
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Brown, Christopher and Thompson, Simon (2010) Clone Detection and Elimination for Haskell.
 In: Gallagher, John and Voigtlander, Janis, eds. PEPM'10: Proceedings of the 2010 ACM SIGPLAN
Workshop on Partial Evaluation and Program Manipulation. ACM Press pp. 182-196. ISBN
978-1-60558-727-1.

DOI

https://doi.org/10.1145/1706356.1706378

Link to record in KAR

https://kar.kent.ac.uk/30696/

Document Version

UNSPECIFIED

Clone Detection and Elimination for Haskell

Christopher Brown Simon Thompson

School of Computing, University of Kent, UK.

chris@techniumcast.com, S.J.Thompson@kent.ac.uk

Abstract

Duplicated code is a well known problem in software maintenance
and refactoring. Code clones tend to increase program size and sev-
eral studies have shown that duplicated code makes maintenance
and code understanding more complex and time consuming.

This paper presents a new technique for the detection and re-
moval of duplicated Haskell code. The system is implemented
within the refactoring framework of the Haskell Refactorer (HaRe),
and uses an Abstract Syntax Tree (AST) based approach. Detection
of duplicate code is automatic, while elimination is semi-automatic,
with the user managing the clone removal. After presenting the sys-
tem, an example is given to show how it works in practice.

Categories and Subject Descriptors D.2.3 [SOFTWARE ENGI-
NEERING]: Coding Tools and Techniques; D.2.6 []: Program-
ming Environments; D.2.7 []: Distribution, Maintenance, and En-
hancement; D.3.2 [PROGRAMMING LANGUAGES]: Language
Classifications — Applicative (functional) languages

General Terms Languages, Design

Keywords Haskell, refactoring, HaRe, duplicated code, program
analysis, program transformation, generalisation

1. Introduction

The existence of duplicated or similar code (often called “code
clones”) is a well known problem in refactoring and software main-
tenance. The term duplicate code, refers to code fragments that bear
a strong relationship: they might be literally identical, or similar up
to changing values of literals, or indeed may share a common gen-
eralisation. We will explain our particular approach in due course.

Several studies have shown that software systems with code
clones are more difficult to maintain than the software systems with
little or no duplicated code [Roy, Cordy and Koschke 2009, Mon-
den et al. 2002]. It is therefore beneficial to remove cloned code
quickly after its introduction by the use of refactoring technology.

Software clones appear for a variety of reasons; the most ob-
vious of which is the use of the “copy and paste” functions in an
editor. Clones introduced by this mechanism often indicate a poor
design with a lack of function abstraction or encapsulation [Chou
et al. 2001, Li et al. 2006]. Refactoring can be used to eliminate
this problem either by first transforming the code to make it more

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PEPM’10, January 18–19, 2010, Madrid, Spain.
Copyright c© 2010 ACM 978-1-60558-727-1/10/01. . . $10.00

reusable, without duplicating code; or by transforming the code
clones at a later stage in the refactoring process [Fowler 1999].

In the last decade, a substantial amount of research has gone
into duplicate code detection and removal from software systems; a
recent survey and taxonomy gives an encyclopaedic overview [Roy,
Cordy and Koschke 2009]. However, few such tools are available
for functional programs, and there is a particular lack of clone
detection support within existing program environments.

This paper details a clone detection technique for Haskell [Pey-
ton Jones and Hammond 2003] built into the framework of HaRe,
the Haskell Refactorer [Li et al. 2003]; the tool described here is
able to handle large Haskell programs. In particular, the tool is cov-
ers the full Haskell 98 language; works with multiple module pro-
grams; preserves layout and is embedded within Emacs [Cameron
et al. 2004] and Vim [Oualine 2001].

Fully automating the tool would be dangerous because it could
lead to results that the user would not expect; it is better to give the
user control over which clones should be removed and extracted.
The clone detection stage is fully automatic, while the transforma-
tion stage is user controlled. Being part of the programming envi-
ronments most commonly used by Haskell programmers, the clone
detection and elimination tools are more likely to be used than those
in a stand-alone utility.

The clone detection technique presented in this paper has a more
inclusive criterion for similarity than other clone detection mecha-
nisms: it is concerned with finding clones which are common sub-
stitution instances of non-trivial expressions, rather than mere tex-
tual duplications. The clone detection technique is able to report
code fragments in a Haskell program that share a non-trivial gener-
alisation or anti-unification. Syntactically, these code clones are a
sequence of well-formed expressions, and therefore this approach
makes use of the token stream and AST provided in HaRe as part of
Programatica [Hallgren 2003]. User intervention allows clones to
be removed in a step-by-step process under the programmer’s con-
trol, and allows for the preservation of clones of particular kinds
(for example very small clones).

In addition to this, the clone detection technique has been ex-
tended to look for repeated sequences of monadic “commands”.
The clone detection and elimination technique as presented here
are novel in dealing with a pure functional language with monadic
effects. Clone detection systems have been developed in the past
for imperative languages, however, due to referential transparency,
the scope for detecting and (particularly) eliminating clones for a
pure language is much greater.

The work presented here complements that on clone detection
in Erlang using Wrangler [Li and Thompson 2009, 2010]. This
process uses a hybrid mechanism: a token based technique for
identifying code clones, which are then checked for static semantics
using the annotated AST. The process here is somewhat different,
in using a purely AST based approach. It also goes beyond the
purely functional in taking into account monadic sequences within
the source program.

Section 2 gives an overview of work relating to duplicated code
elimination. Section 3 discusses the analysis stage of the clone re-
moval process for HaRe and Section 4 discusses the transformation
stage of the clone removal process.

2. Related Work

A recent overview of clone detection and elimination work is given
by Roy, Cordy and Koschke in [Roy, Cordy and Koschke 2009],
and their analysis gives a multi-way taxonomy of the substantial
body of existing work. First, it is possible to divide techniques
according to the mechanisms used to detect clones.

