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Abstract: In the present paper we investigate the possibility of narrowing 

the depth range of a physical Shack – Hartmann (SH) wavefront sensor 

(WFS) by using coherence gating. For the coherence gating, two low 

coherence interferometry (LCI) methods are evaluated and proof of 

principle configurations demonstrated: (i) a time domain LCI method based 

on phase shifting interferometry and (ii) a spectral domain LCI method, 

based on tuning a narrow band optical source. The two configurations are 

used to demonstrate each, the possibility of constructing a coherence gated 

(CG) SH/WFS. It is shown that these configurations produce spot patterns 

similar to those provided by a conventional SH/WFS. The two proof of 

principle configurations are also used to illustrate elimination of stray 

reflections in the interface optics which normally disturb the operation of 

conventional SH/WFSs. The speed and noise performance of the two CG-

SH/WFS implementations are discussed. 

©2010 Optical Society of America 
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1. Introduction 

The quality of images collected by established imaging techniques such as Optical Coherence 

Tomography (OCT) [1], Scanning Laser Ophthalmoscopy (SLO) [2] and confocal 

microscopy [3] have been improved in recent years by the introduction of adaptive optics 

(AO) [4–7]. Generally these systems have three components, a wavefront sensor (WFS), a 

corrector and a control system. Different types of WFSs are known, subjective, such as using 

a refractometer [8] and objective, such as laser ray tracing [9], Shack – Hartmann (SH) [10] 

and pyramid wavefront sensors [11]. Such WFSs, sample the transversal distribution of 

aberrations. None of the WFSs mentioned above can provide depth resolved wavefront 

information. 

The most widely used wavefront sensing device is a Shack-Hartmann wavefront sensor 

(SH/WFS). Incoming light is split into separate spatial windows by each lenslet in a lenslet 

array and focused onto a CCD array. Each lenslet intercepts a small portion of the incoming 

wavefront, whose tilt from a planar wavefront leads to deviation of the focused beam behind 

each lenslet [12]. Some limitations of the conventional SH/WFS are discussed below, as a 

motivation for the development of improved such sensors, incorporating the principle of 

coherence gating. 

2. Limitations of conventional Shack-Hartmann wavefront sensing 

2.1. Insensitivity to depth variations of aberrations 

Due to the limited numerical aperture (NA) in the beams associated with each microlens in 

the lenslet array, a SH/WFS has little sensitivity to the position in depth in the object where 

the signal comes from. This makes the SH/WFS insensitive to depth variations of aberrations, 

or more precisely, the spots are deviated from the ideal wavefront grid by quantities which 

represent averages of aberrations over the depth of focus of the equivalent confocal 

microscopy channel associated to each microlens in the lenslet array. Acquisition of depth 

resolved aberration would be especially important in microscopy, where shallow layers 

deteriorate the wavefront for successive deeper layers. 

2.2. Sensitivity to stray reflections 

Due to the low NA of each channel in the SH/WFS, stray reflections from the interface optics 

cannot be rejected and therefore supplementary spatial filters need to be employed in the 

interface optics. However, when imaging the eye, reflections from the cornea and eye lens 

cannot be entirely attenuated using spatial filters. 

In order to reduce the effect of the cornea reflections, different methods have been 

suggested, such as: (i) moving the lenses and mirrors in the interface optics off axis [13]; (ii) 

using a polarization beam splitter to eliminate specular reflections [14] and (iii) off-axis 

illumination of the retina so that the light coming back from the retina is along a different 

path than that followed by the back reflections [15]. However, all these methods present 

disadvantages, (i) leads to further aberrations, (ii) produces signal loss and dependence on the 

polarization of the sample whereas (iii) requires separation of imaging and WFS paths and 

two optical sources. 

In microscopy, multiple facets of multielements in the microscope objective and multiple 

reflections in the microscope slide produce strong stray light onto the CCD [16] of the 

SH/WFS. Even if such stray reflections do not saturate the camera in the WFS, they create 

additional spots to the useful spot pattern which confuse the WFS software. There is no way 

to distinguish the spots from the sample from those due to the interface optics, such as 

reflections from the microscope objective, microscope slide in microscopy or from the cornea 

in an SLO. 
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For microscopy, direct wavefront sensing was deemed unsuitable [16] and algorithms to 

maximize sharpness metrics have been devised to infer the correction required, such as 

simulated annealing or genetic algorithms. However these algorithms can take several 

minutes for each point on the scanning beam [17,18] to find the optimum set of voltages to be 

applied to the corrector. The coherence gating method proposed here allows incorporation of 

WFS principles with microscopy, with the advantage of quicker correction which could make 

microscopy of faster events possible. The problem of stray reflections in AO based imaging 

systems of the retina favors single path correction configurations where a thin beam is sent to 

the eye and aberrations are picked up by the emerging beam coming out of the eye. In this 

case, if only one source is to be used for both imaging and WFS measurement, then the 

imaging operation and the collection of aberrations are sequential. Therefore, the correction 

cannot be applied dynamically, as described in [7] where a flying spot system was used, and 

the two channels, OCT and AO worked sequentially. To perform dynamically, further 

complication of the system was required in working at different wavelengths via dichroic 

filters. It would be desirable to operate in a double path correction [4,19], where aberrations 

in the path going, as well as in the path coming from the object are acquired and corrected as 

the same beam is shared by both the SH/WFS and the imaging system. In addition, the 

process of acquisition of aberration information could be performed simultaneously with the 

imaging process. Therefore, if double path correction is targeted, then in order to avoid stray 

reflections in the interface optics of fundus cameras, SLOs or OCTs, curved mirrors must be 

used between the transversal scanner and the object, which leads to a large layout [5] and 

increased cost. In this case, on-axis corneal reflection is still a problem, addressed again by 

off-axis illumination. 

Therefore, a solution for eliminating or at least reducing the intensity of stray reflections 

would be to improve the depth selection of the WFS. 

