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Rigidity and Exotic Models for the K local Stable Homotopy
Category

CONSTANZE ROITZHEIM

Can the model structure of a stable model category be recovered from the

triangulated structure of its homotopy category? This paper introduces a new

positive example for this, namely the K local stable homotopy at the prime 2.

For odd primes, however, this is not true: we discuss a counterexample given by

Jens Franke and show how such exotic models for the K local stable homotopy

category at odd primes can be detected.

1 Introduction

When two model categories C and D are Quillen equivalent, then their homotopy

categories Ho(C) and Ho(D) are equivalent. But on the other hand, if there is an

equivalence between the homotopy categories of two model categories, can anything

be said about the underlying model structures?

For the stable homotopy category Ho(S), i.e., the homotopy category of spectra, there

is the following result of [Sch05]:

Rigidity Theorem (Schwede [Sch05]) Let C be a stable model category, and

Φ : Ho(S) −→ Ho(C)

an equivalence of triangulated categories. Then the underlying model categories S and

C are Quillen equivalent.

Usually, when passing from the model category level to the homotopy level, information

can be lost, as “higher homotopy information” like mapping spaces or algebraic K 

theory is defined via the model structure of the underlying model category. However,

the Rigidity Theorem says that for spectra, all such higher homotopy information is

encoded in the triangulated structure of the stable homotopy category.
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Now the next question could be if there is a similar result for Bousfield localisations of

the stable homotopy category with respect to certain homology theories. In this paper,

we consider localisation with respect to 2local complex K theory K(2) with

K(2)∗ = Z(2)[v1, v
−1
1 ], |v1| = 2.

The K(2) local model structure is a model structure on the category of spectra where the

weak equivalences are the K(2)∗ isomorphisms (see Definition 3.1). For the resulting

K(2) local stable homotopy category we present the following positive answer to the

rigidity question which is the main result of this paper:

K(2) local Rigidity Theorem Let C be a stable model category, let L1S denote the

K local category of spectra at the prime 2, and let

Φ : Ho(L1S) −→ Ho(C)

be an equivalence of triangulated categories. Then L1S and C are Quillen equivalent.

Remark The notation L1 for K(p) localisation for a prime p referes to the general

context of chromatic localisation: the notation Ln is often used to denote Bousfield

localisation with respect to the JohnsonWilson theories E(n) with

E(n)∗ = Z(p)[v1, v2, ..., vn, v
−1
n ], |vi| = 2pi − 2,

and in particular, LK(p)
= LE(1) .

The proof divides into two main parts. Firstly, we modify the Universal Property of

Spectra introduced by Schwede and Shipley in [SS02, 5.1] to obtain a Quillen functor

pair

X ∧ − : L1S −−→←− C : Hom(X,−)

for X = Φ(L1S0) where L1S0 denotes the K(2) local sphere.

Secondly, we consider the left derived functor X∧L− composed with the inverse of Φ

Ho(L1S)
X∧L−
−−−→ Ho(C)

Φ−1

−−→ Ho(L1S).

It is an exact endofunctor of the homotopy category of K(2) local spectra, mapping the

K(2) local sphere L1S0 to itself. The spectrum L1S0 is a socalled small weak generator

of L1S . We show that any exact endofunctor fixing this small weak generator must
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be a selfequivalence, thus X ∧L − is an equivalence of categories induced by a left

Quillen functor. This means that L1S and C are Quillen equivalent.

This paper is organised as follows: Section 2 gives a brief review of the relevant

definitions. In Section 3, the Quillen pair X ∧ − : L1S −−→←− C : Hom(X,−) is

constructed. We prove it to be a Quillen equivalence in Section 4. Next, Section

5 summarizes the necessary computations in the homotopy groups of the K(2) local

sphere and the K(2) local mod2 Moore spectrum.

As we explain in the last section, there cannot be an odd primary version of the K(p) 

local Rigidity Theorem. For odd primes, Jens Franke constructed an equivalence of

triangulated categories

R : D2p−2(B) −→ Ho(L1S)

between the homotopy category of K local spectra at an odd prime p and the derived

category of socalled quasiperiodic cochain complexes over a certain abelian category

B [Fra96, 3.1]. However, the underlying model categories C2p−2(B) and L1S are not

Quillen equivalent. This means that C2p−2(B) is a socalled “exotic model” for L1S .

Last, we give a criterion whether a model for the K(p) local stable homotopy category

is exotic or not.

As for a prime p any algebraic model for Ho(L1S) is exotic, the K(2) local Rigidity

Theorem implies that, in particular, the K(2) local stable homotopy category is not

equivalent to the derived category of an abelian category.
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2 Stable model categories  a review

Model categories were introduced in the 1960s by Quillen to provide a settheoretically

clean device to describe homotopy [Qui67]. A model category is a category equipped
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with classes of morphisms called weak equivalences, fibrations and cofibrations sat

isfying certain axioms (see e.g. [Hov99, 1.1]). These axioms enable us to define a

notion of homotopy between morphisms.

Very roughly speaking, one then obtains the homotopy category Ho(C) of a model

category C by formally inverting the weak equivalences, while the model category

axioms ensure that the result is indeed a category.

In order to compare model categories, one studies morphisms of model categories,

socalled Quillen functors.

