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Abstract

We discuss the monoidal structure on Franke’s algebraic model for the K(p) -local
stable homotopy category at odd primes and show that its Picard group is isomor-
phic to the integers.
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Introduction

A well-established method to study the structure of the stable homotopy category
Ho(S) is chromatic filtration. This concerns Bousfield localisation with respect to
homology theories E(n), n ∈ N for a fixed prime p absent from notation. The resulting
“chromatic layers” Ho(LnS) provide a better and better approximation of Ho(S) at p
as n increases.

For n = 1, E(1) is the Adams summand of p-local complex K -theory, so Ho(L1S) is
the K(p) -local stable homotopy category. Since K -theory has been studied extensively,
we can make use of a wealth of tools to study this first chromatic layer. Startlingly,
the behaviour of Ho(L1S) at odd primes differs significantly from p = 2. For p = 2
all higher homotopy structure of Ho(L1S) is encoded in its triangulated structure,
meaning that Ho(L1S) is rigid at p = 2, see [1]. As a consequence, Ho(L1S) at p = 2
cannot be described by an algebraic model. For odd primes however, the situation is
completely different.

∗Partially supported by NSERC
†Supported by EPSRC grant EP/G051348/1, corresponding author
1Current Address: The University of Sheffield, Hicks Building, Sheffield S3 7RH, United Kingdom
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For odd primes Jens Franke constructed an algebraic model category C(T,N)(A) whose
homotopy category D(T,N)(A) is equivalent to Ho(L1S), [2]. But the underlying mod-
els L1S and C(T,N)(A) are not Quillen equivalent by [2] and [3]. As C(T,N)(A) has
such a different homotopical behaviour from the standard model L1S , it is called an
exotic model.

Although some general differences between p = 2 and p > 2 have been studied in [1,
Section 6], it is still mysterious how this exotic model came along. Furthermore, it is
still almost entirely unknown for which n and p , Ho(LnS) possesses exotic models and
if it does, how many. It is not even known if Franke’s model is the only algebraic model
in its range.

One structural tool that has not yet been made use of is monoidality. We are going
to focus on it in this paper. After defining a monoidal product on C(T,N)(A), we find
that Franke’s model structure on this category is not monoidal. This means that it
does not induce a monoidal structure on D(T,N)(A). So our goal is to construct a new
model structure on C(T,N)(A) that is Quillen equivalent to Franke’s model while also
being compatible with the monoidal product.

Furthermore, we want the newly defined derived product ∧LPI on D(T,N)(A) to interact
reasonably with the smash product ∧L on Ho(L1S). Let

R : D(T,N)(A) −→ Ho(L1S)

denote Franke’s triangulated equivalence. In [4], Nora Ganter constructed a natural
isomorphism

R(C∗ ⊗
L
E(1)∗

D∗) ∼= R(C∗) ∧
L R(D∗).

However, that paper does not accurately define the non-derived tensor product of quasi-
periodic cochain complexes so the definition of the derived tensor product is not com-
plete.

Our construction is compatible with the assumptions needed for Ganter’s result. Hence,
it closes a gap in [4] and so allows us to use the isomorphism

R(C∗ ∧
L
PI D∗) ∼= R(C∗) ∧

L R(D∗)

to relate our new monoidal product ∧LPI to ∧L . It should be noted that it is unknown
if R is associative for p > 5 and it is definitely not associative for p = 3.

Even further, combining this with work of Hovey and Sadofsky [5], we can read off the
Picard group of D(T,N)(A). We hope that our results contribute to understanding the
concept of exotic models in the future.

Organisation

In Section 1 we revise the concept of quasi-periodic chain complexes C(T,N)(G). Here,
G denotes a Grothendieck abelian category, T a self-equivalence of G and N ≥ 0 the
periodicity index. Quasi-periodic chain complexes form the basis of Franke’s construc-
tion. In particular, they are chain complexes in G . We recall how to create model
structures on C(T,N)(G) using the forgetful functor to chain complexes C(G).
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In Section 2, we explain how C(T,N)(G) can be described as a category of modules over
a ring object in C(G). The ring object will be the “periodified” unit PI .

Section 3 recalls some definitions and properties about comodules over Hopf algebroids.
They are used in Section 4, which concerns Franke’s category. Here, we specify the
Grothendieck abelian category A , the self-equivalence T and period N = 1. The
abelian category A is equivalent to E(1)∗E(1)-comodules. We then describe the re-
sulting model structure and some of its properties.

In Franke’s case, A does not have enough projectives, only enough injectives. But the
injective model structure is not monoidal. A step towards a solution is the relative pro-
jective model structure described in Section 5. This was first introduced by Christensen
and Hovey in [6]. The induced model structure on C(T,1)(A) is monoidal but is not
Quillen equivalent to Franke’s model as it does not have enough weak equivalences.

We use the above to construct a quasi-projective model structure in Section 6. For
the construction, we formally add weak equivalences to the relative projective model
structure. Eventually we arrive at a model category that is Quillen equivalent to
Franke’s model and is a monoidal model category.

Finally, in Section 7, we relate our result to Ganter’s theorem and compute the Picard
group of the exotic model, Pic(D(T,1)(A)). We further place it in context with other
results about the E(n)-local stable homotopy category, hopefully shedding some light
on the existence of exotic models versus rigidity.

We would like to thank Andy Baker, Dan Christensen, Nora Ganter and Uli Krähmer
for motivating discussions.

1 Quasi-periodic chain complexes

We use G for a general abelian category and reserve A for Franke’s category of Section
4. For model structure purposes we will usually assume that G is a Grothendieck
abelian category, which is our reason for choosing this letter. We will always assume
that we have a self-equivalence T :G → G and we further assume that G has all small
limits and colimits.

In this section, we introduce the category C(T,N)(G) of quasi-periodic chain complexes
of period N , i.e. chain complexes with values in G that are periodic up to a “twist”
by T . Given a model structure on chain complexes C(G), we are then going to discuss
how C(T,N)(G) inherits a model structure from C(G).

Definition 1.1 The category, C(T,N)(G) , of quasi-periodic chain complexes (or
twisted chain complexes) in G , has objects the class of chain complexes C(G) in
G which have a specified isomorphism αC : T (C∗) −→ C[N ]∗ . A morphism is then a
chain map which commutes with the given isomorphisms as above.

Here, C[N ]∗ = C∗−N , the differential on C[N ] is dC[N ] = (−1)NdC . For further details
on this category see [2, Example 1.3.3] or [3, Subsection 2.2].
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The forgetful functor U : C(T,N)(G) −→ C(G) from quasi-periodic chain complexes to
chain complexes on G has both a left and a right adjoint. We are most interested in
the left adjoint, which we call periodification. Given a chain complex M , we define

PM =
⊕

k∈Z

T kM [−kN ].

Thus PMn =
⊕
k∈Z

T kMn+kN . The differential on summand T kMn+kN is given by

(−1)kNT kdn+kN :T kMn+kN → T kMn+kN−1.

This is a functor, the action on maps being to send g to that map which on level n and
summand k is given by T kgn+kN . Furthermore PM is a quasi-periodic chain complex,
the quasi-periodicity isomorphism is the following composite.