3. Methods 

Elimination of stray reflections and operation as a depth resolved WFS can be achieved by 

incorporating principles of coherence gating. 

3.1. Using a virtual lenslet array 

The first combination of low coherence interferometry and wavefront sensing principles was 

presented in [20] where the phase of the 3D distribution of the scattered wave was analyzed 

interferometrically. Further, the 3D data was virtually separated into spatial arrays 

corresponding to virtual SH apertures. Based on the same principle, a depth resolved WFS 

has been implemented for Multi-Photon Microscopy [21]. A low coherence interferometer 

was used and the interference pattern acquired using a CCD camera. This pattern was 

subsequently numerically propagated through a virtual lenslet array to create a pseudo spot 

diagram. 

This method requires several processing steps: (i) provision of a complex amplitude image 

by processing interference images acquired at several phase shifts, (ii) splitting the CCD area 

into 441 sub-areas corresponding to virtual microlenses of 15x15 pixels and calculating the 

Fourier transformation over each such microlens area, which also requires a process of zero-

padding and (iii) centroiding and wavefront reconstruction [21], which makes the method 

computationally intensive. A normal SH/WFS would only perform the latest step. The 

methods has 2π ambiguity and therefore requires phase unwrapping which adds to the 

processing time. The procedure was subject to cross talk between pixels, which alters the 

phase information. These deficiencies restricted the development of the method. The move 

from interferometric to Shack-Hartmann sensing was motivated by the need to avoid phase 

unwrapping and the phase instability problem of interfering sensors. 
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3.2. Using a physical lenslet array 

In the present paper we propose and demonstrate a different solution. We investigate the 

utilization of a physical lenslet array as in any SH/WFS and where interference was produced 

after the object beam was passed through the lenslet array and thus eliminating the second 

step used in the virtual lenslet array method, which reduces the computational demand. The 

multiple beamlets output by the lenslet array are superposed on a reference beam provided by 

the same optical source. Due to the aberrations encountered, the beamlets suffer various 

deflections and the system needs to ensure that irrespective of such deviations, interference 

with the reference beam still takes place. In this respect, two versions of coherence gated 

(CG) wavefront sensors are evaluated: (i) a time domain (TD) version, driven by a source 

with large bandwidth and using principles of phase shifting interferometry [22,23] and (ii) a 

spectral domain version using a swept narrow band source (SS) [24]. The second possibility 

takes advantage of the recent advance in SS-OCT using a 2D camera [25] and provides 

supplementary advantages such as dynamic spectral compensation of focus change. The two 

approaches are different in their outcome and utilization: 

(i) Using a broadband source, phase shifting interferometry is used to recover an en-face 

image of the spot pattern; 

(ii) Under swept source illumination, A-scans are produced and therefore to generate an 

en-face image for the spot pattern, multiple A-scans are collected to sample a whole 

volume of the tissue which is then subsequently software cut perpendicularly to the 

direction of the A-scans. 

The differences between the two coherence gated Shack-Hartmann Wavefront Sensors 

(CG-SH/WFS) versions will be discussed further below. In the following we present 

experiments on these two possible implementations of a CG-SH/WFS and discuss their 

possible applications. These can vary from (i) providing depth resolved aberrations in the 

sample to (ii) elimination of stray reflections in the system. In the later case, the depth 

variation of aberrations in the sample is ignored and aberrations introduced by the imaging 

system are eliminated only. We will discuss these aspects with reference to two objects, the 

retina and microscopy samples. We will prove the capability of the two versions of CG-

SH/WFSs to eliminate stray reflections. We will also evaluate the centroiding accuracy and 

discuss the S/N ratio of the two methods proposed. By the end we will discuss various 

avenues to improve the acquisition speed and design criteria depending on the application and 

on the level of depth resolution required. 

4. Experimental set-ups to investigate coherence gating applied to a SH/WFS using a 

physical lenslet array 

Experiments are described below to investigate the interference conditions of an object beam 

output from a lenslet array with a reference beam, where the two beams are superposed via a 

beamsplitter. The schematic diagram to perform such a study is shown in Fig. 1. A Michelson 

interferometer set-up is illuminated using an optical source, OS. Light from the OS is sent via 

a focus element, an achromatic lens, L1, towards a beamsplitter, BS1. This splits the 

incoming beam into an object arm, towards a beamsplitter BS2 and into a reference arm, 

towards a reference mirror RM via a neutral density filter RND. In the object arm, the light 

passes through lenses L2, L3. These are used to increase the size of the beam diameter from 3 

mm to 15 mm in order to match the aperture of a deformable mirror, DM. The DM was used 

here as an object, to simulate real situations of different wavefront distortions, in order to test 

the CG-SH/WFS. An Imagine Eyes Mirao 52d, with 52 pistons was used as DM, with a 

maximum stroke of ± 50 µm of tip/tilt. The light reflected off the DM was deflected by 

beamsplitter BS2 to a lenslet array LA, where the light was spatially divided. The LA was 

from Welch Allyn, with 7.5 mm focal length lenslets placed in a square with a 200 µm pitch. 
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The object beam output from the lenslet array, LA was superposed on the reference beam via 

a beamsplitter BS3. The reference beam was brought towards BS3 via a mirror M1. The SH 

spots suffer lateral deviations depending on the aberrations in the object beam, as with any 

conventional SH/WFS. These multiple beams were focused on a CCD array. The diameter of 

the object and the reference beams were such to illuminate more then 15 x 15 lenslets. In 

order to ensure that interference can take place on any pixel in the photodetector array of the 

CCD, all pixels need to be illuminated uniformly by the reference beam, therefore this beam 

was collimated. In this simplified set-up, collimation of the reference beam was determined 

by the lens L1. The focal length of the lenses in the LA are too small to allow for the size of 

the beamsplitter BS3, therefore the multiple beams created by the LA and the reference beam 

are projected on the CCD via a telescope formed by lenses L4 and L5. The CCD was a 

Retiga-Exi CCD camera from Qimaging, of 12-Bits and 6.45 µm x 6.45 µm pixel size. 