Definition 2.1 Let C and D be two model categories. An adjoint pair of functors

F : C −−→←− D : G is called a Quillen functor pair if F preserves cofibrations and trivial

cofibrations (i.e., cofibrations that are also weak equivalences), or equivalently, if G

preserves fibrations and trivial fibrations (i.e., fibrations that are also weak equiva

lences).

Notation Throughout this paper, we use the following convention: for an adjoint

functor pair F : C −−→←− D : G, the top arrow denotes the left adjoint and the bottom

arrow the right adjoint.

Cofibrations are marked // // , fibrations // // and weak equivalences
∼ // .

If an adjoint pair of functors is a Quillen pair, it induces an adjoint pair of functors

LF : Ho(C) −−→←− Ho(D) : RG [Hov99, Lemma 1.3.10].

Definition 2.2 A Quillen functor pair is called a Quillen equivalence if in addition, for

all cofibrant X ∈ C and fibrant Y ∈ D , a morphism f : FX → Y is a weak equivalence

if and only if its adjoint f̄ : X → GY is.

One can conclude that a Quillen functor pair is a Quillen equivalence if and only if

it induces an equivalence of homotopy categories [Hov99, Prop. 1.3.13]. But not

only do Quillen equivalent model categories have equivalent homotopy categories,

they also have the “same homotopy theory” in the sense that the higher homotopy

information mentioned in the introduction such as mapping spaces is preserved by

Quillen equivalences.

For a pointed model category C , one can define an adjoint pair of suspension and loop

functors

Σ : Ho(C) −−→←− Ho(C) : Ω.
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Without loss of generality let X ∈ C be fibrant and cofibrant. We choose a factorisation

X // // C
∼ // ∗ of the unique morphism from X into the terminal object. The

suspension ΣX of X is defined as the pushout of the diagram

∗ Xoo // // C.

Dually, choosing a factorisation ∗
∼ // A // // X , the loop functor ΩX of X is

defined as the pullback of the diagram

∗ // X A.oooo

These constructions are not functorial or adjoint on C , but they become functorial and

adjoint in the homotopy category Ho(C).

Definition 2.3 A pointed, complete and cocomplete model category C is called stable

if Σ and Ω are inverse equivalences of homotopy categories.

Examples for stable model categories are provided by the category of spectra S (see

the beginning of Section 3) or chain complexes C(A) for certain abelian categories A.

The homotopy category Ho(C) of a stable model category C carries the structure of

a triangulated category, where the exact triangles are given by the fiber and cofiber

sequences [Hov99, 7.1.6].

In particular, the stable homotopy category Ho(S) and the derived category D(A) of

an abelian category A are triangulated categories.

Furthermore, note the following: given a Quillen pair F : C −−→←− D : G with C and D

being stable model categories, the left derived and right derived functors LF and RG

are exact functors, i.e., preserve exact triangles. This justifies the general rigidity ques

tion for stable model categories, namely, whether two stable model categories whose

homotopy categories are equivalent as triangulated categories, are Quillen equivalent.

However, the Rigidity Theorems for Ho(S) and Ho(L1S) do not claim that the given

equivalence Φ is induced by a Quillen functor, they just claim that the given stable

model categories are linked by some Quillen equivalence. The question about possible

uniqueness of this Quillen functor is still unanswered.
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3 The Quillen functor pair

3.1 Universal property of spectra

In this section, we construct a Quillen functor pair between the category of spectra

equipped with the K(2) local model structure L1S and our given stable model category

C .

Throughout this paper, S denotes the category of spectra with the stable Bousfield

Friedlander model structure [BF78]. Here a spectrum X is a sequence of pointed

simplicial sets (X0,X1, ...) together with structure maps σX
n : ΣXn → Xn+1 . A mor

phism f : X → Y of spectra is a collection of morphisms of pointed simplicial sets

fn : Xn → Yn that are compatible with the structure maps, i.e., fn+1 ◦σ
X
n = σY

n ◦Σfn for

all n ≥ 0. The K(2) local model structure on the category of spectra is a localisation

of the BousfieldFriedlander model structure:

Definition 3.1 (K(2) local model structure for spectra)

A morphism of spectra f : A −→ B is called a

• weak equivalence if K(2)∗f : K(2)∗(A) −→ K(2)∗(B) is an isomorphism,

• cofibration, if the induced map

ΣBn ∪ΣAn An+1 −→ Bn+1

is a cofibration of simplicial sets for all n ≥ 1 and A0 −→ B0 is a cofibration of

simplicial sets,

• fibration if f has the right lifting property with respect to trivial cofibrations,

i.e., cofibrations that are also K(2)∗ isomorphisms.

Remark A spectrum X is fibrant with respect to this model structure if and only if it

is K(2) local in Ho(S) and an Ωspectrum.

With the above choices, the category of spectra becomes a stable model category,

denoted by L1S . (For the definition of generalised Bousfield localisations see [Hir03]

Definition 3.3.1. For the existence of Bousfield localisations with respect to a gener

alised homology theory, see Theorem 4.1.1 of the same book. The author believes that

this theorem can be applied to this special case by using the settheoretical methods

of [Bou75], §1011. However, the author does not know of any written reference for

such a proof.)
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Now, to construct our desired Quillen functor pair between L1S and C , we use

Universal Property of Spectra (SchwedeShipley [SS02])

Let C be a stable model category, and let X ∈ C be fibrant and cofibrant. Then there

is a Quillen adjoint functor pair

X ∧ − : S −−→←− C : Hom(X,−)

where X ∧ − sends the sphere spectrum S0 to X .