Text-based Techniques

With this approach, the program is considered a sequence of strings
(i.e. lines), and the mechanism looks for identical sequences of
strings across two or more files. So, this mechanism makes no
attempt to identify clones which are the same up to differences in,
for example, literals, but looks for strict identity of lines. To speed
up such approaches it is possible to compute ‘fingerprints’ of lines,
as discussed in, for example, [Johnson 1993].

Token-based Techniques

Programs are naturally sequences of tokens, and so it makes sense
to process the input programs into token sequences before further
processing. This allows clone-detection to consider more compact
input files, as well as being less sensitive to superficial changes such
as layout, comments and white space characters.

As well as simple tokenising, it is possible to abstract away
somewhat from program structure with this approach. For instance,
different identifiiers can be replaced by an ‘identifier’ token, so that
differences in names do not impede the detection of cones which
are equivalent up to change of name. Similarly, literal expressions,
such as numbers, can also be elided. This approach is used in
CCFinder [Kamiya et al. 2002], where this processed token stream
is then converted into a suffix tree representation for the clone
detection itself.

A drawback of this approach is that false positives can be iden-
tified, as the binding structure of the identifiers in a program is not
necessarily respected when the particular names are hidden. This is
avoided by Dup [Baker 1995], which uses a similar approach, but
without knowing the particular scoping rules of the target language,
false positives in the clone identification process are impossible to
avoid.

Tree-based Techniques

These techniques search for similar subtrees in the AST, and so
have the most structured inputs of the three mechanisms. The AST
contains all the information required to do clone detection; variable
names and literal values are discarded in the tree representation
allowing more sophisticated methods for the detection of clones
to be applied. In fact, it is possible to support search for more
abstract clones, where common structures internal to the tree can
be identified; these represent code which has a non-trivial common
generalisation, where sub-trees – such as sub-expressions – are
replaced by parameters to the abstraction.

In order to make an AST-based approach more efficient, the
CloneDR [Baxter et al. 1998] compares nodes in its subtrees by
characterization metrics based on a hash function. The source code
of similar sub-trees is returned; CloneDR can check for consistent
renaming. Our work builds upon some of the ideas outlined in Bax-
ter et al’s paper, although the work presented here uses a grouping
algorithm rather than a hash function. Futhermore, Baxter et al. also
suggest a mechanism for the removal of code clones with the help
of macros, but, unlike the approach presented here, they did not
carry out any clone removal.

DECKARD [Jiang et al. 2007] is another AST-based language
independent clone detection tool; its algorithm is based on the
computation of characteristic vectors that approximate structural
information within ASTs. Once vectors are computed, they are
clustered according to similarity vectors, yielding code clones.
There are also some clone detection techniques based on program
dependency graphs as demonstrated in [Komondoor and Horwitz
2001].

Hybrid Techniques

The clone detection in Wrangler, [Li and Thompson 2009, 2010],
uses a hybrid technique. Clone cadidates – which include false
positives – are identified using the token stream, rendered as a suffix
tree; the AST is then used to check which of these candidates is a
true clone.

Other ‘facets’

Roy, Cordy and Koschke identify further ‘facets’ of difference,
including the tool environment, the type of similarity (they identify
four types), the language-specificity and so forth.

Many of the clone detection techniques discussed earlier are
targeted at large legacy systems, and are not tightly integrated
into any kind of programming environment. Language independent
clone detection tools tend to have much lower precision since they
do not – indeed they cannot – take into account static scoping
rules of the particular language under analysis by making them less
suitable for accurate clone refactoring.

3. The HaRe Clone Detector

There are two separate parts of the clone detection and removal: an
analysis stage, which looks over a Haskell project and detects clone
classes; and a transformation stage, which transforms identified
clones from the clone classes in the first stage into calls to an
appropriate abstraction.

The Clone Detector reports clones by identifying duplicated
instances of expressions (and sub-expressions occurring with a
“do” block) within a Haskell project. Each clone is reported with a
start and end location (in the form of a line number) and clones that
are instances, or near instances, of the same expression are grouped
together to form clone classes. The analysis stage allows the user to
specify the minimum number of tokens for the clones; these clone
classes are then delivered in a report.

3.1 Preliminaries

The phrase “code clones” in general refers to a collection of pro-
gram fragments that are identical or similar to each other. The code
fragments can be similar if the program texts are similar or their
functionalities are similar without being textually similar. Since se-
mantic similarity is generally undecidable, we only consider clones
that are textually similar, which can be compared via their AST
representation. By similar code fragments we mean that the code
fragments are instances of a well-formed expression, and can be
replaced with a call to a generalisation. To give an example of this
consider

f = (sum [1..100] + 23) + 24

g = foldr (+) 0 [1..10] + (3 + sum [2,3])

Both f and g are instances of the expression x+y operator. What
makes these fragments code clones in the sense of this paper is that
we can create a generalisation

add x y = x+y

and make f and g into calls to this generalisation, thus:

f = add (sum [1..100] + 23) 24

g = add (foldr (+) 0 [1..10]) (3 + sum [2,3])

Note in this example that to identify f and g as clones it is neces-
sary to identify a common structure internal to their ASTs, rather
than simply replacing terminal symbols such as names and num-
bers.

Common terminology for the clone relations between two or
more code fragments are the phrases “clone pair” and “clone class”
[Kamiya et al. 2002]. A clone pair is a pair of code fragments that
are identical or similar to each other; a clone class is the maximal
set of code fragments in which any two of the code fragments form
a clone pair.

3.2 AST-Level Clone Analysis

The HaRe clone analysis works over an AST representation of
a Haskell program, only using the token stream to identify sub-
expressions that have a minimum token size (as specified by the
user). By using an AST, it is possible to detect and transform
clones whilst building upon the existing HaRe framework; source
location information is still retained in the AST and whitespace and
comments are removed. The clone analysis has five stages.

Inter-module analysis. The clone analysis first calculates the ex-
port relations of the module (the modules that import the current
module either directly or indirectly). When a new project is ini-
tiated within HaRe, Programatica stores the export information
in a local directory; it is possible to use this information within
HaRe to calculate the modules exported or imported by the cur-
rent module under refactoring. The export relations are calcu-
lated in order for the analysis to determine which modules need
to be compared with each other. The clones for a single module
project (say module A) are determined by comparing A against
itself. If we are comparing a multiple module project that con-
tains the modules A, B and C, we need to be able to compare
each different pair of modules, that is n(n + 1)/2 comparisons
for an n module project.

