
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Li, Huiqing and Thompson, Simon (2010) Refactoring Support for Modularity Maintenance
in Erlang. In: Vunju, Jurgen and Marinescu, Cristina, eds. Tenth IEEE International Working
Conference on Source Code Analysis and Manipulation. IEEE Computer Society pp. 182-196.
ISBN 978-0-7695-4178-5.

DOI

Link to record in KAR

https://kar.kent.ac.uk/30627/

Document Version

UNSPECIFIED

Refactoring Support for Modularity Maintenance in Erlang

Huiqing Li

School of Computing

University of Kent

H.Li@kent.ac.uk

Simon Thompson

School of Computing

University of Kent

S.J.Thompson@kent.ac.uk

Abstract

Low coupling between modules and high cohesion inside

each module are key features of good software architecture.

Systems written in modern programming languages gener-

ally start with some reasonably well-designed module struc-

ture, however with continuous feature additions, modifica-

tions and bug fixes, software modularity gradually deterio-

rates. So, there is a need for incremental improvements to

modularity to avoid the situation when the structure of the

system becomes too complex to maintain.

We demonstrate how Wrangler, a general-purpose refac-

toring tool for Erlang, can be used to maintain and improve

the modularity of programs written in Erlang without dra-

matically changing the existing module structure. We iden-

tify a set of ”modularity smells” and show how they can

be detected by Wrangler and removed by way of a variety

of refactorings implemented in Wrangler. Validation of the

approach and usefulness of the tool are demonstrated by

case studies.

1 Introduction

Modular programming, as a software design technique,

improves the maintainability and reusablity of software by

enforcing well-defined boundaries between components or

modules. A module captures a set of design decisions

which are hidden from other modules, and the interaction

among the modules should primarily be through module in-

terfaces [9].

Low coupling between modules and high cohesion in-

side each module are the key aspects of modular program-

ming [13]. Unlike monolithic legacy application systems

written in programming languages that did not support

modular programming, most recent systems are structured

in a modular way.

However, without proper maintenance, software struc-

ture gradually deteriorates over years of feature additions,

changes and bug fixes, and finally gets to a state that the

program structure is too complex for anyone to fully un-

derstand it. The ageing of software architecture could be

avoided by reviewing the system structure regularly and

refactoring it whenever the symptoms of modularity prob-

lems start to show. This kind of incremental modular-

ity improvement slows down such deterioration and im-

proves the maintainability of the system. By carrying out

small changes each time, we avoid having to make dramatic

changes to existing module structures in a single step.

When a software system is large, detecting modularity

flaws and refactoring module structure are both hard with-

out proper tool support.

• Detecting modularity flaws and working out steps to

eliminate them both need an overall analysis of the sys-

tem under consideration.

• Restructuring a system, no matter at what scale, usu-

ally involves module interface changes and affects

multiple modules in the system. This is a tedious pro-

cess, and bugs can be introduced very easily, poten-

tially without being noticed.

Erlang is a modern functional programming language sup-

porting modular programming. Erlang’s module system is

simple, allowing the export of functions defined in a mod-

ule; calls of these in other modules are usually in fully qual-

ified Module:Function form. Our case studies shown

that the problem of modularity deterioration is not uncom-

mon in existing Erlang programs. Figure 1 shows an ex-

ample module graph generated from an Erlang program.

The nodes in the graph are labelled with module names, the

edges are labelled with the names and arities of the func-

tions called by the client module, pointed to by the arrow.

Although there are only four modules in this module graph,

there are already a number of cyclic module dependencies,

and no layered architecture for the system is apparent.

Further examination of the graph shows that all the cyclic

dependencies are actually caused by the same function,

namely get config value/2. This obviously indicates

some sort of “module structure bad smell”. We took a closer

1

look into the source code, and found that this function is

commented as “internal export”, which means that the func-

tion is an internal function, but also exported by the module.

Exporting of functions that are meant to be internal is a pro-

gramming practice not recommended.

Refactoring the code by moving the function

get config value/2 from its current module

ibrowse to module ibrowse lib results in the

module structure as shown in Figure 2, which is clearer and

more obviously layered.

Figure 1. Module graph before refactoring

Figure 2. Module graph after refactoring

Wrangler [5, 6] is a general-purpose refactoring tool for

Erlang developed by the authors. To make incremental

modularity improvement feasible for Erlang programs, we

have extended Wrangler with support for modularity main-

tenance. This is achieved in three steps:

• Firstly, a number of most common modularity flaws,

or “modularity smells”, are identified, and automatic

detection of these modularity flaws is implemented.

• Secondly, for each modularity smell detected, Wran-

gler gives refactoring suggestions in the format of

refactoring commands, which would eliminate the

smell detected without introducing new modularity

smells into the system.

• Thirdly and finally, the original refactoring to move

a function from one module to another has been ex-

tended to allow a collection of functions to be moved

in one single step.

These functionalities together make incremental modularity

maintenance much easier. The rest of the paper is organised

as follows. In Section 2, we give a brief introduction to

Erlang and Wrangler; in Section 3, we identify a number

of modularity smells that are common in Erlang programs.