TPMn = T
⊕
k∈Z

T kMn+kN
∼=

⊕
k∈Z

T k+1Mn+kN

=
⊕
k∈Z

T k+1Mn+(k+1)N−N

=
⊕
k∈Z

T k+1M [N ]n+(k+1)N

= PM [N ]n

Lemma 1.2 The functor P is the left adjoint to the forgetful functor U from quasi-
periodic chains on G to chains on G .

Proof Let f :PM → X be a quasi-periodic chain map. Let fnk be the map from the
k -summand of PMn to Xn , so fnk : T

kMn+kN → Xn. The collection fn0 :Mn → Xn

defines a chain map f̂ :M → X .

For the inverse, let g :M → X be a chain map. Define a collection gnk by the following
composite, where the second map is coming from the quasi-periodic structure of X .

T kMn+kN
Tkgn+kN
−−−−−−→ T kXn+kN

(αX)k

−−−−→ Xn

We then define a map g̃ : PM → X , which on summand k is gnk . To see that g̃ is a
quasi-periodic map, we note that the following diagram commutes

TPM
T g̃ //

αPM

��

TX

αX

��
PM [N ]

g̃[N ] // X[N ]

because the diagram below commutes.

TT kMn+kN

TTkgn+kN //

=
��

TT kXn+kN

(αX)k //

=
��

TXn

αX

��
T k+1Mn+kN

Tk+1gn+kN // T k+1Xn+kN

(αX)k+1

// Xn−N
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It is simple to check that g̃ is compatible with the differentials. That ˆ̃g = g is imme-

diate. One can also check that
˜̂
f = f , by noting that the diagram below commutes.

This holds since f is quasi-periodic and the top path is
˜̂
fnk whereas the lower path is

fnk .

T kMn+kN

Tkfn−kN
0 //

=

��

T kXn+kN

(αX)k

��
T kMn+kN

fn
k // Xn

A dual argument will show that the forgetful functor has a right adjoint R , which sends
a chain complex M to the quasi-periodic chain complex RM =

∏
k∈Z T

kM [−kN ] .

Proposition 1.3 Assume that there is a cofibrantly generated model structure on C(G)
and that T is a left Quillen functor. Then the forgetful functor

U :C(T,N)(G) −→ C(G)

creates a model structure on C(T,N)(G) . That is, there is a model structure on the cate-
gory of quasi-periodic chain complexes, C(T,N)(G) , where a map f is a weak equivalence
or a fibration if and only if Uf is so in C(G) .

Proof Let I be the generating cofibrations and J the generating trivial cofibrations
of C(G). Using the lifting criterion of [7, Theorem 11.3.2], one only needs to show that
PI and PJ satisfy the small-object argument and that a PJ -cell complex is a weak
equivalence. Since the forgetful functor is both a left and a right adjoint, it preserves all
colimits, thus PI and PJ satisfy the small-object argument. Since P preserves acyclic
cofibrations, it follows that applying U to a PJ -cell complex gives an acyclic cofibration
in C(G). Thus the forgetful functor takes PJ -cell complexes to weak equivalences.

The above proposition implies that the adjoint functor pair (P, U) is a Quillen adjunc-
tion with P being the left and U being the right Quillen functor. Note that this model
structure on C(T,N)(G) is also cofibrantly generated with the generating cofibrations
being the image of the generating cofibrations in C(G) under the functor P , see [8,
Appendix 1].

Lemma 1.4 The functor P preserves quasi-isomorphisms.

Proof The functor T is an equivalence, hence it preserves quasi-isomorphisms, as does
the shift functor. Since P is just an infinite direct sum of shifts and applications of T ,
it preserves homology isomorphisms.

One particular model structure that will be of interest is the model structure created
in [2]. It is used on the algebraic model for the K -local stable homotopy category. We
will discuss this category in more detail in Section 4. We add the assumption that G
is a Grothendieck abelian category so that we have cofibrant generation. Note that a
Grothendieck abelian category always has enough injectives [9, Corollary X.4.3] and
every object is small [10, Proposition A.2.].
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Definition 1.5 A Grothendieck abelian category G is a cocomplete abelian cate-
gory, where filtered colimits commute with finite limits. Further, there is a generator

G, that is, G(G,−) is faithful.

Lemma 1.6 If G is a Grothendieck abelian category, then there is a cofibrantly gen-
erated model structure on C(T,N)(G) with the quasi-isomorphisms as the weak equiva-
lences and the monomorphisms as the cofibrations. We call this the injective model

structure.

Proof For C(G) this is [11, Proposition 3.13], which uses Theorem 6.1. We can lift
this model structure to C(T,N)(G) using the above results.

At this point we would like to mention some parallels to topology. The main example of
interest is the category C1(A), a special case of C(T,N)(G). We introduce it in Section
4. It comes with an equivalence of triangulated categories

R : D1(A) −→ Ho(L1S).

Here, D1(A) is the homotopy category of C1(A) with the injective model structure.
Further, Ho(L1S) denotes the K -local stable homotopy category at p > 2. The
chain complex corresponding to the sphere L1S

0 under R is exactly PI . So in our
construction, we would like the periodified unit PI to play the role of a localised sphere.

The stable homotopy category itself is not equivalent to a category of chain complexes.
However, the reader might find the constructions in this section similar to the following
adjunction

L1 = − ∧
L L1S

0 : Ho(S)−−→←− Ho(L1S) : U.

Localisation with respect to K(p) equals smashing with L1S
0 , which is left adjoint to

the forgetful functor.

2 Quasi-periodic chain complexes as modules

We describe the category of quasi-periodic chain complexes as a category of modules
over a specifically chosen monoid. It gives a nice description of the monoidal structure
of C(T,N)(G).

We now assume that G is a closed symmetric monoidal category with tensor product ⊗
and unit I . Here G has both a tensor product and an internal homomorphism object
F (−,−), which are related by the usual adjunction. In this case we must make further
assumptions on T . We want T to behave like N -fold suspension, in particular we do
not require T to be a monoidal functor.

Definition 2.1 We say that T is compatible with the monoidal structure if there is
a natural isomorphism of functors

m :T → TI ⊗ (−).
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If T is compatible with the monoidal structure then for any X and Y there is a natural
isomorphism T (X ⊗ Y )→ TX ⊗ Y .

Lemma 2.2 If T is compatible with the monoidal structure, so is Tn , for any n ∈ Z .
There are natural isomorphisms

TF (X,Y ) ∼= F (T−1X,Y ) ∼= F (X,TY ).

From now on we assume that T is compatible with the monoidal structure. We can
think of I as an object of C(G) concentrated in degree zero. We show that PI is a
monoid in C(G) and that the category of quasi-periodic chain complexes is isomorphic
to the category of PI -modules.

Proposition 2.3 The category of quasi-periodic chain complexes, C(T,N)(G) , is iso-
morphic to the category of PI -modules in C(G) .

Proof First of all, we prove that if X is a quasi-periodic cochain complex, then X has
a natural action of PI . We start by writing out level n of PI ⊗X , the tensor product
in the category of chain complexes:

(PI ⊗X)n =
⊕

k∈Z

T kI[−kN ]⊗Xn+kN
∼=

⊕

k∈Z

T kXn+kN
∼= PXn

the action map is then induced by the structure map of X and the fold map

⊕

k∈Z

T kXn+kN →
⊕

k∈Z

Xn → Xn.