It may be more efficient to concatenate the source files together
into a separate module and then analyse only that module,
rather than reviewing each file and comparing it with the others.
However, we didn’t consider this approach for a number of
reasons:

• It is not straightforward in Haskell to concatenate all mod-
ules together due to the binding restrictions of the language.
The clone detector would have a further process of renaming
all the functions to avoid conflicts in namespaces between
modules and in order to retain their identity.

• Programatica uses a project based system whereby all the
modules of a Haskell project are parsed in turn, into separate
syntax trees. It made sense to re-use the infrastructure of
Programatica in this way in order to get a syntax tree for
each module in the project. Using separate ASTs makes
it easier to implemented the clone analysis as the binding
structure relationship is retained throughout each module in
the project.

Group. An initial pass over the AST groups together all expres-
sions of the same syntactic form. Originally, before this group-
ing, the clone analysis took approximately 15 minutes to com-
pute clones for the Huffman example from Thompson’s Haskell
text [Thompson 1999]. The grouping significantly diminished
this time down to 23 seconds. By grouping expressions in this
way, a lot of irrelevant analysis can be eliminated (i.e. by com-
paring an application with a section). For example, all function
applications, identifiers, infix applications, and sections, etc. are

grouped together. The grouping also takes into account sub-
expressions, so that the expression,

(convert (cd++[L]) t1) ++

(convert (cd++[R]) t2)

is grouped into the following:

Function Application. convert (cd++[L]) t1 ,
convert (cd++[R]) t2

Infix Application. (convert (cd++[L]) t1)

++ (convert (cd++[R]) t2), cd++[L],
cd++[R]

List. [L], [R]

Identifier. convert , cd , L , t1 , convert , cd , R, t2, ++

Infix and prefix expressions are currently stored as separate
entities in the Programatica syntax tree. It is expected that the
clone detector will be extended so that infix application can be
compared with prefix applications in the clone analysis.

Type and traversal. For each expression in the module, the type of
the expression is determined and the relevant group of expres-
sions is traversed for clone detection. A disadvantage is that
some clones are missed as the clone analysis is only able to
compare expressions with a similar syntactic form. It is not cur-
rently possible to compare infix expressions with function ap-
plications for example (and those would be not be clones in the
sense used in this paper). However, the clone analysis does de-
tect clones between expressions and parenthesized expressions,
i.e. e and (e). More information on the comparison of the AST
is given in Section 3.3.

Sort and group. The clones that are found are sorted based on
their token size and grouped together based on their size; clones
that are contained within larger clones are removed.

Print. The clones are pretty printed to a report file. The report
file includes the clone classes and their location and module
information.

3.3 Abstract Syntax Tree Comparison

Two expressions are compared by traversing their structures. If the
two structures contain different constructs at any point during the
comparison then the analysis terminates and another expression is
chosen by the traversal strategy.

• When comparing two identifiers i1 and i2, i1 and i2 are
identical if the following holds:

i1 and i2 both refer to the same top-level identifier. If
i1 and i2 refer to different top-level identifiers, then they
are not duplicate expressions. This eliminates cases such as
comparing 1 + 2 with 1 - 2 ((+) and (-) are different
top level identifiers). If i1 and i2 are both local variables
then they will always match. It could be possible to abstract
out top-level identifiers, as they can be passed in as higher-
order parameters. However, we chose not to do this, because
in most cases it is not a step required by the user. A literal
may be compared with any other literal or a locally defined
identifier, as literals can be passed in as parameters.

• Local identifiers may be identified with each other when mak-
ing the comparison of sub-ASTs; local identifiers can be passed
in as parameters.

• The analysis allows for the comparison of expressions with
parentheses with expressions without parentheses. For example,
suppose when comparing (e1) with e2: (e1) and e2 are
duplicates if e1 compares with e2 structurally, or either e1 or

e2 are identifiers or literals. If the expression is being compared
against a literal of a locally defined variable, then the expression
can be passed in as a parameter. This is a consequence of
the fact that the tree structure that the clone analysis uses to
represent Haskell programs is in fact more detailed than an
abstract syntax tree.

• For expressions that contain patterns, for example lambda ab-
stractions and case alternatives, the expressions are the same if
their pattern structures are also the same and their expressions
are the same. For example, suppose when comparing the two
lambda expressions:

e1 = \(x:xs) -> head xs

e2 = \(y:ys) -> head ys

If the structure of the patterns are both e1 and e2 equivalent,
then the patterns in e2 are implicitly renamed by the analysis
to match those in e1. This is done by renaming identifiers in
a consistent way temporarily within the AST. Identifiers in the
expression head ys are also renamed to match the renamed
patterns. Therefore, e2 becomes:

e2 = \(x:xs) -> head xs

Which of course is equivalent to e1 and therefore dupli-
cated. Lambda bindings are treated in exactly the same way
as let/where bindings (in terms of their binding resolution).
Consider an example where two lambda expressions would not
match.

f1 = \(x:z:xs) -> x + length xs

f2 = \(x:z:xs) -> z + length xs

In the above example, the two expressions within the lambda
bodies are different. The first lambda expression refers to x

while the second refers to z. The process used here is exactly
the same as the technique used for folding, as described in
[Brown 2008] (and briefly in the following section).

Rather than performing an alpha renaming we first considered
using de Bruijn indices instead to check equivalence between
terms. However, de Bruijn indices do not solve the problem
completely. Consider

\x.\y -> x + y

\x.\y.\z -> x + y

Using de Bruijn indices, in the first case we have, where we use
the notation (n) for the variable bound n lambdas out:

\.\.(1) + (0)

And in the second

\.\.\.(2) + (1)

But this does not get us any closer to solving the problem,
as the common pattern here is + , and this is not literally
identified by the de Bruijn representation, necessitating some
further analysis.