In Section 4, we explain Wrangler’s support of modularity

smell detection and elimination, and in Section 5, we dis-

cuss Wrangler’s refactoring support for module restructur-

ing; a case study demonstrating the usefulness of the tool

is shown in Section 6. Section 7 discusses implementation

considerations of the tool, Section 8 gives an overview of

related work, and finally, Section 9 concludes the paper and

briefly discusses future work.

2 Erlang and Wrangler

Erlang [1, 3] is a strict, impure, dynamically typed func-

tional programming language with support for higher-order

functions, pattern matching, concurrency, communication,

distribution, fault-tolerance, and dynamic code loading.

Erlang comes with a simple, non-hierarchical module

system. An Erlang program typically consists of a number

of modules, each of which defines a collection of functions.

Only functions exported explicitly through the export di-

rective may be called from other modules; furthermore, a

module may only export functions which are defined in the

module itself.

Calls to functions defined in other modules should qual-

ify the function name with the module name: the function

foo from the module bar is called as: bar:foo(...).

Despite the fact that this can be avoided by means of

import directives, practice within the Erlang community

recommends the use of this fully qualified notation. Figure 3

shows an Erlang module containing the definition of the fac-

torial function. In this example, fac/1 denotes the func-

tion fac with arity of 1. In Erlang, a function name can be

defined with different arities, and the same function name

with different arities can represent entirely different func-

tions computationally.

-module (fact).

-export ([fac/1]).

fac(0) -> 1;

fac(N) when N > 0 -> N * fac(N-1).

Figure 3. Factorial in Erlang

Wrangler [5, 6] is a tool that supports interactive

refactoring of Erlang programs. It is integrated with

Emacs and XEmacs as well as with Eclipse through the

ErlIDE plugin. Wrangler itself is implemented in Er-

lang. Wrangler supports a variety of elementary struc-

tural refactorings, process refactorings, as well as a set of

“code smell” inspection operations, together with facili-

ties to detect and eliminate duplicated code [4]. Wran-

gler is downloadable from http://www.cs.kent.ac.

uk/projects/wrangler/Home.html.

3 Modularity Smells

Modules are the basic unit of code in Erlang. Functions

in an Erlang program are grouped together into modules,

each containing functions that logically belong together.

Each module makes itself available to the other modules

by exporting a list of functions defined in this module. In

a well-designed system, each module should serve a clear

purpose or goal, and only export functions that are expected

to be part of a well-defined interface or API (Application

Programming Interface). While we could assume that most

programmers follow some kind of design principles when

deciding to which module a function should belong, and

which functions should be made visible to other modules,

there are still some modularity smells which we found to be

common in real-world Erlang programs, and these are the

subject of this section.

3.1 Improper Inter-Module Dependency

As mentioned earlier, each Erlang module exports a set

of functions available for use by other modules. Ideally,

the functions that are exported should constitute a well-

designed API, which represents the services that the module

has to offer. All the remaining functions are internal func-

tions meant to be used only within the module itself.

During the course of system development, it is often the

case that the developer finds that a function which he or she

wants to implement already exists in another module, but is

not exported by that module. At this stage, the developer

could refactor the code to include that function in the API

for a module to which the function logically belongs.

However, the alternative of adding the function name to

the export list of the module is often chosen, without think-

ing of questions such as: should this function be an API

function provided by this module? does its functionality

conform to the purpose of this module? should the module

that needs this function be dependent on this module? If the

answer to any of these questions is ’no’, then a code smell

is being introduced by the export. A dependency introduced

in this way cries out for further inspection.

3.2 Cyclic Dependent Modules

Cyclic dependent modules are a set of modules in which

each module calls functions defined in every other mod-

ule in the set, directly or indirectly. Cyclic dependency

between two or more modules should always be avoided

whenever it is possible because it affects the understand-

ability and maintainability of the system; on the contrary, a

tree-structured or acyclic module dependency gives a lay-

ered view of the program structure, which is much easier to

understand and maintain as illustrated in Figures 1 and 2.

3.3 Modules Serving Multiple Goals

High cohesion inside each module is one of the key fea-

tures of good software architecture. A module should ide-

ally contain a collection of functions and data structures that

are logically grouped together, and offer some well-defined

common service to the rest of the system. It is therefore a

modularity smell if a module provides a large collection of

API functions that logically serve more than one goal. 1

Modules serving multiple goals are in general harder

to understand. Apart from that, modules serving multiple

goals are more likely to depend heavily on other modules,

or vice versa; in other words, they tend to have high in or

out degree in the module graph. Such modules are more

difficult to maintain: each time the module’s interface is

changed, all the places in the program where this module is

used have to be checked. Also, each time a change is made

to the interface of one of the modules that this module de-

pends on, this module also needs to be checked.

Modules with multiple goals should be partitioned into

smaller modules, each of which provides a clearly-defined

service to its clients.