Forgetting their model structures, S and L1S are the same categories, so the above

property gives us an adjoint pair of functors

X ∧ − : L1S −−→←− C : Hom(X,−)

for any X . However, it is not obvious under which conditions this functor pair is a

Quillen functor pair.

Before we answer this, let us briefly summarize the construction of the functor

Hom(X,−) : C −→ S.

For simplicity, let us assume C to be a pointed simplicial model category, i.e., a category

equipped with three functors

−⊗− : C × sSet* −→ C

(−)(−) : sSet*
op×C −→ C

mapC(−,−) : Cop × C −→ sSet*

satisfying certain adjunction properties and compatibilty with the model structure on

C . (For details, see [GJ99, Definition II.2.1].)

Notation In the pointed case, the first functor is usually denoted − ∧ − instead of

−⊗−. However, we choose to write −⊗− to avoid confusion with the functor X∧−

as in the Universal Property of Spectra.

For Y ∈ C , we define the nth level space of the spectrum Hom(X, Y) to be

Hom(X, Y)n := mapC(ωnX, Y) ∈ sSet*

where ωnX is a cofibrant replacement of an nth desuspension of X . We define ωnX

inductively by setting ω0X = X and for n ≥ 1 by choosing a factorisation

∗ // // ωnX
∼

ϕn

// // Ω(ωn−1X) .
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By ϕ̃n we denote the morphism ΣωnX −→ ωn−1X that is adjoint to ϕn . The structure

map ΣHom(X, Y)n−1 −→ Hom(X, Y)n of the spectrum Hom(X, Y) is now given by

the adjoint of the map

mapC(ωn−1X, Y)
map

C
(ϕ̃n,Y)

−−−−−−→ mapC(ΣωnX, Y) ≃ ΩmapC(ωnX, Y).

As ωnX is cofibrant in C , the functor mapC(ωnX,−) : C −→ sSet* preserves fibrations

and trivial fibrations [Hov99, Section 5]. One can conclude from this that the functor

Hom(X,−) : C −→ S preserves fibrations and trivial fibrations (as shown in [SS02,

6.2]). In particular, Hom(X, Y) is an Ωspectrum for fibrant Y , which is something we

are going to make use of in the proof of the next proposition.

Proposition 3.2 Let Φ : Ho(L1S) −→ Ho(C) be an equivalence of triangulated

categories, and let X be a cofibrant and fibrant object in C isomorphic to Φ(L1S0).

Then

X ∧ − : L1S −−→←− C : Hom(X,−)

is a Quillen functor pair with respect to the K(2) local model structure on the left side.

This proposition will be proven at the end of Section 3.2.

Notation Throughout the rest of this paper, X will be a fixed fibrant and cofibrant

replacement of Φ(L1S0). For a stable model category D , and A,B in D , [A,B]D∗
denotes the graded group of morphisms in the homotopy category of D . All spectra

are assumed to be 2local, in particular S0 = S0
(2) . By M we denote the mod2 Moore

spectrum M(Z
/

2).

3.2 v1 periodicity

The key ingredient in the proof of the proposition is showing that the spectra Hom(X, Y)

are K(2) local for all fibrant Y ∈ C . A spectrum A is K(2) local if and only if v4
1

induces an isomorphism of its mod2 homotopy groups [M,A]S∗ [Bou79, §4]. To be

more precise:

For a prime p, let K(1) denote the first Morava K theory with

K(1)∗ = Z
/

p [v1, v
−1
1 ].

Any plocal finite spectrum A with HQ∗(A) = 0 but K(1)∗(A) 6= 0 possesses a v1 self

map [HS98, §3], i.e., a map

v
pi

1 : Σpi(2p−2)A −→ A
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inducing an isomorphism in K(1)homology. The notation is standard but slightly

misleading since it seems to imply that v
pj

1 is a power of an existing morphism v1 .

However, this need not be the case:

In the case p = 2, the mod2 Moore spectrum M has a v1 self map

v4
1 : Σ8M −→ M

that induces an isomorphism in K(1)homology, or in this case equivalently, K(2) 

homology. This is the smallest degree v1 self map that can be realised on M . Also,

this v1 self map v4
1 need not be unique, but our methods do not depend on this choice.

Lemma 3.3 The map

(v4
1)∗ : [M,Hom(X, Y)]Sn −→ [M,Hom(X, Y)]Sn+8

is an isomorphism for all n ∈ Z and all Y ∈ C . Thus, Hom(X, Y) is K(2) local for all

Y .

Before we prove this lemma, we have to look at the image of certain elements in

π∗L1S0 under the functor X ∧ −, namely the Hopf elements η ∈ π1L1S0, ν ∈ π3L1S0

and σ ∈ π7L1S0 , and further, the elements y0 ∈ π0L1S0, y1 ∈ π1L1S0 and µ ∈ π9L1S0 .

(For details about the generators of the stable homotopy groups of the K(2) local sphere

and their multiplicative relations see the table of generators of π∗L1S0 at the beginning

of Section (5.1).)