 

Fig. 1. Schematic diagram for the evaluation of interference between multiple beams produced 

by a lenslet array and a collimated reference beam. OS: optical source; OND: neutral density 

filter in the object path; RND: neutral density filter in the reference path; RM: reference 

mirror; BS1 and BS2: 50/50 beam splitters; BS3: 55/45 Beam splitter; LA: Lenslet Array; 

BK7: dispersion compensating glass; DM: Deformable Mirror; L1: 10x microscope objective; 

L2: 3 cm focal length lens; L3: 15 cm focal length lens; L4 and L5: 7.5 cm focal length lenses. 

A strong reflection due to the lens L2 was present and this was used to investigate the 

capability of the CG-SH/WFS to provide SH spots undisturbed by the reflection in two 

different implementations: (i) time domain- (TD-) low coherence tomography (LCI) and (ii) 

spectral domain, swept source (SS-) LCI. A neutral density filter, OND, was inserted into the 

object arm to replicate real conditions of weakly reflecting objects and adjusted to make the 

intensity of the light back reflected from DM, comparable to the intensity of the stray 

reflection from lens L2. 

4. 1. TD-LCI configuration 

In the TD-LCI configuration, the source OS was a Super Luminescent Diode (SLD) from 

Superlum, with a central wavelength of 831 nm and FWHM bandwidth of 17 nm, possessing 

a coherence length of ~13 microns in the low coherent interferometer. In the reference arm, 

the reference mirror RM was mounted on a piezo actuator, driven by a ramp generator, G. 

This was used to translate RM a distance equal to the central wavelength, λ and sent a trigger 

signal to the computer controlling the CCD to synchronize the image acquisition. The Piezo 

was moved to create phase differences equal to 2π/m, where m was the number of images 

collected during a 2π cycle at even intervals. In the work presented here m = 4 was used and 

the interference pattern discerned from the following equation: 

 
2

24

2

31 )),(),(()),(),(( yxIyxIyxIyxII D −+−=
  (1) 

#119017 - $15.00 USD Received 29 Oct 2009; revised 11 Jan 2010; accepted 31 Jan 2010; published 3 Feb 2010

(C) 2010 OSA 15 February 2010 / Vol. 18, No. 4 / OPTICS EXPRESS 3463



where Im was the intensity distribution in the mth image taken. Based on principles of phase 

shifting interferometry [26], light originating from outside the coherence gate was eliminated 

and the amplitude of interference from points within the coherence length is recovered [22]. 

Images of 400x400 pixels
2
 size were produced. 

4.2. SS-LCI configuration 

In this case, OS was a swept source. A Superlum broad sweeper was used, with a variable 

sweeping rate of up to 10,000 nm/s, a tuning bandwidth of ∆λ = 50 nm from 820 nm to 870 

nm and a linewidth of 0.05 nm. In comparison with the TD-LCI concept presented above, the 

SS-LCI method provides more signal to noise ratio and allows increased speed [27]. 

However, this method has the drawback that requires a supplementary step in comparison to 

the TD method, that of organizing the data in the form of an en-face image. 

The acquisition was carried out by treating every CCD pixel as a separate photo detector 

[28]. As the source swept through its tuning range, a number of images were taken. To create 

the volume, a frame was collected for every frequency step of the SS. The limiting factor of 

the acquisition is the frame rate of the camera, the desired depth range and the processing 

speed of the computer. The fewer and smaller the frames used, the faster the measurement 

process, hence, for this configuration a smaller image size of 200 x 200 pixels
2
 was used. The 

axial range of the SS-LCI is determined by the maximum of the following two quantities: (i) 

the source linewidth and the (ii) step in optical frequency resulting from division of the tuning 

bandwidth by the number of frames. In our case the frequency step from frame to frame was 

much larger than the linewidth, therefore the number of frames was the parameter which 

determined the depth range. The camera collected frames at a rate of 40 Hz. 

After Fourier transformation, the DC signal resulted in a peak at the origin of the spectrum 

coordinate. Its width dictates the distance away from optical path difference (OPD) = 0 where 

other peaks can still be resolved. The larger the number of frames, the narrower the DC peak. 

After all M frames (X,Y) were acquired, they were stored in a 3D array. The data in this 3D 

array was inverse FFT transformed along the M
th

 dimension for all values of (X,Y) pixels and 

the results were placed into another 3D array with the same (X,Y) dimensions, whereas the M 

coordinate is now replaced by the axial distance, Z. From this volume of data, it is possible to 

retrieve an en-face image by computationally slicing the 3D volume at a selected axial depth 

δZ. Let us say that the CCD array uses PxP pixels. The 3D wavefront information can be 

obtained by proceeding along the following steps: 

1. According to principles of SS-LCI, for each pixel (X,Y) where X = 1 to P and Y = 1 to 

P, an A-scan was inferred by tuning the OS within the bandwidth ∆λ and Fourier 

transforming the signal generated during such tuning. If the source was tuned within 

an interval ∆λ and M frames (for M different optical frequencies) are acquired, then 

Fourier transformation (FFT) of the M samples of the photodetected signal delivered 

an A-scan from an axial range of approx.: ∆Z = 0.25Mλ
2
/(∆λ) [29] with an axial 

resolution of approx.: λ
2
/∆λ. Ιf the samples collected within each scan are not for 

equidistant values of optical frequency, then a linearization and interpolation 

procedure was required before the FFT, with the possibility mentioned in paragraph 

6.1. of skipping this procedure if the axial depth δZ chosen is shallow. The selection 

of the operating depth is further discussed in paragraph 5.4. 