3.4 Very Large Modules

Large monolithic modules containing many lines of code

potentially obscure the architecture of the system. Large

modules are often modules with multiple goals, but not nec-

essarily: for instance, it could be that a set of functions

1It has been conjectures that this would lead to a partition in the set of

modules using this one: we will investigate this further.

http://www.cs.kent.ac.uk/projects/wrangler/Home.html
http://www.cs.kent.ac.uk/projects/wrangler/Home.html

within a module form an internal library that is used by

other functions: this is a candidate to become a separate

module which exports its services. This additional structure

makes the system easier to understand, to maintain and to

evolve, as well as increasing the opportunities for reuse of

the library functions.

While it is difficult to give a hard and fast rule about

module size, a recent Erlang text Erlang Programming [3]

has suggested: “A manageable module should have no more

than 400 lines of code, comments excluded.”

4 Modularity Smell Detection and Refactor-

ing Suggestions

Detecting modularity smells is the very first step to mod-

ularity improvement. Once a modularity smell has been de-

tected, the next question is how to remove it. While elimi-

nating modularity smells mostly involves moving functions

from one module to another, it is not always clear which

functions to move, and to where. With Wrangler, we aim

to not only find modularity smells, but also give the user

suggestions as to how to eliminate them.

In this section, we focus on Wrangler’s detection of the

modularity smells discussed in the previous section. For

each kind of modularity smell, we also discuss the strat-

egy used by Wrangler to work out how to eliminate it. The

fundamental principles used by Wrangler when suggesting

refactorings steps are that the refactoring steps suggested,

if executed, should not introduce new modularity smells to

the system, and the new module dependencies introduced to

the system because of the refactoring should be minimal.

4.1 Improper Inter-Module Dependency

Detection. In principle a module should only export func-

tions that are designed to be API functions; however, this

principle can be very easily violated in practice. Erlang’s

module system allows any function defined in a module to

be exported and used by the rest of the system. For an Er-

lang module to use functions exported by other modules,

there is no need to import that module first as is required by

other programming languages like Haskell, as long as the

function name is qualified with its defining module. This

is flexible, but also means that module dependency can be

introduced in a rather ad-hoc way.

Syntactically, the export lists of an Erlang module make

no distinction between functions that are designed to be API

functions and functions that are meant to be internal but

are also exported by the module, which we call non-API

functions (there might by comments indicating this, as men-

tioned earlier). To be able to detect the export of non-API

functions, and module dependency introduced by function

calls to non-API functions, we try to mark each function ex-

ported by a module as an API function or a non-API func-

tion using static analysis and heuristics.

For the purposes of discussion we denote an Erlang pro-

gram P as a collection of Erlang modules {M1, ...Mn}, and

each Erlang module as a collection of functions exported by

the module Mi = {fi1, ..fin}.

For a given Erlang module Mi = {fi1, ..fin}, we use

F ext
i to denote the subset of Mi representing those func-

tions that are not called by any other functions in the

module that do not contribute to its definition; in other

words, a function in F ext
i is only called, directly or indi-

rectly, by other functions in its Strongly Connected Compo-

nent (SCC). We use F int
i to denote those functions in Mi

that do not belong to F ext
i , that is Mi −F ext

i . As a conven-

tion, each function in F ext
i is considered as an API function,

therefore the major task is to classify each function from

F int
i as an API, or non-API function.

Within this context, for each function fij belonging to

module Mi = {fi1, ..fin}, the probability score for it being

an API function is calculated as:

APIScore(fij) = 1 − min{dist(fij , f
e)|fe ∈ F ext

i }

where dist{fij , fik} is a function calculating the distance

between two functions fij and fik. If A and B denote the

set of nodes reachable from fij and fik in the function call-

graph of the Erlang program in question, then we define

dist(fij , fik) = 1 − 2∗|A∩B|
|A|+|B|

Function fij is considered to be an API function if its

APIScore(fij) is greater than a specified threshold, φ,

which should be between 0 and 1. Obviously, a function

belonging to F ext
i always has an APIScore of 1, therefore

is always marked as an API function. We mark a function

as a non-API function if its APIScore is less than the re-

quired threshold, φ.

Given two Erlang modules Mi and Mj , we say Mj di-

rectly depends on Mi if some of the functions exported by

Mi are directly called by functions defined in Mj . We rep-

resent this kind of direct module dependency as a three-

element tuple {Mi, Mj , F}, where F is the set of functions

that are exported by Mi and used by Mj , which we denote

by use(Mi, Mj). Given an Erlang program P , and an API

score threshold φ, the set of improper module dependencies

reported by Wrangler is given by:

{ {Mi, Mj , use(Mi, Mj)} | ∀f ∈ use(Mi, Mj),
APIScore(f) < φ }

Refactoring Suggestion. An improper inter-module de-

pendency introduced by non-API inter-module function

calls could be eliminated by moving the non-API functions,

together with those internal functions on which the non-API

functions depend. They are moved to a third module, so that

the non-API functions become API functions exported by

that module.

For each improper inter-module dependency

{Mi, Mj , use(Mi, Mj)} detected, Wrangler gives possible

options for the third module, to which the non-API func-

tions could be relocated. The following constraints are

applied when choosing the target module.