Lemma 3.4 For η, ν, σ, y0, y1, and µ in π∗L1S0 as before, we have

• X ∧ η = Φ(η) or = Φ(η) +Φ(y1)

• X ∧ ν = uΦ(ν), for some odd u ∈ Z

• X ∧ σ = ūΦ(σ), for some odd ū ∈ Z

• X ∧ µ = Φ(µ) or = Φ(µ) +Φ(η2σ)

• X ∧ y0 = Φ(y0)

• X ∧ y1 = Φ(y1).

Notation Here, by X ∧ − we actually mean the left derived functor L(X ∧ −) of

the Quillen functor X ∧ − : S −→ C in the Universal Property of Spectra [SS02] .

However, we omit the L in the notation for simplicity.

Since the proof of this lemma is rather long, we postpone it until a separate appendix.

We continue with the proof of Lemma 3.3.
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Proof We now prove Lemma 3.3, i.e., that the mod2 homotopy groups of Hom(X, Y)

are v4
1 periodic for all Y ∈ C . By adjunction, it suffices to prove that

(X ∧ v4
1)∗ : [X ∧M, Y]Cn −→ [X ∧ Σ

8M, Y]Cn

is an isomorphism for all integers n. Via the equivalence Φ, the left and right side are

isomorphic to [M,Φ−1(Y)]
L1S
n and [Σ8M,Φ−1(Y)]

L1S
n , respectively. Since (v4

1)∗ is an

isomorphism between these two groups, and therefore

Φ(v4
1)∗ : [X ∧M, Y]Cn −→ [X ∧ Σ

8M, Y]Cn

is an isomorphism, we will now investigate how X ∧ v4
1 differs from Φ(v4

1) by making

use of the preceding lemma and the computations in Section 5.

The element X ∧ v4
1 lies in [X ∧Σ8M,X ∧M]C0 , which, via Φ and Computation 5.7, is

isomorphic to

[M,M]
L1S
8
∼= Z

/
4{v4

1} ⊕ Z
/

2{η̃σ ◦ pinch, IdL1M ∧ησ}.

By Corollary 5.8, 2v4
1 = incl ◦µ ◦ pinch, so by Lemma 3.4, either

2(X ∧ v4
1) = (X ∧ incl) ◦ (X ∧ µ) ◦ (X ∧ pinch)

= Φ(incl) ◦ Φ(µ) ◦ Φ(pinch)

= Φ(incl ◦µ ◦ pinch) = Φ(2v4
1)

= 2Φ(v4
1)

or

2(X ∧ v4
1) = (X ∧ incl) ◦ (X ∧ µ) ◦ (X ∧ pinch)

= Φ(incl) ◦ (Φ(µ) +Φ(η2σ)) ◦ Φ(pinch)

= Φ(incl ◦µ ◦ pinch) + 0 = Φ(2v4
1)

= 2Φ(v4
1)

as either X ∧ µ = Φ(µ) or X ∧ µ = Φ(µ) +Φ(η2σ). (Note that incl ◦η2σ ◦ pinch = 0

by (4).)

This means that X ∧ v4
1 can only differ from Φ(v4

1) by an element of order at most two,

i.e.,

X ∧ v4
1 = Φ(v4

1) +Φ(T), for some T ∈ [M,M]
L1S
8 , 2T = 0.

We will now show that all such v4
1 + T are isomorphisms in Ho(L1S).

We will see that each T ∈ [M,M]
L1S
8 with 2T = 0 induces the zero map in K(2) 

homology. It is enough to check this for 2v4
1, ησ ◦ pinch and IdL1M ∧ησ as each T in

question is a sum of those.
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The elements η ∈ π1L1S0 and pinch ∈ [M, S0]
L1S
−1 both induce the zero map in K(2) 

homology for degree reasons, as K(2)∗(S0) is concentrated in even degrees. Hence,

K(2)∗(IdL1M ∧ησ), K(2)∗(ησ ◦ pinch) and K(2)∗(2v4
1) = K(2)∗(incl ◦µ ◦ pinch)

are zero. (For the last equation, see Corollary 5.8.)

The element v4
1 is of course a K(2)∗ isomorphism, and thus, each v4

1 + T also is, as

K(2)∗(v4
1 + T) = K(2)∗(v4

1) + K(2)∗(T) = K(2)∗(v4
1) + 0 = K(2)∗(v4

1).

Consequently, every v4
1 + T is an isomorphism in Ho(L1S). Hence, by adjunction,

(v4
1)∗ : [M,Hom(X, Y)]Sn −→ [M,Hom(X, Y)]Sn+8

is an isomorphism for all n and Y , so Hom(X, Y) is a K(2) local spectrum for all

Y ∈ C .

Finally, we can prove Proposition 3.2, which says that for X ∼= Φ(L1S0), the Universal

Property of Spectra provides a Quillen functor pair between L1S and C .

Proof We show that the functor

Hom(X,−) : C −→ L1S

is a right Quillen functor, i.e., preserves fibrations and trivial fibrations.

Since the cofibrations in S are the same as in L1S , the left adjoint

X ∧ − : L1S −→ C

preserves cofibrations because X ∧ − : S −→ C is already a Quillen functor by the

Universal Property of Spectra. Via adjunction it follows that

Hom(X,−) : C −→ L1S

preserves trivial fibrations.

