
getWord (x:xs)

| elem x whitespace = [] (getWord.2)
| otherwise = x : getWord xs (getWord.3)

What forces this to work over strings is the test in (getWord.2), where x is checked
for membership of whitespace. We can generalize the function to have the test – or
property – as a parameter.

How is this to be done? Recall that a property over the type a is represented by a
function of type (a -> Bool). Making this test a parameter we have

getUntil :: (a -> Bool) -> [a] -> [a]
getUntil p [] = []
getUntil p (x:xs)

| p x = []
| otherwise = x : getUntil p xs

in which the test elem x whitespace has been replaced by the test p x, the arbi-
trary property p applied to x. We can of course recover getWord from this definition:

getWord xs
= getUntil p xs

where
p x = elem x whitespace

Built into Haskell are the functionstakeWhile anddropWhile, which are likegetUntil
and dropUntil, except that they take or drop elements while the condition is True.
For instance,

takeWhile :: (a -> Bool) -> [a] -> [a]
takeWhile p [] = []
takeWhile p (x:xs)

| p x = x : takeWhile p xs
| otherwise = []

getUntil can be defined using takeWhile, and vice versa.

Exercises

10.24 Give the type and definition of the generalization dropUntil of the function
dropWord.

10.25 How would you define the function dropSpace using dropUntil? How would
you define takeWhile using getUntil?
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10.26 How would you split a string into lines using getUntil and dropUntil?

10.27 The function getLine of Chapter 7 has a polymorphic type – what is it? How
could you generalize the test in this function? If you do this, does the type of
the function become more general? Explain your answer.

10.28 Can you give generalizations to polymorphic higher-order functions of the text
processing functions getLine, dropLine and splitLines?

10.5 Case studies revisited

We have already seen how the functions introduced here, map, filter and zipWith
and so forth, can be used to re-define many of the functions from the pictures case
study. This section goes back to look at other examples from that case study, as well
as at others.

Pictures

We have discussed the Picture type and the functions over it already in Chapter 1,
Sections 2.6 and 4.2 and Chapter 6. In this chapter we have seen that we can define
flipVusing map, and besideusing zipWith. The exercises that follow pick up other
examples.

Exercises

10.29 How can you use map to define the invertColour function, which turns a
Picture into its negative?

10.30 How can you use zipWith to define the superimpose function,

superimpose :: Picture -> Picture -> Picture

which superimposes one Picture (the first argument) on top of another (the
second)? What does your function do if the pictures are not the same size? Can
you modify your definition so that it handles this case properly?

10.31 [Harder] Using map and any other functions that you need, define the function

rotate90 :: Picture -> Picture

which rotates a picture through 90 degrees.

Library database and supermarket billing

In the database and supermarket billing examples, Sections 5.7 and 6.7, we used list
comprehensions heavily. Clearly we could have instead used map, filter and other
standard list functions such as sum. It is a useful exercise to revisit these examples
and to try re-defining some of the functions.
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Exercises

10.32 Re-implement the functions

books :: Database -> Person -> [Book]
borrowers :: Database -> Book -> [Person]
borrowed :: Database -> Book -> Bool
numBorrowed :: Database -> Person -> Int
makeLoan :: Database -> Person -> Book -> Database
returnLoan :: Database -> Person -> Book -> Database

using the functions map, filter and so on.

10.33 Re-implement the functions from the previous exercise using this new defini-
tion of the Database type:

type Database = [(Person,[Book])]

10.34 Revisit the exercises of Section 6.7, where the supermarket billing example was
developed, and re-implement your solutions using the prelude and library
functions map, filter and so on.

10.35 In the light of the previous exercises, can you come to any conclusions about
when it is sensible to use list comprehensions, and when it is more useful to
use the prelude and library functions explicitly?

Rock - Paper - Scissors

We introduced the Rock - Paper - Scissors game in Section 4.3 and built on that by
defining strategies in Section 8.1 and showing how to play the game interactively in
Section 8.6.

Exercises

10.36 Using the function outcome from Exercise 8.1 (page 184) and standard list
functions such as map, redefine the function

tournamentOutcome :: Tournament -> Integer

described in Exercise 8.2.

10.37 Redefine the function

showTournament :: Tournament -> String

first introduced on page 200, using the standard list functions introduced in
this chapter.
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Summary

This chapter has shown how the informal patterns of definition over lists can be
realized as higher-order, polymorphic functions, such as map, filter and foldr.
We saw how these functions arose, and also how their types were derived, as well as
reviewing the ways in which they could be used to solve problems.

Next we looked at an example of how to generalize a function – the particular
example was taken from the text processing case study, but the example serves as
a model for how to generalize functions in general. The chapter concludes with a
re-examination of some of the case studies.

The chapter has focused on how to write functions which take other functions
as arguments; where do these arguments come from? One answer is that they are
already defined; another is that they come themselves as the results of Haskell func-
tions – this is the topic of the next chapter.



Chapter 11

Higher-order functions

Haskell is a functional programming language: that means that the main way in
which we compute things is by defining functions which describe how to transform
the inputs into the required output. Haskell has a collection of built-in data types
which we can use to model the data in the problem domain, including numbers,
booleans, lists, tuples and data types.

Haskell is also functional in a more distinctive way: functions are data in Haskell,
and can be treated just like data of any other type.

• Functions can be combined using operators, just like the numbers can be
combined using the arithmetical operators.

• Haskell provides lambda abstractions, which allow us to describe functions
directly by expressions, rather than having to define and name a function in
order to use it.

• Functions can be the inputs and outputs of other functions in exactly the same
way as any other type. Functions which have other functions as arguments or
results are called higher-order functions.

• In particular, the syntax of Haskell makes it particularly easy to partially ap-
ply functions and operators, so that functions are returned as the results of
applying functions.

This chapter covers these topics, setting the scene for Chapter 12 where will put
these ideas into practice.

Finally, we’ll also see that we can start to write function-level definitions – some-
times called ‘point-free’ definitions – which can be more concise, more readable and
more suitable for program verification and transformation. Indeed, the chapter con-
cludes with some examples of program verification involving higher-order polymor-
phic functions, and we see there that the theorems proved about them are reusable
in exactly the same way that the functions themselves are reusable.

241
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f.g

g f
a b c

Figure 11.1: Function composition

11.1 Operators: function composition and application

This section describes the built-in operators for function composition and appli-
cation, as well as defining a new operator, forward composition, which composes
functions in the ‘natural’ order.

Function composition: .

Function composition is one of the simplest ways of structuring a program: do a
number of things one after the other: each part can be designed and implemented
separately.

Haskell has the function composition operator over functions built in. The op-
erator, which is denoted by the ‘.’ between the two functions, has the effect of
‘wiring together’ two functions: passing the output of one to the input of another,
and it is . This is pictured in Figure 11.1, where the annotations of the arrows in the
diagram indicate the types of elements involved.

For any functions f and g, the effect of f.g is given by the definition

(f.g) x = f (g x) (comp.1)

Not all pairs of functions can be composed. The output of g, g x, becomes the input
of f, so that the output type of g must equal the input type of f.

Recalling the Picture example, we have already seen a definition of rotate:

rotate :: Picture -> Picture
rotate pic = flipV (flipH pic) (rotate.1)

Using the composition operator we can say directly that rotate is the composition
of flipH with flipV: like

rotate = flipV . flipH (rotate.2)

Notice that we explained the definition (rotate.2) as the ‘composition of flipH
with flipV’: why that way round? We do this because flipH is the function that is
applied first, with flipV being applied to the result of the first application. We are
able to compose flipH with flipV because the output of flipH and the input of
flipV are both of Picture type.

In general, the constraint on which functions can be composed is expressed by
giving ‘.’ the type
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The ‘binding power’ of composition

There is a common error caused by the binding powers of function application and
function composition.
It is an error to write f.g x thinking it means (f.g) applied to x. Because function
application binds more tightly than anything else, it is interpreted by the system as
f.(g x), which will often lead to a type error. For example, evaluating

not.not True

gives the type error message

Couldn’t match expected type ‘a -> Bool’
against inferred type ‘Bool’

In the second argument of ‘(.)’, namely ‘not True’
In the expression: not . not True
In the definition of ‘it’: it = not . not True

since there is an attempt to treat not True as a function to be composed with not.
Such a function needs to have type a -> Bool, whereas it actually has type Bool.
In applying a composition we therefore need to be sure that it is parenthesized like
this:

(not.not) True

(.) :: (b -> c) -> (a -> b) -> (a -> c)

Type of f Type of g Type of (f.g)

which shows that, if we call the first input f and the second g,

• The input of f and the output of g are of the same type: b.

• The result f.g has the same input type, a, as g and the same output type, c, as
f.

Composition is associative, that is f.(g.h) is equal to (f.g).h for all f, g and h.
We can therefore write f.g.h unambiguously to mean ‘do h, then g, then f’.1

Forward composition: >.>

The order in f.g is significant, and can be confusing; (f.g) means ‘first apply g and
then apply f to the result’, so the function that is applied first comes second in the
composition.

1For technical reasons, the ‘.’ is treated as right associative in the Haskell standard prelude.



244 CHAPTER 11. HIGHER-ORDER FUNCTIONS

It is simple in Haskell to define an operator for composition which takes its ar-
guments in the opposite order to ‘.’, like this:

infixl 9 >.>

(>.>) :: (a -> b) -> (b -> c) -> (a -> c)

g >.> f = f . g (fcomp.1)

This definition has the effect that

(g >.> f) x = (f.g) x = f (g x) (fcomp.2)

showing that, as it were, the order of the f and g is swapped before the functions are
applied. The rotate example can then be written

rotate = flipH >.> flipV

which we can read as flipH then flipV, with the functions being applied from left
to right.

The notation ‘>.>’ contains a ‘.’ to show that it is a form of composition, with
the arrows showing the direction in which information is flowing. We will tend to
use ‘>.>’ in situations where a number of functions are composed, and it is there-
fore tiresome to read some lines down the page in order to work out the effect of a
function definition.

The application operator: $

We’re familiar in Haskell with how to write the application of a function f to an ar-
gument e: we just write f next to e, like this: f e. In other words, we juxtapose the
function and its argument.

We can also explicitly write down an application using the application operator,
‘$’, like this: f $ e. Why on earth would we want to do this, when we can write it
without the ‘$’? There are two reasons that an explicit application gets used:

• Many Haskell programmers use ‘$’ as an alternative to parentheses, so you
may well see this in libraries that people have written. Instead of writing some-
thing like

flipV (flipH (rotate horse))

it is possible to write:

flipV $ flipH $ rotate horse

with the same meaning. Arguably this is a little clearer, and it is shorter! Inci-
dentally you can see from this example that ‘$’ is right associative.

• We need to use the application operator as a function, as in the example
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Application and composition

Application and composition can get confused. Function composition combines
two functions, while application combines a function and an argument (which can
be a function, of course).

If, for example, f has type Integer -> Bool, then

– f.x means f composed with the function x; x therefore needs to be of type
s -> Integer for some type s.

– f x means f applied to the object x, so x must therefore be an integer.

– f $ x also means f applied to the object x, and so x must again be an integer.

zipWith ($) [sum,product] [[1,2],[3,4]]

where the application operator is applied to corresponding elements of the
two lists.

Exercises

11.1 Redefine the function printBill from the supermarket billing exercise in
Section 6.7 so that composition is used. Repeat the exercise using forward
composition, >.>.

11.2 If id is the polymorphic identity function, defined by id x = x, explain the
behaviour of the expressions

(id.f) (f.id) id f

If f is of type Int -> Bool, at what instance of its most general type a -> a
is id used in each case? What type does f have if f id is properly typed?

11.3 Define a function composeList which composes a list of functions into a sin-
gle function. You should give the type of composeList, and explain why the
function has this type. What is the effect of your function on an empty list of
functions?

11.4 What is the type of the application operator, $?

11.5 What is the result of the expression given above:

zipWith ($) [sum,product] [[1,2],[3,4]]

11.6 If id is the polymorphic identity function, defined by id x = x, explain the
behaviour of the expressions
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(id $ f) (f $ id) id ($)

If f is of type Int -> Bool, at what instance of its most general type a -> a
is id used in each case? What type does f have if f $ id is properly typed?

11.2 Expressions for functions: lambda abstractions

Haskell definitions give us a way of defining functions, and once we have defined a
function we can use its name to refer to it, as in the application

map addOne [2,3,4]

assuming that we’ve already defined

addOne x = x+1

Haskell gives us a way of writing down an expression that means ‘the function that
adds one to a number’ directly, without having to give it a name. We write

\x -> x+1

which we can read as saying ‘the function that takes x to x+1’, the initial ‘\’ signalling
that it’s a function. So, we can add one to all the numbers in the list [2,3,4] by
writing the expression

map (\x -> x+1) [2,3,4]

An expression like (\x -> x+1) is called a lambda abstraction.

Why is a called a ‘lambda abstraction’?

The ‘lambda’ comes from the lambda calculus, a mathematical theory of functions.
The symbol ‘\’ is the closest ASCII character to the Greek character lambda, ∏, used
in the ∏-calculus. One of the inventors of the ∏-calculus was Haskell B. Curry, after
whom Haskell is named.
The ‘abstraction’ comes from the fact that the expression (\x -> e) is a function,
which ‘abstracts away’ from the particular expression e.

Examples of lambda abstractions

Let’s take a look at some other uses of this notation now. Suppose that we want to
take a list of functions and apply them all to a particular argument,

mapFuns :: [a->b] -> a -> [b]

giving a list of results. We might do this in playing a game of Rock - Paper - Scis-
sors where we apply a number of different strategies to the current game position,
and then compare the different results; we’ll come back to this scenario later in the
chapter.

We could define the function by recursion, like this:
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mapFuns [] x = []
mapFuns (f:fs) x = f x : mapFuns fs x

but in fact we can use map in making the definition: what we have to do at each
element of the list (remember, each element is a function) is to apply it to x, so

mapFuns fs x = map (\f -> f x) fs

What’s important to see here is that the function (\f -> f x) depends on the value
of x, and so we cannot define it as a top level function. We could, alternatively, define
it in a where clause,

mapFuns fs x = map applyToX fs
where
applyToX f = f x

The first definition is clearer, and defines the operative function directly, rather than
having to name and define it in a where clause, separately from where it is used; of
course, either is OK, and it’s a matter of taste which you might use.

One of the main uses of lambda abstractions is to define functions which are the
results of functions. Let’s look at the example of the function

addNum :: Integer -> (Integer -> Integer)

The function takes an integer, 17 say, and returns a function: in this case the function
that adds 17 to its argument. The definition says this directly:

addNum n = (\m -> n+m)

‘Plumbing’ functions together

Another example which uses a lambda abstraction is given by the ‘plumbing’ illus-
trated in Figure 11.2. The object shown is a function, whose arguments are x and y.
The result of the function is

g (f x) (f y)

so the overall effect is to give a function which applies f to each of its (two) argu-
ments before applying g to the results. Again, the definition states this directly:

comp2 :: (a -> b) -> (b -> b -> c) -> (a -> a -> c)

comp2 f g = (\x y -> g (f x) (f y))

To add together the squares of 3 and 4 we can write

comp2 sq add 3 4

where add and sq have the obvious definitions.
In general, a lambda abstraction is an anonymous version of the sort of function

we have defined earlier. In other words, the function f defined by
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comp2 f g

f
g

fx

y
g (f x) (f y)

comp2 f g = \x y -> g (f x) (f y)

Figure 11.2: Plumbing f and g together.

f x y z = result

and the function

\x y z -> result

have exactly the same effect.
We shall see in the next section that partial application will make many defini-

tions – including some of the functions here – more straightforward. On the other
hand the lambda abstraction is more general, and thus can be used in situations
when a partial application could not.

Exercises

11.7 Using a lambda abstraction, the Boolean function not and the built-in func-
tion elem describe a function of type

Char -> Bool

which is True only on non-whitespace characters, that is those which are not
elements of the list " \t\n".

11.8 Define a function total

total :: (Integer -> Integer) -> (Integer -> Integer)

so that total f is the function which at value n gives the total

f 0 + f 1 + ... + f n
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You should be able to do this using built-in functions, rather than using recur-
sion.

11.9 Given a function f of type a -> b -> c, write down a lambda abstraction
that describes the function of type b -> a -> c which behaves like f but
which takes its arguments in the other order. Pictorially,

11.10 Using the last exercise, or otherwise, give a definition of the function

flip :: (a -> b -> c) -> (b -> a -> c)

which reverses the order in which its function argument takes its arguments.

11.3 Partial application

In this section we’ll discover how it is possible to partially apply functions in Haskell,
and what the effect of this is. Underlying the Haskell approach to functions is what
is called the curried representation of functions, in honour of Haskell Curry; this is
introduced in the section after this.

Introducing partial application

The function multiply multiplies together two arguments,

multiply :: Int -> Int -> Int
multiply x y = x*y

We can view the function as a box, with two input arrows and an output arrow.

multiply

If we apply the function to two arguments, the result is a number; so that, for in-
stance, multiply 2 3 equals 6.

multiply2
3 6

What happens if multiply is applied to one argument 2? Pictorially, we have
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multiply2

From the picture we can see that this represents a function, as there is still one input
arrow to the function awaiting a value. This function will, when given the awaited
argument y, return double its value, namely 2*y.

This is an example of a general phenomenon: any function taking two or more
arguments can be partially applied to one or more arguments. This gives a powerful
way of forming functions as results.

Example: the doubleAll function

To illustrate, we at the example of the function which doubles every element in a list
of integers. The function can be defined like this:

doubleAll :: [Int] -> [Int]
doubleAll = map (multiply 2)

In this definition there are two partial applications:

• multiply 2 is a function from integers to integers, given by applyingmultiply
to one rather than two arguments;

• map (multiply 2) is a function from [Int] to [Int], given by partially ap-
plying map.

Partial application is being put to two different uses here.

• In the first case – multiply 2 – the partial application is used to form the
function which multiplies by two, and which is passed to map to form the
doubleAll function.

• the second partial application – of map to multiply 2 – could be avoided by
writing the argument to doubleAll

doubleAll xs = map (multiply 2) xs

but it is quite possible to write a function level definition like this, and it is
shorter and clearer than the definition with the arguments supplied.

In Section 11.2 we saw the example of addNum,

addNum n = (\m -> n+m)

which when applied to an integer n was intended to return the function which adds
n to its argument. With partial application we have a simpler mechanism, as we can
say

addNum n m = n+m

since when addNum is applied to one argument n it returns the function adding n to
its argument.
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Order of arguments

It is not always possible to make a partial application, since the argument to which
we want to apply the function may not be its first argument. Let’s look at the function

elem :: Char -> [Char] -> Bool

We can test whether a character ch is a whitespace character by writing

elem ch whitespace

where whitespace is the string " \t\n". We would like to write the function to
test this by partially applying elem to whitespace, but cannot, because this is the
secdon argument rather than the first.
One solution is to define a variant of elem which takes its arguments in the other
order, as in

member xs x = elem x xs

and write the function as the partial application

member whitespace

Alternatively, we can write down this function as a lambda abstraction, like this:

\ch -> elem ch whitespace

Partially applied operators: operator sections

The operators of the language can be partially applied, giving what are known as
operator sections. Examples include

(+2) The function which adds two to its argument.
(2+) The function which adds two to its argument.
(>2) The function which returns whether a number is

greater than two.
(3:) The function which puts the number 3 on the front

of a list.
(++"\n") The function which puts a newline at the end of a

string.
("\n"++) The function which puts a newline at the beginning

of a string.
($ 3) The function which applies its argument – which will

have to be a function – to the integer 3.

The general rule here is that a section of the operator op will put its argument to the
side which completes the application. That is,

(op x) y = y op x
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Parentheses in Haskell

The main role of parentheses, ( . . .), in Haskell is to group items together so that the
system interprets what you have written in the right way. Typical examples include

• enclosing a pattern in a definition, as in sum (Node t1 t2) = ...;

• enclosing a negative literal in a function application, as in fac (-1);

• enclosing a type annotation, as in foldr plus (1::Int) [1..1000];

• overriding the binding power of operators, as in (2+3)*6;

• grouping names in a deriving clause like deriving (Eq, Show) .

However, other uses of parentheses have an effect of building data elements or
changing the meaning of an identifier.

• To form a tuple, it is necessary to enclose the items in parentheses, as in
(1,True); the notation 1,True on its own is meaningless.

• To turn an infix operator into a prefix operator, it must be enclosed in paren-
theses, as in (&&).

• To form an operator section, the operator and arguments are enclosed in
parentheses as seen in this example: (&& True).(0 /=).(‘rem‘ 2).

(x op) y = x op y

When combined with higher-order functions like map, filter and composition,
the notation is both powerful and elegant, enabling us to make a whole lot more
function-level definitions. For example,

filter (>0) . map (+1)

is the function which adds one to each member of a list, and then removes those
elements which are not positive.

Using partial applications

The partial application and operator sections is important in Haskell programming.
We have already seen that many functions can be defined as specializations of gen-
eral operations like map, filter and so on. These specializations arise by passing a
function to the general operation – this function is often given by a partial applica-
tion, as in the examples from the pictures case study first seen in Chapter 1:

flipV = map reverse
beside = zipWith (++)

We return to look at the Picture case study in greater detail in Section 12.1.
More examples of partial applications will be seen throughout the material to

come, and can be used to simplify and clarify many of the preceding examples.
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Three simple examples are the text processing functions we first looked at in Sec-
tion 7.6:

dropSpace = dropWhile (member whitespace)
dropWord = dropWhile (not . member whitespace)
getWord = takeWhile (not . member whitespace)

where

member xs x = elem x xs

Exercises

11.11 Use partial applications to define the functions comp2 and total given in Sec-
tion 11.2 and its exercises.

11.12 Find operator sections sec1 and sec2 so that

map sec1 . filter sec2

has the same effect as

filter (>0) . map (+1)

11.13 Re-define the function mapFuns, first defined in Section 11.2, using an opera-
tor section of the application operator, $.

11.4 Under the hood: curried functions

Functions in Haskell are represented in curried form, where they take their argu-
ments one at a time. This is called currying after Haskell Curry2 who was one of the
pioneers of the ∏-calculus and after whom the Haskell language is named. This sec-
tion explains how curried functions work, and how we can covert to and fro between
curried and uncurried form.

Why are Haskell functions in curried form? A major reason is that it supports
partial application, as explored in the previous section; it also gives a ‘clean’ read-
able form to the syntax. One reason against choosing a curried representation is
its unfamiliarity to most programmers; another is discussed towards the end of the
section.

Curried functions and function arguments

Partial application can appear confusing: in some contexts functions appear to take
one argument, and in others more than one. In fact, every function in Haskell takes
exactly one argument. This is called the curried representation of functions.If this
application yields a function, then this function may be applied to a further argu-
ment, and so on. Consider the multiplication function again.

2In fact the first person to describe the idea was Schönfinkel, but ‘Schönfinkeling’ does not sound so
snappy!
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The syntax of application and ->

Function application is left associative so that f x ymeans (f x) y, not f (x y).

The function space symbol ‘->’ is right associative, so that a -> b -> c means
a -> (b -> c), not (a -> b) -> c.

multiply :: Int -> Int -> Int

This is shorthand for

multiply :: Int -> (Int -> Int)

and so it can therefore be applied to an integer. Doing this gives (for example)

multiply 2 :: Int -> Int

This can itself be applied to give

(multiply 2) 5 :: Int

which, since function application is left associative, can be written

multiply 2 5 :: Int

Our explanations earlier in the book are consistent with this full explanation of the
system. We hid the fact that

f e1 e2 ... ek
t1 -> t2 -> ... tn -> t

were shorthand for

( ...((f e1) e2) ... ek)
t1 -> (t2 -> (...(tn -> t)...))

but this did no harm to our understanding of how to use the Haskell language. It is
to support this shorthand that function application is made left associative and ->
is made right associative.

The types of partial applications

How is the type of a partial application determined? There is a simple rule which
explains it.

definition 11.1 Rule of cancellation

If the type of a function f is

t1 -> t2 -> ... -> tn -> t
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The arrow is not associative.

Functions f :: Int -> Int -> Int and g :: (Int -> Int) -> Int are illus-
trated here

fInt
Int Int

g(Int->Int) Int

The function f will yield a function from Int to Int when given a Int – an example
is multiply. On the other hand, when given a function of type Int -> Int, g yields
a Int. An example is

g :: (Int -> Int) -> Int
g h = (h 0) + (h 1)

The function g defined here takes a function h as argument and returns the sum of
h’s values at 0 and 1, and so g succ will have the value 3.

and it is applied to arguments

e1::t1, e2::t2, ..., ek::tk

(where k∑n) then the result type is given by cancelling the types t1 to tk

/t1 -> /t2 -> ... -> /tk-> tk+1 -> ... -> tn -> t

which gives the type

tk+1 -> tk+2 -> ... -> tn -> t

For example, using this rule we can see that we get the following types

multiply 2 :: Int -> Int
multiply 2 3 :: Int
doubleAll :: [Int] -> [Int]
doubleAll [2,3] :: [Int]



256 CHAPTER 11. HIGHER-ORDER FUNCTIONS

Currying and uncurrying

In Haskell we have a choice of how to model functions of two or more arguments.
For instance, a function to multiply two integers would normally be defined thus:

multiply :: Int -> Int -> Int
multiply x y = x*y

while an uncurried version can be given by bundling the arguments into a pair, thus:

multiplyUC :: (Int,Int) -> Int
multiplyUC (x,y) = x*y

Why do we usually opt for the curried form? There are a number of reasons.

• The notation is somewhat neater; we apply a function to a single argument
by juxtaposing the two, f x, and application to two arguments is done by ex-
tending this thus: g x y.

• It permits partial application. In the case of multiplication we can write ex-
pressions like multiply 2, which returns a function, while this is not possible
if the two arguments are bundled into a pair, as is the case for multiplyUC.

We can in any case move between the curried and uncurried representations with
little difficulty, and indeed we can define two higher-order functions which convert
between curried and uncurried functions.

Suppose first that we want to write a curried version of a function g, which is
itself uncurried and of type (a,b) -> c.

curry g

g
x

y
g (x,y)

(x,y)

This function expects its arguments as a pair, but its curried version, curry g, will
take them separately – we therefore have to form them into a pair before applying g
to them:

curry :: ((a,b) -> c) -> (a -> b -> c)
curry g x y = g (x,y)

curry multiplyUC will be exactly the same function as multiply.
Suppose now that f is a curried function, of type a -> b -> c.
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uncurry f

f f x y(x,y)
x

y

The function uncurry f will expect its arguments as a pair, and these will have to
be separated before f can be applied to them:

uncurry :: (a -> b -> c) -> ((a,b) -> c)
uncurry f (x,y) = f x y

uncurry multiplywill be exactly the same function as multiplyUC. The functions
curry and uncurry are inverse to each other.

A disadvantage of the curried representation of functions is that the inverse of a
function like

unzip :: ([a,b]) -> ([a],[b])

is not zip :: [a] -> [b] -> [(a,b)] but in fact

uncurry zip :: ([a],[b]) -> [(a,b)]

(or zip’ as we called it earlier in the book) so that statements of properties of these
functions, such as

prop_zip xs = uncurry zip (unzip xs) == xs

will necessarily involve the uncurried version of the binary function, rather than the
curried.

Exercises

11.14 What is the effect of uncurry ($)? What is its type? Answer a similiar ques-
tion for uncurry (:), uncurry (.).

11.15 [Harder] What are the effects and types ofuncurry uncurry, curry uncurry.

11.16 Can you state a property relating unzip and uncurry zip, where the latter is
the function applied first?

11.17 Can you define functions

curry3 :: ((a,b,c) -> d) -> (a -> b -> c -> d)
uncurry3 :: (a -> b -> c -> d) -> ((a,b,c) -> d)
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which perform the analogue of curry and uncurry but for three arguments
rather than two? Can you use curry and uncurry in these definitions?

11.18 [Harder] Can you define functions

curryList :: ([a] -> d) -> (a -> [a] -> d)
uncurryList :: (a -> [a] -> d) -> ([a] -> d)

which perform the analogue of curry and uncurry but for a list of arguments
rather than two distinct arguments? Can you use curry and uncurry in these
definitions?

11.5 Defining higher-order functions

This section revises the different ways that we can use to define higher-order func-
tions, and in particular functions that return functions as results. These functions
are one of the features of functional programming not shared with most other pro-
gramming languages that you might be familiar with, and give Haskell particular
elegance and power.

Using the operators

We can use the built-in operators in defining functions directly. We already saw that
we could define forward composition in terms of composition,

f >.> g = g.f

We also saw this in action in the definition of rotate from the Picture case study:

rotate :: Picture -> Picture
rotate = flipV . flipH

where again the function is defined directly as the composition of two other func-
tions. The meaning of this definition is just the same as one which has explicit argu-
ments:

rotate pic = flipV (flipH pic)

but the earlier definition is clearer to read and to modify; we see explicitly that the
definition is a composition of two functions, rather than having to see it as a conse-
quence of the way the right-hand side is defined in the latter equation.

More importantly, if we state a definition in this form, then we can apply prop-
erties of ‘.’ in analysing how rotate behaves. This means that in proofs we are able
to use properties of composition, as well as being able to see examples of program
transformations which will apply because of the form of composition involved. In
general these remarks will apply to all higher-order, polymorphic functions, and we
see examples of this in Section 11.6 below.

Let’s look at some more examples which use composition in their definitions:
the simplest is this:
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twice f = f.f (twice.1)

f is a function, and the result is f composed with itself. For this to work, it needs to
have the same input and output type, so we have

twice :: (a -> a) -> (a -> a)

This states that twice takes one argument, a function of type (a -> a), and re-
turns a result of the same type. For instance, if succ is the function to add one to an
integer,

succ :: Integer -> Integer
succ n = n+1

then applying twice to it gives the example

(twice succ) 12
; (succ.succ) 12 by (twice.1)
; succ (succ 12) by definition of .
; 14

We can generalize twice so that we pass a parameter giving the number of times the
functional argument is to be composed with itself

iter :: Integer -> (a -> a) -> (a -> a)

iter n f
| n>0 = f . iter (n-1) f (iter.1)
| otherwise = id (iter.2)

This is a standard primitive recursion over the integer argument; in the positive case
we take the composition of f with itself n-1 times and compose once more with f.
In the zero case we apply f no times, so the result is a function which returns its
argument unchanged, namely id.

As an example of using iter, we can define 2n as iter n double 1, if double
doubles its argument.

Exercises

11.19 Give calculations of

iter 3 double 1
(comp2 succ (*)) 3 4
comp2 sq add 3 4

11.20 What is the type and effect of the function

\n -> iter n succ
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11.21 Give an alternative “constructive” definition of iter which creates the list of n
copies of f

[f,f,...,f]

and then composes these functions by folding in the operator ‘.’ to give

f . f . ... . f

Using local definitions

Local definitions allow us to define functions as a subsidiary part of a function defi-
nition. We looked earlier at the example of

addNum :: Integer -> Integer -> Integer

We can use a local definition to give the result, either using a where

addNum n = addN
where
addN m = n+m

or a let

addNum n = let
addN m = n+m

in
addN

This gives us a way of defining results which are functions by locally defining that
function and returning it as the result; it has the advantage of not requiring any
more advanced machinery, but the disadvantage of introducing a named definition
of addN which is extraneous to the actual result.

Lambda abstractions

Let’s try to define a function that takes a binary function as argument, and which
returns a binary function that takes its arguments in the opposite order; let’s call it
flip:

flip :: (a -> b -> c) -> (b -> a -> c)

We can use a lambda abstraction to give the result:

flip f = \x y -> f y x (flip.1)

This makes clear that a function like flip map takes as its first argument the list and
as its second the function to be mapped; it can then be partially applied to its first
argument, having the effect of applying map to its second only. This allows us to do
a partial application to the second argument of a two argument function.
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Partial application

Partial applications give us a particularly direct way of defining some higher order
functions. Taking the example we have just looked at, we can instead say

flip f x y = f y x

If we apply flip to one argument, we have a function which behaves just as de-
scribed in (flip.1). Similarly, the behaviour of

addNum n = addN
where
addN m = n+m

is given by the simple definition

addNum n m = n+m

partially applied to n.

Constructors are functions too

Datatype constructors are functions, and so they can be partially applied, passed as
arguments to functions or indeed returned as results. To give just one example, this
expression creates a list of People from lists of names and ages:

zipWith Person ["Geraint","Bob"] [45,67]

Examples

We conclude this section by exploring how partial applications and operator sec-
tions can be used to simplify and shorten definitions in a number of other exam-
ples. Often it is possible to avoid giving an explicit function definition if we can use
a partial application to return a function. Revisiting the examples of Chapter 7 we
see that to double all the elements in a list we can write

doubleAll :: [Int] -> [Int]
doubleAll = map (*2)

using an operator section (*2) to replace the double function, and giving the func-
tion definition directly by partially applying map.

To filter out the even elements in a numerical list, we have to check whether the
remainder on dividing by two is equal to zero. As a function we can write

(==0).(‘mod‘ 2)

This is the composition of two operator sections: first find the remainder on dividing
by two, then check if it is equal to zero. (Why can we not write (‘mod‘ 2 == 0)?)
The filtering function can then be written

getEvens :: [Int] -> [Int]
getEvens = filter ((==0).(‘mod‘ 2))
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Point-free programming

Some function-level, or ‘point-free’, definitions express what the function does with
real clarity: writing flipV = map reverse precisely describes how to flip a pic-
ture in a vertical mirror. However, it is possible to take this approach too far, and
write definitions which it’s very hard to understood. For instance, what does this
function do:

puzzle = (.) (.)

Reading the definition tells us that it is the composition operator partially applied to
itself, but still it’s not clear what the function will do. How can we work out what it
does? The best way is to apply it to some arguments and see what it does:

(.) (.) x ; (.).x

so

(.) (.) x y ; ((.).x) y ; (.) (x y)

Applying to a third argument gives

(.) (.) x y z ; ... ; (.) (x y) z ; (x y) . z

and finally

(.) (.) x y z w ; ... ; ((x y) . z) w ; (x y) (z w)

giving us the much more informative explanation:

puzzle x y z w = (x y) (z w)

Finally, we use to get GHCi to give its type, like this :type (.)(.) and get

(.)(.) :: (a1 -> b -> c) -> a1 -> (a -> b) -> a -> c

So there we are . . . To be fair, once we understand what puzzle does, it can be use-
ful to have the original definition which explicitly uses the composition operator,
because then any general laws that we discover for (.) will apply to puzzle too.

Our final example comes from the list splitting study. We defined

getWord xs
= getUntil p xs

where
p x = elem x whitespace

The local definition is not now needed, as we can define the function p by an opera-
tor section:

getWord xs = getUntil (‘elem‘ whitespace) xs
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Note the way that we partially apply a function to its second argument, by forming
an operator section. This works because

(‘elem‘ whitespace) x
= x ‘elem‘ whitespace
= elem x whitespace

as required.
Finally, the function getWord can itself be given a direct definition, by partial

application thus

getWord = getUntil (‘elem‘ whitespace)

This definition reads like an informal explanation – to get a word, get characters until
a whitespace character is found.

Exercises

11.22 Using partial application re-define the function

mapFuns :: [a->b] -> a -> [b]

first defined in Section 11.2.

11.23 [Harder] Define a function

slope :: (Float -> Float) -> (Float -> Float)

which takes a function f as argument, and returns (an approximation to) its
derivative f’ as result.

11.24 [Harder] Define a function

integrate :: (Float -> Float) -> (Float -> Float -> Float)

which takes a function f as argument, and returns (an approximation to) the
two argument function which gives the area under its graph between two end
points as its result.

11.6 Verification and general functions

Verification can take on a different character when we look at higher-order poly-
morphic functions. We can start to prove equalities between functions, rather than
between values of functions, and we shall also see that we are able to prove theo-
rems which resemble their subjects in being general and reusable, and so applicable
in many contexts.
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Function-level verification

We claimed in Section 11.5 that the function iter is a generalization of twice, since

iter 2 f
= f . iter 1 f by (iter.1)
= f . (f . iter 0 f) by (iter.1)
= f . (f . id) by (iter.2)
= f . f by (compId)
= twice f by (twice.1)

In proving this we have used the equality between two functions

f . id = f (compId)

How is this proved? We examine how each side behaves on an arbitrary argument x

(f . id) x
= f (id x)
= f x

so that for any argument x the two functions have the same behaviour. As black
boxes, they are therefore the same. As what interests us here is their behaviour, we
say that they are equal. We call this ‘black-box’ concept of equality extensional.

definition 11.2 Principle of extensionality:

Two functions f and g are equal if they have the same value at every argument.

This is called extensionality in contrast to the idea of intensionality in which we say
two functions are the same only if they have the same definitions – we no longer
think of them as black boxes; we are allowed to look inside them to see how the
mechanisms work, as it were. If we are interested in the results of our programs, all
that matters are the values given by functions, not how they are arrived at. We there-
fore use extensionality when we are reasoning about function behaviour in Haskell.
If we are interested in efficiency or other performance aspects of programs, then the
way in which a result is found will be significant, however. This is discussed further
in Chapter 20.

Exercises

11.25 Using the principle of extensionality, show that function composition is asso-
ciative: that is, for all f, g and h,

f . (g . h) = (f . g) . h

11.26 Show that for all f,

id . f = f
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11.27 Show that the function flip defined in Section 11.4 satisfies

flip . flip = id

Hint: to show this, you might want to prove that for any f,

flip (flip f) = f

11.28 Two functions f and g are inverses if it can be shown that

f . g = id g . f = id

Prove that the functions curry and uncurry of Section 11.4 are inverses. Can
you think of other pairs of inverse functions?

11.29 Using induction, prove that for all natural numbers n,

iter n id = id

11.30 A function f is called idempotent if

f . f = f

Show that the functions abs and signum are idempotent. Can you think of
any other idempotent functions?

Higher-level proofs

Our verification thus far has concentrated on first-order, monomorphic functions.
Just as map, filter and fold generalize patterns of definition, we shall find that
proofs about these functions generalize results we have seen already. To give some
examples, it is not hard to prove that

doubleAll (xs++ys) = doubleAll xs ++ doubleAll ys

holds for all finite lists xs and ys. When doubleAll is defined as map (*2) it be-
comes clear that we have an example of a general result,

map f (xs++ys) = map f xs ++ map f ys (map++)

which is valid for any function f. We also claimed in an earlier exercise that

sum (xs++ys) = sum xs + sum ys (sum.3)

for all finite lists xs, ys. The function sum is given by folding in (+),

sum = foldr (+) 0

and we have, generally, if f is associative, and st is an identity for f, that is,
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x ‘f‘ (y ‘f‘ z) = (x ‘f‘ y) ‘f‘ z
x ‘f‘ st = x = st ‘f‘ x

for all x, y, z then the equation

foldr f st (xs++ys) = f (foldr f st xs) (foldr f st ys) (foldr.3)

holds for all finite xs and ys. Obviously (+) is associative and has 0 as an identity,
and so (sum.3) is a special case of (foldr.3). Now we give three proofs of exam-
ples in the same vein.

map and composition

A first example concerns map and composition. Recall the definitions

map f [] = [] (map.1)
map f (x:xs) = f x : map f xs (map.2)
(f . g) x = f (g x) (comp.1)

It is not hard to see that we should be able to prove that

map (f . g) xs = (map f . map g) xs (map.3)

holds for every finite list xs.

f.g

g

f

Applying (f . g) to every member of a list should be the same as applying g to
every member of the list and then applying f to every member of the result. It is
proved just as easily, by structural induction. The (base) case requires the identity
to be proved for the empty list.

map (f . g) [] = [] by (map.1)

(map f . map g) []
= map f (map g []) by (comp.1)
= map f [] by (map.1)
= [] by (map.1)

Assuming that
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map (f . g) xs = (map f . map g) xs (hyp)

is true, it is now necessary to prove that

map (f . g) (x:xs) = (map f . map g) (x:xs) (ind)

Again, it is enough to analyse each side of the equation.

map (f . g) (x:xs)
= (f . g) x : map (f . g) xs by (map.2)
= f (g x) : map (f . g) xs by (comp.1)

(map f . map g) (x:xs)
= map f (map g (x:xs)) by (comp.1)
= map f (g x : map g xs) by (map.2)
= f (g x) : map f (map g xs) by (map.2)
= f (g x) : (map f . map g) xs by (comp.1)

The induction hypothesis is exactly what is needed to prove the two sides equal,
completing the proof of the induction step and the proof itself.

Each Haskell list type, besides containing finite lists, also contains infinite and
partial lists. In Chapter 17 these will be explained and it will be shown that (map.3)
is true for all lists xs, and therefore that the functional equation

map (f . g) = (map f) . (map g)

holds in general.

map and filter

The proof above showed how properties of functional programs could be proved
from the definitions of the functions in a straightforward way. The properties can
state how the program behaves – that a sorting function returns an ordered list, for
instance – or can relate one program to another. This latter idea underlies program
transformation for functional languages. This section introduces an example called
filter promotion which is one of the most useful of the basic functional transforma-
tions.

filter p . map f = map f . filter (p . f) (filter/map)

The equation says that a map followed by a filter can be replaced by a filter fol-
lowed by a map. The right-hand side is potentially more efficient than the left, since
the map operation will there be applied to a shorter list, consisting of just those ele-
ments with the property (p . f). An example is given by the function first defined
in Section 11.3.

filter (0<) . map (+1)

Instead of mapping first, the function can be replaced by
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map (+1) . filter ((0<) . (+1))
= map (+1) . filter (0<=)

and it is clear that here the transformed version is more efficient, since the test
(0<=) is no more costly than (0<). The proof that

(filter p . map f) xs = (map f . filter (p . f)) xs

for finite lists xs is by structural induction. First we reiterate the definitions of map,
filter and composition.

map f [] = [] (map.1)
map f (x:xs) = f x : map f xs (map.2)

filter p [] = [] (filter.1)
filter p (x:xs)

| p x = x : filter p xs (filter.2)
| otherwise = filter p xs (filter.3)

(f . g) x = f (g x) (comp.1)

The base case consists of a proof of

(filter p . map f) [] = (map f . filter (p . f)) [] (base)

This is true since

(filter p . map f) []
= filter p (map f []) by (comp.1)
= filter p [] by (map.1)
= [] by (filter.1)

and

(map f . filter (p . f)) []
= map f (filter (p . f) []) by (comp.1)
= map f [] by (filter.1)
= [] by (map.1)

In the induction step, a proof of

(filter p . map f) (x:xs) = (map f . filter (p . f)) (x:xs) (ind)

is required, using the induction hypothesis

(filter p . map f) xs = (map f . filter (p . f)) xs (hyp)

The proof begins with an analysis of the left-hand side of (ind).

(filter p . map f) (x:xs)
= filter p (map f (x:xs)) by (comp.1)
= filter p (f x : map f xs) by (map.2)
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There are two3 cases to consider: whether p (f x) is True or False. Taking the
case where p (f x) is True, we continue to examine the left-hand side of (ind),
giving

= f x : filter p (map f xs) by (filter.2)
= f x : (filter p . map f) xs by (comp.1)
= f x : (map f . filter (p . f)) xs by (hyp)

Now we look at the right-hand side of (ind), also assuming that p (f x) is True:

(map f . filter (p . f)) (x:xs)
= map f (filter (p . f) (x:xs)) by (comp.1)
= map f (x: (filter (p . f) xs)) by (filter.2)
= f x : map f (filter (p . f) xs) by (map.2)
= f x : (map f . filter (p . f)) xs by (comp.1)

which shows that (ind) holds in the case that p (f x) is True.
A similar chain of reasoning gives the same result in the case where p (f x) is

False. This establishes (ind) assuming (hyp), and so together with (base) com-
pletes the proof of the filter promotion transformation in the case of finite lists; it
holds, in fact, for all lists.

map, reverse and the Picture case study

When we introduced the Picture case study in Chapter 1 we claimed that we could
prove that flipV and flipH can be applied in either order to give the same result.
Our implementation defines them thus

flipH = reverse
flipV = map reverse

and we can see informally that

• reverse affects the order of the elements, while leaving the elements un-
changed;

• map reverse affects each of the elements, while keeping their order the same.

The second observation is a consequence of the function being a map, and so we
make the more general claim that for all finite lists xs and all functions f,

map f (reverse xs) = reverse (map f xs) (map/reverse)

This has the consequence that

flipV (flipH xs) = flipH (flipV xs)

if we replace f in (map/reverse) by reverse. We will see in Chapter 17 that we
can establish (map/reverse) for all lists xs and so conclude that the functional
equations hold:

3We should also think about what happens when p (f x) is undefined; in this case both sides will be
undefined, and so equal.
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QuickCheck and higher-order functions

We’ve already seen that QuickCheck is a very good way of checking whether par-
ticular properties hold for functions that we define. QuickCheck works by generat-
ing random test data and checking whether properties hold at these values. While
generating data is not entirely straightforward for structured types like lists and al-
gebraic types, it can be done. Generating random functions is more difficult, and
isn’t supported “out of the box” by QuickCheck: for it to work we need to be able
to “show” functions. We examine how to do this, and so how to use QuickCheck to
test properties involving higher-order functions, in Chapter 19. In the meantime we
look at how to check properties for given functions and randomly-generated lists.

Let’s take the example of the property for map and filter, (filter/map) intro-
duced on page 267:

prop_mf p f =
\xs -> (filter p . map f) xs == (map f . filter (p . f)) xs

We can check this for specific values of p and f like this

Prompt> quickCheck (prop_mf (>0) (\x -> x*x))
+++ OK, passed 100 tests.
Prompt> quickCheck (prop_mf (>=0) (\x -> x*x*x))
+++ OK, passed 100 tests.

where for each instance of p and f the property is tested for 100 randomly generated
values.

map f . reverse = reverse . map f
flipV . flipH = flipH . flipV

We now prove (map/reverse) by induction over xs.
We have seen the definition of map in the previous examples; reverse is defined

thus.

reverse [] = [] (reverse.1)
reverse (z:zs) = reverse zs ++ [z] (reverse.2)

Statement We first have to prove the base case:

map f (reverse []) = reverse (map f []) (base)

and then we need to prove the induction step,

map f (reverse (x:xs)) = reverse (map f (x:xs)) (ind)

assuming the induction hypothesis:

map f (reverse xs) = reverse (map f xs) (hyp)
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Base Looking at the two sides of the base case in turn, we have

map f (reverse [])
= map f [] by (reverse.1)
= [] by (map.1)

reverse (map f [])
= reverse [] by (map.1)
= [] by (reverse.1)

and this shows that the two sides of the base case equation have the same value, and
so we move on to the induction case.

Induction We start by examining the left-hand side of (ind):

map f (reverse (x:xs))
= map f (reverse xs ++ [x]) by (reverse.2)

Now, it is not hard to prove that

map f (ys++zs) = map f ys ++ map f zs (map++)

(we leave this proof as an exercise for the reader) and using (map++) we can con-
tinue to simplify the left-hand side

= map f (reverse xs) ++ map f [x] by (map++)
= map f (reverse xs) ++ [f x] by (map.1),(map.2)

Using the induction hypothesis, we can make one more step,

= reverse (map f xs) ++ [f x] by (hyp)

Now looking at the right-hand side,

reverse (map f (x:xs))
= reverse (f x : map f xs) by (map.2)
= reverse (map f xs) ++ [f x] by (reverse.2)

and now we see that the two sides are equal, which establishes the induction step
and so completes the proof.

Libraries of theorems

We have seen in this section that we can prove properties of general functions like
map, filter and foldr. This means that when we define a function which uses map,
say, we can call on a whole library of properties of map, including, for all finite xs and
ys:

map (f . g) xs = (map f . map g) xs
(filter p . map f) xs = (map f . filter (p . f)) xs
map f (reverse xs) = reverse (map f xs)
map f (ys++zs) = map f ys ++ map f zs
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We have seen that using the general functions map, filter and others allowed us
to make direct definitions of new functions rather than having to define them ‘from
scratch’ using recursion. In exactly the same way, these general theorems will mean
that in many cases we can avoid writing an induction proof about our specific func-
tion, and instead simply use one of these theorems.

Exercises

11.31 Prove that for all ys and zs the equation

map f (ys++zs) = map f ys ++ map f zs (map++)

as was used in the proof of the theorem about map and reverse.

11.32 If f is associative, and st is an identity for f – these notions were defined on
page 266 – then prove that the equation (foldr.3):

foldr f st (xs++ys) = f (foldr f st xs) (foldr f st ys)

holds for all finite xs and ys.

11.33 Argue that the result

concat (xs ++ ys) = concat xs ++ concat ys

is a special case of (foldr.3), using

concat = foldr (++) []

as the definition of concat.

11.34 Prove that for all finite lists xs, and functions f,

concat (map (map f) xs) = map f (concat xs)

11.35 Prove that over the type Int

(0<) . (+1) = (0<=)

as is used in the theorem relating map and filter.

11.36 Prove for all finite lists xs that

filter p (filter q xs) = filter (p &&& q) xs

where the operator &&& is defined by

p &&& q = \x -> (p x && q x)



Verification and general functions 273

Summary

We have seen in this chapter how we can write functions with functions as results.
This means that we can create the functions by applying operations like map, filter
and foldr within our programs, and that we can indeed treat functions as ‘first-
class citizens’ of our programming language. A consequence of this has been that
we are able to explain the definitions of some of the Picture operations first seen
in Chapter 1.

The main mechanisms introduced here have allowed us to create functions by
applying functions or operators to fewer arguments than we expected, thus creating
partial applications and operator sections. We also saw how the Haskell-type system
and syntax were adapted to deal with the curried form of function definitions, by
which multi-argument functions take their arguments one at a time.

We concluded by showing that we could prove general properties about general
functions like map, and thus build up libraries of results about these functions which
can potentially be applied whenever the general function is reused.
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Chapter 12

Developing higher-order
programs

This chapter doesn’t introduce any new Haskell features; instead it gives a series of
examples, exercises and case studies which build on what we have covered so far. In
particular it uses what we have learned about higher-order functions in the previous
chapter.

As we saw there, functions in Haskell are data values just like any other, and
so they can be used in modelling just as easily as using other data types. This is
completely different from other kinds of programming languages, such as Java, C
or C#, where there is a rigid distinction between data and the methods operating
over that data. We’ll see that having functions as data gives us a powerful new tool
for programming, and that is illustrated in this chapter through a series of examples
and exercises.

We also include in this chapter a longer example – building an index for a doc-
ument – which shows how program development can proceed in Haskell, using
higher-order functions as a natural part of the development of larger programs. We
start the chapter by revisiting the Picture example, and conclude with some gen-
eral advice about program development, and about how to read and understand an
unfamiliar function definition in Haskell.

12.1 Revisiting the Picture example

Now that we have been introduced to higher-order functions, and in particular par-
tial application, we can revisit the example of pictures and complete our definitions
of the functions over the Picture type. The case study was introduced in Chapter 1
and further developed in Sections 2.6 and 6.4.

Recall that a picture is a list of lines, each of which is made up of a list of charac-
ters

type Picture = [[Char]]

275
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We first define reflection in a horizontal mirror, which is given simply by reversing
the list of lines,

flipH :: Picture -> Picture
flipH = reverse

To reflect in a vertical mirror we need to reverse every line – clearly a task for map:

flipV :: Picture -> Picture
flipV = map reverse

To place pictures next to each other we have two functions. To put one picture above
the other we join together the two lists of lines

above :: Picture -> Picture -> Picture
above = (++)

while placing the pictures side-by-side requires corresponding lines to be joined to-
gether with ++, using the function zipWith first introduced in Section 10.2.

beside :: Picture -> Picture -> Picture
beside = zipWith (++)

Among the other functions mentioned were

invertColour :: Picture -> Picture
superimpose :: Picture -> Picture -> Picture
printPicture :: Picture -> IO ()

and we give their definitions now. To invert the colour in a picture, we need to invert
the colour in every line, so

invertColour = map ...

where ... will be the function to invert the colour in a single line. To invert every
character in a line – which is itself a list of characters – we will again use map. The
function mapped is invertChar, first defined in Section 6.4. This gives the defini-
tion

invertColour :: Picture -> Picture
invertColour = map (map invertChar)

which we can read as saying

apply map invertChar to every line in the Picture; that is, apply the
function invertChar to every character in the Picture, which is a list
of lists of characters.

Suppose we are equipped with a function

combineChar :: Char -> Char -> Char
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which superimposes two characters; how are we to use this in superimposing two
pictures? Recall the function

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

where zipWith f xs ys produces a list by applying the function f to correspond-
ing elements chosen from xs and ys, so that, for instance

zipWith (*) [2,0] [3,1] = [6,0]

To superimpose the pictures, we will need to superimpose corresponding lines, so

superimpose = zipWith ...

where ... will be required to superimpose two single lines.
In doing this, we have to superimpose corresponding characters, so this is again

an application of zipWith. What is used to perform the combination of individual
characters? The answer is combineChar, and so we have

superimpose :: Picture -> Picture -> Picture
superimpose = zipWith (zipWith combineChar)

Our final definition is of printPicture, which outputs a Picture to the screen.
We have already seen that to output a String we can use the function

putStr :: String -> IO ()

so it will be sufficient for us to precede application of this by a function to turn the
list of lines making up the Picture into a string, in which the lines are separated by
newline characters. This we can write as a composition

concat . map (++"\n")

since the effect of this is first to add a newline character to every line – the role of
map (++"\n") – and then to join this list of strings into a single string – the effect of
the concat. We therefore define the printing function thus:

printPicture :: Picture -> IO ()
printPicture = putStr . concat . map (++"\n")

Exercises

In these exercises we suggest further operations over pictures.

12.1 Define a function

chessBoard :: Int -> Picture

so that chessBoard n is a picture of an n by n chess board.

12.2 How would you implement invertColour, superimpose and printPicture
if Picture was defined to be [[Bool]]?
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12.3 Define a function

makePicture :: Int -> Int -> [(Int,Int)] -> Picture

where the list argument gives the positions of the black points in the picture,
and the two integer arguments give the width and height of the picture. For
example,

makePicture 7 5 [(1,3),(3,2)]

will have the form

.......

...#...

.......

..#....

.......

It is evident from this that positions within lines and lines themselves are counted
from zero, with line zero being the top line.

12.4 Define a function

pictureToRep :: Picture -> ( Int , Int , [(Int,Int)] )

which has the reverse effect of makePicture. For example, if pic is

....

.##.

....

then pictureToRep pic will be ( 4 , 3, [(1,1),(1,2)] )

12.5 If we make the definition

type Rep = ( Int , Int , [(Int,Int)] )

discuss how you would define functions over Rep to rotate, reflect and super-
impose pictures under this alternative representation. Discuss the advantages
and disadvantages of this representation in comparison with the original rep-
resentation given by the Picture type.

12.6 In the light of the discussion in the last four chapters, redo the exercises of
Section 6.6, which deal with positioned pictures.
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12.2 Functions as data: strategy combinators

This section revisits the Rock - Paper - Scissors game, which we have already looked
at in Section 4.3 which introduced the Move type, in Section 8.1 where we defined
the Strategy type, and in Section 8.6 where we saw how the game could be played.
Strategies are represented by functions

type Strategy = [Move] -> Move

Section 8.1 introduced a number of strategies, including random, cycling and con-
stant strategies. One way of building new strategies is to combine existing strategies
in different ways: we do this by defining functions or combinators working over
strategies. Because strategies are represented by functions, these new functions will
be higher-order, having functions as arguments and results.

Why ‘combinator’?

Why do we use the word ‘combinator’? It’s a piece of history that certain functions
in the ∏-calculus were called combinators, and this usage has passed over to the
functional programming community. Just remember that ‘combinator’ is another
word for ‘function’, typically a higher-order function. A ‘combinator library’ is just a
library of (higher-order) functions, too.

Choosing between alternatives

Let’s begin by defining the function

alternate :: Strategy -> Strategy -> Strategy

so that the strategy given by

alternate str1 str2

is to combine the two strategies str1 and str2, using them alternately. We can
define the function using partial application like this

alternate str1 str2 moves =
case length moves ‘rem‘ 2 of

1 -> str1 moves
0 -> str2 moves

or using a lambda abstraction we have

alternate str1 str2 =
\moves ->

case length moves ‘rem‘ 2 of
1 -> str1 moves
0 -> str2 moves

In both definitions we check whether the length of list of moves is even or odd to
decide between the two alternatives. Another way to define the function is this:
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alternate str1 str2 moves =
map ($ moves) [str1,str2] !! (length moves ‘rem‘ 2)

In this definition both of the strategies – put into a list – are applied to the moves and
then one of the elements of that list is chosen using (length moves ‘rem‘ 2) as
an index into the list. In reading this definition, recall that xs!!j is the jth element
of xs, starting counting at 0, and that ($ moves) is a partial application of $, the
application operator, so that

($ moves) str1 ; (str1 $ moves) ; str1 moves

Exercises

12.7 Using randInt n, which returns a random integer in the range [0 .. n-1],
or otherwise, define a function

sToss :: Strategy -> Strategy -> Strategy

so that sToss srt1 srt2 makes a random choice between the two strategies
each time the function is applied to a list of moves.

12.8 Define a function

alternativeList :: [Strategy] -> Strategy

which cycles through all the strategies in the argument in turn. Hint: you may
want to model you definition on one of the definitions of alternative above.
You may also want to think about what your function does when passed the
empty list of strategies!

12.9 Define a function

sTossList :: [Strategy] -> Strategy

which makes a random choice of which strategy it should apply form its argu-
ment list, each time it applied. In writing the definition, you will need to think
about what sTossList [] should be.

12.10 Can you use the functionsTossList to give another definition of therandomStrategy
strategy first defined in Section 8.1?

Other strategy combinators

There are more sophisticated ways of playing Rock - Paper - Scissors than playing
randomly or cycling through a set of alternatives. A first approach is to make a hy-
pothesis about what strategy our opponent is playing, and for us to play to beat that.
We achieve that by applying our opponent’s strategy (here called opponent) and
choose to beat that:
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beatStrategy :: Strategy -> Strategy

beatStrategy opponent moves =
beat (opponent moves)

We will look at some other suggested strategy combinators in the following exercises.

Exercises

12.11 Define a function

majority :: [Strategy] -> Strategy

which works by applying all the strategies in the list at each stage, choosing
the option that is chosen by the most strategies: in the case of a draw, a choice
is made randomly.

12.12 Define a function

train :: Moves -> [Strategy] -> Strategy

which is supplied with a list of opponent’s moves to train it, and a list of pos-
sible strategies to use. The function should run all the strategies in the list on
the list of moves, and choose the strategy which is most successful in winning
against the given moves.

12.3 Functions as data: recognising regular expressions

Regular expressions are patterns which can be used to describe sets of strings of
characters of various kinds, such as these.

• The identifiers of a programming language – strings of alphanumeric charac-
ters which begin with an alphabetic character.

• The numbers – integer or real – given in a programming language.

• Regular expressions can also be used to extend the pattern language in a pro-
gramming language, allowing functions to match in more powerful ways than
those built in.

There are five sorts of pattern, or regular expression:

" This is the Greek character epsilon, which matches the empty string.
x x is any character. This matches the character itself.
(r1|r2) r1 and r2 are regular expressions.
(r1r2) r1 and r2 are regular expressions.
(r)* r is a regular expression.
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Examples of regular expressions include (a|(ba)), ((ba)|("|(a)*)) and hello.
In order to give a more readable version of these, it is assumed that * binds more
tightly than juxtaposition (i.e. (r1r2)), and that juxtaposition binds more tightly
than |. This means that r1r2* will mean (r1(r2)*), not ((r1r2))*, and that
r1|r2r3 will mean r1|(r2r3), not (r1|r2)r3.

Regular expressions are patterns, so we need to describe which strings match each
regular expression.

" The empty string matches epsilon.

x The character x matches the pattern x, for any character x.

(r1|r2) The string st will match (r1|r2) if st matches either r1 or r2 (or
both).

(r1r2) The string st will match (r1r2) if st can be split into two sub-
strings st1 and st2, st = st1++st2, so that st1 matches r1 and st2
matches r2.

(r)* The string st will match (r)* if st can be split into zero or more sub-
strings, st = st1++st2++...++stn, each of which matches r. The
zero case implies that the empty string will match (r)* for any regular
expression r.

Let’s build a model of regular expressions in Haskell; we choose to embed them as
functions from String to Bool, which is the function which recognises exactly the
strings matching the pattern.

type RegExp = String -> Bool

Now we define the five different kinds of regular expression, starting off with epsilon,
≤, which is matched by the empty string only. We use an operator section to define
the function:

epsilon :: RegExp
epsilon = (=="")

We use a similar definition for the function that recognises a single character, passed
in as its argument

char :: Char -> RegExp
char ch = (==[ch])

We next define the Haskell operator |||, which implements the ‘or’ operation, |.
Applying this to e1 and e2 gives a function which takes the string x to the ‘or’ of the
two values e1 x and e2 x:

(|||) :: RegExp -> RegExp -> RegExp
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e1 ||| e2 =
\x -> e1 x || e2 x

Sequencing the match of two regular expressions is given by the Haskell <*> oper-
ator. In defining this we’ll use the function splits that returns a list of all the ways
that a string can be split in two

splits "Spy" ; [("","Spy"),("S","py"),("Sp","y"),("Spy","")]

Now we can give the definition of <*>

(<*>) :: RegExp -> RegExp -> RegExp

e1 <*> e2 =
\x -> or [ e1 y && e2 z | (y,z) <- splits x ]

How does this definition work? The list comprehension runs through all the splits of
the input string, x. For each of these we test whether the front half (y) matches the
first pattern (e1) by applying e1 to x, and similarly we apply e2 to the second half of
the string (z). Since we need both matches to succeed, we combine the results with
‘and’, &&. The result of this is to give a list of the answers for each split: we only need
one of these to succeed, and so we combine the results with the built-in function or
that takes the ‘or’ of a list of Boolean values.

We can define the star operation using the operators that we’ve already defined,
like this:

star :: RegExp -> RegExp

star p = epsilon ||| (p <*> star p)

The definition says ’to match (p)*, either match it zero times (epsilon) or match p
followed by (p)*’. What is elegant about this is that we just used the operators |||
and <*>, together with recursion, to make the definition at the level of the RegExp
type; we didn’t need to think about star p being a function.

Getting star right

There is a flaw in the definition of star that we have just given: if it is possible for
p to match the empty string, i.e. if p "" is True, then the definition may go into an
infinite loop.

We need to modify the definition of star to say instead that

star p = epsilon ||| (p <**> star p)

where <**> is defined like <*> except that it omits the split ("",st) from splits
st. This change is enough to make sure that the infinite loop is avoided, as it means
that the first match of p can’t be with an empty string, and so the next match of (p)*
must be on a shorter string.
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Exercises

12.13 Define the function

splits :: [a] -> ([a],[a])

which defines the list of all the ways that a list can be split in two (see the
example of splits "Spy" above).

12.14 By trying it with a number of examples, which strings does this regular expres-
sion match?

star ((a ||| b) <*> (a ||| b))

where a and b are defined by

a, b :: RegExp
a = char ’a’
b = char ’b’

12.15 Which strings does this regular expression match?

star (star ((a ||| b) <*> (a ||| b)))

12.16 Define functions

option, plus :: RegExp -> RegExp

where option e matches zero or one occurrences of the pattern e, and plus
e matches one or more occurrences of the pattern e.

12.17 Define regular expressions which match

• Strings of digits which begin with a non-zero digit.

• Fractional numbers: two strings of digits separated by ’.’; make sure that
these numbers have no superfluous zeroes at the beginning or the end, so
exclude strings like "01.34" and "1.20".

In doing this you might find it useful to define a function

range :: Char -> Char -> RegExp

so that, for example, range ’A’ ’Z’ will match any capital letter.

12.18 Give regular expressions describing the following sets of strings

• All strings of as and bs containing at most two as.

• All strings of as and bs containing exactly two as.
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• All strings of as and bs of length at most three.

• All strings of as and bs which contain no repeated adjacent characters, that
is no substring of the form aa or bb.

12.19 [Hard] Add to the regular expressions the facility to name substrings that match
particular sub-expressions, so that instead of returning a Bool a RegExp will
return a list of bindings of names to substrings.

Why a list? First, it allows for no matching to happen (empty list, []) or for
multiple matches, which can also happen as matching the regular expressions
(r1r2) and (r)* can succeed in multiple different ways.

12.4 Case studies: functions as data

This section introduces a number of shorter case studies which use functions to rep-
resent data. First we show then we can model natural numbers as higher-order func-
tions, next we look at graphics can be represented by functions, in a ‘bit-mapped’
style.

Natural numbers as functions

We can represent the natural numbers 0, 1, 2, . . . by functions of type

type Natural a = (a -> a) -> (a -> a)

where the number n is represented by “apply the argument n times”, so

zero f = id
one f = f
two f = f.f

and so on. We can get a visible version of one of the numbers using the function

int :: Natural Int -> Int
int n = n (+1) 0

Exercises

12.20 Define functions

succ :: Natural a -> Natural a
-- sends representation of n to rep. of n+1

plus :: Natural a -> Natural a -> Natural a
-- sends reps. of n and m to rep. of n+m

times :: Natural a -> Natural a -> Natural a
-- sends reps. of n and m to rep. of n*m
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and test your answers using int.

12.21 Can you write QuickCheck properties which can be used to test these func-
tions and this representation of natural numbers?

Graphics as functions

Bitmaps represent graphical images, recording information pixel by pixel, typically
for a rectangular region. Dealing with real bitmap formats, such as BMP, GIF, TIFF
and others, requires grappling with the details of the encoding and compression
used to store images compactly. Many of these formats are supported in the pack-
ages on Hackage, and as an extended exercise it is possible to transform the repre-
sentation we discuss here into a real graphical format. The remainder of this section
develops this “lo fi” model through a series of exercises.

Representation

We should think how to model Pictures in this way. If we use our previous represen-
tation of positions,

type Position = (Int,Int)

where the first coordinate is the x or horizontal coordinate and the second is the y
or vertical one. We can then think of a bitmap being defined like this:

type Bitmap = Position -> Pixel (Bitmap.1)

where Pixel contains the particular information held about an individual pixel.
One “lo fi” model of this – consistent with the Picture type – is to define

type Pixel = Char

but more complex representations of each pixel are possible. The representation
(Bitmap.1) is an infinite bitmap, and to represent finite objects we need to specify
the area that is represented.

• We can do this by supplying a single Positionwhich specifies the dimensions
of the bitmap, so that given position (width,height) the relevant values of
the function are those (x,y)where x is between 0 and width-1, and similarly
for y. We call this the floating representation.

• Alternatively, we can specify two positions which give the bottom left and top
right corners of the relevant area of the mapping. This is the positioned rep-
resentation.

Exercises

12.22 Give new definitions of Bitmap which embody the floating and positioned
representations outlined above.
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12.23 Define functions that will convert between your definitions of Bitmap and
Picture.

12.24 [Harder] Investigate theData.Mapmodule as another representation of bitmaps.

Operations

We have already discussed pictures in Chapter 1 and then in Sections 2.6, 6.4 and
12.1, and these sections present various operations over the Picture type.

Exercises

12.25 Try to re-implement the operations over pictures using the two representa-
tions of Bitmap you developed earlier. Is it possible to implement all the op-
erations: if not, explain why not.