• The analysis looks for duplicated monadic sequences and du-
plicated monadic bindings or a combination of the two. For ex-
ample, given the following two monadic blocks:

f = do

x <- return 565; y <- k 56

putStrLn (y ++ show x)

h = do

a <- return 1111; b <- k 56

putStrLn (b ++ show a)

return 4

The clone analysis first determines that the two binding struc-
tures are identical up to changes in literals (indicated by the
highlighting) by implicitly renaming the patterns in the second
block so that they match the patterns in the first block.

f = do

x <- return 565; y <- k 56

putStrLn (y ++ show x)

h = do

x <- return 1111; y <- k 56

putStrLn (y ++ show x)

return 4

After this renaming, the analysis then determines that the two
expressions putStrLn (y ++ show x)

and putStrLn (y ++ show x) are also duplicates and
therefore labels the binding generators x and y together with the
qualifying statement putStrLn (y ++ show x) in both
blocks as being clones.

4. Refactoring Support for Clone Removal

Already implemented in HaRe are the following refactorings
[Brown 2008]:

Function folding. Folding replaces all sub expressions in a pro-
gram, which are substitution instances of the right hand side of
an identified equation, with a call to that equation, passing in
expressions substituted as actual paramters. It is possible that
folding in this sense could eliminate duplicate code by identify
instances of common higher-order functions, such as foldr.
For example, suppose that we have the following:

1 + (sum [1..10])

We can select the expression sum [1..10] and choose to
fold against the definition of foldr. This would produce the
expression:

1 + (foldr (+) 0 [1..10])

It is important to note that sum is an instance of foldr and is
not a clone.

As-pattern folding. This refactoring replaces particular sub ex-
pressions occurring on the right hand side of an identified equa-
tion with calls to an as-pattern, provided that the sub-expression
refers to a pattern binding that is defined in the same scope. For
example, consider the following:

f (x:xs) = length (x:xs)

An as-pattern can be introduced for the first argument of f and
substituted in the body of f:

f a@(x:xs) = length a

Merging. Merging creates a new tuple-returning definition; the
constituent components of the tuple are extracted from a num-
ber of identified definitions introducing sharing. For example,
consider the two definitions:

take :: Int -> [a] -> [a]

alphaMerge :: [(Char,Int)] -> [(Char,Int)]

-> [(Char,Int)]

alphaMerge xs [] = xs

alphaMerge [] ys = ys

alphaMerge ((p,n):xs) ((q,m):ys)

(A)

| (p==q) = (p,n+m) : alphaMerge xs ys

(B)

| (p<q) = (p,n) : alphaMerge xs ((q,m):ys)

(C)

| otherwise = (q,m) : alphaMerge ((p,n):xs) ys

Figure 1. Duplicated instances of the same expression

take 0 _ = []

take _ [] = []

take n (x:xs)

| n > 0 = x : take (n-1) xs

take _ _ = error "take: negative argument"

drop :: Int -> [a] -> [a]

drop 0 xs = xs

drop _ [] = []

drop n (x:xs)

| n > 0 = drop (n-1) xs

drop _ _ error "drop: negative argument"

Merging allows the definitions of take and drop to be merged
together, to form a new, recursive, definition:

splitAt 0 xs = ([],xs)

splitAt _ [] = ([],[])

splitAt n (x:xs)

| n > 0 = (x:ys, zs)

where

(ys, xs) = splitAt (n-1) xs

splitAt _ _

= (error "take: negative argument",

error "drop: negative argument")

These refactorings, —as a side-effect— help to remove duplicated
code, but rely on the user identifying particular problematic areas,
and then invoking the refactorings accordingly. The clone detection
tool is designed to perform the analysis automatically and to allow
the user to choose whether or not to create an abstraction for
particular members of a given clone class. Furthermore, the undo
feature of HaRe allows the user to recover their original program if
they change their mind.

The trivial examples in the remainder of this section are used
to explain the concept of clone detection and extraction, and may
result in more difficult to understand code. A larger example of
clone detection and elimination is given in Section 5.

4.1 General Function Abstraction

This subsection introduces a new refactoring for HaRe in the
form of function abstraction. This refactoring abstracts expressions
within a clone class into a call to a new function. The refactoring
takes into account instances of an expression together with exact
duplicates of the expression. To show how this abstraction works,
consider the code fragments in Figure 1. In this example, the HaRe

(A)

x+(y+z)

(B)

((x+y)+z)+w

(C)

(x+(y+z))+w

Figure 2. Duplicated instances showing different generalisations

clone detector has singled out the code fragments as duplicated
instances of each other. In each code fragment (A), (B) and (C)
similar calls to the function (:) occur. The HaRe clone detector
reports these as a clone class to the user, and asks whether or not to
form an abstraction over this expression. A new function is created
automatically with the expression indicated in the clone class as
the function body; any formal parameters are added to the function
abstraction; for example, if the clone differs in a literal at each
instance this is made into a parameter. The expression instances are
then replaced with a function call. The following gives an example
of the abstraction that is created for the instances highlighted in
Figure 1:

abs_1 p_1 p_2 p_3 p_4

= (p_1, p_2) : (alphaMerge p_3 p_4)

Figure 3 shows the transformed program after the abstraction is
created and the expressions are replaced with calls. It is interesting,
however, that —in general— if there is a common generalisation
for three or more sub-expressions, then the common generalisation
for two of them compared to three or more may be different.
Consider the code blocks in Figure 2. The common generalisation
for (A), (B) and (C) is:

abs_1 p_1 p_2 = p_1 + p_2

Selecting only (B) and (C) however would produce the following
abstraction:

abs_1 p_1 p_2 p_3 = (p_1 + p_2) + p_3

Generalising the expressions in this way has the advantage of re-
moving duplicated code from within the program and encourages
code reuse and maintenance. In Figure 3, the programmer now
only needs to worry about maintaining one call to (:), while be-
fore there were three calls to (:) to maintain. It is interesting to
note, however, that in the example above the introduction of the
abstraction does not shorten the expressions. It does, however, ab-
stract away a common sub-expression, allowing the expression to
be more easily maintained at a later stage in the program devel-
opment cycle. It is important to note that HaRe has a renaming
refactoring [Li 2006], that allows more appropriate names to be in-
troduced for the abstraction and its arguments.