It is easy to check that this map is associative and unital, the unit of PI being the
obvious inclusion I → PI . We note that the differential of

(PI ⊗X)n ∼=
⊕

k∈Z

T kXn+kN

is given by (−1)kNT kdn+kN , which tells us that the differentials are compatible with
the action PI ⊗X → X .

For the converse we prove that if Y is a PI -module, then Y is a quasi-periodic chain
complex. The action map of Y takes the following form:

(PI ⊗X)n ∼=
⊕

k∈Z

T kYn+kN → Yn.

Let
φ(k)n :T

kYn+kN → Yn

be the k component of the above map. We can assemble these to obtain a map

φ(k) :T kY → Y [kN ].
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We need to see that φ(1) is an isomorphism, it will be our periodicity map. Since the
action map is unital, φ(0) is the identity. Associativity of the action shows that

φ(l + k) = φ(k)φ(l),

in particular
φ(1)φ(−1) = φ(0) = φ(−1)φ(1),

so φ(1) is an isomorphism.

Another consequence of our computations is the following, which says that P is com-
patible with the monoidal structure.

Corollary 2.4 There is an isomorphism of quasi-periodic chain complexes PI ⊗X ∼=
PX , which is natural in X .

Thus we have shown that the category of quasi-periodic chain complexes and PI -
modules are isomorphic. We can also think of P as an monad on the category of chain
complexes of objects of G , we can then describe C(T,N)(G) as the category of modules
over this monad. We make no use of this monad description.

A result by Schwede and Shipley states that if a monoidal model category satisfies the
monoid axiom [12, Definition 3.3], then there is an induced model structure on the
category of modules over a fixed commutative monoid. We apply this result to our case
and arrive at the following.

Proposition 2.5 Assume that there is a model structure on C(G) which is cofibrantly
generated, monoidal and satisfies the monoid axiom. Then the category of PI -modules
has a cofibrantly generated model structure where the weak equivalences and fibrations
are the underlying weak equivalences and fibrations. The generating cofibrations and
acyclic cofibrations are given by applying PI ⊗ (−) to the generating cofibrations and
acyclic cofibrations of C(G) .

Corollary 2.6 This model category on C(T,N)(G) is precisely the model category of
quasi-periodic chain complexes with the lifted model structure. Furthermore, since PI
is a commutative monoid, this model category is monoidal and satisfies the monoid
axiom, with monoidal product given as the tensor over PI : X ⊗PI Y .

This follows from [12, Theorem 4.1].

3 Comodules over Hopf algebroids

We are going to recall some definitions, conventions and basic properties about comod-
ules over a Hopf algebroid as this is the abelian category we are most interested in. We
refer to [13] and [14, Appendix B.3] for more details.

Let k be a commutative ring. Then a Hopf algebroid is a pair (A,Γ) of commutative
k -algebras such that for every k -algebra B , the pair

(Homk−alg(A,B),Homk−alg(Γ, B))
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forms a groupoid (i.e. a small category where every morphism is an isomorphism) with
Homk−alg(A,B) being the objects and Homk−alg(Γ, B) being the morphisms. This
means that there are structure maps

• ∆ : Γ −→ Γ⊗A Γ (coproduct, inducing composition of morphisms)

• c : Γ −→ Γ (conjugation, inducing inverses)

• ǫ : Γ −→ A (augmentation, inducing identity morphisms)

• ηR : A −→ Γ (right unit, inducing target)

• ηL : A −→ Γ (left unit, inducing source)

satisfying certain conditions. Note that ηR and ηL make Γ into an A-bimodule. By
⊗A we mean the tensor product of A-bimodules.

For technical reasons we are going to consider only flat Adams Hopf algebroids, i.e.
Hopf algebroids (A,Γ) where Γ is a filtered colimit of finitely generated projectives
over A . The main topological example we have in mind are Hopf algebroids of the
form (R∗, R∗R) where R is a topologically flat commutative ring spectrum.

Definition 3.1 A (A,Γ)-comodule is a left A-module M together with a map

ψM :M −→ Γ⊗AM

satisfying a coassociativity and counit condition.

The category (A,Γ)-comod is a cocomplete abelian category [13, Lemma 1.1.1]. It is
also a closed monoidal category with symmetric monoidal product ∧ with unit A . For
two (A,Γ)-comodules M and N , M ∧N denotes the tensor product of M and N as
left A-modules (A is assumed to be commutative). The comodule structure map is
then given by

M ⊗N
ψM⊗ψN−−−−−→ (Γ⊗AM)⊗ (Γ⊗A N)

γ
−→ Γ⊗A (M ⊗N)

where
γ((x⊗m)⊗A (y ⊗ n)) = xy ⊗A (m⊗ n),

see [13, Lemma 1.1.2]. As for the closed structure, the right adjoint of the monoidal
product ∧ is denoted by F (−,−). It is left exact in the first variable and right exact
in the second one. If M is finitely presented over A , then

F (M,N) ∼= A-mod(M,N)

as A-modules, but F (M,N) is generally not isomorphic to (A,Γ)-comod(M,N). For
more properties of F see [13, Subsection 1.3].

When one has a flat Adams Hopf algebroid, the category of comodules is a Grothendieck
abelian category by [13, Propositions 1.4.1 and 1.4.4]. This property will be important
for Sections 5 and 6.
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By C(A,Γ) we mean the category of chain complexes in (A,Γ)-comodules. There
are two model structures on C(A,Γ) as described in [13], namely the relative projec-
tive model which we consider in Section 5 and the homotopy model structure. The
homotopy model structure is a Bousfield localisation of the relative model structure
and has various technical advantages over the latter. However, for our purposes it is
more appropriate to consider the relative model structure. Let us summarise a few
properties.

Theorem 3.2 (Hovey) The relative projective model structure on C(A,Γ) for a flat
Adams Hopf algebroid (A,Γ) is cofibrantly (and finitely) generated, proper, stable and
monoidal. The cofibrations are precisely the degreewise split monomorphisms whose
cokernel is a complex of relative projectives with no differential. It satisfies the monoid
axiom and if X is cofibrant and f is a projective equivalence, then X∧f is a projective
equivalence.

4 Franke’s exotic model

For a spectrum E , the E -local stable homotopy category is obtained from the stable
homotopy category by formally inverting those maps that induce isomorphisms in E∗ -
homology. The resulting category is especially sensitive towards phenomena related
to E∗ . For certain special homology theories this is an important structural tool for
studying the stable homotopy category itself.

Jens Franke used quasi-periodic chain complexes to give an algebraic description of
Ho(L1S), the K -local stable homotopy category at an odd prime p . Equivalently, one
can consider the E(1)-local stable homotopy category for the p-local Adams summand
E(1). We briefly recall Franke’s result, the abelian categories and the self-equivalences
used in it.

Theorem 4.1 (Franke) There is an equivalence of categories

R : D2p−2(B) −→ Ho(L1S)

where D2p−2(B) denotes the derived category of quasi-periodic chain complexes over
the abelian category B and Ho(L1S) the E(1)-local stable homotopy category. Further,
there is a natural isomorphism

E(1)∗(R(C)) ∼=

2p−3⊕

i=0

Hi(C)[i].