12.26 [Harder] Re-implement the operations over the Data.Map representation of
bitmaps.

Taking it further

It is possible to develop a more realistic implementation of bitmaps using facilities
that are available in Hackage.

Exercises

12.27 Develop a variant of Bitmap that allows for pixels to be coloured. You can
render this to a terminal using the facilities of the package ansi-terminal,
which is available on Hackage.

12.28 [Hard] Transform the “lo fi” representation we discussed in this section into a
real graphical format such as BMP, GIF or TIFF, using the facilities provided in
Hackage.

12.29 [Hard] As an application of one of the bitmap formats supported by Haskell,
create a program to yield a pixel visualisation of a text file, such as a computer
program. In this visualisation each character in the file is rendered as a pixel,
and it is particularly effective for visualising program code which has been
processed with some sort of syntax highlighting.

12.5 Example: creating an index

This section explores a different aspect of text processing from those we have looked
at already. How can an index for a document be produced automatically? We use
the example to illustrate how higher-order functions are used in many parts of the
final program. Polymorphism allows their use at different types, and their function
parameters mean that they can be used to different effect in different situations.
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To make the example texts shorter, a scaled-down version of the indexing prob-
lem is investigated. This is only done for ease of presentation, as all the important
aspects of the system are explored here.

Specification

We should first specify what the program is to do. The input is a text string, in which
lines are separated by the newline character ’\n’. The index should give every line
on which the word in question occurs. Only words of length at least four letters are
to be indexed, and an alphabetical listing of the results produced. Within each entry,
a line number should not be duplicated. For example, on the input

"cathedral doggerel cathedral\nbattery doggerel cathedral\ncathedral"

we would expect to get an index

battery 2
cathedral 1, 2, 3
doggerel 1, 2

Designing the program

We can represent the index as a list, with each entry being an item. What will a single
entry be? It has to associate a collection of line numbers with each word in the text;
we can therefore represent each entry by a pair consisting of a list of numbers, of
type [Int], and a word, of type String. The top-level function will therefore be

makeIndex :: Doc -> [ ([Int],Word) ]

where we use the type synonyms

type Doc = String
type Line = String
type Word = String

to distinguish the different uses of the string type in the design which follows. Note
that these are all the same type; we use the names to make our discussion of types
carry more information: the definition of ‘Line’ can be read as saying ‘String thought
of as representing a line’, for example.

How can the program be designed? We focus on the data structures which the
program will produce, and we can see the program as working by making a series of
modifications to the data with which we begin. This data-directed design is com-
mon in Haskell functional program development.

At the top level, the solution will be a composition of functions. These perform
the following operations, in turn.

• Split the text, a Doc, into lines, giving an object of type [Line].

• Pair each line with its line number, giving an object of type [(Int,Line)].
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• Split the lines into words, associating each word with the number of the line
on which it occurs. This gives a list of type [(Int,Word)].

• Sort this list according to the alphabetical ordering of words (Strings), giving
a list of the same type.

• Modify the lists so that each word is paired with a list containing a single line
number. This gives a result of type [([Int],Word)].

• Amalgamate entries for the same word into a list of numbers, giving a list of
type [([Int],Word)].

• Shorten the list by removing all entries for words of less than four letters, giving
a list of type [([Int],Word)].

The definition follows; note that we have used comments to give the type of each
component function in the forward composition:

makeIndex
= lines >.> -- Doc -> [Line]

numLines >.> -- [Line] -> [(Int,Line)]
allNumWords >.> -- [(Int,Line)] -> [(Int,Word)]
sortLs >.> -- [(Int,Word)] -> [(Int,Word)]
makeLists >.> -- [(Int,Word)] -> [([Int],Word)]
amalgamate >.> -- [([Int],Word)] -> [([Int],Word)]
shorten -- [([Int],Word)] -> [([Int],Word)]

Once the type of each of the functions is given, development of each can proceed
independently. The only information necessary to use a function is its type, and
these types are specified in the definition above. Each of the functions can now be
given, in turn.

Implementing the component functions

To split a string into a list of lines it must be split at each occurrence of the new-
line character, ’\n’. How is this written as a function? One solution is to write
functions analogous to getWord and dropWord, which together were used earlier
in splitWords. Alternatively, we can use the functions getUntil and dropUntil
from Chapter 7. A third alternative is to look in the standard prelude where we find
the function lines already defined; we therefore use that.

lines :: Doc -> [Line]

The next function should pair each line with its line number. If the list of lines is
linels, then the list of line numbers is

[1 .. length linels]

Stepping back from the problem, it is apparent that the lists of lines and line num-
bers need to be combined into a list of pairs, by zipping the two lists together. The
zip function has already been defined to do exactly this, so the required function is
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numLines :: [Line] -> [ ( Int , Line ) ]
numLines linels

= zip [1 .. length linels] linels

Now the lines have to be split into words, and line numbers attached. We first con-
sider the problem for a single line.

numWords :: ( Int , Line ) -> [ ( Int , Word ) ]

Splitting into words can be done by the function splitWords of Chapter 7, modi-
fied slightly. When we defined splitWords we preserved any punctuation charac-
ters, as these were to appear in the output of the text processor. In contrast here we
will modify the definition of whitespace to include punctuation, and so remove the
punctuation from the resulting words. We define

whitespace :: String
whitespace = " \n\t;:.,\’\"!?()-"

Each of these words is then to be paired with the (same) line number. Stepping back
from the problem, we see that we have to perform an operation on every item of a
list, the list of words making up the line. This is a job for map,

numWords (number , line)
= map (\word -> (number,word)) (splitWords line)

or a list comprehension

numWords (number , line)
= [ (number , word) | word <- splitWords line ]

To apply this to the whole text, the function numWords has to be applied to every
line. This is again done by map, and the individual results joined together or con-
catenated. We make a direct definition of the function, by composing its two parts.
First we map the function numWords, then we concatenate the results, using concat.

allNumWords :: [ ( Int , Line ) ] -> [ ( Int , Word ) ]
allNumWords = concat . map numWords

What has been achieved so far? The text has been transformed into a list of line-
number/word pairs, from which an index is to be built. For instance, the text

"cat dog\nbat dog\ncat"

will be converted to

[(1,"cat") , (1,"dog") , (2,"bat") , (2,"dog") , (3,"cat")]

The list must next be sorted by word order, and lists of lines on which a word appears
be built. The ordering relation on pairs of numbers and words is given by

orderPair :: ( Int , Word ) -> ( Int , Word ) -> Bool
orderPair ( n1 , w1 ) ( n2 , w2 )

= w1 < w2 || ( w1 == w2 && n1 < n2 )
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The words are compared for dictionary order. For pairs containing the same words,
ordering is by line number.

Sorting a list is most easily done by a version of the quicksort algorithm. The list
is split into parts smaller than and larger than a given element; each of these halves
can be sorted separately, and then joined together to form the result.

sortLs :: [ ( Int , Word ) ] -> [ ( Int , Word ) ]

sortLs [] = []
sortLs (p:ps) = sortLs smaller ++ [p] ++ sortLs larger

The lists smaller and larger are the lists of elements of ps which are smaller (or
larger) than the pair p. Note that it is here that duplicate copies are removed – any
other occurrence of the pair p in the list ps does not appear in either smaller or
larger.

How are the two lists defined? They are given by selecting those elements of ps
with given properties: a job for filter, or a list comprehension. Going back to the
definition of sortLs,

sortLs (p:ps)
= sortLs smaller ++ [p] ++ sortLs larger

where
smaller = [ q | q<-ps , orderPair q p ]
larger = [ q | q<-ps , orderPair p q ]

After sorting the running example will be

[(2,"bat") , (1,"cat") , (3,"cat") , (1,"dog") , (2,"dog")]

The entries for the same word need to be accumulated together. First each entry is
converted to having a list of line numbers associated with it, thus

makeLists :: [ (Int,Word) ] -> [ ([Int],Word) ]
makeLists

= map mklis
where
mklis ( n , st ) = ( [n] , st )

For our example, this gives

[ ([2],"bat") , ([1],"cat") , ([3],"cat") ,
([1],"dog") , ([2],"dog") ]

After this, the lists associated with the same words are amalgamated.

amalgamate :: [ ([Int],Word) ] -> [ ([Int],Word) ]

amalgamate [] = []
amalgamate [p] = [p]
amalgamate ((l1,w1):(l2,w2):rest)

| w1 /= w2 = (l1,w1) : amalgamate ((l2,w2):rest) (amalg.1)
| otherwise = amalgamate ((l1++l2,w1):rest) (amalg.2)
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The first two equations are simple, with the third doing the work.

• If we have two adjacent entries with different words, case (amalg.1), then
we know that there is nothing to add to the first entry – we therefore have to
amalgamate entries in the tail only.

• If two adjacent entries have the same word associated, case (amalg.2), they
are amalgamated and the function is called again on the result. This is because
there may be other entries with the same word, also to be amalgamated into
the leading entry.

Consider an example

amalgamate [ ([2],"bat") , ([1],"cat") , ([3],"cat") ]
; ([2],"bat") : amalgamate [([1],"cat"),([3],"cat")]by (amalg.1)
; ([2],"bat") : amalgamate [ ([1,3],"cat") ] by (amalg.2)
; ([2],"bat") : [ ([1,3],"cat") ]
; [ ([2],"bat") , ([1,3],"cat") ]

To meet the requirements, one other operation needs to be performed. ‘Small’ words
of less than four letters are to be removed.

shorten
= filter sizer

where
sizer (nl,wd) = length wd > 3

Again, the filter function proves useful. The index function can now be defined in
full:

makeIndex :: Doc -> [ ([Int],Word) ]
makeIndex

= lines >.> numLines >.> allNumWords >.> sortLs >.>
makeLists >.> amalgamate >.> shorten

As was said at the beginning of this section, function composition provides a power-
ful method for structuring designs: programs are written as a pipeline of operations,
passing the appropriate data structures between them.

numLineslines shorten

It is easy to see how designs like these can be modified. To take one example, the
indexing program above filters out short words only as its final operation. There are
a number of earlier points in the chain at which this could have been done, and it is
a worthwhile exercise to consider these.

Exercises
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12.30 Define the function linesusing the functions getUntil and dropUntil from
Chapter 10, or the built-in functions takeWhile and dropWhile. You should
be careful that your functions do not give an empty word when there are empty
lines in theDoc; this might happen for the examples"cat\n\ndog" and"fish\n".

12.31 How would you use lambda expressions to replace the local definitions in
makeLists and shorten? How would you define these functions using list
comprehensions?

12.32 In the index for this book, instead of printing an entry like

cathedral 3, 5, 6, 7, 9, 10

a number of ranges could be given:

cathedral 3, 5-7, 9-10

How would you redesign your program to do this? Hint: first think about
the type of the new index representation and then consider adding another
function to the (forward) composition which currently forms the definition of
makeIndex.

12.33 How would you re-define sortLs so that duplicate copies of an item are not
removed? For the index, this means that if a word occurs twice on line 123 say,
then 123 occurs twice in the index entry for that word.

12.34 How could the functions getUntil and dropUntil be used in the definition
of amalgamate?

12.35 Explain how the function sizer defined locally in shorten can be defined as
a composition of built-in functions and operator sections; the role of sizer is
to pick the second half of a pair, find its length, and compare the result with 4.

12.36 How is the following definition of the last conditional equation foramalgamate
incorrect? Give an example calculation to justify your answer.

amalgamate ((l1,w1):(l2,w2):rest)
| w1 /= w2 = (l1,w1) : amalgamate ((l2,w2):rest)
| otherwise = (l1++l2,w1) : amalgamate rest

12.37 Give a definition of

printIndex :: [ ([Int],Word) ] -> IO ()

which gives a neatly laid-out printable version of an index, as shown at the
start of the section. You might find it useful to define a function

showIndex :: [ ([Int],Word) ] -> String
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and to use this as a part of your definition of printIndex.

12.38 Modify the program so that words of less than four letters are removed as a
part of the definition of allNumWords.

12.39 Modify the makeIndex function so that instead of returning the list of line
numbers on which a word occurs, the function returns the total number of
times that the word occurs. You will need to make sure that multiple occur-
rences of a word in a single line are counted. There are two ways of tackling
the problem.

• Modify the program as little as is necessary – you could return the length of
a list rather than the list itself, for instance.

• Take the program structure as a guide, and write a (simpler) program which
calculates the number of occurrences directly.

12.40 Modify the program so that capitalized words like "Dog" are indexed under
their uncapitalized equivalents ("dog"). This does not work well for proper
names like "Amelia" — what could you do about that?

12.41 The function sortLs is limited to sorting lists of type [(Int,Word)] because
it calls the orderPair function. Redefine the function so that it takes the com-
parison function as a parameter. What is its type after this redefinition?

12.42 How would you modify the program if it was to be used to form the index for
a Haskell script? Hint: you need to think about what it is sensible to ignore in
such an enterprise.

12.6 Development in practice

This section goes back to the advice on design and programming from Chapter 4
and illustrates how it can be used in a series of programming examples.

Generalizing the problem

Suppose that we are asked to define the lists [1 .. n] for ourselves. A first attempt
might try to use recursion, thus

[1 .. n] = 1 : [2 .. n] (..1)

but the problem here is that [2 .. n] is not an instance of what we are trying to
define. The presence of the 2 here suggests that instead of solving the particular
problem of lists starting at 1 we should solve the more general problem of defining
lists beginning at an arbitrary value. We therefore define [m .. n]:

[m .. n]
| m>n = [] (..2)
| otherwise = m : [m+1 .. n]
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Another solution is given by

[1 .. n]
| 1>n = [] (..3)
| otherwise = [1 .. n-1] ++ [n]

but (..3) has the disadvantage that it is substantially less efficient than (..2), a
topic we pick up in Chapter 20.

Another example of generalization was given in the text processing example in
Section 7.6 where we defined a function getLine. The effect of this function is to
take a list of words and to return the list of words making up the maximal first line
(of length lineLen) which can be built from the words. It was apparent in making
the definition that we needed to make the line length a parameter of the definition,
so that we defined

getLine :: Int -> [Word] -> Line

rather than giving it the type [Word] -> Line.

Simplifying the problem

Suppose that we are asked to solve the problem of identifying strings which are
palindromes, like

"Madam I\’m Adam"

One way of approaching the problem is first to think of identifying palindromes
where punctuation and capitalization are not considered, such as "ABBA". We might
solve this by

simplePalCheck :: String -> Bool
simplePalCheck st = (reverse st == st)

for instance, but note that there are at least two other different ways we might im-
plement the function simplePalCheck. Once we have this function we can then
modify it to solve the original problem. Alternatively we can use this solution to a
simplified problem in the full solution:

palCheck = simplePalCheck . clean

where

clean :: String -> String

puts all capitals into small letters and removes punctuation. We look at this in the
next section.

Design choices

The clean function combines mapping (capitals to smalls) and filtering (removing
punctuation) and so can be solved thus
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clean = map toSmall . filter notPunct (clean.1)

or by means of a list comprehension

clean st = [ toSmall ch | ch <- st , notPunct ch ] (clean.2)

How do we choose between these options? One advantage of (clean.1) is that we
see clearly that we have a function composition, but perhaps (clean.2) is more
readable.

Auxiliary functions

Suppose we are asked to define when one string is a subsequence of another. By
that we mean that the characters of the first string occur next to each other inside
the second string, so that "Chip" is a subsequence of "Fish & Chips", but not of
"Chin up". The function we seek to define is

subseq :: String -> String -> Bool

and we try to define this by recursion. Starting with the cases of the empty string,

subseq [] _ = True
subseq (_:_) [] = False

so what is the general case, subseq (x:xs) (y:ys)?

• One alternative is that (x:xs) is a subsequence of ys, as in
subseq "Chip" "Fish & Chips"

• The other alternative is that (x:xs) occurs at the start of (y:ys), as in
subseq "Chip" "Chips"

This latter is not a recursive call to the function we are defining, so we have to say

subseq (x:xs) (y:ys)
= subseq (x:xs) ys || frontseq (x:xs) (y:ys)

and write an auxiliary function definition to check this new condition.

frontseq :: String -> String -> Bool
frontseq [] _ = True
frontseq (_:_) [] = False
frontseq (x:xs) (y:ys)

= (x==y) && frontseq xs ys

Exercises

12.43 Give a recursive definition of the range

[m,n .. p]
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12.44 Think of two more ways of implementing the function

simplePalCheck :: String -> Bool

discussed on page 295.

12.45 Define a function

subst :: String -> String -> String -> String

so that the result of subst start find replace is the string start modi-
fied so that the first occurrence offind as a subsequence is replaced by replace.
If there is no such subsequence, the string should be returned unmodified, so
that, for instance,

subst "Fish & Chips" "Chip" "Boat" ; "Fish & Boats"
subst "Fish & Chips" "Ship" "Boat" ; "Fish & Chips"

Modify the definition so that every occurrence of find is replaced by replace.
Explain what your original and modified definitions do in the case of the ex-
ample

subst "Fish & Chips" "" "Boat"

12.7 Understanding programs

This section offers advice to readers confronted with an unfamiliar function defini-
tion. There are various things we can do with the definition, and these are examined
in turn here. Given a functional program like

mapWhile :: (a -> b) -> (a -> Bool) -> [a] -> [b]

mapWhile f p [] = [] (mapWhile.1)
mapWhile f p (x:xs)

| p x = f x : mapWhile f p xs (mapWhile.2)
| otherwise = [] (mapWhile.3)

we can understand what it means in various different ways. We can read the pro-
gram itself, we can write calculations of examples using the program, we can prove
properties of the program, and we can estimate its space and time complexity,

Reading the program

Besides any comments which might accompany a program, the program itself is its
most important documentation.

The type declaration gives information about the input and output types: for
mapWhile, we have to supply three arguments:
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• a function, f say, of arbitrary type, a -> b;

• a property of objects of type a; that is a function taking an a to a Boolean value;
and,

• a list of items of type a.

The output is a list of elements of type b – the output type of f.
The function definition itself is used to give values of mapWhile, but also can be

read directly as a description of the program.

• On [], the result is [].

• On a non-empty list, if the headxhas property p, then according to(mapWhile.2),
we have f x as the first element of the result, with the remainder given by a
recursive call on xs.

• If the property p fails of x, the result is terminated, as it were, by returning the
empty list [].

In the definition we have a complete description of how the program behaves, but
we can animate this by trying specific examples.

Calculating with the program

A more concrete view of what the program does is given by calculating particular
examples. For instance,

mapWhile (2+) (>7) [8,12,7,13,16]
; 2+8 : mapWhile (2+) (>7) [12,7,13,16] by (mapWhile.2)
; 10 : 2+12 : mapWhile (2+) (>7) [7,13,16] by (mapWhile.2)
; 10 : 14 : [] by (mapWhile.3)
; [10,14]

Other examples include

mapWhile (2+) (>2) [8,12,7,13,16] ; [10,14,9,15,18]
mapWhile (2+) (>2) [] ; []

Note that in these examples we use mapWhile at the instance

(Int -> Int) -> (Int -> Bool) -> [Int] -> [Int]

of its polymorphic type, given by replacing the type variables a and b by the type
Int.

Reasoning about the program

We can get a deeper understanding about a program by proving properties that the
program might have. For mapWhile, we might prove that for all f, p and finite lists
xs,
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mapWhile f p xs = map f (takeWhile p xs) (mapWhile.4)
mapWhile f (const True) xs = map f xs (mapWhile.5)
mapWhile id p xs = takeWhile p xs (mapWhile.6)

where we can, in fact, see (mapWhile.5) and (mapWhile.6) as consequences of
the characterization of mapWhile given by property (mapWhile.4).

Rather than proving these properties, it is possible to use QuickCheck to test
them with random data. Recall the discussion in the breakout box ‘QuickCheck and
higher-order functions’ on page 270, which outlines how functions of this sort can
be tested on a selection of functional arguments and randomly-generated list data.

Program behaviour

It is not hard to see that the program will at worst take time linear (that is O(n1)) in
the length (n) of the list argument assuming O(n0) behaviour of f and p, as it runs
through the elements of the list once, if at all.

The space behaviour is more interesting; because we can output the head of a
list once produced, the space required will be constant, as suggested by underlining
the parts which can be output in the calculation above.

mapWhile (2+) (>7) [8,12,7,13,16]
; 2+8 : mapWhile (2+) (>7) [12,7,13,16]
; 10 : 2+12 : mapWhile (2+) (>7) [7,13,16]
; 10 : 14 : []
; [10,14]

We return to a fuller discussion of program behaviour in Chapter 20.

Getting started

Each view of the program gives us a different understanding of its behaviour, but
when we are presented with an unfamiliar definition we can begin to understand
what its effect is by calculating various small examples. If we are given a collection
of functions, we can test out the functions from the bottom up, building one calcu-
lation on top of another, using GHCi as a calculator.

The important thing is to realize that rather than being stuck, we can get started
by calculating representative examples to show us the way.

Summary

This chapter has explored the idea that program development works in a cycle: first
we clarify the specification of the problem to be solved, next we devise a plan of how
to solve the problem, and only then do we implement the solution.

At each stage we should reflect on and evaluate what we have done: this aspect
is crucial particularly when we are learning to program. For example, being aware
of the errors that we make can help us to prevent making them in the future. Also,
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if we take a problem we have already solved and try to solve it with a new technique
we will learn something about the new technique as well as seeing how it fits in with
what we have learned already. This is something that we do by continually revisiting
the Picture case study.



Chapter 13

Overloading, type classes and
type checking

In looking at Haskell so far we have seen two kinds of function which work over more
than one type. A polymorphic function such as length has a single definition which
works over all its types. On the other hand, overloaded functions like equality, + and
show can be used at a variety of types, but with different definitions at the different
types.

The chapter starts with a discussion of the benefits of overloading, before looking
at type classes, which are collections of types; what the members of a class have in
common is the fact that certain functions are defined over the type. For instance,
the members of the equality type class, Eq, are those types which carry an equality
function, ==. Type classes are thus the mechanism by which overloaded functions
can be given types in Haskell.

We shall see how to define type classes and types which belong to these classes:
the instances of the class. Haskell’s prelude and libraries contain a number of classes
and instances, particularly for numeric types – we survey these, referring readers to
the Haskell report (Marlow 2010) for a full exposition.

We then look at how type inference and type checking work in Haskell, first look-
ing at types without type variables – monomorphic definitions – and then at poly-
morphic, overloaded definitions, and see how they are given types, illustrated by a
series of examples.

13.1 Why overloading?

This section looks at the reason for including overloading in Haskell; we do this by
looking at a scenario.

Suppose that Haskell did not have overloading, and that we wanted to check
whether a particular element is a member of a list of type Bool. We would define a
function like

301
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elemBool :: Bool -> [Bool] -> Bool
elemBool x [] = False
elemBool x (y:ys)

= (x ==Bool y) || elemBool x ys

where we have written ==Bool for the equality function over Bool.
Suppose now that we want to check whether an integer is a member of an integer

list, then we need to define a new function

elemInt :: Int -> [Int] -> Bool

which differs from elemBool only in using ==Int instead of ==Bool. Each time
we want to check membership of a list of a different type we will have to define
yet another – very similar – function. One way out of this problem is to make the
equality function a parameter of a general function

elemGen :: (a -> a -> Bool) -> a -> [a] -> Bool

but this gives too much generality, because it can be used with any parameter of
type a -> a -> Bool rather than just an equality function. More importantly, us-
ing this definition the parameter has to be passed in explicitly each time the function
elemGen is used, like this

elemGen (==Bool)

making programs less easy to read.1 The alternative is to define a function which
uses the overloaded equality,

elem :: a -> [a] -> Bool

where the type a has to be restricted to those types a which have an equality. The
advantages of this approach are

• Reuse The definition of elem can be used over all types with equality.

• Readability It is much easier to read == than ==Int and so on. This argu-
ment holds particularly for numeric operators, where it is more than tiresome
to have to write +Int, *Float and so on.

What this discussion shows is that a mechanism is needed to give a type to functions
like elem: that is precisely the purpose of type classes.

13.2 Introducing classes

The elem function appears to have the type

elem :: a -> [a] -> Bool
1In fact, the implementation of classes works like this, passing in a dictionary argument containing the

appropriate equality function at each point that elem is used, after it has been transformed into elemGen.
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but elem only has this type for types a which have an equality function. How is this
to be expressed? We need some way of saying whether we have an equality function
over a given type. We call the collection of types over which a function is defined a
type class or simply a class. For instance, the set of types over which == is defined is
the equality class, Eq.

Defining the equality class, Eq

How do we define a class, such as Eq? We say what is needed for a type a to be in a
class. In this case we need a function == defined over a, of type a->a->Bool.

class Eq a where
(==) :: a -> a -> Bool

In general we will specify an interface or signature which has to be implemented
for a type to belong to the class.

Members of a type class are called its instances, and a type is made into an in-
stance by giving an implementation of the interface for that type. This is called an
instance declaration. Built-in instances of Eq include the base types Int, Float,
Bool, Char. Other instances are given by tuples and lists built from types which are
themselves instances of Eq; examples include the types (Int,Bool) and [[Char]].

Not all types will necessarily carry an equality; we may choose not to define one,
for reasons of information hiding, or there may be no natural way of defining an
equality on a particular type.

For example, function types like Integer -> Integer are not instances of Eq,
since there is no way that we can write a program which will decide whether two
functions over Integer have the same behaviour, that is have the same values at
every possible input.

‘Instances’ in Haskell

It is unfortunate that the term instance is used in two different ways in Haskell. We
talked in Section 6.1 of a type t1 being an instance of a type t2, when we can sub-
stitute for a type variable in t2 to give t1. Here we have talked about a type being
an instance of a class. It should be clear which one we mean from the context of a
discussion, but it’s helpful to bear this ‘overloading’ of terminology in mind.

Functions that use equality

Many of the functions which we have defined so far use equality over particular
types. The function

allEqual :: Int -> Int -> Int -> Bool
allEqual m n p = (m==n) && (n==p)

decides whether three integers are equal. If we examine the definition itself, it con-
tains nothing which is specific to integers; the only constraint it makes is that m, n
and p are compared for equality. Their type can be a for any a in the type class Eq.
This gives allEqual a most general type thus:
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allEqual :: Eq a => a -> a -> a -> Bool
allEqual m n p = (m==n) && (n==p)

The part before the => is called the context. We can read the type as saying that

allEqual has type a -> a -> a -> Bool for all types a in the class Eq
(that is, all types a for which == is defined)

This means that allEqual can be used at many types, including these

allEqual :: Char -> Char -> Char -> Bool
allEqual :: (Int,Bool) -> (Int,Bool) -> (Int,Bool) -> Bool

since both Char and (Int,Bool) belong to Eq.
What happens if we break this constraint by trying to compare three functions

for equality? If we define

suc :: Integer -> Integer
suc = (+1)

and try to evaluate

allEqual suc suc suc

in GHCi we get the message

No instance for (Eq (Integer -> Integer))
arising from a use of ‘allEqual’ at <interactive>:1:0-19

Possible fix:
add an instance declaration for (Eq (Integer -> Integer))

In the expression: allEqual suc suc suc
In the definition of ‘it’: it = allEqual suc suc suc

which conveys the fact that (Integer -> Integer) is not in the Eq class, and sug-
gests that the way to fix the problem is to add an instance declaration for that type.

More equality examples

The elem example in Section 13.1 will have the type

elem :: Eq a => a -> [a] -> Bool

and so it will be usable at the types

Bool -> [Bool] -> Bool
Int -> [Int] -> Bool

and so on. Many of the functions we have defined already use equality in an over-
loaded way. We can use GHCi to deduce the most general type of a function, such as
the books function from the library database of Section 5.7, by commenting out its
type declaration in the script, thus
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-- books :: Database -> Person -> [Book]

and then by typing

:type books

to the prompt. The result we get in that case is

books :: Eq a => [ (a,b) ] -> a -> [b]

which is perhaps a surprise at first. This is less so if we rewrite the definition with
books renamed lookupFirst, because it looks up all the pairs with a particular
first part, and returns their corresponding second parts. Here it is with its variables
renamed as well

lookupFirst :: Eq a => [ (a,b) ] -> a -> [b]

lookupFirst ws x
= [ z | (y,z) <- ws , y==x ]

Clearly from this definition there is nothing specific about books or people and so it
is polymorphic, if we can compare objects in the first halves of the pairs for equality.
This condition gives rise to the context Eq a. Finally from Section 5.7, as we saw for
books,

borrowed :: Eq b => [ (a,b) ] -> b -> Bool
numBorrowed :: Eq a => [ (a,b) ] -> a -> Int

Summary

In this section we have introduced the idea of a class, which is a collection of types,
its instances, with the property that certain functions described in an interface are
defined over the type. One way we can think of a class is as an adjective: any partic-
ular type is or is not in the class, just as the weather at any particular moment might
or might not be sunny.

We saw how equality could be seen as being defined over all the types in the
class Eq. This allows many of the functions defined so far to be given polymorphic
type, allowing them to be used over any type in the class Eq. In the following sec-
tions we explain how classes and instances are defined in general, and explore the
consequences of classes for programming in Haskell.

Exercises

13.1 How would you define the ‘not equal’ operation, /=, from equality, ==? What
is the type of /=?

13.2 Define the function numEqual which takes a list of items, xs say, and an item,
x say, and returns the number of times x occurs in xs. What is the type of your
function? How could you use numEqual to define member?
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13.3 Define functions

oneLookupFirst :: Eq a => [ (a,b) ] -> a -> b
oneLookupSecond :: Eq b => [ (a,b) ] -> b -> a

oneLookupFirst takes a list of pairs and an item, and returns the second part
of the first pair whose first part equals the item. You should explain what your
function does if there is no such pair. oneLookupSecond returns the first pair
with the roles of first and second reversed.

13.3 Signatures and instances

In the last section we saw that the operation of equality, ==, is overloaded. This
allows == to be used over a variety of types, and also allows for functions using ==
to be defined over all instances of the class of types Eq. This section explains the
mechanics of how classes are introduced, and then how instances of them may be
declared. This allows us to program with classes that we define ourselves, rather
than simply using the built-in classes of Haskell.

Declaring a class

As we saw earlier, a class is introduced by a declaration like:

class Info a where
examples :: [a]
size :: a -> Int

The declaration introduces the name of the class, Info, and this is followed by an
interface or signature, that is a list of identifiers and their types. To be in the Info
class the type a must carry the two bindings in the signature:

• the examples list, which is a list of objects of type a, which we can think of as
giving a list of representative examples from the type, and,

• the size function, which returns a measure of the size of the argument, as an
integer.

The general form of a class definition will be:

class Name ty where
... signature involving the type variable ty ...

Now, how are types made instances of such a class?

Defining the instances of a class

A type is made a member or instance of a class by defining the interface functions
for the type. For example,
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instance Eq Bool where
True == True = True
False == False = True
_ == _ = False

describes how Bool is an instance of the equality class. The declarations that nu-
meric types like Int and Float are in the equality class (and indeed other built-in
classes) involve the appropriate primitive equality functions supplied by the imple-
mentation.

Although we have called the class Eq the equality class, there is no requirement
that the == function we define has any of the usual properties of equality apart from
having the same type as equality. It is up to the user to ensure that he or she makes
sensible definitions, and documents them adequately.

Going back to our Info example, we might say

instance Info Char where
examples = [’a’,’A’,’z’,’Z’,’0’,’9’]
size _ = 1

This gives a list of six typical characters and states that each character is of size one.
We can also make Bool and Int instances of Info, like this:

instance Info Bool where
examples = [True,False]
size _ = 1

instance Info Int where
examples = [-100..100]
size _ = 1

In the examples for Bool we can list all the elements, for integers we choose a range
of “small” numbers; as for characters, we say each object is of size one. Finally we
can look at the data type of Shapes, and declare an instance for them:

instance Info Shape where
examples = [ Circle 3.0, Rectangle 45.9 87.6 ]
size = round . area

Here we just list a couple of typical shapes, and use the area, rounded to an integer,
as an indication of size

Instances and contexts

Suppose that the type a is in the Info classs: this means that we can estimate the
size of a value in a, and we have a list of examples of type a. Using this function and
list we are able to define a size function for [a] and a list of examples of type [a]
like thisto define those functions over [a], so we can declare the following instance

instance Info a => Info [a] where ....



308 CHAPTER 13. OVERLOADING, TYPE CLASSES AND TYPE CHECKING

Type error messages

We first saw the example of a type error message mentioning ‘instances’ in Section
2.7 where the application 4 double gave rise to the error message

No instance for (Num ((Integer -> Integer) -> t))
arising from the literal ‘4’ at <interactive>:1:0-7 ...

instead of the simple message “attempt to apply a number to a function”.

The problem is that we could have overloaded the numbers to have this sort of be-
haviour, but common sense suggest that we haven’t; it’s difficult, though, to get
error messages to reflect common sense, because it it inconsistent and context-
dependent. At least, though, we can now understand what is being said in the error
message, even if the appropriate course of action is quite different . . . .

in which the context Info a appears, making clear that we are only providing in-
formation about lists of objects for which we already have information about the
individual members.

We can complete the definition like this

instance Info a => Info [a] where
examples = [ [] ] ++

[ [x] | x<-examples ] ++
[ [x,y] | x<-examples , y<-examples ]

size = foldr (+) 1 . map size

Out list of examples is made up by the empty list, together with all the one and two
element lists that can be built up from the examples of type a. So, in this definition
we see overloading in action: on the left hand side of the examples is used at type
[a], while on the right hand side the three occurrences are all at type a.

To estimate the size of a list of awe take the size of each element (map size), and
add one to the total of these sizes using foldr (+) 1. Again, on the right-hand side
of this definition we use size over the type a; this shows that we need the context
which says that a is in the Info class.

Limitations

Instances in Haskell are global, so that once you have declared an instance for a type,
that instance is the one that you will have to use with that type: in particular it isn’t
possible to make instances local to a module or set of modules. If you still want to
do this, the mechanism to use would be to define a ‘wrapped’ type, like

data WInt = Wrap Int

and to declare the instances you want for this type of integers.
There are also some limitations to what can be declared as an instance, in other

words on what can appear after the => (if any) in an instance declaration. This must
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either be a base type like Int, or consist of a type constructor like [...], (...,...)
or Shape applied to distinct type variables.

We will not be able, for example, to declare (Float,Float) as an instance; nor
can we use named types (introduced by a type definition). More details of the
mechanism can be found in the Haskell 2010 report (Marlow 2010).

Haskell 2010 vs. GHC Haskell

In fact, GHC implements a more flexible mechanism for type classes and instances,
and choosing this option within GHC or GHCi using the flag -XFlexibleInstances
allows us to move away from Haskell 2010. This can be achieved by putting this as
the first line in a Haskell file, preceding the module declaration:

{-# OPTIONS_GHC -XFlexibleInstances #-}

The problem with doing this is that your program becomes reliant on GHC rather
than Haskell 2010, which is supported by a number of compilers, and also runs the
risk of depending on a feature which might change. Sufficiently many Haskell pro-
grammers are prepared to take little risks like this that it is difficult to find a project
of any size which is fully Haskell 2010 compliant.

Default definitions

To return to our example of equality, the Haskell equality class is in fact defined by

class Eq a where
(==), (/=) :: a -> a -> Bool
x /= y = not (x==y)
x == y = not (x/=y)

To the equality operation is added inequality, /=. As well as this, there are default
definitions of /= from == and of == from /=. These definitions have two purposes;
they give a definition over all equality types, but as defaults they can overridden by
an instance declaration.

At any instance a definition of at least one of == and /= needs to be supplied for
there to be a proper definition of (in)equality, but a definition of either is sufficient
to give both, by means of the defaults.

It is also possible to define both of the operations in an instance delaration , so
that if we wanted to define a different version of /= over Bool, we could add to our
instance declaration for Bool the line

x /= y = ... our definition ...

In our Info example you will probably have noticed that for many of the base types
we simply said that the size of all the objects was one; we can add this as a default
to the definition of Info like this:

class Info a where
examples :: [a]
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size :: a -> Int
size _ = 1

and then the declarations for Int, Char and Bool become

instance Info Int where
examples = [-100..100]

instance Info Char where
examples = [’a’,’A’,’z’,’Z’,’0’,’9’]

instance Info Bool where
examples = [True,False]

Default or top-level?

If we want to stop a default being overridden, we should remove the operation from
the class, and instead give its definition at the top level and not in the signature. In
the case of the operation /= in Eq we would give the top-level definition

x /= y = not (x == y)

which has the type

(/=) :: Eq a => a -> a -> Bool

and will be effective over all types which carry the == operation.

There are some situations when it is better to give default definitions, which can
be overridden, rather than top-level definitions, which cannot. Over the numerical
types, for instance, an implementation may well supply all the operations as hard-
ware instructions, which will be much more efficient than the default definitions.

Derived classes

Functions and instances can depend upon types being in classes; this is also true of
classes. The simplest example in Haskell is the class of ordered types, Ord. To be
ordered, a type must carry the operations >, >= and so on, as well as the equality
operations. We say

class Eq a => Ord a where
(<), (<=), (>), (>=) :: a -> a -> Bool
max, min :: a -> a -> a
compare :: a -> a -> Ordering

For a type a to be in the class Ord, we must supply over adefinitions of the operations
of Eq as well as the ones in the signature of Ord. Given a definition of <we can supply
default definitions of the remaining operations of Ord. For instance,

x <= y = (x < y || x == y)
x > y = y < x
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We will explain the type Ordering and the function compare in Section 13.4.
A simple example of a function defined over types in the class Ord is the insertion

sort function iSort of Chapter 7. Its most general type is

iSort :: Ord a => [a] -> [a]

Indeed, any sorting function (which sorts using the ordering given by <=) would be
expected to have this type.

From a different point of view, we can see the class Ord as inheriting the opera-
tions of Eq; inheritance is one of the central ideas of object-oriented programming.

Multiple constraints

In the contexts we have seen so far, we have a single constraint on a type, such as Eq
a. There is no reason why we should not have multiple constraints on types. This
section introduces the notation we use, and some examples where it is needed.

Suppose we wish to sort a list and then show the results as a string. We can write

vSort = show . iSort

To sort the elements, we need the list to consist of elements from an ordered type,
as we saw above. To convert the results to a String we need [a] to be in the Show
class (which we discuss in detail in the next section). To do this it is sufficient for
each element of type a to be printable, and so the type of vSort is

vSort :: (Ord a,Show a) => [a] -> String

showing that a must be in both the classes Ord and Show. Such types include Bool,
[Char] and so on.

In a similar way, suppose we are to use lookupFirst, and then make the results
visible. We write

vLookupFirst xs x = show (lookupFirst xs x)

We have twin constraints again on our list type [(a,b)]. We need to be able to
compare the first halves of the pairs, so Eq a is required. We also want to turn the
second halves into strings, so needing Show b. This gives the type

vLookupFirst :: (Eq a,Show b) => [(a,b)] -> a -> String

Multiple constraints can occur in an instance declaration, such as

instance (Eq a,Eq b) => Eq (a,b) where
(x,y) == (z,w) = x==z && y==w

which shows that a pair of types in Eq again belongs to Eq. Multiple constraints can
also occur in the definition of a class,

class (Ord a,Show a) => OrdShow a
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In such a declaration, the class inherits the operations of both Ord and Show.
In this particular case, the class declaration contains an empty signature. To be

in OrdShow, the type a must simply be in the classes Ord and Show. We could then
modify the type of vSort to say

vSort :: OrdShow a => [a] -> String

The situation when a class is built on top of two or more classes is called multiple
inheritance; this has consequences for programming style, explored in Section 14.6.

infoCheck: a QuickCheck clone

We can define a stripped-down version of QuickCheck for ourselves, using theexamples
that the Info type class provides. Suppose we have these examples for type a: how
do we check that apropertyof typea -> Bool? We want to check that theproperty
holds for all the examples, so we apply it to all of them, using map and then take their
conjunction, using and:

infoCheck :: (Info a) => (a -> Bool) -> Bool

infoCheck property = and (map property examples) (infoCheck.1)

We could do a similar thing for a two argument property, defining

infoCheck2 :: (Info a, Info b) => (b -> a -> Bool) -> Bool

infoCheck2 property =
and (map (infoCheck.property) examples) (infoCheck.2)

Note that infoCheck2 uses infoCheck in its definition. Similarly we can define
infoCheck3 and so on. We could stop here, but we can do better, using overloading
to define a single infoCheck function, just as there is a single quickCheck function.

To do this we define another type class, and say that a type is Checkable if it’s
something that can be checked by applying it to the examples given in an Info type:

class Checkable b where
infoCheck :: (Info a) => (a -> b) -> Bool

What instances can we define? Well, the definition of (infoCheck.1) is the same
as an instance declaration for Bool:

instance Checkable Bool where
infoCheck property = and (map property examples)

The definition (infoCheck.2) gives us a way of making checkable functions with
an additional argument,

instance (Info a, Checkable b) => Checkable (a -> b) where
infoCheck property = and (map (infoCheck.property) examples)

Taking these together, we have infoCheck defined over all these types:
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Bool -> Bool
Shape -> Bool
Int -> Shape -> Bool
Bool -> Int -> Shape -> Bool

In short, we can apply infoCheck to any type where the argument types are in the
Info class, and where the result is a Bool, just as in the original definition of the
quickCheck function.

Summary

This section has explained the basic details of the class mechanism in Haskell. We
have seen that a class definition specifies a signature, and that in defining an in-
stance of a class we must provide definitions of each of the operations of the sig-
nature. These definitions override any default definitions which are given in the
class declaration. Contexts were seen to contain one or more constraints on the
type variables which appear in polymorphic types, instance declarations and class
declarations.

Exercises

13.4 How would you make Move, playing cards (as defined in Section 6.8), and triple
types, (a,b,c), into Info types?

13.5 [Harder] Moving beyond Haskell 2010 to use the -XFlexibleInstances for
GHCi, declare instances of Info for Int -> Bool and Int -> Int.

13.6 Give an instance of Info for the Float type, and using this re-define the in-
stance of Info for the Shape type.

13.7 What is the type of the function

compare x y = size x <= size y ?

13.8 Complete the default definitions for the class Ord.

13.9 Complete the following instance declarations:

instance (Ord a, Ord b) => Ord (a,b) where ...
instance Ord b => Ord [b] where ...

where pairs and lists should be ordered lexicographically, like the words in a
dictionary.
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13.4 A tour of the built-in Haskell classes

Haskell contains a number of built-in classes, which we briefly introduce in this sec-
tion. Many of the classes are numeric, and are built to deal with overloading of the
numerical operations over integers, floating-point reals, complex numbers and ra-
tionals (that is integer fractions like 22

7 ). Rather than give complete details of the nu-
meric types, we give an exposition of their major features. Full details of the classes
are given in the Haskell 2010 report (Marlow 2010), and their dependencies are illus-
trated in Figure 13.1, taken from the Haskell 2010 report.

Equality: Eq

Equality was described above; to recap, we define it by

class Eq a where
(==), (/=) :: a -> a -> Bool
x /= y = not (x==y)
x == y = not (x/=y)

Ordering: Ord

Similarly, we build the ordered class on Eq:

class (Eq a) => Ord a where
compare :: a -> a -> Ordering
(<), (<=), (>=), (>) :: a -> a -> Bool
max, min :: a -> a -> a

The data type Ordering contains three values LT, EQ and GT, which represent the
three possible outcomes from comparing two elements in the ordering, and is de-
fined thus:

data Ordering = LT | EQ | GT

The advantage of using compare is that a single function application decides the
exact relationship between two inputs, whereas when using the ordering operators
– which return Boolean results – two comparisons might well be necessary. Indeed,
we see this in the default definition of compare from == and <=, where two tests are
needed to reach the results LT and GT.

compare x y
| x == y = EQ
| x <= y = LT
| otherwise = GT

The defaults also contain definitions of the ordering operators from compare:

x <= y = compare x y /= GT
x < y = compare x y == LT
x >= y = compare x y /= LT
x > y = compare x y == GT
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Eq
All except 

IO, (->)

Show
All except 

IO, (->)

Read
All except 

IO, (->)

Ord
All except 
IO, (->), 
IOError

Num
Int, Integer, 

Float, 
Double

Bounded
Int, Char, (), 
Bool, tuples, 

Ordering

Real
Int, Integer, 

Double, 
Float

Fractional
Float, Double

Floating
Float, Double

RealFrac
Float, Double

RealFloat
Float, Double

Enum
Bool, Char, (), 
Float, Double, 

Int, Integer

Integral
Int, Integer

Monad
IO, [], Maybe

Functor
IO, [], Maybe

Figure 13.1: The Haskell 2010 classes

There are default definitions for all the operations of Ord, but we need to supply an
implementation of either compare or <= in order to give an instance of Ord.

Finally we have default definitions for the maximum and minimum operations,

max x y
| x <= y = y
| otherwise = x

min x y
| x <= y = x
| otherwise = y
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Most Haskell types belong to these equality and ordering classes: among the ex-
ceptions are function types, and some of the abstract data types we meet below in
Chapter 16.

Enumeration: Enum

It is useful to generate lists like [2,4,6,8] using the enumeration expression

[2,4 .. 8]

but enumerations can be built over other types as well: characters, floating-point
numbers, and so on. The class definition is

class (Ord a) => Enum a where
succ, pred :: a -> a
toEnum :: Int -> a
fromEnum :: a -> Int
enumFrom :: a -> [a] -- [n .. ]
enumFromThen :: a -> a -> [a] -- [n,m .. ]
enumFromTo :: a -> a -> [a] -- [n .. m]
enumFromThenTo :: a -> a -> a -> [a] -- [n,n’ .. m]

where enumFromTo and enumFromThenTo have default definitions, which we leave
as exercises for the reader.

The signature of the class also contains operations fromEnum and toEnum which
convert between the type and Int. Finally, the class contains succ and pred which
step through the enumeration upwards and downwards: when succ is called at the
greatest element, an error is returned.

Confusingly, the Haskell report states that ‘these functions [toEnum andfromEnum]
are not meaningful for all instances ofEnum’, and using these operations over floating-
point values or full precision integers will result in a run-time error.

Full instances of the class include Int, Char, Bool and other finite types like
Ordering.

Bounded types: Bounded

The Bounded class is specified by the declaration

class Bounded a where
minBound, maxBound :: a

and the two values give the minimum and maximum values in these types. The types
Int, Char, Bool, Ordering belong to this class. Types that are in both Bounded and
Enum obey some extra constraints that are explained in detail in the Haskell 2010
report (Marlow 2010).

Turning values to strings: Show

The standard prelude defines the class Show, which contains types whose values can
be written (or ‘shown’) as strings.
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type ShowS = String -> String

class Show a where
showsPrec :: Int -> a -> ShowS
show :: a -> String
showList :: [a] -> ShowS

The function showsPrec supports flexible and efficient conversion of large data val-
ues, but in an introductory context, the function

show :: a -> String

which converts a value into a string is all that is needed. The class contains default
definitions of showsPrec from show and vice versa. Further details about how to ex-
ploit the subtleties of showsPrec can be found in Hudak, Fasel, and Peterson (2000).

Most types belong to the class Show, but absent are function types and IO. For
other types, example instance declarations might be

instance Show Bool where
show True = "True"
show False = "False"

instance (Show a, Show b) => Show (a,b) where
show (x,y) = "(" ++ show x ++ "," ++ show y ++ ")"

In fact we discuss how some function types might be shown in Section 19.6.

Turning strings to values: Read

The class Read contains types whose values can be read from strings. To use the
class it is enough to know about the function

read :: (Read a) => String -> a

The result of a read may not be properly defined: there needs to be exactly one
object of the required type in the input string (which may optionally also contain
whitespace or nested comments); in any other case the read will fail with an error.
More details of how strings are parsed in this way can be found in Section 17.5.

It is also important to see that in many cases the type of the result of the read
has to be specified, since it could potentially be of any type in the class Read. For
instance, we can write

(read " 1 ") :: Int

which indicates that in this case we require the result of the read to be an Int. With-
out this type declaration we get this error on evaluating (read " 1 "):

Ambiguous type variable ‘a’ in the constraint:
‘Read a’ arising from a use of ‘read’ at <interactive>:1:0-8

Probable fix: add a type signature that fixes these type variable(s)

The class Read complements Show, since strings produced by show are usually read-
able by read. Many types can be read, but exclusions include function types.
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The Haskell numeric types and classes

One of the purposes of the Haskell design was to build a functional programming
language which had a strong type system – in which any type errors in definitions
and expressions are found before evaluation – yet which contains a rich set of nu-
meric types, as befits a language suitable to substantial ‘real world’ tasks. Among
Haskell’s numeric types are

• The fixed precision integers, Int, and the full precision integers, Integer,
which represent all integers faithfully.

• The floating-point numbers, Float, and the double-precision floating-point
numbers, Double.

• Rational numbers, that is fractions, represented as ratios of integers; built-in
is the type Rational of Integer fractions.

• Complex numbers, which can be built over other types such as Float.

The design also required that the usual operations like + and / and literals such as 23
and 57.4 would be overloaded. For instance, Int and Integer will carry identical
operations2 and have identical literals, as indeed will Float and Double; a guide
to the operations over integers and floats was given in Sections 3.2 and 3.6. This
overloading can lead to situations where the type of an expression is undetermined;
in such a case we can give an explicit type to an expression, thus:

(2+3)::Int

The Haskell report (Marlow 2010), Section 4.3.4, discusses a mechanism by which
a default type can be given to numeric expressions. These default directives mean
that whole numbers are taken to be Integer and others to be Double in the absence
of any other type information. This can be seen in action in this snapshot of GHCi:

Prelude> let myadd = (+)
Prelude> :type myadd
myadd :: Integer -> Integer -> Integer

Overloading of numeric functions is achieved by defining a collection of classes. Full
details of these can be found in the Haskell report (Marlow 2010), and in the standard
prelude, Prelude.hs; a brief introduction follows here.

The base class to which all numeric types belong is Num, which has the signature

class (Eq a, Show a) => Num a where
(+), (-), (*) :: a -> a -> a
negate :: a -> a
abs, signum :: a -> a
fromInteger :: Integer -> a

x - y = x + negate y

2Apart from (de)coding of Char, take, drop and so forth.



13.4. A TOUR OF THE BUILT-IN HASKELL CLASSES 319

This signature has the effect that all numeric types carry equality and show func-
tions, together with addition, subtraction, multiplication and related operations. It
is also possible to convert an Int or and Integer into a value of any numeric type.

Integer literals are of any numeric type, so that, for example

2 :: Num a => a

The integer types belong to the class Integral among whose signature functions
are

quot, rem :: a -> a -> a
div, mod :: a -> a -> a

which give two variants of integer division, ‘quot‘ truncating towards zero, and
‘div‘ truncating below.

Numbers with fractional parts have a substantially richer class structure. Literals
of this kind belong to every type in the Fractional class,

2.3 :: Fractional a => a

which extends Num with fractional division and reciprocal,

class (Num a) => Fractional a where
(/) :: a -> a -> a
recip :: a -> a
fromRational :: Rational -> a

recip x = 1 / x

The floating-point numbers in Float and Double belong to the class Floating,
which carries the ‘mathematical’ functions. A part of its signature follows,

class (Fractional a) => Floating a where
pi :: a
exp, log, sqrt :: a -> a
(**), logBase :: a -> a -> a
sin, cos, tan :: a -> a
....

and the full signature is to be found in Prelude.hs. Further details of this and the
complex and rational types can be found in the prelude, libraries and the Haskell
documentation.

Derived instances

When a new data type is introduced, it comes with facilities for pattern matching
but no other pre-defined functions. On the other hand, it’s possible to come up
with standard definitions of equality, ordering, show and read functions for these
types, and this deriving mechanism is the bit of ‘Haskell magic’ which we mentioned
in Sections 4.3 and 5.3 when we introduced data type definitions. If we make a
definition like
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data People = Person Name Age
deriving (Eq,Show)

then definitions of == and show which “do the obvious thing” are synthesised for
this type. This could be done for all the standard classes, but we could also choose
to define instances of other standard classes for ourselves, so that we might read
name, age pairs from a comma separated variable (CSV) file, rather than using the
standard definition of read, which would expect input of the form

Person "name" age

Functor and Monad

We talk about the Functor and Monad classes in Chapter 18.

Exercises

13.10 Investigate the Haskell definition of ‘<’ on the typesBool and(t1,t2,...,tk).

13.11 Define a function

showBoolFun :: (Bool -> Bool) -> String

which displays a Boolean function as a table. Generalize this to

showBoolFunGen :: (a -> String) -> (Bool -> a) -> String

whose first argument is a function to show elements of a. This argument is
used in giving a table of the results of the function. How would you extend
your answer to deal with multiple-argument Boolean functions?

13.12 Using your answer to the previous question, or otherwise, describe how you
would make Bool -> Bool an instance of the class Show. (Note, however,
that this will not be legitimate Haskell 2010, since Bool -> Bool is not of the
right form for an instance declaration; you can achieve this using the GHC
option -XFlexibleInstances.)

13.13 How can you write a general instance for Show for function types: you could
do this by showing a “sample” of the values from the function, that is showing
how a sample of inputs are sent to the corresponding outputs.

13.14 Some types are not enumerated in the sense that they can be listed from small-
est to largest: a good example is the Move type from the Rock - Paper - Scissors
game. Define a type class to which the Move type can belong, and give an in-
stance for Move. What other types can you think of giving an instance for: give
some examples and their instances, too.

13.15 Define a data type Roman like this
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data Roman = Roman Integer

and define instances of Show and Num for this type. The show function should
display numbers in the form of Roman numerals, so that

show (Roman 99) = "IC"
show (Roman 1327) = "MCCCXXVII"

and so forth. The instance of Num should obey

(Roman n) + (Roman m) ; Roman (n+m)

13.16 [Harder] For the data type Roman define an instances of the Read class, which
is the inverse of the show function in the previous question.
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Type classes and object-oriented programming

This note discusses the relationship between Haskell type classes and the classes of
object-oriented programming; it can be omitted on first reading.

The type system of Haskell can be seen as giving monomorphic types to functions.
Polymorphic types like

show :: Show a => a -> String

which involve type classes can be seen as shorthand for collections of typings, such
as

show :: Bool -> String show :: Char -> String

for each type Bool, Char, . . . belonging to the class.
In Haskell a class is a collection of types. Other languages such as C++ make a type
and a class the same thing. Under that approach, introducing the class of visible ob-
jects would effectively give us a type3 ShowType. This class would be characterized
by having the function

show :: ShowType -> String

in its interface. The class ShowType would have Bool and Char among its sub-
classes (or sub-types). This would allow us to write values like

[True,’N’,False] :: [ShowType]

Moreover, to convert such a list to a String we could write

concat . map show :: [ShowType] -> String

At different items of the list we use different versions of the show function; on the
first we use the Bool function, on the second the Char function and so forth. This
so-called dynamic binding is a powerful feature of many object-oriented languages,
including C++, but it is not a feature of Haskell 98; an extension which would allow
dynamic binding is described in Läufer (1996).

Returning to our example, what is the type of concat . map show in Haskell? It is
not hard to see that it is

Show a => [a] -> [Char]

so that it can be applied to elements of [Bool], [Char] and so on, but not to hetero-
geneous lists like [True,’N’,False] which are not legitimately typed in Haskell.

Java allows users to define interfaces, which consist of a signature. A part of a class
definition can say which interfaces the class implements. This is very like the way
in which Haskell types are made instances of type classes, except that in Haskell it
is not necessary to make the instance declaration a part of the type definition itself.
This has the effect of allowing post hoc extensions to the operations supported by a
type, in a way which is not possible for a class in Java.
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13.5 Type checking and type inference: an overview

Now that we have covered classes, we can see that every value in Haskell has a de-
fined type, which might be monomorphic, polymorphic, or involve one or more type
class constraints in a context. For example,

’w’ :: Char
flip :: (a -> b -> c) -> (b -> a -> c)
elem :: Eq a => a -> [a] -> Bool

Strong typing means that we can check whether or not expressions we wish to eval-
uate or definitions we wish to use obey the typing rules of the language without any
evaluation taking place. The benefit of this is obvious: we can catch a whole lot of
errors before we run a program.

Type declarations or type inference?

Haskell types can be inferred from expressions and definitions, and so it is possible
never to write a type declaration. For example, we can write a definition like this

prodFun f g = \x -> (f x, g x)

either in a module or directly in GHCi, and then ask for its type in CHGi like this:

*TypeError> :type prodFun
prodFun :: (t -> t1) -> (t -> t2) -> t -> (t1,t2)

Because of this facility, some Haskellers never write a type declaration, but others,
including the author, always do: why?

• The type of an object is the most important single piece of documentation for
the object, since it tells us how it can be used – what arguments need to be
passed to it, and what type the result has – without us having to understand
precisely how it is implemented.

• We can use a type declaration to give a more specific type to a definition. This
was the mechanism underlying the first part of the book, which turned poly-
morphic functions into monomorphic versions. To be clear, if we defineprodFun
like this

prodFun :: (Int -> Bool) -> (Int -> Char) -> Int -> (Bool,Char)
prodFun f g = \x -> (f x, g x)

then it will have this more specific type. It is not difficult to recover the most
general type for the definition: just comment out the type declaration.

• In writing a type declaration we are saying what type we think a function has.
We may have not got this right, and the function is properly typed, but has a
different type. For instance, typing
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fun :: Int -> Bool -> Int

fun True 0 = 0
fun True n = n-1
fun _ n = n

gives rise to this error in GHCi:

Couldn’t match expected type ‘Int’ against inferred type ‘Bool’
In the pattern: True
In the definition of ‘fun’: fun True 0 = 0

In a case like this it is useful to know that we were wrong, and then we can
either correct the type declaration, or modify the function so that it has the
type we wanted. Here the problem is fixed by swapping the types of the two
arguments.

There is one case where we do need to use type declarations or annotations: this
is in resolving ambiguity due to overloading (we talked briefly about this earlier, in
Section 13.4, page 318).

Types and libraries

Types are also useful in locating functions in a library. Suppose we want to define a
function to remove the duplicate elements from a list, transforming [2,3,2,1,3,4]
to [2,3,1,4], for instance. Such a function will have type

(Eq a) => [a] -> [a]

A Hoogle search of the standard prelude and libraries reveals just one function of
this type, namely nub, which does exactly what we want. Plainly in practice there
might be multiple matches (or missed matches because of the choice of parameter
order) but nonetheless the types provide a valuable way into the Haskell library.

Overview

In the remainder this chapter we give an informal overview of the way in which types
are checked. We start by looking at how type checking works in a monomorphic
framework, in which every properly typed expression has a single type. Building on
this, we then look at the polymorphic case, and see that it can be understood by look-
ing at the constraints put on the type of an expression by the way that the expression
is constructed. Crucial to this is the notion of unification, through which constraints
are combined. We conclude the chapter by looking at the contexts which contain
information about the class membership of type variables, and which thus manage
overloading.
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13.6 Monomorphic type checking

In this section we look at how type checking works in a monomorphic setting, with-
out polymorphism or overloading. The main focus here is type-checking function
applications. The simplified picture we see here prepares us for Haskell type check-
ing in general, which is examined in the section after this.

We look first at the way that we type-check expressions, and then look at how
definitions are type-checked.

Expressions

In general, an expression is either a literal, a variable or a constant or it is built up by
applying a function to some arguments, which are themselves expressions.

The case of function applications includes rather more than we might at first
expect. For example, we can see list expressions like [True,False] as the result of
applying the constructor function, ‘:’, thus: True:[False]. Also, operators and the
if . . .then . . .else construct act in exactly the same way as functions, albeit with a
different syntax.

The rule for type checking a function application is set out in the following dia-
gram, where we see that a function of type s -> t must be applied to an argument
of type s. A properly typed application results in an expression of type t.

(f e)        

e must have 
type s

f must have 
function type       
s -> t

result will 
have type t

We now look at two examples. First we take (not False) && True, a correctly
typed expression of type Bool,

(not False) && True

Bool -> Bool -> Bool
Bool -> Bool

BoolBool

Bool
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The application of not to False results in an expression of type Bool. The second
argument to && is also a Bool, so the application of && is correctly typed, and gives a
result of type Bool.

If we modify the example to (not ’c’) && True, we now see a type error, since
a character argument, ’c’, is presented to an operator expecting a Bool argument,
not.

(not 'c') && True

Bool -> Bool -> Bool
Bool -> Bool

BoolChar

Bool expected 
but Char 
inferred

The GHCi error message for this indicates the cause of the problem:

Couldn’t match expected type ‘Bool’ against inferred type ‘Char’
In the first argument of ‘not’, namely ’c’
In the first argument of ‘(&&)’, namely ‘(not ’c’)’
In the expression: (not ’c’) && True

Function definitions

In type-checking a monomorphic function definition such as

f :: t1 -> t2 -> ... -> tk -> t (fdef)

f p1 p2 ... pk
| g1 = e1
| g2 = e2
...
| gl = el

we need to check three things.

• Each of the guards gi must be of type Bool.

• The value ei returned in each clause must be of type t.

• The pattern pj must be consistent with type of that argument, namely tj.

A pattern is consistent with a type if it will match (some) elements of the type. We
now look at the various cases. A variable is consistent with any type; a literal is con-
sistent with its type. A pattern (p:q) is consistent with the type [t] if p is consistent
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with t and q is consistent with [t]. For example, (0:xs) is consistent with the type
[Int], and (x:xs) is consistent with any type of lists. The other cases of the defini-
tion are similar.

This concludes our discussion of type checking in the monomorphic case; we
turn to polymorphism next.

Exercises

13.17 Predict the type errors you would obtain by defining the following functions

f n = 37+n
f True = 34

g 0 = 37
g n = True

h x
| x>0 = True
| otherwise = 37

k x = 34
k 0 = 35

Check your answers by typing each definition into a Haskell script, and load-
ing the script into GHCi. Remember that you can use :type to give the type of
an expression.

13.7 Polymorphic type checking

In a monomorphic situation, an expression is either well typed, and has a single
type, or is not well typed and has none. In a polymorphic language like Haskell, the
situation is more complicated, since a polymorphic object is precisely one which
has many types.

In this section we first re-examine what is meant by polymorphism, before ex-
plaining type checking by means of constraint satisfaction. Central to this is the
notion of unification, by which we find the types simultaneously satisfying two type
constraints.

Polymorphism

We are familiar with functions like

length :: [a] -> Int (length)

whose types are polymorphic, but how should we understand the type variable a in
this type? We can see (length) as shorthand for saying that length has a set of
types,
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[Int] -> Int
[(Bool,Char)] -> Int
...

in fact containing all the types [t] -> Intwhere t is a monotype, that is a type not
containing type variables.

When we apply length we need to determine at which of these types length is
being used. For example, when we write

length [’c’,’d’]

we can see that length is being applied to a list of Char, and so we are using length
at type [Char] -> Int.

Constraints

How can we explain what is going on here in general? We can see different parts
of an expression as putting different constraints on its type. Under this interpre-
tation, type checking becomes a matter of working out whether we can find types
which meet the constraints. We have seen some informal examples of this when we
discussed the types of map and filter in Section 10.2. We consider some further
examples now.

Example 1

Consider the definition

f (x,y) = (x , [’a’ .. y])

The argument of f is a pair, and we consider separately what constraints there are on
the types of x and y. x is completely unconstrained, as it is returned as the first half
of a pair. On the other hand, y is used within the expression [’a’ .. y], which de-
notes a range within an enumerated type, starting at the character ’a’. This forces
y to have the type Char, and gives the type for f:

f :: (a,Char) -> (a,[Char])

Example 2

Now we examine the definition

g (m,zs) = m + length zs

What constraints are placed on the types of m and zs in this definition? We can see
that m is added to something, so mmust have a numeric type – which one it is remains
to be seen. The other argument of the addition is length zs, which tells us two
things.
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g (m,zs) = m + length zs

adds numeric 
values

[b] -> Int

First, we see that zs will have to be of type [b], and also that the result is an Int.
This forces + to be used at Int, and so forces m to have type Int, giving the result

g :: (Int,[b]) -> Int

Example 3

We now consider the composition of the last two examples,

h = g . f

In a composition g . f, the output of f becomes the input of g,

h = g . f

(a,Char) -> (a,[Char])(Int,[b]) -> Int

input type of g is 
output type of f

Here we should recall the meaning of types which involve type variables; we can see
them as shorthand for sets of types. The output of f is described by (a,[Char]),
and the input of g by (Int,[b]). We therefore have to look for types which meet
both these descriptions. We will now look at this general topic, returning to the ex-
ample in the course of this dicussion.

Unification

How are we to describe the types which meet the two descriptions (a,[Char]) and
(Int,[b])?

(a,[Char])

(Bool,[Char])

(a->a,[Char])

(Int,[Int])

(Int,[[c]])
(Int,[Char])

(Int,[b])

As sets of types, we look for the intersection of the sets given by (a,[Char]) and
(Int,[b]). How can we work out a description of this intersection? Before we do
this, we revise and introduce some terminology.
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Recall that an instance of a type is given by replacing a type variable or variables
by type expressions. A type expression is a common instance of two type expressions
if it is an instance of each expression. The most general common instance of two
expressions is a common instance mgci with the property that every other common
instance is an instance of mgci.

Now we can describe the intersection of the sets given by two type expressions.
It is called the unification of the two, which is the most general common instance
of the two type expressions.

Example 3 (continued)

In this example, we have

(a,[Char]) (Int,[b])

(Int,[Char])

with a single type resulting. This means that the type a has to be Int and so the type
of the function h = g.f is

h :: (Int,Char) -> Int

This concludes the discussion of example 3.

Unification, revisited

Unification need not result in a monotype. In the example of unifying the types
(a,[a]) and ([b],c),

(a,[a]) ([b],c)

(b,[b])
the result is the type ([b],[[b]]). This is because the expression (a,[a]) con-
strains the type to have in its second component a list of elements of the first com-
ponent type, while the expression ([b],c) constrains its first component to be a
list. Thus satisfying the two gives the type ([b],[[b]]).

In the last example, note that there are many common instances of the two type
expressions, including ([Bool],[[Bool]]) and ([[c]],[[[c]]]), but neither of
these examples is the unifier, since ([b],[[b]]) is not an instance of either of
them. On the other hand, they are each instances of ([b],[[b]]), as it is the most
general common instance, and so the unifier of the two type expressions.

Not every pair of types can be unified: consider the case of [Int] -> [Int]
and a -> [a].
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a -> [a] [Int] -> [Int]

 a unifies with [Int]

 a unifies with Int

Unifying the argument types requires a to become [Int], while unifying the result
types requires a to become Int; clearly these constraints are inconsistent, and so
the unification fails.

Type-checking expressions

As we saw in Section 13.6, function application is central to expression formation.
This means that type checking also hinges on function applications.

Type-checking polymorphic function application

(f e)        

f has type s -> t e has type  u

f has type s' -> t' e has type  s'

unify s and u

In applying a function f :: s -> t to an argument e :: u we do not require that
s and u are equal, but instead that they are unifiable to a type s’, say, giving e ::
s’ and f :: s’ -> t’; the result in that case is of type t’.