Now it remains to show that Hom(X,−) preserves fibrations. By [Dug01, A.2] it

suffices to show that Hom(X,−) preserves fibrations between fibrant objects. We do

this in the following steps:

 for Y ∈ C fibrant, Hom(X, Y) is fibrant in L1S

 Hom(X,−) sends fibrations to level fibrations

 level fibrations between fibrant objects in L1S are fibrations.

11



Let Y ∈ C be fibrant. Then, by [SS02, 6.2], the spectrum Hom(X, Y) is an Ωspectrum,

as also described at the beginning of Subsection 3.1. By Lemma 3.3, Hom(X, Y) is

K(2) local. So since in L1S the fibrant objects are exactly the K(2) local Ωspectra,

Hom(X, Y) is fibrant for fibrant Y .

By construction, the functor Hom(X,−) sends fibrations to level fibrations, see [SS02,

6.2]. But level fibrations between fibrant objects are fibrations in L1S :

Let A,B ∈ L1S be fibrant, and let f : A −→ B be a level fibration. As both A and B

are fibrant, f is a fibration in S . In L1S we use the Factorisation Axiom to factor f as

the composite of a fibration and a trivial cofibration

A // ∼

i
// C p

// // B.

By assumption, B is fibrant, and so must be C . So i is a K(2)∗ isomorphism between

K(2)∗ local spectra and therefore a π∗ isomorphism. Also, i is a cofibration in S since

it is a cofibration in L1S , so i is a trivial cofibration in S .

Consequently, i has the left lifting property in S with respect to the level

fibration f

A��

i

��

A

f
����

C
p

//

h

>>

B.

This gives us a commutative diagram in L1S

A
i //

f

��

id

&&
C

h //

p

����

A

f

��

B B B

which says that f is a retract of the L1S fibration p and therefore a fibration in L1S

by the Retract Axiom of model categories.

Putting these steps together, we have shown that Hom(X,−) is a right Quillen functor,

which proves the proposition.

4 The Quillen equivalence

Again, let Φ : Ho(L1S) −→ Ho(C) be an equivalence of triangulated categories and let

X be a fibrant and cofibrant replacement of Φ(L1S0). In the last section we modified
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the Universal Property of Spectra [SS02] to construct a Quillen functor pair

X ∧ − : L1S −−→←− C : Hom(X,−).

This section will be devoted to showing that (X ∧ −,Hom(X,−)) is a Quillen equiva

lence.

Notation The left derived functor of the Quillen functor X ∧ − : L1S −→ C will be

denoted X ∧L −.

4.1 Homotopy type of Hom(X,X)

Our first goal is to show that Hom(X,X) is stably equivalent to the K(2) local sphere

spectrum. Define

ι : S0 −→ Hom(X,X)

to be the morphism adjoint to the isomorphism X ∧ S0 ∼= X . Since Hom(X,X) is

K(2) local by Lemma 3.3, ι factors over the K(2) local sphere

S0

L1

��

ι // Hom(X,X)

L1S0

λ

99

Proposition 4.1 The map λ is a πn isomorphism for all integers n.

Proof We have the following diagram

πnL1S0 ∼= [S0, S0]
L1S
n

λ∗ //

X∧L−

��

[S0,Hom(X,X)]Sn

[X,X]Cn

∼=

adj

55kkkkkkkkkkkkkkkk

It is commutative because, by definition of λ, for α ∈ π∗L1S0 the image of X ∧L α

under the adjunction isomorphism is precisely λ ◦ α . Hence, λ∗ is an isomorphism if

and only if

X ∧L − : [S0, S0]L1S
n −→ [X,X]Cn

is an isomorphism. We show that

Ψ : [S0, S0]L1S
n

X∧L−
−−−→ [X,X]Cn

Φ−1

−−→ [S0, S0]L1S
n

13



is an isomorphism for all n.

The statement that Ψ is an isomorphism in degree 0 through 9 follows directly from

Lemma 3.4 (see also the table at the beginning of Section 5.1). Therefore, by adjunction,

λ∗ is an isomorphism in degree 0 through 9. It follows that λ also induces an

isomorphism between all rational homotopy groups of L1S0 and Hom(X,X) as these

are concentrated in degree zero.

Using the exact triangle

L1S0 2
−→ L1S0 incl

−−→ L1M
pinch
−−−→ L1S1

together with the 5lemma, it follows that

Ψ : [M, S0]L1S
n −→ [M, S0]L1S

n

is an isomorphism for n = 0, ..., 8. (We are still using our fixed isomorphism X∧M ∼=

Φ(L1M) which is omitted from our notation.)

Now M has a v1 self map v4
1 that induces an isomorphism in K(2) homology, so

v4
1 : Σ8L1M −→ L1M

is an isomorphism in Ho(L1S). Using the commutative diagram

[M, S0]
L1S
n

Ψ //

∼=(v4
1)∗

��

[M, S0]
L1S
n

∼=(Ψ(v4
1))∗

��

[M, S0]
L1S
n+8

Ψ // [M, S0]
L1S
n+8

we obtain by induction that

Ψ : [M, S0]L1S
n −→ [M, S0]L1S

n

is an isomorphism for all integers n. (Note that the commutativity of the above

diagram does not depend on the choice of the fixed isomorphisms X ∧M ∼= Φ(L1M)

and X ∧ S0 ∼= Φ(L1S0).) Hence, by adjunction, λ gives an isomorphism on the mod2

homotopy groups of L1S0 and Hom(X,X).