2. Using the PxP = 200x200 A-scans such collected in 1 second, a 3D volume, Va was 

generated, consisting of PxPxM = 200x200x40 pixels
3
; 

3. From the volume Va, a number of en-face frames were inferred, each containing 

corresponding deviated spots, which determine the aberration information for a 

given depth value within the volume Va of the object; 
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4. In each such frame, deviations of the SH spots from the reference grid can be 

evaluated to provide the slopes as in any conventional SH/WFS. 

5. Results 

5.1. Rejection of stray light 

In this paragraph, the efficiency of the two CG-SH/WFS methods in attenuating the stray 

light was evaluated comparatively with the standard method. In an initial measurement step, 

SH spots were obtained with the reference beam blocked, these correspond to the standard 

method. Then, with the reference beam on, the two interference methods mentioned above 

were used to obtain SH spots. 

5.1.1. TD-LCI configuration 

The optical source was the SLD and four steps of phase shifts were used as described above. 

Figure 2 shows the SH spots on the CCD camera. The images in the top raw were obtained 

with the DM flat, while the images on the bottom raw were obtained with the DM deformed 

by applying - 0.18 V to its electrode number 30. Images in the left column were obtained with 

the reference arm blocked and therefore the SH spots correspond to a conventional SH/WFS. 

These images contain SH spots due to the stray reflections from lens L2 (seen as thick 

diagonal small traces), superposed on the SH spots created by the object, DM. 

The images in the right column were obtained with the reference beam on and after using 

the phase shifting method according to Eq. (1). These images represent spatial cropping of 

spots as determined by the coherence gate. The SH spots due to reflections from lens L2 were 

totally eliminated and the only SH spots in the image are due to the object. If the reference 

arm is blocked and the same phase shifting algorithm was applied, most of the SH spots 

disappeared, apart from small remnants due to random shot noise. All images had 400 by 400 

pixels, the camera was run at 10 Hz and the system provided an en-face image of SH spots 

(after phase shifting) at 2.5 Hz. Furthermore, when working with 200 by 200 pixels
2
, the 

camera operated at 40 Hz and an en-face image of SH spots could be delivered at 10 Hz. 

Using a camera with a higher frame rate could increase the acquisition speed even further 

[30]. 

5.1.2. SS-LCI configuration 

In this case, the optical source used was the Superlum sweeper and the procedure of operation 

is that described in paragraph 4.2 above. The tuning was performed at 1 Hz with the 40 

frames taken at evenly spaced intervals, for simplicity. This introduced some loss of 

sensitivity due to the frequency intervals not being equal, however tolerated here when 

working at small values of OPD (as commented in paragraphs 5.4 and 6.1 below). 

Images obtained are shown in Fig. 3. The distribution of the back reflections differ from 

Fig. 2 to Fig. 3 due to the two set-ups, TD-LCI and SS-LCI, having been implemented at 

different times. 
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Fig. 2. Images in the top row were of the SH spots with no deformation of the mirror. Images 

in the bottom row were obtained with further aberrations introduced by deforming the DM, 

obtained by applying –0.18 V on electrode 30 of the DM. Images in the left column were 

obtained with the reference arm blocked and according to the conventional procedure in a 

SH/WFS while in the right column, images were obtained based on the principle of the TD 

CG-SH/WFS explained in paragraph 4.1. 

As it can be seen in Fig. 3, the stray reflections from L2 are visible in the left image from 

middle to its top as thick diagonal small traces. The bright round points are due to reflections 

off the object (DM). Both patterns represent SH spots due to reflections off a wide depth 

interval determined by the confocal channel at the core of each lenslet, which is over several 

mm. On the right, an en-face image is shown, inferred from a stack of 40 frames obtained 

while tuning the wavelength of the SS, each frame acquired at a different wavelength within 

the tuning range of the SS. Its thickness is only 20 microns, corresponding to the inverse of 

the tuning bandwidth of the SS. The stray reflections are totally eliminated and SH spots due 

to the object only are left in the image. Slopes to infer the wavefront can be evaluated 

undisturbed by stray reflections from the clean SH spots. 

The SH spot patterns generated by the CG-SH/WFS for different deformations of the DM 

looked qualitatively similar to those obtained by the SH/WFS alone, as illustrated above for 

the TD case, therefore they are not shown in Fig. 3. 

Using a Pentium 4, 2.25 GHz, 2.25 GB RAM, an en-face slice of 200 x 200 pixel
2
 was 

produced from the data cube of 40 images in 2.1 s. 
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Fig. 3. Left: CCD images collected for a fixed wavelength λ = 834 nm and with the reference 

arm blocked. This shows the stray reflections from the lens L2 as thick diagonal small traces 

superposed on the reflection due to the object. Right: reference beam on, en-face image 

inferred from a stack of 40 frames, each obtained at a different wavelength within the tuning 

range of the SS and according to the procedure described in 4.2. The stray reflections are 

totally eliminated. 

5.2. Enhanced signal 

Another advantage of the CG-SH/WFS is that of stronger signal than that delivered by the 

standard SH/WFS due to the heterodyne principle implemented in the two configurations, 

where the weak signal from the object is multiplied by the strong signal from the reference 

arm. The purpose of this section is to illustrate the difference in signal strength from the 

different configurations investigated, TD-LCI and SS-LCI. Signals collected along a line in 

the middle of the CCD were compared, without the reference beam and again with the 

reference power on and using specific signal processing, characteristic for the two CG 

methods studied. 

5.2.1. TD-LCI configuration 

The signal sensitivity enhancement of a CG-SH/WFS using TD-LCI relative to a 

conventional SH/WFS is depicted in Fig. 4. The signals were collected along a line in the 

middle of the CCD, without the reference beam (gray line) and again with the reference 

power on and employing 4-step phase shifting (dashed dark line). Peaks due to back-

reflections (arrow) were eliminated. 