Example 4

As an example, consider the application map Circle where Circle is one of the
constructor functions for the Shape type.

map :: (a -> b) -> [a] -> [b]
Circle :: Float -> Shape

Unifying a -> b and Float -> Shape results in a becoming Float and b becom-
ing Shape; this gives
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map :: (Float -> Shape) -> [Float] -> [Shape]

and so

map Circle :: [Float] -> [Shape]

As in the monomorphic case, we can use this discussion of typing and function ap-
plication in explaining type checking all aspects of expressions. We now look at an-
other example, before examining a more technical aspect of type checking.

Example 5, foldr revisited

In Section 10.3 we introduced the foldr function

foldr f s [] = s (foldr.1)
foldr f s (x:xs) = f x (foldr f s xs) (foldr.2)

which could be used to fold an operator into a list, as in

foldr (+) 0 [2,3,1] = 2+(3+(1+0))

so that it appears as if foldr has the type given by

foldr :: (a -> a -> a) -> a -> [a] -> a

In fact, the most general type of foldr is more general than this. Suppose that the
starting value has type b and the elements of the list are of type a

foldr :: (... -> ... -> ...) -> b -> [a] -> ...

Then we can picture the definition thus:

foldr f s []     = s
foldr f s (x:xs) = f x (foldr f s xs)

s has 
type b

result has 
type b

x has 
type a

result has 
type b

s is the result of the first equation, and so the result type of the foldr function itself
will be b, the type of s
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foldr :: (... -> ... -> ...) -> b -> [a] -> b

In the second equation, f is applied to x as first argument, giving

foldr :: (a -> ... -> ...) -> b -> [a] -> b

The second argument of f is the result of a foldr, and so of type b,

foldr :: (a -> b -> ...) -> b -> [a] -> b

Finally, the result of the second equation is an application of f; this result must have
the same result type as the foldr itself, b.

foldr :: (a -> b -> b) -> b -> [a] -> b

With this insight about the type of foldr we were able to see that foldr could be
used to define another whole cohort of list functions, such as an insertion sort,

iSort :: Ord a => [a] -> [a]
iSort = foldr ins []

in which ins has the type Ord a => a -> [a] -> [a].

Polymorphic definitions and variables

Here we examine a more technical aspect of how type checking works over polymor-
phic definitions; it may be omitted on first reading.

Functions and constants can be used at different types in the same expression.
A simple instance is

expr = length ([]++[True]) + length ([]++[2,3,4]) (expr)

The first occurrence of [] is at [Bool], whilst the second is at [Integer]. This
is completely legitimate, and is one of the advantages of a polymorphic definition.
Now suppose that we replace the [] by a variable, and define

funny xs = length (xs++[True]) + length (xs++[2,3,4]) (funny)

The variable xs is forced to have type [Bool] and type [Integer]; it is forced to
be polymorphic, in other words. This is not allowed in Haskell, as there is no way of
expressing the type of funny. It might be thought that

funny :: [a] -> Int

was a correct type, but this would mean that funnywould have all the instance types

funny :: [Int] -> Int
funny :: [[Char]] -> Int

...
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which it clearly does not. We conclude that constants and variables are treated dif-
ferently: constants may very well appear at different incompatible types in the same
expression, variables cannot.

What is the significance of disallowing the definition (funny) but allowing the
definition (expr)? Taking (expr) first, we have a polymorphic definition of the
form [] :: [a] and an expression in which [] occurs twice; the first occurrence
is at [Bool], the second at [Integer]. To allow these independent uses to occur,
we type-check each use of a polymorphic definition with different type variables, so
that a constraint on one use does not affect any of the others.

On the other hand, how is the definition of (funny) disallowed? When we type
check the use of a variable we will not treat each instance as being of an indepen-
dent type. Suppose we begin with no constraint on xs, so xs::t, say. The first oc-
currence of xs forces xs::[Bool], the second requires xs::[Integer]; these two
constraints cannot be satisfied simultaneously, and thus the definition (funny) fails
to type check.

The crucial point to remember from this example is that the definition of a func-
tion can’t force any of its arguments to be polymorphic.

Function definitions

In type checking a function definition like (fdef) on page 326 above we have to
obey rules similar to the monomorphic case.

• Each of the guards gi must be of type Bool.

• The value ei returned in each clause must have a type si which is at least as
general as t; that is, si must have t as an instance.

• The pattern pj must be consistent with type of that argument, namely tj.

We take up a final aspect of type checking – the impact of type classes – in the next
section.

Exercises

13.18 Do the following pairs of types – listed vertically – unify? If so, give a most
general unifier for them; if not, explain why they fail to unify.

(Int -> b) (Int,a,a)
(a -> Bool) (a,a,[Bool])

13.19 Show that we can unify (a,[a]) with (b,c) to give (Bool,[Bool]).

13.20 Can the function

f :: (a,[a]) -> b

be applied to the arguments (2,[3]), (2,[]) and (2,[True]); if so, what
are the types of the results? Explain your answers.
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13.21 Repeat the previous question for the function

f :: (a,[a]) -> a

Explain your answers.

13.22 Give the type of f [] [] if f has type

f :: [a] -> [b] -> a -> b

What is the type of the function h given by the definition

h x = f x x ?

13.23 How can you use the Haskell system to check whether two type expressions
are unifiable, and if so what is their unification? Hint: you can make dummy
definitions in Haskell in which the defined value, zircon say, is equated with
itself:

zircon = zircon

Values defined like this can be declared to have any type you wish.

13.24 [Harder] Recalling the definitions of curry and uncurry from Section 11.4,
what are the types of

curry id
uncurry id
curry (curry id)
uncurry (uncurry id)
uncurry curry

Explain why the following expressions do not type-check:

curry uncurry
curry curry

13.25 [Harder] Give an algorithm which decides whether two type expressions are
unifiable. If they are, your algorithm should return a most general unifying
substitution; if not, it should give some explanation of why the unification
fails.
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13.8 Type checking and classes

Classes in Haskell restrict the use of some functions, such as ==, to types in the class
over which they are defined, in this case Eq. These restrictions are apparent in the
contexts which appear in some types. For instance, if we define

member [] y = False
member (x:xs) y = (x==y) || member xs y

its type will be

Eq a => [a] -> a -> Bool

because x and y of type a are compared for equality in the definition, thus forcing
the type a to belong to the equality class Eq.

This section explores the way in which type checking takes place when overload-
ing is involved; the material is presented informally, by means of an example.

Suppose we are to apply the function member to an expression e, whose type is

Ord b => [[b]]

Informally, e is a list of lists of objects, which belong to a type which carries an or-
dering. In the absence of the contexts we would unify the type expressions, giving

member :: [[b]] -> [b] -> Bool e :: [[b]]

and so giving the application member e the type [b] -> Bool. We do the same
here, but we also apply the unification to the contexts, producing the context

(Eq [b] , Ord b) (ctx.1)

Now, we check and simplify the context.

• The requirements in a context can only apply to type variables, so we need to
eliminate requirements like Eq [b]. The only way these can be eliminated is
to use the instancedeclarations. In this case the built-in instance declaration

instance Eq a => Eq [a] where ....

allows us to replace the requirement Eq [b] with Eq b in (ctx.1), giving the
new context

(Eq b , Ord b) (ctx.2)

We repeat this process until no more instances apply.
If we fail to reduce all the requirements to ones involving a type variable, the

application fails, and an error message would be generated. This happens if
we apply member to [id];
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No instance for (Eq (a -> a))
arising from a use of ‘member’ at <interactive>:1:0-10

Possible fix: add an instance declaration for (Eq (a -> a))
In the expression: member [id]
In the definition of ‘it’: it = member [id]

since id is a function, whose type is not it the class Eq.

• We then simplify the context using the class definitions. In our example we
have both Eq b and Ord b, but recall that

class Eq a => Ord a where ...

so that any instance of Ord is automatically an instance of Eq; this means that
we can simplify (ctx.2) to

Ord b

This is repeated until no further simplifications result.

For our example, we thus have the type

member e :: Ord b => [b] -> Bool

This three-stage process of unification, checking (with instances) and simplification
is the general pattern for type checking with contexts in Haskell.

Finally, we should explain how contexts are introduced into the types of the lan-
guage. They originate in types for the functions in class declarations, so that, in the
example of the Info class from earlier in the chapter, we have

examples :: Info a => [a]
size :: Info a => a -> Int

The type checking of functions which use these overloaded functions will propagate
and combine the contexts as we have seen above.

We have seen informally how the Haskell type system accommodates type check-
ing for the overloaded names which belong to type classes. A more thorough overview
of the technical aspects of this, including a discussion of the ‘monomorphism re-
striction’ which needs to be placed on certain polymorphic bindings, is to be found
in the Haskell 2010 report (Marlow 2010).

Exercises

13.26 Give the type of each of the individual conditional equations which follow, and
discuss the type of the function which together they define.

merge (x:xs) (y:ys)
| x<y = x : merge xs (y:ys)
| x==y = x : merge xs ys
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| otherwise = y : merge (x:xs) ys
merge (x:xs) [] = (x:xs)
merge [] (y:ys) = (y:ys)
merge [] [] = []

13.27 Define a polymorphic sorting function, and show how its type is derived from
the type of the ordering relation

compare :: Ord a => a -> a -> Ordering

13.28 Investigate the types of the following numerical functions; you will find that
the types refer to some of the built-in numeric classes.

mult x y = x*y
divide x = x ‘div‘ 2
share x = x / 2.0

Recall that these can be given more restrictive types, such as

divide :: Int -> Int

by explicitly asserting their types as above.

Summary

This chapter has shown how names such as read and show and operators like + can
be overloaded to have different definitions at different types. The mechanism which
enables this is the system of Haskell classes. A class definition contains a signature
which contains the names and types of operations which must be supplied if a type
is to be a member of the class. For a particular type, the function definitions are
contained in an instance declaration.

In giving the type of a function, or introducing a class or an instance, we can
supply a context, which constrains the type variables occurring. Examples include

member :: Eq a => [a] -> a -> Bool
instance Eq a => Eq [a] where ....
class Eq a => Ord a where ....

In the examples, it can be seen that member can only be used over types in the class
Eq. Lists ofa can be given an equality, provided that a itself can; types in the class Ord
must already be in the class Eq. After giving examples of the various mechanisms,
we looked at the classes in the standard preludes of Haskell.

We concluded the chapter with a discussion of how type checking of expressions
and definitions is performed in Haskell, initially in the monomorphic case, and then
in full generality with polymorphic and overloaded functions. In that case we saw
type checking as a process of extracting and consolidating constraints which come
from the unification of type expressions which contain type variables.



Chapter 14

Algebraic types

So far in our discussion of Haskell we have been able to model entities using

• the base types, Int, Float, Bool and Char, and

• composite types: tuple types, (t1,t2,...,tn); list types, [t1]; and function
types, (t1 -> t2); where t1, . . . , tn are themselves types,

• algebraic types, including enumerated types, as introduced in Section 4.3, and
product and sum type, first given in Section 5.3.

This gives a wide range of types to use in modelling different domains in Haskell.
This chapter completes our coverage of the topic of algebraic types and looks at two
extensions in some detail:

• The types can be recursive; we can use the type we are defining, Typename,
as (part of) any of the component types, as in the definition of numeric trees
“NTrees”:

data NTree = NilT |
Node Integer NTree NTree

an illustration of a tree from NTree is given in Figure 14.1. Recursion in data
type definitions gives us lists, trees and many other useful data structures.

• The name of the type being defined can be followed by one or more type vari-
ables which may be used on the right-hand side, making the definition poly-
morphic. An example built-into Haskell is the Maybe type,

data Maybe a = Nothing | Just a

which can be used in modelling program errors.

Recursive polymorphic types combine these two ideas, and this powerful mixture
provides types which can be reused in many different situations – the built-in type
of lists is an example which we have already seen. We’ll look again at the NTree and
Maybe types later in this chapter, and other examples are given in the sections which
follow.

339
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Figure 14.1: An example of a tree of integers.

14.1 Algebraic type definitions revisited

Algebraic data type definitions are introduced by the keyword data, followed by the
name of the type, an equals sign and then the constructors of the type being de-
fined. The name of the type and the names of constructors begin with capital letters.

The general form of the algebraic type definitions which we have seen so far is

data Typename (Typename)
= Con1 t11 ... t1k1 |

Con2 t21 ... t2k2 |
....

Conn tn1 ... tnkn

Each Coni is a constructor, followed by ki types, where ki is a non-negative inte-
ger which may be zero. We build elements of the type Typename by applying these
constructor functions to arguments of the types given in the definition, so that

Coni vi1 ... viki

will be a member of the type Typename if vij is in tij for j ranging from 1 to ki.
Reading the constructors as functions, the definition (Typename) gives the con-
structors the following types



14.1. ALGEBRAIC TYPE DEFINITIONS REVISITED 341

Coni :: ti1 -> ... -> tiki -> Typename

Of the examples we have seen so far, enumerated types have constructors which
take no arguments,

data Season = Spring | Summer | Autumn | Winter

product types have a single constructor,

data People = Person Name Age

and sum types are the most general: they have a number of constructors taking dif-
ferent arguments, as in the definition

data Shape = Circle Float |
Rectangle Float Float

Definitions over algebraic types use pattern matching both to distinguish between
different alternatives and to extract components from particular elements:

area :: Shape -> Float
area (Circle r) = pi*r*r
area (Rectangle h w) = h*w

As we discussed in Section 13.4, Haskell has a number of built-in classes including
Eq, Ord, Enum, Show, and Read. When we introduce a new algebraic type it’s possible
to derive instances of these classes for the new type, like this:

data Season = Spring | Summer | Autumn | Winter
deriving (Eq,Ord,Enum,Show,Read)

We can thus compare seasons for equality and order, write expressions of the form
[Spring .. Autumn] denoting the list [Spring, Summer, Autumn], and show
and read values of the type.

Exercises

14.1 Reimplement the library database of Section 5.7 to use an algebraic type like
People rather than a pair. Compare the two approaches to this example.

14.2 The library database of Section 5.7 is to be extended in the following ways.

• CDs and videos as well as books are available for loan.
• A record is kept of the authors of books as well as their titles. Similar infor-

mation is kept about CDs, but not about videos.
• Each loan has a period: books one month, CDs one week and videos three

days.

Explain how you would modify the types used to implement the database, and
how the function types might be changed. The system should perform the fol-
lowing operations. For each case, give the types and definitions of the func-
tions involved.
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Figure 14.2: Two trees.

• Find all items on loan to a given person.
• Find all books, CDs or videos on loan to a particular person.
• Find all items in the database due back on or before a particular day, and

the same information for any given person.
• Update the database with loans; the constant today can be assumed to con-

tain today’s date, in a format of your choice.

What other functions would have to be defined to make the system usable?
Give their types, but not their definitions.

14.2 Recursive algebraic types

Types are often naturally described in terms of themselves. For instance, an integer
expression is either a literal integer, like 347, or is given by combining two expres-
sions using an arithmetic operator such as plus or minus, as in (3-1)+3.

data Expr = Lit Integer |
Add Expr Expr |
Sub Expr Expr

Similarly, a tree is either nil or is given by combining a value and two sub-trees. For
example, the number 12 and the trees in Figure 14.2 are assembled to give the tree
in Figure 14.1. As a Haskell type we say

data NTree = NilT |
Node Integer NTree NTree
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Finally, we have already used the type of lists: a list is either empty ( []) or is built
from a head and a tail – another list – using the list constructor ‘:’. Lists will provide
a good guide to using recursive (and polymorphic) definitions. In particular they
suggest how ‘general’ polymorphic higher-order functions over other algebraic types
are defined, and how programs are verified. We now look at some examples in more
detail.

Expressions

The type Expr gives a model of the simple numerical expressions discussed above.
These might be used in implementing a simple numerical calculator, for instance.

data Expr = Lit Integer |
Add Expr Expr |
Sub Expr Expr

Some examples are
2 Lit 2
2+3 Add (Lit 2) (Lit 3)
(3-1)+3 Add (Sub (Lit 3) (Lit 1)) (Lit 3)

where the informal expressions are listed in the left-hand column, and their Expr
forms in the right. Given an expression, we might want to

• evaluate it;

• turn it into a string, which can then be printed;

• estimate its size – count the operators, say.

Each of these functions will be defined in the same way, using primitive recursion.
As the type is itself recursive, it is not a surprise that the functions which handle
the type are also recursive. Also, the form of the recursive definitions follows the
recursion in the type definition. For instance, to evaluate an operator expression we
work out the values of the arguments and combine the results using the operator.

eval :: Expr -> Integer

eval (Lit n) = n
eval (Add e1 e2) = (eval e1) + (eval e2)
eval (Sub e1 e2) = (eval e1) - (eval e2)

Primitive recursive definitions have two parts:

• At the non-recursive, base cases – (Lit n) here – the value is given outright.

• At the recursive cases, the values of the function at the sub-expressions from
which the expression is formed – eval e1 and eval e2 here – can be used in
calculating the result.

The show function has a similar form
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show :: Expr -> String

show (Lit n) = show n
show (Add e1 e2)

= "(" ++ show e1 ++ "+" ++ show e2 ++ ")"
show (Sub e1 e2)

= "(" ++ show e1 ++ "-" ++ show e2 ++ ")"

as does the function to calculate the number of operators in an expression; we leave
this as an exercise. Other exercises at the end of the section look at a different repre-
sentation of expressions for which a separate type is used to represent the different
possible operators. Next, we look at another recursive algebraic type, but after that
we return to Expr and give an example of a non-primitive-recursive definition of a
function to rearrange expressions in a particular way.

Trees of integers

Trees of integers like that in Figure 14.1 can be modelled by the type

data NTree = NilT |
Node Integer NTree NTree

The null tree is given by NilT, and the trees in Figure 14.2 by

Node 10 NilT NilT
Node 17 (Node 14 NilT NilT) (Node 20 NilT NilT)

Definitions of many functions are primitive recursive. For instance,

sumTree,depth :: NTree -> Integer

sumTree NilT = 0
sumTree (Node n t1 t2) = n + sumTree t1 + sumTree t2

depth NilT = 0
depth (Node n t1 t2) = 1 + max (depth t1) (depth t2)

with, for example,

sumTree (Node 3 (Node 4 NilT NilT) NilT) = 7
depth (Node 3 (Node 4 NilT NilT) NilT) = 2

As another example, take the problem of finding out how many times a number, p
say, occurs in a tree. The primitive recursion suggests two cases, depending upon
the tree.

• For a null tree, NilT, the answer must be zero.

• For a non-null tree, (Node n t1 t2), we can find out how many times p oc-
curs in the sub-trees t1 and t2 by two recursive calls; we have to make a case
split depending on whether p occurs at the particular node, that is depending
on whether or not p==n.
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The final definition is

occurs :: NTree -> Integer -> Integer

occurs NilT p = 0
occurs (Node n t1 t2) p

| n==p = 1 + occurs t1 p + occurs t2 p
| otherwise = occurs t1 p + occurs t2 p

The exercises at the end of the section give a number of other examples of func-
tions defined over trees using primitive recursion. We next look at a particular ex-
ample where a different form of recursion is used.

Rearranging expressions

The next example shows a definition which uses a more general recursion than we
have seen so far. After showing why the generality is necessary, we argue that the
function we have defined is total: it will give a result on all well-defined expressions.

The operation of addition over the integers is associative, so that the way in
which an expression is bracketed is irrelevant to its value. We can, therefore, de-
cide to bracket expressions involving ‘+’ in any way we choose. The aim here is to
write a program to turn expressions into right bracketed form, as shown in Figure
14.3 and in the following table:

(2+3)+4 2+(3+4)
((2+3)+4)+5 2+(3+(4+5))
((2-((6+7)+8))+4)+5 (2-(6+(7+8)))+(4+5)

What is the program to do? The main aim is to spot occurrences of

Add (Add e1 e2) e3 (AddL)

and to transform them to

Add e1 (Add e2 e3) (AddR)

so a first attempt at the program might say

try (Add (Add e1 e2) e3)
= Add (try e1) (Add (try e2) (try e3))

try ...

which is primitive recursive: on the right-hand side of their definition the function
try is only used on sub-expressions of the argument. This function will have the
effect of transforming (AddL) to (AddR), but unfortunately (AddExL) will be sent
to (AddExR):

((2+3)+4)+5 (AddExL)
(2+3)+(4+5) (AddExR)
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Figure 14.3: Rearranging additions

The problem is that in transforming (AddL) to (AddR) we may produce another
pattern we are looking for at the top level: this is precisely what happens when
(AddExL) is transformed to (AddExR). We therefore have to call the function again
on the result of the rearrangement

assoc :: Expr -> Expr

assoc (Add (Add e1 e2) e3)
= assoc (Add e1 (Add e2 e3)) (Add.1)

The other cases in the definition make sure that the parts of an expression are rear-
ranged as they should be.

assoc (Add e1 e2)
= Add (assoc e1) (assoc e2) (Add.2)

assoc (Sub e1 e2)
= Sub (assoc e1) (assoc e2)

assoc (Lit n)
= Lit n

The equation (Add.2) will only be applied to the cases where (Add.1) does not
apply – this is when e1 is either a Sub or a Lit expression. This is always the case in
pattern matching; the first applicable equation is used.

When we use primitive recursion we can be sure that the recursion will termi-
nate to give an answer: the recursive calls are only made on smaller expressions and
so, after a finite number of calls to the function, a base case will be reached.

The assoc function is more complicated, and we need a more subtle argument
to see that the function will always give a result. The equation (Add.1) is the tricky
one, but intuitively, we can see that some progress has been made – some of the
‘weight’ of the tree has moved from left to right. In particular, one addition symbol
has swapped sides. None of the other equations moves a plus in the other direction,
so that after applying (Add.1) a finite number of times, there will be no more ex-
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posed addition symbols at the top level of the left-hand side. This means that the
recursion cannot go on indefinitely, and so the function always leads to a result.

In Section 14.7 we’ll look at specifying QuickCheck properties for functions over
algebraic types, includingassoc, as well as showing how some of these can be proved
by induction.

Syntax: infix constructors

We have seen that functions can be written in infix form; this also applies to con-
structors. We can, for example, redefine the function assoc thus:

assoc ((e1 ‘Add‘ e2) ‘Add‘ e3)
= assoc (e1 ‘Add‘ (e2 ‘Add‘ e3))

...

using the infix form of the constructor, given by surrounding it with back-quotes.
When an expression like this is shown, it appears in prefix form, so that the ex-

pression (Lit 3) ‘Add‘ (Lit 4) appears as

Add (Lit 3) (Lit 4)

In a data definition we can define Haskell operators which are themselves construc-
tors. These constructors have the same syntax as operator symbols, except that their
first character must be a ‘:’, which is reminiscent of ‘:’, itself an infix constructor. For
our type of integer expressions, we might define

data Expr = Lit Integer |
Expr :+: Expr |
Expr :-: Expr

When an expression involving operator constructors is printed, the constructors ap-
pear in the infix position, unlike the quoted constructors above.

It is left as an exercise to complete the redefinition of functions over Expr under
this redefinition of the Expr type.

Mutual recursion

In describing one type, it is often useful to use others; these in turn may refer back
to the original type: this gives a pair of mutually recursive types. A description of a
person might include biographical details, which in turn might refer to other people.
For instance:

data Person = Adult Name Address Bio |
Child Name

data Bio = Parent String [Person] |
NonParent String

In the case of a parent, the biography contains some text, as well as a list of their
children, as elements of the type Person.
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Suppose that we want to define a function which shows information about a per-
son as a string. Showing this information will require us to show some biographical
information, which itself contains further information about people. We thus have
two mutually recursive functions:

showPerson (Adult nm ad bio)
= show nm ++ show ad ++ showBio bio
...

showBio (Parent st perList)
= st ++ concat (map showPerson perList)
...

Exercises

14.3 Give calculations of

eval (Lit 67)
eval (Add (Sub (Lit 3) (Lit 1)) (Lit 3))
show (Add (Lit 67) (Lit (-34)))

14.4 Define the function

size :: Expr -> Integer

which counts the number of operators in an expression.

14.5 Add the operations of multiplication and integer division to the type Expr, and
redefine the functions eval, show and size to include these new cases. What
does your definition of eval do when asked to perform a division by zero?

14.6 Instead of adding extra constructors to the Expr type, as in the previous ques-
tion, it is possible to factor the definition thus:

data Expr = Lit Integer |
Op Ops Expr Expr

data Ops = Add | Sub | Mul | Div

Show how the functions eval, show and size are defined for this type, and
discuss the changes you have to make to your definitions if you add the extra
operation Mod for remainder on integer division.

14.7 Give line-by-line calculations of

sumTree (Node 3 (Node 4 NilT NilT) NilT)
depth (Node 3 (Node 4 NilT NilT) NilT)
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14.8 Complete the redefinition of functions over Expr after it has been defined us-
ing the infix constructors :+: and :-:.

14.9 Define functions to return the left- and right-hand sub-trees of an NTree.

14.10 Define a function to decide whether a number is an element of an NTree.

14.11 Define functions to find the maximum and minimum values held in an NTree.

14.12 A tree is reflected by swapping left and right sub-trees, recursively. Define
a function to reflect an NTree. What is the result of reflecting twice,
reflect . reflect?

14.13 Define functions

collapse, sort :: NTree -> [Integer]

which turn a tree into a list. The function collapse should enumerate the left
sub-tree, then the value at the node and finally the right sub-tree; sort should
sort the elements in ascending order. For instance,

collapse (Node 3 (Node 4 NilT NilT) NilT) = [4,3]
sort (Node 3 (Node 4 NilT NilT) NilT) = [3,4]

14.14 Complete the definitions of showPerson and showBio which were left incom-
plete in the text.

14.15 It is possible to extend the type Expr so that it contains conditional expres-
sions, If b e1 e2, where e1 and e2 are expressions, and b is a Boolean ex-
pression, a member of the type BExp,

data Expr = Lit Integer |
Op Ops Expr Expr |
If BExp Expr Expr

The expression

If b e1 e2

has the value of e1 if b has the value True and otherwise it has the value of e2.

data BExp = BoolLit Bool |
And BExp BExp |
Not BExp |
Equal Expr Expr |
Greater Expr Expr

The five clauses here give
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• Boolean literals, BoolLit True and BoolLit False.

• The conjunction of two expressions; it is True if both sub-expressions have
the value True.

• The negation of an expression. Not be has value True if be has the value
False.

• Equal e1 e2 is True when the two numerical expressions have equal val-
ues.

• Greater e1 e2 isTruewhen the numerical expressione1has a larger value
then e2.

Define the functions

eval :: Expr -> Integer
bEval :: BExp -> Bool

by mutual recursion, and extend the function show to show the redefined type
of expressions.

14.3 Polymorphic algebraic types

Algebraic type definitions can contain the type variables a, b and so on, defining
polymorphic types. The definitions are as before, with the type variables used in the
definition appearing after the type name on the left-hand side of the definition. A
simple example is

data Pairs a = Pr a a

and example elements of the type are

Pr 2 3 :: Pairs Integer
Pr [] [3] :: Pairs [Int]
Pr [] [] :: Pairs [a]

A function to test the equality of the two halves of a pair is given by

equalPair :: Eq a => Pairs a -> Bool
equalPair (Pr x y) = (x==y)

The remainder of this section explores a sequence of further examples.

Lists

The built-in type of lists can be given by a definition like

infixr 5 :::

data List a = NilL | a ::: (List a)
deriving (Eq,Ord,Show,Read)



14.3. POLYMORPHIC ALGEBRAIC TYPES 351

where the syntax [a], [] and ‘:’ is used for List a, NilList and :::. Note that we
have given a fixity declaration for ::: to give it the same fixity and associativity as
:, we can therefore write expressions like this:

*Chapter14> 2+3 ::: 4+5 ::: NilL
5 ::: (9 ::: NilL)

much as lists are written with :.
Lists form a useful paradigm for recursive polymorphic types. In particular, we

can see the possibility of defining useful families of functions over such types, and
the way in which program verification can proceed by induction over the structure
of a type.

Binary trees

The trees of Section 14.2 carry numbers at each node; there is nothing special about
numbers, and we can equally well say that they have elements of an arbitrary type
at the nodes:

data Tree a = Nil | Node a (Tree a) (Tree a)
deriving (Eq,Ord,Show,Read)

The definitions of depth and occurs carry over unchanged:

depth :: Tree a -> Integer
depth Nil = 0
depth (Node n t1 t2) = 1 + max (depth t1) (depth t2)

as do many of the functions defined in the exercises at the end of Section 14.2. One of
these is the function collapsing a tree into a list. This is done by visiting the elements
of the tree ‘inorder’, that is visiting first the left sub-tree, then the node itself, then
the right sub-tree, thus:

collapse :: Tree a -> [a]
collapse Nil = []
collapse (Node x t1 t2)

= collapse t1 ++ [x] ++ collapse t2

For example,

collapse (Node 12
(Node 34 Nil Nil)
(Node 3 (Node 17 Nil Nil) Nil))

= [34,12,17,3]

Various higher-order functions are definable, also,

mapTree :: (a -> b) -> Tree a -> Tree b
mapTree f Nil = Nil
mapTree f (Node x t1 t2)

= Node (f x) (mapTree f t1) (mapTree f t2)

We shall return to trees in Section 16.7, where particular ‘search’ trees form a case
study.
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Figure 14.4: Joining together functions.

The union type, Either

Type definitions can take more than one parameter. We saw earlier the example of
the type whose elements were either a name or a number. In general we can form a
type whose elements come either from a or from b:

data Either a b = Left a | Right b
deriving (Eq,Ord,Read,Show)

Members of the ‘union’ or ‘sum’ type are (Left x), with x::a, and (Right y) with
y::b. The ‘name or number’ type is given by Either String Int and

Left "Duke of Prunes" :: Either String Int
Right 33312 :: Either String Int

We can tell whether an element is in the first half of the union by

isLeft :: Either a b -> Bool
isLeft (Left _) = True
isLeft (Right _) = False

To define a function from Either a b to Int, say, we have to deal with two cases,

fun :: Either a b -> Int
fun (Left x) = ... x ...
fun (Right y) = ... y ...

In the first case, the right-hand side takes x to an Int, so is given by a function from
a to Int; in the second case y is taken to an Int, thus being given by a function from
b to Int.

Guided by this, we can give a higher-order function which joins together two
functions defined on a and b to a function on Either a b. The definition follows,
and is illustrated in Figure 14.3.
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either :: (a -> c) -> (b -> c) -> Either a b -> c

either f g (Left x) = f x
either f g (Right y) = g y

If we have a functionf::a -> c and we wish to apply it to an element ofEither a b,
there is a problem: what do we do if the element is in the right-hand side of the
Either type? A simple answer is to raise an error

applyLeft :: (a -> c) -> Either a b -> c
applyLeft f (Left x) = f x
applyLeft f (Right _) = error "applyLeft applied to Right"

but in the next section we shall explore other ways of handling errors in more detail.

Exercises

14.16 Investigate which of the functions over trees discussed in the exercises of Sec-
tion 14.2 can be made polymorphic.

14.17 Define a function twist which swaps the order of a union

twist :: Either a b -> Either b a

What is the effect of (twist . twist)?

14.18 How would you define applyLeft using the function either?

14.19 Show that any function of type a -> b can be transformed into functions of
type

a -> Either b c
a -> Either c b

14.20 How could you generalize either to join so that it has type

join :: (a -> c) -> (b -> d) -> Either a b -> Either c d

You might find the answer to the previous exercise useful here, if you want to
define join using either.

The trees defined in the text are binary: each non-nil tree has exactly two sub-trees.
We can instead define general trees with an arbitrary list of sub-trees, thus:

data GTree a = Leaf a | Gnode [GTree a]

The exercises which follow concern these trees.
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Exercises

14.21 Define functions

• to count the number of leaves in a GTree;

• to find the depth of a GTree;

• to sum a numeric GTree Int;

• to find whether an element appears in a GTree;

• to map a function over the elements at the leaves of a GTree; and

• to flatten a GTree to a list.

In each case give the type of the function that you have defined.

14.22 How is the completely empty tree represented as a GTree?

14.4 Modelling program errors

How should a program deal with a situation which ought not to occur? Examples of
such situations include

• attempts to divide by zero, to take the square root of a negative number, and
other arithmetical transgressions;

• attempts to take the head of an empty list – this is a special case of a definition
over an algebraic type from which one case (here the empty list) is absent.

This section examines the problem, giving three approaches of increasing sophisti-
cation. The simplest method is to stop computation and to report the source of the
problem. This is indeed what the Haskell system does in the cases listed above, and
we can do this in functions we define ourselves using the error function,

error :: String -> a

An attempt to evaluate the expression error "Circle with negative radius"
in GHCi results in the message

*** Exception: Circle with negative radius

being printed and computation stopping.
The problem with this approach is that all the useful information in the compu-

tation is lost; instead of this, the error can be dealt with in some way without stop-
ping computation completely. Two approaches suggest themselves, and we look at
them in turn now.

Dummy values

The function tail is supposed to give the tail of a list, and it gives an error message
on an empty list:
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tail :: [a] -> [a]
tail (_:xs) = xs
tail [] = error "Prelude.tail: empty list"

We could redefine it to say

tl :: [a] -> [a]
tl (_:xs) = xs
tl [] = []

Now, an attempt to take the tail of any list will succeed. In a similar way we could
say

divide :: Integer -> Integer -> Integer
divide n m

| (m /= 0) = n ‘div‘ m
| otherwise = 0

so that division by zero gives some answer. For tl and divide there have been
obvious choices about what the value in the ‘error’ case should be; for head there is
not, and instead we can supply an extra parameter to head, which is to be used in
the case of the list being empty.

hd :: a -> [a] -> a
hd y (x:_) = x
hd y [] = y

This approach is completely general; if a function f (of one argument, say) usually
raises an error when cond is True, we can define a new function

fErr y x
| cond = y
| otherwise = f x

This approach works well in many cases; the only drawback is that we have no way
of telling when an error has occurred, since we may get the result y from either the
error or the ‘normal’ case. Alternatively we can use an error type to trap and process
errors; this we look at now.

Error types

The previous approach works by returning a dummy value when an error has oc-
curred. Why not instead return an error value as a result? We define the type

data Maybe a = Nothing | Just a
deriving (Eq,Ord,Read,Show)

which is effectively the type awith an extra value Nothing added. We can now define
a division function errDiv thus



356 CHAPTER 14. ALGEBRAIC TYPES

errDiv :: Integer -> Integer -> Maybe Integer
errDiv n m

| (m /= 0) = Just (n ‘div‘ m)
| otherwise = Nothing

and in the general case, where f gives an error when cond holds,

fErr x
| cond = Nothing
| otherwise = Just (f x)

The results of these functions are now not of the original output type, a say, but of
type Maybe a. These Maybe types allow us to raise an error, potentially. We can do
two things with a potential error which has been raised

• we can transmit the error through a function, the effect of mapMaybe;

• we can trap an error, the role of maybe.

These two operations are illustrated in Figure 14.4, and we define them now.
The function mapMaybe transmits an error value through the application of the

function g. Suppose that g is a function of type a -> b, and that we are to lift it to
operate on the type Maybe a. In the case of an argument Just x, g can be applied
to the x to give a result, g x, of type b; this is put into Maybe b by applying the
constructor function Just. On the other hand, if Nothing is the argument then
Nothing is the result.

mapMaybe :: (a -> b) -> Maybe a -> Maybe b

mapMaybe g Nothing = Nothing
mapMaybe g (Just x) = Just (g x)

In trapping an error, we aim to return a result of type b, from an input of type Maybe
a; we have two cases to deal with

• in the Just case, we apply a function from a to b;

• in the Nothing case, we have to give the value of type bwhich is to be returned.
(This is rather like the value we supplied to hd earlier.)

The higher-order function which achieves this is maybe, whose arguments n and f
are used in the Nothing and Just cases respectively.

maybe :: b -> (a -> b) -> Maybe a -> b

maybe n f Nothing = n
maybe n f (Just x) = f x

We can see the functions mapMaybe and maybe in action in the examples which fol-
low. In the first, a division by zero leads to a Nothing which passes through the
lifting to be trapped – 56 is therefore returned:
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Maybe a Maybe b
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Maybe a b
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maybe n f

n

Figure 14.5: Error-handling functions.

maybe 56 (1+) (mapMaybe (*3) (errDiv 9 0))
= maybe 56 (1+) (mapMaybe (*3) Nothing)
= maybe 56 (1+) Nothing
= 56

In the second, a normal division returns a Just 9. This is multiplied by three, and
the maybe at the outer level adds one and removes the Just:

maybe 56 (1+) (mapMaybe (*3) (errDiv 9 1))
= maybe 56 (1+) (mapMaybe (*3) (Just 9))
= maybe 56 (1+) (Just 27)
= 1 + 27
= 28

The advantage of the approach discussed here is that we can first define the system
without error handling, and afterwards add the error handling, using the mapMaybe
and maybe functions together with the modified functions to raise the error. As we
have seen numerous times already, separating a problem into two parts has made
the solution of each, and therefore the whole, more accessible.

We revisit the Maybe type in Section 18.5 where we see that it is an example of a
more general programming structure, a monad. In particular there we examine the
relationship between the function mapMaybe and the map function over lists.

Exercises

14.23 Using the functions mapMaybe and maybe, or otherwise, define a function

process :: [Int] -> Int -> Int -> Int

so that process xs n m takes the nth and mth items of the list of numbers xs,
and returns their sum. Your function should return 0 if either of the numbers
is not one of the indices of the list: for a list of length p, the indices are 0, . . . ,
p-1 inclusive.

14.24 Discuss the advantages and disadvantages of the three approaches to error
handling presented in this section.
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14.25 What are the values of type Maybe (Maybe a)? Define a function

squashMaybe :: Maybe (Maybe a) -> Maybe a

which will ‘squash’ Just (Just x) to Just x and all other values toNothing.

14.26 In a similar way to mapMaybe, define the function

composeMaybe :: (a -> Maybe b) ->
(b -> Maybe c) ->
(a -> Maybe c)

which composes two error-raising functions. How could you use mapMaybe,
the function composition operator and thesquash function to definecomposeMaybe?

14.27 The Maybe type could be generalized to allow messages to be carried in the
Nothing part, thus:

data Err a = OK a | Error String

How do the definitions of mapMaybe, maybe and composeMaybe have to be
modified to accommodate this new definition?

14.5 Design with algebraic data types

Algebraic data types provide us with a powerful mechanism for modelling types
which occur both in problems themselves, and within the programs designed to
solve them. In this section we suggest a three-stage method for finding the appropri-
ate algebraic type definitions. We apply it in two examples: finding the ‘edit distance’
between two words, and a simulation problem.

An important moral of the discussion here is that we can start to design data
types independently of the program itself. For a system of any size we should do
this, as we will be more likely to succeed if we can think about separate parts of the
system separately.

We shall have more to say about design of data types in the next two chapters.

Edit distance: problem statement

In discussing the stages of design, we follow the example of finding the edit dis-
tance between two strings. This is the shortest sequence of simple editing opera-
tions which can take us from one string to the other.

The example is a version of a practical problem: in keeping a display (of windows
or simple text) up-to-date, the speed with which updates can be done is crucial. It
is therefore desirable to be able to make the updates from as few elementary op-
erations as possible; this is what the edit distance program achieves in a different
context.
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We suppose that there are five basic editing operations on a string. We can
change one character into another, copy a character without modifying it, delete
or insert a character and delete (kill) to the end of the string. We also assume that
each operation has the same cost, except a copy which is free.

f i s h

f i s hc

i s hc

h s hc

h i s hc p

h i hc p

h ic p

h

i

s

hs

To turn the string "fish" into "chips", we could
kill the whole string, then insert the characters one-
by-one, at a total cost of six. An optimal solution will
copy as much of the string as possible, and is given by

• inserting the character ’c’,

• changing ’f’ to ’h’,

• copying ’i’,

• inserting ’p’,

• copying ’s’, and finally

• deleting the remainder of the string, "h".

In the remainder of this section we design a type to
represent the editing steps, and after looking at an-
other example of data type design, define a function
to give an optimal sequence of editing steps from one
string to another.

The analysis here can also be used to describe the
difference between two lists of arbitrary type. If each
item is a line of a file, the behaviour of the function is
similar to the Unix diff utility, which is used to give

the difference between two text files.

Design stages in the edit distance problem

Now we look at the three stages of algebraic type definition in detail.

• First we have to identify the types of data involved. In the example, we have to
define

data Edit = ...

which represents the editing operations.

• Next, we have to identify the different sorts of data in each of the types. Each
sort of data is given by a constructor. In the example, we can change, copy,
delete or insert a character and delete (kill) to the end of the string. Our type
definition is therefore

data Edit = Change ... |
Copy ... |
Delete ... |
Insert ... |
Kill ...
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The ‘...’ show that we have not yet said anything about the types of the con-
structors.

• Finally, for each of the constructors, we need to decide what its components
or arguments are. Some of the constructors – Copy, Delete and Kill – require
no information; the others need to indicate the new character to be inserted,
so

data Edit = Change Char |
Copy |
Delete |
Insert Char |
Kill
deriving (Eq,Show)

This completes the definition.

We now illustrate how other type definitions work in a similar way, before returning
to give a solution to the ‘edit distance’ problem.

Simulation

Suppose we want to model, or simulate, how the queues in a bank or Post Office
behave; perhaps we want to decide how many bank clerks need to be working at
particular times of the day. Our system will take as input the arrivals of customers,
and give as output their departures. Each of these can be modelled using a type.

• Inmess is the type of input messages. At a given time, there are two possibili-
ties:

– No-one arrives, represented by the 0-ary constructor No;

– Someone arrives, represented by the constructor Yes. This will have com-
ponents giving the arrival time of the customer, and the amount of time that
will be needed to serve them.

Hence we have

data Inmess = No | Yes Arrival Service

type Arrival = Integer
type Service = Integer

• Similarly, we have Outmess, the type of output messages. Either no-one leaves
(None), or a person is discharged (Discharge). The relevant information they
carry is the time they have waited, together with when they arrived and their
service time. We therefore define
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data Outmess = None | Discharge Arrival Wait Service

type Wait = Integer

We return to the simulation example in Chapter 16.

Edit distance: solution

The problem is to find the lowest-cost sequence of edits to take us from one string
to another. We can begin the definition thus:

transform :: String -> String -> [Edit]

transform [] [] = []

To transform the non-empty string st to [], we simply have to Kill it, while to
transform [] to st we have to Insert each of the characters in turn:

transform xs [] = [Kill]
transform [] ys = map Insert ys

In the general case, we have a choice: should we first use Copy, Delete, Insert or
Change? If the first characters of the strings are equal we should copy; but if not,
there is no obvious choice. We therefore try all possibilities and choose the best of
them:

transform (x:xs) (y:ys)
| x==y = Copy : transform xs ys
| otherwise = best [ Delete : transform xs (y:ys) ,

Insert y : transform (x:xs) ys ,
Change y : transform xs ys ]

How do we choose the best sequence? We choose the one with the lowest cost.

best :: [[Edit]] -> [Edit]
best [x] = x
best (x:xs)

| cost x <= cost b = x
| otherwise = b

where
b = best xs

The cost is given by charging one for every operation except copy, which is equiva-
lent to ‘leave unchanged’.

cost :: [Edit] -> Int
cost = length . filter (/=Copy)
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Testing transform using QuickCheck

We can use to QuickCheck to test two of the fundamental properties of the
transform function.

First, it should produce a list whose cost is no bigger than the cost of building up the
target string letter by letter, and then killing the original string, a cost of length ys
+ 1: we can state this as the property

prop_transformLength :: String -> String -> Property

prop_transformLength xs ys =
length (xs++ys) <= 15 ==>

cost (transform xs ys) <= length ys + 1

where we have guarded the test on the overall length of the two lists, for efficiency
reasons.

Secondly, the sequence of edits given by transform xs ys should indeed take the
string xs to ys when it is applied, so

prop_transform xs ys =
length (xs++ys) <= 15 ==>

edit (transform xs ys) xs == ys

We leave it as an exercise for the reader to define the function

edit :: [Edit] -> String -> String

so that, for instance

edit [Insert ’c’,Change ’h’,Copy,Insert ’p’,Copy,Kill] "fish"
; "chips"

Exercises

14.28 How would you modify the edit distance program to accommodate a Swap
operation, which can be used to transform "abxyz" to "baxyz" in a single
step?

14.29 Write a definition of the edit function described above, which when given a
list of edits and a string st, returns the sequence of strings given by applying
the edits to st in sequence.

14.30 Can you give other QuickCheck properties that you would expect the edit dis-
tance program to have? You could think, for example, about particular sorts of
inputs, e.g. where the input is an initial segment of the output.

14.31 Give a calculation of transform "cat" "am". What do you conclude about
the efficiency of the transform function?
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14.32 [Harder] Can you give a more efficient implementation of the function calcu-
lating the transform?

The remaining questions are designed to make you think about how data types are
designed. These questions are not intended to have a single ‘right’ answer, rather
you should satisfy yourself that you have adequately represented the types which
appear in your informal picture of the problem.

Exercises

14.33 It is decided to keep a record of vehicles which will use a particular car park.
Design an algebraic data type to represent them.

14.34 If you knew that the records of vehicles were to be used for comparative tests
of fuel efficiency, how would you modify your answer to the last question?

14.35 Discuss the data types you might use in a database of students’ marks for
classes and the like. Explain the design of any algebraic data types that you
use.

14.36 What data types might be used to represent the objects which can be drawn
using an interactive drawing program? To give yourself more of a challenge,
you might like to think about grouping of objects, multiple copies of objects,
and scaling.

14.6 Algebraic types and type classes

We have reached a point where it is possible to explore rather more substantial ex-
amples of type classes, first introduced in Chapter 13.

Movable objects

We start by building a class of types whose members are geometrical objects in two
dimensions. The operations of the class are those to move the objects in various
different ways.

We now work through the definitions, which are illustrated in Figures 14.6 and
14.7. Some moves will be dictated by vectors, so we first define

data Vector = Vec Float Float

The class definition itself is

class Movable a where
move :: Vector -> a -> a
reflectX :: a -> a
reflectY :: a -> a
rotate180 :: a -> a
rotate180 = reflectX . reflectY
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data Vector = Vec Float Float

class Movable a where
move :: Vector -> a -> a
reflectX :: a -> a
reflectY :: a -> a
rotate180 :: a -> a
rotate180 = reflectX . reflectY

data Point = Point Float Float
deriving Show

instance Movable Point where
move (Vec v1 v2) (Point c1 c2) = Point (c1+v1) (c2+v2)
reflectX (Point c1 c2) = Point c1 (-c2)
reflectY (Point c1 c2) = Point (-c1) c2
rotate180 (Point c1 c2) = Point (-c1) (-c2)

Figure 14.6: Movable objects (1).

and it shows the ways in which an object can be moved. First it can be moved by a
vector, as in the diagram below.

move (Vec x y) ...

y

x

We can also reflect an object in the x-axis (the horizontal axis) or the y-axis (the
vertical), or rotate a figure through 180± around the origin (the point where the axes
meet). The default definition of rotate180works by reflecting first in the y-axis and
then the x, as we did with the Picture type in Chapter 1.

We can now define a hierarchy of movable objects; first we have the Point,

data Point = Point Float Float
deriving Show

To makePoint an instance ofMovablewe have to give definitions ofmove, reflectX
and reflectY over the Point type.

move (Vec v1 v2) (Point c1 c2) = Point (c1+v1) (c2+v2)
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data Figure = Line Point Point |
Circle Point Float
deriving Show

instance Movable Figure where
move v (Line p1 p2) = Line (move v p1) (move v p2)
move v (Circle p r) = Circle (move v p) r

reflectX (Line p1 p2) = Line (reflectX p1) (reflectX p2)
reflectX (Circle p r) = Circle (reflectX p) r

reflectY (Line p1 p2) = Line (reflectY p1) (reflectY p2)
reflectY (Circle p r) = Circle (reflectY p) r

instance Movable a => Movable [a] where
move v = map (move v)
reflectX = map reflectX
reflectY = map reflectY

Figure 14.7: Movable objects (2).

Here we can see that the move is achieved by adding the components v1 and v2 to
the coordinates of the point. Reflection is given by changing the sign of one of the
coordinates

reflectX (Point c1 c2) = Point c1 (-c2)
reflectY (Point c1 c2) = Point (-c1) c2

For this instance we override the default definition of rotate180 by changing the
sign of both coordinates. This is a more efficient way of achieving the same trans-
formation than the default definition.

rotate180 (Point c1 c2) = Point (-c1) (-c2)

Using the type of points we can build figures:

data Figure = Line Point Point |
Circle Point Float

and in the instance declaration of Movable for Figure given in Figure 14.7 we use
the corresponding operations on Point; for example,

move v (Line p1 p2) = Line (move v p1) (move v p2)
move v (Circle p r) = Circle (move v p) r

This same approach works again when we consider a list of movable objects:

instance Movable a => Movable [a] where
move v = map (move v)
reflectX = map reflectX
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data Name a = Pair a String

exam1 = Pair (Point 0.0 0.0) "Dweezil"

instance Named (Name a) where (1)
lookName (Pair obj nm) = nm
giveName nm (Pair obj _) = (Pair obj nm)

mapName :: (a -> b) -> Name a -> Name b

mapName f (Pair obj nm) = Pair (f obj) nm

instance Movable a => Movable (Name a) where (2)
move v = mapName (move v)
reflectX = mapName reflectX
reflectY = mapName reflectY

class (Movable b, Named b) => NamedMovable b (3)

instance Movable a => NamedMovable (Name a)

Figure 14.8: Named movable objects.

and so on. Using overloading in this way has a number of advantages.

• The code is much easier to read: at each point we write move, rather than
movePoint, and so on.

• We can reuse definitions; the instance declaration for Movable [a] makes
lists of any sort of movable object movable themselves. This includes lists
of points and lists of figures. Without overloading we would not be able to
achieve this.

Named objects

Many forms of data contain some sort of name, a String which identifies the object
in question. What do we expect to be able to do with a value of such a type?

• We should be able to identify the name of a value, and

• we ought to be able to give a new name to a value.

These operations are embodied in the Named class:

class Named a where
lookName :: a -> String
giveName :: String -> a -> a
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and an example of Named types is given by

data Name a = Pair a String

the one-constructor type whose two components are of type a and String. The
instance declaration for this type is

instance Named (Name a) where (1)
lookName (Pair obj nm) = nm
giveName nm (Pair obj _) = (Pair obj nm)

Putting together classes

An important aspect of object-oriented software development is the way in which
one class can be built upon another, reusing the operations of the original class on
the subclass. In this section we explore how to combine the Movable and Named
classes, to give objects which are both movable and named. The section is rather
more advanced, and can be omitted on first reading.

Suppose we are to add names to our movable objects – how might this be done?
We examine one approach in the text, and another in the exercises.

Our approach is to build the type Name a where elements of type a are movable,
that is Movable a holds. We then want to establish that the type Name a is in both
the classes Movable and Named. We have shown the latter for any type a already in
(1) above, so we concentrate on the former.

The crucial insight is that the naming is independent of the named type; any
operation on the type can be lifted to work over named types thus:

mapName :: (a -> b) -> Name a -> Name b

mapName f (Pair obj nm) = Pair (f obj) nm

We can then argue that all the operations of the Movable class can be lifted.

instance Movable a => Movable (Name a) where (2)
move v = mapName (move v)
reflectX = mapName reflectX
reflectY = mapName reflectY

Now we already know that Named (Name a) by (1) above, so if we define a class
combining these attributes

class (Movable b, Named b) => NamedMovable b (3)

we can declare the instance

instance Movable a => NamedMovable (Name a)

This last instance is established by showing that the two constraints of (3) hold
when b is replaced by Name a, but this is exactly what (1) and (2) say given the
constraint Movable a.
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This completes the demonstration that NamedMovable (Name a) holds when
we know that Movable a. It is worth realising that this demonstration is produced
automatically by the Haskell system – we only need to type what is seen in Figure
14.8.

This section has begun to illustrate how classes can be used in the software de-
velopment process. In particular we have shown how our movable objects can be
named in a way which allows reuse of all the code to move the objects.

Exercises

14.37 A different way of combining the classes Named and Movable is to establish
the instance

instance (Movable b,Named c) => NamedMovable (b,c)

This is done by giving the instances

instance Movable b => Movable (b,c) where ....
instance Named c => Named (b,c) where ....

Complete these instance declarations.

14.38 Show that the method of the previous question can be used to combine in-
stances of any two classes.

14.39 The example in the final part of this section shows how we can combine an
arbitrary instance of the Movable class, a, with a particular instance of the
Named class, String. Show how it can be used to combine an arbitrary in-
stance of one class with a particular instance of another for any two classes
whatever.

14.40 Extend the collection of operations for moving objects to include scaling and
rotation by an arbitrary angle. This can be done by re-defining Movable or
by defining a class MovablePlus over the class Movable. Which approach is
preferable? Explain your answer.

14.41 Design a collection of classes to model bank accounts. These have different
forms: current, deposit and so on, as well as different levels of functionality.
Can you reuse the Named class here?

14.7 Reasoning about algebraic types

Verification for algebraic types follows the example of lists, as first discussed in Chap-
ter 9. The general pattern of structural induction over an algebraic type states that
the result has to be proved for each constructor; when a constructor is recursive, we
are allowed to use the corresponding induction hypotheses in making the proof. We
first give some representative examples in this section, and conclude with a rather
more sophisticated proof.



14.7. REASONING ABOUT ALGEBRAIC TYPES 369

Trees

Structural induction over the type Tree of trees is stated as follows.

Structural induction over trees

To prove the property P(tr) for all finite tr of type Tree twe have to do two things.

Nil case Prove P(Nil).
Node case Prove P(Node x tr1 tr2) for all x of type t

assuming that P(tr1) and P(tr2) hold already.

The advice of Chapter 9 about finding proofs can easily be carried over to the situa-
tion here. Now we give a representative example of a proof. We aim to prove for all
finite trees tr that

map f (collapse tr) = collapse (mapTree f tr) (map-collapse)

which states that if we map a function over a tree, and then collapse the result we
get the same result as collapsing before mapping over the list. The functions we use
are defined as follows

map f [] = [] (map.1)
map f (x:xs) = f x : map f xs (map.2)

mapTree f Nil = Nil (mapTree.1)
mapTree f (Node x t1 t2)

= Node (f x) (mapTree f t1) (mapTree f t2) (mapTree.2)

collapse Nil = [] (collapse.1)
collapse (Node x t1 t2)

= collapse t1 ++ [x] ++ collapse t2 (collapse.2)

Base In the Nil case, we simplify each side, giving

map f (collapse Nil)
= map f [] by (collapse.1)
= [] by (map.1)

collapse (mapTree f Nil)
= collapse Nil by (mapTree.1)
= [] by (collapse.1)

This shows that the base case holds.

Induction In the Node case, we have to prove:

map f (collapse (Node x tr1 tr2))
= collapse (mapTree f (Node x tr1 tr2)) (ind)



370 CHAPTER 14. ALGEBRAIC TYPES

assuming the two induction hypotheses:

map f (collapse tr1) = collapse (mapTree f tr1) (hyp.1)
map f (collapse tr2) = collapse (mapTree f tr2) (hyp.2)

Looking at (ind), we can simplify the left-hand side thus

map f (collapse (Node x tr1 tr2))
= map f (collapse tr1 ++ [x] ++ collapse tr2) by (collapse.2)
= map f (collapse tr1) ++ [f x] ++ map f (collapse tr2)

by (map++)
= collapse (mapTree f tr1) ++ [f x] ++

collapse (mapTree f tr2) by (hyp1,hyp2)

The final step is given by the two induction hypotheses, that the result holds for the
two subtrees tr1 and tr2. The result (map++) is the theorem

map g (ys++zs) = map g ys ++ map g zs (map++)

discussed in Chapter 11. Examining the right-hand side now, we have

collapse (mapTree f (Node x tr1 tr2))
= collapse (Node (f x) (mapTree f tr1)

(mapTree f tr2)) by (mapTree.2)
= collapse (mapTree f tr1) ++ [f x] ++

collapse (mapTree f tr2) by (collapse.2)

and this finishes the proof in the Node case. As this is the second of the two cases,
the proof is complete.

The Maybe type

Structural induction for the type Maybe tbecomes proof by cases – because the type
is not recursive, in none of the cases is there an appeal to an induction hypothesis.
The rule is

Structural induction over the Maybe type

To prove the property P(x) for all defined1 x of type Maybe t we have to do two
things:

Nothing case Prove P(Nothing).
Just case Prove P(Just y) for all defined y of type t.

Our example proof is that, for all defined values x of type Maybe Int,

maybe 2 abs x ∏ 0

1When the type is not recursive, the induction principle gives a proof for all defined objects. An object
of this type is defined if it is Nothing, or Just y for a defined y.
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Proof The proof has two cases. In the first x is replaced by Nothing:

maybe 2 abs Nothing
= 2 ∏ 0

In the second, x is replaced by Just y for a defined y.

maybe 2 abs (Just y)
= abs y ∏ 0

In both cases the result holds, and so the result is valid in general.

Other forms of proof

We have seen that not all functions are defined by primitive recursion. The exam-
ple we saw in Section 14.2 was of the function assoc, which is used to rearrange
arithmetic expressions represented by the type Expr. Recall that

assoc (Add (Add e1 e2) e3)
= assoc (Add e1 (Add e2 e3)) (assoc.1)

assoc (Add e1 e2) = Add (assoc e1) (assoc e2) (assoc.2)
assoc (Sub e1 e2) = Sub (assoc e1) (assoc e2) (assoc.3)
assoc (Lit n) = Lit n (assoc.4)

with (assoc.1) being the non-primitive recursive case. We would like to prove that
the rearrangement does not affect the value of the expression:

eval (assoc ex) = eval ex (eval-assoc)

for all finite expressions ex. The induction principle for the Expr type has three
cases.

Lit case Prove P(Lit n).
Add case Prove P(Add e1 e2), assuming P(e1) and P(e2)
Sub case Prove P(Sub e1 e2), assuming P(e1) and P(e2)

To prove (eval-assoc) for all finite expressions, we have the three cases given
above. The Lit and Sub cases are given, respectively, by (assoc.4) and (assoc.3),
but the Add case is more subtle. For this we will prove

eval (assoc (Add e1 e2)) = eval (Add e1 e2) (eval-Add)

by induction on the number of Adds which are left-nested at the top level of the ex-
pression e1 – recall that it was by counting these and noting that assoc preserves
the total number of Adds overall that we proved the function would always termi-
nate. Now, if there are no Adds at the top-level of e1, the equation (assoc.2) gives
(eval-Add). Otherwise we rearrange thus:

eval (assoc (Add (Add f1 f2) e2)))
= eval (assoc (Add f1 (Add f2 e2))) by (assoc.1)

and since f1 contains fewer Adds at top level,
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Checking properties in QuickCheck

Many of these properties can be checked in QuickCheck; we can define properties
like this:

prop_assoc :: Expr -> Bool
prop_assoc expr =

eval expr == eval (assoc expr)

prop_depth :: NTree -> Bool
prop_depth t =

size t < 2ˆ(depth t)

prop_collapse :: Eq b => (a -> b) -> Tree a -> Bool
prop_collapse f =

\t -> map f (collapse t) == collapse (mapTree f t)

To be checkable, we need to be able to generate random values of the types Expr,
NTree and Tree a (for types a for which random values can be generated). We have
done this in the module available online, and we will explain the code in more detail
in Chapter 19.

= eval (Add f1 (Add f2 e2))
= eval (Add (Add f1 f2) e2) by associativity of +

which gives the induction step, and therefore completes the proof.
This result shows that verification is possible for functions defined in a more

general way than primitive recursion.

Exercises

14.42 Prove that the function weather from Section 5.3 has the same behaviour as

newWeather = makeHot . isSummer

when

makeHot True = Hot
makeHot False = Cold
isSummer = (==Summer)

where recall that (==Summer) is an operator section whose effect is to test
whether its argument is equal to Summer.

14.43 Is it the case that the area of each Shape from Section 5.3 is non-negative? If
so, give a proof; if not, give an example which shows that it is not the case.
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14.44 If we define the size of an NTree thus

size NilT = 0
size (Node x t1 t2) = 1 + size t1 + size t2

then prove that for all finite nTrees, tr,

size tr < 2^(depth tr)

14.45 Show for all finite NTrees tr that

occurs tr x = length (filter (==x) (collapse tr))

The next two exercises refer back to the exercises of Section 14.3.

14.46 Prove that the function twist has the property that

twist . twist = id

14.47 Explain the principle of structural induction for the type GTree. Formulate
and prove the equivalent of the theorem relating map, mapTree and collapse
for this type of trees.

Summary

Algebraic types sharpen our ability to model types in our programs: we have seen in
this chapter how simple, finite types like Temp can be defined, as well as the more
complex Either and recursive types. Many of these recursive types are varieties of
tree: we looked at numerical trees; elements of the type Expr can also be thought of
as trees representing the underlying structure of arithmetical expressions.

The type of lists gives a guiding example for various aspects of algebraic types.

• The definition of the type is recursive and polymorphic, and many polymor-
phic higher-order functions can be defined over lists – this carries over to the
various types of tree and the error type, Maybe, for example.

• There is a simple principle for reasoning over lists, structural induction, which
is the model for structural induction over algebraic types.

The chapter also gives guidelines for defining algebraic types. The definition can
be given in three parts: first the type name is identified, then the constructors are
named, and finally their component types are specified. As in other aspects of pro-
gram development, this separation of concerns assists the system developer to pro-
duce simple and correct solutions.

Having introduced algebraic data types we are able to give more substantial ex-
amples of classes and their instances. We can see that the overloading that classes
bring makes code both easier to read and more amenable to reuse; we can see in
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particular how software can be extended in a way that requires little modification to
the code.

In the chapters to come, algebraic types will be an integral part of the systems we
develop, and indeed in the next case study we exhibit various aspects of these types.
We shall also explore a different approach to types: abstract data types, and see how
this approach complements and contrasts with the use of algebraic data types.



Chapter 15

Case study: Huffman codes

We use the case study in this chapter as a vehicle to illustrate many of the features
of the previous chapters – polymorphism, algebraic types and program design – and
to illustrate the module system of Haskell, which is discussed first.

15.1 Modules in Haskell

As we first saw in Section 2.5, a module consists of a number of definitions of types,
functions and so on, with a clearly defined interface stating what the moduleexports
to other modules which use or import it. We also saw in Section 6.3 that module
names can be composite, as in Data.Bits, taking the form of hierarchical names.

Using modules to structure a large program has a number of advantages.

• Parts of the system can be built separately from each other. Suppose we want
to monitor traffic on a network: one module might produce the statistics,
while another displays them in a suitable form. If we agree which statistics
are to be presented (their type etc.), that is we agree the interface, then devel-
opment of the two parts of the system can go on independently.

• Parts of a system can be compiled separately; this is a great advantage for a
system of any complexity.

• Libraries of components can be reused, by importing the appropriate mod-
ules containing them.

In the definition of Haskell 2010, there is no identification between modules and
files. Nonetheless, we choose here to write one module per file, and indeed this is
required by GHC.

Now we look at the details of Haskell modules, before giving our case study which
exhibits the system in action.

Module headers

Each module is named, so an example named Ant might be

375
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module Ant where

data Ants = ...
anteater x = ...

Note that the definitions all begin in the column under the keyword module; it is
safest to make this the leftmost column of the file.

We also assume that a module Foo will live in the file Foo.hs; GHC allows mod-
ule and file names to be different, but we recommend that you keep them the same.

Importing a module

The basic operation on modules is to import one into another, so in defining Bee
we might say

module Bee where

import Ant

beeKeeper = ...

This means that the visible definitions from Ant can be used in Bee. By default the
visible definitions in a module are those which appear in the module itself. If we
define

module Cow where

import Bee

the definitions of Ants and anteater will not be visible in Cow. They can be made
visible either by importing Ant explicitly, or by using the export controls discussed
below to modify exactly what is exported from Bee.

Export controls

As we explained when import was introduced, the default is that all top-level defi-
nitions of a module are exported.

• This may be too much: we might wish not to export some auxiliary functions,
such as the shunt function below

reverse :: [a] -> [a]
reverse = shunt []

shunt :: [a] -> [a] -> [a]
shunt ys [] = ys
shunt ys (x:xs) = shunt (x:ys) xs
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since its only role is in defining the reverse function.

• On the other hand, it might be too little: we perhaps want to export some of
the definitions we imported from other modules. The modules Ant, Bee and
Cow above provide an example of this.

We can control what is exported by following the name of the module with a list of
what is to be exported. For instance, we say in the case of Bee

module Bee ( beeKeeper, Ants(..), anteater ) where ...

The list contains names of defined objects, such as beeKeeper, and also data types
like Ants. In the latter case we follow the type name with (..) to indicate that the
constructors of the type are exported with the type itself; if this is omitted, then the
type acts like an abstract data type, which we investigate further in the next chapter.
The (..) is not necessary for a type definition.

Such a list works on a definition-by-definition basis; we can also state that all the
definitions in a module are to be exported, as in

module Bee ( beeKeeper, module Ant ) where ...

or equivalently

module Bee ( module Bee , module Ant ) where ...

where preceding the name of a module by the keyword module is shorthand for all
the names defined within the module. The simple header

module Fish where

is therefore equivalent to

module Fish ( module Fish ) where

The Main module

Each system of modules should contain a top-level module called Main, which gives
a definition to the name main. In a compiled system, this is the expression which is
evaluated when the compiled code is run. In an interpreter like GHCi, where we can
run code in any module, it is of less significance.

A module without a header is treated as though it contains the header

module Main(main) where

Import controls

We can control how objects are to be imported, just as we can control their export.
We do this by following the import statement with a list of objects, types or classes.
For instance, if we choose not to import anteater from Ant we can write



378 CHAPTER 15. CASE STUDY: HUFFMAN CODES

import Ant ( Ants(..) )

stating that we want just the type Ants; we can alternatively say which names we
wish to hide:

import Ant hiding ( anteater )

Suppose that in our module we have a definition of bear, and also there is an ob-
ject named bear in the module Ant. How can we gain access to both definitions?
The answer is that we use the qualified name Ant.bear for the imported object,
reserving bear for the locally defined one.

A qualified name is built from the name of a module and the name of an object
in that module, separated by a full stop. Note that there should be no white space
between the ‘.’ and the two names, so as to avoid confusion with the composition
operator. To use qualified names we should make the import like this:

import qualified Ant

In the qualified case we can also state which particular items are to be imported or
hidden, just as in the unqualified case above. It is possible to use a local name for an
imported module, as in

import Insect as Ant

which gives the local name Ant to the imported module Insect.

Qualified and unqualified names

When a file is imported unqualified, that is without the qualified keyword, it is still
possible to used qualified naming, so after importing Antwe can use both anteater
and Ant.anteater to name the anteater function defined in that module.

On the other hand, if a file is imported qualified then only qualified names can be
used. This note also applies when a module is given a local name, as in

import qualified Ant as Insect

after which the anteater function can only be invoked using Insect.anteater.

One thing you need to be careful about is that you can’t use a qualified name for a
function within the function definition itself, but only outside that definition.

The standard Prelude

The standard Prelude is implicitly imported into every module. If we wish we can
modify this import, perhaps hiding one or more bindings thus

module Eagle where

import Prelude hiding (words)
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so that we can give our own definition of the name words. If we import Eagle into
another module, this module will also have explicitly to hide the import of words
from the Prelude if conflicting definitions are to be avoided, and so we see that a
re-definition of a Prelude function cannot be done ‘invisibly’, as it were.