But any map that induces isomorphisms between the rational homotopy groups and the

mod2 homotopy groups of 2local spectra must be a weak equivalence. Thus,

λ∗ : πnL1S0 −→ πn Hom(X,X)

is an isomorphism for all n, so L1S0 and Hom(X,X) are stably equivalent via λ.

With this, we can now prove the K(2) local Rigidity Theorem:
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4.2 Proof of the Main Theorem

Theorem 4.2 Let Φ : Ho(L1S) −→ Ho(C) be an equivalence of triangulated cate

gories, X a fibrant and cofibrant replacement of Φ(L1S0), and

X ∧ − : L1S −−→←− C : Hom(X,−)

the Quillen functor pair from Proposition 3.2. Then (X ∧ −,Hom(X,−)) is a Quillen

equivalence.

Proof By [Hov99, 1.3.16], it suffices to show the following:

(1) RHom(X,−) : Ho(C) −→ Ho(L1S) reflects isomorphisms

(2) The map A −→ RHom(X,X ∧L A) is an isomorphism for all A ∈ Ho(L1S).

(Here RHom(X,−) denotes the right derived functor of the Quillen functor

Hom(X,−) : C −→ L1S .)

To prove these two points, we make use of the fact that Ho(L1S) is a compactly

generated triangulated category:

The K(2) local sphere is a small weak generator in Ho(L1S), i.e., [S0,−]L1S

commutes with coproducts and detects isomorphisms. So by [Kel94, 4.2], any tri

angulated subcategory of Ho(L1S) that is closed under coproducts and containing the

sphere must already be Ho(L1S) itself. Since Φ is an equivalence of triangulated

categories, Φ(L1S0) = X is a small weak generator for Ho(C), i.e., any triangulated

subcategory of Ho(C) that is closed under coproducts and containing X is again Ho(C)

itself.

Let us first show that RHom(X,−) reflects isomorphisms. For a morphism f : Y −→ Z

in C , let RHom(X, f ) : RHom(X, Y) −→ RHom(X, Z) be an isomorphism in Ho(L1S),

so

[S0,RHom(X, Y)]L1S
∗

RHom(X,f )
−−−−−−→ [S0,RHom(X, Z)]L1S

∗

is an isomorphism. By adjunction,

[X, Y]C∗
f∗
−→ [X, Z]C∗

is an isomorphism.
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But as X is a generator in Ho(C) (see above), it detects isomorphisms, so

f : Y −→ Z

is an isomorphism in Ho(C) which proves the first point.

To prove the second point, we define T to be the full subcategory of Ho(L1S) containing

those A ∈ Ho(L1S) such that

A −→ RHom(X,X ∧L A)

is an isomorphism. We want to prove that T = Ho(L1S).

Since RHom(X,−) and X ∧L − are exact functors, T is triangulated. By

Proposition 4.1, L1S0 ∈ T . Now let Ai, i ∈ I , be a family of objects in T . We

want to prove that
∐
i∈I

Ai ∈ T . By adjunction,

[S0,RHom(X,X ∧L (
∐

i

Ai))]
L1S
∗
∼= [X,X ∧L (

∐

i

Ai)]
C
∗ .

As a left adjoint, X ∧L − commutes with coproducts, so

[X,X ∧L (
∐

i

Ai)]
C
∗
∼= [X,

∐

i

(X ∧L Ai)]
C
∗ .

Since X ∼= Φ(L1S0) is small, we have

[X,
∐

i

(X ∧L Ai)]
C
∗
∼=

⊕

i

[X,X ∧L Ai]
C
∗
∼=

⊕

i

[S0,RHom(X,X ∧L Ai)]
L1S
∗ .

As Ai ∈ T for all i,

[S0,Ai]
L1S
∗
∼= [S0,RHom(X,X ∧L Ai)]

L1S
∗ ,

induced by

Ai

∼=
−→ RHom(X,X ∧L Ai).

So by naturality of the preceding isomorphisms,

[S0,
∐

i

Ai]
L1S
∗
∼= [S0,RHom(X,X ∧L (

∐

i

Ai))]
L1S
∗

is an isomorphism induced by the map
∐

i

Ai −→ RHom(X,X ∧L (
∐

i

Ai)).

Since the K(2) local sphere detects isomorphisms, this map is an isomorphism in

Ho(L1S).
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So we have seen that T is triangulated, contains L1S0 and is closed under coproducts.

As Ho(L1S) is compactly generated with generator L1S0 , every triangulated subcat

egory of Ho(L1S) containing L1S0 that is closed under coproducts must already be

Ho(L1S) itself by the criterion of Keller mentioned earlier, so T = Ho(L1S). This

means that

A −→ RHom(X,X ∧L A)

is an isomorphism for all A ∈ Ho(L1S).