• Moving a non-API function to the target module

should not introduce a cyclic module dependency.

• Moving a non-API function to the target module

should make the function an API function of that mod-

ule as measured by its APIScore.

• The number of new module dependencies introduced

should be minimal.

• A target module that is closer to Mi and Mj in terms

of the length of the shortest paths connecting them in

the module graph is favoured over a target module that

is further away.

4.2 Cyclic Module Dependency

Detection. A cyclic module dependency is a minimal set

of modules {M1, M2,Mn}, in which Mi(1<i≤n) directly

depends on Mi−1, and M1 directly depends on Mn. Mod-

ules that are cyclically dependent are straightforward to lo-

cate given the module graph and function callgraph gen-

eration functionalities provided by Wrangler. For a set of

cyclically dependent modules, Wrangler reports not only

the module names, but also the functions called between

each pair of dependent modules. To take the function calls

between each pair of directly dependent modules into ac-

count, we denote a cyclic module dependency relation as:

M1
F1−→ M2

F2−→ ...
Fn−1

−−−→ Mn
Fn−−→ M1 (n >= 2)

where Mi
Fi−→ Mj means that module Mj directly depends

on module Mi, and Fi represents those functions that are

exported by module Mi, and called by functions defined in

module Mj , i.e. use(Mi, Mj).

Elimination. Give a cyclic module dependency,

M1
F1−→ M2

F2−→ ...
Fn−1

−−−→ Mn
Fn−−→ M1 (n >= 2),

the following steps are used to work out how to break the

cyclic module dependency.

Step 1: we mark each function in Fi(i=1,..n) as either an

API function or a non-API function using the same ap-

proach as described in Section 4.1. Let us use F api
i

to represent the subset of Fi representing functions

marked as API functions.

Step 2: if there exists j, such that F api
j = φ, then the de-

pendency between module Mj and Mj+1 (M1 when

j = n) is regarded as improper inter-module depen-

dency, and Wrangler would suggest the moving of

functions in Fj the same way as discussed in Sec-

tion 4.1; otherwise continue to Step 3.

Step 3: We try to distinguish two kinds of cyclic module

dependency, namely intra-layer and inter-layer. To do

so, for each Fi(i=1,..n), we use Callers(Mi+1, F
api
i)

to denote the set of functions from Mi+1 (M1 when

j = n), each of which calls one or more of the func-

tions from F api
i either directly or indirectly.

Step 4: we say that the cyclic module dependency

is an intra-layer cyclic module dependency if,

and only if, for each module Mi(i=1,..n−1),

Callers(Mi+1, F
api
i) ∩ F api

i+1 6= φ, and

Callers(M1, F
api
n) ∩ F api

1 6= φ.

Otherwise the cyclic module dependency is considered

as inter-layer cyclic dependency.

Generally speaking, an intra-layer cyclic module de-

pendency is caused by mutually recursive functions across

modules, and intra-layer cyclic module dependency could

be eliminated by merging those mutual-dependent functions

into a single module.2 An inter-layer cyclic module depen-

-module(m1).

-export ([foo/0, bar/0]).

foo() ->1.

bar() -> m2:blah().

-module(m2).

-export([blah/0]).

blah() -> m1:foo().

Figure 4. Cyclic module dependency

dency, on the other hand, is usually caused by the coexis-

tence of API functions that belong to different logical layers

of the systems in the same module. This kind of cyclic mod-

ule dependency can be removed by splitting the module into

two, or more, so that each module only exports functions

that belong to the same logic layer. For example, Figure 4

shows two contrived Erlang modules that are mutually de-

pendent on each other. The dependency between modules

can be represented as :

2There are, of course, exceptions to this: we might want to split a mu-

tually recursive set of language processing functions into one module per

language category, say.

m1
F1={foo/0}
−−−−−−−→ m2

F2={blah/0}
−−−−−−−−→ m1

This cyclic module dependency is treated as an inter-layer

cyclic module dependency as:

Callers(m1, F2) ∩ F1 = φ

It is obvious in this case that the cyclical dependency can be

removed by splitting module m1 into two modules, so that

functions foo/0 and bar/0 are not in the same layer of

the architecture.

4.3 Modules Serving Multiple Goals

Detection. Detecting modules serving multiple goals

by static analysis is less straightforward simply because the

service offered by a function is hidden in its implementation

logic, and there is no standard way to measure the common-

ality of purpose between functions in a quantitative way.

Based on the observation that functions serving the same

goal are more likely to share a number of things, includ-

ing nodes in the function callgraph, data structures and

macros as well as words used in function, variable, or pro-

cess names, similarity metrics based on these features could

serve as an indicator as to whether two functions, or two

function groups, share similar goals.

We make use of an existing agglomerative hierarchical

algorithm [12, 8] to cluster the functions exported by a mod-

ule into clusters based on the similarity metrics between

functions clusters. Clustering is a key technique used in re-

verse engineering to gather software components into mod-

ules that might well be considered significant to the soft-

ware engineers who designed the original system or those

who will have to work with the results. To evaluate the

similarity score between two functions, we represent each

function by a feature list. The four features we choose are:

• Calls to functions, which corresponds to those nodes in

the function callgraph of the system that are reachable

from the function under consideration.