4.2 Step-by-step Clone Detection

Clone detection is designed to be fully automatic. Clone classes that
are detected are presented to the user in the form of a report, where
the user can then step through the instances, deciding whether or
not they should be abstracted; this can be done by tabbing through
the instances in an editor.

To put this into context, consider the code fragments in Figure
5. The clone detector has detected two clone classes: the expres-
sions on lines 3 and 6 are identified to be instances of the same
expression. The clone detector shows this by delivering a report
to the user, stating that the sub-expression on line 3 and the sub-
expression on line 6 are both instances of a non-trivial generalisa-

module A where

import B

emitJump p j i =

emitByte p (j) >|>

emitByte p (show l) >|>

emitByte p (show h)

where

(h,l) = i ‘divMod‘ 256

module B where

emitOp12 p op i =

case (-i) ‘divmod‘ 256 of

(0,l) -> emitByte p (op ++ "_N1") >|>

emitByte p (show l)

(h,l) -> emitByte p (op ++ "_N2") >|>

emitByte p (show h)

emitByte x y = ...

Figure 4. A multiple-module project demonstrating clone instances

(A)

abs_1 p_1 p_2 p_3 p_4

= (p_1, p_2) : (alphaMerge p_3 p_4)

alphaMerge :: [(Char,Int)] -> [(Char,Int)]

-> [(Char,Int)]

alphaMerge xs [] = xs

alphaMerge [] ys = ys

alphaMerge ((p,n):xs) ((q,m):ys)

| (p==q) = abs_1 p (n + m) xs ys

(B)

| (p<q) = abs_1 p n xs ((q, m) : ys)

(C)

| otherwise = abs_1 q m ((p, n) : xs) ys

Figure 3. Duplicated instances replaced with a call to abs 1

tion; this process is known as anti-unification [Bulychev and Minea
2008] and is discussed in more detail in Section 4.4. For each of the
instance matches, the clone detector asks the user whether or not
they would like to replace the sub-expression with a call to an ab-
straction. Figure 6 shows example of the interaction (the numbers
in parentheses indicate the start and end positions in the source file
using row and column numbers).

For each clone candidate, HaRe displays the start and end loca-
tions of the clone instance. This report is produced automatically
for each of the instances in turn; the user only has to answer “yes”
or “no” for each question. The user may quit at any time by answer-
ing with “Q”; this has the affect of only extracting expressions that
the user has answered “yes” to up to the point of quitting; all further
expressions are left unchanged. If the user has answered “yes” to a
question, HaRe also asks the user for the name of the abstraction
and proceeds to transform the code to include the abstraction and
the calls. This allows for cases where the user may not want to re-
place all instances of a particular clone, but only some of them; this
behaviour is particularly useful if the clone detector reports clones
classes with a large number of clones (the user can bail out without
having to go through each candidate in turn). It is worth noting that
it may be useful to implement a feature so that the user can reply
“A” as shorthand for replacing all clones, as long as the user is sure
they want to do that.

(A)

1 showTreeIndent :: Int -> Tree -> String

2 showTreeIndent m (Leaf c n)

3 = spaces m ++ show c ++ " " ++ show n

4 showTreeIndent m (Node n t1 t2)

5 = showTreeIndent (m+4) t1 ++

6 spaces m ++ "[" ++ show n ++ "]"

7 ++ showTreeIndent (m+4) t2

Figure 5. Two code fragments showing code instances for step-
by-step removal

/home/cmb/huffman/CodeTable.hs ((46,5),(46,44)):

>spaces m ++ show c ++

" " ++ show n ++ "\\n"<

Would you like to extract this expression (Y/N)?

Figure 6. Results of running the extraction

4.3 Choosing the Location of the Abstracted Function

In Haskell, there are two cases to consider when placing the
extracted function:

• The first is in a single-module project where the extracted func-
tion can be placed anywhere at the top-level scope of the mod-
ule.

• The second is a multiple-module project, where insertion of
the extracted function in one of the constituent modules may
introduce circular inclusions.

Consider the code blocks in Figure 4; this figure demonstrates a
multiple-module project where we have, on the left hand side, a
module that imports the module B, which is shown on the right
hand side. The highlighted expressions in the figure show that the
HaRe clone detector has discovered some cloned expressions. If the
user has decided they would like to replace these sub-expressions
with an function application the question is where does HaRe place
the abstracted function for these sub-expressions?

In Figure 7, HaRe has placed the abstraction in the module that
contains the instance of the first duplicated sub-expression that is
selected for extraction. The problem here is that a cyclic depen-
dency has been introduced: module A imports module B and B im-
ports module A. Cyclic inclusions must be avoided during the trans-
formation due to the fact that transparent compilation of mutually-
recursive modules is not supported by current Haskell compil-

module A where

import B

divMod256 i = i ‘divMod‘ 256

emitJump p j i =

emitByte p (j) >|>

emitByte p (show l) >|>

emitByte p (show h)

where

(h,l) = divMod256 i

module B where

import A (divMod256)

emitOp12 p op i =

case divMod256 (-i) of

(0,l) -> emitByte p (op ++ "_N1") >|>

emitByte p (show l)

(h,l) -> emitByte p (op ++ "_N2") >|>

emitByte p (show h)

emitByte x y = ...

Figure 7. A multiple-module project demonstrating circular inclusions

ers/interpreters; even though mutually-recursive modules are a part
of the Haskell 98 standard.

A possible solution to this problem is to put all the abstractions
from a clone detection process into a separate module, but this then
risks having problems when the abstractions depend on other func-
tions themselves. The HaRe clone detector solves this problem by
performing an analysis over the project under clone detection. If
it is safe to place the abstraction into the module where the first
highlighted expression occurs within the clone class, then the re-
placement is performed. Otherwise, the abstraction is placed in the
first available module that does not introduce circular inclusions.
This module is calculated by Programatica, which stores a list of
available modules, and the modules that are used in the clone elim-
ination are extracted into a separate list. This list is then traversed,
until a module is found where it is possible to introduce the abstrac-
tion without introducing a circular inclusion. If it is impossible to
avoid a circular inclusion, then the clone detection reports an error
to the user. In the case that expressions over multiple-modules are
transformed into calls to the abstraction, the import relations of the
modules containing those expressions are modified to import the
module containing the abstraction. Suppose the module containing
the abstraction is A and the module importing the abstracted mod-
ule is B, the design issues for placing the abstraction are as follows:

• If module A has an explicit export list, the abstraction name is
added to the export list.