We can now conclude that (X ∧ −,Hom(X,−)) is a Quillen equivalence for

X ∼= Φ(L1S0). So, given an equivalence of triangulated categories

Φ : Ho(L1S) −→ Ho(C)

we have proven that C and L1S are Quillen equivalent, which proves the K local

Rigidity Theorem at the prime 2.

5 Computations

For our main proofs we need information about [M,M]
L1S
∗ and [S0,M]

L1S
∗ in certain

degrees. The necessary computations will be summarized in this section.

5.1 Generators and relations of π∗L1S0

First, let us look at the homotopy groups of the K(2) local sphere, see e.g. [Bou79,

Proposition 4.5] or [Rav84, 8.15]. The ring homomorphism

L1 : π∗S0 −→ π∗L1S0

induced by K(2) localisation is surjective in degrees ≥ 2, and it has a cokernel isomor

phic to Z
/

2 in degrees 0 and 1. There is a unique order 2 element of π0L1S0 called

y0 , and y1 = ηy0 is a generator of the second Z
/

2 summand in π1L1S0 . The other

elements of π∗L1S0 are given the names of their (not necessarily unique) preimage in

π∗S0 . So in low degrees we have the elements shown in the following table:

17



k πkL1S0

0 Z(2){ι} ⊕ Z
/

2{y0}

1 Z
/

2{η, y1}

2 Z
/

2{η2}

3 Z
/

8{ν}

4 0

5 0

6 0

7 Z
/

16{σ}

8 Z
/

2{ησ}

9 Z
/

2{η2σ, µ}

Moreover, we have

(1) 4ν = η3, ηy1 = 0, y2
0 = 0, y2

1 = 0, σy1 = 0 and µy0 = η2σ

by [Rav84, 8.15.(d)]. Furthermore, we make use of the following Toda bracket rela

tions:

8σ = 〈ν, 8, ν〉

µ ∈ 〈2, 8σ, η〉 (indeterminacy: η2σ)

(2)

The element µ is the unique element of the second Toda bracket with Adams filtration

five. For a reference for the relations, see [Tod62], Lemma 5.13, Lemma 10.9 and the

tables in Chapter XIV.

Notation Throughout this paper, we read Toda brackets from right to left, i.e., in the

same direction as the composition of morphisms.

5.2 Homotopy groups and endomorphisms of L1M

We will now compute some homotopy groups of the K(2) local mod2 Moore spectrum.

The long exact homotopy sequence of the exact triangle

L1S0 2
−→ L1S0 incl

−−→ L1M
pinch
−−−→ L1S1

splits into short exact sequences of the form

0 −→ πm+1L1S0
/

(2)
incl∗−−→ πm+1L1M

pinch
∗−−−→ {πmL1S0}2 −→ 0.
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Here, {πmL1S0}2 denotes the 2torsion of the group πmL1S0 , i.e., all x ∈ πmL1S0 with

2x = 0.

Let x ∈ {πmL1S0}2 , and x̃ ∈ πm+1L1M a lift of x , i.e., an element with

pinch ◦x̃ = x . We have pinch∗(2x̃) = 0, so 2x̃ has a unique preimage under the

map incl∗ . This preimage is ηx ∈ πm+1L1S0
/

(2), as

incl∗(ηx) = (incl ◦η ◦ pinch) ◦ x̃ = 2x̃,

remembering incl ◦η ◦ pinch = 2 IdL1M .

Notation A preimage of an element x under the pinch map will be denoted by x̃ . This

x̃ need not be unique, but the following computations do not depend on the choice of

such an x̃ unless stated.

For some particular examples this gives us

Computation 5.1 π0L1M ∼= Z
/

2{incl, incl ◦y0}

Computation 5.2 π1L1M ∼= Z
/

4{ỹ0} ⊕ Z
/

2{incl ◦η}

Computation 5.3 π8L1M ∼= Z
/

2{incl ◦ησ, 8̃σ}

Computation 5.4 π9L1M ∼= Z
/

4{η̃σ} ⊕ Z
/

2{incl ◦µ}

Also, note that

(3) incl ◦y1 ◦ pinch = incl ◦ηy0 pinch = 2ỹ0 pinch = ỹ0(2 pinch) = 0,

and

(4) incl ◦η2σ ◦ pinch = 2η̃σ pinch = η̃σ(2 pinch) = 0.

To specify the element 8̃σ in Computation 5.3 and for further applications we need the

following:

Lemma 5.5 8σ = pinch ◦v4
1 ◦ incl in Ho(L1S).

Proof The element pinch ◦v4
1 ◦ incl lies in π7L1S0 . Since 2 pinch = 0, it has order at

most two, so the element in question is either 8σ or 0.
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Assume that pinch ◦v4
1 ◦ incl = 0, then v4

1 ◦ incl factors over the fiber of the pinch map,

which, after K(2) localisation, gives us the commutative diagram

Σ8L1M
v4

1 // L1M

L1S8

incl

OO

ϕ
// L1S0

incl

OO

The element ϕ lies in π8L1S0 ∼= Z
/

2{ησ}, so ϕ = ηa for either a = 0 or a = σ . We

now apply the mth K(1)homology to the above diagram, using this factorisation of ϕ:

K(1)m(L1S8)
incl∗ //

η∗

��

K(1)m(Σ8L1M)
(v4

1)∗
// K(1)m(L1M)

K(1)m(L1S7)
a∗ // K(1)m(L1S0)

incl∗

OO

For even m, incl∗ = K(1)m(incl) is an isomorphism, and the map v4
1 is a K(1)∗ 

isomorphism, so the upper row is an isomorphism for even m. However, η∗ lowers the

degree by one, so it must be zero since the K(1)homology of the sphere is concentrated

in even degrees. Thus, we have arrived at a contradiction.