• Use of records, which is the only data structure that

can be named in Erlang.

• Use of macros.

• Reference to words. Identifiers, including function,

module, process and variable names, used in a func-

tion definition are decomposed into words.

Given two functions, or function clusters, and their list of

entity references, X and Y say, their similarity score is cal-

culated using the Jaccard similarity metrics [11] as follows,

sim(X, Y) = a/(a + b + c)
where a = |X ∩ Y | , b = |X \ Y |, and c = |Y \ X|

An agglomerative hierarchical algorithm starts from the in-

dividual entities, gathers them into small clusters which are

in turn gathered into larger clusters up to one final cluster

that contains every entity. The result is a binary tree of clus-

ters. However, if the aim is to detect modularity smells,

there is no need to continue the clustering process until there

is only one cluster left. In fact, we only group two clusters

into one if their similarity score is above a specified thresh-

old, and the clustering process stops when there are no more

clusters whose similarity scores are above the threshold.

The clusters generated are then further analysed regard-

ing to the size of the clusters, and their usage by the client

modules. A ‘multi-goal module’ smell is only reported if

we find more than one cluster, and each of them is of a rea-

sonable size, i.e. the number of lines of code contained is

greater than a threshold given.

Elimination. A ‘multi-goal module smell’ can be elim-

inated by partitioning the module into two or more parts

based on the number of clusters reported. With Wrangler’s

support for moving functions from one module to another,

which we will discuss in more detail in Section 5, splitting

a module is straightforward. All the user needs to do is to

select the functions that are to be moved to another module,

and provide Wrangler with the target module name, which

in general is a fresh module name.

4.4 Very Large Modules

The number of lines in a module is the major factor

used to identify very large modules. In general, it is likely

that a large module is providing too many services to the

rest of the system, and therefore should be partitioned into

smaller modules using the cluster techniques discussed in

Section 4.3; however, it is also possible that a module con-

taining a monolithic piece of code serves only one goal; in

this case, it still could be possible to extract one or more

sub-components of the module into another module, so that

the module size and complexity can be reduced.

To guide Wrangler’s searching for sub-components to be

moved to anther module, two parameters can be specified:

• the minimal number of lines of code, and

• the maximal number of functions shared between the

sub-components and the rest of the module.

5 Refactoring Support

The most important refactoring when refactoring module

structure is concerned is moving functions from one module

to another. For this purpose, we have extended Wrangler’s

original refactoring for moving a single function between

modules, so that a collection of functions can be moved in

one single step. Moreover, in the case that a function to

be moved depends on other functions defined in the origi-

nal module, those functions are also automatically moved to

the target module if no other functions in the original mod-

ule depend on them. The target module can be an existing

module or a new module to be created.

The refactoring move functions from one module to an-

other is complex because both the pre-condition checking

and program transformation involved are nontrivial. For

this refactoring to be behaviour preserving, various pre-

conditions need to be checked before the program can be

actually transformed. For example, the refactoring needs

to make sure that the functions to be moved do not conflict

with the existing functions in the target module, also macros

and records used by the functions to be moved should not be

defined differently in the target module, and so forth. The

program transformation step needs not only to remove the

functions from the original module, to add them to the tar-

get module, but also needs to check the call sites of these

functions – potentially across the whole system when the

functions are exported – to make sure that all the references

to the functions are changed to use the target module as the

defining module of functions moved.

Tool support for this kind of complex, though elemen-

tary, refactorings is essential, as both manual program anal-

ysis and transformation are tedious and error prone.

Apart from move functions from one module to another,

other refactorings from Wrangler can also help with the

modularity maintenance process. These include renaming

of module and function names, cleaning up the module ex-

port lists, cross module duplicated code detection and elim-

ination [4].

6 A Case Study

To examine the usefulness of Wrangler’s support for

modularity maintenance, we applied the tool to the Wran-

gler system itself, a number of other open-source Erlang

systems, as well as some industrial code from Ericsson,

Sweden. In this paper we mainly discuss the results of ap-

plying the tool to Wrangler itself. As authors of most of the

code in Wrangler, we can play the role of domain experts in

judging the usefulness of the results returned by the tool.

The version of Wrangler we used in the case study is

Wrangler-0.8.7, which consists of 56 Erlang files and 40K

lines of code, comments included. Due to the compactness

of program written in functional programming languages,

Wrangler is by no means a small Erlang program.

Along with the development of Wrangler’s modular-

ity maintenance support, substantial number of structural

refactorings have been made to Wrangler after the release

of Wrangler-0.8.7. In what follows, we discuss the case

Figure 5. Improper inter-module dependency

study results for each modularity smell in the same order as

they are introduced in the previous sections.

6.1 Improper Inter-module Dependency

With an API Score threshold of 0.4, Wrangler reports 13

improper inter-module dependencies. We examined each

of these and concluded that 11 of them should be removed.