We would like to remark that Franke’s theorem also holds for Ho(LnS) whenever
n2 + n < 2p− 2. However, the description of the abelian category is less explicit. This
is why we only formulate it for n = 1 and p > 2, although our main results will also
hold in the whole of Franke’s range.

Let us recall the ingredients of this theorem. We will first describe a category A which
is equivalent to the category of E(1)∗E(1)-comodules as introduced by Bousfield in
[15], see also [16].
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Definition 4.2 Let p be an odd prime, set B to be the category of modules over Z(p)

(the p-local integers), with Adams operations ψk , k ∈ Z∗
(p) , such that, for each M ∈ B :

• There is an eigenspace decomposition

M ⊗Q ∼=
⊕

j∈Z

Wj(p−1)

such that for all w ∈Wj(p−1) , and k ∈ Z∗
(p) , (ψk ⊗ Id)w = kj(p−1)w .

• For each x ∈M there is a finitely generated submodule C(x) , which contains x ,
such that for all m > 1, there is an n such that the action of Z∗

(p) on C(x)/pm(x)

factors through the quotient of (Z/pn+1)∗ by its subgroup of order p− 1.

There is a self-equivalence T j(p−1) :B → B , for each j ∈ Z . It leaves the underlying
Z(p) -module unchanged but ψk acts on this as kj(p−1)ψk (k ∈ Z∗

(p) ).

Definition 4.3 The objects of the category A are collections (Mn)n∈Z , with Mn ∈ B ,
with specified isomorphisms T p−1(Mn)→Mn+2p−2 , for each n ∈ Z .

The category B is then a subcategory of A , an object M ∈ B can be viewed as a
collection (Mn), where Mn = M whenever n ≡ 0 mod 2p − 2 and is zero elsewhere.
The isomorphisms are then the identity on objects. So the category A is isomorphic
to the sum of 2p− 2 shifted copies of B .

Theorem 4.4 (Bousfield, Clarke-Crossley-Whitehouse) The abelian category A
is isomorphic to the category of (E(1)∗, E(1)∗E(1))-comodules.

We note here that the Hopf algebroid (E(1)∗, E(1)∗E(1)) is a flat Adams Hopf algebroid
[13, Theorem 1.4.9]. Hence we are consistent with the technical assumptions needed
for talking about the relative projective model structure on C(T,N)(A) later.

Definition 4.5 We define C1(A) to be C(T p−1,1)(A) . Similarly, we rename the cate-

gory C(T (2p−2)(p−1),2p−2)(B) as C2p−2(B) . We also rename both T p−1 and T (2p−2)(p−1)

as T . Note that the two categories are isomorphic.

Lemma 4.6 The self-equivalence T is compatible with the monoidal structure on A
in the sense of Definition 2.1.

Proof The monoidal product on B is given by tensoring over Z(p) and allowing Z∗
(p)

to act diagonally. So on X ⊗Z(p)
Y ,

ψk(a⊗ b) = ψka⊗Z(p)
ψkb.

That this product structure satisfies the compatibility conditions is easy to check. The
natural isomorphism

T (X ⊗Z(p)
Y )→ TX ⊗Z(p)

Y

11



is the identity map on underlying sets. To see that this morphism is a map of B , we
note that T (X ⊗Z(p)

Y ), ψk acts as kp−1(ψk ⊗ ψk), whereas on TX ⊗Z(p)
Y , ψk acts

as (kp−1ψk) ⊗ ψk . Since we have tensored over Z(p) , these are the same. We extend
this to a monoidal product on A in the standard manner:

(M ∧N)n =
⊕

a+b=n

Ma ⊗Z(p)
Nb.

The unit is best described as E(1)∗ . It follows immediately that this tensor product
is compatible with T . One could see this equally well by considering the monoidal
structure on E(1)∗E(1)-comodules, see [16].

Following Section 2, the monoidal product defined in the above proof induces a closed
monoidal structure on the category C1(A).

Franke constructs a model structure on quasi-periodic chain complexes as follows, see
also [2, Example 1.3.3]. A quasi-periodic chain map f : X −→ Y is:

• a weak equivalence if it is a quasi-isomorphism

• a fibration if it is a degreewise split epimorphism with strictly injective kernel

• a cofibration if it is a monomorphism.

We call this the injective model structure, we briefly mentioned this model structure
in Lemma 1.6. A quasi-periodic chain complex is C is said to be strictly injective
if it is degreewise injective and every morphism from C into an acyclic complex K is
nullhomotopic via a quasi-periodic homotopy.

Definition 4.7 In the above special case we denote the respective derived categories of
C1(A) and C2p−2(B) by D1(A) and D2p−2(B) .

The main defect of the injective model structure is that it is not monoidal (the pushout-
product axiom fails). The counterexample is analogous to the one in the injective
model structure on chain complexes of R-modules for a ring R [17, Subsection 4.2].
The pushout-product axiom states (in part) that in a monoidal model category with
product ⊗ , if one takes two cofibrations f : U −→ V and g : W −→ X , then the
induced map

f�g : (V ⊗W )
∐

U⊗W

(U ⊗X) −→ V ⊗X

is again a cofibration. To see that this is not the case for C1(A) with the injective
model structure we take

U = PI, V = P(I ⊗Z(p)
Q), W = 0 and X = P(I ⊗Z(p)

Z/p)

with f and g being the obvious inclusions. Remembering that

PC ∧PI PD = P(C ∧I D),

we see that the induced pushout-product map is X −→ 0, which is clearly not a
monomorphism and hence not a cofibration.

12



5 The relative projective model structure

In this section we are going to summarise the relative projective model structure on
C(G). It is a generalisation of the projective model structure on C(R-mod) where R
is a commutative ring. It was introduced by Christensen and Hovey in [6]. Assuming
that the relative projective model structure exists on C(G) for some G , we are going
to discuss the model structure it creates on the quasi-periodic chains C(T,N)(G). At
the end of this section we specialise to the case of C1(A).

One begins by specifying the objects playing the role of the “projective” objects. This
class of chosen objects is called a projective class P , see [6, Def. 1.1]. The objects
P ∈ P are called relative projectives. A morphism f : A −→ B in G is called
P -epimorphism if it induces an epimorphism G(P,A) −→ G(P,B) for all P in P .
Assuming that G is cocomplete, one way to obtain a projective class is to take any
set S and define P to be the collection of retracts of coproducts of objects in S , [6,
Lemma 1.5].

We use the projective class to define a model structure on C(G). We say that a chain
map f : X −→ Y is:

• a P -equivalence if f∗ : G(P,X) −→ G(P, Y ) is a quasi-isomorphism in C(Z) for
all P ∈ P (note that G(P,X) is a chain complex in the usual way with differential
(dX)∗ :G(P,Xn) −→ G(P,Xn−1)),

• a P -fibration if G(P, f) is a degreewise surjection for all P ∈ P ,

• a P -cofibration if it has the left lifting property with respect to all P -fibrations
that are also P -equivalences.

Theorem 5.1 (Christensen-Hovey) The above three classes form a model structure
on the category of chain complexes C(G) if and only if cofibrant replacements exist.

This model structure is called the relative projective model structure, it is proper
whenever it exists. Christensen and Hovey also characterise the cofibrant objects in
this model structure.