If we also wish to have access to the original definition of words we can make a
qualified import of the prelude,

import qualified Prelude

and use the original words by writing its qualified name Prelude.words.

Further details

Further information about the Haskell module system can be found in the language
report (Marlow 2010); note that some of the details will be different in particular
implementations.

Exercises

15.1 Can you get the effect of export controls using import? Can you get the ef-
fect of the qualifications of import using export controls? Discuss why both
directives are included in the language.

15.2 Explain why you think it is the default that imported definitions are not them-
selves exported.

15.3 It is proposed to add the following option to the module export control and
the import statement. If the item -module Dog appears, then none of the
definitions in the module Dog is exported or imported. Discuss the advantages
and disadvantages of this proposal. How would you achieve the effect of this
feature in the existing Haskell module system?

15.2 Modular design

Any computer system which is used seriously will be modified during its lifetime,
either by the person or team who wrote it, or more likely by others. For this reason,
all systems should be designed with change in mind.

We mentioned this earlier when we said that systems should be documented,
with types given to all top-level definitions, and comments accompanying each script
and substantial definition. Another useful form of description is to link each defi-
nition with proofs which concern it; if we know some of the logical properties of a
function, we have a more solid conception of its purpose.

Documentation makes a script easier to understand, and therefore change, but
we can give structure to a collection of definitions if they are split among modules or
scripts, each script concerning a separate part of the overall system. The directives
which link the files tell us how the parts of the system fit together. If we want to
modify a particular part of a system, we should therefore be able to modify a single
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module (at least initially), rather than starting by modifying the whole of the system
as a single unit.

How should we begin to design a system as a collection of modules? The pieces
of advice which follow are aimed to make modification as straightforward as possi-
ble.

• Each module should have a clearly identified role.

• Each module should do one thing only. If a module has two separate pur-
poses, these should be split between two separate modules. The chance of a
change to one affecting the other is thereby reduced.

• Each part of the system should be performed by one module: each module
should do one thing completely; it should be self-contained, in other words.
If performing one part of the whole is split between two modules, then either
their code should be merged, or there should be a module defined with the
single purpose of bringing the two components together.

• Each module should export only what is necessary. It is then clearer what
the effect of an import is: precisely the functions which are needed are im-
ported. This process is often called information hiding in software engineer-
ing, which is itself the general study of principles for programming in the large.

• Modules should be small. As a rule of thumb, no module should be larger than
can be printed on two or three sides of paper.

We have also mentioned design for reuse, particularly in the context of polymorphic
types and higher-order functions. The module will be the unit of reuse, and a library
will be accessed by means of an import statement. Similar principles apply to the
design of libraries. Each library should have a clearly defined purpose, like imple-
menting a type together with basic operations over the type. In addition, we can say
that

• on including a general-purpose module, it is possible to suppress the defini-
tions which are not used;

• a qualified import can be used to avoid the name-clashes which can often
occur: despite the (infinite) choice of names for functions, in practice we tend
to choose from a very small subset!

The advice here might seem dry – what has been said is illustrated in the case study
which follows. In the next chapter we will return to the idea of information hiding
when we meet abstract data types. In the remainder of this chapter we examine the
case study of Huffman coding, the foundations of which we explore now.

15.3 Coding and decoding

Electronic messages of various kinds are sent between machines and people by the
billion each day. Such messages are usually sent as sequences of binary ‘bits’. For
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the transmission to be swift, the messages need to be coded as efficiently as possi-
ble. The area we explore here is how to build codes – translations of characters into
sequences of bits – which produce messages as compact as possible.

Trees can be used to code and decode messages. Consider as an example the
tree

a

b t

We can see this as giving codes for the letters a, b and t by looking at the routes
taken to reach the letters. For example, to get to b, we go right at the top node, and
left at the next:

a

b t

which gives b the code RL. Similarly, L codes a, and RR the letter t.
The codes given by trees are prefix codes; in these codes no code for a letter is the

start (or prefix) of the code for another. This is because no route to a leaf of the tree
can be the start of the route to another leaf. For more information about Huffman
codes and a wealth of general material on algorithms, see Cormen, Leiserson, and
Rivest (1990).

A message is also decoded using the tree. Consider the message RLLRRRRLRR. To
decode we follow the route through the tree given, moving right then left, to give the
letter b,

a

b t

RLLRRRRLRR

a

b t

LLRRRRLRR

a

b t

LRRRRLRR

where we have shown under each tree the sequence of bits remaining to be decoded.
Continuing again from the top, we have the codes for a then t,
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a

b t

RRRRLRR

a

b t

RRRLRR

a

b t

RRLRR

so the decoded message begins with the letters bat.
In full, the message is battat, and the coded message is ten bits long. The codes

for individual characters are of different lengths; a is coded in one bit, and the other
characters in two. Is this a wise choice of code in view of a message in which the
letter t predominates? Using the tree

t

a b

the coded message becomes RRRLLLRLL, a nine-bit coding. A Huffman code is built
so that the most frequent letters have the shortest sequences of code bits, and the
less frequent have more ‘expensive’ code sequences, justified by the rarity of their
occurrence; Morse code is an example of a Huffman code in common use.

The remainder of the chapter explores the implementation of Huffman coding,
illustrating the module system of Haskell.

Exercises

15.4 What is the coding of the message battat using the following tree?

b

a t

Compare the length of the coding with the others given earlier.

15.5 Using the first coding tree, decode the coded message RLLRLRLLRR. Which
tree would you expect to give the best coding of the message? Check your
answer by trying the three possibilities.
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15.4 Implementation – I

We now begin to implement the Huffman coding and decoding, in a series of Haskell
modules. The overall structure of the system we develop is illustrated at the end of
the chapter in Figure 15.5.

As earlier, we first develop the types used in the system.

The types – Types.hs

The codes are sequences of bits, so we define

data Bit = L | R deriving (Eq,Show)
type HCode = [Bit]

and in the translation we will convert the Huffman tree to a table for ease of coding.

type Table = [ (Char,HCode) ]

The Huffman trees themselves carry characters at the leaves. We shall see presently
that during their formation we also use information about the frequency with which
each character appears; hence the inclusion of integers both at the leaves and at the
internal nodes.

data Tree = Leaf Char Int |
Node Int Tree Tree

The file containing the module is illustrated in Figure 15.1. The name of the file, with
an indication of its purpose, is listed at the start of the file; each of the definitions is
preceded by a comment as to its purpose.

Note that we have given a full description of what is exported by the module,
by listing the items after the module name. For the data types which are exported,
Tree and Bit, the constructors are exported explicitly; this could also be done by
following their names with (..). This interface information could have been omit-
ted, but we include it here as useful documentation of the interface to the module.

Coding and decoding – Coding.hs

This module uses the types in Types.hs, and so imports them like this

import Types ( Tree(Leaf,Node), Bit(L,R), HCode, Table )

We have chosen to list the names imported here; the statementimport Typeswould
have the same effect, but would lose the extra documentation.

The purpose of the module is to define functions to code and decode messages:
we export only these, and not the auxiliary function(s) which may be used in their
definition. Our module therefore has the header

module Coding ( codeMessage , decodeMessage )
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-- Types.hs
--
-- The types used in the Huffman coding example.

-- The interface to the module Types is written out
-- explicitly here, after the module name.

module Types ( Tree(Leaf,Node),
Bit(L,R),
HCode ,
Table ) where

-- Trees to represent the relative frequencies of characters
-- and therefore the Huffman codes.

data Tree = Leaf Char Int | Node Int Tree Tree

-- The types of bits, Huffman codes and tables of Huffman codes.

data Bit = L | R deriving (Eq,Show)

type HCode = [Bit]

type Table = [ (Char,HCode) ]

Figure 15.1: The file Types.hs.
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To code a message according to a table of codes, we look up each character in the
table, and concatenate the results.

codeMessage :: Table -> [Char] -> HCode

codeMessage tbl = concat . map (lookupTable tbl)

It is interesting to see that the function level definition here gives an exact imple-
mentation of the description which precedes it; using partial application and func-
tion composition has made the definition clearer.

We now define lookupTable, which is a standard function to look up the value
corresponding to a ‘key’ in a table.

lookupTable :: Table -> Char -> HCode

lookupTable [] c = error "lookupTable"
lookupTable ((ch,n):tb) c

| ch==c = n
| otherwise = lookupTable tb c

Because it is not included in the list of identifiers in the module statement above,
this definition is not exported.

To decode a message, which is a sequence of bits, that is an element of HCode,
we use a Tree.

decodeMessage :: Tree -> HCode -> [Char]

We saw in Section 15.3 that decoding according to the tree tr has two main cases.

• If we are at an internal Node, we choose the sub-tree dictated by the first bit of
the code.

• If at a leaf, we read off the character found, and then begin to decode the re-
mainder of the code at the top of the tree tr.

When the code is exhausted, so is the decoded message.

decodeMessage tr
= decodeByt tr

where
decodeByt (Node n t1 t2) (L:rest)

= decodeByt t1 rest
decodeByt (Node n t1 t2) (R:rest)

= decodeByt t2 rest
decodeByt (Leaf c n) rest

= c : decodeByt tr rest
decodeByt t [] = []

The locally defined function is called decodeByt because it decodes ‘by t’.
The first coding tree and example message of Section 15.3 can be given by
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exam1 = Node 0 (Leaf ’a’ 0)
(Node 0 (Leaf ’b’ 0) (Leaf ’t’ 0))

mess1 = [R,L,L,R,R,R,R,L,R,R]

and decoding of this message begins thus

decodeMessage exam1 mess1
; decodeByt exam1 mess1
; decodeByt exam1 [R,L,L,R,R,R,R,L,R,R]
; decodeByt (Node 0 (Leaf ’b’ 0) (Leaf ’t’ 0))

[L,L,R,R,R,R,L,R,R]
; decodeByt (Leaf ’b’ 0) [L,R,R,R,R,L,R,R]
; ’b’ : decodeByt exam1 [L,R,R,R,R,L,R,R]
; ’b’ : decodeByt (Leaf ’a’ 0) [R,R,R,R,L,R,R]
; ’b’ : ’a’ : decodeByt exam1 [R,R,R,R,L,R,R]

Before looking at the implementation any further, we look at how to construct the
Huffman coding tree, given a text.

Exercises

15.6 Complete the calculation of decodeMessage exam1 mess1 begun above.

15.7 With the table

table1 = [ (’a’,[L]) , (’b’,[R,L]) , (’t’,[R,R]) ]

give a calculation of

codeMessage table1 "battab"

15.5 Building Huffman trees

Given a text, such as "battat", how do we find the tree giving the optimal code
for the text? We explain it in a number of stages following Section 17.3 of Cormen,
Leiserson, and Rivest (1990).

• We first find the frequencies of the individual letters, in this case giving

[(’b’,1),(’a’,2),(’t’,3)]

• The main idea of the translation is to build the tree by taking the two charac-
ters occurring least frequently, and making a single character (or tree) of them.
This process is repeated until a single tree results; the steps which follow give
this process in more detail.

• Each of (’b’,1), . . . is turned into a tree, giving the list of trees

[ Leaf ’b’ 1 , Leaf ’a’ 2 , Leaf ’t’ 3 ]
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which is sorted into frequency order.

• We then begin to amalgamate together trees: we take the two trees of lowest
frequency, put them together, and insert the result in the appropriate place to
preserve the frequency order.

[ Node 3 (Leaf ’b’ 1) (Leaf ’a’ 2) , Leaf ’t’ 3 ]

• This process is repeated, until a single tree results

Node 6 (Node 3 (Leaf ’b’ 1) (Leaf ’a’ 2)) (Leaf ’t’ 3)

which is pictured like this

b a

t

• This tree can then be turned into a Table

[ (’b’,[L,L]) , (’a’,[L,R]) , (’t’,[R]) ]

We now look at how the system is implemented in Haskell.

15.6 Design

Implementing the system will involve us in designing various modules to perform
the stages given above. We start by deciding what the modules will be and the func-
tions that they will implement. This is the equivalent at the larger scale of divide and
conquer; we separate the problem into manageable portions, which can be solved
separately, and which are put together using the import and module statements.
We design these interfaces before implementing the functions.

The three stages of conversion are summarized in Figure 15.2, which shows the
module directives of the three component files. We have added as comments the
types of objects to be exported, so that these directives contain enough informa-
tion for the exported functions in the files to be used without knowing how they are
defined.

In fact the component functions frequency and makeTree will never be used
separately, and so we compose them in the module MakeCode.hs when bringing
the three files together. This is given in Figure 15.3.

Our next task is to implement each module in full and we turn to that now.
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Frequency.hs:

module Frequency ( frequency ) -- [Char] -> [(Char,Int)]

MakeTree.hs:

module MakeTree ( makeTree ) -- [(Char,Int)] -> Tree
import Types

CodeTable.hs:

module CodeTable ( codeTable ) -- Tree -> Table
import Types

Figure 15.2: Module directives for Huffman tree formation.

--
-- MakeCode.hs
--
-- Huffman coding in Haskell.
--

module MakeCode ( codes, codeTable ) where

import Types
import Frequency ( frequency )
import MakeTree ( makeTree )
import CodeTable ( codeTable )

-- Putting together frequency calculation and tree conversion

codes :: [Char] -> Tree

codes = makeTree . frequency

Figure 15.3: The module MakeCode.hs.
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15.7 Implementation – II

In this section we discuss in turn the three implementation modules.

Counting characters — Frequency.hs

The aim of the function frequency is to take a text such as "battat" to a list of
characters, in increasing frequency of occurrence, [(’b’,1),(’a’,2),(’t’,3)].
We do this in three stages:

• First we pair each character with the count of 1, giving

[(’b’,1),(’a’,1),(’t’,1),(’t’,1),(’a’,1),(’t’,1)]

• Next, we sort the list on the characters, bringing together the counts of equal
characters.

[(’a’,2),(’b’,1),(’t’,3)]

• Finally, we sort the list into increasing frequency order, to give the list above.

The function uses two different sorts – one on character, one on frequency – to
achieve its result. Is there any way we can define a single sorting function to per-
form both sorts?

We can give a general merge sort function, which works by merging, in order,
the results of sorting the front and rear halves of the list.

mergeSort :: ([a]->[a]->[a]) -> [a] -> [a]

mergeSort merge xs
| length xs < 2 = xs
| otherwise

= merge (mergeSort merge first)
(mergeSort merge second)

where
first = take half xs
second = drop half xs
half = (length xs) ‘div‘ 2

The first argument to mergeSort is the merging function, which takes two sorted
lists and merges their contents in order. It is by making this operation a parameter
that the mergeSort function becomes reusable.

In sorting the characters, we amalgamate entries for the same character

alphaMerge :: [(Char,Int)] -> [(Char,Int)] -> [(Char,Int)]

alphaMerge xs [] = xs
alphaMerge [] ys = ys
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alphaMerge ((p,n):xs) ((q,m):ys)
| (p==q) = (p,n+m) : alphaMerge xs ys
| (p<q) = (p,n) : alphaMerge xs ((q,m):ys)
| otherwise = (q,m) : alphaMerge ((p,n):xs) ys

while when sorting on frequency we compare frequencies; when two pairs have the
same frequency, we order according to the character ordering.

freqMerge :: [(Char,Int)] -> [(Char,Int)] -> [(Char,Int)]

freqMerge xs [] = xs
freqMerge [] ys = ys
freqMerge ((p,n):xs) ((q,m):ys)

| (n<m || (n==m && p<q))
= (p,n) : freqMerge xs ((q,m):ys)

| otherwise
= (q,m) : freqMerge ((p,n):xs) ys

We can now give the top-level definition of frequency

frequency :: [Char] -> [ (Char,Int) ]

frequency
= mergeSort freqMerge . mergeSort alphaMerge . map start

where
start ch = (ch,1)

which we can see is a direct combination of the three stages listed in the informal
description of the algorithm.

Note that of all the functions defined in this module, only frequency is ex-
ported.

Making the Huffman tree – MakeTree.hs

We have two stages in making a Huffman tree from a list of characters with their
frequencies.

makeTree :: [ (Char,Int) ] -> Tree
makeTree = makeCodes . toTreeList

where

toTreeList :: [ (Char,Int) ] -> [Tree]
makeCodes :: [Tree] -> Tree

The function toTreeList converts each character-number pair into a tree, thus

toTreeList = map (uncurry Leaf)

where note that we use the prelude function uncurry to make an uncurried version
of the constructor function Leaf.

The function makeCodes amalgamates trees successively into a single tree
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makeCodes [t] = t
makeCodes ts = makeCodes (amalgamate ts)

How are trees amalgamated? We have to pair together the first two trees in the list
(since the list is kept in ascending order of frequency) and then insert the result in
the list preserving the frequency order. Working top-down, we have

amalgamate :: [ Tree ] -> [ Tree ]

amalgamate (t1:t2:ts) = insTree (pair t1 t2) ts

When we pair two trees, we need to combine their frequency counts, so

pair :: Tree -> Tree -> Tree

pair t1 t2 = Node (v1+v2) t1 t2
where
v1 = value t1
v2 = value t2

where the value of a tree is given by

value :: Tree -> Int

value (Leaf _ n) = n
value (Node n _ _) = n

The definition of insTree, which is similar to that used in an insertion sort, is left as
an exercise. Again, the definition of the exported function uses various others whose
definitions are not visible to the ‘outside world’.

The code table – CodeTable.hs

Here we give the function codeTable which takes a Huffman tree into a code table.
In converting the tree Node n t1 t2 we have to convert t1, adding L at the front of
the code, and t2 with R at the head. We therefore write the more general conversion
function

convert :: HCode -> Tree -> Table

whose first argument is the ‘path so far’ into the tree. The definition is

convert cd (Leaf c n)
= [(c,cd)]

convert cd (Node n t1 t2)
= (convert (cd++[L]) t1) ++ (convert (cd++[R]) t2)

The codeTable function is given by starting the conversion with an empty code
string
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codeTable :: Tree -> Table
codeTable = convert []

Consider the calculation of

codeTable (Node 6 (Node 3 (Leaf ’b’ 1) (Leaf ’a’ 2))
(Leaf ’t’ 3))

; convert [] (Node 6 (Node 3 (Leaf ’b’ 1) (Leaf ’a’ 2))
(Leaf ’t’ 3))

; convert [L] (Node 3 (Leaf ’b’ 1) (Leaf ’a’ 2)) ++
convert [R] (Leaf ’t’ 3)

; convert [L,L] (Leaf ’b’ 1) ++
convert [L,R] (Leaf ’a’ 2) ++
[ (’t’,[R]) ]

; [ (’b’,[L,L]) , (’a’,[L,R]) , (’t’,[R]) ]

The top-level file – Main.hs

We can now pull all the parts of the system together into a top-level file.

module Main (main) where

import Types ( Tree(Leaf,Node), Bit(L,R), HCode , Table )
import Coding ( codeMessage , decodeMessage )
import MakeCode ( codes, codeTable )

In this file we can include representative examples, using the major functions listed
in the import statements; the code is illustrated in Figure 15.4.

The structure of the system is given in Figure 15.5. Modules are represented by
boxes, and an arrow from A to B indicates that A.hs is imported into B.hs. An arrow
is marked to indicate the functions exported by the included module, so that, for
example, codes and codeTable are exported from MakeCode.hs to Main.hs.

If this coding system were to be used as a component of a larger system, a module
directive could be used to control which of the four functions and the types are ex-
ported, after the module had been renamed. It is important to realize that the types
will need to be exported (or be included in the file including Main.hs) if the func-
tions are to be used.

Testing the system

We can write a top-level test for a system like this, by taking an example string, cod-
ing it and then decoding it. This should take us back to the string we started with,
and indeed we can see this in the particular example in Figure 15.4. It is possible
to change this to a QuickCheck property, which checks that coding/decoding is the
identity for a whole collection of strings; we leave this as an exercise for the reader.

The top-level test corresponds to a system test, in that it uses all the functions de-
fined – implicitly or explicitly – and checks the overall functionality of the system. It
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-- The main module of the Huffman example

module Main (main, codeMessage, decodeMessage, codes, codeTable ) where

import Types ( Tree(Leaf,Node), Bit(L,R), HCode , Table )
import Coding ( codeMessage, decodeMessage )
import MakeCode ( codes, codeTable )

-- Main expression: print the coded and decoded
-- example text "there is a green hill".
main = print decoded

-- The example message to be coded.
message :: String
message = "there are green hills here"

-- The Huffman tree generated from the example.
treeEx :: Tree
treeEx = codes "there is a green hill"

-- The coding table generated from the example.
tableEx :: Table
tableEx = codeTable (codes "there is a green hill")

-- The example in code.
coded :: HCode
coded = codeMessage tableEx message

-- The example coded and then decoded.
decoded :: String
decoded = decodeMessage treeEx coded

Figure 15.4: The Main module of the Huffman coding system.

is also possible to write unit tests, which check that a particular function or module
has the required functionality.

For example, we might look at the module Frequency.hs, and in particular at
the functions designed to merge or sort their arguments. A QuickCheck property
embodying a unit test for these would include

prop_mergeSort :: [Int] -> Bool

prop_mergeSort xs =
sorted (mergeSort merge xs)

where sorted expresses that its argument is sorted into ascending order and merge
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Main

Coding MakeCode

Types

CodeTable MakeTree Frequency

codeTable
codes

decodeMessage
codeMessage

codeTable makeTree frequency

Figure 15.5: The modules of the Huffman coding system.

will merge two ordered lists in order.

Exercises

15.8 Give a definition of merge sort which uses the built-in ordering ‘<=’. What is
its type?

15.9 Modifying your previous answer if necessary, give a version of merge sort which
removes duplicate entries.

15.10 Give a version of merge sort which takes an ordering function as a parameter:

ordering :: a -> a -> Ordering

Explain how to implementmergeSort freqMergeusing this version of merge
sort, and discuss why you cannot implement mergeSort alphaMerge this
way.

15.11 Define the insTree function, used in the definition of makeTree.

15.12 Give a calculation of
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makeTree [(’b’,2),(’a’,2),(’t’,3),(’e’,4)]

15.13 Define functions

showTree :: Tree -> String
showTable :: Table -> String

which give printable versions of Huffman trees and code tables. One general
way of printing trees is to use indentation to indicate the structure. Schemati-
cally, this looks like

left sub tree, indented by 4 characters
value(s) at Node

right sub tree, indented by 4 characters

15.14 Define a QuickCheck property to test coding and decoding: specifically this
should code a string and decode it, and compare the result with the original.
You may need to restrict the strings over which the test is made.

15.15 Define sorted so that it checks whether its argument is sorted into ascend-
ing order and define merge which will merge two ordered lists in order. Using
these check whether the property prop_mergeSort :: [Int] -> Bool, de-
fined earlier, holds.

15.16 Write QuickCheck unit tests for other functions in Frequency.hs and other
modules of the Hufmann coding system.

15.17 You may find that it is necessary to restrict the domain over which some prop-
erties hold in order for them to QuickCheck successfully: can you re-define
the functions involved so that the properties hold for all randomly generated
inputs.

15.18 The correctness property for the Huffman system formulated earlier states
that decode.code is the identity. Would you expect that code.decode is the
identity: if so, over what domain; if not, can you give a sub-domain over which
you wold expect it to hold?

Summary

When writing a program of any size, we need to divide up the work in a sensible
way. The Haskell module system allows one script to be included in another. At the
boundary, it is possible to control exactly which definitions are exported from one
module and imported into another.

We gave a number of guidelines for the design of a program into its constituent
modules. The most important advice is to make each module perform one clearly
defined task, and for only as much information as is needed to be exported – the
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principle of information hiding. This principle is extended in the next chapter when
we examine abstract data types.

The design principles were put into practice in the Huffman coding example. In
particular, it was shown for the file MakeCode.hs and its three sub-modules that
design can begin with the design of modules and their interfaces – that is the defi-
nitions (and their types) which are exported. Thus the design process starts before
any implementation takes place.



Chapter 16

Abstract data types

The Haskell module system allows definitions of functions and other objects to be
hidden when one module is imported into another. Those definitions hidden are
only of use in defining the exported functions, and hiding them makes clearer the
exact interface between the two modules: only those features of the module which
are needed will be visible.

This chapter shows that information hiding is equally applicable for types, giv-
ing what are known as abstract data types, or ADTs. We explain the abstract data
type mechanism here, as well as providing a number of examples of ADTs, includ-
ing queues, sets, relations and the fundamental types belonging to a simulation case
study.

16.1 Type representations

We begin our discussion with a scenario which is intended to show both the purpose
and the operation of the abstract data type mechanism.

Suppose we are to build a calculator for numerical expressions, like those given
by the Expr type of Section 14.2, but with variables included. The calculator is to
provide the facility to set the values of variables, as well as for variables to form parts
of expressions.

As a part of our system, we need to be able to model the current values of the
variables, which we might call the store of the calculator. How can this be done? A
number of models present themselves, including:

• a list of integer/variable pairs: [(Integer,Var)]; and

• a function from variables to integers: (Var -> Integer).

Both models allow us to look up and update the values of variables, as well as set a
starting value for the store. These operations have types as follows.

initial :: Store
value :: Store -> Var -> Integer (StoreSig)
update :: Store -> Var -> Integer -> Store

397
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initial :: Store
value   :: Store -> Var -> Integer
update  :: Store -> Var -> Integer -> Store

User

Implementor

Figure 16.1: The Store abstract data type.

but each model allows more than that: we can, for instance, reverse a list, or com-
pose a function with others. In using the type Store we intend only to use the three
operations given, but it is always possible to use the model in unintended ways.

How can we give a better model of a store? The answer is to define a type which
only has the operations initial, value and update, so that we cannot abuse the
representation. We therefore hide the information about how the type is actually
implemented, and only allow the operations (StoreSig) to manipulate objects of
the type.

When we provide a limited interface to a type by means of a specified set of oper-
ations we call the type an abstract data type (or ADT). Since the ‘concrete’ type itself
is no longer accessible and we may only access the type by means of the operations
provided, these operations give a more ‘abstract’ view of the type.

Figure 16.1 illustrates the situation, and suggests that as well as giving a natural
representation of the type of stores, there are two other benefits of type abstraction.

• The type declarations in (StoreSig) form a clearly defined interface, which
is called the signature of the ADT, between the user of the type and its imple-
menter. The only information that they have to agree on is the signature; once
this is agreed, they can work independently. This is therefore another way of
breaking a complex problem into simpler parts; another aspect of the ‘divide
and conquer’ method.

• We can modify the implementation of the Store without having any effect on
the user. Contrast this with the situation where the implementation is visible
to the user. In particular, if the implementation is an algebraic type then any
change in the implementation will mean that all definitions that use pattern
matching will have to be changed. These will include not just those in the
signature, but also any user-defined functions which use pattern matching.

We shall see both aspects illustrated in the sections to come; first we look at the
details of the Haskell abstract data type mechanism.
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16.2 The Haskell abstract data type mechanism

When we introduced the Haskell module system in Chapter 15 we saw that there
were two ways in which we could export a data type, called Data say. If we include
Data(..) in the export list of the module, the type is exported with its construc-
tors; if we include Data then the constructors are not exported, and so we can only
operate over the type using the other operations of the signature.

In the case of the Store type, our module header would be

module Store ( Store, initial, value, update ) where

which shows that we can access the type only through the three functions men-
tioned. In this book we will adopt the convention that we will also include as com-
ments in the module header the types of the exported functions, giving in the case
of Store the following header.

module Store
( Store,

initial, -- Store
value, -- Store -> Var -> Integer
update -- Store -> Var -> Integer -> Store

) where

Now, the module must contain a definition of the Store type and the functions over
it.

If the implementation type was a data type, then this would complete the re-
alization of the abstract data type. However, in our running example of stores, we
suggested earlier that we would use a list of pairs, [ (Integer,Var) ], to model
the type, and so we will have to define a new data type, called Store

data Store = Store [ (Integer,Var) ]

which has a single constructor which we also call Store. This is the function which
converts a list into an element of the Store type; we can think of it as ‘wrapping up’
a list to make it into a Store.

We now have to define the functions initial, value and update over the Store
type. One approach is to define the analogous functions over [(Integer,Var)]
and then to adapt those. We can say

init :: [(Integer,Var)]
init = []

val :: [(Integer,Var)] -> Var -> Integer
val [] v = 0
val ((n,w):sto) v

| v==w = n
| otherwise = val sto v

upd :: [(Integer,Var)] -> Var -> Integer -> [(Integer,Var)]
upd sto v n = (n,v):sto
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The initial store, init, is represented by an empty list; the value of v is looked up
by finding the first pair (n,v) in the list, and the store is updated by adding a new
(Integer,Var) at the front of the list.

These functions then have to be converted to work over the type Store, so that
arguments and results are of the form Store xs with xs::[(Integer,Var)]. The
definitions become

initial :: Store
initial = Store []

value :: Store -> Var -> Integer
value (Store []) v = 0
value (Store ((n,w):sto)) v

| v==w = n
| otherwise = value (Store sto) v

update :: Store -> Var -> Integer -> Store
update (Store sto) v n = Store ((n,v):sto)

where we can see that the pattern of the definitions is similar, except that we have
to ‘unwrap’ arguments of the form (Store sto) on the left-hand side, and ‘wrap
up’ results using Store on the right-hand side. We look at a general mechanism for
‘wrapping up’ functions in the example of the Set ADT in Section 16.8.

What happens if we try to break the abstraction barrier and deal with a Store as
having the form (Store xs)? On typing

initial == Store []

in a module importing Store we get the type error message

Not in scope: data constructor ‘Store’

The fact that initial is indeed implemented as Store [] is irrelevant, since the
implementation is not in scope outside the Store module.

The newtype construction

In fact in this case rather than using a data type we will define

newtype Store = Store [ (Integer,Var) ]

which has the same effect as declaring a data type with one unary constructor but
which is implemented in a more efficient fashion.
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Naming newtypes

Another possible way of implementing the type would be to say

newtype Store = Sto [ (Integer,Var) ]

using different names for the type and its constructor. Although this makes it clear
whether we are talking about the type or the constructor, we prefer to use a single
name within this newtype, as otherwise we need to choose two different – but re-
lated – names.

Moreover, in practice, when we use Store we will always be able to tell which use –
type name or constructor – is meant. Finally, this convention is in widespread use
in the Haskell developer community, and so it’s helpful to be aware of the fact.

Type classes: showing values and equality

We can declare types as belonging to particular type classes such as Show and Eq,
and this applies equally well to abstract data types. In the case of Store we can say

instance Eq Store where
(Store sto1) == (Store sto2) = (sto1 == sto2)

instance Show Store where
showsPrec n (Store sto) = showsPrec n sto

Note, however, that once declared, these instances cannot be hidden, so that even
though they are not named in the export list, the functions over Store which are
defined by means of these instance declarations will be available whenever the
module Store is imported. Of course, we can choose not to declare these instances,
and so not to provide an equality or a show function over Stores.

Stores as functions

A different implementation of Store is given by the type of functions from variables
to integers.

newtype Store = Store (Var -> Integer)

initial :: Store
initial = Store (\v -> 0)

value :: Store -> Var -> Integer
value (Store sto) v = sto v

update :: Store -> Var -> Integer -> Store
update (Store sto) v n

= Store (\w -> if v==w then n else sto w)
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Under this implementation,

• the initial store maps every variable to 0;

• to look up a value of a variable v the store function sto is applied to v, and

• in the case of an update, a function returned is identical to sto except on the
variable whose value is changed.

Testing ADTs

Suppose that we have implemented a store as a list of integer-variable pairs. We can
inspect the result of updating a store, which will be a new list, and check that it has
the properties that we would expect. For example, we might take the difference of
the lists before and after the update.

If we implement queues as an ADT, we can’t look directly at the underlying im-
plementation; instead we have to write properties using the interface functions, here
initial, value and update. We can start by saying what happens if we look up a
value in the initial store:

prop_Initial :: Char -> Bool

prop_Initial ch =
value initial ch == 0

What can we say about the effect of an update on a store? First, if perform an update
for the variable ch and then look up the value, we would expect to see the new value:

prop_Update1 :: Char -> Integer -> Store -> Bool

prop_Update1 ch int st =
value (update st ch int) ch == int

Finally, what if we look up the value of another variable after this update? Its value
should be the same as it was before:

prop_Update2 :: Char -> Char -> Integer -> Store -> Bool

prop_Update2 ch1 ch2 int st =
value (update st ch2 int) ch1 == value st ch1

If we perform a QuickCheck on these properties – the appropriate QuickCheck magic
is given in the module StoreTest and the properties in QCStoreTest – the first two
pass every time, but the third one sometimes fails: that is when ch1 and ch2 are
equal!

Modifying the test to take this into account, we get a test that always passes:

prop_Update2 :: Char -> Char -> Integer -> Store -> Bool

prop_Update2 ch1 ch2 int st =
value (update st ch2 int) ch1 == value st ch1 || ch1==ch2
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Because the tests are written in terms of the interface only, if we were to change the
implementation then the tests could still be applied, assuming that we have the right
QuickCheck definitions in place.

Exercises

16.1 Give an implementation of Store using lists whose entries are ordered ac-
cording to the variable names. Discuss why this might be preferable to the
original list implementation, and also its disadvantages, if any.

16.2 For the implementation of Store as a list type [(Integer,Var)], give a defi-
nition of equality which equates any two stores which give the same values to
each variable. Can this operation be defined for the second implementation?
If not, give a modification of the implementation which allows it to be defined.

16.3 In this question you should use the type Maybe a. Suppose it is an error to
look up the value of a variable which does not have a value in the given store.
Explain how you would modify both the signature of Store and the two im-
plementations.

16.4 Rather than giving an error when looking up a variable which does not have a
value in the particular store, extend the signature to provide a test of whether
a variable has a value in a given store, and explain how would modify the two
implementations to define the test.

16.5 Suppose you are to implement a fourth operation over Store

setAll :: Integer -> Store

so that setAll n is the store where every variable has the value n. Can you do
this for both the example implementations? Show how if you can, and explain
why, if not.

16.6 Design an ADT for the library database, first examined in Chapter 5.

16.3 Queues

A queue is a ‘first in, first out’ structure. If first Flo and then Eddie joins an initially
empty queue, the first person to leave will be Flo. As an abstract data type, we expect
to be able to add items and remove items as well as there being an empty queue.

module Queue
( Queue ,

emptyQ , -- Queue a
isEmptyQ , -- Queue a -> Bool
addQ , -- a -> Queue a -> Queue a
remQ -- Queue a -> ( a , Queue a )

) where
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The function remQ returns a pair – the item removed together with the part of the
queue that remains – if there are any items in the queue. If not, the standard function
error is called.

A list can be used to model a queue: we add to the end of the list, and remove
from the front, giving

newtype Queue a = Queue [a]

emptyQ :: Queue a
emptyQ = Queue []

isEmptyQ :: Queue a -> Bool
isEmptyQ (Queue []) = True
isEmptyQ _ = False

addQ :: a -> Queue a -> Queue a
addQ x (Queue xs) = Queue (xs++[x])

remQ :: Queue a -> ( a , Queue a )
remQ q@(Queue xs)

| not (isEmptyQ q) = (head xs , Queue (tail xs))
| otherwise = error "remQ"

As (@) patterns

The definition of remQ uses an aspect of pattern matching which we have not seen
so far. We use the pattern q@(Queue xs), where we can read ‘@’ as ‘as’, to match
the input. The variable q matches the whole input, while it is also matched against
Queue xs, so that xs gives us access to the list from which it is built. This means
that we can refer directly to the whole input and to its components in the definition.
Without this, the alternative would be

remQ (Queue xs)
| not (isEmptyQ (Queue xs)) = (head xs , Queue (tail xs))
| otherwise = error "remQ"

in which we have to rebuild the original queue from xs.

In implementing queues, rather than adding elements at the end of the list, we could
choose to add them at the beginning of the list. This leaves emptyQ and isEmptyQ
unchanged, and gives

addQ x (Queue xs) = Queue (x:xs)

remQ q@(Queue xs)
| not (isEmptyQ q) = (last xs , Queue (init xs))
| otherwise = error "remQ"
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Figure 16.2: A two-list queue in action.

where the built-in functions last and init take the last element and the remainder
of a list.

Although we have not said exactly how to calculate the cost of evaluation (a topic
we take up in Chapter 20), we can see that in each implementation one of the op-
erations is ‘cheap’ and the other is ‘expensive’. The ‘cheap’ functions – remQ in the
first implementation and addQ in the second – can be evaluated in one step, while
in both cases the ‘expensive’ function will have to run along a list xs one step per
element, and so will be costly if the list is long.

Is there any way of making both operations ‘cheap’? The idea is to make the
queue out of two lists, so that both adding and removing an element can take place
at the head of a list. The process is illustrated in Figure 16.2, which represents
a number of queues. Initially the queue containing the elements 7, 5, 2 and 3 is
shown: here 7 is the oldest element in the queue and 3 the most recent addition.
Subsequently we see the effect of removing an element, adding the element 0, and
removing two further elements. In each case the queue is represented by two lists,
each being shown with its head at the left-hand side.

The function remQ removes elements from the head of the left-hand list, and
addQ adds elements to the head of the right. This works until the left-hand list is
empty, when the elements of the right-hand queue have to be transferred to the left,
reversing their order.



406 CHAPTER 16. ABSTRACT DATA TYPES

This case in which we have to transfer elements is expensive, as we have to run
along a list to reverse it, but we would not in general expect to perform this every
time we remove an element from the queue. The Haskell implementation follows
now.

data Queue a = Queue [a] [a]

emptyQ :: Queue a
emptyQ = Queue [] []

isEmptyQ :: Queue a -> Bool
isEmptyQ (Queue [] []) = True
isEmptyQ _ = False

addQ :: a -> Queue a -> Queue a
addQ x (Queue xs ys) = Queue xs (x:ys)

remQ :: Queue a -> ( a , Queue a )
remQ (Queue (x:xs) ys) = (x , Queue xs ys)
remQ (Queue [] ys@(z:zs)) = remQ (Queue (reverse ys) [])
remQ (Queue [] []) = error "remQ"

As we commented for the Store types, the behaviour of this implementation will be
indistinguishable from the first two, as far as the operations of the abstract data type
are concerned. On the other hand, the implementation will be substantially more
efficient than the single list implementations, as we explained above. A thorough
examination of recent work on the efficient implementation of data structures in
functional languages can be found in Okasaki (1998).

Using newtype

Why didn’t we use a newtype in the definition of Queue? The reason is that a
newtype must have a single argument, and Queue has two; we could pair the ar-
guments, and then use a newtype. We leave this as an exercise for the reader.

Exercises

16.7 Give calculations of

"abcde" ++ "f"
init "abcdef"
last "abcdef"

where

init x = take (length x-1) x
last x = x !! (length x-1)
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16.8 Explain the behaviour of the three queue models if you are asked to perform
the following sequence of queue operations: add 2, add 1, remove item, add 3,
remove item, add 1, add 4, remove item, remove item.

16.9 Define QuickCheck properties which will test the queue implementations given
here. We will show how to define the appropriate generators needed to per-
form the tests in Chapter 19.

16.10 A double-ended queue, or deque, allows elements to be added or removed
from either end of the structure. Give a signature for the ADT Deque a, and
give two different implementations of the deque type.

16.11 A unique queue can contain only one occurrence of each entry (the one to
arrive earliest). Give a signature for the ADT of these queues, and an imple-
mentation of the ADT.

16.12 Each element of a priority queue has a numerical priority. When an element
is removed, it will be of the highest priority in the queue. If there is more than
one of these, the earliest to arrive is chosen. Give a signature and implemen-
tation of the ADT of priority queues.

16.13 [Harder] Examine how priority queues could be used to implement the Huff-
man coding system in Chapter 15.

16.4 Design

This section examines the design of Haskell abstract data types, and how the pres-
ence of this mechanism affects design in general.

General principles

In building a system, the choice of types is fundamental, and affects the subsequent
design and implementation profoundly. If we use abstract data types at an early
stage we hope to find ‘natural’ representations of the types occurring in the problem.
Designing the abstract data types is a three-stage process.

• First we need to identify and name the types in the system.

• Next, we should give an informal description of what is expected from each
type.

• Using this description we can then move to writing the signature of each ab-
stract data type.

How do we decide what should go in the signature? This is the $64,000 question, of
course, but there are some general questions we can ask of any abstract data type
signature.
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• Can we create objects of the type? For instance, in the Queue a type, we have
the object emptyQ, and in a type of sets, we might give a function taking an
element to the ‘singleton’ set containing that element alone. If there are no
such objects or functions, something is wrong!

• Can we check what sort of object we have? In a tree ADT we might want to
check whether we have a leaf or a node, for instance.

• Can we extract the components of objects, if we so require? Can we take the
head of a Queue a, say?

• Can we transform objects: can we reverse a list, perhaps, or add an item to a
queue?

• Can we combine objects? We might want to be able to join together two trees,
for example.

• Can we collapse objects? Can we take the sum of a numerical list, or find the
size of an object, say?

Not all these questions are appropriate in every case, but the majority of operations
we perform on types fall into one of these categories. All the operations in the fol-
lowing signature for binary trees can be so classified, for instance.

module Tree
(Tree,
nil, -- Tree a
isNil, -- Tree a -> Bool
isNode, -- Tree a -> Bool
leftSub, -- Tree a -> Tree a
rightSub, -- Tree a -> Tree a
treeVal, -- Tree a -> a
insTree, -- Ord a => a -> Tree a -> Tree a
delete, -- Ord a => a -> Tree a -> Tree a
minTree -- Ord a => Tree a -> Maybe a

) where

Other functions might be included in the signature; in the case of Tree a we might
want to include the size function. This function can be defined using the other
operations.

size :: Tree a -> Integer
size t

| isNil t = 0
| otherwise = 1 + size (leftSub t) + size (rightSub t)

This definition of size is independent of the implementation, and so would not
have to be reimplemented if the implementation type for Tree a changed. This is
a good reason for leaving size out of the signature, and this is a check we can make
for any signature: are all the functions in the signature needed? We come back to this
point, and the tree type, later in the chapter. Now we look at a larger-scale example.
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Exercises

16.14 Are all the operations in the Tree a signature necessary? Identify those which
can be implemented using the other operations of the signature.

16.15 Design a signature for an abstract type of library databases, as first introduced
in Chapter 5.

16.16 Design a signature for an abstract type of indexes, as examined in Section 12.5.

16.5 Simulation

We first introduced the simulation example in Section 14.5, where we designed the
algebraic types Inmess and Outmess. Let us suppose, for ease of exposition, that the
system time is measured in minutes.

The Inmess No signals no arrival, while Yes 34 12 signals the arrival of a cus-
tomer at the 34th minute, who will need 12 minutes to be served.

The Outmess Discharge 34 27 12 signals that the person arriving at time 34
waited 27 minutes before receiving their 12 minutes of service.

Our aim in this section is to design the ADTs for a simple simulation of queueing.
We start by looking at a single queue. Working through the stages, we will call the
type QueueState, and it can be described thus.

There are two main operations on a queue. The first is to add a new
item, an Inmess, to the queue. The second is to process the queue by
a one-minute step; the effect of this is to give one minute’s further pro-
cessing to the item at the head of the queue (if there is such a thing). Two
outcomes are possible: the item might have its processing completed,
in which case an Outmess is generated, or further processing may be
needed.

Other items we need are an empty queue, an indication of the length of
a queue and a test of whether a queue is empty.

This description leads directly to a signature declaration

module QueueState
( QueueState ,

addMessage, -- Inmess -> QueueState -> QueueState
queueStep, -- QueueState -> ( QueueState , [Outmess] )
queueStart, -- QueueState
queueLength, -- QueueState -> Int
queueEmpty -- QueueState -> Bool
) where

The queueStep function returns a pair: the QueueState after a step of processing,
and a list of Outmess. A list is used, rather than a single Outmess, so that in the case
of no output an empty list can be returned.
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The QueueState type allows us to model a situation in which all customers are
served by a single processor (or bank clerk). How can we model the case where
there is more than one queue? We call this a server and it is to be modelled by the
ServerState ADT.

A server consists of a collection of queues, which can be identified by
the integers 0, 1 and so on. It is assumed that the system receives one
Inmess each minute: at most one person arrives every minute, in other
words.

There are three principal operations on a server. First, we should be able
to add an Inmess to one of the queues. Second, a processing step of the
server is given by processing each of the constituent queues by one step:
this can generate a list of Outmess, as each queue can generate such a
message. Finally, a step of the simulation combines a server step with
allocation of the Inmess to the shortest queue in the server.

Three other operations are necessary. We have a starting server, con-
sisting of the appropriate number of empty queues, and we should be
able to identify the number of queues in a server, as well as the shortest
queue it contains.

As a signature, we have

module ServerState
( ServerState ,

addToQueue, -- Int -> Inmess -> ServerState -> ServerState
serverStep, -- ServerState -> ( ServerState , [Outmess] )
simulationStep, -- ServerState -> Inmess -> ( ServerState ,

[Outmess] )
serverStart, -- ServerState
serverSize, -- ServerState -> Int
shortestQueue -- ServerState -> Int

) where

In the next section we explore how to implement these two abstract data types. It
is important to realize that users of the ADTs can begin to do their programming
now: all the information that they need to know is contained in the signature of the
abstract data type.

Exercises

16.17 Are there redundant operations in the signatures of the ADTs QueueState and
ServerState?

16.18 Design a signature for round-robin simulation, in which allocation of the first
item is to queue 0, the second to queue 1, and so on, starting again at 0 after
the final queue has had an element assigned to it.
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16.6 Implementing the simulation

This section gives an implementation of the ADTs for a queue and a server. The
QueueState is implemented from scratch, while the ServerState implementation
builds on the QueueState ADT. This means that the two implementations are inde-
pendent; modifying the implementation of QueueState has no effect on the imple-
mentation of ServerState.

The queue

In the previous section, we designed the interfaces for the ADT; how do we pro-
ceed with implementation? First we ought to look again at the description of the
QueueState type. What information does this imply the type should contain?

• There has to be a queue of Inmess to be processed. This can be represented
by a list, and we can take the item at the head of the list as the item currently
being processed.

• We need to keep a record of the processing time given to the head item, up to
the particular time represented by the state.

• In an Outmess, we need to give the waiting time for the particular item being
processed. We know the time of arrival and the time needed for processing –
if we also know the current time, we can calculate the waiting time from these
three numbers.

It therefore seems sensible to define

data QueueState = QS Time Service [Inmess]
deriving (Eq, Show)

where the first field gives the current time, the second the service time so far for the
item currently being processed, and the third the queue itself. Now we look at the
operations one by one. To add a message, it is put at the end of the list of messages.

addMessage :: Inmess -> QueueState -> QueueState

addMessage im (QS time serv ml) = QS time serv (ml++[im])

The most complicated definition is of queueStep. As was explained informally,
there are two principal cases, when there is an item being processed.

queueStep :: QueueState -> ( QueueState , [Outmess] )

queueStep (QS time servSoFar (Yes arr serv : inRest))
| servSoFar < serv

= (QS (time+1) (servSoFar+1) (Yes arr serv : inRest) , [])
| otherwise

= (QS (time+1) 0 inRest , [Discharge arr (time-serv-arr) serv])
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In the first case, when the service time so far (servSoFar) is smaller than is required
(serv), processing is not complete. We therefore add one to the time, and the service
so far, and produce no output message.

If processing is complete – which is the otherwise case – the new state of the
queue is QS (time+1) 0 inRest. In this state the time is advanced by one, pro-
cessing time is set to zero and the head item in the list is removed. An output mes-
sage is also produced in which the waiting time is given by subtracting the service
and arrival times from the current time.

If there is nothing to process, then we simply have to advance the current time
by one, and produce no output.

queueStep (QS time serv []) = (QS (time+1) serv [] , [])

Note that the case of an input message No is not handled here since these messages
are filtered out by the server; this is discussed below.

The three other functions are given by

queueStart :: QueueState
queueStart = QS 0 0 []

queueLength :: QueueState -> Int
queueLength (QS _ _ q) = length q

queueEmpty :: QueueState -> Bool
queueEmpty (QS _ _ q) = (q==[])

and this completes the implementation.
Obviously there are different possible implementations. We might choose to take

the item being processed and hold it separately from the queue, or to use an ADT for
the queue part, rather than a ‘concrete’ list.

The server

The server consists of a collection of queues, accessed by integers from 0; we choose
to use a list of queues.

newtype ServerState = SS [QueueState]
deriving (Eq, Show)

Note that the implementation of this ADT builds on another ADT; this is not un-
usual. Now we take the functions in turn.

Adding an element to a queue uses the functionaddMessage from theQueueState
abstract type.

addToQueue :: Int -> Inmess -> ServerState -> ServerState

addToQueue n im (SS st)
= SS (take n st ++ [newQueueState] ++ drop (n+1) st)

where
newQueueState = addMessage im (st!!n)
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A step of the server is given by making a step in each of the constituent queues, and
concatenating together the output messages they produce.

serverStep :: ServerState -> ( ServerState , [Outmess] )

serverStep (SS [])
= (SS [],[])

serverStep (SS (q:qs))
= (SS (q’:qs’) , mess++messes)

where
(q’ , mess) = queueStep q
(SS qs’ , messes) = serverStep (SS qs)

In making a simulation step, we perform a server step, and then add the incoming
message, if it indicates an arrival, to the shortest queue.

simulationStep
:: ServerState -> Inmess -> ( ServerState , [Outmess] )

simulationStep servSt im
= (addNewObject im servSt1 , outmess)

where
(servSt1 , outmess) = serverStep servSt

Adding the message to the shortest queue is done by addNewObject, which is not
in the signature. The reason for this is that it can be defined using the operations
addToQueue and shortestQueue.

addNewObject :: Inmess -> ServerState -> ServerState

addNewObject No servSt = servSt

addNewObject (Yes arr wait) servSt
= addToQueue (shortestQueue servSt) (Yes arr wait) servSt

It is in this function that the input messages No are not passed to the queues, as was
mentioned above.

The other three functions of the signature are standard.

serverStart :: ServerState
serverStart = SS (replicate numQueues queueStart)

where numQueues is a constant to be defined, and the standard function replicate
returns a list of n copies of x when applied thus: replicate n x.

serverSize :: ServerState -> Int
serverSize (SS xs) = length xs

In finding the shortest queue, we use thequeueLength function from theQueueState
type.
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shortestQueue :: ServerState -> Int

shortestQueue (SS [q]) = 0
shortestQueue (SS (q:qs))

| (queueLength (qs!!short) <= queueLength q) = short+1
| otherwise = 0

where
short = shortestQueue (SS qs)

This concludes the implementation of the two simulation ADTs. The example is in-
tended to show the merit of designing in stages. First we gave an informal descrip-
tion of the operations on the types, then a description of their signature, and finally
an implementation. Dividing the problem up in this way makes each stage easier to
solve.

The example also shows that types can be implemented independently: since
ServerState uses only the abstract data type operations over QueueState, we can
reimplement QueueState without affecting the server state at all.

Exercises

16.19 Give calculations of the expressions

queueStep (QS 12 3 [Yes 8 4])
queueStep (QS 13 4 [Yes 8 4])
queueStep (QS 14 0 [])

16.20 If we let

serverSt1 = SS [ (QS 13 4 [Yes 8 4]) , (QS 13 3 [Yes 8 4]) ]

then give calculations of

serverStep serverSt1
simulationStep (Yes 13 10) serverSt1

16.21 Define QuickCheck properties which will test the simulation system. We will
show how to define the appropriate generators needed to perform the tests in
Chapter 19.

16.22 Explain why we cannot use the function type (Int -> QueueState) as the
representation type of ServerState. Design an extension of this type which
will represent the server state, and implement the functions of the signature
over this type.

16.23 Given the implementations of the ADTs from this section, is your answer to
the question of whether there are redundant operations in the signatures of
queues and servers any different?
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16.24 If you have not done so already, design a signature for round-robin simulation,
in which allocation of the first item is to queue 0, the second to queue 1, and
so on.

16.25 Give an implementation of the round-robin simulation which uses theServerState
ADT.

16.26 Give a different implementation of the round-robin simulation which modifies
the implementation of the type ServerState itself.

16.7 Search trees

A binary search tree is an object of type Tree a whose elements are ordered. A
general binary tree is implemented by the algebraic data type Tree:

data Tree a = Nil | Node a (Tree a) (Tree a)

When is a tree ordered? The tree (Node val t1 t2) is ordered if

• all values in t1 are smaller than val,

• all values in t2 are larger than val, and

• the trees t1 and t2 are themselves ordered;

and the tree Nil is ordered.
Search trees are used to represent sets of elements, for instance. How can we

create a type of search trees? The concrete (algebraic) type Tree a will not serve, as
it contains elements like Node 2 (Node 3 Nil Nil) Nil, which are not ordered.

The answer is to build elements of the type Tree a using only operations which
create or preserve order. We ensure that only these ‘approved’ operations are used
by making the type an abstract data type.

The abstract data type for search trees

We discussed the signature of the abstract data type earlier, in Section 16.4, but we
repeat it here.

module Tree
(Tree,
nil, -- Tree a
isNil, -- Tree a -> Bool
isNode, -- Tree a -> Bool
leftSub, -- Tree a -> Tree a
rightSub, -- Tree a -> Tree a
treeVal, -- Tree a -> a
insTree, -- Ord a => a -> Tree a -> Tree a
delete, -- Ord a => a -> Tree a -> Tree a
minTree -- Ord a => Tree a -> Maybe a

) where
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Figure 16.3: Insertion into a search tree

As we have said, the implementation type is

data Tree a = Nil | Node a (Tree a) (Tree a)

and the standard operations to discriminate between different sorts of tree and to
extract components are defined by

nil :: Tree a
nil = Nil

isNil :: Tree a -> Bool
isNil Nil = True
isNil _ = False

isNode :: Tree a -> Bool
isNode Nil = False
isNode _ = True

leftSub :: Tree a -> Tree a
leftSub Nil = error "leftSub"
leftSub (Node _ t1 _) = t1

rightSub :: Tree a -> Tree a
rightSub Nil = error "rightSub"
rightSub (Node _ _ t2) = t2

treeVal :: Tree a -> a
treeVal Nil = error "treeVal"
treeVal (Node v _ _) = v

Figure 16.4 contains the definitions of the insertion, deletion and join functions. The
function join is used to join two trees with the property that all elements in the left
are smaller than all in the right; that will be the case for the call in delete where it
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insTree :: Ord a => a -> Tree a -> Tree a

insTree val Nil = (Node val Nil Nil)

insTree val (Node v t1 t2)
| v==val = Node v t1 t2
| val > v = Node v t1 (insTree val t2)
| val < v = Node v (insTree val t1) t2

delete :: Ord a => a -> Tree a -> Tree a

delete val (Node v t1 t2)
| val < v = Node v (delete val t1) t2
| val > v = Node v t1 (delete val t2)
| isNil t2 = t1
| isNil t1 = t2
| otherwise = join t1 t2

minTree :: Ord a => Tree a -> Maybe a

minTree t
| isNil t = Nothing
| isNil t1 = Just v
| otherwise = minTree t1

where
t1 = leftSub t
v = treeVal t

-- join is an auxiliary function, used in delete;
-- it is not exported.

join :: Ord a => Tree a -> Tree a -> Tree a

join t1 t2
= Node mini t1 newt

where
(Just mini) = minTree t2
newt = delete mini t2

Figure 16.4: Operations over search trees.
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Figure 16.5: Deletion from a search tree

is used. It is not exported, as it can break the ordered property of search trees if it is
applied to an arbitrary pair of search trees.

Note that the types of insTree, delete, minTree and join contain the context
Ord a. Recall from Chapter 13 that this constraint means that these functions can
only be used over types which carry an ordering operation, <=. It is easy to see from
the definitions of these functions that they do indeed use the ordering, and given
the definition of search trees it is unsurprising that we use an ordering in these op-
erations. Now we look at the definitions in Figure 16.4 in turn.

Inserting an element which is already present has no effect, while inserting an
element smaller (larger) than the value at the root causes it to be inserted in the left
(right) subtree. Figure 16.3 shows 3 being inserted in the tree

(Node 7 (Node 2 Nil Nil) (Node 9 Nil Nil))

to give

(Node 7 (Node 2 Nil (Node 3 Nil Nil)) (Node 9 Nil Nil))

Deletion is straightforward when the value is smaller (larger) than the value at
the root node: the deletion is made in the left (right) sub-tree. If the value to be
deleted lies at the root, deletion is again simple if either sub-tree is Nil: the other
sub-tree is returned. The problem comes when both sub-trees are non-Nil. In this
case, the two sub-trees have to be joined together, keeping the ordering intact.

To join two non-Nil trees t1 and t2, where it is assumed that t1 is smaller than
t2, we pick the minimum element, mini, of t2 to be the value at the root. The left
sub-tree is t1, and the right is given by deleting mini from t2. Figure 16.5 shows the
deletion of 7 from

(Node 7 (Node 2 Nil Nil) (Node 9 (Node 8 Nil Nil) Nil))

to give

(Node 8 (Node 2 Nil Nil) (Node 9 Nil Nil))

The minTree function returns a value of type Maybe a, since a Nil tree has no min-
imum. The Just constructor therefore has to be removed in the where clause of
join.
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Modifying the implementation

Given a search tree, we might be asked for its nth element,

indexT :: Int -> Tree a -> a

indexT n t (indexT)
| isNil t = error "indexT"
| n < st1 = indexT n t1
| n == st1 = v
| otherwise = indexT (n-st1-1) t2

where
v = treeVal t
t1 = leftSub t
t2 = rightSub t
st1 = size t1

where the size is given by

size :: Tree a -> Int
size t

| isNil t = 0
| otherwise = 1 + size (leftSub t) + size (rightSub t)

If we are often asked to index elements of a tree, we will repeatedly have to find the
size of search trees, and this will require computation.

We can think of making the size operation more efficient by changing the imple-
mentation of Tree a, so that an extra field is given in an Stree to hold the size of
the tree:

data Stree a = Nil | Node a Int (Stree a) (Stree a)

What will have to be changed?

• We will have to redefine all the operations in the signature, since they access
the implementation type, and this has changed. For example, the insertion
function has the new definition

insTree val Nil = (Node val 1 Nil Nil)

insTree val (Node v n t1 t2)
| v==val = Node v n t1 t2
| val > v = Node v (1 + size t1 + size nt2) t1 nt2
| val < v = Node v (1 + size nt1 + size t2) nt1 t2

where
nt1 = insTree val t1
nt2 = insTree val t2

• We will have to add size to the signature, and redefine it thus:
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size Nil = 0
size (Node _ n _ _) = n

to use the value held in the tree.

Nothing else needs to be changed, however. In particular, the definition of indexT
given in (indexT) is unchanged. This is a powerful argument in favour of using ab-
stract data type definitions, and against using pattern matching. If (indexT) had
used a pattern match over its argument, then it would have to be rewritten if the
underlying type changed. This shows that ADTs make programs more easily modi-
fiable, as we argued at the start of the chapter.

In conclusion, it should be said that these search trees form a model for a col-
lection of types, as they can be modified to carry different sorts of information. For,
example, we could carry a count of the number of times an element occurs. This
would be increased when an element is inserted, and reduced by one on deletion.
Indeed any type of additional information can be held at the nodes – the insertion,
deletion and other operations use the ordering on the elements to structure the tree
irrespective of whatever else is held there. An example might be to store indexing
information together with a word, for instance. This would form the basis for a reim-
plementation of the indexing system of Section 12.5.

Exercises

16.27 Explain how you would test the implementations of the functions over search
trees. You might need to augment the signature of the type with a function to
print a tree.

16.28 Define QuickCheck properties which will test the implementation of search
trees. We will show how to define the appropriate generators needed to per-
form the tests in Chapter 19.

16.29 Define the functions

successor :: Ord a => a -> Tree a -> Maybe a
closest :: Int -> Tree Int -> Int

The successor of v in a tree t is the smallest value in t larger than v, while the
closest value to v in a numerical tree t is a value in t which has the smallest
difference from v. You can assume that closest is always called on a non-Nil
tree, so always returns an answer.

16.30 Redefine the functions of the Tree a signature over the Stree implementa-
tion type.

16.31 To speed up the calculation of maxTree and other functions, you could imag-
ine storing the maximum and minimum of the sub-tree at each node. Rede-
fine the functions of the signature to manipulate these maxima and minima,
and redefine the functions maxTree, minTree and successor to make use of
this extra information stored in the trees.
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16.32 You are asked to implement search trees with a count of the number of times
an element occurs. How would this affect the signature of the type? How
would you implement the operations? How much of the previously written
implementation could be re-used?

16.33 Using a modified version of search trees instead of lists, reimplement the in-
dexing software of Section 12.5.

16.34 Design a polymorphic abstract data type

Tree a b c

so that entries at each node contain an item of type a, on which the tree is
ordered, and an item of type b, which might be something like the count, or a
list of index entries.

On inserting an element, information of type c is given (a single index entry
in that example); this information has to be combined with the information
already present. The method of combination can be a functional parameter.
There also needs to be a function to describe the way in which information is
transformed at deletion.

As a test of your type, you should be able to implement the count trees and
the index trees as instances.

16.8 Sets

A finite set is a collection of elements of a particular type, which is both like and
unlike a list. Lists are, of course, familiar, and examples include

[Joe,Sue,Ben] [Ben,Sue,Joe]
[Joe,Sue,Sue,Ben] [Joe,Sue,Ben,Sue]

Each of these lists is different – not only do the elements of a list matter, but also the
order in which they occur and the number of times that each element occurs (its
multiplicity) are significant.

In many situations, order and multiplicity are irrelevant. If we want to talk about
the collection of people going to a birthday party, we just want the names; a person
is either there or not and so multiplicity is not important and the order in which we
might list them is also of no interest. In other words, all we want to know is the set of
people coming. In the example above, this is the set consisting of Joe, Sue and Ben.

Like lists, queues, trees and so on, sets can be combined in many different ways:
the operations which combine sets form the signature of the abstract data type. The
search trees we saw earlier provide operations which concentrate on elements of a
single ordered set: ‘what is the successor of element e in set s?’ for instance.

In this section we focus on the combining operations for sets. The signature for
sets is as follows. We explain the purpose of the operations at the same time as giving
their implementation.
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module Set
( Set ,
empty , -- Set a
sing , -- a -> Set a
memSet , -- Ord a => Set a -> a -> Bool
union,inter,diff , -- Ord a => Set a -> Set a -> Set a
eqSet , -- Eq a => Set a -> Set a -> Bool
subSet , -- Ord a => Set a -> Set a -> Bool
makeSet , -- Ord a => [a] -> Set a
mapSet , -- Ord b => (a -> b) -> Set a -> Set b
filterSet , -- (a->Bool) -> Set a -> Set a
foldSet , -- (a -> a -> a) -> a -> Set a -> a
showSet , -- (a -> String) -> Set a -> String
card -- Set a -> Int

) where

There are numerous possible signatures for sets, some of which assume certain prop-
erties of the element type. To test for elementhood, we need the elements to belong
to a type in the Eq class; here we assume that the elements are in fact from an ordered
type, which enlarges the class of operations over Set a. This gives the contexts Ord
a and Ord b, which are seen in some of the types in the signature above.

Implementing the type and operations

We choose to represent a set as an ordered list of elements without repetitions:

newtype Set a = Set [a]

The principal definitions over Set a are given in Figures 16.6 and 16.7. At the start
of the file we see that we import the library List, but as there is a definition of union
in there we have to hide this on import, thus,

import List hiding ( union )

Also at the start of the file we give the instance declarations for the type. It is im-
portant to list these at the start because there is no explicit record of them in the
module header.

We now run through the individual functions as they are implemented in Figures
16.6 and 16.7. In our descriptions we use curly brackets ‘{’, ‘}’, to represent sets in
examples – this is emphatically not part of Haskell notation.

Empty set and singleton. The empty set {} is represented by an empty list, and
the singleton set {x}, consisting of the single element x, by a one-element list.

Membership. To test for membership of a set, we define memSet. It is important
to see that we exploit the ordering in giving this definition. Consider the three cases
where the list is non-empty. In (memSet.1), the head element of the set, x, is smaller
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import List hiding ( union )

instance Eq a => Eq (Set a) where
(==) = eqSet

instance Ord a => Ord (Set a) where
(<=) = leqSet

newtype Set a = Set [a]

empty :: Set a
empty = Set []

sing :: a -> Set a
sing x = Set [x]

memSet :: Ord a => Set a -> a -> Bool
memSet (Set []) y = False
memSet (Set (x:xs)) y

| x<y = memSet (Set xs) y (memSet.1)
| x==y = True (memSet.2)
| otherwise = False (memSet.3)

union :: Ord a => Set a -> Set a -> Set a
union (Set xs) (Set ys) = Set (uni xs ys)

uni :: Ord a => [a] -> [a] -> [a]
uni [] ys = ys
uni xs [] = xs
uni (x:xs) (y:ys)

| x<y = x : uni xs (y:ys)
| x==y = x : uni xs ys
| otherwise = y : uni (x:xs) ys

inter :: Ord a => Set a -> Set a -> Set a
inter (Set xs) (Set ys) = Set (int xs ys)

int :: Ord a => [a] -> [a] -> [a]
int [] ys = []
int xs [] = []
int (x:xs) (y:ys)

| x<y = int xs (y:ys)
| x==y = x : int xs ys
| otherwise = int (x:xs) ys

Figure 16.6: Operations over the set abstract data type, part 1.
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subSet :: Ord a => Set a -> Set a -> Bool
subSet (Set xs) (Set ys) = subS xs ys

subS :: Ord a => [a] -> [a] -> Bool
subS [] ys = True
subS xs [] = False
subS (x:xs) (y:ys)

| x<y = False
| x==y = subS xs ys
| x>y = subS (x:xs) ys

eqSet :: Eq a => Set a -> Set a -> Bool
eqSet (Set xs) (Set ys) = (xs == ys)

leqSet :: Ord a => Set a -> Set a -> Bool
leqSet (Set xs) (Set ys) = (xs <= ys)

makeSet :: Ord a => [a] -> Set a
makeSet = Set . remDups . sort

where
remDups [] = []
remDups [x] = [x]
remDups (x:y:xs)

| x < y = x : remDups (y:xs)
| otherwise = remDups (y:xs)

mapSet :: Ord b => (a -> b) -> Set a -> Set b
mapSet f (Set xs) = makeSet (map f xs)

filterSet :: (a -> Bool) -> Set a -> Set a
filterSet p (Set xs) = Set (filter p xs)

foldSet :: (a -> a -> a) -> a -> Set a -> a
foldSet f x (Set xs) = (foldr f x xs)

showSet :: (a->String) -> Set a -> String
showSet f (Set xs) = concat (map ((++"\n") . f) xs)

card :: Set a -> Int
card (Set xs) = length xs

Figure 16.7: Operations over the set abstract data type, part 2.
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than the element y which we seek, and so we should check recursively for the pres-
ence of y in the tail xs. In case (memSet.2) we have found the element, while in
case (memSet.3) the head element is larger than y; since the list is ordered, all el-
ements will be larger than y, so it cannot be a member of the list. This definition
would not work if we chose to use arbitrary lists to represent sets.