The remaining 2 involve sharing of functions between two

different versions of the Erlang tokenizer, which we decided

to leave them as they are.

Most of the 11 dependencies that we chose to re-

move were caused by sharing of functionalities between

the implementation of different refactorings. For in-

stance, Figure 5 shows 3 of the improper inter-module

dependencies reported involving 4 modules. Among

the four modules shown in the graph, three of them

(refac add a tag, refac rename process and

refac register pid) each implements a single refac-

toring, whereas refac annotate pid is a infrastructure

module providing services to be used by the other three.

The module graph shows that three non-API functions

defined in module refac register pid are exported

by it and used by other modules. As a matter of fact, the

three non-API functions are all the non-API functions ex-

ported by that module. These inter-module dependencies

are clearly against the authors’ intention, as ideally a mod-

ule implementing a refactoring should only export func-

tions that serve as refactoring commands, and there should

be no dependency between modules implementing different

refactorings (whenever it is possible).

The dependency between refac annotate pid and

refac register pid is even more undesirable, as it

actually constitutes a cyclic dependency between the two

modules.
For the module dependencies shown in Figure 5, the

three refactoring commands suggested by Wrangler are:

move_fun(refac_register_pid,[{evaluate_expr,5}],

[refac_util,refac_syntax,

refac_annotate_pid]).

move_fun(refac_register_pid,[{is_spawn_app,1}],

[refac_annotate_pid]).

move_fun(refac_register_pid,[{spawn_funs,0}],

[refac_util,refac_syntax,

refac_annotate_pid,refac_syntax_lib]).

Take the first refactoring command as an example, it sug-

gests to move the function evaluate expr/5 defined

in module refac register pid to one of the modules

given in the list. When multiple target modules are sug-

gested by Wrangler, the user has to select one target mod-

ule, and remove the others from the list. Of course, if none

of the modules suggested makes sense to the user, he or

she could always specify another existing module or a com-

pletely new module. For the three refactorings above, we

chose the first module suggested as the target module.

Performing these refactorings in either an IDE or directly

on the command line is straightforward with Wrangler’s

refactoring support.

6.2 Cyclic Module Dependency

After having removed the inter-module dependencies re-

ported, we applied Wrangler’s cyclic module dependency

detection to Wrangler-0.8.7, and this reveals 8 cyclic mod-

ule dependencies, among which one is reported as intra-

layer cyclic module dependency, and the other seven are

reported as inter-layer cyclic module dependencies. Two

of the cyclic module dependencies reported consist of 3

modules, and all the others consist of two modules. Our

manual inspection of the results reported completely agrees

with Wrangler’s automatic intra-layer/inter-layer classifica-

tion result.

Most of the 8 cyclic module dependencies reported in-

volve a module named refac util, which provides a col-

lection of utility functions to the other parts of the system.

However, over years of development, too much functional-

ity has been added to this module, some functions no longer

qualify as utility functions.

For instance, Figure 6 shows one of the cyclic module

dependencies reported, and the refactoring command sug-

gested by Wrangler. What the refactoring command says is

that the four functions enclosed in the list defined in mod-

ule refac util should be moved into a separate mod-

ule, and the user needs to choose the module name, which

in general is a fresh module name, and substitute it for

user supplied mod name. Indeed, after the release

of Wrangler-0.8.7, this module has been refactored signif-

icantly, and the single big module has been divided into 5

smaller modules, each of which provides a specific kind of

service.

6.3 Modules Serving Multiple Goals

With a Jaccard similarity threshold of 0.2, we applied

Wrangler’s multi-goal module detector to Wrangler-0.8.7,

move_fun(refac_util,

[{write_refactored_files,1},

{write_refactored_files,3},

{write_refactored_files,4},

{write_refactored_files_for_preview,2}],

user_supplied_target_mod_name).

Figure 6. Cyclic module dependency

and this process reported that 12 of the 56 modules serve

multiple goals.

The clustering result provides valuable information re-

garding the commonality between different functions in

each module, however given the fact that there is not stan-

dard way to compare the goals of different functions, the

user still has to experiment with different threshold values,

and inspect the results using his or her domain knowledge

to decide what to do next.

For example, for the module refac syntax lib

from Wrangler, which is a modified version of the

erl syntax lib module from Erlang Syntax Tools li-

brary [2], seven clusters were reported, as shown in Fig-

ure 7. Together with each cluster, InDegree represents the

number of modules that make use of the functions from the

cluster, and OutDegree represents the number of modules

on which the cluster depends. Clearly, this module pro-

vides functionalities that cover a number of themes includ-

ing functionalities for abstract syntax tree (AST) traversal,

for AST annotation, for AST analysis, etc. It might not be

a good idea to put each cluster into a separate module, be-

cause some of the clusters are actually too small to form a

new module, however, it would be preferable to move clus-

ter 1, probably also cluster 2, to a separate module espe-

cially designed for AST traversal APIs, because of the large

number of modules that depend on it, and the clearness of

the service it provides.