Proposition 5.2 A chain map i : A −→ B is a P -cofibration in C(G) if and only if
it is a degreewise split monomorphism with P -cofibrant cokernel.

A chain complex C is cofibrant in C(G) if and only if it is degreewise relative projective
and every map from C to a weakly P -contractible chain complex K is nullhomotopic.

Here, weakly P -contractible means P -equivalent to 0.

Theorem 5.3 (Hovey) If G is a Grothendieck abelian category and the projective
class is constructed from a set S (using retracts and coproducts), then the relative
projective model structure on C(G) exists and is cofibrantly generated.
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The statement regarding cofibrant generation is [6, Theorem 5.7], the generating sets
are below.

I = {Sn−1P → DnP |P ∈ S, n ∈ Z} J = {0→ DnP |P ∈ S, n ∈ Z}

As usual, Sn−1P denotes the chain complex that only consists of P concentrated in
degree n−1 and DnP is the chain complex with P in degrees n−1 and n (and zeroes
elsewhere) with the identity as the only non-trivial differential.

We further assume that T (P) = P . This implies that T is left Quillen functor, as it
preserves the generating sets above.

Proposition 5.4 Say that a map of C(T,N)(G) is a P -equivalence or a P -fibration
if it is so as a map of C(G) . Then these classes of maps define a cofibrantly generated
model structure on quasi-periodic chains C(T,N)(G) .

Before we prove the proposition, it is worth mentioning that quasi-isomorphisms are
not necessarily P -equivalences. But in Franke’s model, the weak equivalences are
exactly the quasi-isomorphisms. We will see in Proposition 5.14 that consequently
the relative projective model structure and Franke’s injective model structure are not
Quillen equivalent. However, the relative projective model structure provides a vital
intermediate step towards a model structure Quillen equivalent to Franke’s model with
better properties than the injective model.

We continue with the proof of Proposition 5.4

Proof It is immediate that this model structure is precisely that created by the forgetful
functor

U : C(T,N)(G) −→ C(G)

as discussed in Proposition 1.3. The generating cofibrations and acyclic cofibrations
are given by the sets

PI = {PSn−1P → PDnP |P ∈ S, n ∈ Z} PJ = {0→ PDnP |P ∈ S, n ∈ Z}

where P is the periodification functor defined in Section 1.

Corollary 5.5 A cofibration of C(T,N)(G) is a cofibration of C(G) . An acyclic cofi-
bration of C(T,N)(G) is an acyclic cofibration of C(G) . Thus the functor R defined in
Section 1 is a right Quillen functor, with left adjoint U .

Proof We prove the first of these statements, the proof of the second is identical (it
also follows from the fact that U preserves cofibrations and weak equivalences). The
third follows immediately.

Since T is a left Quillen functor, the periodification P :C(G) → C(G) is also a left
Quillen functor. Hence the set PI above consists of cofibrations of C(G). It follows
immediately that PI -cof (as constructed in the category C(G)) is contained in the
class of cofibrations of C(G). In turn, applying U to an element of the class PI -cof
(as constructed in the category C1(G)) gives a cofibration of C(G).
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Let us now give a characterisation of the cofibrant objects in C(T,N)(G) and the cofi-
brations. These results follow a well-known standard argument (for an example see [6,
Section 2]) but we include them for completeness’ sake. Of course, since C(T,N)(G) is
cofibrantly generated, we can use the usual description of cofibrant objects as retracts
of relative cell complexes.

Lemma 5.6 A quasi-periodic chain complex C is cofibrant in C(T,N)(G) if and only
if it is degreewise relative projective and every map from C to a weakly P -contractible
quasi-periodic chain complex K is nullhomotopic with quasi-periodic homotopy.

Proof Let C be degreewise relative projective and assume that every map from C to
a weakly P -contractible quasi-periodic chain complex K is nullhomotopic with quasi-
periodic homotopy. We are going to show that the inclusion 0 −→ C has the left lifting
property with respect to all acyclic fibrations f : X −→ Y , that is, there is a lift in the
diagram

0 //

��

X

f ∼
����

C g
//

g̃
>>

Y.

As C is degreewise relative projective and f : X −→ Y is a P -epimorphism, there are
degreewise lifts γn : Cn −→ Xn . We can choose those lifts to be quasi-periodic, so

γn−N = αX ◦ Tγn ◦ α
−1
C ,

by simply choosing lifts in degrees 0 to N − 1 and extending. However, these maps γn
do not necessarily form a chain map, so we are going to add an extra term to obtain a
chain map.

Consider the degree-wise defined map

∂ := dX ◦ γ − γ ◦ dC

from C to X . Then f ◦ ∂ = 0, so there is a lift F : C −→ K[1] where K is the
kernel of the acyclic fibration f , thus F ◦ j = ∂ , where j :K −→ X is the inclusion.
One can check that F is not just a degreewise map in G but a chain map. (Note that
dK[1] = −dK .) This map F can also be chosen to be a quasi-periodic map.

The kernel K is weakly contractible, so by assumption F is nullhomotopic with quasi-
periodic nullhomotopy, i.e. there is a family of maps

hn : Cn −→ Kn

such that
Fn = hn−1 ◦ dC + dK[1] ◦ hn

and
hn−N = αK ◦ Thn ◦ α

−1
C .

Now define the desired lift g̃ as g̃ := γ + j ◦ h . This is a quasi-periodic chain map by
construction and satisfies f ◦ g̃ = g .
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Conversely, let C ∈ C(T,N)(G) be cofibrant. Because C is also cofibrant in C(G)
by Corollary 5.6, we know that C is degreewise relative projective. Further, let f :
C −→ K be a morphism with K ∈ C1(G) be weakly contractible. Consider the quasi-
periodic chain complex PK := K ⊕ K[−1] with differential d(x, y) = (dx, x − dy).
The projection p : PK −→ K is an acyclic fibration, so f factors over p because C is
cofibrant. So there is a lift

0 //

��

PK

p ∼
����

C
f

//

f̃
==

K.

with f̃ = (f, h) where h : C −→ K[−1] is a quasi-periodic chain map. Because f̃ is
also a quasi-periodic chain map, we have

f = d ◦ h+ h ◦ d,

so h also serves as a quasi-periodic nullhomotopy of f , which is what we wanted to
prove.

Lemma 5.7 A quasi-periodic chain map i : A −→ B is a P -cofibration in C(T,N)(G)
if and only if it is a degreewise split monomorphism with P -cofibrant cokernel.

Proof The cokernel of a cofibration is cofibrant as it is the pushout of i along the
zero map, and cofibrations are invariant under pushouts. It is a split monomorphism,
because by Corollary 5.6, it is a cofibration in C(G).

Now let i : A −→ B be a degreewise split monomorphism with cofibrant cokernel
C . We would like to show that i has the LLP with respect to an acyclic fibration
p : X −→ Y as in the following diagram

A
f //

i

��

X

p ∼
����

B g
//

g̃
>>

Y.

Because i is a split monomorphism, we can write B = A⊕C and g = (gA, gC). Since
C is cofibrant, there is a lift g̃C similarly to the previous lemma. Hence g̃ := (f, g̃C)
is the desired lift in the diagram, so i is a cofibration.

Using the results of Section 2 we can consider monoidal structures on C(T,N)(G), Corol-
lary 2.6 gives the following result.