Union, intersection, difference. The functionsunion,inter,diff give the union,
intersection and difference of two sets. The union consists of the elements occurring
in either set (or both), the intersection of those elements in both sets and the differ-
ence of those elements in the first but not the second set – we leave the definition of
diff as an exercise for the reader. For example,

union {Joe,Sue} {Sue,Ben} = {Joe,Sue,Ben}
inter {Joe,Sue} {Sue,Ben} = {Sue}
diff {Joe,Sue} {Sue,Ben} = {Joe}

In making these definitions we again exploit the fact that the two arguments are
ordered. We also define the functions by ‘wrapping up’ a function over the ‘bare’ list
type. For instance, in defining union we first define

uni :: Ord a => [a] -> [a] -> [a]

which works directly over ordered lists, and then make a version which works over
Set,

union :: Ord a => Set a -> Set a -> Set a
union (Set xs) (Set ys) = Set (uni xs ys)

Recall that the brackets ‘{’, ‘}’ are not a part of Haskell; we can see them as shorthand
for Haskell expressions as follows.

{e1, ... ,en} = makeSet [e1, ... ,en]

Subset and equality tests. To test whether the first argument is a subset of the sec-
ond, we use subSet; x is a subset of y if every element of x is an element of y.

Two sets are going to be equal if their representations as ordered lists are the
same – hence the definition of eqSet as list equality; note that we require equality
on a to define equality on Set a. The function eqSet is exported as part of the
signature, but also we declare an instance of the Eq class, binding == to eqSet thus

instance Eq a => Eq (Set a) where
(==) = eqSet

The ADT equality will not in general be the equality on the underlying type: if we
were to choose arbitrary lists to model sets, the equality test would be more complex,
since [1,2] and [2,1,2,2] would represent the same set.
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Ordering. We also export list ordering as an ordering over Set.

instance Ord a => Ord (Set a) where
(<=) = leqSet

The subset ordering is not bound to <= since it is customary for the <= in Ord to be a
total order, that is for all elements x and y, either x<=y or y<=x will hold. The subset
ordering is not a total order, while the lexicographic ordering over (ordered) lists is
total. Some examples for comparison are given in the exercises.

Construction. To form a set from an arbitrary list, makeSet, the list is sorted, and
then duplicate elements are removed, before it is wrapped with Set. The definition
of sort is imported from the List library.

Higher-order functions. mapSet, filterSet andfoldSetbehave likemap, filter
and foldr except that they operate over sets. The latter two are essentially given by
filter and foldr; in mapSet duplicates have to be removed after mapping.

Print. showSet f (Set xs) gives a printable version of a set, one item per line,
using the function f to give a printable version of each element.

showSet f (Set xs) = concat (map ((++"\n") . f) xs)

Cardinality. The cardinality of a set is the number of its members. The function
card gives this, as it returns the length of the list.

In the next section we build a library of functions to work with relations and graphs
which uses the Set library as its basis.

Exercises

16.35 Compare how the following pairs of sets are related by the orderings <= and
subSet.

{3} {3,4}
{2,3} {3,4}
{2,9} {2,7,9}

16.36 Define the function diff so that diff s1 s2 consists of the elements of s1
which do not belong to s2.

16.37 Define the function

symmDiff :: Ord a => Set a -> Set a -> Set a

which gives the symmetric difference of two sets. This consists of the ele-
ments which lie in one of the sets but not the other, so that
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symmDiff {Joe,Sue} {Sue,Ben} = {Joe,Ben}

Can you use the function diff in your definition?

16.38 How can you define the function

powerSet :: Ord a => Set a -> Set (Set a)

which returns the set of all subsets of a set defined? Can you give a definition
which uses only the operations of the abstract data type and not the concrete
implementation?

16.39 How are the functions

setUnion :: Ord a => Set (Set a) -> Set a
setInter :: Ord a => Set (Set a) -> Set a

which return the union and intersection of a set of sets defined using the op-
erations of the abstract data type?

16.40 Can infinite sets (of numbers, for instance) be adequately represented by or-
dered lists? Can you tell if two infinite lists are equal, for instance?

16.41 The abstract data type Set a can be represented in a number of different
ways. Alternatives include arbitrary lists (rather than ordered lists without
repetitions) and Boolean valued functions, that is elements of the type a ->
Bool. Give implementations of the type using these two representations.

16.42 Give an implementation of the Set abstract data type using search trees.

16.43 Give an implementation of the search tree abstract data type using ordered
lists. Compare the behaviour of the two implementations.

16.44 Give a set of QuickCheck properties for the Set type. These should reflect
the mathematical properties of sets. Hint: you could begin by thinking about
corresponding properties of lists, and about which of these you would expect
to hold for sets and which would not.

16.9 Relations and graphs

We now use the Set abstract data type as a means of implementing relations and,
taking an alternative view of the same objects, graphs.
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Relations

A binary relation relates together certain elements of a set. A family relationship
can be summarized by saying that the isParent relation holds between Ben and
Sue, between Ben and Leo and between Sue and Joe. In other words, it relates the
pairs (Ben,Sue), (Ben,Leo) and (Sue,Joe), and so we can think of this particular
relation as the set

isParent = {(Ben,Sue) , (Ben,Leo) , (Sue,Joe)}

In general we say

type Relation a = Set (a,a)

This definition means that all the set operations are available on relations. We can
test whether a relation holds of two elements using memSet; the union of two rela-
tions like isParent and isSibling gives the relationship of being either a parent
or a sibling, and so on.

We look at two examples of family relations, based on a relationisParentwhich
we assume is given to us. We first set ourselves the task of defining the function
addChildren which adds to a set of people all their children; we then aim to define
the isAncestor relation. The full code for the functions discussed here is given in
Figure 16.8.

Defining addChildren

The image of an element. Working bottom-up, we first ask how we find all ele-
ments related to a given element: who are all Ben’s children, for instance? We need
to find all pairs beginning with Ben, and then return their second halves. The func-
tion to perform this is called image and the set of Ben’s children will be

image isParent Ben = {Sue,Leo}

The image of a set of elements. Now, how can we find all the elements related to
a set of elements? We find the image of each element separately and then take the
union of these sets. The union of a set of sets is given by folding the binary union
operation into the set.

unionSet {s1, ... ,sn}
= s1 [ ... [ sn
= s1 ‘union‘ ... ‘union‘ sn

Now, how do we add all the children to a set of people? We find the image of the
set under isParent, and combine it with the set itself. This is given by the function
addChildren.

Defining isAncestor

The second task we set ourselves was to find the isAncestor relation. The gen-
eral problem is to find the transitive closure of a relation, the function tClosure
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image :: Ord a => Relation a -> a -> Set a
image rel val = mapSet snd (filterSet ((==val).fst) rel)

setImage :: Ord a => Relation a -> Set a -> Set a
setImage rel = unionSet . mapSet (image rel)

unionSet :: Ord a => Set (Set a) -> Set a
unionSet = foldSet union empty

addImage :: Ord a => Relation a -> Set a -> Set a
addImage rel st = st ‘union‘ setImage rel st

addChildren :: Set People -> Set People
addChildren = addImage isParent

compose :: Ord a => Relation a -> Relation a -> Relation a
compose rel1 rel2

= mapSet outer (filterSet equals (setProduct rel1 rel2))
where
equals ((a,b),(c,d)) = (b==c)
outer ((a,b),(c,d)) = (a,d)

setProduct :: (Ord a,Ord b) => Set a -> Set b -> Set (a,b)
setProduct st1 st2 = unionSet (mapSet (adjoin st1) st2)

adjoin :: (Ord a,Ord b) => Set a -> b -> Set (a,b)
adjoin st el = mapSet (addEl el) st

where
addEl el el’ = (el’,el)

tClosure :: Ord a => Relation a -> Relation a
tClosure rel = limit addGen rel

where
addGen rel’ = rel’ ‘union‘ (rel’ ‘compose‘ rel)

limit:: Eq a => (a -> a) -> a -> a
limit f x

| x == next = x
| otherwise = limit f next

where
next = f x

Figure 16.8: Functions over the type of relations, Relation a.
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of Figure 16.8. We do this by closing up the relation, so we add grandparenthood,
great-grandparenthood and so forth to the relation until nothing further is added.
We explain transitive closure formally later in this section.

The ‘grandparent’ relation: relational composition. How do we define the rela-
tion isGrandparent? We match together pairs like

(Ben,Sue) (Sue,Joe)

and see that this gives that Ben is a grandparent of Joe. We call this the relational
composition of isParent with itself. In general,

isGrandparent
= isParent ‘compose‘ isParent
= {(Ben,Joe)}

Set product. In defining compose we have used the setProduct function to give
the product of two sets. This is formed by pairing every element of the first set with
every element of the second. For instance,

setProduct {Ben,Suzie} {Sue,Joe}
= { (Ben,Sue) , (Ben,Joe) , (Suzie,Sue) , (Suzie,Joe) }

setProduct uses the function adjoin to pair each element of a set with a given
element. For instance,

adjoin {Ben,Sue} Joe = { (Ben,Joe) , (Sue,Joe) }

Transitive closure and limits. A relation rel is transitive if for all (a,b) and (b,c)
in rel, (a,c) is in rel. The transitive closure of a relation rel is the smallest rela-
tion extending rel which is transitive. We compute the transitive closure of rel,
tClosure rel, by repeatedly adding one more ‘generation’ of rel, using compose,
until nothing more is added.

To do this, we make use of the limit function, a polymorphic higher-order func-
tion of general use. limit f x gives the limit of the sequence

x , f x , f (f x) , f (f (f x)) , ...

The limit is the value to which the sequence settles down if it exists. It is found by
taking the first element in the sequence whose successor is equal to the element
itself.

Example. As an example, take Ben to be Sue’s father, Sue to be Joe’s mother, who
himself has no children. Now define

addChildren :: Set Person -> Set Person

to add to a set the children of all members of the set, so that for instance
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addChildren {Joe,Ben} = {Joe,Sue,Ben}

Now we can give an example calculation of a limit of a function over sets.

limit addChildren {Ben}
?? {Ben}=={Ben,Sue} ; False

; limit addChildren {Ben,Sue}
?? {Ben,Sue}=={Ben,Joe,Sue} ; False

; limit addChildren {Ben,Joe,Sue}
?? {Ben,Joe,Sue}=={Ben,Joe,Sue} ; True

; {Ben,Joe,Sue}

Context simplification

The functions of Figure 16.8 give an interesting example of context simplification for
type classes. The adjoin function requires that the types a and b carry an ordering.
Haskell contains the instance declaration

instance (Ord a, Ord b) => Ord (a,b) .... (pair)

and so this is sufficient to ensure Ord (a,b), which is required for the application
of mapSet within adjoin.

Similarly, in defining compose we require an ordering on the type ((a,a),(a,a));
again, knowing Ord a is sufficient to give this, since (pair) can be used to derive
the ordering on ((a,a),(a,a)).

Graphs

Another way of seeing a relation is as a directed graph. For example, the relation

graph1 = { (1,2) , (1,3) , (3,2) , (3,4) , (4,2) , (2,4) }

can be pictured like this

1

3

2

4

where we draw an arrow joining a to b if the pair (a,b) is in the relation. What then
does the transitive closure represent? Two points a and b are related by tClosure
graph1 if there is a path from a to b through the graph. For example, the pair (1,4)
is in the closure, since a path leads from 1 to 3 then to 2 and finally to 4, while the
pair (2,1) is not in the closure, since no path leads from 2 to 1 through the graph.
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Strongly connected components

A problem occurring in many different application areas, including networks and
compilers, is to find the strongly connected components of a graph. Every graph
can have its nodes split into sets or components with the property that every node
in a component is connected by a path to all other nodes in the same component.
The components of graph1 are {1}, {3} and {2,4}.

We solve the problem in two stages:

• we first form the relation which links points in the same component, then

• we form the components (or equivalence classes) generated by this relation.

There is a path from x to y and vice versa if both (x,y) and (y,x) are in the closure,
so we define

connect :: Ord a => Relation a -> Relation a
connect rel = clos ‘inter‘ solc

where
clos = tClosure rel
solc = inverse clos

inverse :: Ord a => Relation a -> Relation a
inverse = mapSet swap

where
swap (x,y) = (y,x)

Now, how do we form the components given by the relation graph1? We start with
the set

{{1},{2},{3},{4}}

and repeatedly add the images under the relation to each of the classes, until a fixed
point is reached. In general this gives

classes :: Ord a => Relation a -> Set (Set a)
classes rel

= limit (addImages rel) start
where
start = mapSet sing (eles rel)

where the auxiliary functions used are

eles :: Ord a => Relation a -> Set a
eles rel = mapSet fst rel ‘union‘ mapSet snd rel

addImages :: Ord a => Relation a -> Set (Set a) -> Set (Set a)
addImages rel = mapSet (addImage rel)



16.9. RELATIONS AND GRAPHS 433

Searching in graphs

Many algorithms require us to search through the nodes of a graph: we might want
to find a shortest path from one point to another, or to count the number of paths
between two points.

Two general patterns of search are depth-first and breadth-first. In a depth-first
search, we explore all elements below a given child before moving to the next child;
a breadth-first search examines all the children before examining the grandchil-
dren, and so on. In the case of searching below node 1 in graph1, the sequence
[1,2,4,3] is depth-first (4 is visited before 3), while [1,2,3,4] is breadth-first.
These examples show that we can characterize the searches as functions

breadthFirst :: Ord a => Relation a -> a -> [a]
depthFirst :: Ord a => Relation a -> a -> [a]

withbreadthFirst graph1 1 = [1,2,3,4], for instance. The use of a list in these
functions is crucial – we are not simply interested in finding the nodes below a node
(tClosure does this), we are interested in the order in which they occur.

The essential step in both searches is to find all the descendants of a node which
have not been visited so far. We can write

newDescs :: Ord a => Relation a -> Set a -> a -> Set a
newDescs rel st v = image rel v ‘diff‘ st

which returns the set of descendants of v in rel which are not in the set st. Here
we have a problem; the result of this function is a set and not a list, but we require
the elements in some order. One solution is to add to the Set abstract data type a
function

flatten :: Set a -> [a] (setList)
flatten (Set xs) = xs

which breaks the abstraction barrier in the case of the ordered list implementation.
An alternative is to supply as a parameter a function

minSet :: Set a -> Maybe a

which returns the minimum of a non-empty set and which can be used in flattening
a set to a list without breaking the abstraction barrier. Unconcerned about its par-
ticular definition, we assume the existence of a flatten function of type (setList).
Then we can say

findDescs :: Ord a => Relation a -> [a] -> a -> [a]
findDescs rel xs v = flatten (newDescs rel (makeSet xs) v)

Breadth-first search

A breadth-first search involves repeatedly applyingfindDescsuntil a limit is reached.
The limit function discussed earlier will find this, so we define
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breadthFirst :: Ord a => Relation a -> a -> [a]
breadthFirst rel val
= limit step start

where
start = [val]
step xs = xs ++ nub (concat (map (findDescs rel xs) xs))

A step performs a number of operations:

• First, all the descendants of elements in xs which are not already in xs are
found. This is given by mapping (findDescs rel xs) along the list xs.

• This list of lists is then concatenated into a single list.

• Duplicates can occur in this list, as a node may be a descendant of more than
one node, and so any duplicated elements must be removed. This is the effect
of the library function

nub :: Eq a => [a] -> [a]

which removes all but the first occurrence of each element in a list.

Depth-first search

How does depth-first search proceed? We first generalize the problem to

depthSearch :: Ord a => Relation a -> a -> [a] -> [a]
depthFirst rel v = depthSearch rel v []

where the third argument is used to carry the list of nodes already visited, and which
are therefore not to appear in the result of the function call.

depthSearch rel v used
= v : depthList rel (findDescs rel used’ v) used’

where
used’ = v:used

Here we call the auxiliary function depthList, which finds all the descendants of a
list of nodes.

depthList :: Ord a => Relation a -> [a] -> [a] -> [a]

depthList rel [] used = []

depthList rel (val:rest) used
= next ++ depthList rel rest (used++next)

where
next = if elem val used

then []
else depthSearch rel val used
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The definition has two equations, the first giving the trivial case where no nodes are
to be explored. In the second there are two parts to the solution:

• next gives the part of the graph accessible below val. This may be [], if val
is a member of the list used, otherwise depthSearch is called.

• depthList is then called on the tail of the list, but with next appended to the
list of nodes already visited.

This pair of definitions is a good example of definition by mutual recursion, since
each calls the other. It is possible to define a single function to perform the effect of
the two, but this pair of functions seems to express the algorithm in the most natural
way.

Exercises

16.45 Calculate

classes (connect graph1)
classes (connect graph2)

where graph2 = graph1 [ {(4,3)}.

16.46 Give calculations of

breadthFirst graph2 1
depthFirst graph2 1

where graph2 is defined in the previous question.

16.47 Using the searches as a model, give a function

distance :: Eq a => Relation a -> a -> a -> Int

which gives the length of a shortest path from one node to another in a graph.
For instance,

distance graph1 1 4 = 2
distance graph1 4 1 = 0

0 is the result when no such path exists, or when the two nodes are equal.

16.48 A weighted graph carries a numerical weight with each edge. Design a type
to model this. Give functions for breadth-first and depth-first search which
return lists of pairs. Each pair consists of a node, together with the length of a
shortest path to that node from the node at the start of the search.

16.49 A heterogeneous relation relates objects of different type. An example might
be the relation relating a person to their age. Design a type to model these
relations; how do you have to modify the functions defined over Relation a
to work over this type, if it is possible?
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16.50 [Harder] Formulate QuickCheck properties for the search functions given in
this section. You should try to think of properties which are shared by all
search functions, and also other properties which hold of particular search
functions.

16.10 Commentary

This section explores a number of issues raised by the introduction of ADTs into our
repertoire.

First, we have not yet said anything about verification of functions over abstract
data types. This is because there is nothing new to say about the proof of theorems:
these are proved for the implementation types exactly as we have seen earlier. The
theorems valid for an abstract data type are precisely those which obey the type con-
straints on the functions in the signature. For a queue type, for instance, we will be
able to prove that

remQ (addQ x emptyQ) = (x , emptyQ)

by proving the appropriate result about the implementation. What would not be
valid would be an equation like

emptyQ = Qu []

since this breaks the information-hiding barrier and reveals something of the im-
plementation itself.

Next we note that our implementation of sets gives rise to some properties which
we ought to prove, often called invariants. We have assumed that our sets are imple-
mented as ordered lists without repetitions; we ought to prove that each operation
over our implementation preserves this property. Both the properties of the func-
tions, and the invariants over the implementation, can be formulated as QuickCheck
properties; we leave these as exercises for the reader.

Finally, observe that both classes and abstract data types use signatures, so it is
worth surveying their similarities and differences.

• Their purposes are different: ADTs are used to provide information hiding,
and to structure programs; classes are used to overload names, to allow the
same name to be used over a class of different types.

• The signature in an ADT is associated with a single implementation type, which
may be monomorphic or polymorphic. On the other hand, the signature in a
class will be associated with multiple instances; this is the whole point of in-
cluding classes, in fact.

• The functions in the signature of an ADT provide the only access to the under-
lying type. There is no such information hiding over classes: to be a member
of a class, a type must provide at least the types in signature.
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Summary

The abstract data types of this chapter have three important and related properties.

• They provide a natural representation of a type, which avoids being over-specific.
An abstract data type carries precisely the operations which are naturally as-
sociated with the type and nothing more.

• The signature of an abstract data type is a firm interface between the user and
the implementer: development of a system can proceed completely indepen-
dently on the two sides of the interface.

• If the implementation of a type is to be modified, then only the operations in
the signature need to be changed; any operation using the signature functions
can be used unchanged. We saw an example of this with search trees, when
the implementation was modified to include size information.

We saw various examples of ADT development. Most importantly we saw the prac-
tical example of the simulation types being designed in the three stages suggested.
First the types are named, then they are described informally and finally a signature
is written down. After that we are able to implement the operations of the signature
as a separate task.

One of the difficulties in writing a signature is being sure that all the relevant
operations have been included; we have given a check-list of the kinds of operations
which should be present, and against which it is sensible to evaluate any candidate
signature definitions.
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Chapter 17

Lazy programming

In our calculations so far we have said that the order in which we make evaluation
steps will not affect the results produced – it may only affect whether the sequence
leads to a result. This chapter describes precisely the lazy evaluation strategy which
underlies Haskell. Lazy evaluation is well named: a lazy evaluator will only evaluate
an argument to a function if that argument’s value is needed to compute the overall
result. Moreover, if an argument is structured (a list or a tuple, for instance), only
those parts of the argument which are needed to make the computation continue
will be evaluated; we’ll look at how this works in practice in some examples.

Lazy evaluation has consequences for the style of programs we can write. Since
an intermediate list will only be generated on demand, using an intermediate list
will not necessarily be expensive computationally. We examine this in the context of
a series of examples, culminating in a case study of parsing.

To build parsers we construct a toolkit of polymorphic, higher-order functions
which can be combined in a flexible and extensible way to make language proces-
sors of all sorts. One of the distinctive features of a functional language is the col-
lection of facilities it provides for defining libraries like this; we’ll come back to this
example when we discuss domain-specific languages in Chapter 19.

We also take the opportunity to extend the list comprehension notation. This
does not allow us to write any new programs, but does make a lot of list process-
ing programs – especially those which work by generating and then testing possible
solutions – easier to express and understand.

Another consequence of lazy evaluation is that it is possible for the language
to describe infinite structures. These would require an infinite amount of time to
evaluate fully, but under lazy evaluation, only parts of a data structure need to be
examined. Any recursive type will contain infinite objects; we concentrate on lists
here, as infinite lists are by far the most widely used infinite structures.

After introducing a variety of examples, such as infinite lists of prime and ran-
dom numbers, we discuss the importance of infinite lists for program design, and see
that programs manipulating infinite lists can be thought of as processes consuming
and creating ‘streams’ of data. Based on this idea, we explore how to complete the
simulation case study.

439
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The chapter concludes with an update on program verification in the light of lazy
evaluation and the existence of infinite lists; this section can only give a flavour of
the area, but contains references to more detailed presentations.

Sections 17.1 and 17.2 are essential reading, but the sections that follow explore
the impact of laziness on a number of things we have looked at already, including
list comprehensions and the simulation case study, as well as examining design and
verification questions.

17.1 Lazy evaluation

Central to evaluation in Haskell is function application. The basic idea behind this
is simple: to evaluate the function f applied to arguments a1, a2, . . . , ak, we simply
substitute the expressions ai for the corresponding variables in the definition of the
function. For instance, if

f x y = x+y

then

f (9-3) (f 34 3)
; (9-3)+(f 34 3)

since we replace x by (9-3) and y by (f 34 3). The expressions (f 34 3) and
(9-3) are not evaluated before they are passed to the function.

In this case, for evaluation to continue, we need to evaluate the arguments to ‘+’,
giving

; 6+(f 34 3)
; 6+(34+3)
; 6+37
; 43

In this example, both of the arguments are evaluated eventually, but this is not al-
ways the case. If we define

g x y = x+12

then

g (9-3) (g 34 3)
; (9-3)+12
; 6+12
; 18

Here (9-3) is substituted for x, but as y does not appear on the right-hand side of
the equation, the argument (g 34 3) will not appear in the result, and so is not
evaluated. Here we see the first advantage of lazy evaluation: an argument which
is not needed will not be evaluated. This example is rather too simple: why would
we write the second argument if its value is never needed? A rather more realistic
example is
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switch :: Integer -> a -> a -> a
switch n x y

| n>0 = x
| otherwise = y

If the integer n is positive, the result is the value of x; otherwise it is the value of y.
Either of the arguments x and ymight be used, but in the first case y is not evaluated
and in the second x is not evaluated. A third example is

h x y = x+x

so that

h (9-3) (h 34 3) (h-eval)
; (9-3)+(9-3)

It appears here that we will have to evaluate the argument (9-3) twice since it is
duplicated on substitution. Lazy evaluation ensures that a duplicated argument is
never evaluated more than once. This can be modelled in a calculation by doing the
corresponding steps simultaneously, thus

h (9-3) 17
; (9-3)+(9-3)
; 6+6
; 12

In the implementation, there is no duplicated evaluation because calculations are
made over graphs rather than trees to represent the expressions being evaluated.
For instance, instead of duplicating the argument, as in (a) below, the evaluation
of (h-eval) will give a graph in which on both sides of the plus there is the same
expression. This is shown in (b).

(a) +

(9-3) (9-3)

(b) +

(9-3)

A final example is given by the pattern matching function,

pm (x,y) = x+1

applied to the pair (3+2,4-17).

pm (3+2,4-17)
; (3+2)+1
; 6

The argument is examined, and part of it is evaluated. The second half of the pair
remains unevaluated, as it is not needed in the calculation. This completes the infor-
mal introduction to lazy evaluation, which can be summarized in the three points:
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• arguments to functions are evaluated only when this is necessary for evalua-
tion to continue;

• an argument is not necessarily evaluated fully: only the parts that are needed
are examined;

• an argument is evaluated at most only once. This is done in the implementa-
tion by replacing expressions by graphs and calculating over them.

We now give a more formal account of the calculation rules which embody lazy eval-
uation.

17.2 Calculation rules and lazy evaluation

As we first saw in Section 3.7, the definition of a function consists of a number of
conditional equations. Each conditional equation can contain multiple clauses and
may have a number of local definitions given in a where clause. Each equation will
have on its left-hand side the function under definition applied to a number of pat-
terns.

f p1 p2 ... pk
| g1 = e1
| g2 = e2
...
| otherwise = er

where
v1 a1,1 ... = r1
....

f q1 q2 ... qk
= ...

In calculating f a1 ... ak there are three aspects.

Calculation – pattern matching

In order to determine which of the equations is used, the arguments are evaluated.
The arguments are not evaluated fully, rather they are evaluated sufficiently to see
whether they match the corresponding patterns. If they match the patterns p1 to pk,
then evaluation proceeds using the first equation; if not, they are checked against
the second equation, which may require further evaluation. This is repeated un-
til a match is given, or until there are no more equations (which would generate a
Program error). For instance, given the definition

f :: [Int] -> [Int] -> Int
f [] ys = 0 (f.1)
f (x:xs) [] = 0 (f.2)
f (x:xs) (y:ys) = x+y (f.3)

the evaluation of f [1 .. 3] [1 .. 3] proceeds thus
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f [1 .. 3] [1 .. 3] (1)
; f (1:[2 .. 3]) [1 .. 3] (2)
; f (1:[2 .. 3]) (1:[2 .. 3]) (3)
; 1+1 (4)

At stage (1), there is not enough information about the arguments to determine
whether there is a match with (f.1). One step of evaluation gives (2), and shows
there is not a match with (f.1).

The first argument of (2)matches the first pattern of (f.2), so we need to check
the second. One step of calculation in (3) shows that there is no match with (f.2),
but that there is with (f.3); hence we have (4).

Calculation – guards

Suppose that the first conditional equation matches (simply for the sake of explana-
tion). The expressions a1 to ak are substituted for the patterns p1 to pk throughout
the conditional equation. We must next determine which of the clauses on the right-
hand side applies. The guards are evaluated in turn, until one is found which gives
the value True; the corresponding clause is then used. If we have

f :: Int -> Int -> Int -> Int
f m n p

| m>=n && m>=p = m
| n>=m && n>=p = n
| otherwise = p

then

f (2+3) (4-1) (3+9)
?? (2+3)>=(4-1) && (2+3)>=(3+9)
?? ; 5>=3 && 5>=(3+9)
?? ; True && 5>=(3+9)
?? ; 5>=(3+9)
?? ; 5>=12
?? ; False
?? 3>=5 && 3>=12
?? ; False && 3>=12
?? ; False
?? otherwise ; True

; 12

We leave it as an exercise for the reader to work out which parts of the calculation
above are shared.

Calculation – local definitions

Values in where clauses are calculated on demand: only when a value is needed does
calculation begin. Given the definitions
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f :: Int -> Int -> Int

f m n
| notNil xs = front xs
| otherwise = n

where
xs = [m .. n]

front (x:y:zs) = x+y
front [x] = x

notNil [] = False
notNil (_:_) = True

the calculation of f 3 5 will be

f 3 5
?? notNil xs
?? where
?? xs = [3 .. 5]
?? ; 3:[4 .. 5] (1)
?? ; notNil (3:[4 .. 5])
?? ; True

; front xs
where
xs = 3:[4 .. 5]

; 3:4:[5] (2)
; 3+4 (3)
; 7

To evaluate the guard notNil xs, evaluation of xs begins, and after one step, (1)
shows that the guard is True. Evaluating front xs requires more information about
xs, and so we evaluate by one more step to give (2). A successful pattern match in
the definition of front then gives (3), and so the result.

This section has described where clauses; a similar explanation applies to let
expressions.

Operators and other expression formers

The three aspects of evaluating a function application are now complete; we should
now say something about the built-in operators. If they can be given Haskell defini-
tions, such as

True && x = x
False && x = False

then they will follow the rules for Haskell definitions. The left-to-right order means
that ‘&&’ will not evaluate its second argument in the case that its first is False, for
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instance. This is unlike many programming languages, where the ‘and’ function will
evaluate both its arguments.

The other operations, such as the arithmetic operators, vary. Multiplication needs
both its arguments to return a result1 but the equality on lists can return False on
comparing [] and (x:xs) without evaluating x or xs. In general the language is
implemented so that no manifestly unnecessary evaluation takes place.

Recall that if . . .then . . .else . . . ; cases; let and lambda expressions can be
used in forming expressions. Their evaluation follows the form we have seen for
function applications. Specifically, if . . .then . . .else . . . is evaluated like a guard,
cases like a pattern match, let like a where clause and a lambda expression like
the application of a named function such as f above.

Finally, we turn to the way in which a choice is made between applications.

Evaluation order

What characterizes evaluation in Haskell, apart from the fact that no argument is
evaluated more than once, is the order in which applications are evaluated when
there is a choice.

• Evaluation is from the outside in. In a situation like

f1 e1 (f2 e2 17)

where one application encloses another, the outer one is evaluated. In the
example, the outer one, f1 e1 (f2 e2 17), is chosen for evaluation.

• Otherwise, evaluation is from left to right. In the expression

f1 e1 + f2 e2

the underlined expressions are both to be evaluated. The left-hand one, f1
e1, will be evaluated first.

These rules are enough to describe the way in which lazy evaluation works. In the
sections to come we look at the consequences of a lazy approach for functional pro-
gramming.

17.3 List comprehensions revisited

The list comprehension notation does not add any new programs to the Haskell lan-
guage, but it does allow us to (re-)write programs in a new and clearer way. Building
on the introduction in Section 5.6, the notation lets us combine multiple maps and
filters together in a single expression. Combinations of these functions allow us
to write algorithms which generate and test: all the elements of a particular form

1In fact, multiplication could be ‘lazier’, since it is possible to say that 0*n is 0 without evaluating n.
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are generated and combinations of them are tested, before results depending upon
them are returned.

We begin the section with a re-examination of the syntax of the list comprehen-
sion, before giving some simple examples to illustrate the features that we describe.
After that we give the rules for calculating with list comprehensions, and we finish
the section with a series of longer examples.

Syntax

A list comprehension has the form

[ e | q1 , ... , qk ]

where each qualifier qi has one of two forms.

• It can be a generator, p <- lExp, where p is a pattern and lExp is an expres-
sion of list type.

• It can be a test, bExp, which is a boolean expression.

An expression lExp or bExp appearing in qualifier qi can refer to the variables used
in the patterns of qualifiers q1 to qi-1.

Simpler examples

Multiple generators allow us to combine elements from two or more lists

pairs :: [a] -> [b] -> [(a,b)]
pairs xs ys = [ (x,y) | x<-xs , y<-ys ]

This example is important as it shows the way in which the values x and y are cho-
sen.

pairs [1,2,3] [4,5]
; [(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)]

The first element of xs, 1, is given to x, and then for this fixed value all possible
values of y in ys are chosen. This process is repeated for the remaining values x in
xs, namely 2 and 3.

This choice is not accidental, since if we have

triangle :: Int -> [(Int,Int)]
triangle n = [ (x,y) | x <- [1 .. n] , y <- [1 .. x] ]

the second generator, y <- [1 .. x] depends on the value of x given by the first
generator.

triangle 3
; [(1,1),(2,1),(2,2),(3,1),(3,2),(3,3)]
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For the first choice of x, 1, the value of y is chosen from [1 .. 1], for the second
choice of x, the value of y is chosen from [1 .. 2], and so on.

Three positive integers form a Pythagorean triple if the sum of squares of the
first two is equal to the square of the third. The list of all triples with all sides below
a particular bound, n, is given by

pyTriple n
= [ (x,y,z) | x <- [2 .. n] , y <- [x+1 .. n] ,

z <- [y+1 .. n] , x*x + y*y == z*z ]

pyTriple 100
; [(3,4,5),(5,12,13),(6,8,10),...,(65,72,97)]

Here the test combines values from the three generators.

Calculating with list comprehensions

How can we describe the way in which the results of list comprehensions are ob-
tained? One way is to give a translation of the comprehensions into applications of
map, filter and concat. We give a different approach here, of calculating directly
with the expressions.

Before we do this, we introduce one piece of very helpful notation. We write
e{f/x} for the expression e in which every occurrence of the variable x has been
replaced by the expression f. This is the substitution of f for x in e. If p is a pattern,
we use e{f/p} for the substitution of the appropriate parts of f for the variables in
p. For instance,

[ (x,y) | x<-xs ]{[2,3]/xs} = [ (x,y) | x<-[2,3] ]

(x + sum xs){(2,[3,4])/(x,xs)} = 2 + sum [3,4]

since 2 matches x, and [3,4] matches xs when (2,[3,4]) is matched against
(x,xs).

We now explain list comprehensions. The notation looks a bit daunting, but the
effect should be clear. The generator v <- [a1,...,an] has the effect of setting v
to the values a1 to an in turn. Setting the value appears in the calculation as substi-
tution of a value for a variable.

[ e | v <- [a1,...,an] , q2 , ... , qk ]
; [ e{a1/v} | q2{a1/v} , ... , qk{a1/v} ]

++ ... ++
[ e{an/v} | q2{an/v} , ... , qk{an/v} ]

As a running example for this section we take

[ x+y | x <- [1,2] , isEven x , y <- [x .. 2*x] ]
; [ 1+y | isEven 1 , y <- [1 .. 2*1] ] ++

[ 2+y | isEven 2 , y <- [2 .. 2*2] ]



448 CHAPTER 17. LAZY PROGRAMMING

where the values 1 and 2 are substituted for x. The rules for tests are simple,

[ e | True , q2 , ... , qk ]
; [ e | q2 , ... , qk ]

[ e | False , q2 , ... , qk ]
; []

so that our example is

; [ 1+y | False , y <- [1 .. 2*1] ] ++
[ 2+y | True , y <- [2 .. 2*2] ]

; [ 2+y | y <- [2,3,4] ]
; [ 2+2 | ] ++ [ 2+3 | ] ++ [ 2+4 | ]

and when there are no qualifiers,

[ e | ] = [ e ]

Completing the example, we have

[ x+y | x <- [1,2] , isEven x , y <- [x .. 2*x] ]
; [4,5,6]

Now we consider some more examples.

triangle 3
; [ (x,y) | x <- [1 .. 3] , y <- [1 .. x] ]
; [ (1,y) | y <- [1 .. 1] ] ++

[ (2,y) | y <- [1 .. 2] ] ++
[ (3,y) | y <- [1 .. 3] ]

; [ (1,1) | ] ++
[ (2,1) | ] ++ [ (2,2) | ] ++
[ (3,1) | ] ++ [ (3,2) | ] ++ [ (3,3) | ]

; [(1,1),(2,1),(2,2),(3,1),(3,2),(3,3)]

as we argued above. Another example contains a test:

[ m*m | m <- [1 .. 10] , m*m<50 ]
; [ 1*1 | 1*1<50 ] ++ [ 2*2 | 2*2<50 ] ++ ...

[ 7*7 | 7*7<50 ] ++ [ 8*8 | 8*8<50 ] ++ ...
; [ 1 | True ] ++ [ 4 | True ] ++ ...

[ 49 | True ] ++ [ 64 | False ] ++ ...
; [1,4,...49]

We now look at two longer examples, the solutions for which are aided by the list
comprehension style.
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Example

List permutations

A permutation of a list is a list with the same elements in a different order. For a list
of n elements, there are n! (n factorial) permutations of the list. The perms function
returns a list of all permutations of a list.

perms :: Eq a => [a] -> [[a]]

The empty list has one permutation, itself. If xs is not empty, a permutation is given
by picking an element x from xs and putting x at the front of a permutation of
the remainder xs with x removed. To do this we use the ‘\\’ operator, defined in
Data.List.

The operator ‘\\’ returns the difference of two lists: xs\\ys is the list xs with
each element of ys removed, if it is present. The number of duplications is taken
into account, so that for example [2,3,2]\\[3,2,3] is [2]. We can now write the
definition of the function giving all the permutations like this

perms [] = [[]]
perms xs = [ x:ps | x <- xs , ps <- perms (xs\\[x]) ]

Example evaluations give, for a one-element list,

perms [2]
; [x:ps| x <- [2] , ps <- perms [] ]
; [x:ps| x <- [2] , ps <- [[]] ]
; [2:ps| ps <- [[]] ]
; [2:[] | ]
; [[2]]

for a two-element list,

perms [2,3]
; [ x:ps | x <- [2,3] , ps <- perms([2,3]\\[x]) ]
; [ 2:ps | ps <- perms [3] ] ++ [ 3:ps | ps <- perms [2] ]
; [ 2:[3] ] ++ [ 3:[2] ]
; [ [2,3] , [3,2] ]

and finally for a three-element list,

perms [1,2,3]
; [ x:ps | x <- [1,2,3] , ps <- perms([1,2,3]\\[x]) ]
; [ 1:ps | ps <- perms [2,3]] ++...++ [ 3:ps | ps <- perms [1,2]]
; [ 1:ps | ps<-[[2,3],[3,2]]] ++...++ [ 3:ps | ps<-[[1,2],[2,1]]]
; [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]

There is another algorithm for permutations: in this, a permutation of a list (x:xs)
is given by forming a permutation of xs, and by inserting x into this somewhere. The
possible insertion points are given by finding all the possible splits of the list into two
halves.
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perm :: [a] -> [[a]]

perm [] = [[]]
perm (x:xs) = [ ps++[x]++qs | rs <- perm xs ,

(ps,qs) <- splits rs ]

We get the list of all possible splits of a list xs after seeing that on splitting (y:ys),
we either split at the front of (y:ys), or somewhere inside ys, as given by a split of
ys.

splits :: [a]->[([a],[a])]

splits [] = [ ([],[]) ]
splits (y:ys) = ([],y:ys) : [ (y:ps,qs) | (ps,qs) <- splits ys]

Before moving on, observe that the type of perms requires that amust be in the class
Eq. This is needed for the list difference operator \\ to be defined over the type [a].
There is no such restriction on the type of perm, which uses a different method for
calculating the permutations.

Vectors and matrices

In this section we give one model for vectors and matrices of real numbers; others
exist, and are suitable for different purposes. In particular, the Data.Array package
provides implementations of both immutable and mutable arrays: the former are
‘functional’, and so can only be updated by copying, while the latter can be updated
‘in place’.

In our implementation, a vector is a list of real numbers, as in the example vector
[2.1,3.0,4.0].

type Vector = [Float]

The scalar product of two vectors (assumed to be the same length) is given by mul-
tiplying together corresponding elements and taking the total of the results.

scalarProduct [2.0,3.1] [4.1,5.0]
; 2.0*4.1 + 3.1*5.0
; 23.7

As a first attempt we might write

mul xs ys = sum [ x*y | x<-xs , y<-ys ]

but this gives

mul [2.0,3.1] [4.1,5.0]
; sum [8.2,10.0,12.71,15.5]
; 46.41

since all combinations of pairs from the lists are taken. In order to multiply together
corresponding pairs, we first zip the lists together:
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scalarProduct :: Vector -> Vector -> Float
scalarProduct xs ys = sum [ x*y | (x,y) <- zip xs ys ]

and a calculation shows that this gives the required result. It is also possible to use
zipWith to define scalarProduct; we leave this as an exercise. A matrix like

µ
2.0 3.0 4.0
5.0 6.0 °1.0

∂

can be thought of as a list of rows or a list of columns; we choose a list of rows here.

type Matrix = [Vector]

The example matrix is

[[2.0,3.0,4.0],[5.0,6.0,-1.0]]

Two matrices M and P are multiplied by taking the scalar products of rows of M with
columns of P.

µ
2.0 3.0 4.0
5.0 6.0 °1.0

∂
£

0

@
1.0 0.0
1.0 1.0
0.0 °1.0

1

A=
µ

5.0 °1.0
11.0 7.0

∂

We therefore define

matrixProduct :: Matrix -> Matrix -> Matrix
matrixProduct m p

= [ [scalarProduct r c | c <- columns p] | r <- m ]

where the function columns gives the representation of a matrix as a list of columns.

columns :: Matrix -> Matrix

columns y = [ [ z!!j | z <- y ] | j <- [0 .. s] ]
where
s = length (head y)-1

The expression [ z!!j | z <- y ] picks the jth element from each row z in y;
this is exactly the jth column of y. length (head y) is the length of a row in y, and
so the indices j will be in the range 0 to s = length (head y)-1. Another variant
of the columns function is transpose which is in the library Data.List.

Refutable patterns in generators

Some patterns are refutable, meaning that an attempt to pattern-match against
them may fail. If a refutable pattern is used on the left-hand side of an ‘<-’, its effect
is to filter from the list only the elements matching the pattern. For example,

[ x | (x:xs) <- [[],[2],[],[4,5]] ] ; [2,4]

The rules for calculation with generators containing a refutable pattern on their left-
hand side are similar to those given above, except that before performing the sub-
stitution for the pattern, the list is filtered for the elements which match the pattern.
The details are left as an exercise.
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Exercises

17.1 Give a calculation of the expression

[ x+y | x <- [1 .. 4] , y <- [2 .. 4] , x>y ]

17.2 Using the list comprehension notation, define the functions

subLists,subSequences :: [a] -> [[a]]

which return all the sublists and subsequences of a list. A sublist is obtained by
omitting some of the elements of a list; a subsequence is a continuous block
from a list. For instance, both [2,4] and [3,4] are sublists of [2,3,4], but
only [3,4] is a subsequence.

17.3 Give calculations of the expressions

perm [2]
perm [2,3]
perm [1,2,3]

and of the matrix multiplication

matrixProduct [[2.0,3.0,4.0],[5.0,6.0,-1.0]]
[[1.0,0.0],[1.0,1.0],[0.0,-1.0]]

17.4 Give a definition of scalarProduct using zipWith.

17.5 Define functions to calculate the determinant of a square matrix and, if this is
non-zero, to invert the matrix.

17.6 The calculation rules for list comprehensions can be re-stated for the two cases
[] and (x:xs), instead of for the arbitrary list [a1,...,an]. Give these rules
by completing the equations

[ e | v <- [] , q2 , ... , qk ] ; ...
[ e | v <- (x:xs) , q2 , ... , qk ] ; ...

17.7 Give the precise rules for calculating with a generator containing a refutable
pattern, like (x:xs) <- lExp. You might need to define auxiliary functions
to do this.

17.8 List comprehensions can be translated into expressions involving map, filter
and concat by the following equations.

[ x | x<-xs ] = xs
[ f x | x<-xs ] = map f xs
[ e | x<-xs , p x , ... ] = [ e | x <- filter p xs , ... ]
[ e | x<-xs , y<-ys , .. ] = concat [ [e|y<-ys, ..] | x<-xs]
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Translate the expressions

[ m*m | m <- [1 .. 10] ]
[ m*m | m <- [1 .. 10] , m*m<50 ]
[ x+y | x <- [1 .. 4] , y <- [2 .. 4] , x>y ]
[ x:p | x <- xs , p <- perms (xs\\[x]) ]

using these equations; you will need to define some auxiliary functions as a
part of your translation.

17.4 Data-directed programming

This section looks at style of programming made possible by lazy evaluation, data-
directed programming. This is an approach where we design the program by think-
ing about it as a sequence of transformations of data.

‘In a traditional language it may well be too efficient to do this in practice, as we
might have to compute a series of complex data structures which are ‘internal’ to the
program. In a lazy language these are only constructed as they are needed, and in
practice they may never be constructed completely: we just build the data structures
incrementally, and once a part of it has been used, it can be ‘recycled’. Luckily this is
done by the implementation, and we do not have to worry about it ourselves.

All this should become clearer as we look at a particular example; let’s start by
looking at the example of finding the sum of fourth powers of numbers from 1 to n.
A data-directed solution is to

• build the list of numbers [1 .. n];

• take the power of each number, giving [1,16,...,n4], and

• find the sum of this list.

As a program, we have

sumFourthPowers n = sum (map (ˆ4) [1 .. n])

How does the calculation proceed?

sumFourthPowers n
; sum (map (ˆ4) [1 .. n])

create first part of the list with :
; sum (map (ˆ4) (1:[2 .. n])) allows pattern match
; sum (1ˆ4 : map (ˆ4) [2 .. n]) by definition of map
; (1ˆ4) + sum (map (ˆ4) [2 .. n]) by definition of sum

now we can recycle the first part of the list
; 1 + sum (map (ˆ4) [2 .. n])
; ...
; 1 + (16 + sum (map (ˆ4) [3 .. n]))
; ...
; 1 + (16 + (81 + ... + n4))
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As can be seen, none of the intermediate lists is created in full in this calculation. As
soon as the first part of the list is created, its fourth power is taken, and it becomes a
part of the sum which produces the final result, and so the first part can be recycled.

Example

1. List minimum

A more striking example is given by the problem of finding the minimum of a list of
numbers. One solution is to sort the list, and take its head! This would be ridiculous
if the whole list were sorted in the process, but, in fact we have, using the definition
of insertion sort from Chapter 7,

iSort [8,6,1,7,5]
; ins 8 (ins 6 (ins 1 (ins 7 (ins 5 []))))
; ins 8 (ins 6 (ins 1 (ins 7 [5])))
; ins 8 (ins 6 (ins 1 (5 : ins 7 [])))
; ins 8 (ins 6 (1 : (5 : ins 7 [])))
; ins 8 (1 : ins 6 (5 : ins 7 []))
; 1 : ins 8 (ins 6 (5 : ins 7 []))

As can be seen from the underlined parts of the calculation, each application of ins
calculates the minimum of a larger part of the list, since the head of the result of ins
is given in a single step. The head of the whole list is determined in this case without
us working out the value of the tail, and this means that we have a sensible algorithm
for minimum given by (head . iSort).

2. Routes through a graph

A graph can be seen as an object of type Relation a, as defined in Section 16.9.
How can we find a route from one point in a graph to another? For example, in the
graph

1

2

3

4

5

6

graphEx = makeSet [(1,2),(1,3),(2,4),(3,5),(5,6),(3,6)]

a route from 1 to 4 is the list [1,2,4].
We solve a slightly different problem: find the list of all routes from x to y; our

original problem is solved by taking the head of this list. Note that as a list is re-
turned, the algorithm allows for the possibility of there being no route from x to y
– the empty list of routes is the answer in such a case. This method, which is ap-
plicable in many different situations, is often called the list of successes technique:



17.4. DATA-DIRECTED PROGRAMMING 455

instead of returning one result, or an error if there is none, we return a list; the error
case is signalled by the empty list. The method also allows for multiple results to be
returned, as we shall see.

How do we solve the new problem?

Acyclic case. For the present we assume that the graph is acyclic: there is no circu-
lar path from any node back to itself.

• The only route from x to x is [x].

• A route from x to y will start with a step to one of x’s neighbours, z say. The
remainder will be a path from z to y.

We therefore look for all paths from x to y going through z, for each neighbour z of
x.

routes :: Ord a => Relation a -> a -> a -> [[a]]
routes rel x y

| x==y = [[x]]
| otherwise = [ x:r | z <- nbhrs rel x ,

r <- routes rel z y ]

The nbhrs function is defined by

nbhrs :: Ord a => Relation a -> a -> [a]
nbhrs rel x = flatten (image rel x)

where flatten turns a set into a list. Now consider the example, where we write
routes’ for routes graphEx and nbhrs’ for nbhrs graphEx, to make the calcu-
lation more readable:

routes’ 1 4
; [ 1:r | z <- nbhrs’ 1 , r <- routes’ z 4 ]
; [ 1:r | z <- [2,3] , r <- routes’ z 4 ]
; [ 1:r | r <- routes’ 2 4 ] ++

[ 1:r | r <- routes’ 3 4 ] (†)
; [ 1:r | r <- [ 2:s | w <- nbhrs’ 2 , s <- routes’ w 4 ]]++...
; [ 1:r | r <- [ 2:s | w <- [4] , s <- routes’ w 4 ] ] ++ ...
; [ 1:r | r <- [ 2:s | s <- routes’ 4 4 ] ] ++ ... (‡)
; [ 1:r | r <- [ 2:s | s <- [[4]] ] ] ++ ...
; [ 1:r | r <- [ [2,4] ] ] ++ ...
; [[1,2,4]] ++ ...

The head of the list is given by exploring only the first neighbour of 1, namely 2, and
its first neighbour, 4. In this case the search for a route leads directly to a result. This
is not always so. Take the example of

routes’ 1 6 = ...
; [ 1:r | r <- routes’ 2 6 ] ++
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[ 1:r | r <- routes’ 3 6 ] (†)
; ...
; [ 1:r | r <- [ 2:s | s <- routes’ 4 6 ] ] ++

[ 1:r | r <- routes’ 3 6 ] (‡)

Corresponding points in the calculations are marked by (†) and (‡). The search for
routes from 4 to 6 will fail, though, as 4 has no neighbours – we therefore have

; [] ++ [ 1:r | r <- routes’ 3 6 ] = ...
; [ 1:r | r <- [ 3:s | s <- routes’ 5 6 ] ] ++ ...
; [[1,3,5,6]] ++ ...

The effect of this algorithm is to backtrack when a search has failed: there is no route
from 1 to 6 via 2, so the other possibility of going through 3 is explored. This is done
only when the first possibility is exhausted, however, so lazy evaluation ensures that
this search through ‘all’ the paths turns out to be an efficient method of finding a
single path. Moreover, we don’t have to think explicitly about backtracking, it simply
falls out from our description of the list of all solutions, evaluated lazily.

General case. We assumed at the start of this development that the graph was
acyclic, so that we have no chance of a path looping back on itself, and so of a search
going into a loop. We can make a simple addition to the program to make sure that
only paths without cycles are explored, and so that the program will work for an ar-
bitrary graph. We add a list argument for the points not to be visited (again), and so
have

routesC :: Ord a => Relation a -> a -> a -> [a] -> [[a]]
routesC rel x y avoid

| x==y = [[x]]
| otherwise = [ x:r | z <- nbhrs rel x \\ avoid ,

r <- routesC rel z y (x:avoid) ]

Two changes are made in the recursive case.

• In looking for neighbours of x we look only for those which are not in the list
avoid;

• in looking for routes from z to y, we exclude visiting both the elements of
avoid and the node x itself.

A search for a route from x to y in rel is given by routesC rel x y [].

Exercises

17.9 Defining graphEx2 to be

makeSet [(1,2),(2,1),(1,3),(2,4),(3,5),(5,6),(3,6)]

try calculating the effect of the original definition on
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routes graphEx 1 4

Repeat the calculation with the revised definition which follows:

routes rel x y
| x==y = [[x]]
| otherwise = [ x:r | z <- nbhrs rel x ,

r <- routes rel z y ,
not (elem x r) ]

and explain why this definition is not suitable for use on cyclic graphs. Finally,
give a calculation of

routesC graphEx 1 4 []

17.5 Case study: parsing expressions

We have already seen the definition of Expr, the type of arithmetic expressions, in
Section 14.2 and in a revised version given on page 348:

data Expr = Lit Int | Var Var | Op Ops Expr Expr
data Ops = Add | Sub | Mul | Div | Mod

and showed there how we could calculate the results of these expressions using the
function eval. Chapter 16 began with a discussion of how to represent the values
held in the variables using the abstract data type Store. Using these components,
we can build a calculator for simple arithmetical expressions, but the input is un-
acceptably crude, as we have to enter members of the Expr type, so that to add 2
and 3, we are forced to type Op Add (Lit 2) (Lit 3). What we need to make the
input reasonable is a function which performs the reverse of show: it will take the
string "(2+3)" and return the expression Op Add (Lit 2) (Lit 3), which is of
type Expr. A function like this is called a parser and the process of turning a ‘flat’
string into a structure like an Expr is called parsing.

Constructing a parser for a type like Expr gives a read function which essentially
gives the functionality of the Read class, introduced in Section 13.4 above. Note,
however, that the derived definition of read for Expr will parse strings of the form
"Op Add (Lit 2) (Lit 3)", which doesn’t help us to build the parser for strings
like "(2+3)".

The type of parsers: Parse

In building a library of parsing functions, we first have to establish the type we shall
use to represent parsers. Our approach here is again data directed: we will look
at how a parser is represented as a function of a particular type, and in looking at
how particular parsers are constructed we’ll again concentrate on how data is trans-
formed through the parsing process.
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The problem of parsing is to take a list of objects – of type a and characters in
our example "(2+3)" – and from it to extract an object of some other type, b, in this
case Expr. As a first attempt, we might define the type of parsers thus:

type Parse1 a b = [a] -> b

Suppose thatbracket andnumber are the parsers of this type which recognize brack-
ets and numbers then we have

bracket "(xyz" ; ’(’
number "234" ; 2 or 23 or 234?
bracket "234" ; no result?

The problem evident here is that a parser can return more than one result – as in
number "234" – or none at all, as seen in the final case. Instead of the original type,
we suggest

type Parse2 a b = [a] -> [b]

where a list of results is returned. In our examples,

bracket "(xyz" ; [’(’]
number "234" ; [2 , 23 , 234]
bracket "234" ; []

In this case an empty list signals failure to find what was sought, while multiple re-
sults show that more than one successful parse was possible. We are using the ‘list
of successes’ technique again, in fact.

Another problem presents itself. What if we look for a bracket followed by a num-
ber, which we have to do in parsing our expressions? We need to know the part of
the input which remains after the successful parse. Hence we define

type Parse a b = [a] -> [(b,[a])]

and our example functions will give

bracket "(xyz" ; [(’(’ , "xyz")]
number "234" ; [(2,"34") , (23,"4") , (234,"")]
bracket "234" ; []

Each element in the output list represents a successful parse. In number "234" we
see three successful parses, each recognizing a number. In the first, the number 2 is
recognized, leaving "34" unexamined, for instance.

The type ReadS b, which appears in the standard prelude and is used in defining
the Read class, is a special case of the type Parse a b in which [a] is replaced by
String, that is, a is replaced by Char.

Some basic parsers

Now we have established the type we shall use, we can begin to write some parsers.
These and the parser-combining functions are illustrated in Figure 17.1; we go through
the definitions now.
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The first is a parser which always fails, so accepts nothing. There are no entries
in its output list.

none :: Parse a b
none inp = []

On the other hand, we can succeed immediately, without reading any input. The
value recognized is a parameter of the function.

succeed :: b -> Parse a b
succeed val inp = [(val,inp)]

More useful is a parser to recognize a single object or token, t, say. We define

token :: Eq a => a -> Parse a a
token t (x:xs)

| t==x = [(t,xs)]
| otherwise = []

token t [] = []

More generally, we can recognize (or spot) objects with a particular property, as
represented by a Boolean-valued function.

spot :: (a -> Bool) -> Parse a a
spot p (x:xs)

| p x = [(x,xs)]
| otherwise = []

spot p [] = []

These parsers allow us to recognize single characters like a left bracket, or a single
digit,

bracket = token ’(’
dig = spot isDigit

and indeed, we can define token from spot:

token t = spot (==t)

If we are to build parsers for complex structures like expressions we will need to be
able to combine these simple parsers into more complicated ones to, for instance,
recognize numbers consisting of lists of digits.

Combining parsers

Here we build a library of higher-order polymorphic functions, which we then use
to give our parser for expressions. First we have to think about the ways in which
parsers need to be combined.

Looking at the expression example, an expression is either a literal, or a variable
or an operator expression. From parsers for the three sorts of expression, we want
to build a single parser for expressions. For this we use alt
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infixr 5 >*>

type Parse a b = [a] -> [(b,[a])]

none :: Parse a b
none inp = []

succeed :: b -> Parse a b
succeed val inp = [(val,inp)]

token :: Eq a => a -> Parse a a
token t = spot (==t)

spot :: (a -> Bool) -> Parse a a
spot p (x:xs)

| p x = [(x,xs)]
| otherwise = []

spot p [] = []

alt :: Parse a b -> Parse a b -> Parse a b
alt p1 p2 inp = p1 inp ++ p2 inp

(>*>) :: Parse a b -> Parse a c -> Parse a (b,c)
(>*>) p1 p2 inp

= [((y,z),rem2) | (y,rem1) <- p1 inp , (z,rem2) <- p2 rem1 ]

build :: Parse a b -> (b -> c) -> Parse a c
build p f inp = [ (f x,rem) | (x,rem) <- p inp ]

list :: Parse a b -> Parse a [b]
list p = (succeed []) ‘alt‘

((p >*> list p) ‘build‘ (uncurry (:)))

Figure 17.1: The major parsing functions.
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alt :: Parse a b -> Parse a b -> Parse a b

alt p1 p2 inp = p1 inp ++ p2 inp

The parser combines the results of the parses given by parsers p1 and p2 into a single
list, so a success in either is a success of the combination. For example,

(bracket ‘alt‘ dig) "234"
; [] ++ [(’2’,"34")]

the parse by bracket fails, but that by dig succeeds, so the combined parser suc-
ceeds.

For our second function, we look again at the expression example. In recognizing
an operator expression we see a bracket then a number. How do we put parsers
together so that the second is applied to the input that remains after the first has
been applied?

We make this function an operator, as we find that it is often used to combine a
sequence of parsers, and an infix form with defined associativity is most convenient
for this.

infixr 5 >*>

(>*>) :: Parse a b -> Parse a c -> Parse a (b,c)

(>*>) p1 p2 inp
= [((y,z),rem2) | (y,rem1) <- p1 inp , (z,rem2) <- p2 rem1 ]

The values (y,rem1) run through the possible results of parsing inp using p1. For
each of these, we apply p2 to rem1, which is the input which is unconsumed by p1
in that particular case. The results of the two successful parses, y and z, are returned
as a pair.

As an example, assume that digList recognizes non-empty sequences of dig-
its, and look at (digList >*> bracket) "24(". Applying digList to the string
"24(" gives two results,

digList "24(" ; [("2","4(") , ("24","(")]

and so (y,rem1) runs through two cases

(digList >*> bracket) "24("
; [((y,z),rem2) | (y,rem1) <- [("2","4(") , ("24","(")] ,

(z,rem2) <- bracket rem1 ]
; [(("2",z),rem2) | (z,rem2) <- bracket "4(" ] ++

[(("24",z),rem2) | (z,rem2) <- bracket "(" ]

Now, bracket "4(" ; [], so fails, giving

; [] ++ [(("24",z),rem2) | (z,rem2) <- bracket "(" ]

and
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bracket "(" ; [(’(’,"")]

which signals success, and finally gives

; [(("24",z),rem2) | (z,rem2) <- [(’(’,"")] ]
; [ (("24",’(’) , "") ]

This shows we have one successful parse, in which we have recognized the digit list
"24" followed by the left bracket ’(’.

Our final operation is to change the item returned by a parser, or to build some-
thing from it. Consider again the case of the parser, digList, which returns a list
of digits. Can we make it return the number which the list of digits represents? We
apply conversion to the results, thus

build :: Parse a b -> (b -> c) -> Parse a c

build p f inp = [ (f x,rem) | (x,rem) <- p inp ]

so in an example, we have

(digList ‘build‘ digsToNum) "21a3"
; [ (digsToNum x,rem) | (x,rem) <- digList "21a3" ]
; [ (digsToNum x,rem) | (x,rem) <- [("2","1a3"),("21","a3")]]
; [ (digsToNum "2" , "1a3") , (digsToNum "21" , "a3") ]
; [ (2,"1a3") , (21,"a3")]

Using the three operations or combinators alt, >*> and build together with the
primitives of the last section we will be able to define all the parsers we require.

As an example, we show how to define a parser for a list of objects, when we are
given a parser to recognize a single object. There are two sorts of list:

• A list can be empty, which will be recognized by the parser succeed [].

• Any other list is non-empty, and consists of an object followed by a list of ob-
jects. A pair like this is recognized by p >*> list p; we then have to turn
this pair (x,xs) into the list (x:xs), for which we use build, applied to the
uncurried form of (:), which takes its arguments as a pair, and thus converts
(x,xs) to (x:xs).

list :: Parse a b -> Parse a [b]

list p = (succeed []) ‘alt‘
((p >*> list p) ‘build‘ (uncurry (:)))

Exercises

17.10 Define the functions

neList :: Parse a b -> Parse a [b]
optional :: Parse a b -> Parse a [b]
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so that neList p recognizes a non-empty list of the objects which are rec-
ognized by p, and optional p recognizes such an object optionally – it may
recognize an object or succeed immediately.

17.11 Define the function

nTimes :: Integer -> Parse a b -> Parse a [b]

so that nTimes n p recognizes n of the objects recognized by p.

A parser for expressions

Now we can describe our expressions and define the parser for them. Expressions
have three forms:

• Literals: 67, 8̃9, where ‘̃ ’ is used for unary minus.

• Variables: ’a’ to ’z’.

• Applications of the binary operations +,*,-,/,%, where % is used for mod, and
/ gives integer division. Expressions are fully bracketed, if compound, thus:
(23+(34-45)), and white space not permitted.

The parser has three parts

parser :: Parse Char Expr
parser = litParse ‘alt‘ varParse ‘alt‘ opExpParse

corresponding to the three sorts of expression. The simplest to define is

varParse :: Parse Char Expr
varParse = spot isVar ‘build‘ Var

isVar :: Char -> Bool
isVar x = (’a’ <= x && x <= ’z’)

(Here the constructor Var is used as a function taking a character to the type Expr.)
An operator expression will consist of two expressions joined by an operator, the

whole construct between a matching pair of parentheses:

opExpParse
= (token ’(’ >*>

parser >*>
spot isOp >*>
parser >*>
token ’)’)
‘build‘ makeExpr

where the conversion function takes a nested sequence of pairs, like

(’(’,(Lit 23,(’+’,(Var ’x’,’)’))))



464 CHAPTER 17. LAZY PROGRAMMING

into the expression Op Add (Lit 23) (Var ’x’), thus

makeExpr (_,(e1,(bop,(e2,_)))) = Op (charToOp bop) e1 e2

Defining the functions isOp and charToOp is left as an exercise.
Finally, we look at the case of literals. A number consists of a non-empty list

of digits, with an optional ‘̃ ’ at the front. We therefore use the functions from the
exercises of the previous section to say

litParse
= ((optional (token ’̃ ’)) >*>

(neList (spot isDigit))
‘build‘ (charlistToExpr . uncurry (++))

Left undefined here is the function charlistToExpr which should convert a list of
characters to a literal integer; this is an exercise for the reader.

Exercises

17.12 Define the functions

isOp :: Char -> Bool
charToOp :: Char -> Ops

used in the parsing of expressions.

17.13 A recogniser is like a parser, but simpler: all it needs to do is to recognise
whether (the first part of) a string is what we are looking for. Taking a particu-
lar example, a recogniser for numbers, numberRec, should behave like this

numberRec "234" ; ["34" , "4" , ""]
numberRec "(34" ; []

where the corresponding number parser gives:

number "234" ; [(2,"34") , (23,"4") , (234,"")]
number "(34" ; []

Explain how you could define numberRec from number, and then give a gen-
eral set of library functions for building recognisers in a similar way to the
library for building parsers.

17.14 Define the function

charlistToExpr :: [Char] -> Expr

so that

charlistToExpr "234" ; Lit 234
charlistToExpr "̃ 98" ; Lit (-98)
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which is used in parsing literal expressions.

17.15 A command to the calculator to assign the value of expr to the variable var is
represented thus

var:expr

Give a parser for these commands.

17.16 How would you change the parser for numbers if decimal fractions are to be
allowed in addition to integers?

17.17 How would you change the parser for variables if names longer than a single
character are to be allowed?

17.18 Explain how you would modify your parser so that the whitespace characters
space and tab can be used in expressions, but would be ignored on parsing.
(Hint: there is a simple pre-processor which does the trick!)

17.19 (Note: this exercise is for those familiar with Backus-Naur notation for gram-
mars.)

Expressions without bracketing and allowing the multiplicative expressions
higher binding power are described by the grammar

Expr ::= Integer | Var | (Expr Ops Expr) |
Lexpr Mop Mexpr | Mexpr Aop Expr

Lexpr ::= Integer | Var | (Expr Ops Expr)
Mexpr ::= Integer | Var | (Expr Ops Expr) | Lexpr Mop Mexpr
Mop ::= ’*’ | ’/’ | ’%’
Aop ::= ’+’ | ’-’
Ops ::= Mop | Aop

Give a Haskell parser for this grammar. Discuss the associativity of the opera-
tor ‘-’ in this grammar.

The top-level parser

The parser defined in the last section, parser is of type

[Char] -> [ (Expr,[Char]) ]

yet what we need is to convert this to a function taking a string to the expression it
represents. We therefore define the function

topLevel :: Parse a b -> b -> [a] -> b
topLevel p defaultVal inp

= case results of
[] -> defaultVal
_ -> head results

where
results = [ found | (found,[]) <- p inp ]
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The parse p inp is successful if the result contains at least one parse (the second
case) in which all the input has been read (the test given by the pattern match to
(found,[])). If this happens, the first value found is returned; otherwise (the first
case) we return the default value of type b, defaultVal, which in our case study will
be the default command, Null.

We can define the type of commands thus

data Command = Eval Expr | Assign Var Expr | Null

which are intended to cause

• the evaluation of the expression,

• the assignment of the value of the expression to the variable, and

• no effect.

If the assignment command takes the form var:expr, then it is not difficult to de-
sign a parser for this type,

commandParse :: Parse Char Command

We will assume this has been built when we revisit the calculator example below.

Testing parsers in QuickCheck

If we’re able to generate random terms of type Expr or Command then we can write
some elegant QuickCheck tests by ‘round tripping’ from expression to string – via a
show function – and then back to an expression by parsing the string. We show how
to generate these random terms in Section 19.6.

Conclusions

The type of parsers Parse a b with the functions

none :: Parse a b
succeed :: b -> Parse a b
spot :: (a -> Bool) -> Parse a a
alt :: Parse a b -> Parse a b -> Parse a b
>*> :: Parse a b -> Parse a c -> Parse a (b,c)
build :: Parse a b -> (b -> c) -> Parse a c
topLevel :: Parse a b -> [a] -> b

allow us to construct so-called recursive descent parsers in a straightforward way. It
is worth looking at the aspects of the language we have exploited.

• The type Parse a b is represented by a function type, so that all the parser
combinators are higher order functions.

• Because of polymorphism, we do not need to be specific about either the in-
put or the output type of the parsers we build.