6.4 Very Large Modules

The average module size of Wrangler is 450 lines of

code, comments excluded. In general, a module imple-

menting a refactoring only contains the implementation of

Module: refac_syntax_lib

Cluster 1, Indegree:25, OutDegree:1,

[{map,2}, {map_subtrees,2},

{mapfold,3},{mapfold_subtrees,3},

{fold,3}, {fold_subtrees,3}]

Cluster 2, Indegree:0, OutDegree:0,

[{foldl_listlist,3},{mapfoldl_listlist,3}]

Cluster 3, Indegree:0, OutDegree:0,

[{new_variable_name,1},{new_variable_names,2},

{new_variable_name,2},{new_variable_names,3}]

Cluster 4, Indegree:4, OutDegree:1,

[{annotate_bindings,2},{annotate_bindings,3},

{var_annotate_clause,4},{vann_clause,4},

{annotate_bindings,1}]

Cluster 5, Indegree:4, OutDegree:1,

[{analyze_function_name,1},

...13 items omitted here

{analyze_attribute,1}]

Cluster 6, Indegree:0, OutDegree:1,

[{to_comment,1},{to_comment,2},

{to_comment,3}]

Cluster 7, Indegree:0, OutDegree:1,

[{limit,2},{limit,3},

{function_name_expansions,1}]

Figure 7. Clusters identified

a single refactoring, and only the refactoring command is

exported by that module. However, it is not uncommon

that a module gets too big because of the complexity of the

refactoring implemented, and in this case, extracting a sub-

component from the implementation into a separate module

is the general practice. Wrangler’s support for automatic

searching of sub-components proved to be very helpful.

7 Implementation Considerations

Erlang is a general-purpose functional programming lan-

guage. While Erlang shares some basic properties, such

as referential transparency, with other functional program-

ming languages, it also has its own characteristics and pro-

gramming idioms, which we need to address when build-

ing Erlang-specific program analysis tools in general. Since

the work investigated in this paper is built on top of Wran-

gler’s program analysis and transformation infrastructure,

and most of the issues were already handled by Wrangler,

we only summarise the major issues here without going into

details.

• In Erlang, function and module names are nor-

mal Erlang atoms, and can be generated dynam-

ically. Moreover, a function can be called us-

ing the built-in function apply/3 in the form

of apply(Module, Function, Args), where

Module and Function are expressions that eval-

uate to an Erlang atom, and Args is an expression

that evaluates to a list of terms. These features make

the generation of function callgraph and module graph

more complex than expected, and data flow analy-

sis techniques are needed for generation of accurate,

or nearly accurate, function callgraphs and module

graphs.

• Erlang is a programming language with built-in sup-

port for concurrency. In Erlang, functions can com-

mute with each other in two different ways, that is

parameter passing and message passing. The prim-

itives spawn, “!” (send) and receive allow a pro-

cess to create a new process and communicate with

other processes through asynchronous message pass-

ing. When message passing comes into play, tradi-

tional callgraph-based program analysis has to been

extended to take the process structure information into

account.

• OTP behaviour callback modules. Erlang comes with

the Open Telecom Platform (OTP) middleware plat-

form, which provides a number of ready-to-use be-

haviours, such as finite state machines, generic servers,

etc, embodying a set of design principles for Erlang

systems. To use these components, the user has to

define a behaviour callback module and implement

a number of pre-specified callback functions. Static

analysis of callback modules in a normal way could

produce results below expectation due to the fact that

the actual interaction between functions in the module

are hidden away in the components from Erlang.

8 Related Work

Various approaches have been proposed in the litera-

ture on system (re)modularization, with software cluster-

ing [12] being the most commonly used approach. Clus-

tering algorithms model the similarity between entities in

a quantitative way, and group entities that are similar to-

gether. Clustering-based software (re)modularization ap-

proaches differ mainly in their choice of three parameters:

how the entities are described, how the similarity metrics

between the entities is computed and what clustering al-

gorithm is used. A comparative study of the influence of

different parameter choices on the clustering results when

doing software (re)modularization has been done by N. An-

quetil et. al. [8], and their experimental results gave us

insight into the choice of the clustering algorithm used by

Wrangler to detect modules with multiple goals.

The work most closely related to ours is the Erlang refac-

toring tool, RefactorErl [7], developed by researchers at

the Eötvös Loránd University in Budapest, Hungary. Like

Wrangler, RefactorErl is also a general refactoring tool

for Erlang. Unlike Wrangler, which use abstract syntax

tree (AST) as the internal representation of Erlang pro-

grams, RefactorErl follows a different approach to refac-

toring and works by creating a formal semantical graph

model from Erlang source code and storing this graph in

a relational database. RefactorErl also provides support for

refactoring the module structure of an existing Erlang ap-

plication, however unlike Wrangler’s modularity smell di-

rected incremental modularity maintenance, RefactorErl’s

support for module restructure is solely based on clustering

techniques, and is mainly used to split a large software into

smaller loosely coupled components.

In [10], G.M.Rama also proposed the idea of refactoring

based modularity improvement, targeting at programs writ-

ten in imperative or OO programming languages. While

there is some overlapping between the modularity smells

detected by Rama and us, different techniques were used

to detect these modularity smells, and apart from that,

refactoring support for modularity smell elimination lies in

Rama’s future work.