Proposition 5.8 Assume that the relative projective model structure on C(G) is a
monoidal model category that satisfies the monoid axiom. Assume further that T (P) =
P and that T is compatible with the monoidal structure of G in the sense of Definition
2.1. Then the induced model structure on C(T,N)(G) is monoidal and satisfies the
monoid axiom.
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We now turn to our motivating example: the category of (A,Γ)-comodules for (A,Γ)
a flat Adams Hopf algebroid, see Section 3. We assume that this category has a self-
equivalence T that is compatible with the monoidal product. We introduce a particular
projective class, we will use it to construct the quasi-projective model structure and
see that it has some useful properties.

Remember that F denotes the function object of a closed monoidal category and I
denotes the unit.

Definition 5.9 The dual of an (A,Γ)-comodule M is DM = F (M, I) . A comodule
is called dualisable if the natural map DM ∧N −→ F (M,N) is an isomorphism for
all N .

In the case of flat Adams Hopf algebroid, a comodule is dualisable if and only if it is
finitely generated and projective as an underlying A-module [13, Proposition 1.3.4].
As a consequence, the collection of isomorphism classes of dualisable comodules is a
set S . The projective class associated to this set [6, Lemma 1.5] gives the the relative
projective model structure on chain complexes of comodules via Theorem 5.3. We now
exploit the good monoidal properties obtained by choosing the projective class to come
from the dualisable objects. In particular, we now longer have to worry about asking
for T (P) = P .

Lemma 5.10 If T is compatible with the monoidal structure on the category of (A,Γ)-
comodules, then P is dualisable if and only if TnP is dualisable for each n ∈ Z .

Proof We have the following commutative diagram (see Lemma 2.2), from which the
result follows.

F (TP,X)
∼= //

��

T−1F (P,X)

∼=

��

F (TP, I) ∧X

∼=
��

T−1F (P, I) ∧X
∼= // T−1(F (P, I) ∧X)

Lemma 5.11 The monoidal product of two dualisable comodules is dualisable. The
dual of a dualisable comodule is dualisable. There is a natural map X → DDX that is
an isomorphism if X is dualisable.

All of these results on dualisable objects hold in a general closed monoidal category,
see [18, Chapter III] for a detailed description. Together with Proposition 5.8 and [13,
Proposition 2.1.4] we obtain the following corollary.

Corollary 5.12 In the context of Section 4, C1(A) with the relative projective model
structure is monoidal and satisfies the monoid axiom.
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The monoidal product of two objects M and N of C(T,N)((A,Γ)-comod) is given by
M ∧PI N . This product is particularly well behaved, as well as satisfying the pushout
product axiom, we have the lemma below, which will make it easier to calculate the
derived monoidal product on D(T,N)(G).

Lemma 5.13 If X is a P -cofibrant quasi-periodic chain complex, then the functor
X∧PI (−) preserves P -equivalences. Furthermore every P -cofibrant object X of C1(G)
is a retract of some PY , where Y is an I -cell complex of C((A,Γ)-comod) .

Proof The quasi-periodic chain complex X is a retract of some PI -cell complex Z .
The quasi-periodic chain complex Z is constructed as a colimit of pushouts of coprod-
ucts of maps in PI , where Z0 = 0. Since 0 = P0, it follows that Z = PY , where Y is
a colimit of pushouts of coproducts of maps in I . This proves the second statement.
For the first, take X , Y and Z as above, then

PY ∧PI (−) ∼= Y ∧I (−).

We know that Y is cofibrant in C((A,Γ)-comod), hence by [13, Proposition 2.1.4] this
functor preserves P -equivalences. The functor X ∧PI (−) is a retract of this functor
and hence also preserves P -equivalences.

Focusing upon Franke’s exotic model we compare the relative projective model structure
with the injective model structure on Franke’s model.

Proposition 5.14 The identity functor provides a Quillen adjoint pair between C1(A)
with the injective model structure and the relative projective model structure. However,
the two model structures are not Quillen equivalent.

Proof The identity is a left Quillen functor from C(A) with the relative projective
model structure to C(A) with the injective model structure: a P -cofibration is an
injective cofibration as it is in particular a monomorphism by Lemma 5.7. By [13,
2.1.5] a P -equivalence is also a H∗ -isomorphism. It follows that we have a Quillen pair
between the lifted model structures on C1(A).

However, to obtain a Quillen equivalence the weak equivalences have to agree between
P -cofibrant X and injectively fibrant Y . We first show that this is not true for C(A).
Consider the chain complex X that consists of E(1)∗ concentrated in degree zero.
Then we take an injectively fibrant replacement Y of X . The map X → Y is a quasi-
isomorphism by definition, X is P -cofibrant and Y injectively fibrant. This map is
not a P -equivalence. To see this, just take P = E(1)∗ itself. Then

H∗(A(P,X)) = A(P,E(1)∗)

concentrated in degree 0. But

H∗(A(P, Y )) = Ext∗A(E(1)∗, E(1)∗).

There are non-trivial higher Ext groups on the right side, so the two homologies are
not isomorphic. One can periodify the above to get the desired counterexample.
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6 The quasi-projective model structure

We saw at the end of Section 5 that the relative projective model structure has fewer
weak equivalences than the injective model structure — too few for the model categories
to be Quillen equivalent. To fix this deficit we can add weak equivalences to the relative
projective model structure via Bousfield localisation. As a result we will obtain a
model structure for D1(A) that still has the nice monoidal properties of the relative
projective model structure. For clarity, we restrict ourselves to the case of a flat Adams
Hopf algebroid (A,Γ), with a self equivalence T on the category of comodules which
is compatible with the monoidal product. We will comment on the general case at the
end of this section.

We make use of the paper [11] to show that there is a model structure on the category
of chain complexes of comodules where the cofibrations are the P -cofibrations and the
weak equivalences are the quasi-isomorphisms. We state the theorem we will use later,
it is a theorem of Smith, but appears as [11, Theorem 1.7].

The key is using the notions of a class of maps having the “solution set condition” or
being “accessible”. It is technically awkward to perform constructions such as Bousfield
localisation using a class of maps rather than a set of maps. However, if the class of
maps satisfies the solution set condition, then it contains a set such that localising with
respect to this set gives the Bousfield localisation with respect to the whole class. So
the solution set condition can be used to avoid this awkwardness, for the full definition
see [11, Definition 1.5]. Accessibility is a another technical condition [11, Definition
1.14], but in particular, an accessible class of maps in a locally presentable category
has the solution set condition [11, Proposition 1.15].

Theorem 6.1 Let C be a locally presentable category, W a subcategory and I a set of
morphisms of C . Suppose they satisfy the criteria:

• c0: W is closed under retracts and has the 2-out-of-3 property

• c1: I -inj is contained in W

• c2: I -cof ∩W is closed under taking cell complexes

• c3: W satisfies the solution set condition at I .

Setting the weak equivalences to be W , the cofibrations to be I -cof and the fibrations
to be (I -cof ∩W ) -inj, one obtains a cofibrantly generated model structure on C .

The notations I -cof and I -inj are technical but standard, so we refer the reader to
[17, Subsection 2.1] rather than recall them here.