• If module B has an explicit import list for module A, then the
abstraction name is added to the explicit list of imports.

Otherwise an import statement is added to module B so that it
imports module A with the abstraction name added to the list of
imports for module A.

4.4 Calculating the Abstraction

The abstraction is calculated only when the transformation process
can determine which sub-expressions can be passed in as an ar-
gument. This is done by comparing the identified expressions for
transformation from the clone class. If, during the comparison, the
sub-expressions are different, then they can be passed into the ab-
straction as a parameter. If the sub-expressions are the same (either
as literals or identifiers referring to the same top-level identifier)
then they do not need to be passed in as arguments. Consider the
following three clones:

(p,n+m) : alphaMerge xs ys

(p,n) : alphaMerge xs ((q,m):ys)

(q,m) : alphaMerge ((p,n):xs) ys

The transformation stage determines that from the three clones, the
expressions (:) and alphaMerge occur in the same place in
each expression. All other sub-expressions must be passed in as an

argument. This process is called “anti-unification” as it is finding
the least general generalisation of a set of expressions [Bulychev
and Minea 2008].

4.5 Abstracting Monadic Sequences

There are two cases to consider when abstracting duplicated
monadic sequences. The first is where the abstraction contains
pattern bindings that will be used in the remainder of the func-
tion containing the clone instance. The second is where the pattern
bindings are not required in the remainder of the function contain-
ing the clone instance. If any pattern bindings are needed by the
function then the values that they bind must be returned by the ab-
straction, and a new pattern binding is created to bind the variables
to the appropriate values returned by the abstraction. Consider, for
example (where the highlighted expressions show the clones):

f = do

x <- return 565; y <- k 56

putStrLn (y ++ show x)

h = do

a <- return 1111; b <- k 56

putStrLn (b ++ show b)

return 4

A new abstraction is created with a return statement, returning
the values of the pattern bindings as a tuple in the abstraction:

abs1 p_1

= do

return (p_1,k 56)

The clone instances are then replaced with pattern bindings, so
that the patterns bound in the abstraction can be further used in the
program:

f = do

(x,y) <- abs1 565

putStrLn (y ++ show x)

h = do

(a,b) <- abs1 1111

putStrLn (b ++ show b)

return 4

If the abstraction contains no pattern bindings, or the pattern bind-
ings in the abstraction are not needed outside the abstraction to be
created, then no return statement is added to the abstraction. If
only a subset of the variables are needed, then only these values
are returned. Consider that HaRe has detected the following high-
lighted clones:

f = do

putStrLn (show 56 ++ " " ++ show 42)

h = do

putStrLn (show 42 ++ " " ++ show 56)

return 4

The following abstraction is created:

abs p_1 p_2 = putStrLn (show p_1 ++ " "

++ show p_2)

The clone instances are then replaced with calls to the abstrac-
tion.

4.6 An Issue with Generalisation

There is an issue to consider when dealing with abstracting over
common sub-expressions (generalisation). Consider the following
piece of code:

f x y = if (\z -> z) x then y else (\z -> z) (y+1)

As it can be seen from the code, the common code to be abstracted
is a lambda expression:

(\z -> z)

but it is used at two different monotypes within the body of f. If
we abstract over the lambda expression we force it to have the type
forall a. a -> a which cannot be unified. If we introduce a
new definition, g, as follows:

g x y = 1+ (if (id.id) x then y else (id.id) (y+1))

We see the common generalisation of f and g as

gen x y h = if h x then y else h (y+1)

This results in both f and g being transformed to call the new
abstraction, gen:

f x y = gen x y (\z -> z)

g x y = 1 + gen x y (id.id)

This now forces the argument of h within gen to be polymorphic,
which obviously gives a type error. This is a problem with lambda
lifting [Johnsson 1985] in general where we introduce functions (or
lambdas) to abstract over a polymorphic entity.

This problem with generalisation could be overcome if the clone
detection was extended to take into account the fact that the types of
the clones chosen for abstraction within a class must be unifiable.
If this was the case, the above example could not occur. A solution
to this problem is to introduce an existentially qualified type. In our
example, the type checker has inferred the type of gen:

gen :: Num a => Bool -> a -> (b -> b)-> a

Implicitly the type checkers infers that a and b are qualified as
existential types:

gen :: forall a. forall b. Num a => Bool

-> a -> (b -> b)-> a

The problem is because the forall a . forall b is on the
left most side, we need to introduce rank-2 polymorphism in all
cases, so that b can be unied with both the types Bool and Num a
=> a:

gen :: forall a. Num a => Bool

-> a -> (forall b . (b -> b))-> a

Many of the refactorings in HaRe already have support for type
analysis, and, although this is an extreme case of generalisation, it
is expected that work to extend the clone analysis to take types into
account will be an aspect of future work.

5. Case Study

To evaluate the tool we have applied it to a large-scale application
written in Haskell 98. We were unable to to perform clone elimi-
nation on HaRe due to the fact that HaRe is written in non-Haskell
98 code, and yet is currently only capable of refactoring Haskell 98
programs. Instead, the clone detection was performed over a differ-
ent test case.

The experiment was to run the clone analysis over nhc [Röjemo
1995]: a Haskell 98 compiler system. For the purposes of the
experiment, the clone analysis was configured so that there was no
limit in the size of the clone classes and the minimum number of
tokens appearing in a cloned expression is 5. Due to performance
restrictions that are discussed in Section 5.1, the clone analysis was
only run over the Main module to show the clone analysis as a
proof of concept.