In our example we have confined ourselves to inputs which are strings of
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characters, but they could have been tokens of any other type, if required: we
might take the tokens to be words which are then parsed into sentences, for
instance.

More importantly in our example, we can return objects of any type using
the same combinators, and in the example we returned lists and pairs as well
as simple characters and expressions.

• Lazy evaluation plays a role here also. The possible parses we build are gen-
erated on demand as the alternatives are tested. The parsers will backtrack
through the different options until a successful one is found.

Building general libraries like this parser library is one of the major advantages of us-
ing a modern functional programming language with the facilities mentioned above.
From a toolkit like this it is possible to build a whole range of parsers and language
processors which can form the front ends of systems of all sorts.

We will return to a discussion of parsing in Chapter 18; note also that we could
make the type of Parse a b into an abstract data type, along the lines discussed in
Chapter 16. On the other hand, it would also be useful to leave the implementation
open to extension by users, which is the way in which other Haskell libraries are
made available.

Exercises

17.20 Define a parser which recognizes strings representing Haskell lists of integers,
like "[2,-3,45]".

17.21 Define a parser to recognize simple sentences of English, with a subject, verb
and object. You will need to provide some vocabulary, "cat", "dog", and so
on, and a parser to recognize a string. You will also need to define a function

tokenList :: Eq a => [a] -> Parse a [a]

so that, for instance,

tokenList "Hello" "Hello Sailor" ; [ ("Hello"," Sailor") ]

17.22 Define the function

spotWhile :: (a -> Bool) -> Parse a [a]

whose parameter is a function which tests elements of the input type, and
returns the longest initial part of the input, all of whose elements have the
required property. For instance

spotWhile digit "234abc" ; [ ("234","abc") ]
spotWhile digit "abc234" ; [ ([],"abc234") ]
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17.6 Infinite lists

One important consequence of lazy evaluation is that it is possible for the language
to describe infinite structures. These would require an infinite amount of time to
evaluate fully, but under lazy evaluation it is possible to compute with only portions
of a data structure rather than the whole object. Any recursive type will contain
infinite objects; we concentrate on lists here, as these are by far the most widely
used infinite structures.

In this section we look at a variety of examples, starting with simple one-line
definitions and moving to an examination of random numbers to be used in our
simulation case study. The simplest examples of infinite lists are constant lists like

ones = 1 : ones

Evaluation of this in a Haskell system produces a list of ones, indefinitely. This can
be interrupted in GHCi by typing Ctrl-C; this produces the result

[1,1,1,1,1,1,1,ˆC,1,1,1,Interrupted.

We can sensibly evaluate functions applied to ones. If we define

addFirstTwo :: [Integer] -> Integer
addFirstTwo (x:y:zs) = x+y

then applied to ones we have

addFirstTwo ones
; addFirstTwo (1:ones)
; addFirstTwo (1:1:ones)
; 1+1
; 2

Built into the system are the lists [n .. ], [n,m .. ], so that

[3 .. ] = [3,4,5,6,...
[3,5 .. ] = [3,5,7,9,...

We can define these ourselves:

from :: Integer -> [Integer]
from n = n : from (n+1)

fromStep :: Integer -> Integer -> [Integer]
fromStep n m = n : fromStep (n+m) m

and an example evaluation gives

fromStep 3 2
; 3 : fromStep 5 2
; 3 : 5 : fromStep 7 2
; ...
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…

…

…

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

2 3 5 7 9 11 13 15 17 19 21 23 25

2 3 5 7 11 13 17 19 23 25

Figure 17.2: The Sieve of Eratosthenes.

These functions are also defined over any instance of the Enum class; details can be
found in standard prelude.

List comprehensions can also define infinite lists. The list of all Pythagorean
triples – whole numbers which can the sides of a right-angled triangle – is given by
selecting z in [2 .. ], and then selecting suitable values of x and y below that.

pythagTriples =
[ (x,y,z) | z <- [2 .. ] , y <- [2 .. z-1] ,

x <- [2 .. y-1] , x*x + y*y == z*z ]
pythagTriples
= [(3,4,5),(6,8,10),(5,12,13),(9,12,15),(8,15,17),(12,16,20),...

The powers of an integer are given by

powers :: Integer -> [Integer]
powers n = [ nˆx | x <- [0 .. ] ]

and this is a special case of the prelude function iterate, which gives the infinite
list

[ x , f x , .. , fn x , ..

iterate :: (a -> a) -> a -> [a]
iterate f x = x : iterate f (f x)

Example

1. Generating prime numbers

A positive integer greater than one is prime if it is divisible only by itself and one.
The Sieve of Eratosthenes – an algorithm known for over two thousand years – works
by cancelling out all the multiples of numbers, once they are established as prime.
The primes are the only elements which remain in the list. The process is illustrated
in Figure 17.2.

We begin with the list of numbers starting at 2. The head is 2, and we remove
all the multiples of 2 from the list. The head of the remainder of the list, 3, is prime,
since it was not removed in the sieve by 2. We therefore sieve the remainder of the
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list of multiples of 3, and repeat the process indefinitely. As a Haskell definition, we
write

primes :: [Integer]

primes = sieve [2 .. ]
sieve (x:xs) = x : sieve [ y | y <- xs , y ‘mod‘ x > 0]

where we test whether x divides y by evaluating y ‘mod‘ x; y is a multiple of x if
this value is zero. Beginning the evaluation, we have

primes
; sieve [2 .. ]
; 2 : sieve [ y | y <- [3 .. ] , y ‘mod‘ 2 > 0]
; 2 : sieve (3 : [ y | y <- [4 .. ] , y ‘mod‘ 2 > 0])
; 2 : 3 : sieve [ z | z <- [ y | y <- [4 .. ] , y ‘mod‘ 2 > 0],

z ‘mod‘ 3 > 0]
; ...
; 2 : 3 : sieve [ z | z <- [5,7,9...] , z ‘mod‘ 3 > 0]
; ...
; 2 : 3 : sieve [5,7,11,...]
; ...

Can we use primes to test for a number being a prime? If we evaluate member
primes 7 we get the response True, while member primes 6 gives no answer. This
is because an infinite number of elements have to be checked before we conclude
that 6 is not in the list. The problem is that member cannot use the fact that primes
is ordered. This we do in memberOrd.

memberOrd :: Ord a => [a] -> a -> Bool
memberOrd (x:xs) n

| x<n = memberOrd xs n
| x==n = True
| otherwise = False

The difference here is in the final case: if the head of the list (x) is greater than the
element we seek (n), the element cannot be a member of the ordered list. Evaluating
the test again,

memberOrd [2,3,5,7,11,...] 6
; memberOrd [3,5,7,11,...] 6
; memberOrd [5,7,11,...] 6
; memberOrd [7,11,...] 6
; False

2. Generating random numbers

Many computer systems require us to generate ‘random’ numbers, one after an-
other. Our queuing simulation is a particular example upon which we focus here,
after looking at the basics of the problem.
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No Haskell program can produce a truly random sequence; after all, we want
to be able to predict the behaviour of our programs, and randomness is inherently
unpredictable. What we can do, however, is generate a pseudo-random sequence
of natural numbers, smaller than modulus. This linear congruential method works
by starting with a seed, and then by getting the next element of the sequence from
the previous value thus

nextRand :: Integer -> Integer
nextRand n = (multiplier*n + increment) ‘mod‘ modulus

A (pseudo-)random sequence is given by iterating this function,

randomSequence :: Integer -> [Integer]
randomSequence = iterate nextRand

Given the values

seed = 17489
multiplier = 25173
increment = 13849
modulus = 65536

the sequence produced by randomSequence seed begins

[17489,59134,9327,52468,43805,8378,...

The numbers in this sequence, which range from 0 to 65535, all occur with the same
frequency. What are we to do if instead we want the numbers to come in the (integer)
range a to b inclusive? We need to scale the sequence, which is achieved by a map:

scaleSequence :: Integer -> Integer -> [Integer] -> [Integer]
scaleSequence s t

= map scale
where
scale n = n ‘div‘ denom + s
range = t-s+1
denom = modulus ‘div‘ range

The original range of numbers 0 to modulus-1 is split into range blocks, each of the
same length. The number s is assigned to values in the first block, s+1 to values in
the next, and so on.

In our simulation example, we want to generate for each arrival the length of
service that person will need on being served. For illustration, we suppose that they
range from 1 to 6minutes, but that they are supposed to happen with different prob-
abilities.

Waiting time 1 2 3 4 5 6
Probability 0.2 0.25 0.25 0.15 0.1 0.05

We need a function to turn such a distribution into a transformer of infinite lists.
Once we have a function transforming individual values, we can map it along the list.
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We can represent a distribution of objects of type a by a list of type [(a,Float)],
where we assume that the numeric entries add up to one. Our function transforming
individual values will be

makeFunction :: [(a,Float)] -> (Float -> a)

so that numbers in the range 0 to 65535 are transformed into items of type a. The
idea of the function is to give the following ranges to the entries for the list above.

Waiting time 1 2 3 ...
Range start 0 (m*0.2)+1 (m*0.45)+1 ...
Range end m*0.2 m*0.45 m*0.7 ...

where m is used for modulus. The definition follows:

makeFunction dist = makeFun dist 0.0

makeFun ((ob,p):dist) nLast rand
| nNext >= rand && rand > nLast

= ob
| otherwise

= makeFun dist nNext rand
where
nNext = p*fromIntegral modulus + nLast

The makeFun function has an extra argument, which carries the position in the range
0 to modulus-1 reached so far in the search; it is initially zero. The fromIntegral
function used here converts an Int to an equivalent Float.

The transformation of a list of random numbers is given by

map (makeFunction dist)

and the random distribution of waiting times we require begins thus

map (makeFunction dist . fromIntegral) (randomSequence seed)
= [2,5,1,4,3,1,2,5,4,2,2,2,1,3,2,5,...

with 6 first appearing at the 35th position.
A full library for generating random numbers and random data for other types is

given in System.Random.

Exercises

17.23 Define the infinite lists of factorial and Fibonacci numbers,

factorial = [1,1,2,6,24,120,720,...]
fibonacci = [0,1,1,2,3,5,8,13,21,...]

17.24 Give a definition of the function
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Infinite list generators

The list comprehension pythagTriples2, intended to produce the list of all
Pythagorean triples, instead produces no output to the prompt.

pythagTriples2 =
= [ (x,y,z) | x <- [2 .. ] ,

y <- [x+1 .. ] ,
z <- [y+1 .. ] ,
x*x + y*y == z*z ]

The problem is in the order of choice of the elements. The first choice for x is 2, and
for y is 3; given this, there are an infinite number of values to try for z: 4, 5 and so on,
indefinitely. We therefore never try any of the other choices for x or y, among which
the triples lie.
Two options present themselves. First we can redefine the solution, as in the original
pythagTriples, so that it involves only one infinite list. Alternatively, we can try to
write a function which returns all pairs of elements from two infinite lists:

infiniteProduct :: [a] -> [b] -> [(a,b)]

This is left as an exercise. Using such a function it is possible to adapt the definition
of pythagTriples2 to make it give all the Pythagorean triples.

factors :: Int -> [Int]

which returns a list containing the factors of a positive integer. For instance,

factors 12 = [1,2,3,4,6,12]

Using this function or otherwise, define the list of numbers whose only prime
factors are 2, 3 and 5, the so-called Hamming numbers:

hamming = [1,2,3,4,5,6,8,9,10,12,15,...

17.25 Define the function

runningSums :: [Int] -> [Int]

which calculates the running sums

[0,a0,a0+a1,a0+a1+a2,...

of a list

[a0,a1,a2,...

17.26 Define the function infiniteProduct specified above, and use it to correct
the definition of pythagTriples2.
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iterate f x

x, f x, f(f x), …

map g

g x, g y, g z, …

x, y, z, …

Figure 17.3: A generator and a transformer.

17.7 Why infinite lists?

Haskell supports infinite lists and other infinite structures, and we saw in the last
section that we could define a number of quite complicated lists, like the list of
prime numbers, and lists of random numbers. The question remains, though, of
whether these lists are anything other than a curiosity. There are two arguments
which show their importance in functional programming.

First, an infinite version of a program can be more abstract, and so simpler to
write. Consider the problem of finding the nth prime number, using the Sieve of
Eratosthenes. If we work with finite lists, we need to know in advance how large
a list is needed to accommodate the first n primes; if we work with an infinite list,
this is not necessary: only that part of the list which is needed will be generated as
computation proceeds.

In a similar way, the random numbers given by randomSequence seed pro-
vided an unlimited resource: we can take as many random numbers from the list
as we require. There needs to be no decision at the start of programming as to the
size of sequence needed. (These arguments are rather like those for virtual mem-
ory in a computer. It is often the case that predicting the memory use of a program
is possible, but tiresome; virtual memory makes this unnecessary, and so frees the
programmer to proceed with other tasks.)

The second argument is of wider significance, and can be seen by re-examining
the way in which we generated random numbers. We generated an infinite list by
means of iterate, and we transformed the values using map; these operations are
pictured in Figure 17.3 as a generator of and a transformer of lists of values. These
values are shown in the dashed boxes. These components can then be linked to-
gether, giving more complex combinations, as in Figure 17.4. This approach mod-
ularizes the generation of values in a distribution in an interesting way. We have
separated the generation of the values from their transformation, and this means
we can change each part independently of the other.

Once we have seen the view of infinite lists as the links between processes, other
combinations suggest themselves, and in particular we can begin to write process-
style programs which involve recursion.
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iterate f x

x, f x, f(f x), …

map g

g x, g (f x), g (f (f x)), …

Figure 17.4: Linking processes together.

zipWith (+) (0:)

x, y, z, … x, x+y, x+y+z, …

0, x, x+y, x+y+z, …

outiList

Figure 17.5: A process to compute the running sums of a list.

Among the exercises in the last section was the problem of finding the running
sums

[0,a0,a0+a1,a0+a1+a2,...

of the list [a0,a1,a2,.... Given the sum up to ak, say, we get the next sum by
adding the next value in the input, ak+1. It is as if we feed the sum back into the
process to have the value ak+1 added. This is precisely the effect of the network of
processes in Figure 17.5, where the values passing along the links are shown in the
dotted boxes.

The first value in the output out is 0, and we get the remaining values by adding
the next value in iList to the previous sum, appearing in the list out. This is trans-
lated into Haskell as follows. The output of the function on input iList is out. This
is itself got by adding 0 to the front of the output from the zipWith (+), which itself
has inputs iList and out. In other words,

listSums :: [Integer] -> [Integer]
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listSums iList = out
where
out = 0 : zipWith (+) iList out

where we recall that zipWith is defined by

zipWith f (x:xs) (y:ys) = f x y : zipWith f xs ys
zipWith f _ _ = []

and the operator section (0:) puts a zero on the front of a list. We give a calculation
of an example now.

listSums [1 .. ]
; out
; 0 : zipWith (+) [1 .. ] out
; 0 : zipWith (+) [1 .. ] (0:...) (1)
; 0 : 1+0 : zipWith (+) [2 .. ] (1+0:...) (2)
; 0 : 1 : 2+1 : zipWith (+) [3 .. ] (2+1:...) ; ...

In making this calculation, we replace the occurrence of out in line (1) with the
incomplete list (0:...). In a similar way, we replace the tail of out by (1+0:...)
in line (2).

The definition of listSums is an example of the general function scanl’, which
combines values using the function f, and whose first output is st.

scanl’ :: (a -> b -> b) -> b -> [a] -> [b]
scanl’ f st iList

= out
where
out = st : zipWith f iList out

The function listSums is given by scanl’ (+) 0, and a function which keeps a
running sort of the initial parts of list is sorts = scanl’ ins [], where ins in-
serts an element in the appropriate place in a sorted list. The list of factorial values,
[1,1,2,6,...] is given by scanl’ (*) 1 [1 .. ], and taking this as a model,
any primitive recursive function can be described in a similar way.

The definition we give here is a minor variant of the standard function scanl,
but we choose to give the definition here because of its close correspondence to the
process networks for running sums given in Figure 17.5.

Exercises

17.27 Give a definition of the list [ 2ˆn | n <- [0 .. ] ] using a process net-
work based on scanl’. (Hint: you can take the example of factorial as a guide.)

17.28 How would you select certain elements of an infinite list? For instance, how
would you keep running sums of the positive numbers in a list of numbers?

17.29 How would you merge two infinite lists, assuming that they are sorted? How
would you remove duplicates from the list which results? As an example, how
would you merge the lists of powers of 2 and 3?
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17.30 Give definitions of the lists of Fibonacci numbers [0,1,1,2,3,5,...] and
Hamming numbers [1,2,3,4,5,6,8,9,...] (defined on page 473) using
networks of processes. For the latter problem, you may find the merge func-
tion of the previous question useful.

17.8 Case study: simulation

We are now in a position to put together the ingredients of the queue simulation
covered in

• Section 14.5, where we designed the algebraic types Inmess and Outmess,

• Section 16.5, where the abstract types QueueState and ServerState were
introduced, and in

• Section 17.6, where we showed how to generate an infinite list of pseudo-
random waiting times chosen according to a distribution over the times 1 to
6.

As we said in Section 14.5, our top-level simulation will be a function from a series
of input messages to a series of output messages, so

doSimulation :: ServerState -> [Inmess] -> [Outmess]

where the first parameter is the state of the server at the start of the simulation. In
Section 16.5 we presented the function performing one step of the simulation,

simulationStep :: ServerState ->
Inmess ->
(ServerState, [Outmess])

which takes the current server state, and the input message arriving at the current
minute and returns the state after one minute’s processing, paired with the list of
the output messages produced by the queues that minute (potentially every queue
could release a customer at the same instant, just as no customers might be re-
leased.)

The output of the simulation will be given by the output messages generated in
the first minute, and after those the results of a new simulation beginning with the
updated state:

doSimulation servSt (im:messes)
= outmesses ++ doSimulation servStNext messes

where
(servStNext , outmesses) = simulationStep servSt im

How do we generate an input sequence? From Section 17.6 we have the sequence of
times given by

randomTimes
= map (makeFunction dist . fromIntegral) (randomSequence seed)
; [2,5,1,4,3,1,2,5,...
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We are to have arrivals of one person per minute, so the input messages we generate
are

simulationInput
= zipWith Yes [1 .. ] randomTimes
; [ Yes 1 2 , Yes 2 5 , Yes 3 1 , Yes 4 4 , Yes 5 3 ,...

What are the outputs produced when we run the simulation on this input with four
queues, by setting the constant numQueues to 4? The output begins

doSimulation serverStart simulationInput
; [Discharge 1 0 2, Discharge 3 0 1, Discharge 6 0 1,

Discharge 2 0 5, Discharge 5 0 3, Discharge 4 0 4,
Discharge 7 2 2,...

The first six inputs are processed without delay, but the seventh requires a waiting
time of 2 before being served.

The infinite number of arrivals represented by simulationInput will obviously
generate a corresponding infinite number of output messages. We can make a finite
approximation by giving the input

simulationInput2 = take 50 simulationInput ++ noes
noes = No : noes

where after one arrival in each of the first 50 minutes, no further people arrive. Fifty
output messages will be generated, and we define this list of outputs thus:

take 50 (doSimulation serverStart simulationInput2)

Experimenting

We now have the facilities to begin experimenting with different data, such as the
distribution and the number of queues. The total waiting time for a (finite) sequence
of Outmess is given by

totalWait :: [Outmess] -> Int
totalWait = sum . map waitTime

where
waitTime (Discharge _ w _) = w

For simulationInput2 the total waiting time is 29, going up to 287 with three
queues and down to zero with five. We leave it to the reader to experiment with
the round robin simulation outlined in the exercises of Section 16.5.

A more substantial project is to model a set-up with a single queue feeding a
number of bank clerks – one way to do this is to extend the serverState with an
extra queue which feeds into the individual queues: an element leaves the feeder
queue when one of the small queues is empty. This should avoid the unnecessary
waiting time we face when making the wrong choice of queue, and the simulation
shows that waiting times are reduced by this strategy, though by less than we might
expect if service times are short.
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17.9 Proof revisited

After summarizing the effect that lazy evaluation has on the types of Haskell, we
examine the consequences for reasoning about programs. Taking lists as a repre-
sentative example, we look at how we can prove properties of infinite lists, and of all
lists, rather than simply the set of finite lists, which was the scope of the proofs we
looked at in Chapters 9, 11 and 14.

This section cannot give complete coverage of the issues of verification; we con-
clude with pointers to further reading.

Undefinedness

In nearly every programming language, it is possible to write a program which fails
to terminate, and Haskell is no exception. We call the value of such programs the
undefined value, as it gives no result to a computation.

The simplest expression which gives an undefined result is

undef :: a
undef = undef (undef.1)

which gives a non-terminating or undefined value of every type, but of course we
can write an undefined program without intending to, as in

fak n = (n+1) * fak n

where we have confused the use of n and n+1 in attempting to define the facto-
rial function. The value of fak n will be the same as undef, as they are both non-
terminating.

We should remark that we are using the term ‘undefined’ in two different ways
here. The name undef is given a definition by (undef.1); the value that the defi-
nition gives it is the undefined value, which represents the result of a calculation or
evaluation which fails to terminate (and therefore fails to define a result).

The existence of these undefined values has an effect on the type of lists. What if
we define, for example, the list

list1 = 2:3:undef

The list has a well-defined head, 2, and tail 3:undef. Similarly, the tail has a head,
3, but its tail is undefined. The type [Integer] therefore contains partial lists like
list1, built from the undefined list, undef, parts of which are defined and parts of
which are not.

Of course, there are also undefined integers, so we also include in [Integer]
lists like

list2 = undef:[2,3]
list3 = undef:4:undef

which contain undefined values, and might also be partial. Note that in list3 the
first occurrence of undef is at type Integer while the second is at type [Integer].
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What happens when a function is applied to undef? We use the rules for cal-
culation we have seen already, so that the const function of the standard prelude
satisfies

const 17 undef ; 17

If the function applied to undef has to pattern match, then the result of the function
will be undef, since the pattern match has to look at the structure of undef, which
will never terminate. For instance, for the functions used in Chapter 9,

sum undef ; undef (sum.u)
doubleAll undef ; undef (doubleAll.u)

In writing proofs earlier in the book we were careful to state that in some cases the
results hold only for defined values.

An integer is defined if it is not equal to undef; a list is defined if it is a finite list
of defined values; using this as a model it is not difficult to give a definition of the
defined values of any algebraic type.

A finite list as we have defined it may contain undefined values. Note that in
some earlier proofs we stipulated that the results hold only for (finite) lists of defined
values, that is for defined lists.

List induction revisited

As we said above, since there is an undefined list, undef, in each list type, lists can be
built up from this; there will therefore be two base cases in the induction principle.

Proof by structural induction: fp-lists

To prove the property P(xs) for all finite or partial lists (fp-lists) xs we have to do
three things:

Base cases Prove P([]) and P(undef).
Induction step Prove P(x:xs) assuming that P(xs) holds already.

Among the results we proved by structural induction in Chapter 9 were the equa-
tions

sum (doubleAll xs) = 2 * sum xs (sum-double)
xs ++ (ys ++ zs) = (xs ++ ys) ++ zs (assoc++)
reverse (xs ++ ys) = reverse ys ++ reverse xs (reverse++)

for all finite lists xs, ys and zs. For these results to hold for all fp-lists, we need to
show that

sum (doubleAll undef) = 2 * sum undef (sum-double.u)
undef ++ (ys ++ zs) = (undef ++ ys) ++ zs (assoc++.u)
reverse (undef ++ ys) = reverse ys ++ reverse undef (reverse++.u)



17.9. PROOF REVISITED 481

as well as being sure that the induction step is valid for all fp-lists. Now, by (sum.u)
and (doubleAll.u) the equation (sum-double.u) holds, and so (sum-double)
holds for all fp-lists. In a similar way, we can show (assoc++.u). More interesting
is (reverse++.u). Recall the definition of reverse:

reverse [] = []
reverse (x:xs) = reverse xs ++ [x]

It is clear from this that since there is a pattern match on the parameter, undef as
the first parameter will give an undef result, so

reverse undef = undef

Taking a defined list, like [2,3] for ys in (reverse++.u) gives

reverse (undef ++ [2,3])
= reverse undef
= undef

reverse [2,3] ++ reverse undef
= [3,2] ++ undef

This is enough to show that (reverse++.u) does not hold, and that we cannot infer
that (reverse++)holds for all fp-lists. Indeed the example above shows exactly that
(reverse++) is not valid.

Infinite lists

Beside the fp-lists, there are infinite members of the list types. How can we prove
properties of infinite lists? A hint is given by our discussion of printing the results of
evaluating an infinite list. In practice what happens is that we interrupt evaluation
by hitting Ctrl-C after some period of time. We can think of what we see on the
screen as an approximation to the infinite list.

If what we see are the elements a0,a1,a2,...,an, we can think of the approx-
imation being the list

a0:a1:a2:...:an:undef

since we have no information about the list beyond the element an.
More formally, we say that the partial lists

undef, a0:undef, a0:a1:undef, a0:a1:a2:undef, ...

are approximations to the infinite list [a0,a1,a2,...,an,...].
Two lists xs and ys are equal if all their approximants are equal, that is for all

natural numbers n, take n xs = take n ys. (The take function gives the de-
fined portion of the nth approximant, and it is enough to compare these parts.) A
more usable version of this principle applies to infinite lists only.
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Infinite list equality

A list xs is infinite if for all natural numbers n, take n xs =/ take (n+1) xs.
Two infinite lists xs and ys are equal if for all natural numbers n, xs!!n = ys!!n.

Example

Two factorial lists

Our example here is inspired by the process-based programs of Section 17.7. If fac
is the factorial function

fac :: Int -> Int
fac 0 = 1 (fac.1)
fac m = m * fac (m-1) (fac.2)

one way of defining the infinite list of factorials is

facMap = map fac [0 .. ] (facMap.1)

while a process-based solution is

facs = 1 : zipWith (*) [1 .. ] facs (facs.1)

Assuming these lists are infinite (which they clearly are), we have to prove for all
natural numbers n that

facMap!!n = facs!!n (facMap.!!)

Proof In our proof we will assume for all natural numbers n the results

(map f xs)!!n = f (xs!!n) (map.!!)
(zipWith g xs ys)!!n = g (xs!!n) (ys!!n) (zipWith.!!)

which we discuss again later in this section.
(facMap.!!) is proved by mathematical induction, that is we prove the result

for 0 outright, and we prove the result for a positive n assuming the result for n-1.

Base We start by proving the result at zero. Examining the left-hand side first,

facMap!!0
= (map fac [0 .. ])!!0 by (facMap.1)
= fac ([0 .. ]!!0) by (map.!!)
= fac 0 by def of [0 .. ],!!
= 1 by (fac.1)

The right-hand side is

facs!!0
= (1 : zipWith (*) [1 .. ] facs)!!0 by (facs.1)
= 1 by def of !!

thus establishing the base case.
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Induction In the induction case we have to prove (facMap.!!) using the in-
duction hypothesis:

facMap!!(n-1) = facs!!(n-1) (hyp)

The left-hand side of (facMap.!!) is

facMap!!n
= (map fac [0 .. ])!!n by (facMap.1)
= fac ([0 .. ]!!n) by (map.!!)
= fac n by def of [0 .. ],!!
= n * fac (n-1) by (fac.2)

It is not hard to see that we have facMap !! (n-1) = fac (n-1) by a similar ar-
gument to the first three steps here and so,

= n * (facMap!!(n-1))

The right-hand side of (facMap.!!) is

facs!!n
= (1 : zipWith (*) [1 .. ] facs)!!n by (facs.1)
= (zipWith (*) [1 .. ] facs)!!(n-1) by def of !!
= (*) ([1 .. ]!!(n-1)) (facs!!(n-1)) by (zipWith.!!)
= ([1 .. ]!!(n-1)) * (facs!!(n-1)) by def of (*)
= n * (facs!!(n-1)) by def of [1 .. ],!!
= n * (facMap!!(n-1)) by (hyp)

The final step of this proof is given by the induction hypothesis, and completes the
proof of the induction step and the result itself.

Proofs for infinite lists

When are results we prove for all fp-lists valid for all lists? If a result holds for all
fp-lists, then it holds for all approximations to infinite lists. For some properties it is
enough to know the property for all approximations to know that it will be valid for
all infinite lists as well. In particular, this is true for all equations. This means that,
for example, we can assert that for all lists xs,

(map f . map g) xs = map (f.g) xs

and therefore by the principle of extensionality for functions,

map f . map g = map (f.g)

Many other of the equations we proved initially for finite lists can be extended to
proof for the fp-lists, and therefore to all lists. Some of these are given in the exercises
which follow.
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Further reading

The techniques we have given here provide a flavour of how to write proofs for infi-
nite lists and infinite data structures in general. We cannot give the breadth or depth
of a full presentation, but refer the reader to Paulson (1987) for more details. An al-
ternative approach to proving the factorial list example is given in Thompson (1999),
which also gives a survey of proof in functional programming.

Exercises

17.31 Show that for all fp-lists ys and zs,

undef ++ (ys ++ zs) = (undef ++ ys) ++ zs

to infer that ++ is associative over all lists.

17.32 If rev xs is defined to be shunt xs [], as in Section 9.7, show that

rev (rev undef) = undef (rev-rev.1)

In Chapter 9 we proved that

rev (rev xs) = xs (rev-rev.2)

for all finite lists xs.

Why can we not infer from (rev-rev.1) and (rev-rev.2) that the equation
rev (rev xs) = xs holds for all fp-lists xs?

17.33 Prove for all natural numbers m, n and functions f :: Int -> a that

(map f [m .. ])!!n = f (m+n)

[Hint: you will need to choose the right variable for the induction proof.]

17.34 Prove that the lists

facMap = map fac [0 .. ]
facs = 1 : zipWith (*) [1 .. ] facs

are infinite.

17.35 If we define indexing thus

(x:_)!!0 = x
(_:xs)!!n = xs!!(n-1)
[]!!n = error "Indexing"

show that for all strict functions f, fp-lists xs and natural numbers n,
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(map f xs)!!n = f (xs!!n)

and therefore infer that the result is valid for all lists xs. State and prove a
similar result for zipWith.

17.36 Show that the following equations hold between functions.

filter p . map f = map f . filter (p . f)
filter p . filter q = filter (q &&& p)
concat . map (map f) = map f . concat

where the operator &&& is defined by

(q &&& p) x = q x && p x

Summary

Lazy evaluation of Haskell expressions means that we can write programs in a differ-
ent style. A data structure created within a program execution will only be created
on demand, as we saw with the example of finding the sum of fourth powers. In find-
ing routes through a graph we saw that we could explore just that part of the graph
which is needed to reveal a path. In these and many more cases the advantage of
lazy evaluation is to give programs whose purpose is clear and whose execution is
efficient.

We re-examined the list comprehension notation, which makes many list pro-
cessing programs easier to express; we saw this in the particular examples of route
finding and parsing.

A design principle exploited in this chapter involved the use of lazy lists: if a
function can return multiple results it is possible to represent this as a list; using
lazy evaluation, the multiple results will only be generated one-by-one, as they are
required. Also, we are able to represent ‘no result’ by the empty list, []. This ‘list of
successes’ method is useful in a variety of contexts.

Exploiting this principle as well as higher-order functions, polymorphism and
list comprehensions we gave a library of parsing functions, which we saw applied
to the type of arithmetical expressions, Expr. This showed one of the strengths of
modern functional programming languages, whose constructs are especially well
suited to describing general toolkits of this sort.

Rather than being simply a curiosity, this chapter has shown that we can exploit
infinite lists for a variety of purposes.

• In giving an infinite list of prime or random numbers we provide an unlimited
resource: we do not have to know how much of the resource we need while
constructing the program; this abstraction makes programming simpler and
clearer.

• Infinite lists provide a mechanism for process-based programming in a func-
tional setting.
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The chapter concluded with a discussion of how proofs could be lifted to the
partial and infinite elements of the list type: criteria were given in both cases and we
gave examples and counter-examples in illustration.



Chapter 18

Programming with monads

This chapter looks again at I/O in Haskell, particularly focussing on the do notation
which we use to write I/O programs. We’ll see that we can write all sorts of different
programs using do notation, including programs that manipulate state, that non-
deterministically return more than one result, as well as programs that may fail, or
raise exceptions.

Underlying each of these is a monad. A monad provides the infrastructure for
sequencing and naming used in the do notation, and we will show instances of the
Monad class for lists, the Maybe type, a parsing monad and more.

As well as looking at these definitions, we will program a number of examples,
showing how a monadic style, using do, makes programs more readable and flexible.
Each instance of a monad gives a ‘little language’ for writing programs, and we’ll
come back to look at this in detail in the next chapter.

18.1 I/O programming

We first looked at I/O programming in Haskell using the IO types in Chapter 8.
Something of type IO t is a program which will perform I/O and return a value of
type t. Among the I/O primitives of Haskell are

putStr :: String -> IO ()
getLine :: IO String

The effect of running putStr str is to output the string str and then to terminate;
it will return the value () which is (the only value) of type (). The effect of executing
getLine is to get a line of input, and to return that line as its result.

Programs are built using the do notation to sequence statements of type IO t. A
program to read a line then output a message is given by

readWrite :: IO ()

readWrite =
do

487
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getLine
putStrLn "one line read"

where the two statements are sequenced one after the other. It is also possible to
name the results of statements for use in the program, so that we can name the line
read, and output it, like this:

readEcho :: IO ()

readEcho =
do

line <-getLine
putStrLn ("line read: " ++ line)

In this program line <- getLine names the result of the getLine and so it can be
echoed in the next statement.

Adding a sequence of integers

Now suppose we want to write an interactive program to sum integers supplied one
per line until zero is input. We will write an I/O program

sumInts :: Integer -> IO Integer

which is passed a starting value for the sum, and which returns the sum from there;
so, to sum from scratch we call sumInts 0. This gives the program

sumInts s
= do n <- getInt

if n==0
then return s
else sumInts (s+n)

In writing the program there are two cases: we first read an integer value, using the
getInt function defined in Chapter 8. If we read zero then the result must be the
sum so far, s; if not, we get the result by calling sumInts again, with the parameter
set to (s+n).

The program is written in the style we saw in Chapter 8: the function is tail-
recursive – being called as the last statement in the program – and the loop data is
used to carry the “sum so far”: here s and s+n.

It is interesting with compare the definition of sumInts with the recursion in

sumAcc s [] = s
sumAcc s (n:ns)

= if n==0
then s
else sumAcc (s+n) ns

Here we use the first variable to sumAcc as an accumulator where the “result so far”
can be held.
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We can also put the sumInts program inside a ‘wrapper’ which explains its pur-
pose and prints the sum at the end.

sumInteract :: IO ()
sumInteract

= do putStrLn "Enter integers one per line"
putStrLn "These will be summed until zero is entered"
sum <- sumInts 0
putStr "The sum is "
print sum

Exercises

18.1 Compare the definition of sumInts above with this definition:

sumInts :: IO Integer
sumInts

= do n <- getInt
if n==0

then return 0
else (do m <- sumInts

return (n+m))

Which will have the better performance, do you think? Wny?

18.2 Give a definition of the function

fmap :: (a -> b) -> IO a -> IO b

the effect of which is to transform an interaction by applying the function to
its result. You should define it using the do construct.

18.3 Define the function

repeat :: IO Bool -> IO () -> IO ()

so that repeat test oper has the effect of repeating oper until the condi-
tion test is True.

18.4 Define the higher-order function while in which the condition and the oper-
ation work over values of type a. Its type should be

whileG :: (a -> IO Bool) -> (a -> IO a) -> (a -> IO a)

18.5 Using the function whileG or otherwise, define an interaction which reads a
number, n say, and then reads a further n numbers and finally returns their
average.
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18.6 Modify your answer to the previous question so that if the end of file is reached
before n numbers have been read, a message to that effect is printed.

18.7 Define a function

accumulate :: [IO a] -> IO [a]

which performs a sequence of interactions and accumulates their result in a
list. Also give a definition of the function

sequence :: [IO a] -> IO ()

which performs the interactions in turn, but discards their results. Finally,
show how you would sequence a series, passing values from one to the next:

seqList :: [a -> IO a] -> a -> IO a

What will be the result on an empty list?

18.2 Further I/O

In this section we survey further features of Haskell I/O, defined in the System.IO
module.

Interaction at the terminal

We have seen that we can read from the terminal – the ‘standard input’ – and write
to the screen – the ‘standard output’. Terminal input can be configured to work in
different ways, depending on the way that the input is buffered.

The default is that input is unbuffered, and so each character is available to the
I/O program immediately it is typed; a disadvantage of this mode is that it is im-
possible to use Ctrl-D to signal “end of file” in the interactive input. Setting to line
buffering, where input is assembled into lines before being available to the I/O pro-
gram, remedies this problem. To set the buffering modes we use hSetBuffering as
in this example:

copyInteract :: IO ()

copyInteract =
do

hSetBuffering stdin LineBuffering
copyEOF
hSetBuffering stdin NoBuffering

where we can see that the buffering mode can be changed within an I/O program.
The copyEOF program itself is given by
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copyEOF :: IO ()

copyEOF =
do

eof <- isEOF
if eof

then return ()
else do line <- getLine

putStrLn line
copyEOF

where isEOF :: IO Bool is an I/O program to determine whether or not the end
of standard input has been reached.

Give this a try within GHCi: you will find that you can use Ctrl-D to terminate
your input if you run copyInteract; if on the other hand you run copyEOF directly,
you will need to interrupt the program using Ctrl-C.

File I/O

As well as reading and writing to a terminal, the Haskell I/O model also provides for
reading from and writing and appending to files, by means of the functions

readFile :: FilePath -> IO String
writeFile :: FilePath -> String -> IO ()
appendFile :: FilePath -> String -> IO ()

where

type FilePath = String

and files are specified by the text strings appropriate to the implementation in ques-
tion.

Errors

I/O programs can raise errors, which belong to the system-dependent data type
IOError. The function

ioError :: IOError -> IO a

builds an I/O action which fails giving the appropriate error, and the program

catch :: IO a -> (IOError -> IO a) -> IO a

will catch an error raised by the first argument and handle it using the second ar-
gument, which gives a handler – that is an action of type IO a – for each possible
IOError.
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Input and output as lazy lists

An alternative view of I/O programs, popular in earlier lazy functional programming
languages, was to see the input and output as Strings, that is as lists of characters.
Under that model an I/O program is a function

listIOprog :: String -> String

This obviously makes sense in a ‘batch’ program, where all the input is read before
any output is produced, but in fact it also works for interactive programs where input
and output are interleaved, if the language is lazy. This is because in a lazy language
we can begin to print the result of a computation – the output of the interactive
program here – before the argument – the interactive input – is fully evaluated. As
an example, repeatedly to reverse lines of input under this model one can write

listIOprog = unlines . map reverse . lines

The drawback of this approach is in scaling it up. It is often difficult to predict in
advance the way in which the input and output are interleaved: often output comes
after it is expected, and sometimes even before; the IO approach in Haskell avoids
such problems. Nevertheless, support for this style is available, using

getContents :: IO String

a primitive to get the contents of the standard input, and which is used in this func-
tion, also defined in System.IO

interact :: (String -> String) -> IO ()
interact f = do s <- getContents

putStr (f s)

Try out the program interact listIOprog in GHCi to see for yourself that the
input and output lines are interleaved one-by-one just as you would expect.

Generating random numbers

We introduced the randomStrategy in Chapter 8, but pointed out there that it should
properly be programmed using a monad, since it is a function which returns differ-
ent values on different calls. We generate a random integer less than n based on the
current time, which is accessible within the IO monad:

randomInt :: Integer -> IO Integer
randomInt n =

do
time <- getCurrentTime
return ( (‘rem‘ n) $ read $ take 6 $

formatTime defaultTimeLocale "%q" time)

randInt :: Integer -> Integer
randInt = unsafePerformIO . randomInt
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sRandom :: Strategy
sRandom _ = convertToMove (randInt 3)

Here we use the unsafePerformIO function to extract the result from the IOmonad.
As its name suggests this is (potentially) unsafe, and should be used with care; some
would go further, and say that it should never be used.

If we want to avoid unsafePerformIO we need to look again at the design of our
case study. In Chapter 8 defined strategies to belong to the type

type Strategy = [Move] -> Move

if we want to include monadic functions, then we should redefine them to be monadic,
like this

type StrategyM = [Move] -> IO Move

We leave the reimplementation of the case study to use monadic strategies as an
exercise for the reader.

The System.IO library

There is much more to the System.IO library than we are able to cover here; see the
system documentation for more details.

Exercises

18.8 Write a file-handling version of the program sumInts, which reads the integer
sequence from a file.

18.9 Write a lazy-list version of the programsumInts, which you can then run using
interact.

18.10 [Harder] Write a lazy-list version of the calculator program.

18.11 [Harder] Reimplement the Rock - Paper - Scissors case study to use the monadic
strategies in StrategyM.

18.3 The calculator

The ingredients of the calculator are contained in three places in the text.

• In Section 14.2 we saw the introduction of the algebraic type of expressions,
Expr, which we subsequently revised in Section 17.5, giving

data Expr = Lit Integer | Var Var | Op Ops Expr Expr
data Ops = Add | Sub | Mul | Div | Mod
type Var = Char
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We revise the evaluation of expressions after discussing the store below.

• In Chapter 16 we introduced the abstract type Store, which we use to model
the values of the variables currently held. The signature of the abstract data
type is

initial :: Store
value :: Store -> Var -> Integer
update :: Store -> Var -> Integer -> Store

• In Section 17.5 we looked at how to parse expressions and commands,

data Command = Eval Expr | Assign Var Expr | Null

and defined the ingredients of the function

commLine :: String -> Command

which is used to parse each line of input into a Command. For instance,

commLine "(3+x)" = (Eval (Op Add (Lit 3) (Var ’x’)))
commLine "x:(3+x)" = (Assign ’x’ (Op Add (Lit 3) (Var ’x’)))
commLine "something unparsable" = Null

Expressions are evaluated by

eval :: Expr -> Store -> Integer

eval (Lit n) st = n
eval (Var v) st = value st v
eval (Op op e1 e2) st

= opValue op v1 v2
where
v1 = eval e1 st
v2 = eval e2 st

where theopValue function of typeOps->Integer->Integer->Integer interprets
each operator, such as Add, as the corresponding function, like (+).

What is the effect of a command? An expression should return the value of the
expression in the current store; an assignment will change the store, and a null com-
mand will do nothing. We therefore define a function which returns both a value
and a store,

command :: Command -> Store -> (Integer,Store)

command Null st = (0 , st)
command (Eval e) st = (eval e st , st)
command (Assign v e) st
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= (val , newSt)
where
val = eval e st
newSt = update st v val

A single step of the calculator will take a starting Store, and read an input line,
evaluate the command in the line, print some output and finally return an updated
Store,

calcStep :: Store -> IO Store

calcStep st
= do line <- getLine

let comm = commLine line (1)
let (val,newSt) = command comm st (2)
print val
return newSt

In lines (1) and (2) of the definition of calcStep we see an example of the use of
let within a do expression. Line (1),

let comm = commLine line

gives comm the value of parsing the line, and this is subsequently used in (2),

let (val,newSt) = command comm st

which simultaneously gives val and newSt the value of the expression read and the
new state. In the lines that follow the lets, the value val is printed and the new state
newSt is returned as the overall result of the interaction. A sequence of calculator
steps is given by

calcSteps :: Store -> IO ()

calcSteps st =
do

eof <- isEOF
if eof

then return ()
else do newSt <- calcStep st

calcSteps newSt

The main I/O program for the calculator is given by starting off calcSteps with the
initial store, operating in modified buffering mode

mainCalc :: IO ()
mainCalc =

do
hSetBuffering stdin LineBuffering
calcSteps initial
hSetBuffering stdin NoBuffering
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In the exercises various extensions and modifications of the calculator program are
discussed.

Exercises

18.12 How would you add initial and final messages to the output of the calculator?

18.13 Discuss how you would have to modify the system to allow variables to have
arbitrarily long names, consisting of letters and numbers, starting with a letter.

18.14 How would you extend the calculator to deal with decimal floating-point num-
bers as well as integers?

18.15 Discuss how you would modify the calculator so that it could read input com-
mands split over more than one line. You will need to decide how this sort
of split is signalled by the user – maybe by \ at the end of the line – and how
to modify the interaction program to accommodate this. Alternatively, you
might let the user do this without signalling; can you modify the program to
do that?

18.16 How would you modify the parser so that ‘white space’ is permitted in the
input commands, as in the example

" x : (2\t+3) "

which parses to the Command

(Assign ’x’ (Op Add (Lit 2) (Lit 3)))

18.4 The do notation revisited

We have seen that the type IO a comes with various functions, including

return :: a -> IO a
putStr :: String -> IO ()
getLine :: IO String

but also items of the IO a type can be sequenced using the do construct. In this
section we look ‘under the bonnet’ to see how the do works, as this will lead to us
seeing IO as just one example of a general phenomenon.

The key to understanding thedo is the operation(»=), which is often pronounced
‘bind’, which sequences two operations, one after the other, binding the result of the
first and making it available as a parameter to the second.

(>>=) :: IO a -> (a -> IO b) -> IO b

What is the effect of this operation? It combines an IO a
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 aIO

with a function taking the result of this (of type a) into an IO b, that is an object of
type a -> IO b,

 bIOa

We can join them together, passing the result of the first as an argument to the sec-
ond, thus:

 aIO  bIOa

The result of putting them together is something which does some I/O before re-
turning a value of type b:

IO  bIO

in other words, an object of type IO b.
How does this relate to the do notation? The bind operation, (»=), is one of the

simplest possible things we can define using do:

m >>= f =
do

res <- m
f res

First what we do is execute m, which is to type IO a, and name its result res; we then
pass that to the function f, giving f res ,which is of type IO b.

In fact we can translate every use of do into calls to (»=); do is just syntactic
sugar to make writing IO programs more readable. Let’s look at a particular example;
consider what happens in the program

addOneInt :: IO ()
addOneInt

= do line <- getLine
putStrLn (show (1 + read line :: Int))

The value returned by getLine is called line and then used in the subsequent in-
teraction. Using (»=)we have to sequence the interaction with a function expecting
an argument of type String, so we write

addOneInt
= getLine >>= \line ->

putStrLn (show (1 + read line :: Int))
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where recall that \x -> e is the function which takes the parameter x to result e, so
here the parameter is called line, and used just as above. More complex examples
are translated in a similar way.

As you can see from this simple example, using (»=) makes programs more dif-
ficult to read and understand: the donotation highlights the essential features of I/O
programming:

• sequencing operations, and,

• binding the results of statements for use later on in the program.

and gives a readable and comprehensible way of writing these programs within Haskell.
We’ll continue to use the do notation, but will keep in mind that it essentially

boils down to the existence of a function (»=) which does the work of sequencing
I/O programs, and binding their results for future use.

Exercises

18.17 Repeat some of the earlier examples and exercises using the »= operator in-
stead of a do expression.

18.5 Monads: languages for functional programming

The do notation allows us to write programs which perform I/O while calculating
results; as we discussed in the last section, all we need to support the do notation is
to have the ‘bind’ function and ‘return’ functions:

(>>=) :: IO a -> (a -> IO b) -> IO b
return :: a -> IO a

The IO types give one kind of program which we can describe with the do notation,
but there are other kinds of program we might want to write in a similar way, such
as

• programs that are non-deterministic: we can think of these as programs which
return a collection of results, as a list, say;

• programs that might fail to give any answer at all;

• programs that work by manipulating a state: that is programs that have vari-
ables in the sense of imperative languages like Java and C;

• programs that raise exceptions, and can have those exceptions handled within
the program.

Well, we can do this, so long as the types have the analogue of the bind and return
functions. In other words, we need to implement functions in a particular kind of
interface, and we know from Chapter 13 that this is given in Haskell by the Monad
class, like this:
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class Monad m where
(>>=) :: m a -> (a -> m b) -> m b
return :: a -> m a

Once we have an instance of this class we can use the do notation over the type.
Let’s look at the example of programs that might fail, second in the list of exam-

ples above. We looked at these in Section 14.4 where we saw that the Maybe type was
a good model for values including a potential failure:

data Maybe a = Nothing | Just a

and we developed a number of functions which worked withMaybe types to transmit
errors through the code. Alternatively we can use the do notation, because we have
this instance for Monad:

instance Monad Maybe where
(Just x) >>= k = k x
Nothing >>= k = Nothing
return x = Just x

so that we get this behaviour using do:

Prelude> do { x <- Just 1; y <- Just 2; return (x+y) }
Just 3
Prelude> do { x <- Just 1; y <- Nothing; return (x+y) }
Nothing
Prelude> do { x <- Nothing; y <- Just 2; return (x+y) }
Nothing

where we are using the braces ‘{’, ‘}’ and explicit separator ‘:’ to put the statements
in the do program on a single line, as first introduced in Chapter 4. In a similar way,
lists form a monad:

instance Monad [] where
xs >>= f = concat (map f xs)
return x = [x]

and we can use do notation over lists, like this:

Prelude> do { x <- [1,2]; y <- [3,4]; return (x+y) }
[4,5,5,6]

From this example we can see that lists model non-deterministic computation: each
of x and y have two possible values, and that gives four possibilities for (x+y). The
definition of (»=) over lists reflects this: f is applied to all the possibilities in xs and
the results are concatenated together.

In the next section we fill in some of the formalities about monads, but this latter
section can be skipped on first reading, if you wish. We then look at some more
examples of monads.
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Why ‘monad’?

Why is this type class called ‘monad’? The name originates in category theory, which
was used by Eugenio Moggi to build mathematical models of different kinds of com-
putations. However, that doesn’t mean that you need to learn category theory to use
them, any more than you need to understand the intricacies of modern micropro-
cessors to use your computer! Understanding that the do notation gives sequencing
and binding (or naming) is all you need to understand to get started.

Monads, formally

A monad is a family of types m a, based on a polymorphic type constructor m, with
functions return, (»=), (»), and fail:

class Monad m where
(>>=) :: m a -> (a -> m b) -> m b
return :: a -> m a
(>>) :: m a -> m b -> m b
fail :: String -> m a

This is an example of a class, whose instances are type constructors – that is func-
tions which build types from types – rather than types. Examples of type construc-
tors are ‘list’, written [] in Haskell, and IO as we have seen already.

The definition of Monad also contains default declarations for » and fail:

m >> k = m >>= \_ -> k
fail s = error s

From this definition it can be seen that » acts like »=, except that the value returned
by the first argument is discarded rather than being passed to the second argument.

In order properly to be a monad, the functions return and (»=) and the value
zero should have some simple properties. Informally we can state the requirements
as follows.

• The operation return x should simply return the value x, without any ad-
ditional computational effect, such as input or output in the case of the IO
monad.

• The sequencing given by »= should be irrelevant of the way that expressions
are bracketed.

• The value fail s corresponds to a computation which fails, giving the error
message s.

The laws are much clearer when stated in terms of a derived operator, >@>.

(>@>) :: Monad m => (a -> m b) ->
(b -> m c) ->
(a -> m c)

f >@> g = \x -> (f x) >>= g
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This operator generalizes function composition1 in that it composes objects

 bma  cmb

to give

 cma

Note also that return is of this shape, as its type is a -> m a.
Now we can state formally the rules that the operations of a monad should sat-

isfy. First, return is an identity for the operator >@>:

return >@> f = f (M1)
f >@> return = f (M2)

and the operator >@> should be associative:

(f >@> g) >@> h = f >@> (g >@> h) (M3)

The derived sequencing operator, », is also associative.
Of course, there is no way that we can make the requirements (M1)–(M3) a part

of the Haskell definition of Monad. We can also restate the rules in terms of do, since,
as we saw earlier,

m >>= f = do { x <- m; f x }

The first two rules become

do { y <- return x; f y } = f x
do { x <- m; return x } = m

and the third is implicit in the fact that the do construct is associative.

Some more examples

Now we have seen the definition of what it means to be a monad, we look at some
more examples of monads in Haskell.

The parsing monad

A more substantial example is given by parsing, where we can show that Parse a
is a monad. To make a formal declaration of this we need to wrap it in a newtype
constructor, MP, which clutters the definition a bit.

1In category theory, this operation is called Kleisli composition.
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newtype MP a b = MP { mp :: (Parse a b) }

instance Monad (MP a) where
return x = MP (succeed x)
fail s = MP none
(MP pr) >>= f

= MP (\st -> concat [ mp (f x) rest | (x,rest) <- pr st ])

The crux of the definition of (»=) is like that of (>*>) – a parse is done by one parser,
pr, and the remains of the input are passed to a second parser f, here dependent on
the result of the first parse, and so a result of the first parse, x, is passed to f to give a
second parser, which is applied to the remaining input, rest.

How does the monadic approach to parsing look in practice? Let’s go back to the
calculator example, and in particular the definition of opExpParse in Section 17.5,
page 463. If we redefine it monadically, we get

opExpParseM :: MP Char Expr
opExpParseM =

do
tokenM ’(’
e1 <- parseExprM
bop <- spotM isOp
e2 <- parseExprM
tokenM ’)’
return (Op (charToOp bop) e1 e2)

where tokenM is the monadic equivalent of token, and so forth. How do the defi-
nitions differ? It is mainly in the handling of the results: in the earlier treatment we
built the results into a nested tuple, gathering a result for each step whether or not
we needed it, and then passed the tuple to a function, via build. The approach here
has the advantage that

• we only name the results of the sub-parses that we need, and

• we can build the final result directly, using these names, rather than having to
use a function to re-jig the tuple into the value we want.

The disadvantage of the non-monadic approach is reminiscent of the discussion
of ‘point-free’ programming on page 262: under both we combine functions, when
the judicious use of names (of variables, of intermediate results) make the program
substantially easier to read, write and understand.

The identity monad

The identity monad, which takes a type to itself, is the simplest example of a monad,
with the definitions

x >>= f = f x
return = id
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In order for this to be a legal Haskell definition we need to define the identity type
constructor, and, within Haskell 2010, any instance declaration needs to be for a
data type, newtypeor primitive type. So, we define, as inControl.Monad.Identity,

newtype Identity a = Identity identity :: a

where the constructor Identity ‘wraps’ the value up, and the field name, identity
is used to ‘unwrap’ them.. Now we can define the instance itself,

instance Monad Identity where
(Identity x) >>= f = f x -- x >>= f = f x
return a = Identity a -- return = id

We can then run things in this monad, if we give a Show instance for Identity

instance Show a => Show (Identity a) where
show (Identity x) = show x

as in this example, which also shows how we can give multi-line input to GHCi in-
teractively.

*UseMonads> :{
*UseMonads| do { x <- return ’c’ :: Identity Char;
*UseMonads| y <- return ’d’;
*UseMonads| return [x,y] }
*UseMonads| :}
"cd"

Computationally, this monad represents the trivial state in which no actions are per-
formed, and values are returned immediately.

The state monad

Later in this chapter we will give an example of a state monad, State a b. An op-
eration of this type can change the state (of type a) before returning a value of type
b.

Some standard functions and the Functor class

There is a set of standard functions over monads, defined in Control.Monad; we
just look at two of these here. Their types should be familiar from the list case

fmap :: Monad m => (a -> b) -> m a -> m b
join :: Monad m => m (m a) -> m a

and their definitions are

fmap f m
= do x <- m

return (f x)
join m

= do x <- m
x
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Over lists these functions are called map and concat; many of the properties of map
and concat over lists lift to these functions. For instance, we can show using prop-
erties (M1) to (M3) that for all f and g

fmap (f.g) = fmap f . fmap g (M4)

In fact, fmap is defined over a wider set of types that monads, and it is the function
that characterises the Functor class:

class Functor f where
fmap :: (a -> b) -> f a -> f b

Example instances of Functor which are not monads include (a,a), ([a],[a])
and Tree a (from the next section).

Exercises

18.18 Show that sets and binary trees can be given a monad structure, as can the
type:

data Error a = OK a | Error String

18.19 For the monads Id , [] and Maybe prove the rules (M1) to (M3). Also show
that these rules hold for your implementations in the previous exercise.

18.20 Prove the property (M4) using the laws (M1) to (M3).

18.21 Prove the following properties using the monad laws:

join . return = join . fmap return
join . return = id

18.22 Can you define a different monad structure over lists from that given above?
Check that your definition has properties (M1) to (M3).

18.23 Write down the definitions of map and join over lists using list comprehen-
sions. Compare them with the definitions of fmap and join given in the do
notation in this section.

18.24 Re-implement the parser for the calculator using the do construct (based on
»=) rather than (>*>) and build. Contrast the two approaches.

18.25 Show that the type functions (a,a), ([a],[a]) and Tree a are instances of
Functor.
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18.6 Example: monadic computation over trees

We now illustrate how computations over the type of

data Tree a = Nil | Node a (Tree a) (Tree a)

can be given a monadic structure. We first look at a simple example, and then we
look at a rather more realistic one.

We see that with a monadic approach the top-level structure of the two solutions
is exactly the same. This structure guides the way that we build the implementation
of the second example, as we shall see.

The moral of these examples is that monads provide an important structuring
mechanism for program construction, as they encourage a separation of concerns.
The top-level structure of the computation is given in terms of a monad whose spe-
cific properties are only touched upon. Within the monad itself is the appropriate
computational behaviour to, for example, maintain a state or to perform some IO
(or both); the particular sequencing operation of the monad will ensure that values
are passed between the parts of the program in an appropriate way.

This separation of concerns comes into its own when changes are required in the
details of the computation: it is usually possible to change the monad implement-
ing a computation with at most minimal changes required at the top level. This is
in stark contrast to a non-monadic computation in which data representations are
visible: a wholesale restructuring is often required in such a situation.

Summing a tree of integers

Suppose we are asked to give the sum of a tree of integers,

sTree :: Tree Integer -> Integer

A direct recursive solution is

sTree Nil = 0
sTree (Node n t1 t2) = n + sTree t1 + sTree t2

In writing this we give no explicit sequence to the calculation of the sum: we could
calculate sTree t1 and sTree t2 one after the other, or indeed in parallel. How
might a monadic solution proceed?

sumTree :: Tree Integer -> St Integer

where St is a monad which we have yet to define. In the Nil case,

sumTree Nil = return 0

while in the case of a Node we calculate the parts in a given order:

sumTree (Node n t1 t2) (sumTree)
= do num <- return n

s1 <- sumTree t1
s2 <- sumTree t2
return (num + s1 + s2)
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How is the definition structured? We put the operations in sequence, using do. First
we return the value n, giving it the name num. Next we calculate sumTree t1 and
sumTree t2, naming their results s1 and s2. Finally we return the result, which is
the sum num+s1+s2.

Now, since all we are doing here is calculating values and not trying to do any
I/O or other side-effecting operation, we make the monad St the identity monad
Identity which we mentioned earlier, so we have

sumTree :: Tree Integer -> Identity Integer

There is a similarity between the definition (sumTree) and an imperative program,
bearing in mind that do performs a sequencing and j <- ... gives (or assigns) a
value to j. In an imperative setting, we might well write

num := n ;
s1 := sumTree t1 ;
s2 := sumTree t2 ;
return (num + s1 + s2) ;

where ‘num :=’ corresponds to the ‘<-’ and do puts a sequence of commands one
after the other, as does the semi-colon. Remember, though, that this is a single-
assignment language, so that num, s1 and so on are names not variables!

To give a function of type Tree Integer -> Integer we compose with the
identity function to give

identity . sumTree

where

identity :: Identity a -> a
identity (Identity x) = x

takes the wrapper off an element Identity x to give the element x. In the next
section we tackle a more complex problem, but see the same monadic structure
repeated.

Using a state monad in a tree calculation

Building on the experience of the last section in defining sumTree we tackle here a
rather more tricky problem. We want to write a function

numTree :: Eq a => Tree a -> Tree Integer

so that given an arbitrary tree we transform it to a tree of integers in which the orig-
inal elements are replaced by natural numbers, starting from 0. An example is given
in Figure 18.1. The same element has to be replaced by the same number at every
occurrence, and when we meet an as-yet-unvisited element we have to find a ‘new’
number to match it with.
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Moon

Ahmet Dweezil

Ahmet Moon
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1 2

1 0

Figure 18.1: Replacing the elements of a tree with natural numbers.

Describing the calculation

How does our definition appear? We give the function a type,

numberTree :: Eq a => Tree a -> State a (Tree Integer)

in which the monad State a will have to carry about enough information to allow
us to replace the elements in the correct way. The structure of the program then is

numberTree Nil = return Nil

numberTree (Node x t1 t2) (numberTree)
= do num <- numberNode x

nt1 <- numberTree t1
nt2 <- numberTree t2
return (Node num nt1 nt2)

The structure here is exactly the same as that of (sumTree) on page 505; we perform
the operations on the components x, t1 and t2 (for the subtrees we use recursion)
and then combine them in the result (Node num nt1 nt2).

What else do we have to define to give the result? We need to identify the monad
State a and to define the function which replaces an individual entry,

numberNode :: Eq a => a -> State a Integer

We now have to think about the implementation of the monad. We have called it
State since it keeps a record of the state, that is of which values are associated with
which numbers. This we do in a table:

type Table a = [a]

where the table [True,False] indicates that True is associated with 0 and False
with 1.
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The State monad

What then is the state monad? It consists of functions

data State a b = State (Table a -> (Table a , b))

which, after we strip off the constructor State, we can think of as taking the state
before doing the operation to the state after the operation, together with its result.
In other words, we return a value of type b, but perhaps we change the value of the
state of type Table a as a side-effect.

Next we have to define the two monad operations.

instance Monad (State a) where

To return a value, we leave the state unchanged.

return x = State (\tab -> (tab,x))

How do we sequence the operations? The intended effect here is to do st, pass its
result to f and then do the resulting operation.

In more detail, to perform st, we pass it the table tab; the output of this is a
new state, newTab, and a value y. This y is passed to f, giving an object of type
State a b; this is then performed starting with the new state newTab.

(State st) >>= f
= State (\tab -> let

(newTab,y) = st tab
(State trans) = f y
in
trans newTab)

Here we can see that the operations are indeed done in sequence, leading from one
state value to the next.

Completing the definition

This has given us the monad; all that remains is to define the function numberNode.
Our definition is

numberNode :: Eq a => a -> State a Integer
numberNode x = State (nNode x)

nNode :: Eq a => a -> (Table a -> (Table a , Integer))
nNode x table

| elem x table = (table , lookup x table)
| otherwise = (table++[x] , integerLength table)

where
integerLength = toInteger.length

If x is an element of table, we return its position in the table, given by lookup; if it
is not, we add it to the end of the table, and return its position, which is the length of
the table. The definition of
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lookup :: Eq a => a -> Table a -> Integer

is standard, and we leave it as an exercise for the reader.

Running the program

Standing back, we can see that we have completed our definition of the function

numberTree :: Eq a => Tree a -> State a (Tree Integer)

but one ingredient of the solution is still needed. If we form

numberTree exampleTree

for some exampleTree of the tree type, we have an object in

State a (Tree Integer)

In order to extract the result of running the program, we have to write a function

runST :: State a b -> b

This has to perform the calculation, starting with some initial table, and return the
resulting value of type b. The definition is

runST :: State a b -> b
runST (State st) = snd (st [])

where we see that st is applied to the initial state []. The result of this is a pair, from
which we select the second part, of type b. Now we can define our function

numTree :: Eq a => Tree a -> Tree Integer
numTree = runST . numberTree

which has the effect we require.

Discussion

To conclude, we have shown how a complex calculation over a tree, (numberTree),
can be structured in exactly the same way as a simple one, (sumTree). In the case of
a tree type the advantage is tangible, but for more complex types a monadic struc-
ture becomes almost essential if we are to follow a computation with complicated
side-effects.

To see how much the monadic approach has tidied up the computation, it’s in-
teresting to see what the computation would look like if we passed the state around
explicitly. Each function would need to take a ‘before’ state as part of its input, and
return an ‘after’ state as part of its result. We’d then have to thread state values
through the functions so that state is updated as we compute. With the monadic
approach, all the explicit threading is in the definition of (»=) and the rest is given
by the do notation.
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The Control.Monad.State module

What we have presented here gives the essential idea behind the state monad in
Haskell. The monad contained in Control.Monad.State is more complicated than
the version presented here; our simplified version still gives the essential idea of a
monad which threads state through a calculation.

Taking it further

What we have presented here just scratches the surface of monadic programming in
Haskell. We have covered the basic monads, but not looked how multiple monads
– such as state and exceptions – can be combined into a single monad: this is done
using monad transformers, for which a number of libraries are available.

We have also not looked in any detail at monadic approaches to parsing, be-
yond showing how our earlier, non-monadic, parser combinators could support a
monadic view too. Most of the available Haskell parsing libraries – which extend the
basic approach in both expressivity and efficiency – are monadic.

There are extensions to the Monad interface: many monads, including lists and
the Maybemonad, have a natural notion of a sum and zero: this gives the MonadPlus
interface. At the same time, there are various weakenings of the notion of monad,
including applicative functors and arrows, each with their own advantages and dis-
advantages.

There is no shortage of online tutorials on monads and these other features, and
other texts cover them in more detail too. A standout among these is Peyton Jones’
tutorial (Peyton Jones 2001) on the ‘awkward squad’ of monads that support IO, ex-
ceptions and other computational effects.

Exercises

18.26 Give a non-monadic definition of numTree, threading the state through the
computation explicitly; compare your solution with the monadic version given
here.

18.27 Show how to look up the position of an element in a list

lookup :: Eq a => a -> Table a -> Int

You might find it useful to define a function

look :: Eq a => a -> Table a -> Int -> Int

where the extra integer parameter carries the current ‘offset’ into the list.

18.28 Show how you can use a State-style monad in a computation to replace each
element in a tree by a random integer, generated using the techniques of Sec-
tion 17.6.

18.29 We can use monads to extend the case study of the calculator in a variety of
ways. Consider how you would
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• add exceptions or messages to be given on an attempt to divide by zero;

• count the number of steps taken in a calculation; and

• combine the two.

Summary

In this chapter we have seen how the do notation, which we first saw used for I/O
programming, can be used to support a whole lot of different kinds of program: non-
deterministic, stateful, parsing and so on. The mechanism which underlies the do
notation is the Monad class, which embodies the functionality needed to sequence
sub-programs, and to name their results for use later on in the program.

Like any abstract data type interface, the advantage of programming against
the interface is that it is possible to modify the underlying implementation without
changing the higher-level program. We saw this in action in the final section of the
chapter, where two very different computations over a tree had the same top-level
structure, described in a monad.

We will come back to monads in the next chapter, where we look at how Haskell is
a host for ‘little languages’ that describe how to compute in a particular application
area.
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Chapter 19

Domain-Specific Languages

One area where Haskell has been particularly successful is in building implementa-
tions of domain-specific languages (DSLs). Haskell algebraic types give a straightfor-
ward representation of language structure, and the rich collection of types, includ-
ing functions as data, give us great flexibility in modelling phenomena, as we saw,
for instance, with strategies in Rock - Paper - Scissors being modelled as functions.
Moreover monads provide an additional expressive power.