We use this theorem to obtain a model structure on quasi-periodic chain complexes
whose cofibrations are the P -cofibrations as introduced in Section 5 and whose weak
equivalences are the quasi-isomorphisms. Remember that our class of relative projec-
tives P is constructed from the set of isomorphism classes of dualisable objects S .
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Proposition 6.2 Let W be the set of quasi-isomorphisms and let I be the set

I = {Sn−1P → DnP |P ∈ S, n ∈ Z}.

Then the above result gives a cofibrantly generated model structure on C((A,Γ)-comod) ,
which we call the quasi-projective model structure:

• the weak equivalences are the quasi-isomorphisms,

• the cofibrations are the P -cofibrations,

• the fibrations are those maps that have the left-lifting-property with respect to the
acyclic cofibrations.

Proof Condition c0 is obvious. The set I is the set of generating cofibrations of the
relative projective model structure on C((A,Γ)-comod), so I -inj is the class of acyclic
P -fibrations. Hence condition c1 is contained within [13, Proposition 2.1.5] which states
that every projective equivalence is a homology isomorphism.

For condition c2, we know that I -cof is closed under transfinite composition and under
pushouts. We know that the class of monomorphisms that are quasi-isomorphisms is
closed, this class is the class of acyclic cofibrations of the injective model structure.
Hence their intersection is also closed. By the proof of [11, Proposition 3.13], the quasi-
isomorphisms are accessible, thus by Proposition 1.15 of the same paper, the solution
set condition holds and we see that c3 holds.

By Proposition 1.3, we also obtain a model structure on the category of quasi-periodic
chain complexes since we assumed that T (P) = P for our chosen class of relative
projectives.

Corollary 6.3 There is a model structure on the category of quasi-periodic chain com-
plexes C(T,N)((A,Γ)-comod) where the weak equivalences are the quasi-isomorphisms
and the cofibrations are degreewise split monomorphisms with P -cofibrant cokernel. We
call this the quasi-projective model structure.

Corollary 6.4 The quasi-projective model structure is the Bousfield localisation of the
relative projective model structure with respect to the class of quasi-isomorphisms.

It should be remarked that a simpler way to construct the quasi-projective model
structure can be found in [19]. Here, Cole discusses how to construct a model structure
on a category from “mixing” two existing ones. However, this does not examine whether
the resulting model structure is cofibrantly generated, which is what we need to discuss
its monoidal properties.
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Theorem 6.5 We have the following diagram of Quillen adjunctions, where all verti-
cal arrows are identity functors and the horizontal arrows are periodification and the
forgetful functor as introduced in Proposition 1.3.

C(T,N)((A,Γ)-comod)rel proj
U

oo

��
C(T,N)((A,Γ)-comod)quasi proj

OO

��

U
oo

C(T,N)((A,Γ)-comod)inj
U

oo

OO

(A,Γ)-comodrel proj
P //

��
(A,Γ)-comodquasi proj

P //

OO

��
(A,Γ)-comodinj

OO

P //

Furthermore the injective and quasi-projective model structures are Quillen equivalent.

Proof The upper vertical pairs are Quillen pairs as the cofibrations are the same and
a weak equivalence in the relative projective model structure is a quasi-isomorphism.
For the lower vertical pairs, a cofibration in the quasi-projective model structure is a
P -cofibration, hence a monomorphism. The weak equivalences in both are the quasi-
isomorphisms. Thus the identity functor from the quasi-projective model structure to
the injective model structure preserves cofibrations and weak equivalences, hence it is
a left Quillen functor. This also shows that the quasi-projective and injective model
structures must be Quillen equivalent as they have the same weak equivalences.

We note that one could have constructed the quasi-projective model structure on
C(T,N)((A,Γ)-comod) directly, taking care to show the category-theoretic conditions
of Theorem 6.1. We are now going to exploit the monoidal properties of this model
structure. We would like to make use of Proposition 2.5, but while the pushout product
axiom holds, it is not obvious to us why the monoid axiom would hold for this model
structure on C((A,Γ)-comod) or C(T,N)((A,Γ)-comod). Thus we prove that we have
a monoidal model structure directly.

Lemma 6.6 The quasi-projective model structure on C((A,Γ)-comod) is monoidal.

Proof We first note that the unit is cofibrant. We know that the pushout of two
cofibrations is a cofibration, because the relative projective model structure satisfies the
pushout product axiom. Now consider the pushout product of a generating cofibration
with a generating acyclic cofibration. Let k be the inclusion Sn−1I → DnI , then P ∧k
is the general form of any generating cofibration (where P is a dualisable object). Let
f :X → Y be a generating acyclic cofibration. Then the pushout product of P ∧k and
f is simply P smashed with the pushout product of k and f . We must check that
this map is a quasi-isomorphism. Consider the following pushout diagram

Sn−1I ∧X //

��

DnI ∧X

��
Sn−1I ∧ Y // Q
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the left hand vertical map is a monomorphism and a homology isomorphism (modulo
signs for the differential, it is just a suspension of f ). It follows that the right hand ver-
tical map is also a monomorphism and a homology isomorphism as acyclic cofibrations
are preserved by pushouts.

It is easy to see that DnI ∧ X has trivial homology, as does DnI ∧ Y , whence the
pushout product of k and f (see page 12),

k�f :Q→ DnI ∧ Y

must be a homology isomorphism. We now need to see that (k�f) ∧ P is a homology
isomorphism. But this is a statement about underlying A-modules, where P is finitely
generated and projective, hence (k�f) ∧ P is a homology isomorphism.

Corollary 6.7 The pushout product axiom holds for C(T,N)((A,Γ)-comod) with the
quasi-projective model structure and monoidal product ∧PI .

Proof We copy the proof of the above lemma. We know that the relative projective
model structure is monoidal, hence the pushout product of two cofibrations in the
quasi-projective model structure is a cofibration. A generating acylic cofibration for
this model structure on C1(A) has form Pf :PX → PY , where f is a generating acyclic
cofibration for C1(A). Similarly, a generating cofibration looks like P(P ∧ k), for k
and P as in the previous proof. Recall that now we are taking the product over PI .
Drawing the relevant diagram it is easy to see that we need P((k�f) ∧ P ) to be a
homology isomorphism. We know that (k�f) ∧ P is a homology isomorphism and P

preserves homology isomorphisms, since it is just an infinite direct sum of shifts and
applications of T , so we are done.

Recall that a fibration in the relative projective model structure is, in particular, a
surjection [13, Proposition 2.1.5.]. It follows that any quasi-projective fibration is a
surjection and similarly that any quasi-projective cofibration is a monomorphism.

Lemma 6.8 The quasi-projective model structure is proper.

Proof The long exact sequence in homology implies that any model structure on
C((A,Γ)-comod) will be proper as long as weak equivalences coincide with quasi-
isomorphisms, every cofibration is an injection, and every fibration is a surjection. It
follows immediately that the quasi-projective model structure on C(T,N)((A,Γ)-comod)
is proper.

We summarise our work in the following theorem.

Theorem 6.9 The quasi-projective model structure on C(T,N)((A,Γ)-comod) is cofi-
brantly generated, proper and monoidal. In the special case of T , A and N as in
Section 4 the homotopy category of this model category is precisely D1(A) .