9 Conclusions and Future Work

In this paper, we have identified a number of modular-

ity smells that are common in programs written in Erlang,

and also presented techniques taken to support automatic

detection and semi-automatic elimination of those modu-

larity smells. The tool is built on top of the infrastructure of

Wrangler, a general purpose refactoring tool for Erlang, and

also integrated within the Wrangler environment. Instead of

carrying out fully-automatic program restructuring – which

could produce a program that is too different from the orig-

inal one to be recognised and accepted by the user – we

aim to help the user to identify and solve existing modular-

ity flaws in a step-by-step way, so that the user can justify,

and be fully aware of, the changes made to the system. The

tool is designed to be regularly used during the software

development process, so that modularity smells can be de-

tected and eliminated early. Case studies carried out with

real-world code demonstrated the usefulness of the tool.

Our future work will go in a number of directions. We

are going to do more empirical studies of modularity smells

from different Erlang systems, and extend the tool to help

the detection and elimination of more modularity smells.

Although Erlang is a relatively simple programming lan-

guage, the concepts presented in this paper would also be

useful in attacking the same problem for other languages,

given the fact that moving functions from module to mod-

ule is a common refactoring across a number of program-

ming languages. To justify this, we would like to explore

the application of the approach investigated here to other

function programming languages like Haskell, which has a

more complex module system than Erlang.

10 Acknowledgements

This research is supported by EU FP7 collaborative

project ProTest (http://www.protest-project.

eu/), grant number 215868; we thank our funders and col-

leagues for their support and collaboration.

References

[1] J. Armstrong. Programming Erlang. Pragmatic Bookshelf,

2007.

[2] R. Carlsson. Erlang Syntax Tools. http://www.

erlang.org/doc/apps/syntax_tools/, 2004.

[3] F. Cesarini and S. Thompson. Erlang Programming.

O’Reilly Media, Inc., 2009.

[4] H. Li and S. Thompson. Similar Code Detection and Elim-

ination for Erlang Programs. In M. Carro and R. Pena,

editors, Practical Aspects of Declarative languages 2010,

LNCS, pages 104–118. Springer, January 2010.

[5] H. Li, S. Thompson, L. Lövei, Z. Horváth, T. Kozsik,

A. Vı́g, and T. Nagy. Refactoring Erlang Programs. In

EUC’06, Stockholm, Sweden, November 2006.

[6] H. Li, S. Thompson, G. Orosz, and M. Töth. Refactoring

with Wrangler, updated. In ACM SIGPLAN Erlang Work-

shop 2008, Victoria,Canada, 2008.

[7] L. Lövei, C. Hoch, H. Köllő, T. Nagy, A. Nagyné-Vı́g,

D. Horpácsi, R. Kitlei, and R. Király. Refactoring Module

Structure. In Proceedings of the 7th ACM SIGPLAN work-

shop on Erlang, Victoria, Canada, Sep 2008.

[8] C. F. Nicolas Anquetil and T. C. Lethbridge. Experiments

with Clustering as a Software Remodularization Method. In

WCRE ’99: Proceedings of the Sixth Working Conference

on Reverse Engineering, Washington, DC, USA, 1999.

[9] D. L. Parnas. On the Criteria to Be Used in Decompos-

ing Systems into Modules. Communications of the ACM,

15(12):1053–1058, December 1972.

[10] G. M. Rama. A Desiderata for Refactoring-Based Software

Modularity Improvement. In Third India Software Engineer-

ing Conference, Los Alamitos, CA, USA, 2010.

[11] P. H. SNEATH and R. R. SOKAL. Numerical Taxonomy.

Series of books in biology. W.H. Freeman and Company,

San Francisco, 1973.

[12] T. A. Wiggerts. Using Clustering Algorithms in Legacy Sys-

tems Remodularization. In WCRE ’97: Proceedings of the

Fourth Working Conference on Reverse Engineering (WCRE

’97), page 33, Washington, DC, USA, 1997.

[13] E. Yourdon and L. L. Constantine. Structured Design: Fun-

damentals of a Discipline of Computer Program and Sys-

tems Design. Prentice-Hall, Inc., NJ, USA, 1979.

http://www.protest-project.eu/
http://www.protest-project.eu/
http://www.erlang.org/doc/apps/syntax_tools/
http://www.erlang.org/doc/apps/syntax_tools/

	Introduction
	Erlang and Wrangler
	Modularity Smells
	Improper Inter-Module Dependency
	Cyclic Dependent Modules
	Modules Serving Multiple Goals
	Very Large Modules

	Modularity Smell Detection and Refactoring Suggestions
	Improper Inter-Module Dependency
	Cyclic Module Dependency
	Modules Serving Multiple Goals
	Very Large Modules

	Refactoring Support
	A Case Study
	Improper Inter-module Dependency
	Cyclic Module Dependency
	Modules Serving Multiple Goals
	Very Large Modules

	Implementation Considerations
	Related Work
	Conclusions and Future Work
	Acknowledgements