This chapter first looks at what DSLs are, and why they are important. We then
ask what it means to be a DSL in Haskell, and cover the different approaches to writ-
ing Haskell DSLs, both as combinator libraries and as monadic languages. We also
discuss different types of embedding – shallow and deep – and contrast how these
approaches apply in particular case studies, including pictures and regular expres-
sions. We also revisit QuickCheck as a DSL for generating random data. We conclude
by looking at a number of examples of practical Haskell DSLs.

19.1 Programming languages everywhere

In using computers, we are at every point using programming languages.

• As a programmer, we’ll solve problems by writing programs in programming
languages.

• To use our program we need to run it, and to run a program on hardware, like
an intel chip, we need to translate the high-level program into machine code
that that chip can execute. A compiler like GHC works by successively trans-
forming a source program written in Haskell into Haskell Core, a stripped-
down functional programming language, then into STG, code for an abstract
machine. Finally, via C--, a C variant designed as ‘high-level machine code’,
programs in C, LLVM and machine code are the output, as illustrated in Fig-
ure 19.1.

• Network communications work through ‘stacks’ of protocols, each layer in the
stack can be programmed using the services provided by the one below: ef-

513
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Haskell Core STG C- -
Machine
code

LLVM

C

Figure 19.1: Languages in the Glasgow Haskell Compiler

fectively we have ‘languages all the way down’1 to the hardware providing the
communication.

• In some cases the hardware itself will be programmable: a field-programmable
gate array (FPGA) is a chip designed to be programmed after manufacture; all
other hardware will have been designed and configured in a variety of pro-
gramming languages, including VHDL and Lava.

Domain-specific languages

Haskell, Java, C, C# and so forth are general purpose programming languages: in
principle we can program anything we like in Haskell, Java or C. Other languages
are designed to work in particular application areas: we call these domain-specific
languages or DSLs. Let’s look at some examples.

• VHDL and Lava are DSLs for hardware design: instead of data types for strings,
lists and so forth, the languages have data types representing transistors, logic
gates, signals and so on. The results of processing them are circuit designs and
layouts, to be fed to fabricators.

• This book is being written using LaTeX, a text processing language. I write
commands to express layout and other configurations and these, together with
pictures (see below), get processed into a PDF file. PDF itself is a low-level
language that also gets processed into bitmaps (on a display of some sort) or
marks on paper (by printing).

• Images can be described in ‘little languages’. The Scalable Vector Graphics
(SVG) standard provides a way of building high-quality images that can be
rendered in a browser or into PDF. Bitmaps themselves are described in a par-
ticular data format.

• We can see the spreadsheet language of Excel as the most widely used func-
tional programming language in the world. Excel formulas describe how val-

1See the entry for "Turtles all the way down" in Wikipedia.
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Figure 19.2: Stand-alone and embedded DSLs

ues in one call are calculated from values in others, and re-computing values
is done automatically when values change.

Some DSLs serve to model the world: an Excel spreadsheet embodying a business
plan will allow us to forecast future profits, for example. Others more directly affect
the world: a DSL for robotic control will make machines move, while a VHDL design
will ultimately become a complex physical artifact.

DSLs like VHDL, LaTeX and SVG have many of the features of general purpose
languages. Their programs have structure, they have simple data types – like num-
bers, as well as ways of naming sub-components for re-use: think of the ‘cut and
paste’ to replicate a formula in Excel, or named circuits in VHDL.

On the other hand, they also have special types and constructs designed to make
them work particularly well in their own domain. So, if you want to write a book,
draw a picture, design a circuit or work out your cash flow, you will most likely use
the DSL rather than starting from scratch to program the solution in Haskell or Java.

Implementing Domain-Specific Languages

So, suppose that we decide to implement a DSL using Haskell: how do we start?
The first decision we have to take is whether or not the language is stand-alone or
embedded, as pictured in Figure 19.2.

A language is stand-alone if it uses Haskell for its implementation, but nothing
else. An example of this is the ‘little language’ for the calculator covered earlier in
the book. Expressions in this language look like

s:(23-s)
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and we have to parse or translate them into Haskell to interpret them. Another way
of seeing that this language is stand-alone is the fact that we could choose to im-
plement it in any programming language whatever: the process would still involve
parsing strings like "s:(23-s)" into that programming language to work with them.
Another example of a stand-alone DSL would be a language for pictures with expres-
sions like:

Put pic1 above pic2, and this picture beside a copy of itself.

The advantages of implementing a stand-alone DSL are that we have complete
control of the syntax of the language, and also of its semantics – that is what pro-
grams in the language mean. We can also have complete control of any error mes-
sages that we send back to a user if things go wrong in some way: for instance if an
expression is mal-formed.

On the other hand, we have to build the implementation up from scratch: the
string "23" has nothing intrinsically to do with the number 23, until our implemen-
tation defines that we should interpret that string as that particular number.

On the other hand, a DSL is embedded if it builds on features of the host lan-
guage in which it is written. Going back to the examples, we can build a language for
expressions using algebraic data types, building on the numbers built into Haskell.
Doing this, we get numerical expressions like this

Assign s (Op Sub (Lit 23) s)

and for pictures, we can use the normal syntax for function application and local
definitions to describe pictures this way:

let
pic = pic1 ‘above‘ pic2 (pic)

in
pic ‘beside‘ pic

The advantage of the embedded approach is that we can ‘piggy back’ on the facilities
of Haskell to make the language implementation much more straightforward. To use
the language a user doesn’t necessarily need to understand the whole of Haskell: for
instance putting together pictures just needs let and (infix) function application.

On the other hand, we do lose the freedom to completely determine the syntax:
for Haskell functions to be infix they do need to use ‘...‘ or operator syntax: we
can’t just say that a function should be infix. It is also possible that the error mes-
sages that come back from a DSL might ‘leak’ and say something about the host
language which is not meaningful to the user.

On balance, it is the embedded approach which has been successful in Haskell,
and that is what we’ll concentrate on here; in the remainder of the chapter, when we
say DSL, we’ll mean ‘embedded DSL’.

19.2 Why DSLs in Haskell?

Why has Haskell been particularly successful as a language for embedding DSLs? A
number of features combine to make it a good choice.
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Purely functional. Haskell functions are really functions in the mathematics sense:
the output of a function is determined only by its inputs, and it has no side-
effects. A Haskell function can therefore be used directly to model ways in
which elements of a domain can be combined together into more complex
objects.

In the pictures example, there is a function which takes two pictures and re-
turns the picture made up of one argument above the other Contrast this with
an object-oriented programming language like Java. In OO style the combi-
nation operation would be a method on an object, which would destructively
update that object in some way.

Higher-order. Functions in Haskell are themselves data values, and so can be used
to model elements of the domain of interest. The operations which work over
the domain elements are then higher-order functions, which are often called
combinators, as they are used to combine other functions. Many DSLs in
Haskell use functions: parsers are represented by functions in Chapter 17,
strategies in Rock - Paper - Scissors are functions (Chapter 8). In both cases
there are sets of combinators too: for parsers in Section 17.5 and for strategies
in Section 12.2.

Again, this representation of functions as data is not accessible in an OO lan-
guage like Java, and even if closures are added to Java at some point in the fu-
ture it is unlikely that their will be so directly accessible as functions in Haskell.

Expressive type system. Haskell’s type system is both expressive and rigorous: it
is possible to express complex constraints on the type of functions, and for
these to be checked statically, so that no type errors occur at run time. The
extensions to the type system implemented in GHC make the language more
powerful, too.

The effect of this is to make it easier for the types of a DSL to be reflected in
the types of Haskell itself; obviously this is not always the case, since domain-
specific constraints may be of a different nature, only allowing objects of the
same ‘size’ or ‘shape’ to be combined, for instance, but Haskell is a better
choice of language than one with a weaker type system.

Monadic do notation. Haskell is purely functional, but also allows side-effecting
computations to be described by programs in the do notation. Monads in
Haskell can describe ‘impure’ aspects of languages such as I/O, naming or
identifying objects, parallelism and so forth, and this gives a way for a pure
language like Haskell to host not only pure DSLs but also more general DSLs.

19.3 Shallow and deep Embeddings

This section looks at the two main approaches to writing an embedded domain-
specific language in Haskell.



518 CHAPTER 19. DOMAIN-SPECIFIC LANGUAGES

DSL

Model

World

DSL

World

Shallow Deep

program

run

program

interpret

run

compileModel

Representation

transformation

Figure 19.3: Shallow and deep embeddings

Shallow embeddings

We have already seen that we can build a domain-specific language for pictures;
indeed, we saw two different ways of modelling pictures in Haskell in Section 1.13.
First we saw that we could manipulate SVG pictures, as shown in Figure 1.2, and
then we saw that pictures can be represented by lists of strings. Both of these DSLs
are what are called shallow embeddings: the pictures are directly modelled by the
SVG data or the list of strings, and the operations over pictures are functions over
that data. Taking the list model, we have:

type Picture = [[Char]]

horse :: Picture
horse = ...

above, beside :: Picture -> Picture -> Picture
above = (++)
beside = zipWith (++)

flipH, flipV :: Picture -> Picture
flipH = reverse
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flipV = map reverse

... etc. ...

Using the Picture DSL

We can use an embedded DSL like Picture in a number of ways. Using the API
provided, together with function application we can describe objects of the domain
like this:

above horse horse :: Picture

We can also use local definitions in descriptions of more complex objects, like (pic)
on page 516, which uses a let to define a sub-object used in the overall definition.

We can also define new functions over the domain too, as well as types which
extend the original domain. In fact there are two possible ways of doing extending
the functionality. We can either implement them on top of the existing functionality,
as in the definition of rotate:

rotate = flipV . flipH

or we can manipulate the underlying data types, like this:

substChar x y
= map (map (\z -> if z==x then y else z))

to give an entirely new operation.
DSL users don’t have to be Haskell experts: users can build applicative expres-

sions and define simple functions like rotate without being knowledgeable about
Haskell; to define something like substChar requires more, but can still be achieved
with relatively limited exposure to parts of the language relevant to the particular
DSL.

Deep embeddings

An alternative approach is to build a deep embedding. A deep embedding builds a
syntactic representation of pictures, like this:

data Pic = Horse |
Above Pic Pic |
Beside Pic Pic |
FlipH Pic |
FlipV Pic |
...

so that the corresponding Pic to the Picture above is

Above Horse Horse :: Picture

Once we have a representation like this, we can do a whole lot of different things
with it:
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• We can interpret or convert a Pic to a Picture like this:

interpretPic :: Pic -> Picture
interpretPic Horse = horse
interpretPic (Above pic1 pic2)

= above (interpretPic pic1) (interpretPic pic2)
...

• We can transform the Pic: we can remove redundant flips, and move all flips
inwards through the other constructors, like this:

tidyPic :: Pic -> Pic

tidyPic (FlipV (FlipV pic))
= tidyPic pic

tidyPic (FlipV (FlipH pic))
= FlipH (tidyPic (FlipV pic)) (†)

tidyPic (FlipV (Above pic1 pic2))
= Above (tidyPic (FlipV pic1)) (tidyPic (FlipV pic2))

tidyPic (FlipV (Beside pic1 pic2))
= Beside (tidyPic (FlipV pic2)) (tidyPic (FlipV pic1))

... similarly for FlipH ...

(Note that equation (†) is designed to put all FLipVs inside the FlipH con-
structors).

The result of this process is that we have located the flip operations at the pic-
tures at the leaves of the tree. For many of these we will have efficient mech-
anisms for performing the operation: for example, over a symmetrical picture
we need do nothing.

• As well as transforming the Pic representation we can also analyze it. For
instance, if we had the ability to overlay one picture on top of another, it would
be possible to analyse whether the top picture completely overlaid the bottom
one, and so whether the bottom one could be completely discarded from the
representation.

• Finally, because we have a representation of domain objects, we can directly
compile these into executable ‘machine code’. In the case of Pic this might be
a compilation into PDF or PostScript, which can then be printed directly.

Using the Pic DSL

In using a deeply-embedded DSL like Pic we can interpret expressions, and so de-
scribe objects in the model just as we did for Picture earlier. To work directly with
values of Pic type we need to understand appreciative syntax for data types, and in
writing transformations and analyses we’ll need this knowledge as well.
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Shallow or deep?

If you are going to implement a DSL, should you make it shallow or deep? The ad-
vantages of the shallow embedding are, first, that it is a simple implementation of
the semantics of the domain that you are interested in. Secondly, if we want to add
new operations to the language, that’s straightforward, as we saw when we discussed
how to use an embedded DSL earlier.

On the other hand, a deep embedding allows us to do much more than sim-
ply manipulating the domain: we’re able to manipulate representations, and so to
transform, compile etc. On the other hand, extending a deep embedding is more
complex: representation and all the interpretation, transformation and analysis all
need to be extended to handle and addition to the representation.

19.4 A DSL for regular expressions

Regular expressions give a way of writing down patterns in which letters or patterns
which can be sequenced, repeated or chosen between. For instance, as we first saw
in Section 12.3, the regular expression ((a|b)(a|b))* will match all strings of as
and bs of even length. This section introduced an implementation of regular ex-
pressions through the type

type RegExp = String -> Bool

This is a typical example of a shallow DSL, mapping the domain directly to some-
thing that models their behaviour: here a function which returns True on those
strings which match the pattern.

It is typical of a Haskell DSL because we have used functions to represent individ-
ual regular expressions, with higher-order functions, or combinators, representing
the ways that regular expressions can be combined together, such as

(|||), (<*>) :: RegExp -> RegExp -> RegExp
star :: RegExp -> RegExp

However, all we can do with this DSL is to check pattern matches, whereas a deep
embedding allows us more. A deep embedding would be based on a data type defi-
nition like this

infixr 7 :*:
infixr 5 :|:

data RE = Eps |
Ch Char |
RE :|: RE |
RE :*: RE |
St RE |
Plus RE
deriving(Eq,Show)
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where we have made fixity declarations which reflect the fixity of the operators, St
binding more tightly than :*:, which binds more tightly than :|:. We can write an
interpreter for RE into RegExp,

interp :: RE -> RegExp

which we leave as an exercise for the reader.
Regular expressions match strings, and RegExp is the type of recognisers for these

expressions: using a recogniser we can tell whether or not a particular string matches
a given expression.

Enumerating

Instead of this writing a recogniser, let’s map a regular expression into a list of all the
strings that it matches. These lists might be infinite, but because Haskell uses lazy
evaluation, that’s not a problem.

enumerate :: RE -> [String]

enumerate Eps = [""]

enumerate (Ch ch) = [[ch]]

enumerate (re1 :|: re2)
= enumerate re1 ‘interleave‘ enumerate re2

enumerate (re1 :*: re2)
= enumerate re1 ‘cartesian‘ enumerate re2

enumerate (St re)
= result

where
result =

[""] ++ (enumerate re ‘cartesian‘ result)

Let’s step through this one clause at a time.

• The only string matching Eps is the empty string, "".

• The only string matching (Ch ch) is the string, containing ch on its own,
[ch].

• The strings matching (re1 :|: re2) either match re1 or re2, so the list
we’re looking for is got by putting together the lists for re1 and re2. Because
these lists might be infinite, we can’t just use ++ to join them together, so in-
stead we will interleave the contents, like this:

interleave :: [a] -> [a] -> [a]
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interleave [] ys = ys
interleave (x:xs) ys = x : interleave ys xs

• The strings matching (re1 :*: re2) are of the form x++y where x matches
re1 and y matches re2. So, we need to generate all possible combinations of
elements from the two listings.

cartesian :: [[a]] -> [[a]] -> [[a]]

cartesian [] ys = []
cartesian (x:xs) ys

= [ x++y | y<-ys ] ‘interleave‘ cartesian xs ys

Supposing that the first argument is x:xs then we get all the combinations by
taking x with all choices from ys, and interleaving the results with all combi-
nations from xs and ys. To give an example,

*RegExp> cartesian [ "", "a", "aa", "aaa"] ["", "b", "bb"]
["","a","b","aa","bb","ab","aaa","abb","aab","aaab","aabb","aaabb"]

• Finally, the definition for (St re) exactly mirrors the informal definition of
‘star e’, that is ‘either match the empty string, or match e followed by star e’.

Extending the DSL

We have given the minimal set of regular expression constructors, but in practice
there are many more in use, such as (e)+ for one or more occurrences of e and (e)?
for zero or one occurrences of e. How could we extend the DSL to include ‘plus’, say?

• We can define a function to define ‘plus’ from other constructors:

plus :: RE -> RE
plus re = re :*: St re

• We can define a new constructor, adding this to RE:

data RE = ... |
Plus RE

What are the advantages and disadvantages of these two proposals?

Function plus. This option has the advantage of simplicity: we don’t need to ex-
tend any other functions once we have added this definition. The disadvan-
tage is that we are always committed to processing (e)+ as e followed by (e)*.

Constructor Plus. This option has the disadvantage that we have to extend all the
functions which deal with the RE type to include the new case of Plus re. The
advantage of this is that we then have the option to deal with this differently
from simply translating it out. For instance, we could make sure that a ‘plus’
was pretty printed as "(e)+" rather than "e(e)*", which would be the result
if we were to take the first option.
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Value recursion: extending the domain

Haskell uses lazy evaluation, and so Haskell data types contain partial and infinite
values. For example, the string

abs = "ab" ++ abs

is a perfectly good member of the String type: our enumeration will not contain
these values, and only contains finite strings.

The RE type also has recursively defined members, like this:

anbn = Eps :|: (a :*: (anbn :*: b))

which describes this set:

*RegExp> enumerate anbn
["","ab","aabb","aaabbb","aaaabbbb","aaaaabbbbb",
"aaaaaabbbbbb","aaaaaaabbbbbbb","aaaaaaaabbbbbbbb",
"aaaaaaaaabbbbbbbbb","aaaaaaaaaabbbbbbbbbb",...

It is well known that this set cannot be described by a regular expression (Aho, Lam,
Sethi, and Ullman 2006), so what is going on here? What we have effectively is an
infinite regular expression, and so that goes beyond what we can usually write as a
regular expression.

This extension is a particular consequence of using a lazy language; it would not
be the case in a strict language like ML or F#. On the other hand, embedding a
DSL in a general purpose language will extend its capability, because it is in a more
powerful context: the point here is that this deep embedding adds elements to the
representation itself.

Transformation and ‘smart constructors’

Regular expressions give us a lot of different ways of writing the same thing, and
often we can simplify regular expressions from their orginal form. Some simple ex-
amples include ((e)*)* and (e)*; ((e)+)* and (e)*; ((e)*)+ and (e)*; ((e)+)+
and (e)+; (e|e) and e. We can describe these simplifications as a function,

simplify :: RE -> RE

simplify (St (St re)) = simplify (St re)
simplify (St (Plus re)) = simplify (St re)
simplify (Plus (St re)) = simplify (St re)
simplify (Plus (Plus re)) = simplify (Plus re)
simplify (re1 :|: re2) =

if sre1==sre2 then sre1 else (sre1 :|: sre2)
where

sre1 = simplify re1; sre2 = simplify re2
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simplify re = re

With this approach we build complex expressions, and then simplify them after-
wards. An alternative is never to build the complicated forms in the first place, and
we do this by defining smart constructors which do the simplification as they are
applied. For example, we can write

starC :: RE -> RE
starC (St re) = re
starC (Plus re) = re
starC re = (St re)

so that nested stars are never built:

*RegExp> starC (starC (starC (Ch ’a’)))
St (Ch ’a’)

As well as simplifying data, smart constructors can be used to enforce constraints
on data, so that, for instance, in building geometrical shapes, lengths of the sides
are positive, and the triangle inequality on the three sides of a triangle hold too:

triangleC :: Float -> FLoat -> Float -> Shape
triangleC a b c

| a>0 && ... && triEq = Triangle a b c
| otherwise = error ("Illegal triangle: " ++ show a ++ ...)

where triEq = ...

The DSLs we have looked at so far are all functional; in the next section we will see
that we can also add other aspects to a DSL, by making it monadic.

Exercises

19.1 Define the interpreter function for RE into RegExp,

interp :: RE -> RegExp

You should use the functions already defined over RegExp to help you in doing
this.

19.2 Choose a suitable notation for writing down regular expressions as strings (e.g.
as used in Section 12.3) and then define functions to parse these strings into
RE, and to pretty-print elements of RE as strings:

parseRE :: String -> RE
prettyRE :: RE -> String

Can you define QuickCheck properties that you would expect these functions
to satisfy?
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19.3 Define a recursive regular expression which will generate all palindromes built
from as and bs.

19.4 [Harder] Can you give a recursive regular expression which generates all (non-
recursive) regular expressions?

19.5 [Harder] Is there any limit to what else you can define using recursive regular
expressions: can you, for example, define all the strings which are strings of as
then bs, and then cs, each of the same length, as in aaabbbccc?

19.6 Show how to extend the DSL to include these constructs:

• To say that an expression is matched a given number of times.
• To match something in a range of characters, e.g. ’a’ to ’z’.
• To match a character in this collection of characters.
• To match a character that is not in this collection of characters.

19.7 [Harder] Show how to extend the DSL to include these constructs:

• To say that an expression should match both of these two expressions.
• To fail to match this regular expression.

19.5 Monadic DSLs

The domain specific languages that we have looked at so far are all functional DSLs:
we embed the language as a functional API or a concrete representation of the lan-
guage as a data type, and then build expressions and functions over that.

We have seen in Chapter 18 that the do notation gives a way of dealing with dif-
ferent kinds of computation: non-deterministic, side-effecting, state-based and so
on. As important, the notation gives us a way of naming objects within our DSL,
and we begin this section by discussing that in the context of a language of pictures.
We will the look at other examples of monadic DSLs with non-functional behaviour,
including the QuickCheck data generation language – where random values are gen-
erated – and hardware description languages.

Naming within a DSL

Haskell provides us with ways of naming values, through top-level and local defini-
tions. A typical expression may take the form

let x=horse; y=horse in
x ‘above‘ y

in which x and y appear to refer to the left-hand and right-hand horses in a picture.
However, this expression has exactly the same meaning as

let x=horse in
x ‘above‘ x
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 pic1:
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Figure 19.4: Positioned images

or indeed the simple horse ‘above‘ horse.
How can we build a DSL so that it allows us to identify particular components

and use these names in the language? Let’s look at the case study of a simple DSL to
lay out pictures. We’d like to

• name pictures as they are positioned, and

• use those names to position other pictures, by placing their NW corner.

An example is shown in Figure 19.4 where

• pic1 is positioned at coordinates (10,10),

• pic2 is positioned at the Center of pic1,

• the third (unnamed) horse is positioned at the SW corner of pic2.

The names will have to be added to the language somehow, and one option is to
build a data structure of the form

[(Name, Picture, Position)]

to keep track of all the information. However, in this case we – as programmers – will
be responsible for checking that names are defined before they are used, that names
are defined uniquely and so forth. We leave it as an exercise for you to try doing this.

The alternative is to use a monadic DSL, so that we can write the program to
position the pictures just like this:

do
pic <- placeId horse (10,10)
pic2 <- positionId horse pic Center
position horse pic2 SW

The underlying implementation is the (Def a)monad, a state monad (as described
in Section 18.6) in which a unique identifier (an Id) is associated with each picture
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that has been positioned. The user interface to the monad is provided by the func-
tions:

placeId :: Picture -> Point -> Def Id
place :: Picture -> Point -> Def ()

positionId :: Picture -> Id -> Position -> Def Id
position :: Picture -> Id -> Position -> Def ()

The place functions put a picture at a particular position; the position functions
position a picture relative to a named picture. In each case there are two variants:
one returning an Id, the other not. We leave the implementation of this as an ex-
tended exercise.

This approach we use here is of value wherever we need to be able to identify
instances of objects within a DSL; other examples include identifying instances of
components in a hardware layout DSL, where the same component is replicated
many times in a design. Monads are of use within DSLs for more than simply nam-
ing, and we turn to the general case now.

Exercises

19.8 Define the state monad (Def a) which implements the information about
the position of pictures, and in particular give the instancedeclaration which
establishes that this is a monad.

19.9 Define the functions placeId, place, positionId and position over the
(Def a) monad.

19.10 Define a function or functions which allow you to extract the pictures from the
(Def a) monad so that they can be rendered somehow.

19.11 [Harder] Give an extension to regular expressions so that sub-components can
be named and the names used subsequently in the expression. An informal
example would be

((a|b)*:x)a<x>

which should match an arbitrary string of as and bs (which is named x) fol-
lowed by an a and then a repeat of the string x. For example; abbaaabbawould
match this regular expression, but abbaabba would not.

You will first need to think about how to make this idea ‘watertight’ and then
for the best way to implement a DSL embodying this.

19.6 DSLs for computation: generating data in QuickCheck

Many domain-specifc languages allow for different kinds of ‘computational effects’:
that might be because the language goes beyond the purely functional – in embody-
ing state, exceptions or whatever – or that it affects the world directly: think of a
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data Info = Number Int | Email String
deriving (Eq, Show)

instance Arbitrary Info where
arbitrary =

do
boo <- arbitrary
if boo

then do
int <- arbitrary
return (Number int)

else do
string <- arbitrary
return (Email string)

Figure 19.5: Generating values of type Info

robotic control language. In this section we’ll look at the example of QuickCheck,
which has at its heart a DSL to describe random or arbitrary data.

Data is generated in QuickCheck using Haskell’s random number generation.
The principal concept is that of a generator,

class Arbitrary a where
arbitrary :: Gen a

where (Gen a) is a monad, returning an arbitrary value of type a. The underlying
representation is a function from a random number to the type a; the monad does
the ‘plumbing’ of passing around random values appropriately.

QuickCheck comes with instances of Arbitrary for many built-in types. You
can see a sample for a particular type by typing, here for the Int type:

sample (arbitrary :: Gen Int)

where the type signature has to be specified to show which type you are interested
in.

Simple data types

If we define types for ourselves, then we need to generate random data for them.
Let’s look at some examples:

data Card = Card Int String
deriving (Eq,Show)

instance Arbitrary Card where
arbitrary =

do
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arbExpr :: Int -> Gen Expr

arbExpr 0 =
do int <- arbitrary

return (Lit int)

arbExpr n
| n>0 =

do
pick <- choose (0,2::Int)
case pick of

0 -> do
int <- arbitrary
return (Lit int)

1 -> do
left <- subExp
right <- subExp
return (Add left right)

2 -> do
left <- subExp
right <- subExp
return (Sub left right)

where
subExp = arbExpr (div n 2)

Figure 19.6: Generating ‘sized’ expressions

int <- arbitrary -- of type Gen Int
string <- arbitrary -- of type Gen String
return (Card int string)

To generate a random Card we need both a random Int and a random String. We
use a do block to do this:

• first we generate an arbitrary integer, and call it int;

• next we generate an arbitrary string, and call it string;

• finally we return the value (Card int string).

Note here that we’re using the notation to name results of computations, that is the
two random values that have been generated. We have given the types of the gen-
erators in comments, we don’t have to make this part of the program because the
type inference mechanism can detect their types from the way that the result is con-
structed.

What happens in the case when there is more than one alternative in the data
type definition? We give an example in Figure 19.5. In this case we pick between
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the two cases by choosing an arbitrary Boolean, boo: in the True case we generate a
(Number int) and otherwise an (Email string).

Recursive generators

In a similar way we can declare an instance for a list type that we define ourselves:

data List a = Empty | Cons a (List a)
deriving (Eq, Show)

instance Arbitrary a => Arbitrary (List a) where
arbitrary = ... exercise ...

While this approach works for the list type, we need to do something more so-
phisticated in the case of generating data for arbitrary recursive types, such as the
expressions used in the calculator case study.

Here we need to control the size of the values generated, so that the recursion
arising from generating expressions within expressions will terminate. We do this
by stating

instance Arbitrary Expr where
arbitrary = sized arbExpr

where the function has type arbExpr :: Int -> Gen Expr, generating expres-
sions based on a size parameter. The sized function does the work of generation to
make sure that termination happens, assuming that we write a sensible definition
for arbExpr, as shown in Figure 19.6. The crucial point here is that the recursively
generated sub-expressions come from the subExpr generator, which is defined to
be arbExpr (div n 2) rather than arbExpr n.

Going further with QuickCheck

We’ve used the basics of QuickCheck in giving generators for simple types. QuickCheck
also provides facilities for controlling the distribution of data by specifying the (rel-
ative) frequency of generators, using

frequency :: [(Int, Gen a)] -> Gen a

For example, the generator

frequency [(1,gen1),(2,gen2)]

We generate values from the gen1 and gen2 in the ratio 1:2, so 33% of the values will
come from gen1. We can use this to give a variant of the generator for expressions
presented in Figure 19.6:

arbExpr :: Int -> Gen Expr

arbExpr 0 = liftM Lit arbitrary
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Showing functions with QuickCheck

To use QuickCheck with randomly-generated function inputs QuickCheck needs to
be able to show the functions that it generates. One way of doing this is

instance Show (a->b) where
show f = "<function>"

but that doesn’t tell us anything about the particular function. Instead, we can use
random data generated by QuickCheck as a sample input to a function, and show the
corresponding input/output pairs for the function. We use the QuickCheck function

sample’ :: Gen a -> IO [a]

to generate a list of samples within the IO monad, and process it like this

sampleFun :: (Arbitrary a, Show a, Show b) =>
(a -> b) -> IO String

sampleFun f =
do

inputs <- sample’ arbitrary
let list = [ (a, f a) | a <- inputs ]
return (showMap list)

where showMap is used to show the list of pairs (an exercise). To make a Show in-
stance we need to extract the String from the IO monad. We use the function

unsafePerformIO :: IO a -> a

which is defined in System.IO.Unsafe. This function should be used with care.
Finally we can say

instance (Arbitrary a, Show a, Show b) => Show (a -> b) where
show = unsafePerformIO . sampleFun

This code is contained in the QCfuns.hs module distributed with the book.

arbExpr n = frequency
[(1, liftM Lit arbitrary),
(2, liftM2 Add subExp subExp),
(2, liftM2 Sub subExp subExp)]

where
subExp = arbExpr (div n 2)

Note that we have used

liftM :: (Monad m) => (a -> b) -> m a -> m b
liftM2 :: (Monad m) => (a -> b -> c) -> m a -> m b -> m c
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Testing higher-order functions in QuickCheck

Using the Show instance for functions in the module QCfuns.hs we can now see the
functions that falsify a property such as

prop_map f g xs =
map (f::Int->Int) (map (g::Int -> Int) xs) == map (g.f) xs

when we test it using QuickCheck:

*QC> quickCheck prop_map
*** Failed! Falsifiable (after 3 tests and 2 shrinks):
(1|->1) ,(0|->0) ,(-1|->0) , ... function f ...
(1|->-1) ,(-1|->0) ,(-2|->0) , ... function g ...
[1]

(where some of the function values have been elided). It is not difficult to see how
the functions do indeed give different results on 1 when applied in different compo-
sition orders. Of course, if we replace g.f by f.g in the property, then it passes all
the tests.

Without the type annotations this would be a polymorphic property, and GHCi
would be unable to decide for which types to generate the data, so the type annota-
tions are essential here.

Overloading and QuickCheck

As we saw when we looked at infoCheck in Chapter 13, page 312, it is possi-
ble to use overloading to make a DSL easier to use: instead of a whole collection
of infoCheckN functions of different types, we were able to overload the name
infoCheck to denote them all; the same is done in definingquickCheck.

If it were possible to overload constructor names, then we could avoid using liftM
etc. in defining the arbExpr generator on page 531; we could manage this instead
by defining overloaded functions lit and so forth, mirroring the constructors, and
so hiding the ‘plumbing’ underlying the monadic language.

which ‘lift’ an operation over values to the corresponding function over monadic
values. The values generated by this new generator for Exprs will be larger, as only
20% at any level will be literals (rather than 33% in our earlier definition).

QuickCheck has had a wide impact on programming practice in Haskell and
other languages. The original paper was published in 2000, and in 2010 it was awarded
an award for being the most influential paper presented at the International Confer-
ence on Functional Programming in 2000. The citation reads

This paper presented a very simple but powerful system for testing Haskell
programs that has had significant impact on the practice of debugging
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programs in Haskell. The paper describes a clever way to use type classes
and monads to automatically generate random test data. QuickCheck
has since become an extremely popular Haskell library that is widely
used by programmers, and has been incorporated into many under-
graduate courses in Haskell. The techniques described in the paper
have spawned a significant body of follow-on work in test case gener-
ation. They have also been adapted to other languages, leading to their
commercialisation for Erlang and C.

More information about using QuickCheck can be found in a number of places, in-
cluding in the original paper on QuickCheck, (Claessen and Hughes 2000), as well as
follow-up papers (Claessen and Hughes 2002; Claessen and Hughes 2003); in other
texts on programming, including (O’Sullivan, Stewart, and Goerzen 2008), and on-
line at URL. Note that there are a small number of differences between QuickCheck
1 and 2; we use version 2 in this text.

Exercises

19.12 Define a function which will give a pretty printed version of a sample from the
generator for expressions.

19.13 Define QuickCheck generators for the types used in the interactive version of
the calculator, as described in Section 18.3. Define properties that you would
expect (parts of) the calculator to satisfy, and test them using your generators
and QuickCheck.

19.14 Define a function

showMap :: (Show a, Show b) => [(a,b)] -> String

so that [(1,1),(0,0),(-2,0)] is shown as

(1|->1) ,(0|->0) ,(-2|->0)

19.7 Taking it further

This chapter is intended to be an introduction to how DSLs are written in Haskell.
We have been able to discuss the two major ideas underlying Haskell DSLs: first,
we have seen that having functions as data allows us to use functions to represent
complex behaviours from the domain. Secondly, we have seen that monads – and in
particular the donotation – allow us to write languages with ‘effects’, such as naming,
side-effects or non-determinacy, safely within Haskell.

However, we have only really scratched the surface of this topic. Let’s look at
the particular example of the Paradise DSL (Augustsson, Mansell, and Sittampalam
2008), a two-stage language for building components which are used for pricing fi-
nancial products. The first stage constructs models of these components; the sec-
ond compiles them into Excel or .NET code, for integration with other financial
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modelling tools. In order to gain type safety, the implementation uses phantom
types to avoid constructing objects which are ill-typed from the point of view of the
domain (even if they are perfectly OK in Haskell). For ease of use numerical con-
stants and operators are overloaded – using Haskell classes – so that they apply not
only to numbers but also to numerical computations: this avoids introducing the
liftM functions we saw in the previous section. The full implementation uses fa-
cilities well beyond the Haskell 2010 standard, many of which are implemented in
GHC, and this is by no means unusual for larger-scale DSLs.

Naming in DSLs can be handled in many different ways. We saw already that
using a monadic approach gives us naming, but names in a monad aren’t given re-
cursive definitions. Looking at the example of a small logic circuit, note that the
output from the XOR gate is fed back into the gate after a delay.

XOR
Reg

input
output

When this is programmed in a typical hardware description DSL (using a shallow
embedding) will appear like this:

parity :: Bit -> Bit

parity input = output
where
output = xor (delay output) input

How to observe the sharing of the output value? One approach is to allow a ‘recur-
sive do’ which builds recursive value bindings within a monad, so allowing recursion
in the DSL; (Gill 2009), discusses this and other approaches, proposing a new mech-
anism based on using stable names and the IO monad.

Other example DSLs in Haskell include HaXML (Wallace and Runciman 1999) for
XML programming, Orc (Launchbury and Elliott 2010) for concurrent orchestration
and Lava (Bjesse, Claessen, Sheeran, and Singh 1998) for hardware description. A
list of many more papers on specific DSLs and general implementation approaches
can be found on the Haskell Wiki.
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Chapter 20

Time and space behaviour

This chapter explores not the values which programs compute, but the way in which
those values are reached; we are interested here in program efficiency rather than
program correctness.

We begin our discussion by asking how we can measure complexity in general,
before asking how we measure the time and space behaviour of our functional pro-
grams. We work out the time complexity of a sequence of functions, leading up to
looking at various implementations of the Set abstype.

The space behaviour of lazy programs is complex: we show that some programs
use less space than we might predict, while others use more. This leads into a dis-
cussion of folding functions into lists, and we introduce the foldl’ function, which
folds from the left, and gives more space-efficient versions of folds of operators
which need their arguments – the strict operations. In contrast to this, foldr gives
better performance on lazy folds, in general.

In many algorithms, the naive implementation causes recomputation of parts
of the solution, and thus a poor performance. In the final section of the chapter
we show how to exploit lazy evaluation to give more efficient implementations, by
memoizing the partial results in a table.

20.1 Complexity of functions

If we are trying to measure the behaviour of functions, one approach is to ask how
much time and space are consumed in evaluations for different input values. We
might, for example, given a function fred over the natural numbers, count the num-
ber of steps taken in calculating the value of fred n for natural numbers n. This
gives us a function, call it stepsFred, and then we can ask how complex that func-
tion is.

One way of estimating the complexity of a function is to look at how fast it grows
for large values of its argument. The idea of this is that the essential behaviour of
a function becomes clearer for large values. To start with, we examine this idea
through an example. How fast does the function

537
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f n = 2*n2 + 4*n + 13

grow, as n gets large? The function has three components:

• a constant 13,

• a term 4*n, and

• a term, 2*n2. (Note that here we use the mathematical notation for powers,
n2, rather than the Haskell notation, nˆ2.)

As the values of n become large, how do these components behave?

• The constant 13 is unchanged;

• the term 4*n grows like a straight line; but

• a square term, 2*n2, will grow the most quickly.

For ‘large’ values of n the square term is greater than the others, and so we say that
f is of order n2, O(n2). In this case the square dominates for any n greater than or
equal to 3; we shall say exactly what is meant by ‘large’ when we make the definition
of order precise. As a rule of thumb we can say that order classifies how functions
behave when all but the fastest-growing components are removed, and constant
multipliers are ignored; the remainder of the section makes this precise, but this
explanation should be sufficient for understanding the remainder of the chapter.

The notation n2 is the usual way that mathematicians write down ‘the function
that takes n to n2’. This is the notation which is generally used in describing com-
plexity, and so we use it here. In a Haskell program to describe the function we would
either write \n -> nˆ2 or use the operator section (ˆ2).

In the remainder of this section we make the idea of order precise, before exam-
ining various examples and placing them on a scale for measuring complexity.

The ‘big-Oh’ and Theta notation – upper bounds

A function f :: Integer -> Integer is O(g) – pronounced ‘big-Oh g’ – if there
are positive integers m and d, so that for all n∏m,

f n ∑ d*(g n)

The definition expresses the fact that when numbers are large enough (n∏m) the
value of f is no larger than a multiple of the function g, namely (d*).g.

For example, f above is O(n2) since, for n greater than or equal to 1,

2*n2 + 4*n + 13 ∑ 2*n2 + 4*n2 + 13*n2 = 19*n2

so the definition is satisfied by taking m as 1 and d as 19.
Note that the measure gives an upper bound, which may be an overestimate;

by similar reasoning, f is O(n17) as well. In most cases we consider the bound will
in fact be a tight one. One way of expressing that g is a tight bound on f is that in
addition to f being O(g), g is O(f); we then say that f is£(g) – pronounced ‘Theta
g’ – our example f is in fact£(n2).
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A scale of measurement

We say that f ø g if f is O(g), but g is not O(f); we also use f ¥ g to mean that f
is O(g) and simultaneously g is O(f).

We now give a scale by which function complexity can be measured. Constants
which are O(n0) grow more slowly than linear – O(n1) – functions, which in turn
grow more slowly than quadratic functions of order O(n2). This continues through
the powers, and all the powers (nk) are bounded by exponential functions, such as
2n.

n0 ø n1 ø n2 ø ... ø nk ø ... ø 2n ø ...

Two other points ought to be added to the scale. The logarithm function, log, grows
more slowly than any positive power, and the product of the functions n and log n,
n(log n) fits between linear and quadratic, like this:

n0 ø log n ø n1 ø n(log n) ø n2 ø ...

Counting

Many of the arguments we make will involve counting. In this section we look at
some general examples which we will come across in examining the behaviour of
functions below.

Example

1. The first question we ask is – given a list, how many times can we bisect it, before
we cut it into pieces of length one? If the length is n, after the first cut, the length of
each half is n/2, and after p cuts, the length of each piece is n/(2p). This number
will be smaller than or equal to one when

(2p) ∏ n > (2(p-1))

which when we take log2 of each side gives

p ∏ log2 n > p-1

The function giving the number of steps in terms of the length of the list, n, will thus
be£(log2 n).

2. The second question concerns trees. A tree is called balanced if all its branches
are the same length. Suppose we have a balanced binary tree, whose branches are
of length b; how many nodes does the tree have? On the first level it has 1, on the
second 2, on the kth it has 2(k-1), so over all b+1 levels it has

1 + 2 + 4 + ... + 2(k-1) + ... + 2b = 2(b+1) - 1

as illustrated in Figure 20.1.
We thus see that the size of a balanced tree is£(2b) in the length of the branches,

b; taking logarithms, a balanced tree of size n will therefore have branches of length
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Figure 20.1: Counting the number of nodes of trees.

£(log2 n) in the size of the tree. If a tree is not balanced, the length of its longest
branch can be of the same order as the size of the tree itself; see Figure 20.1 for an
example.

3. Our final counting question concerns taking sums. If we are given one object
every day for n days, we have n at the end; if we are given n each day, we have n2;
what if we are given 1 on the first day, 2 on the second, and so on? What is the sum
of the list [1 .. n], in other words? Writing the list backwards, as well as forwards,
we have

1 + 2 + 3 + ... + (n-1) + n +
n + (n-1) + (n-2) + ... + 2 + 1

adding vertically at each point we have a sum of (n+1),

(n+1) + (n+1) + (n+1) + ... + (n+1) + (n+1)

and this sum occurs n times, so

sum [1 .. n] = n*(n+1) ‘div‘ 2

which makes it £(n2), or quadratic. In a similar way, the sum of the squares is
£(n3), and so on.

Exercises

20.1 Show that the example

f n = 2*n2 + 4*n + 13

is£(n2).

20.2 Give a table of the values of the functions n0, log n, n1, n(log n), n2, n3 and
2n for the values

0 1 2 3 4 5 10 50 100 500 1000 10000 100000 10000000
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20.3 By giving the values of d, m and c (when necessary), show that the following
functions have the complexity indicated.

f1 n = 0.1*n5 + 31*n3 + 1000 O(n6)
f2 n = 0.7*n5 + 13*n2 + 1000 £(n5)

20.4 Show that nk ø 2n for all positive k. By taking logarithms of both sides, show
that log n ø nk for all positive k.

20.5 Show that

log ¥ ln ¥ log2

and in fact that logarithms to any base have the same rate of growth.

20.6 The function fib is defined by

fib 0 = 0
fib 1 = 1
fib m = fib (m-2) + fib (m-1)

Show that nk ø fib n for all k.

20.7 Show that ø is transitive – that is føg and gøh together imply that føh.
Show also that ¥ is an equivalence relation.

20.8 If f is O(g), show that any constant multiple of f is also of the same order. If
f1 and f2 are O(g), show that their sum and difference are also O(g). Are the
same results valid with£ replacing O?

20.9 If f1 is O(nk1) and f2 is O(nk2), show that their product,

f n = f1 n * f2 n

is O(n(k1+k2)).

20.10 Prove by induction over the natural number n that

1 + 2 + 4 + ... + 2n = 2(n+1) - 1
1 + 2 + ... + n = n*(n+1) ‘div‘ 2
12 + 22 + ... + n2 = n*(n+1)*(2*n+1) ‘div‘ 6
13 + 23 + ... + n3 = (n*(n+1) ‘div‘ 2)2
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20.2 The complexity of calculations

How can we measure the complexity of the functions we write? One answer is to use
an implementation of Haskell, which can be expected to produce some diagnostic
information about evaluation. We examine this option in Section 20.5, page 552,
but for the moment we opt for a cleaner model of what is going on, and we choose
to analyse the calculations we have been using. There are three principal measures
we can use.

• The time taken to compute a result is given by the number of steps in a calcu-
lation which uses lazy evaluation.

• The space necessary for the computation can be measured in two ways. First,
there is a lower limit on the amount of space we need for a calculation to com-
plete successfully. During calculation, the expression being calculated grows
and shrinks; obviously, we need enough space to hold the largest expression
built during the calculation. This is often called the residency of the compu-
tation, we shall call it the space complexity.

• We can also make a measure of the total space used by a computation, which
in some way reflects the total area of the calculation; it is of interest to imple-
menters of functional languages but for users (and for us) the first two are the
crucial measures.

How then do we measure the complexity of a function?

Complexity measures

We measure the complexity of the function f by looking at the time and space com-
plexity as described above, as functions of the size of the inputs to f. The size of a
number is the number itself, while the size of a list is given by its length, and of a tree
by the number of nodes it contains. We now look at a series of examples.

Example

1. Let us start with the example of fac.

fac :: Integer -> Integer
fac 0 = 1
fac n = n * fac (n-1)

Working through a calculation, we have

fac n
; n * fac (n-1)
; ...
; n * ((n-1) * ... * (2 * (1 * 1)) ...) (facMax)
; n * ((n-1) * ... * (2 * 1) ...)
; n * ((n-1) * ... * 2 ...)
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; ...
; n!

The calculation contains 2*n+1 steps, and the largest expression, (facMax), con-
tains n multiplication symbols. This makes the time and space complexity both
£(n1), or linear.

2. Next we look at insertion sort. Recall that

iSort :: Ord a => [a] -> [a]

iSort [] = []
iSort (x:xs) = ins x (iSort xs)

ins x [] = [x]
ins x (y:ys)

| (x<=y) = x:y:ys
| otherwise = y:ins x ys

A general calculation will be

iSort [a1,a2,...,an-1,an]
; ins a1 (iSort [a2,...,an-1,an])
; ...
; ins a1 (ins a2 ( ... (ins an-1 (ins an []))...))

followed by the calculation of the n ins’s. What sort of behaviour does ins have?
Take the general example of

ins a [a1,a2,...,an-1,an]

where we assume that [a1,...,an] is sorted. There are three possibilities:

• In the best case, when a<=a1, the calculation takes 1 step.

• In the worst case, when a>an, the calculation takes n steps.

• In an average case, the calculation will take n/2 steps.

What does this mean for iSort?

• In the best case, each ins will take one step, and the calculation will therefore
take a further n steps, making it O(n1) in this case.

• On the other hand, in the worst case, the first inswill take one step, the second
two, and so on. By our counting argument in Section 20.1 the calculation will
take O(n2) steps.

• In an average case, the ins’s will take a total of

1/2 + 2/2 + ... + (n-1)/2 + n/2
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steps, whose sum is again O(n2), by our observation in Section 20.1 about the
size of the sum 1+2...n.

We therefore see that in most cases the algorithm takes quadratic time, but in some
exceptional cases, when sorting an (almost) sorted list, the complexity is linear in
the length of the list. In all cases the space usage will also be linear.

3. Before looking at another sorting algorithm, we look at the time taken to join
together two lists, using ++.

[a1,a2,...,an-1,an] ++ x
; a1 : ([a2,...,an-1,an] ++ x)
; a1 : (a2 : [a3,...,an-1,an] ++ x)
; ... n-3 steps ...
; a1 : (a2 : ... : (an:x)...)

The time taken is linear in the length of the first list.

4. Our second sorting algorithm, quicksort, is given by

qSort :: Ord a => [a] -> [a]

qSort [] = []
qSort (x:xs) = qSort [z|z<-xs,z<=x] ++ [x] ++ qSort [z|z<-xs,z>x]

When the list is sorted and contains no duplicate elements, the calculation goes
thus:

qSort [a1,a2,...,an-1,an]
; ... n steps ...
; [] ++ [a1] ++ qSort [a2,...,an-1,an]
; ... n-1 steps ...
; a1 : ([] ++ [a2] ++ qSort [a3,...,an])
; ... n-2 steps ...
; ...
; a1 : (a2 : (a3 : ... an:[])
; [a1,a2,...,an-1,an]

Since the number of steps here is 1+2+. . . n, we have quadratic behaviour in this
sorted case. In the average case, we split thus

qSort [a1,a2,...,an-1,an]
; qSort [b1,...,bn/2] ++ [a1] ++ qSort [c1,...,cn/2]

where the list has been bisected. Forming the two sublists will take O(n1) steps,
as will the joining together of the results. As we argued in Section 20.1, there can be
log2nbisections before a list is reduced to one-element lists, so we have O(n1) steps
to perform O(log n) many times; this makes quicksort take O(n(log n)) steps,
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on average, although we saw that it can take quadratic steps in the worst (already
sorted!) case.1

The logarithmic behaviour here is characteristic of a ‘divide and conquer’ algo-
rithm: we split the problem into two smaller problems, solve these and then recom-
bine the results. The result is a comparatively efficient algorithm, which reaches its
base cases in O(log2 n) rather than O(n1) steps.

Exercises

20.11 Estimate the time complexity of the two reverse functions given here:

rev1 [] = []
rev1 (x:xs) = rev1 xs ++ [x]

and

rev2 = shunt []
shunt xs [] = xs
shunt xs (y:ys) = shunt (y:xs) ys

20.12 We can define multiplication by repeated addition as follows:

mult n 0 = 0
mult n m = mult n (m-1) + n

‘Russian’ multiplication is defined by

russ n 0 = 0
russ n m

| (m ‘mod‘ 2 == 0) = russ (n+n) (m ‘div‘ 2)
| otherwise = russ (n+n) (m ‘div‘ 2) + n

Estimate the time complexity of these two multiplication algorithms.

20.13 Estimate the time complexity of the Fibonacci function.

20.14 Show that the worst-case time behaviour of the merge sort function below is
O(n(log n)).

mSort :: Ord a => [a] -> [a]

mSort xs
| (len < 2) = xs

1The explanation we have given here depends upon us rearranging the order of the calculation steps;
this is legitimate if we observe that lazy evaluation of combinators is optimal, in the sense of taking fewest
steps to reach a result; any rearrangement can only give more steps to our calculation, so the bound of
n(log n) holds.
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| otherwise = mer (mSort (take m xs)) (mSort (drop m xs))
where
len = length xs
m = len ‘div‘ 2

mer :: Ord a => [a] -> [a] -> [a]

mer (x:xs) (y:ys)
| (x<=y) = x : mer xs (y:ys)
| otherwise = y : mer (x:xs) ys

mer (x:xs) [] = (x:xs)
mer [] ys = ys

20.3 Implementations of sets

We first saw the Set abstract data type in Section 16.8, where we gave an imple-
mentation based on ordered lists without repetitions. Alternatively we can write an
implementation based on arbitrary lists whose elements may occur in any order and
be repeated.

type Set a = [a]

empty = []
memSet = member
inter xs ys = filter (member xs) ys
union = (++)
subSet xs ys = and (map (member ys) xs)
eqSet xs ys = subSet xs ys && subSet ys xs
makeSet = id
mapSet = map

We can also write an implementation based on the search trees of Section 16.7. We
now compare the time complexity of these implementations, and summarize the
results in the table which follows.

Lists Ordered lists Search trees
(average)

memSet O(n1) O(n1) O(log n)
subSet O(n2) O(n1) O(n(log n))
inter O(n2) O(n1) O(n(log n))
makeSet O(n0) O(n(log n)) O(n(log n))
mapSet O(n1) O(n(log n)) O(n(log n))

As we can see from the table, there is no clear ‘best’ or ‘worst’ choice; depending
upon the kind of set operation we intend to perform, different implementations
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make more sense. This is one more reason for providing the abstract data type
boundary beneath which the implementation can be changed to suit the use to
which the sets are being put without any need to change the user programs. Us-
ing a variant of search trees which are ‘balanced’ so that all branches are of almost
the same length, it is possible to achieve linear complexity for subSet and inter on
average.

Exercises

20.15 Confirm the time complexities given in the table above for the two list imple-
mentations of sets.

20.16 Implement the operations subSet, inter, makeSet and mapSet for the search
tree implementation, and estimate the time complexity of your implementa-
tions.

20.17 Give an implementation of sets as lists without repetitions, and estimate the
time complexity of the functions in your implementation.

20.4 Space behaviour

A rule of thumb for estimating the space needed to calculate a result is to measure
the largest expression produced during the calculation. This is accurate if the result
being computed is a number or a Boolean, but it is not when the result is a data
structure, like a list.

Lazy evaluation

Recall the explanation of lazy evaluation in Section 17.1, where we explained that
parts of results are printed as soon as possible. Once part of a result is printed, it
need no longer occupy any space. In estimating space complexity, we must be aware
of this.

Take the example of the lists [m .. n], defined thus

[m .. n]
| n>=m = m:[m+1 .. n]
| otherwise = []

Calculating [1 .. n] gives

[1 .. n]
?? n>=1

; 1:[1+1 .. n]
?? n>=2

; 1:[2 .. n]
; 1:2:[2+1 .. n]
; ...
; 1:2:3:...:n:[]
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where we have underlined those parts of the result which can be output. To mea-
sure the space complexity we look at the non-underlined part, which is of constant
size, so the space complexity is O(n0). The calculation has approximately 2*n steps,
giving it linear time complexity, as expected.

Saving values in where clauses

Consider the example of

exam1 = [1 .. n] ++ [1 .. n]

The time taken to calculate this will be O(n1), and the space used will be O(n0), but
we will have to calculate the expression [1 .. n] twice. Suppose instead that we
compute

exam2 = list ++ list
where
list=[1 .. n]

The effect here is to compute the list [1 .. n] once, so that we save its value after
calculating it in order to be able to use it again. Unfortunately, this means that after
evaluating list, the whole of the list is stored, giving an O(n1) space complexity.

This is a general phenomenon. If we save something by referring to it in a where
clause we have to pay the penalty of the space that it occupies: if the space is avail-
able, fair enough; if not, we have turned a working computation into one which fails
for lack of space.

This problem can be worse! Take the examples

exam3 = [1 .. n] ++ [last [1 .. n]]
exam4 = list ++ [last list]

where
list=[1 .. n]

in which last returns the last element of a non-empty list. The space required by
exam3 is O(n0), while in exam4 it is O(n1), since we hold on to the calculated value
of list even though we require only one value from it, the last. This feature, of
keeping hold of a large structure when we only need part of it, is called a space leak.
In the example here, the problem is clear, but in a larger system the source of a space
leak can be one of the most difficult debugging problems to solve.

The lesson of these examples must be that while it is always sensible not to re-
peat the calculation of a simple value, saving a compound value like a list or a tuple
can increase the space usage of a program.

Saving space?

As we saw in Section 20.2, the naive factorial function has O(n1) space complexity,
as it forms the expression

n * ((n-1) * ... * (1 * 1)...)
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before it is evaluated. Instead, we can perform the multiplications as we go along,
using

newFac :: Integer -> Integer
newFac n = aFac n 1

aFac :: Integer -> Integer -> Integer
aFac 0 p = p
aFac n p = aFac (n-1) (p*n)

and compute the factorial of n using aFac n 1. Now, we examine the calculation

newFac n
; aFac n 1
; aFac (n-1) (1*n)

?? (n-1)==0 ; False
; aFac (n-2) (1*n*(n-1))
; ...
; aFac 0 (1*n*(n-1)*(n-2)*...*2*1)
; (1*n*(n-1)*(n-2)*...*2*1) (needVal)

so that the effect of this program is exactly the same: it still forms a large unevaluated
expression! The reason that the expression is unevaluated is that it is not clear that
its value is needed until the step (needVal).

How can we overcome this? We ought to make the intermediate values needed,
so that they are calculated earlier. We do this here by adding a test; another method
is given in Section 20.5.

aFac n p
| p==p = aFac (n-1) (p*n)

Now the calculation of the factorial of 4, say, is

aFac 4 1
; aFac (4-1) (1*4)

?? (4-1)==0 ; False
?? (1*4)==(1*4) ; True (eqTest)

; aFac (3-1) (4*3)
?? (3-1)==0 ; False
?? (4*3)==(4*3) ; True (eqTest)

; aFac (2-1) (12*2)
; ...
; aFac 0 (24*1)
; (24*1)
; 24

The lines (eqTest) show where the guard p==p is tested, and so where the inter-
mediate multiplications take place. From this we can conclude that this version has
better (constant) space behaviour.
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Exercises

20.18 Estimate the space complexity of the function

sumSquares :: Integer -> Integer
sumSquares n = sumList (map sq [1 .. n])

where

sumList = foldr (+) 0
sq n = n*n

and map and [1 .. n] have their standard definitions.

20.19 Give an informal estimate of the complexity of the text processing functions
in Chapter 7.

20.5 Folding revisited

One of the patterns of computation which we identified in Chapter 10 is folding an
operator or function into a list. This section examines the complexity of the two
standard folding functions, and discusses how we can choose between them in pro-
gram design. Before this we make a definition which expresses the fact of a function
needing to evaluate an argument. This distinction will be crucial to our full under-
standing of folding.

Strictness

A function is strict in an argument if the result is undefined whenever an undefined
value is passed to this argument. For instance, (+) is strict in both arguments, while
(&&) is strict in its first only. Recall that it is defined by

True && x = x
False && x = False (andFalse)

The pattern match in the first argument forces it to be strict there, but equation
(andFalse) shows that it is possible to get an answer from (&&) when the second
argument is undef, so it is therefore not strict in the second argument.

If a function is not strict in an argument, we say that it is non-strict or lazy in
that argument.

Folding from the right

Our definition of folding was given by

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f st [] = st
foldr f st (x:xs) = f x (foldr f st xs)
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which we saw was of general application. Sorting a list, by insertion sort, was given
by

iSort = foldr ins []

and indeed any primitive recursive definition over lists can be given by applying
foldr.

Writing the function applications as infix operations gives

foldr f st [a1,a2,...,an-1,an]
; a1 ‘f‘ (a2 ‘f‘ ... ‘f‘ (an-1 ‘f‘ (an ‘f‘ st))...) (foldr)

and shows why the ‘r’ is added to the name: bracketing is to the right, with the
starting value st appearing to the right of the elements also. If f is lazy in its second
argument, we can see from (foldr) that given the head of the list, output may be
possible. For instance, map can be defined like this

map f = foldr ((:).f) []

and in calculating map (+2) [1 .. n] we see

foldr ((:).(+2)) [] [1 .. n]
; ((:).(+2)) 1 (foldr ((:).(+2)) [] [2 .. n])
; 1+2 : (foldr ((:).(+2)) [] [2 .. n])
; 3 : (foldr ((:).(+2)) [] [2 .. n])
; ...

As in Section 20.4, we see that the space complexity of this will be O(n0), since the
elements of the list will be output as they are calculated. What happens when we fold
a strict operator into a list? The definition of fac in Section 20.2 can be rewritten as

fac n = foldr (*) 1 [1 .. n]

and we saw there that the effect was to give O(n1) space behaviour, since the mul-
tiplications in equation (foldr) cannot be performed until the whole expression
is formed, as they are bracketed to the right. We therefore define a function to fold
from the left.

Folding from the left

Instead of folding from the right, we can define

foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f st [] = st
foldl f st (x:xs) = foldl f (f st x) xs

which gives

foldl f st [a1,a2,...,an-1,an]
; (...((st ‘f‘ a1) ‘f‘ a2) ‘f‘ ... ‘f‘ an-1) ‘f‘ an (foldl)
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We can calculate this in the factorial example, the effect being

foldl (*) 1 [1 .. n]
; foldl (*) (1*1) [2 .. n]
; ...
; foldl (*) (...((1*1)*2)*...*n) []
; (...((1*1)*2)*...*n)

As in Section 20.2, the difficulty is that foldl as we have defined it is not strict in its
second argument. Using the standard function seq

seq :: a -> b -> b

it is possible to make it strict in the second argument. The effect of seq x y is to
evaluate xbefore returning y. We can use seq over any type, since it is a polymorphic
function. If we write

strict :: (a -> b) -> a -> b
strict f x = seq x (f x)

then strict f is a strict version of the function f which evaluates its argument x
before computing the result f x. We can therefore write a strict version of foldl,
called foldl’,

foldl’ :: (a -> b -> a) -> a -> [b] -> a
foldl’ f st [] = st
foldl’ f st (x:xs) = strict (foldl’ f) (f st x) xs

and this definition can be found in the Data.List module. Now, evaluating the
example again,

foldl’ (*) 1 [1 .. n]
; foldl’ (*) 1 [2 .. n]
; foldl’ (*) 2 [3 .. n]
; foldl’ (*) 6 [4 .. n]
; ...

Clearly, this evaluation is in constant space, O(n0). Can we draw any conclusions
from these examples?

Assessing performance in practice

We can get detailed performance information by compiling programs using ghc and
passing the right parameters to the executable program. For the simple examples
here, we define the expressions we are interested in Figure 20.2. This file is compiled
using

ghc Main.hs
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module Main where

main = putStrLn (show (sumI 1 1000000))
-- main = putStrLn (show (sumIA 1 1000000))
-- main = putStrLn (show (sumIS 1 1000000))

sumI :: Integer -> Integer -> Integer
sumI n m
| n>m = 0
| otherwise = n + sumI (n+1) m

sumIA :: Integer -> Integer -> Integer
sumIA n m = accIA n m 0

accIA n m s
| n>m = s
| otherwise = accIA (n+1) m (n+s)

sumIS :: Integer -> Integer -> Integer
sumIS n m = accIS n m 0

accIS n m s
| n>m = s
| otherwise = accIS (n+1) m $! (n+s)

Figure 20.2: Computing the sum n+...+m

and generates the executable file a.out, which we rename perfI.out, perfIA.out
and perfIS.out to distinsguish the three different variants of the main program.

In the module we see three definitions of functions to sum integer ranges: sumI,
a standard fold from the right, sumIA, a (lazy) fold from the left, and sumIS a strict
fold from the left.

As we suggested earlier, we would only expect the last of the three to have rea-
sonable behaviour, and indeed executing the compiled code for the first two gives
this error message:

Stack space overflow: current size 8388608 bytes.
Use ‘+RTS -Ksize -RTS’ to increase it.

The brackets +RTS ... -RTS are used to pass parameters to the Haskell runtime
system. We can increase the stack size and gather post-mortem information using
the flag -sstderr like this:

./perfI.out +RTS -K100000000 -sstderr -RTS

The report this produces is shown in Figure 20.3, which we explain now.
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./perfI.out +RTS -K100000000 -sstderr
500000500000

150,145,752 bytes allocated in the heap
63,269,576 bytes copied during GC
21,122,356 bytes maximum residency (7 sample(s))
15,758,580 bytes maximum slop

45 MB total memory in use (0 MB lost due to fragmentation)

Generation 0: 217 collections, 0 parallel, 1.80s, 1.82s elapsed
Generation 1: 7 collections, 0 parallel, 0.05s, 0.06s elapsed

INIT time 0.00s ( 0.00s elapsed)
MUT time 0.22s ( 0.24s elapsed)
GC time 1.86s ( 1.88s elapsed)
EXIT time 0.00s ( 0.00s elapsed)
Total time 2.07s ( 2.12s elapsed)

%GC time 89.6% (88.5% elapsed)

Alloc rate 695,428,301 bytes per MUT second

Productivity 10.4% of total user, 10.2% of total elapsed

Figure 20.3: Performance of sumI 1 1000000

• The first block of information explains how much memory has been used by
the computation, and it is clear from this that the maximum space used – the
residency – is high.

• In the middle block we see the time devoted to various parts of the computa-
tion. INIT and EXIT explain the time to start and clean up, but the interesting
results are MUT the mutation time – that is time actually computing – and GC,
which is time dealing with storage: recycling information that is not used, and
copying information that is still in use. We can see from this that of the total
time, 89.6% is in GC, so we’re doing something wrong here.

The performance of perfIA.out is twice as bad (!), but for perfIS.out, as shown
in Figure 20.4, we see something much better. How do the two reports compare?

• The mutation time for the two computations is similar for the two: 0.22 sec-
onds for sumI and 0.16 for sumIA.

• On the other hand, the space behaviour is radically different. As we saw ear-
lier, GC time for sumI is almost two seconds, whereas for sumIA it is negligible.

These reports give a clear indication of where problems can occur, and GHC has
other facilities – such as heap profiling – to help users to see where space is sued in
a large system. The GHC documentation will tell you more.
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./perfIS.out +RTS -K100000000 -sstderr
500000500000

126,083,156 bytes allocated in the heap
27,444 bytes copied during GC
5,340 bytes maximum residency (1 sample(s))

11,044 bytes maximum slop
1 MB total memory in use (0 MB lost due to fragmentation)

Generation 0: 242 collections, 0 parallel, 0.00s, 0.00s elapsed
Generation 1: 1 collections, 0 parallel, 0.00s, 0.00s elapsed

INIT time 0.00s ( 0.00s elapsed)
MUT time 0.16s ( 0.17s elapsed)
GC time 0.00s ( 0.00s elapsed)
EXIT time 0.00s ( 0.00s elapsed)
Total time 0.16s ( 0.17s elapsed)

%GC time 1.0% (1.2% elapsed)

Alloc rate 798,252,321 bytes per MUT second

Productivity 98.7% of total user, 90.8% of total elapsed

Figure 20.4: Performance of sumIS 1 1000000

Designing folds

When we fold in a strict function, we will form a list-sized expression with foldr, so
it will always be worth using foldl’. This covers the examples of (+), (*) and so
forth.

We saw earlier that when map was defined using foldr we could begin to give
output before the whole of the list argument was constructed. If we use foldl’
instead, we will have to traverse the whole list before giving any output, since any
foldl’ computation follows the pattern

foldl’ f st1 xs1
; foldl’ f st2 xs2
; ...
; foldl’ f stk xsk
; ...
; foldl’ f stn []
; stn

so in the case of map, foldr is the clear choice of the two.
A more interesting example is given by the function which is True only if a list of

Booleans consists of True throughout. We fold in (&&), of course, but should we use
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foldr or foldl’? The latter will give a constant-space version, but will examine the
entire list. Since (&&) is lazy in its second argument, we might not need to examine
the value returned from the remainder of the list. For instance,

foldr (&&) True (map (==2) [2 .. n])
; (2==2) && (foldr (&&) True (map (==2) [3 .. n]))
; True && (foldr (&&) True (map (==2) [3 .. n]))
; foldr (&&) True (map (==2) [3 .. n])
; (3==2) && (foldr (&&) True (map (==2) [4 .. n]))
; False && (foldr (&&) True (map (==2) [4 .. n]))
; False

This version uses constant space, and may not examine the whole list; foldr is
therefore the best choice.

Beside the examples of(+) and(*), there are many other examples wherefoldl’
is preferable, including:

• Reversing a list. To use foldr we have to add an element a to the end of a list,
x. The operation x++[a] is strict in x, while the ‘cons’ operation (:) is lazy in
its list argument.

• Converting a list of digits "7364" into a number is strict in both the conversion
of the front, 736 and the final character, ’4’.

Since foldl’ consumes an entire list before giving any output, it will be of no use
in defining functions to work over infinite lists or the partial lists we looked at while
writing interactive systems.

Exercises

20.20 Define the functions to reverse a list and to convert a digit list into a num-
ber using both foldr and foldl’ and compare their behaviour by means of
calculation.

20.21 Is it better to define insertion sort using foldr or foldl’? Justify your answer.

20.22 How are the results of foldr and foldl’ related? You may like to use the
functions reverse and flip in framing your answer.