Considering the attenuation of the object and reference neutral density filters as OND and 

RND, respectively, the reflectivity of the object as O, the signal in the conventional SH/WFS 

is: 

 2

Conv
S OND O= ⋅   (2) 

Considering the reflectivity of the reference mirror, RM, as R, the amplitude of the 

interference signal is: 

 2 2

CG
S OND O RND R OND RND= ⋅ ⋅ ⋅ ≈ ⋅   (3) 

where the approximation in the 2nd form was allowed by considering the reflectivities O and 

R as 1. Evaluating the ratio of Eq. (3) to Eq. (2) leads to: 

 CG

conv

S RND

S OND
=   (4) 
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The images in Fig. 2 and 4 were obtained with an OND transmitting 1% round trip and a 

RNDF transmitting 3% roundtrip. This leads to: 

 2 3
( ) 3

1

RND

OND
= ≈ and 3 1.73CG

conv

S

S
= ≈   (5) 

Experimentally, a value of 2 of the improvement in the signal strength was obtained in 

several places, as shown in Fig. 4, close to the approximation above. 

 

Pixel 

Intensity (a.u.)  

 

Fig. 4. Comparison of signal sensitivity of conventional SH/WFS versus CG-SH/WFS using 

TD/LCI. The peaks in the left bottom corner represent stray reflections totally eliminated when 

performing coherence gating. 

5.2.2. SS-LCI configuration 

The strength enhancement has been quantified in Fig. 5. The signal amplitude was collected 

along a line in the middle of the CCD, without the reference beam (gray line) and again in the 

final en-face image, obtained with the reference power on, tuning the SS, collecting the data 

for all pixels, performing FFT to produce A-scans followed by sectioning at the selected δz to 

infer the en-face (dashed dark line). The amplitude of the signal is greater than that of the 

standard SH/WFS in several places by a factor of 2 to 10. It can also be noticed that peaks due 

to back-reflections (arrow) are eliminated. According to [27], the interference signal strength 

in SS-LCI should increase by a factor of M/4, where M is the number of spectral windows, 

while the noise is the same as in TD-LCI. Here the number of frames, 40, would give an 

improvement factor of 10 in comparison with the signal in TD-LCI (and hence the same 

improvement for the S/N ratio). Considering as reference value the strength of the 

conventional SH/WFS signal, the improvement can be estimated as the ratio of the signal 

strength enhancements in Figs. 5 and 4, i.e. 10/2 = 5. The improvement is less than that 

estimated theoretically for some of the peaks and this may have different explanations, as 

commented later. The speckle however is ruled out, as similar results were obtained by 

repeating the procedure. 
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Fig. 5. SS-LCI. (C)omparison of signal sensitivity of conventional SH/WFS versus CG-

SH/WFS using SS/LCI. The peaks in the left bottom corner represent stray reflections totally 

eliminated when performing coherence gating. 

In conclusion, an enhancement of the signal was obtained using both coherence gated 

methods. However, a better characterization of sensitivity should be performed in terms of 

S/N. Noise levels are higher in the interference images than in the single shot images without 

a reference beam. However, the noise could be reduced by increasing the number of steps 

used in the TD phase shifting interferometry method and the number of frames in the SS 

method, with the disadvantage that the acquisition speed may suffer. Relevant for the 

comparison of S/N of the two configurations are prior studies on comparing the SS-OCT with 

TD-OCT [26]. 

A S/N ratio comparison was also performed. The noise was evaluated as the ac fluctuation 

on pixels well outside the spots. The maximum signal was evaluated as an average over peaks 

in the line acquired in Fig. 4 and 5. For the particular cases exemplified here, the S/N in the 

TD case was 2 dB higher than the standard SH/WFS and 9 dB higher in the SS case than in 

the standard SH/WFS. 

5.3. Centroiding accuracy 

5.3.1. Comparison between SH spots in the conventional SH/WFS and in the two versions of 

CG-SH/WFSs 

Functionality of the CG/WFS can only be proven by demonstrating that the CG principle does 

not affect the wavefront measurements. To this goal, the SH spots obtained by using the 

conventional SH/WFS and the two versions of CG-SH/WFS should be compared. 

Unfortunately, we deliberately exacerbated the stray reflections to test the capability of the 

CG/WFS in removing them. They are so strong, that the wavefront cannot be measured using 

the images obtained using the conventional SH/WFS. As seen in Fig. 2 left and Fig. 3 left, it 

is difficult to say which are the SH spots due to the object and which are the SH spots due to 

the stray reflections. Therefore, we first separated the SH spots using two or more frames 
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obtained for different deformations of the DM. By deforming the DM, the SH spots due to the 

DM move laterally, while the spots due to reflections off lens L2 stay the same. By producing 

a frame, Fd as a difference of the images in the left column in Fig. 2, only useful SH spots are 

retained. They represent the SH spots for the flat DM and for deformed DM. Then, an 

additional frame FΣ is created by adding the frames of the deformed and non-deformed spots. 

By subtracting Fd from FΣ another frame Fs is produced. This frame contains the stray 

reflections only. Then, by subtracting Fs from the deformed and non-deformed original 

images, SH spots free of stray reflections resulted. A centroiding program was created in 

Labview. The centroiding was carried out with a basic centroiding technique based on an 

arbitrary thresholding value. Table 1 shows the variations obtained on the 12 spots. 

Table 1. Absolute deviations of SH spots obtained using coherence gating from the SH 

spots obtained using the conventional SH/WFS, measured in pixels 

 TD-LCI SS-LCI 

SH Spot ∆ X ∆ Y ∆ X ∆ Y 

1 0.1 0.1 0.619 0.318 
2 0.087 0.221 0.136 1.409 
3 0.5 0.214 0.144 0.068 
4 0.324 0.051 0.111 0.806 
5 0.009 0.102 0.083 0.25 
6 0.189 0.161 0.059 0.176 
7 0.543 0.214 0.3 0.667 
8 1.159 0.25 0.346 0.314 
9 0.238 0.143 0.167 0.19 

10 0.3 0.433 0 0 
11 0.122 0.932 0.044 0.333 
12 0.7 0.795 0.205 0.119 

Average/column 0.356 0.301 0.185 0.388 

Average/method 0.329 0.287 

An average difference of 0.329 is obtained for the TD-LCI method and of 0.287 pixels for 

the SS-LCI method. The selection of the threshold value affects slightly the centroid position 

and thus could account for a portion of the difference. The errors are relatively high in both 

CG versions, ~0.3/8 = 4% from the maximum range, considering that in our case, the 

maximum range of lateral deviation is plus or minus 8 pixels. 