Corollary 6.10 Franke’s model D1(A) is a symmetric monoidal category with tensor
product ∧LPI .
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Remark 6.11 Consider a general Grothendieck category that is closed monoidal. As-
sume first that that the collection of isomorphism classes of dualisable objects forms a
set S . Secondly, assume that this set generates the category, that is, the coproduct
of all elements of S is a generator. Then the relative projective, quasi-projective and
injective model structures all exist for C(T,N)(G) . The first two are monoidal model
categories, all three are proper and the obvious analogue of Theorem 6.5 holds.

The extra work required is reproving [13, Theorem 2.1.5] in this situation, this is quite
straightforward. The fibrations in the relative projective model structure are all epi-
morphisms, so both model structures are proper. Since dualisables are flat the pushout
product axioms hold.

7 Picard groups

In this section we are going to compare the Picard group of D1(A) to the Picard group
of the K(p) -local stable homotopy category Ho(L1S). Let M be a monoidal category
with unit I and product ∧ . The Picard group Pic(M) is the group of invertible
objects in this category: its objects are the isomorphism classes of X ∈ M such that
there is an object Y ∈M with X ∧Y ∼= I . The group multiplication is induced by ∧ .

Picard groups have their origin in algebraic geometry but have increasingly been studied
in stable homotopy theory. Of particular interest are the Picard groups of Bousfield
localisations of the stable homotopy category or the homotopy category of R-modules
for an E∞ -ring spectrum R . For example, it is well-known that the Picard group of
the stable homotopy category is Z , generated by the 1-sphere. This result was later
reproved by Baker and Richter in [20] who also gave computations of Ho(R−mod) for
some connective E∞ ring spectra R .

Let Ho(LnS) denote the E(n)-local stable homotopy category where E(n) is the nth

Johnson-Wilson spectrum. Hovey and Sadofsky showed that for n2 + n < 2p− 2,

Pic(Ho(LnS)) ∼= Z,

consisting of shifts of the sphere spectrum, see [5]. Georg Biedermann, in [21], later
extended the computation to p and n with p > n+1 and 4p−3 > n2+n . This means
we know that for p odd, Pic(Ho(L1S)) ∼= Z , consisting of the spheres.

The previous section shows that that D1(A) is a symmetric monoidal category, so it
makes sense to consider its Picard group and compare it to Pic(Ho(L1S)).

Let us remember that Franke’s model C1(A) does not only work for the E(1)-local
stable homotopy category and p > 2. An analogous construction works for all n and
p with n2+n < 2p− 2. Hence in this range, the E(n)-local stable homotopy category
possesses an exotic algebraic model. Although not obviously related, it is no coincidence
that this range for n and p agrees with the range of Hovey’s and Sadofsky’s Picard
group computation.

Both results use the fact that the E(n)-based Adams spectral sequence collapses for
those n and p . In Franke’s proof, the collapsing is used rather indirectly for an algebraic
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description of some morphisms in Ho(LnS). Hovey and Sadofsky show that an element
X of Pic(Ho(LnS)) satisfies

E(n)∗ ∼= E(n)∗(X) in E(n)∗E(n)-comod.

Sparseness of the E(n)-Adams spectral sequence is a key ingredient for constructing a
weak equivalence LnS

0 −→ X .

While in the “exotic range” n, p with n2 + n < 2p− 2 the E(n)-local Picard group is
trivial, this is not the case for n = 1 and p = 2. For p = 2,

Pic(Ho(L1S)) ∼= Z⊕ Z/2.

The Z/2-summand is generated by the so-called question mark complex [5, Theorem
6.1]. Also, we know that for p = 2, Ho(L1S) is rigid and hence has no exotic models. It
would be an interesting topic to relate Picard groups to the existence of exotic models.

Lemma 7.1 Pic(D1(A)) is a set.

Proof Our category D1(A) is triangulated, so we apply [22, A.2.8, 2.1.3 and 2.3.6].

Franke’s theorem tells us that D1(A) and Ho(L1S) are equivalent as triangulated
categories via the functor R . However, R : D1(A) −→ Ho(L1S) is not monoidal as it
is not associative [4, Remark 1.4.2]. Hence it does not automatically induce a group
homomorphism between the respective Picard groups. Extra work is needed to see that
R preserves just enough structure to use it for comparing these Picard groups.

Theorem 7.2 (Ganter) There is a natural isomorphism

R(C ∧LPI D) ∼= R(C) ∧L R(D)

where ∧L denotes the smash product in Ho(L1S) , I = E(1)∗ and ∧LPI is the monoidal
product of D1(A) .

Note that in her theorem, Ganter denotes the derived tensor product of quasi-periodic
chain complexes by ⊗L

E(1)∗
. This is not to be confused with the tensor product in

D(A).

She defines the monoidal product on D1(A) as the tensor product of underlying de-
greewise flat replacements, i.e. flat as E(1)∗ -modules. Ganter’s proof that this gives a
monoidal structure uses homological algebra following [?]. While Ganter mentions the
concept of monoidal model categories, she does not address the question of whether
C1(A) is such a category.

Theorem 6.9 answers this question. For a monoidal model category M with product
⊗ , the derived product ⊗L on Ho(M) is defined as

X ⊗L Y = QX ⊗QY

where QX and QY are cofibrant replacements of X,Y ∈ M [17, 4.3.2]. Since in our
case the cofibrant objects are also degreewise flat, we are consistent with Ganter’s result
and can write down the above theorem. Further, we can use it to compute R(C∧LPID).
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Theorem 7.3 Pic(D1(A)) ∼= Z

Proof Let C and D be an inverse pair of quasi-periodic chain complexes in D1(A),
so

C ∧LPI D
∼= PI.

Applying R to this equation and using Ganter’s theorem gives

R(C ∧LPI D) ∼= R(PI) ∼= R(C) ∧L R(D).

Furthermore, we know that R sends the unit PI to the E(1)-local sphere L1S
0 . This

can be read off the natural isomorphism given in Franke’s theorem and the fact that
E(1)∗ reflects isomorphisms. So we arrive at the statement

L1S
0 ∼= R(C) ∧L R(D).

This means that R(C) and R(D) are in the Picard group of Ho(L1S) and hence
must be suspensions of the E(1)-local sphere. Being an equivalence of triangulated
categories R reflects isomorphisms, so C and D are shifts of PI . Since

PI[i] ∧LPI PI[j] ∼= PI[i+ j]

in D1(A), this completes the proof of our theorem.

As mentioned, the construction of Franke’s functor R also extends to the E(n)-local
stable homotopy category for n2+n ≤ 2p−2, i.e. there is an equivalence of triangulated
categories

R : D1(A) −→ Ho(LnS)

for some abelian category A that is equivalent to the category of E(n)∗E(n)-comodules.
But the monoidal behaviour of R in this general case is not yet known.

In particular, Ganter’s construction only works for n = 1. It will be worth investigating
whether our results about the properties of C1(A) give a more straightforward analogue
of Theorem 7.2.

Ganter’s isomorphism for n = 1 allows us to read off the Picard group of Franke’s
model in a simple way. However, it would be interesting to know if, particularly for
higher n , this Picard group can be calculated more directly. We hope that considering
these questions will lead to more insight into the existence of exotic models and hence
understanding the structure of the E(n)-local stable homotopy categories.
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