The first step was to extract some of the clones reported into
abstractions. Figure 8 shows an extract of a clone class that was
considered for extraction. The expression:

mixLine (map show

(listAT (getSymTab state)))

Within HaRe the extract expression is selected from the HaRe drop-
down menu. After the clone detection process, the clone detector
steps through each clone candidate. It seems appropriate for all
expressions to be extracted. HaRe then creates an abstraction (here,
state is a local variable that must be passed in as a parameter):

abs_1 p_1

= mixLine (map show (listAT

(getSymTab p_1)))

And replaces the expressions in the clone class with:

abs_1 state

The name is chosen by the refactoring automatically; however the
choice of the uninformative name can easily be fixed by a renam-
ing. The same is performed for the clone expressions identified in
the two former clone classes of Figure 8. The expressions occuring
in the remainder of the report (not shown in the figure) are selected
in turn, and extracted into calls to the following abstractions. For
example, the expressions of the form:

mixLine (map show (listAT

(getRenameTableIS impState)))

are converted into calls as in the following

abs_2 impState

Likewise, expressions of the form:

mixLine (map show (listAT

(getSymTabIS impState)))

are converted into calls as in the following

abs_3 impState

The following abstractions are introduced at the top of the module:

abs_2 p_1

= mixLine (map show (listAT

(getSymTabIS p_1)))

abs_3 p_1

= mixLine (map show (listAT

(getRenameTableIS p_1)))

It now makes sense to convert abs 3 into a call to abs 2. This
can be done manually using some of the current refactorings al-
ready implemented in HaRe: the definition of abs 2 is generalised

/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((191,10),(191,59)):

>mixLine (map show (listAT (getSymTab state)))<

/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((218,11),(218,60)):

>mixLine (map show (listAT (getSymTab state)))<

/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((232,13),(232,62)):

>mixLine (map show (listAT (getSymTab state)))<

/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((280,11),(280,60)):

>mixLine (map show (listAT (getSymTab state)))<

/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((312,12),(312,61)):

>mixLine (map show (listAT (getSymTab state)))<

/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((333,12),(333,61)):

>mixLine (map show (listAT (getSymTab state)))<

/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((344,12),(344,61)):

>mixLine (map show (listAT (getSymTab state)))<

/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((372,7),(372,56)):

>mixLine (map show (listAT (getSymTab state)))<

/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((390,7),(390,56)):

>mixLine (map show (listAT (getSymTab state)))<

9 occurrences.

Figure 8. An extract from the clone report for nhc

so that getSymTabIS is made a parameter (this also updates
all calls to abs 2 localState with abs 2 getSymTabIS

localState). A fold is then performed against the (generalised)
definition:

abs_2 p_0 p_1

= mixLine (map show (listAT (p_0 p_1)))

Transforming abs 3 into a call for abs 2:

abs_3 p_1

= abs_2 getRenameTableIS p_1

An interesting observation in performing clone analysis over
nhc is that few of the clones appear to be true duplicates, or
duplicates that are worth extracting. The main problem is that the
analyser cannot distinguish between useful and non-useful clone
entities. Indeed, the analysis also compares expressions of the form
f e1 e2 with f e1 e2 e3.

The reason for this is mainly due to the fact that the clone
analysis is tree-based. f e1 e2 is actually represented as (f

e1) e2 and, if e2 is a variable that is not declared at the top-level,
it will consequently match against anything.

Monadic clone detection could not be performed in this case
study. nhc only has a very small amount of monadic code which
is not appropriate for clone extraction. A better example may be to
apply the clone analysis over a monadic parser example, as long as
the example uses the do notation.

5.1 Performance

In order to test the true performance of the clone analysis, the
HaRe clone detector was ran over a number of Haskell 98 programs
varying in program size. These programs are found as examples
used in Thompson’s text [Thompson 1999] and as test applications
for nhc [Röjemo 1995]. The performance study was executed on
a Linux machine running Fedora 11 with Intel(R) 2.66GHz Quad
Core Processor and 4GB RAM.

Table 1 shows the results of applying the HaRe clone detector to
the Haskell programs mentioned above. The first column shows the
program’s size by the number of tokens over the whole program. It
seems to make more sense to show size rather than the number of
lines of program code in each example, as the number of lines of
code is not a good indication as to how many expressions need to
be compared.

The number of clones and the time taken in seconds is shown
in Table 1 for the clone detection of expressions ≥ 3, ≥ 6 and
≥ 10 respectively. The nhc Main module is not included in the
results here. The clone detector is currently designed to run over
all modules in the program, re-implementing it to work over only
the Main module would give inaccurate and misleading results.
However, computing clones for the whole of nhc is known to take
a considerable amount of time under the current algorithm.

For all applications, the clone detector was able to finish the
detection in a reasonable time. The running time, obviously, seems
to be affected by the size of the program, and the number of
candidates grouped as clones. This suggests that the algorithm
for detecting clones is O(n2) in the worst case. Interestingly, the
clone detector reported more clone candidates when comparing all
expressions with a token size ≥ 3 and many fewer candidates for
expressions with a token size ≥ 10. This suggests that the clone
detector gives more accurate results without giving false positives
when expressions with a token size ≥ 6; this is also shown in
Table 1.

As most of the clone detection is done by comparing subtrees,
the performance could be greatly enhanced by making the com-
parison parallelizable. Another approach to improving performance
would be to use suffix trees to do an initial comparison, and then
use the more costly AST to check clone candidates, as in Wrangler
[Li and Thompson 2009, 2010].

6. Conclusions and Future Work

In this paper, we have presented a clone detection and elimination
system that is embedded within the HaRe framework. The clone
detector makes use of an AST-based approach to detect clones, and
allows the user to select which clones to eliminate. The benefit
of using an AST based approach is that it tends to lead to more
accurate results over token-based methods. The usefulness of the
tool was demonstrated on a real-world case study.