5.3.2. Centroiding errors due to the nonuniform distribution of reference power within the 

beam section 

The accuracy of wavefront sensing is determined by the accuracy of centroiding the spots 

generated by the SH/WFS on the CCD camera. The distribution of power within the CG-SH 

spot is skewed by the distribution of reference power over the pixels contributing to that spot. 

A simple normalization correction consists in dividing the signal strength of each pixel with 

the square root of the signal obtained with the reference beam on and no object beam. 

We performed a simulation considering that the CCD has 256x256 active pixels and there 

are 16 lenslets covering 16x16 pixels each. Let us consider a Gaussian profile for the 

reference beam whose intensity distribution is such that the value of the profile at pixels 1 and 

255 is either Sedge = 0.1 or 0.5 from the value in the middle (at pixel 125). 

The maximum error is induced when the SH spots are wide. Let us consider that for an 

incident plane wavefront, each lenslet projects a Gaussian profile of FWHM = 4 pixels 

diameter (as an example, commensurate with a base disk of 16 pixels diameter projected 

within an area of 16x16 pixels allocated to each SH spot). A multiplication of the two 

Gaussian functions, of the reference beam and of the beam projected by each lens, leads to an 

asymmetric skewed profile for the most extreme SH spots which differ slightly from a 

Gaussian. Simulation has shown that for the example considered, the centers of the most 
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extreme SH spots were shifted 0.013 pixel for Sedge = 0.5 and by 0.047 pixels for Sedge = 0.5. 

Accuracies in the estimation of centroids of 0.007 pixels have been reported [31], therefore 

the error values obtained in the simulation are significant and normalization is necessary. 

These shift values are less than an order of magnitude smaller than the average error shift in 

the centroids of the CG-SH spots in comparison with the positions of the centroids of the 

conventional SH spots in Table 1. This means that the main source of errors mentioned in 

paragraph 5.3.1 above is not the non-uniform distribution of reference power. 

Normalization of the pixel values with the profile of the reference power ensures that 

similar spot patterns are obtained by coherence gating to those generated by the conventional 

method using the same interface optics. However in practice, the power within the reference 

arm is not perfectly uniform. The beam profile is usually a Gaussian, however, non-

uniformities in the beam profile could also be introduced by impurities. This may explain 

some of the signal variations along the A-scan for the CG-SH/WFS in Fig. 4 and Fig. 5 and 

the errors reported. 

5.4. Choice of parameters for the SS-LCI version 

The TD-LCI method provides an en-face image of SH spots. The SS-LCI method has the 

disadvantage that an en-face image of SH spots can only be obtained after collecting the 

whole volume of A-scans. The need for volume acquisition makes the SS method less 

appealing than the TD method for the specific application discussed here. 

However, if the user is not interested in depth resolved aberrations in the sample, but 

merely in the measurement of aberrations in the system, devoid of any stray reflections, a 

single en-face image of aberrations is sufficient. This limited goal requires less processing 

time. Further simplification is possible by carefully choosing the OPD value (referred above 

as δz) where this en-face image of aberrations is inferred from. The larger δz, the larger the 

axial range, ∆Z, required for the SS-LCI method, which needs a proportionally larger number 

M of frequency steps, with impact on the acquisition time. Therefore, by choosing a small 

value for δz, faster speed would be achievable. A small δz value is also recommendable due 

to the decay of sensitivity with OPD in SS-LCI. However, the minimum δz value where the 

method can reliably be performed depends on several factors. 

To illustrate this design issue, let us consider as object the DM and the OPD adjusted to 

δZ = 55 microns. DM is here to simulate the top layer of the specimen for instance, to be used 

as the reflecting layer of choice at OPD = δZ. In Fig. 6, the position of the peak in the A-scan, 

corresponding to δZ, obtained after FFT is shown for four values of the tuning bandwidth, ∆λ. 

By reducing ∆λ 5 times, from 50 nm to 10 nm, the depth range increases proportionally 

according to ∆Z = 0.25Mλ
2
/∆λ. The equivalent coherence length, lc = 0.44 λ

2
/∆λ characterizes 

the depth resolution, i.e. the differential distance between adjacent sampling point values on 

the horizontal axis of the FFT. For ∆λ = 50 nm and λ = 0.845 µm, lc ≅ 6 µm. By equivalent 

coherence length lc, we mean here the coherence length of an equivalent TD-OCT system 

excited by an OS with a spectrum width equal to the tuning bandwidth ∆λ. The ratio of the 

axial range ∆Z by the equivalent coherence length, lc determines the number of sampling 

points in the FFT, i.e. ≈20 (the same as M/2). This means that the measurement range, ∆Z and 

lc vary in the same way with ∆λ, therefore the horizontal axis is the same, irrespective of the 

four experimental values ∆λ in Fig. 6. However, the peak corresponding to δZ, on position 

δZ/lc on the axis of the graph in Fig. 6 moves from position 11 for ∆λ = 50 nm to approx. 2 

for ∆λ = 10 nm. At such low coordinate value, this peak may not be distinguishable from the 

very strong peak at OPD = 0 which always exists due to the constant terms before FFT, such 

as the reference optical power. 
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Fig. 6. Graph of the Fourier transformation of the CCD signal for four values of the swept 

source tuning bandwidth, ∆λ, around a central wavelength, λ, of 845 nm and for δZ = 55 µm. 

The curves are represented starting from ∆Z/lc ≈3, due to the large value of peak in zero, 

whose tail is visible as an almost vertical line. 