20.23 What is the relationship between foldr and foldl’ when the function to be
folded is

associative: a ‘f‘ (b ‘f‘ c) = (a ‘f‘ b) ‘f‘ c;
has st as an identity: st ‘f‘ a = a = a ‘f‘ st;
commutative: a ‘f‘ b = b ‘f‘ a;

and what is the relationship when all three hold?
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fibP 3
= (y,x+y)

where
(x,y) = fibP 2

= (y1,x1+y1)
where
(x1,y1) = fibP 1

= (y2,x2+y2)
where
(x2,y2) = fibP 0

= (0,1)
= (1,1)

= (1,2)
= (2,3)

Figure 20.5: Calculating fibP 3.

20.6 Avoiding recomputation: memoization

In this section we look at general strategies which allow us to avoid having to recom-
pute results during the course of evaluating an expression. This happens particu-
larly in some recursive solutions of problems, where the solutions to sub-problems
can be used repeatedly.

We begin the discussion by looking again at the Fibonacci function.

fib :: Integer -> Integer
fib 0 = 0
fib 1 = 1
fib n = fib (n-2) + fib (n-1)

This definition is remarkably inefficient. Computing fib n calls fib (n-2) and
fib (n-1) – the latter will call fib (n-2) again, and within each call of fib (n-2)
there will be two calls to fib (n-3). The time complexity of fib is greater than any
power. How might we avoid this recomputation? We explore two ways of augment-
ing the definition to make it efficient; in the first we return a complex data structure
from each call, and in the second we define an infinite list to hold all the values of
the function.

First we observe that to get the value at n we need the two previous values; we
could therefore return both these values in the result.

fibP :: Integer -> (Integer,Integer)
fibP 0 = (0,1)
fibP n = (y,x+y)

where
(x,y) = fibP (n-1)

A calculation is given in Figure 20.5, where different variables x1, y1 and so on have
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been used for the different occurrences of the local variables x and y; this is not
necessary but does make the different occurrences clearer.

As an alternative strategy, we can try to define the list of Fibonacci values, fibs,
directly. The values of the fib function given above now become values at particular
indices:

fibs :: [Integer]
fibs!!0 = 0
fibs!!1 = 1
fibs!!(n+2) = fibs!!n + fibs!!(n+1)

This gives a description of the list, but it is not executable in this form. The first two
lines tell us that fibs = 0 : 1 : rest, while the third equation tells us what the
rest is. The (n+2)nd element of fibs is the nth element of rest; similarly, the
(n+1)st element is the nth element of (tail fibs). We therefore have, for every n,

rest!!n = fibs!!n + (tail fibs)!!n

which says that each element is got by adding the corresponding elements of two
lists, that is

rest = zipWith (+) fibs (tail fibs)

so that putting the parts together, we have

fibs ::[Integer]
fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

a process network computing the Fibonacci numbers. This gives a linear time, con-
stant space algorithm for the problem, in contrast to the pair solution which is linear
in both time and space, since all the nested calls to fibP are built before any result
can be given.

Dynamic programming

The example in this section illustrates a general method of solving problems by
what is known as dynamic programming. Dynamic programming solutions work
by breaking a problem into subproblems but, as in the Fibonacci example, the sub-
problems will not be independent, in general. A naive solution therefore will contain
massive redundancy, which we remove by building a table of solutions to subprob-
lems.

The example we consider is to find the length of a maximal common subse-
quence of two lists – the subsequences need not have all their elements adjacent. In
the examples of

[2,1,4,5,2,3,5,2,4,3] [1,7,5,3,2]

the length of 4 is given by the subsequence [1,5,3,2]. This problem is not simply
a ‘toy’; a solution to this can be used to find the common lines in two files, which
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mLen :: Eq a => [a] -> [a] -> Integer

mLen xs [] = 0
mLen [] ys = 0
mLen (x:xs) (y:ys)

| x==y = 1 + mLen xs ys
| otherwise = max (mLen xs (y:ys)) (mLen (x:xs) ys)

maxLen :: Eq a => [a] -> [a] -> Int -> Int -> Int

maxLen xs ys 0 j = 0 (maxLen.1)
maxLen xs ys i 0 = 0 (maxLen.2)
maxLen xs ys i j

| xs!!(i-1) == ys!!(j-1)
= (maxLen xs ys (i-1) (j-1)) + 1 (maxLen.3)

| otherwise
= max (maxLen xs ys i (j-1)) (maxLen xs ys (i-1) j) (maxLen.4)

maxTab :: Eq a => [a] -> [a] -> [[Int]]

maxTab xs ys
= result

where
result = [0,0 .. ] : zipWith f [0 .. ] result
f i prev

= ans
where
ans = 0 : zipWith g [0 .. ] ans
g j v

| xs!!i == ys!!j = prev!!j + 1
| otherwise = max v (prev!!(j+1))

Figure 20.6: Three algorithms for the maximum common subsequence.

gives the basis of the Unix diff program, which is used, for instance, for comparing
different versions of programs stored in separate files.

The naive solution is given by mLen in Figure 20.6. The interesting part of the
definition is given by the third equation. In the case where the lists have equal first
elements, these elements must be in a maximal common subsequence, so we find
the overall solution by looking in the tails and adding one to the result. More prob-
lematic is the case in which the heads are distinct. We have the choice of excluding
either x or y; in this algorithm we try both possibilities and take the maximal result.
There, of course, is the source of the redundant computations – each of these may
well give rise to a computation of mLen xs ys. How are we to avoid this situation?
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We shall store these results in a table, which will be represented by a list of lists. Once
a result appears in the table, we have no need to recompute it.

As an intermediate step, we rewrite the solution as maxLen which uses list index-
ing, so that

maxLen xs ys u v

is the longest common subsequence in the lists take u xs and take v ys. The
function is given in Figure 20.6, and the definition is a straightforward adaptation of
mLen.

Now we aim to define the table maxTab xs ys so that

(maxTab xs ys)!!u!!v = maxLen xs ys u v

This requirement is made specific by equations (maxLen.1) to (maxLen.4). The
base case is given by (maxLen.1), stating that

(maxTab xs ys)!!0!!v = 0

for all v. In other words,

(maxTab xs ys)!!0 = [0,0 .. ]

so,

result = [0,0 .. ] : ...

The equations(maxLen.2) to(maxLen.4) tell us how to define the listmaxTab!!(i+1)
from the list maxTab!!i, and i, so we can define

maxTab xs ys = result
where
result = [0,0 .. ] : zipWith f [0 .. ] result

where f :: Integer -> [Integer] -> [Integer] is the function taking i and
the previous value, maxTab!!i, to maxTab!!(i+1). Now we have to define this lat-
ter, which appears in the solution as ans.

Equation (maxLen.2) tells us that it starts with 0, and g is the function taking
maxTab!!(i+1)!!j and j to maxTab!!(i+1)!!(j+1), where we are also able to
use the values of maxTab!!i, named by prev. Using these insights, the definition of
g is a straightforward transliteration of (maxLen.3) and (maxLen.4):

ans = 0 : zipWith g [0 .. ] ans
g j v

| xs!!i == ys!!j = prev!!j + 1
| otherwise = max v (prev!!(j+1))

The top-level result is given by calling

maxTab xs ys !! (length xs) !! (length ys)

and this is computed in linear time and space.
Haskell provides arrays which can be used to give a more efficient implementa-

tion of a number of algorithms, including this one here. Further details can be found
in the library module Array.hs and its documentation.
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Greedy algorithms

A greedy solution to a dynamic programming problem works by building up the op-
timal solution by making local choices of what appear to be the best solutions of
sub-problems. In the common subsequence problem, we can think of searching
along the two lists in a single sweep, looking successively for the first points of agree-
ment; we search all pairs of indices smaller than n before looking at n. In an example,
the greedy solution gives

1 2 3

2 4 1 2 3

which is not optimal: the subsequence [1,2,3]has been missed, since we make the
choice of 2 the first element, it is the first point of agreement. This local choice is not
part of an optimal global solution, but the algorithm gives reasonable performance.

In many situations, where local choices are always part of a global solution, a
greedy solution will work. Examples we have seen thus far include

• the line-splitting algorithm we gave in Chapter 7 is optimal in minimizing the
sum of the inter-word spaces when the lines are justified;

• the Huffman codes described in Chapter 15 are optimal in the sense of giving
the shortest possible codings of files. We did not search all possible sets of
codes in giving the Huffman code, rather we built it up from locally sensible
choices.

Exercises

20.24 Give an implementation of the greedy solution to the maximal common sub-
sequence problem, and show that it behaves as explained above on the lists
[1,2,3] and [2,4,1,2,3] above.

20.25 Can you give an improvement of the maximal common subsequence solution
along the lines of fibP, returning a complex (finite) data structure as the result
of a function call, rather than simply one value?

20.26 Finding the ‘edit distance’ between two strings was first discussed in Section
14.5 where we gave a dynamic programming solution to the problem. Show
how you can give an efficient implementation of this algorithm using the tech-
niques of this section, and also how you give a greedy solution to the problem.
How do the two solutions compare?

20.27 Based on the examples of this section, provide a program which gives the dif-
ference between two files, matching the corresponding lines and giving the
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output in a suitable form, such as a list of the pairs of matching line numbers
or a form copied from the Unix diff program.

Summary

In this chapter we have examined the efficiency of lazy functional programs. We
saw that we are able to analyse the time complexity of many of our more straightfor-
ward functions without too much difficulty. To analyse the space behaviour is more
difficult, but we have shown how the space consumption of lazy programs can be
estimated from our calculations.

The introduction of foldl brings the space issue into focus, and the distinc-
tion we made between strict and lazy functions allows us to analyse the different
behaviour of the two folds.

We concluded the discussion with an application of lazy infinite lists to memo-
izing results for reuse; the transition from naive to efficient was done in a systematic
way, which can be carried over to other application areas.

This chapter has provided an introduction to the study of functional program
behaviour; much more information – particularly about functional data structures
– can be found in Okasaki (1998).
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Conclusion

This book has covered the basics of functional programming in the lazy language
Haskell. It has shown how to craft programs, both by giving extensive examples as
each new aspect of the language was introduced, and also by giving a series of larger
case studies that run through the book.

The power of functional programming

A functional programmer models the real world at a high level of abstraction, con-
centrating on what relationships there are between values, embodied in function
definitions. This contrasts with a lower-level view in which the details of how items
are related predominate. For instance, in Haskell lists are simply values, whereas in
C or C++ they become data structures built from pointers, and even in Java or C# it
is difficult to present a suitably abstract model of lists. This higher-level approach
has a number of consequences, which have come out in the course of the book.

• Higher-order functions and polymorphism combine to support the construc-
tion of general-purpose libraries of functions, such as the list functions in the
Haskell standard prelude and library. The map function, for instance,

map :: (a -> b) -> [a] -> [b]

embodies the ‘pattern’ of applying the same transformation to every element
in a list, which will be reused in a host of applications of lists.

Also supporting reuse through overloading are type classes, used for in-
stance in giving the function

elem :: Eq a => a -> [a] -> Bool

which tests for membership of a list using the overloaded equality function.

563



564 CHAPTER 21. CONCLUSION

• The definitions of functions are equations which express properties of the
functions defined. We can also express other properties of functions in a sim-
ilar way. For example, we can relate map and function composition, ‘.’, by
saying that for all functions f and g,

map (f . g) == map f . map g

We can get strong evidence that this property holds by testing it for randomly
generated values of f and g using QuickCheck.

If we want to do some more work, we can prove this property from the defi-
nitions of map and composition. Proof provides a user with assurance about
how a program behaves on all arguments, in contrast to testing which can only
give direct information about its behaviour on a (hopefully) representative se-
lection of inputs.

• Data structures can be introduced in a directly recursive manner, giving trees,
queues and so forth without having to look at their representations. Algo-
rithms are written at the same level as they would be described informally,
in contrast with more traditional approaches which make the representation
very clear.

• Pulling all this together, we can use these and other facilities of Haskell to build
implementations of domain-specific languages (DSLs) embedded in Haskell.
These DSLs allow users to express problems and models in a language appro-
priate to the domain, but at the same time to use all the power of Haskell when
necessary.

A text like this can only provide an introduction to a subject as rich and developed as
functional programming; the rest of this concluding chapter discusses other aspects
of the subject, as well as giving pointers to other sources on the Web and in books
and articles.

Further Haskell

The purpose of this text is to introduce functional programming ideas using the
Haskell language. It covers the important aspects of the language, but does not aim
to be complete. Among the topics omitted are data types with labelled fields, which
resemble records or structures in other languages; strictness annotations, which are
used to make data type constructors strict in some or all of their arguments; details
of the Read class and the numeric types and classes.

Further information about all these can be found in the Haskell language re-
port (Marlow 2010), and the ‘Gentle Introduction’ of (Hudak, Fasel, and Peterson
2000) also contains useful information about some of them, as well as providing an
overview of the language for an experienced functional programmer. Both of these,
as well as many other Haskell resources, can be found at the Haskell home page,
http://www.haskell.org/.
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Where can you go to find out what to do next in Haskell? Again the haskell.org
site has many links, but three specific things you might like to look at are

• Real World Haskell (O’Sullivan, Stewart, and Goerzen 2008) which is available
in print and also online. It starts from the beginning, but goes at a faster pace
than we did here, and so covers a number of practical aspects of Haskell which
we weren’t able to do, such as the foreign function interface. So, it’s the perfect
follow-on read.

• Learn You a Haskell for Great Good! (Lipovača 2010) is a website and soon to
be a printed book which introduces Haskell for those who are familiar with
imperative programming. It’s written in a very approachable style, and com-
plements what we have covered here, as well as going into some topics – like
monads and zippers – in much more detail.

• Pearls of Functional Algorithm Design (Bird 2010) this delightful book looks
at a series of 30 problems, and solves them using the design by calculation
approach, which is ideally suited to writing functional programs in Haskell.

The text has discussed many of the most important functions in the standard pre-
lude but on the whole has avoided discussing the contents of the libraries in detail.
As we explained in Chapter 6, they are documented in Haddock, and this documen-
tation is available online for type- and name-based search in Hoogle. Moreover, the
packages in Hackage are themselves documented and have information available in
Hayoo.

The future of Haskell

Haskell was first defined in 1987, and has been modified and extended a number of
times since then. This text is written in Haskell 2010, which is meant to provide a
stable base system consisting of tried and tested features.

The progress of research in functional programming makes it clear that a lan-
guage like Haskell will not stand still, and Haskell is now undergoing regular lan-
guage standard updates. These are set to incorporate features which have become
de facto parts of the language through their implementation in GHC, as well as more
advanced features, particularly in the type system. The Haskell home page can be
relied upon to contain up-to-date information on the status of Haskell.

Haskell on the web

There are now many resources on Haskell and functional programming to be found
on the wbe. This text itself has a home page at

www.haskellcraft.com

which lists all the links given here. The Haskell home page, Figure 21.1, is at

http://www.haskell.org/
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Figure 21.1: The Haskell home page, www.haskell.org

and that should be your first stop for everything to do with Haskell. As you can see
from the figure, the home page has links to learning resources, to documentation
about libraries and packages, and to the wider Haskell community.

The Haskell community includes online forums (IRC, mailing lists), news (Red-
dit), blogging (Planet Haskell) and help (Stack Overflow). The Haskell Communities
and Activities reports provide a biannual snapshot of what’s going on with Haskell:
the most recent edition is 77 (two-column, A4) pages long, and contains a wealth
of detail on who is doing what with Haskell. Subscribers to Planet Haskell or the
mailing lists also receive Haskell Weekly News, which summarises Haskell-related
software releases, blog entries and other news.

The Haskell language was named in honour of Haskell Brooks Curry. A short
biography and photograph of Curry can be found at

http://www-history.mcs.st-and.ac.uk/Biographies/Curry.html

Other functional programming languages

Haskell is a lazy, strongly typed functional programming language; another is Mi-
randa (Turner 1986; Thompson 1995). In this text laziness is only examined explic-
itly in Chapter 17, and up to that point it looks at aspects of functional programming
which are broadly shared with Standard ML (Milner et al. 1997; Appel 1993), the
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best known and most widely used strict and strongly typed functional language, for
which Paulson (1996) provides an introduction. The latest member of the ML family
of languages, is F# (Smith 2009), which is distributed by Microsoft as a part of Visual
Studio 2010. Since is possible to model lazy evaluation within a strict language, and
Haskell provides facilities to make evaluation strict, the Haskell and ML schools of
programming are very close indeed.

A different style of functional programming, ‘point-free programming’, eschews
variables as much as possible: this was introduced in Backus (1978). Bird and de
Moor (1997) is a text that emphasizes the benefits of this style in supporting program
transformation and also advocates a ‘relational’ style of programming which extends
the functional.

LISP is the oldest established functional language, but it differs from Haskell and
SML in not being strongly typed. An excellent tutorial introduction to programming
in the Scheme dialect of LISP is given in Abelson, Sussman, and Sussman (1996).
Land of Lisp (Barski 2010) is a book, website and music video1 introducing Lisp by
developing a series of games.

Erlang is a concurrent, fault-tolerant, distributed language, based on a func-
tional programming core. Erlang (Armstrong 2007; Cesarini and Thompson 2009)
was developed within Ericsson, and as well as its use in telecoms applications, has
applications in the financial sector, and to high-availability distributed systems in
general.

Two surveys of applications of functional programming languages in large-scale
projects are Runciman and Wakeling (1995) and Hartel and Plasmeijer (1995b), and
there is also up-to-date information about this at the Haskell home page.

Over the last two decades, powerful techniques of implementation of especially
lazy functional languages have been developed. The twin texts (Peyton Jones 1987;
Peyton Jones and Lester 1992) describe the foundations of these in lucid detail.

Where is functional programming going?

The material in this text is an introduction to modern functional programming in
a typed, lazy, language. As the field develops, new techniques and approaches are
continually being developed; a good place to start in learning about these is by look-
ing at the proceedings of a series of summer schools in Advanced Functional Pro-
gramming (Jeuring and Meijer 1995; Launchbury, Meijer, and Sheard 1996; Swier-
stra, Henriques, and Oliveira 1998; Jeuring and Peyton Jones 2002; Vene and Uustalu
2004; Koopman, Plasmeijer, and Swierstra 2008).

Research in functional programming is reported in the Journal of Functional
Programming

http://journals.cambridge.org/jfp

and at the annual International Conference in Functional Programming,

http://www.icfpconference.org/
1. . . simple but refined, guaranteed to blow your mind . . .
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Each year there is a one-day symposium devoted to research in Haskell,

www.haskell.org/haskell-symposium/

and the proceedings of this symposium (formerly workshop) will give you a view of
the direction in which Haskell is going. The symposium is co-located with ICFP, as is
the meeting of CUFP, cufp.org, which represents Commercial Users of Functional
Programming.

To see the ways in which functional languages are being used in education, the
proceedings of a meeting on Functional Languages in Education appear in Hartel
and Plasmeijer (1995a), and these have been followed up with a series of occasional
workshops co-located with ICFP.

It is difficult to predict future directions in a field like computing. In the previous
edition of this book (written 1998–9) I predicted three things:

• functional languages will come to be used as parts of larger systems;

• type systems for languages like Haskell will become more powerful and eso-
teric, and

• tool support, for instance giving feedback on the behaviour of lazy programs,
will come to maturity.

Not a bad set of predictions. The first is certainly true, with Haskell inter-operating
effectively with a range of other languages through its foreign function interface.
GCH continues to be a laboratory for type system research, with recent advances in
type-level programming taking it ever closer to dependently-typed languages such
as Agda,

http://wiki.portal.chalmers.se/agda/

Tool support for Haskell has also come of age, with many tools integrated into GHC,
and it becoming easier for others to integrate their work through the definition of an
API for the internals of GHC. What I had not predicted was the growth in the Haskell
developer community: fuelled particularly by Hackage and Cabal, making it easy to
share and to work collaboratively, there are now close to three thousand projects on
Hackage, giving the developer community a critical mass which was entirely lacking
a decade ago.2

What of the next few years? The big challenge for systems developers is the rise
of multicore chips: chips with thousands of processors are on the roadmap, and so
the question arises of how best to program them, or indeed how to program them at
all! Functional languages, because of their lack of side-effects, and clean models for
concurrency, make them ideal candidates for the next generation of general purpose
languages for multicore. The next few years will be fascinating, and of course, un-
predictable, but it will be a surprise if functional languages are not playing a much
more important role in robust software development in ten years time, with Haskell
central to this achievement.

2It was also a surprise that Microsoft started to deploy a functional language as a part of their main
language suite in Visual Studio: a friend mailed me and said that his first thought it was an ‘April fool’
message, even though it came in June!
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Functional, imperative and OO
programming

In this appendix we compare programming in Haskell to more traditional notions in
imperative languages like Pascal and C and object-oriented (OO) languages such as
C#, C++ and Java.

Values and states

Consider the example of finding the sum of squares of natural numbers up to a par-
ticular number. A functional program describes the values that are to be calculated,
directly.

sumSquares :: Int -> Int
sumSquares 0 = 0
sumSquares n = n*n + sumSquares (n-1)

These equations state what the sum of squares is for a natural number argument. In
the first case it is a direct description; in the second it states that the sum to non-zero
n is got by finding the sum to n-1 and adding the square of n.

A typical imperative program might solve the problem thus

s = 0 ;
i = 0 ;
while i<n do

begin
i = i+1 ;
s = i*i + s ;

end

The sum is the final value of the variable s, which is changed repeatedly during pro-
gram execution, as is the ‘count’ variable, i. The effect of the program can only
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be seen by following the sequence of changes made to these variables by the com-
mands in the program, while the functional program can be read as a series of equa-
tions defining the sum of squares. This meaning is explicit in the functional pro-
gram, whereas the imperative program has an overall effect which is not obvious
from the program itself.

The link between these two approaches is given by a tail-recursive solution to
the problem in Haskell:

sumSquares n = ssAcc 0 0 n

ssAcc i s n
| i<n = ssAcc (i+1) ((i+1)^2+s) n
| otherwise = s

Here the three argument positions play the role of three variables – i, s and n –
whose values are changed on each call to the loop.

A more striking algorithm still is one which is completely explicit: ‘to find the
sum of squares, build the list of numbers 1 to n, square each of them, and sum the
result’. This program, which uses neither complex control flow, as does the impera-
tive example, nor recursion as seen in the function sumSquares, can be written in a
functional style, thus:

newSumSq :: Int -> Int
newSumSq n = sum (map square [1 .. n])

where square x = x*x, the operation map applies its first argument to every mem-
ber of a list, and sum finds the sum of a list of numbers. More examples of this sort
of data-directed programming can be seen in the body of the text.

Functions and variables

An important difference between the two styles is what is meant by some of the
terminology. Both ‘function’ and ‘variable’ have different interpretations.

As was explained earlier, a function in a functional program is simply something
which returns a value which depends upon some inputs. In imperative and object-
oriented languages like Pascal, C, C++ and Java a function is rather different. It will
return a value depending upon its arguments, but in general it will also change the
values of variables. Rather than being a pure function it is really a procedure which
returns a value when it terminates.

In a functional program a variable stands for an arbitrary or unknown value. Ev-
ery occurrence of a variable in an equation is interpreted in the same way. They are
just like variables in logical formulas, or the mathematical variables familiar from
equations like

a2 - b2 = (a-b)(a+b)

In any particular case, the value of all three occurrences of a will be the same. In
exactly the same way, in
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sumSquares n = n*n + sumSquares (n-1)

all occurrences of n will be interpreted by the same value. For example

sumSquares 7 = 7*7 + sumSquares (7-1)

The crucial motto is ‘variables in functional programs do not vary’.
On the other hand, the value of a variable in an imperative program changes

throughout its lifetime. In the sum of squares program above, the variable s will
take the values 0,1,5,... successively. Variables in imperative programs do vary
over time, on the other hand.

Program verification
Probably the most important difference between functional and imperative pro-
grams is logical. As well as being a program, a functional definition is a logical equa-
tion describing a property of the function. Functional programs are self-describing,
as it were. Using the definitions, other properties of the functions can be deduced.

To take a simple example, for all n>0, it is the case that

sumSquares n > 0

To start with,

sumSquares 1
= 1*1 + sumSquares 0
= 1*1 + 0
= 1

which is greater than 0. In general, for n greater than zero,

sumSquares n = n*n + sumSquares (n-1)

Now, n*n is positive, and if sumSquares (n-1) is positive, their sum, sumSquares
n, must be. This proof can be formalized using mathematical induction. The body
of the text contains numerous examples of proofs by induction over the structure of
data structures like lists and trees, as well as over numbers.

Program verification is possible for imperative programs as well, but imperative
programs are not self-describing in the way functional ones are. To describe the ef-
fect of an imperative program, like the ‘sum of squares’ program above, we need to
add to the program logical formulas or assertions which describe the state of the
program at various points in its execution. These methods are both more indirect
and more difficult, and verification seems very difficult indeed for ‘real’ languages
like Pascal and C. Another aspect of program verification is program transforma-
tion in which programs are transformed to other programs which have the same
effect but better performance, for example. Again, this is difficult for traditional im-
perative languages.
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Records and tuples
In Chapter 5 the tuple types of Haskell are introduced. In particular we saw the
definition

type Person = (String,String,Int)

This compares with a Pascal declaration of a record

type Person = record
name : String;
phone : String;
age : Integer

end;

which has three fields which have to be named. In Haskell the fields of a tuple can be
accessed by pattern matching, but it is possible to define functions called selectors
which behave in a similar way, if required:

name :: Person -> String
name (n,p,a) = n

and so on. If per :: Person then name per :: String, similarly to r.name be-
ing a string variable if r is a variable of type Person in Pascal.

We could instead use an algebraic type to represent a person:

data Person = Person name::String, phone::String, age::Integer
deriving (Show,Eq)

In an object-oriented language like Java or C# this type would be represented by an
object wit three attributes, one for each of the name, phone and age. The methods
modifying these values would also be part of the definition of the object.

To implement the analogue of an algebraic data type with more than one con-
structor in Java it is necessary to work rather harder. The type itself is modelled as a
class with abstract methods, implemented in a number of sub-classes, one per con-
structor. Each sub-class contains the attributes for a particular constructor, together
with the implementation of the methods over that sub-class. This approach works
well for methods that work over one member of a class, but is more problematic for
binary methods, and in particular for equality.

Lists and pointers
Haskell contains the type of lists built in, and other recursive types such as trees can
be defined directly. We can think of the type of linked lists given by pointers in Pascal
as an implementation of lists, since in Haskell it is not necessary to think of pointer
values, or of storage allocation ( new and dispose) as it is in Pascal. Indeed, we can
think of Haskell programs as designs for Pascal list programs. If we define

type list = ˆnode;
type node = record
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head : value;
tail : list

end;

then we have the following correspondence, where the Haskell head and tail func-
tions give the head and tail of a list.

[] nil
head ys ysˆ.head
tail ys ysˆ.tail
(x:xs) cons(x,xs)

The function cons in Pascal has the definition

function cons(y:value;ys:list):list;
var xs:list;
begin

new(xs);
xsˆ.head := y;
xsˆ.tail := ys;
cons := xs

end;

Functions such as

sumList [] = 0
sumList (x:xs) = x + sumList xs

can then be transferred to Pascal in a straightforward way.

function sumList(xs:list):integer;
begin

if xs=nil
then sumList := 0
else sumList := xsˆ.head + sumList(xsˆ.tail)

end;

A second example is

doubleAll [] = []
doubleAll (x:xs) = (2*x) : doubleAll xs

where we use cons in the Pascal definition of the function

function doubleAll(xs:list):list;
begin

if xs=nil
then doubleAll := nil
else doubleAll := cons( 2*xsˆ.head , doubleAll(xsˆ.tail) )

end;
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If we define the functions

function head(xs:list):value; function tail(xs:list):list;
begin begin

head := xsˆ.head tail := xsˆ.tail
end; end;

then the correspondence is even clearer:

function doubleAll(xs:list):list;
begin

if xs=nil
then doubleAll := nil
else doubleAll := cons( 2*head(xs) , doubleAll( tail(xs) ) )

end;

This is strong evidence that a functional approach can be useful even if we are writ-
ing in an imperative language: the functional language can be the high-level design
language for the imperative implementation. Making this separation can give us
substantial help in finding imperative programs – we can think about the design
and the lower level implementation separately, which makes each problem smaller,
simpler and therefore easier to solve.

Higher-order functions
Traditional imperative languages give little scope for higher-order programming;
Pascal, Java and C allow functions as arguments, so long as those functions are not
themselves higher-order, but has no facility for returning functions as results. In C++
it is possible to return objects which represent functions by overloading the func-
tion application operator! This underlies the genericity hailed in the C++ Standard
Template Library, which requires advanced features of the language to implement
functions like map and filter.

Control structures like if-then-else bear some resemblance to higher-order
functions, as they take commands, c1, c2 etc. into other commands,

if b then c1 else c2 while b do c1

just as map takes one function to another. Turning the analogy around, we can think
of higher-order functions in Haskell as control structures which we can define our-
selves. This perhaps explains why we form libraries of polymorphic functions: they
are the control structures we use in programming particular sorts of system. Exam-
ples in the text include libraries for building parsers (Section 17.5) and interactive
I/O programs (Chapter 8), as well as the built-in list-processing functions.

Polymorphism
Again, this aspect is poorly represented in many imperative languages; the best we
can do in Pascal, say, is to use a text editor to copy and modify the list processing
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code from one type of lists for use with another. Of course, we then run the risk that
the different versions of the programs are not modified in step, unless we are very
careful to keep track of modifications, and so on.

Polymorphism in Haskell is what is commonly known as generic polymorphism:
the same ‘generic’ code works over a whole collection of types. A simple example is
the function which reverses the elements in a list.

Haskell classes support what is known as ‘ad hoc’ polymorphism, or in object-
oriented terminology simply ‘polymorphism’, in which different programs imple-
ment the same operation over different types. An example of this is the Eq class of
types carrying an equality operation: the way in which equality is checked is com-
pletely different at different types. Another way of viewing classes is as interfaces
which different types can implement in different ways; in this way they resemble
the interfaces of object-oriented languages like Java.

As is argued in the text, polymorphism is one of the mechanisms which helps to
make programs reusable in Haskell; it remains to be seen whether this will also be
true of advanced imperative languages.

Defining types and classes

The algebraic type mechanism of Haskell, explained in Chapter 14, subsumes var-
ious traditional type definitions. Enumerated types are given by algebraic types all
of whose constructors are 0-ary (take no arguments); variant records can be im-
plemented as algebraic types with more then one constructor, and recursive types
usually implemented by means of pointers become recursive algebraic types.

Just as we explained for lists, Haskell programs over trees and so on can be seen
as designs for programs in imperative languages manipulating the pointer imple-
mentations of the types.

The abstract data types, introduced in Chapter 16, are very like the abstract data
types of Modula-2 and so on; the design methods we suggest for use of abstract data
types mirror aspects of the object-based approach advocated for modern impera-
tive languages such as Ada.

The Haskell class system also has object-oriented aspects, as we saw in Section
14.6. It is important to note that Haskell classes are in some ways quite different
from the classes of, for instance, C++. In Haskell classes are made up of types, which
themselves have members; in C++ a class is like a type, in that it contains objects.
Because of this many of the aspects of object-oriented design in C++ are seen as
issues of type design in Haskell.

List comprehensions
List comprehensions provide a convenient notation for iteration along lists: the
analogue of a for loop, which can be used to run through the indices of an array.
For instance, to sum all pairs of elements of xs and ys, we write

[ a+b | a <- xs , b <- ys ]
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The order of the iteration is for a value a from the list xs to be fixed and then for b
to run through the possible values from ys; this is then repeated with the next value
from xs, until the list is exhausted. Just the same happens for a nested for loop

for i:=0 to xLen-1 do
for j:=0 to yLen-1 do (twoFor)

write( x[i]+y[j] )

where we fix a value for i while running through all values for j.
In the for loop, we have to run through the indices; a list generator runs through

the values directly. The indices of the list xs are given by

[0 .. length xs - 1]

and so a Haskell analogue of (twoFor) can be written thus:

[ xs!!i + ys!!j | i <- [0 .. length xs - 1] ,
j <- [0 .. length ys - 1] ]

if we so wish.

Lazy evaluation
Lazy evaluation and imperative languages do not mix well. In Pascal, for instance,
we can write the function definition

function succ(x : integer):integer;
begin

y := y+1;
succ := x+1

end;

This function adds one to its argument, but also has the side-effect of increasing y
by one. If we evaluate f(y,succ(z)) we cannot predict the effect it will have.

• If f evaluates its second argument first, ywill be increased before being passed
to f;

• on the other hand, if f needs its first argument first (and perhaps its second
argument not at all), the value passed to f will not be increased, even if it is
increased before the function call terminates.

In general, it will not be possible to predict the behaviour of even the simplest pro-
grams. Since evaluating an expression can cause a change of the state, the order
of expression evaluation determines the overall effect of a program, and so a lazy
implementation can behave differently (in unforeseen ways) from the norm.

State, infinite lists and monads

Section 17.6 introduced infinite lists, and one of the first examples given there was
an infinite list of random numbers. This list could be supplied to a function requir-
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ing a supply of random numbers; because of lazy evaluation, these numbers will
only be generated on demand.

If we were to implement this imperatively, we would probably keep in a variable
the last random number generated, and at each request for a number we would
update this store. We can see the infinite list as supplying all the values that the
variable will take as a single structure; we therefore do not need to keep the state,
and hence have an abstraction from the imperative view.

We have seen in Section 18.5 that there has been recent important work on inte-
grating side-effecting programs into a functional system by a monadic approach.

Conclusion

Clearly there are parallels between the functional and the imperative, as well as clear
differences. The functional view of a system is often higher-level, and so even if we
ultimately aim for an imperative solution, a functional design or prototype can be
most useful.

We have seen that monads can be used to give an interface to imperative fea-
tures within a functional framework. Many of the Haskell implementations offer
these facilities, and so give a method of uniting the best features of two important
programming paradigms without compromising the purity of the language. Other
languages, including Standard ML (Milner, Tofte, and Harper 1990) and F# (Smith
2009), combine the functional and the imperative, but these systems tend to lose
their pure functional properties in the process.

It is interesting to see the influence of ideas from modern functional program-
ming languages in the design of Java extensions. One of the main drawbacks of Java
for a long time was that it lacked generic polymorphism. The current mechanism for
generics in the Java standard owes its inspiration and much of its detail to Haskell
polymorphism.
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Appendix B

Glossary

We include this glossary to give a quick reference to the most widely used terminol-
ogy in the book. Words appearing in bold in the descriptions have their own entries.
Further references and examples are to be found by consulting the index.

Abstract type An abstract type
definition consists of the type name, the
signature of the type, and the
implementation equations for the
names in the signature.

Algebraic type An algebraic type
definition states what are the
constructors of the type. For instance,
the declaration

data Tree = Leaf Int |
Node Tree Tree

says that the two constructors of the
Tree type are Leaf and Node, and that
their types are, respectively,

Leaf :: Int->Tree
Node :: Tree->Tree->Tree

Application This means giving values
to (some of) the arguments of a
function. If an n-argument function is
given fewer than n arguments, this is
called a partial application. Application
is written using juxtaposition.

Argument A function takes one or
more arguments into an output.

Arguments are also known as inputs
and parameters.

Associativity The way in which an
expression involving two applications of
an operator is interpreted. If x#y#z is
interpreted as (x#y)#z then # is left
associative, if as x#(y#z) it is right
associative; if both bracketings give the
same result then # is called associative.

Base types The types of numbers,
including Int and Float, Booleans,
Bool, and characters, Char.

Binding power The ‘stickiness’ of an
operator, expressed as an integer; the
higher the number the stickier the
operator. For example, 2+3*4 is
interpreted as 2+(3*4) as ‘*’ has higher
binding power – binds more tightly –
than ‘+’.

Booleans The type containing the two
‘truth values’ True and False.

Calculation A calculation is a
line-by-line evaluation of a Haskell
expression on paper. Calculations use
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the definitions which are contained in a
script as well as the built-in definitions.

Cancellation The rule for finding the
type of a partial application.

Character A single letter, such as ’s’
or ’\t’, the tab character. They form
the Char type.

Class A collection of types. A class is
defined by specifying a signature; a type
is made an instance of the class by
supplying an implementation of the
definitions of the signature over the
type.

Clause A clause is one of the
alternatives making up a conditional
equation. A clause consists of a guard
followed by an expression. When
evaluating a function application, the
first clause whose guard evaluates to
True is chosen.

Combinator Another name for a
function.

Comment Part of a script which plays
no computational role; it is there for the
reader to read and observe. Comments
are specified in two ways: the part of the
line to the right is made a comment by
the symbol –; a comment of arbitrary
length is enclosed by {- and -}.

Complexity A measurement of the
time or space behaviour of a function.

Composition The combination of two
functions by passing the output of one
to the input of the other.

Concatenate To put together a
number of lists into a single list.

Conditional equation A conditional
equation consists of a left-hand side
followed by a number of clauses. Each
clause consists of a guard followed by
an expression which is to be equated

with the left-hand side of the equation if
that particular clause is chosen during
evaluation. The clause chosen is the
first whose guard evaluates to True.

Conformal pattern match An
equation in which a pattern appears on
the left-hand side of an equation, as in

(x,y) = ....

Constructor An algebraic type is
specified by its constructors, which are
the functions which build elements of
the algebraic type.

In the example in the entry for
algebraic types, elements of the type are
constructed using Leaf and Node; the
elements are Leaf n where n::Int and
Node s t where s and t are trees.

Context The hypotheses which appear
before => in type and class declarations.
A context M a means that the type a
must belong to the class M for the
function or class definition to apply. For
instance, to apply a function of type

Eq a => [a] -> a -> Bool

to a list and object, these must come
from types over which equality is
defined.

Curried function A function of at least
two arguments which takes its
arguments one at a time, so having the
type

t1 -> t2 -> ... -> t

in contrast to the uncurried version

(t1,t2,...) -> t

The name is in honour of Haskell B.
Curry, after whom the Haskell language
is also named.

Declaration A definition can be
accompanied by a statement of the type
of the object defined; these are often
called type declarations.
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Default A default holds in the absence
of any other definition. Used in class
definitions to give definitions of some of
the operations in terms of others; an
example is the definition of /= in the Eq
class.

Definition A definition associates a
value or a type with a name.

Design In writing a system, the effort
expended before implementation is
started.

Derived class instance An instance of
a standard class which is derived by the
system, rather than put in explicitly by
the programmer.

Enumerated type An algebraic type
with each constructor having no
arguments.

Equation A definition in Haskell
consists of a number of equations. On
the left-hand side of the equation is a
name applied to zero or more patterns;
on the right-hand side is a value. In
many cases the equation is conditional
and has two or more clauses. Where the
meaning is clear we shall sometimes
take ‘equation’ as shorthand for
‘equation or conditional equation’.

Evaluation Every expression in
Haskell has a value; evaluation is the
process of finding that value. A
calculation evaluates an expression, as
does an interactive Haskell system when
that expression is typed to the prompt.

Export The process of defining which
definitions will be visible when a
module is imported by another.

Expression An expression is formed by
applying a function or operator to its
arguments; these arguments can be
literal values, or expressions
themselves. A simple numerical
expression is

(2+8)-10

in which the operator ‘-’ is applied to
two arguments.

Extensionality The principle of proof
which says that two functions are equal
if they give equal results for every input.

Filter To pick out those elements of a
list which have a particular property,
represented by a Boolean-valued
function.

Floating-point number A number
which is given in decimal (e.g. 456.23)
or exponent (e.g. 4.5623e+2) form;
these numbers form the type Float.

Fold To combine the elements of a list
using a binary operation.

Forward composition Used for the
operator ‘>.>’ with the definition

f >.> g = g . f

f >.> g can be read ‘f then g’.

Function A function is an object which
returns a value, called the output or
result when it is applied to its inputs.
The inputs are also known as its
parameters or arguments.
Examples include the square root
function, whose input and output are
numbers, and the function which
returns the borrowers (output) of a book
(input) in a database (input).

Function types The type of a function
is a function type, so that, for instance,
the function which checks whether its
integer argument is even has type
Int->Bool. This is the type of functions
with input type Int and output type
Bool.

Generalization Replacing an object by
something of which the original object
is an instance.

This might be the replacement of a
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function by a polymorphic function
from which the original is obtained by
passing the appropriate parameter, or
replacing a logical formula by one which
implies the original.

Guard The Boolean expression
appearing to the right of ‘|’ and to the
left of ‘=’ in a clause of a conditional
equation in a Haskell definition.

Higher-order function A function is
higher-order if either one of its
arguments or its result, or both, are
functions.

Identifier Another word for name.

Implementation The particular
definitions which make a design
concrete; for an abstract data type, the
definitions of the objects named in the
signature.

Import The process of including the
exported definitions of one module in
another.

Induction The name for a collection of
methods of proof, by which statements
of the form ‘for all x . . . ’ are proved.

Infix An operation which appears
between its arguments. Infix functions
are called operators.

Inheritance One class inherits the
operations of another if the first class is
in the context of the definition of the
second. For instance, of the standard
classes, Ord inherits (in)equality from
Eq.

Input A function takes one or more
inputs into an output. Inputs are also
known as arguments and parameters.
The ‘square’ function takes a single
numerical input, for instance.

Instance The term ‘instance’ is used in
two different ways in Haskell.

An instance of a type is a type which is
given by substituting a type expression
for a type variable. For example,
[(Bool,b)] is an instance of [a], given
by substituting the type (Bool,b) for
the variable a.

An instance of a class, such as Eq
(a,b), is given by declaring how the
function(s) of the class, in this case ==,
are defined over the given type (here
(a,b)). Here we would say

(x,y) == (z,w)
= (x==z) && (y==w)

Integers The positive and negative
whole numbers. In Haskell the type Int
represents the integers in a fixed size,
while the type Integer represents them
exactly, so that evaluating 2 to the power
1000 will give a result consisting of
some three hundred digits.

Interactive program A program which
reads from and writes to the terminal;
reading and writing will be interleaved,
in general.

Interface The common information
which is shared between two program
modules.

Juxtaposition Putting one thing next
to another; this is the way in which
function application is written down in
Haskell.

Lambda expression An expression
which denotes a function. After a ‘\’ we
list the arguments of the function, then
an ‘->’ and then the result. For instance,
to add a number to the length of a list
we could write

\xs n -> length xs + n

The term ‘lambda’ is used since ‘\’ is
close to the Greek letter ‘∏’, or lambda,
which is used in a similar way in
Church’s lambda calculus.
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Lazy evaluation The sort of expression
evaluation in Haskell. In a function
application only those arguments
whose values are needed will be
evaluated, and moreover, only the parts
of structures which are needed will be
examined.

Linear complexity Order 1, O(n1),
behaviour.

Lists A list consists of a collection of
elements of a particular type, given in
some order, potentially containing a
particular item more than once. The list
[2,1,3,2] is of type [Int], for
example.

Literal Something that is ‘literally’ a
value: it needs no evaluation. Examples
include 34, [23] and "string".

Local definitions The definitions
appearing in a where clause or a let
expression. Their scope is the equation
or expression to which the clause or let
is attached.

Map To apply an operation to every
element of a list.

Mathematical induction A method of
proof for statements of the form ‘for all
natural numbers n, the statement P(n)
holds’.

The proof is in two parts: the base
case, at zero, and the induction step, at
which P(n) is proved on the
assumption that P(n-1) holds.

Memoization Keeping the value of a
sub-computation (in a list, say) so that it
can be reused rather than recomputed,
when it is needed.

Module Another name for a script;
used particularly when more than one
script is used to build a program.

Monad A monad consists of a type
with (at least) two functions, return

and »=. Informally, a monad can be
seen as performing some sorts of action
before returning an object. The two
monad functions respectively return a
value without any action, and sequence
two monadic operations.

Monomorphic A type is
monomorphic if it is not polymorphic.

Most general type The most general
type of an expression is the type t with
the property that every other type for
the expression is an instance of t.

Mutual recursion Two definitions,
each of which depends upon the other.

Name A definition associates a name
or identifier with a value. Names of
classes, constructors and types must
begin with capital letters; names of
values, variables and type variables
begin with small letters. After the first
letter, any letter, digit, ‘’’ or ‘_’ can be
used.

Natural numbers The non-negative
whole numbers: 0, 1, 2, . . . .

Offside rule The way in which the end
of a part of a definition is expressed
using the layout of a script, rather than
an explicit symbol for the end.

Operation Another name for
function.

Operator A function which is written
in infix form, between its arguments.
The function f is made infix thus: ‘f‘.

Operator section A partially applied
operator.

Output When a function is applied to
one or more inputs, the resulting value
is called the output, or result. Applying
the ‘square’ function to (-2) gives the
output 4, for example.

Overloading The use of the same
name to mean two (or more) different
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things, at different types. The equality
operation, ==, is an example.
Overloading is supported in Haskell by
the class mechanism.

Parameter A function takes one or
more parameters into an output.
Parameters are also known as
arguments and inputs, and applying a
function to its inputs is sometimes
known as ‘passing its parameters’.

Parsing Revealing the structure of a
sentence in a formal language.

Partial application A function of type
t1->t2->...->tn->t can be applied
to n arguments, or less. In the latter
case, the application is partial, since the
result can itself be passed further
parameters.

Pattern A pattern is either a variable, a
literal, a wild card or the application of
a constructor to other patterns.

The term ‘pattern’ is also used as short
for a ‘pattern of computation’ such as
‘applying an operation to every member
of a list’, a pattern which in Haskell is
realised by the map function.

Polymorphism A type is polymorphic
if it contains type variables; such a type
will have many instances.

Prefix An operation which appears
before its arguments.

Primitive recursion Over the natural
numbers, defining the values of a
function outright at zero, and at n
greater than zero using the value at n-1.
Over an algebraic type defining the
function by cases over the constructors;
recursion is permitted at arguments to a
constructor which are of the type in
question.

Proof A logical argument which leads
us to accept a logical statement as being
valid.

Pure programming language A
functional programming language is
pure if it does not allow side-effects.

Quadratic complexity Order two,
O(n2), behaviour.

Recursion Using the name of a value
or type in its own definition.

Result When a function is applied to
one or more inputs, the resulting value
is called the result, or output.

Scope The area of a program in which a
definition or definitions are applicable.
In Haskell the scope of top-level
definitions is by default the whole script
in which they appear; it may be
extended by importing the module into
another. More limited scopes are given
by local definitions.

Script A script is a file containing
definitions, declarations and module
statements.

Set A collection of objects for which
the order of elements and the number
of occurrences of each element are
irrelevant.

Side-effect In a language like Pascal,
evaluating an expression can cause
other things to happen besides a value
being computed. These might be I/O
operations, or changes in values stored.
In Haskell this does not happen, but a
monad can be used to give a similar
effect, without compromising the
simple model of evaluation underlying
the language. Examples are IO and
State.

Signature A sequence of type
declarations. These declarations state
what are the types of the operations (or
functions) over an abstract type or a
class which can be used to manipulate
elements of that type.
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Stream A stream is a channel upon
which items arrive in sequence; in
Haskell we can think of lazy lists in this
way, so it becomes a synonym for lazy
list.

String The type String is a synonym
for lists of characters, [Char].

Structural induction A method of
proof for statements of the form ‘for all
finite lists xs, the statement P(xs)
holds of xs’. The proof is in two parts:
the base case, at [], and the induction
step, at which P(y:ys) is proved on the
assumption that P(ys) holds.
Also used of the related principle for any
algebraic type.

Substitution The replacement of a
variable by an expression. For example,
(9+12) is given by substituting 12 for n
in (9+n). Types can also be substituted
for type variables; see the entry for
instance.

Synonym Naming a type is called a
type synonym. The keyword type is
used for synonyms.

Syntax The description of the properly
formed programs (or sentences) of a
language.

Transformation Turning one program
into another program which computes
identical results, but with different
behaviour in other respects such as time
or space efficiency.

Tuples A tuple type is built up from a
number of component types. Elements
of the type consist of tuples of elements
of the component types, so that

(2,True,3) :: (Int,Bool,Int)

for instance.

Type A collection of values. Types can
be built from the base types using tuple,
list and function types. New types can
be defined using the algebraic and
abstract type mechanisms, and types
can be named using the type synonym
mechanism.

Type variable A variable which
appears in a polymorphic type. An
identifier beginning with a small letter
can be used as a type variable; in this
text we use the letters at the start of the
alphabet, a, b, c and so on.

Undefinedness The result of an
expression whose evaluation continues
forever, rather than giving a defined
result.

Unification The process of finding a
common instance of two (type)
expressions containing (type) variables.

Value A value is a member of some
type; the value of an expression is the
result of evaluating the expression.

Variable A variable stands for an
arbitrary value, or in the case of type
variables, an arbitrary type. Variables
and type variables have the same syntax
as names.

Verification Proving that a function or
functions have particular logical
properties.

Where clause Definitions local to a
(conditional) equation.

Wild card The name for the pattern ‘_’,
which is matched by any value of the
appropriate type.
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Appendix C

Haskell operators

The operators in the Haskell prelude are listed below in decreasing order of binding
power: see Section 3.7 for a discussion of associativity and binding power.

Left associative Non-associative Right associative
9 !! .
8 **, ˆ, ˆˆ
7 *, /, ‘div‘,

‘mod‘, ‘rem‘,
‘quot‘

6 +, -
5 :, ++
4 /=, <, <=, ==,

>, >=, ‘elem‘,
‘notElem‘

3 &&
2 ||
1 », »=
0 $, $!, ‘seq‘

Also defined in this text are the operators

9 >.>
5 >*>

The restrictions on names of operators, which are formed using the characters

! # $ % & * + . / < = > ? \ ˆ | : - ˜
are that operators must not start with a colon; this character starts an infix construc-
tor. The operators - and ! can be user-defined, but note that they have a special
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meaning in certain circumstances – the obvious advice here is not to use them. Fi-
nally, certain combinations of symbols are reserved, and cannot be used: .. : ::
=> = @ \ | ˆ <- ->.

To change the associativity or binding power of an operator, &&& say, we make a
declaration like

infixl 7 &&&

which states that &&& has binding power 7, and is a left associative operator. We can
also declare operators as non-associative (infix) and right associative (infixr).
Omitting the binding power gives a default of 9. These declarations can also be used
for back-quoted function names, as in

infix 0 ‘poodle‘



Appendix D

Haskell practicalities

It’s not difficult to get going using Haskell, and most of the relevant information is
easily accessible from the haskell.org page. This appendix points you in the right
direction.

Implementations

Implementations of Haskell have been built at various sites around the world. This
text uses GHCi, an interactive front-end to the Glasgow Haskell Compiler (GHC).
GHCi provides much of the functionality of the Hugs interpreter, which was devel-
oped in a joint effort by staff at the Universities of Nottingham in the UK and Yale in
the USA. The first compilers for Haskell were developed at the University of Glasgow,
UK, and Chalmers Technical University, Göteborg, Sweden. More recent develop-
ments have taken place elsewhere, including at York and Utrecht. An up-to-date list
of implementations and their status can be found at

http://www.haskell.org/haskellwiki/Implementations

In this book we have used the Haskell Platform as our foundation. This is docu-
mented at

http://hackage.haskell.org/platform/

from where it can also be downloaded. Installation instructions for Windows, Mac
OS X and Linux are listed on the relevant downloads page.

Getting the Craft3e code

The modules for this text are available as a package on Hackage: full details on how
to download are available at the homepage for the book:

www.haskellcraft.com
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Using GHCi

An overview of the main commands of GHCi can be found in Figure 2.4, page 32,
and full details of other aspects of GHCi are in the online documentation for GHC.

Editors for Haskell

While there is no preferred editor for Haskell, emacs is probably the best loved and
most used. To tune emacs to work with Haskell, it’s good to use the Haskell mode,
which is documented extensively at

http://www.haskell.org/haskellwiki/Haskell_mode_for_Emacs

Not everyone gets on with emacs, and vim is an alternative for many, with its mode
available from

http://projects.haskell.org/haskellmode-vim/

Other editors include Yi, a text editor written in Haskell and extensible in Haskell.

http://www.haskell.org/haskellwiki/Yi

and an overview of all those available is at

http://www.haskell.org/haskellwiki/Editors



Appendix E

GHCi errors

This appendix examines some of the more common programming errors in Haskell,
and shows the error messages to which they give rise in GHCi.

The programs we write all too often contain errors. On encountering an error,
the system either halts, and gives an error message, or continues, but gives a warn-
ing message to tell us that something unusual has happened, which might signal
that we have made an error. In this appendix, we look at a selection of the messages
output by GHCi; we have chosen the messages which are both common and require
some explanation; messages like

*** Exception: Prelude.head: empty list

are self-explanatory. The messages are classified into roughly distinct areas. Syntax
errors show up malformed programs, while type errors show well-formed programs
in which objects are used at the wrong types. In fact, an ill-formed expression can
often show itself as a type error and not as a syntax error, so the boundaries are not
clear.

Syntax errors

A Haskell system attempts to match the input we give to the syntax of the language.
Commonly, when something goes wrong, we type something unexpected.

• Typing ‘2==3)’ will provoke the error message

<interactive>:1:4: parse error on input ‘)’

• If a part of a definition is missing, as in

fun x
fun 2 = 34

we receive the message
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Errors.hs:3:0: Not in scope: ‘fun’
Errors.hs:3:4: Not in scope: ‘x’

The problem here is that the system tries to understand fun and x and these
are not (yet) defined.

• A similar error results when the two lines are reversed, as in

fun 2 = 34
fun x

when the error message is

Errors.hs:4:4: Not in scope: ‘x’

• The inclusion of a type definition in a where clause, like this

fun x = x+1
where

type MyInt = Int

is signalled by

Errors.hs:8:10: parse error on input ‘type’

• The syntax of patterns is more restricted than the full expression syntax, and
so we get error messages like

Errors.hs:6:5:
Conflicting definitions for ‘x’
Bound at: Errors.hs:6:5

Errors.hs:6:7
In the definition of ‘fun’

when we use the same variable more than once within a pattern, as in the
definition

fun (x,x) = x+1

• In specifying constants, we can make errors: floating-point numbers can be
too large, and characters specified by an out-of-range ASCII code: for exam-
ple, on typing ’\9999999999999999’ as input we get

<interactive>:1:18:
lexical error in string/character literal at character ’\’’
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• Not every string can be used as a name; some words in Haskell are keywords
or reserved identifiers, and will give an error if used as an identifier. The key-
words are

case class data default deriving do else if import in infix
infixl infixr instance let module newtype of then type where

For example, including the definition

do (x,y) = x+1

gives this error message

Errors.hs:6:0: Parse error in pattern

and the definition

data (x,y) = x+1

gives this message

Errors.hs:6:13: Not a data constructor: ‘x’

As you can see from the two examples, the error message in a case like this
reflects the meaning of the keyword.

• The special identifiers as, qualified and hiding have special meanings in
certain contexts but can be used as ordinary identifiers.

• The final restriction on names is that names of constructors and types must
begin with a capital letter; nothing else can do so, and hence we get error mes-
sages like

Errors.hs:6:0: Not in scope: data constructor ‘Montana’

if we try to define a function called Montana.

Type errors

In this section we look at various different type errors that we can provoke in GHCi.

• As we have seen in the body of the text, the main type error we meet is exem-
plified by the response to typing ’c’ && True to the GHCi prompt:

Couldn’t match expected type ‘Bool’ against inferred type ‘Char’
In the first argument of ‘(&&)’, namely ’c’
In the expression: ’c’ && True
In the definition of ‘it’: it = ’c’ && True
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which is provoked by using a Char where an Bool is expected.

• Other type errors, such as

True + 4

provoke the error message

No instance for (Num Bool)
arising from a use of ‘+’ at <interactive>:1:0-7

Possible fix: add an instance declaration for (Num Bool)
In the expression: True + 4
In the definition of ‘it’: it = True + 4

This comes from the class mechanism: the system attempts to make Bool an
instance of the class Num of numeric types over which ‘+’ is defined. The error
results since there is no such instance declaration making Bool belong to the
class Num.

• As we said before, we can get type errors from syntax errors. For example,
writing abs -2 instead of abs (-2) gives the error message

No instance for (Num (a -> a))
arising from a use of ‘-’ at <interactive>:1:0-5

Possible fix: add an instance declaration for (Num (a -> a))
In the expression: abs - 2
In the definition of ‘it’: it = abs - 2

because it is parsed as 2 subtracted from abs::a->a, and the operator ‘-’ ex-
pects something in the class Num, rather than a function of type a->a. Other
common type errors come from confusing the roles of ‘:’ and ‘++’ as in2++[2]
and [2]:[2].

• We always give type declarations for our definitions; one advantage of this is to
spot when our definition does not conform to its declared type. For example,

myCheck :: Char -> Bool
myCheck n = toEnum n == 6

gives the error message

Couldn’t match expected type ‘Int’ against inferred type ‘Char’
In the first argument of ‘toEnum’, namely ‘n’
In the first argument of ‘(==)’, namely ‘toEnum n’
In the expression: toEnum n == 6

Without the type declaration the definition would be accepted, only to give an
error (presumably) when it is used.
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• A definition like

asc x y
| x <= y = x y

will give this error:

Occurs check: cannot construct the infinite type: a = a -> t
Probable cause: ‘x’ is applied to too many arguments
In the expression: x y
In the definition of ‘asc’: asc x y | x <= y = x y

The problem here is that x is compared with y in the guard (type a), but applied
to y in the body (type a->t): the unification required here produces an infinite
type, which is not allowed.

• A final error related to types is given by definitions like

type Fred = (Fred,Int) (Fred)

a recursive type synonym; these are signalled by

Cycle in type synonym declarations:
Errors.hs:9:0-21: type Fred = (Fred, Int)

The effect of (Fred) can be modelled by the algebraic type definition

data Fred = Node Fred Int

which introduces the constructor Node to identify objects of this type.

Program errors

Once we have written a syntactically and type correct script, and asked for the value
of an expression which is itself acceptable, other errors can be produced during the
evaluation of the expression.

• The first class of errors comes from missing cases in definitions. If we have
written a definition like

bat [] = 45

and applied it to [34] we get the response

*** Exception: Errors.hs:11:0-10: Non-exhaustive patterns
in function bat
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which shows the point at which evaluation can go no further, since there is no
case in the definition of bat to cover a non-empty list. Similar errors come
from built-in functions, such as head.

• Other errors happen because an arithmetical constraint has been broken.
These include an out-of-range list index, division by zero, using a fraction
where an integer is expected and floating-point calculations which go out of
range; the error messages all have the same form. For example, suppose that
we evaluate

3 ‘div‘ 0

then the error is

*** Exception: divide by zero

• If we make a conformal definition, like

[a,b] = [1 .. 10]

this will fail with the message

*** Exception: Errors.hs:13:0-16: Irrefutable pattern failed
for pattern [a, b]

when either a or b is evaluated.

Module errors
The module and import statements can provoke a variety of error messages: files
may not be present, or may contain errors; names may be included more than once,
or an alias on inclusion may cause a name clash. The error messages for these and
other errors are self-explanatory.

System messages
In response to some commands and interrupts, the system generates messages, in-
cluding

• ˆC ... Interrupted
signalling the interruption of the current task by typing Ctrl-C.

• The message

<interactive>: memory allocation failed (requested 2097152 bytes)

which shows that the space consumption of the evaluation exceeds that avail-
able. One way around this is to increase the size of the heap.

A measure of the space complexity of a function, as described in Chapter 20, is
given by the size of the smallest heap in which the evaluation can take place; how
this ‘residency’ is measured is described in that chapter.



Appendix F

Project ideas

In this appendix we give some ideas for extended Haskell projects, building on what
we have covered here. Most of the projects can be implemented using what you have
learned in this text, but many would gain from using libraries on the Hackage site.
The projects are also discussed in more detail in the online supplement to the text,
which appears at www.haskellcraft.com.

Games and puzzles

Different games and puzzles give a whole lot of different challenges to the program-
mer. A game like noughts and crosses (tic-tac-toe) has an easy strategy which means
that the first player can always avoid losing, whereas there is no machine implemen-
tation of Go that can compete with the best human players. Interacting with a game
can be done textually – as people used to play chess by post – or through interactive
graphics. Haskell has bindings to two fully-featured graphics/GUI libraries: gtk and
wx, and these, as well as browser-based systems, can be used for implementations
of various levels of sophistication.

We don’t describe any of the games in any detail here: there are abundant web-
based resources including, of course, wikipedia, which cover the history and rules of
the games as well as their many variants.

Sudoku

A first puzzle here is to devise Sudoko problems, which can then be printed and
solved by hand. How do you find problems which fit the various levels of difficulty?

A second problem is to solve a given problem, as appears in many newspapers
and online. As well as thinking of the algorithm which finds a solution efficiently,
you’ll need to think about how to input the problem and how to present the results.
Finally, you could check whether the solution you find is unique: if not, can you enu-
merate or count the number of solutions? Conversely, are any seemingly consistent
problems in fact unsolvable?

A third problem is to provide assistance to a human solver: can you give hints
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how they might make the next move when their solution has got to a certain point.
Again you’ll need to think about just how the interaction will take place. This could
be part of an online solution assistant, or stand alone.

Minesweeper

The minesweeper program requires the player to uncover mines in a minefield with-
out setting any of them off, when the player is given the count of mines on squares
adjacent to each uncovered square. Many games are available online to provide ex-
amples.

One problem is to re-implement one of these interactive games: it could use "text
graphics", specifying the square to uncover by giving its coordinates, or could work
interactively in a graphics system or browser.

Alternatively, you could implement an algorithm to play the game automatically:
given a particular configuration, which is the optimal move to make next? How
much information do you need to know to make this decision? Can you solve the
problem in a deterministic way, or will your solution be probabilistic?

Noughts and crosses (tic-tac-toe)

When we looked at Rock-Paper-Scissors we saw that we could represent a strategy
for a player as a function from their opponent’s playing history to the player’s next
move. Try implementing noughts and crosses where two strategies play against each
other: in doing this you will need to think about how to represent these strategies in
a compact way, and also about how you might combine simple strategies together
using strategy combinators.

A second problem is to implement an interactive version of the game in which
a human player plays against a strategy. You will need to think about just how to
present the interaction to the player, and in particular whether to us a textual, graph-
ical or web browser-based representation of the game.

Web graphics

The web is moving towards a new standard, HTML5, which will directly render Scal-
able Vector Graphics (SVG) (SVG 2010) in web browsers. We have used SVG as a way
of rendering our pictures, but in doing this we have barely scratched the surface of
what is possible. The gtk package renders SVG using the Cairo system, but the aim
of the projects discussed here is to use standard web technology to do the ‘heavy
lifting’ of rendering.

Representing SVG

In this project you should devise a representation for a subset of SVG within Haskell.
You might like to look at what has been done in gtk, and also at the different ways
that XML is represented in HaXml and other Haskell libraries.
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Rendering SVG

SVG can be rendered in place using a modern browser – in the case of Internet Ex-
plorer from version 9 upwards. Suppose that you want to generate SVG in a program,
and have that data rendered in a browser: one mechanism for this is to run a local
web-server in which the page is created, and then served to a client on the local
machine. Using the HTTP and Web libraries for Haskell, build this local web server.

Web forms: calculator in a browser

Using the web forms standard in HTML5, you can build richer interactions, particu-
larly using a local web server running in Haskell. In particular, you should be able to
build a browser-embedded version of the calculator program, using Haskell to cal-
culate the value of the input expression, and performing the interaction using a web
form.

Alternatively, it is possible to build interactivity using JavaScript, either “raw” or
through the jQuery library.

Logic

Logic is a branch of mathematics closely linked to computer science (Huth and Ryan
2004), and implementing various logical procedures is a great way to understand
precisely how logic works.

Truth tables

The first exercise is to implement truth tables for formulas of propositional logic. We
can use these to decide whether a formula is a tautology (true in all interpretations)
or satisfiable (true in at least one interpretation). The output could just be this clas-
sification, or it could be the full truth table, showing the value of the formula under
each interpretation.

SAT solving

The practicalities of deciding whether or not a formula is satisfiable, the SAT solving
problem, is an area where huge efforts are made to find efficient algorithms to solve
the problem. How can these algorithms be implemented in Haskell?

Tableaux

Semantic tableaux give a decision procedure not just for propositional logic, but also
for temporal and other modal logics. A tableau method is a constructive mechanism,
which will find all the interpretations satisfying a particular formula. This project is
to implement a tableau procedure for propositional logic; can also look at tableaux
for the temporal logics in (Huth and Ryan 2004).
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Proof

Rather than using an automated mechanism to decide whether or not a formula
is a tautology, it is possible to prove a formula in a formal system: this project is
to implement an interactive proof system for propositional logic. You will need to
decide how the interactions are to be modelled in the system, and how feedback
can be provided to the user about their proof choices, as well as how advice can be
given to them on request.

Voting systems

Depending on where you live, you will decide the form of your government in differ-
ent ways. The simplest mechanism is perhaps first past the post, where the person
gaining the single largest number of votes is elected, but other systems include ways
of getting a more proportional outcome than this.

How is it possible to explain these various mechanisms to a naïve voter? The aim
of this exercise is to illustrate the effects of different systems, based on a simulated
vote.

Voting data

It should be possible to get actual voting data from particular elections, and to use
(processed?) variants of those data in different voting scenarios. Alternatively you
should generate random data according to a scenario specified by a user. This could
be done from scratch, or alternatively you could use the data generation facilities of
QuickCheck to build a sample.

Visualisation

‘A picture is worth a thousand words’, and in a situation it makes sense to provide
visualisations of the various results. You could use the SVG facilities developed in an
earlier suggestion, or investigate the capabilities of the graphical libraries provided
within Hackage.

Tactical voting

What is the best way to get the result that you want? On the basis of historical data
and the particular system, analyse the options for a voter who wants a particular
outcome to happen. For instance, what is the best option for your second vote in an
AV system?

Finite-state machines

One of the fundamental abstractions in computer science is the finite-state machine
(FSM) (Aho, Lam, Sethi, and Ullman 2006). We saw earlier that we can write recog-
nisers for regular expressions, but more efficient implementations are given by de-
riving NFAs from regular expressions, and then (minimal) DFAs from those NFAs.
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Conversion chain

As an exercise, implement the chain of conversions from regular expressions to NFAs,
DFAs and finally optimal DFAs; there are also algorithms which convert directly from
a regular expression to a DFA.

Inferring machines

There is a well-developed literature on deriving machines, regular expressions or
grammars from sets of traces which are accepted (or rejected) by a particular ma-
chine. Investigate these further by implementing them.

Visualisation

Develop mechanisms which provide a visualisation of the operation of an FSM. and
of the algorithms discussed earlier.

Domain-specific languages

One theme of this book has been domain-specific languages, and as a part of some
of these projects you could build a domain-specific language. Examples include

• A language for describing games has been defined by Conway (Conway 2002;
Berlekamp, Conway, and Guy 2001): look at how you can build a DSL for these
games; you could also look at a language for describing strategies to play these
games.

• A language for describing different voting systems: your simulations and vi-
sualisations could then work with an arbitrary voting system, as described in
the language.

• We saw in the body of the text that it is possible to write a simple DSL for
patterns, namely regular expressions. Look at ways that this can be extended
to make it more expressible, and also at the possibility of defining a DSL to
describe different kinds of finite state machines.

These are just a few ideas of the kind of DSL that you could build: a general project
is to use Haskell for building DSLs in a domain of your choice.
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