Two stages of clone removal were presented. The first stage
as discussed in Section 3 was an automatic clone detection sys-
tem, where expressions in a multiple-module project are compared
against each other. Clones are reported to a text file. The second
stage, as discussed in Section 4, allows the user to highlight a par-
ticular instance of a clone. HaRe then asks the user whether or not
they would like to replace the clones with a call to an abstraction
in the identified class. The location of the abstraction is discussed

Name Density Clones ≥ 3 Time ≥ 3 Clones ≥ 6 Time ≥ 6 Clones ≥ 10 Time ≥ 10
Simulation 111 8 40 4 16 0 8
Pictures 174 5 4 2 2 2 1
PhoneChess 212 16 23 6 7 2 3
Huffman 738 23 95 10 26 2 13
Minesweeper 910 28 156 28 56 4 17
Minimax 968 46 213 21 79 0 21
Fish 1157 142 740 8 114 6 49
Calculator 1168 18 40 2 21 2 15
Grep 1358 34 210 5 98 0 52
Expert 2349 82 699 82 20 2 39
RegEx 2858 101 1542 35 254 4 97
Compress 3212 23 103 10 27 0 14
PolyGP 5279 355 16406 187 5562 17 2164

Table 1. Clone Detection Results

in Section 4.3. Monadic clone elimination was discussed in Sec-
tion 4.5. Finally, the clone detection and elimination was used to
eliminate duplicate code from nhc in Section 5.

In the future it is expected work to continue on the tool in a
number of directions:

• We would like to make use of interactive visualisation tech-
niques to improve the presentation of the clone results.

• We would like to extend the tool to be used to identify the re-
definition of library functions. This could be particular useful
for newcomers to Haskell to learn library functions with greater
ease.

• We expect to look at a hybrid approach comparable to the
Wrangler approach [Li and Thompson 2009, 2010] work, as
this may make the tool scalable to larger Haskell projects.

• We would like to apply the tool to a substantial monadic project,
allowing us to evaluate the usefulness of the monadic clone
detection and elimination process.

• We expect to extend the clone analysis to take type information
into account. Using types in the analysis would help to avoid
problems with generalisation (as discussed in Section 4.6) and
could build upon the existing type analysis infrastructure of
HaRe [Brown 2008].

• Finally, fully automated clone removal could be supported by
scripted refactorings, based on the clone results.

We would like to thank Dave Harrison for his editorial advice, and
the anonymous referees for their very valuable comments.

References

B. S. Baker. On finding duplication and near-duplication in large software
systems. In WCRE ’95: Proceedings of the Second Working Conference

on Reverse Engineering. IEEE Computer Society.

Ira D. Baxter, et. al. Clone detection using abstract syntax trees. In
ICSM ’98: Proceedings of the International Conference on Software

Maintenance, 1998. IEEE Computer Society.

Christopher Brown. Tool Support for Refactoring Haskell Programs. PhD
thesis, School of Computing, University of Kent, UK, 2008.

Peter Bulychev and Marius Minea. An evaluation of duplicate code detec-
tion using anti-unification. In Third International Workshop on Detec-

tion of Software Clones, 2008.

Debra Cameron, James Elliott, and Marc Loy. Learning GNU Emacs.
O’Reilly, 2004.

Andy Chou, et. al. An Empirical Study of Operating Systems Errors. In
SOSP ’01: Proceedings of the eighteenth ACM symposium on Operating

systems principles, 2001. ACM.

Martin Fowler. Refactoring: improving the design of existing code.
Addison-Wesley, USA, 1999.

Thomas Hallgren. Haskell Tools from the Programatica Project. In ACM

SIGPLAN workshop on Haskell, 2003. ACM Press.

Lingxiao Jiang, et. al. Deckard: Scalable and accurate tree-based detection
of code clones. In ICSE ’07: Proceedings of the 29th international

conference on Software Engineering, 2007. IEEE Computer Society.

J. Howard Johnson. Identifying Redundancy in Source Code Using Finger-
prints. In CASCON ’93: Proceedings of the 1993 conference of the Cen-

tre for Advanced Studies on Collaborative research. IBM Press, 1993.

Thomas Johnsson. Lambda lifting: Transforming programs to recursive
equations. Springer-Verlag, 1985.

Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. Ccfinder: a multi-
linguistic token-based code clone detection system for large scale source
code. IEEE Trans. Softw. Eng., 28(7):2002.

Raghavan Komondoor and Susan Horwitz. Tool Demonstration: Finding
Duplicated Code Using Program Dependences. In ESOP, volume 2028
of Lecture Notes in Computer Science, Springer, 2001.

Huiqing Li. Refactoring Haskell Programs. PhD thesis, School of Comput-
ing, University of Kent, UK, 2006.

Huiqing Li and Simon Thompson. Clone Detection and Removal for
Erlang/OTP within a Refactoring Environment. In PEPM, ACM, 2009.

Huiqing Li and Simon Thompson. Similar Code Detection and Elimination
for Erlang Programs. In PADL, ACM, 2010 (to appear).

Huiqing Li, Claus Reinke, and Simon Thompson. Tool Support for Refac-
toring Functional Programs. In ACM SIGPLAN 2003 Haskell Workshop,
ACM, 2003.

Zhenmin Li, Shan Lu, and Suvda Myagmar. Cp-Miner: Finding Copy-Paste
and Related Bugs in Large-Scale Software Code. IEEE Trans. Softw.

Eng., 32(3):2006.

Edward M. McCreight. A space-economical suffix tree construction algo-
rithm. J. ACM, 23(2):1976.

Akito Monden, et. al. Software quality analysis by code clones in industrial
legacy software. In METRICS ’02: Proceedings of the 8th International

Symposium on Software Metrics, 2002. IEEE Computer Society.

Steve Oualine. Vim (Vi Improved). Sams, 2001.

Simon Peyton Jones and Kevin Hammond. Haskell 98 Language and

Libraries, the Revised Report. Cambridge University Press, 2003.

Niklas Röjemo. Highlights from nhc—a space-efficient haskell compiler.
In Proceedings of the seventh international conference on Functional

programming languages and computer architecture, 1995. ACM.

Chanchal K. Roy, James R. Cordy and Rainer Koschke. Comparison and
Evaluation of Code Clone Detection Techniques and Tools: A Qualita-
tive Approach. Science of Computer Programming, 74(7), 2009.

Simon Thompson. Haskell: The Craft of Functional Programming.

Addison-Wesley, 2nd edition, 1999.