To make sure that the peak in the A-scan in Fig. 6 is sufficiently distinguishable from the 

peak at OPD = 0, a safe condition would be that δZ is chosen at least 4lc, as shown by the 

peak for ∆λ = 18 nm. On the other hand, when using small tuning bandwidth, the depth 

resolution deteriorates. In order to still eliminate the stray reflections, we have to make sure 

that the depth resolution interval is much smaller than the distance from the working position, 

δZ, and the axial position of the source of stray reflections. In conclusion, δZ, ∆λ, M and the 

position in depth of the source of stray reflections are inter-related. This connection between 

such parameters has to be considered when attempting to speed up the process by reducing 

the number of frames, M. Results have been presented in paragraph 5.1 using M = 40, 

however, based on the discussion detailed here, higher speed than that reported in paragraph 

5.1. can be contemplated by a further decrease of M, giving suitable consideration to the 

choice of values for δZ and ∆λ. A similar reasoning should also be considered when 

attempting to reduce ∆λ, either to allow utilization of a low cost swept source, of reduced 

tuning bandwidth, or when interested in providing chromatic dependent wavefront 

measurements, by using subdivisions of the tuning bandwidth of the swept source (as 

discussed in the paragraph 6.3.2 below). 

6. Discussion 

This section elaborates further on the design criteria and possible applications of a CG-

SH/WFS. 

6.1. Acquisition rate 

The relatively large time required until data on the wavefront is provided renders the methods 

presented marginally applicable to moving targets, such as the eye. However, technology is 

now available at the level where several tracking methods have been reported, which can be 

used to eliminate the effects of the lateral eye movements [32]. This was proven successfully 

for both SLO and OCT imaging. Recent reports have also proven the possibility to adjust the 

OPD in OCT imaging channels [33,34] using a LCI axial tracker. The same principle can 

obviously be incorporated into the LCI interferometer of any of the two CG implementations 

here, to reduce the eye axial movement effects. When the CG-SH/WFS is part of an imaging 

system, the lateral tracker will maintain the beam laterally over the same pixel for both the 

imaging system and the CG-SH/WFS. However, if the imaging channel is OCT, then the 

imaging channel and the CG/WFS may need independent axial trackers. 

Further improvements in speed may be possible by devising parallel reading arrays using 

FPGAs [35] and dedicated arrays of photodetectors with parallel reading. A fast full field 
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OCT system, implementing similar procedures to those used in our TD-LCI version has been 

applied to the rat eye, using a CMOS camera operating at a frame rate of 250 Hz [30]. 

The acquisition time of 1 s for the SS-LCI version is similar to the shortest time reported 

to date on imaging a whole volume of the retina using SS-OCT [36], however the overall time 

of 3.1 s, with 2.1 s for processing, mentioned in paragraph 5.1.2 render the method unsuitable 

for measuring moving targets. This duration could be reduced by using a higher performance 

multiple cores PC or a dedicated DSP board. Recent progress in using graphic processing 

units performing computation [37] instead of central processing unit may allow for even 

faster processing speed. The acquisition time, can also be reduced if a similar camera to that 

in [30], working at 250 Hz is used in the SS-LCI version. This can allow a complete 

acquisition of the number M = 40 of frames used here at a rate faster than 6 Hz. 

As a particular improvement feature, linearization [38] can be avoided if the axial position 

of operation δZ chosen is shallow, where the nonlinear dependence on the wavenumber can 

be neglected. From the practice of spectral domain OCT it is known that nonlinear sampling 

in frequency manifests especially when the OPD is larger than the middle range (peaks loose 

in amplitude more than expected and shoulders appear). By choosing the OPD value of work 

at approx. 1/3 of the axial range would be sufficient to ignore the nonlinearity effect. In case 

the SS-LCI system is used for depth resolved aberrations inside a microscopy sample, then 

the thickness of the sample determines a minimum number of frames to be acquired. It is 

known that the sensitivity of the SS-LCI method decreases with OPD. To have sufficient 

signal at a maximum OPD of 1 mm for instance, the axial range should be at least double, 2 

mm. Using again ∆Z = 0.25Mλ
2
/(∆λ) for the axial range, this leads to M larger than 600 

frames for λ = 0.8 microns and ∆λ = 50 nm. In this case, linearization of data is necessary 

which increases the time required even more. 

6.2. Depth resolution interval 

The choice of depth resolution of the LCI method used in the CG-SH/WFS depends on the 

application. The limits of the depth resolution interval depending on specific application are 

discussed below. 

6.2.1. Superior limit 

If the CG-SH/WFS is devised to accomplish the limited goal of stray reflection elimination 

(and not that of a depth resolved WFS), a low depth resolution capability may be acceptable, 

consistent with a depth resolution interval of hundreds of microns or even millimeters. Such 

values could be sufficient to eliminate the effect of stray reflections from lenses in the 

interface optics of the imaging system. This would allow the use of laser diodes below 

threshold [39], of much lower cost than superluminescent diodes. Equivalently, the tuning 

bandwidth of the SS for the SS-LCI version could be smaller, and lower costs tunable sources 

may be developed in the future. 

As little value is envisaged in providing ultra high resolution depth resolved aberration 

measurements from within a sample, be it retina or a microscopy specimen, a much larger 

coherence length of the source can be tolerated in CG-SH/WFS than in OCT imaging. 

Therefore, low cost laser diodes below threshold may be again used in the TD 

implementation or smaller tuning bandwidth sources in the SS implementation. For instance, 

if a priori information exists about the sample, which has two major layers at different depths 

in terms of reflectivity value or birefringence values, it may be sufficient to provide 

aberration information from depth intervals separated by no more than the depth interval 

between such layers. 

However, more research is required to establish the influence of speckle when the source 

presents narrow linewidth. A possible solution for reducing the speckle effects is increasing 

the number of phase steps in the TD method and the number of frequency steps in the SS 
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method used and therefore a trade-off should be evaluated between the advantage of lower 

cost and increased collection and processing time. 

6.2.2. Lower limit 

There is also a limit in terms of the smallest achievable resolution interval. This is determined 

by the curvature of the coherence gate at the back of the lenslet array. 

Fig. 7. Components of the optical paths in the ob

spot corresponding to a non-aberrated part of the w

spot corresponding to an aberrated part of the wave

the SH spot from the reference grid node. 

In Fig. 7, A is the deviation of the wavefront

this, the SH focus of the beamlet is deviated to a d

measured in the CCD plane, and the beamlet trave

Fig. 7, the difference in length between the aberr

optical path difference: 
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which gives: 

 
2

2 2

max

2
4.4
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f
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This distance is smaller than the coherence length of the SLD, 17 µm used in the TD case 

and the equivalent coherence length of 6 µm for 50 nm tuning bandwidth and 30 µm for 10 

nm tuning bandwidth used in Fig. 6. This example shows that care has to be taken when 

extending technology of high depth resolution LCI [40] to the coherence gating principle 

applied to a SH/WFS. 

The calculation above refers to the OPD variation across a lenslet pair. Over the entire 

wavefront, a Peak to Valley difference of several microns is not unusual. Including tilt, the 

peak to valley of a wavefront could be even larger. This would result in some of the SH spots 

in the system being outside the coherence gate. 

6.3. Spectral variation of aberrations 

Chromatic aberrations [14] are often ignored in the practice of wavefront sensing. In previous 

WFS studies, a series of filters to select the measurement wavelength have been used one 

after another, as described in [41]. Defocus can change by up to 0.4 diopters in the human eye 

when the wavelength is varied within a 200 nm range in the IR range centered at 800 nm [42]. 

The evaluation of chromatic aberration is therefore essential for achieving good performance 

in high resolution imaging of the retina. The SS-LCI version of the CG-SH/WFS presented 

may find applications in two possible directions, as outlined below. 

6.3.1. Synchronous chromatic compensation with SS tuning of the CG-SHS 

When tuning the SS, correction for the chromatic aberration in the interface optics or in the 

sample can be implemented in synchronism. In the simplest case, the aberration refers to the 

focus change with wavelength. It may be possible using a sufficiently fast electrically 

controlled lens to adjust the chromatic focus variation while sweeping the wavelength in the 

SS-CG/WFS. However, more research is required to establish the values of such a method in 

comparison with the use of an achromatiser [40]. 

6.3.2. Spectroscopic characterization 

An alternative use of the SS-LCI principle is where the tuning bandwidth employed in 

constructing the A-scans is adjusted to a value smaller than the achievable tuning bandwidth 

of the SS used. The main band of the SS is divided, let us say into N subintervals, for instance 

100 nm can be divided into N = 5 subintervals, 20 nm each. The SS-LCI based CG-SH/WFS 

operates within a bandwidth of 20 nm with wavelength centered on either of the 5 such 

subintervals. Spectroscopic information on aberrations is achieved in this way at 5 different 

wavelengths by inferring an en-face image of aberrations at the chosen OPD according to 

paragraph 5.4 for each of the 5 subintervals. Opportunity in using again a controllable lens or 

an achromatizer, as discussed above remains to be researched. 

7. Conclusions 

In this paper we demonstrated that interference between the focused beams resulting from 

lenslet arrays used in a SH/WFSs and a collimated beam can be successfully handled to 

provide depth resolved spots. Two methods of coherence gating have been presented for 

providing depth resolved spots. A TD-LCI method leads to an en-face image of spots using 

phase shifting interferometry. A SS-LCI method provides A–scans for each pixel in the 2D 
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photodetector array and an en-face image of SH spots is obtained after post-processing of the 

volume of A-scans. 

Both methods have been used to demonstrate the operation of a CG-SH/WFS which can 

work under large stray reflections in the interface optics and therefore could lead to wavefront 

sensing assisted AO microscopy, reduction of the layout size of AO assisted imaging 

instruments and to an improvement in performance. The two proof of concept configurations 

demonstrated real time operation, which make them superior to the method using a virtual 

lenslet array [21] or iterative algorithms [43]. The need to collect several images for both 

versions of CG-SH/WFSs presented, slows down the data rate and therefore the time reported 

is marginally sufficient for imaging the eye, faced with micro-saccades and head movements 

(10 Hz for the TD version and 1 Hz for the SS version). Future work is required to make such 

principles working faster to be able to cope with the involuntary eye movements. 

Centroiding was applied to perform a comparison of SH spots obtained with the 

conventional SH/WFS and with the two principles of CG-LCI. This has shown that the SH 

spot patterns obtained were similar up to an average error of ~0.3 pixels which determines 

more than 4% error. These results however were obtained using a minimum number of 

frames required for the two methods to work. The TD version employs phase shifting 

interferometry, where the minimum number of steps is 3 and we used 4. In the SS version, 

smaller number of frames than 40 would have reduced the amplitude of the peak in the A-

scan (due to the decay with depth of sensitivity specific for spectral domain LCI). Larger 

number of frames in both methods may lead to improvement in the accuracy determination of 

the wavefront. It may be possible that some of the errors in the lateral shifts of CG SH spots 

from the conventional SH spots be generated by speckle. Therefore, more research is required 

to evaluate the trade off between speckle average and speed, when choosing the number of 

frames. 

No processing was performed in this paper to infer the aberrations. The next step is to 

incorporate such a CG-SH/WFS into an imaging system, collect the spot pattern from a 

scattering sample and correct for the aberrations using a corrector under a closed AO loop. A 

unique direction opened by the methods presented is that of assembling AO configurations 

using lenses in the interface optics, compatible with double path correction. As demonstrated 

here, elimination of large stray reflections will allow a CG-SH/WFS to operate under 

reflections from microscope objectives and microscope slides. If such a configuration is made 

operational, it will be possible to evaluate how aberrations vary with depth in thick 

microscopy samples. 
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