So since there is no ϕ ∈ π8L1S0 with incl ◦ϕ = v4
1 ◦ incl, the composition

pinch ◦v4
1 ◦ incl ∈ π7S0 is nonzero, has order two and therefore must be 8σ .

Corollary 5.6 π8L1M ∼= Z
/

2{incl ◦ησ, v4
1 ◦ incl}

Computation 5.7 [M,M]
L1S
8
∼= Z

/
4{v4

1} ⊕ Z
/

2{η̃σ ◦ pinch, IdL1M ∧ησ}

Proof We consider the short exact sequence

(5) 0 −→ π9L1M
/

(2)
pinch∗

−−−→ [M,M]
L1S
8

incl∗

−−→ {π8L1M}2 −→ 0.

Let x ∈ {π8L1M}2 , x̄ ∈ [M,M]
L1S
8 with incl∗(x̄) = x̄ ◦ incl = x . Since 2 IdL1M x = 0,

the element 2x̄ has a unique preimage q ∈ π9L1M
/

(2). This q lies in the Toda bracket

〈2 IdL1M, x, 2〉:
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L1S8 2 // L1S8 x //

incl ##H
H

H
H

H
H

H
H

H

L1M
2 IdL1M

// L1M

Σ8L1M

x̄

OO

pinch ##H
H

H
H

H
H

H
H

H

L1S9

q∈〈2 IdL1M ,x,2〉

OO

So to determine whether 2x̄ = 0 for any x ∈ {π8L1M}2 , we have to compute the

brackets
〈
2 IdL1M, v

4
1 ◦ incl, 2

〉
and 〈2 IdL1M, incl ◦ησ, 2〉.

Since 2 IdL1M = incl ◦η ◦ pinch, the first bracket can be written as
〈
2 IdL1M, v

4
1 ◦ incl, 2

〉
=

〈
incl ◦η ◦ pinch, v4

1 ◦ incl, 2
〉

=
〈
incl ◦η, pinch ◦v4

1 ◦ incl, 2
〉

= 〈incl ◦η, 8σ, 2〉

= incl ◦ 〈η, 8σ, 2〉

where the second and fourth equality are due to the Juggling Theorem [Rav86, A1.4.6]

and the third equality is due to Lemma 5.5. This means that 2v4
1 is hit in the short exact

sequence by incl ◦µ or incl ◦
(
µ+ η2σ

)
, as µ ∈ 〈η, 8σ, 2〉 with indeterminacy η2σ .

Since

incl ◦η2σ ◦ pinch = 2η̃σ pinch = 0 by (4),

we have in either case

2v4
1 = incl ◦µ ◦ pinch 6= 0.

The second bracket gives us

〈2 IdL1M, incl ◦ησ, 2〉 = 〈incl ◦η, pinch ◦ incl ◦ησ, 2〉

= 〈incl ◦η, 0, 2〉 = 0.

The indeterminacy here is 2π9L1M , i.e., zero in π9L1M/(2). Applying these computa

tions to the short exact sequence (5) gives us now the desired result: we now know that

[M,M]
L1S
8
∼= Z

/
4⊕Z

/
2⊕Z

/
2 with v4

1 generating the Z
/

4 summand, and η̃σ ◦pinch

generating one of the Z
/

2 summands. Looking at the sequence (5) again we see that

any element P ∈ [M,M]
L1S
8 with P ◦ incl = incl ◦ησ can be taken to be a generator of

the other Z
/

2 summand, so we choose P = IdL1M ∧ησ (where ∧ denotes the smash

product in the homotopy category of S ).

Corollary 5.8 2v4
1 = incl ◦µ ◦ pinch 6= 0.
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6 The case against odd primes

As mentioned in the introduction, in the case of p > 2, rigidity for K(p) local spectra

cannot hold because of an example constructed by Franke in [Fra96]. In this section,

we give a brief review of this exotic model and explain where the proof of the K(2) local

Rigidity Theorem must fail when replacing 2 by an odd prime p.

6.1 Franke’s exotic models

Throughout the rest of this section, let p denote an odd prime. Franke proves that

the homotopy category of K(p) local spectra is triangulated equivalent to the derived

category of 2p− 2twisted cochain complexes over a certain abelian category B .

Theorem (Franke [Fra96]) There is an equivalence of categories

R : D2p−2(B) −→ Ho(L1S)

where D2p−2(B) denotes the derived category of twisted cochain complexes over an

abelian category B , and Ho(L1S) the homotopy category of K(p) local spectra for an

odd prime p.

We are now going to explain the ingredients of this theorem. We begin with the abelian

categories A and B . The category B consists of Z(p) modules together with the action

of Adams operations ψk, k ∈ Z∗
(p) , satisfying some further conditions. (Details can be

found in [Bou85] or [Fra96, 3.1], see also [CCW07].)

To build the category A out of the above category, we additionally need the following:

Let T : B −→ B denote the following selfequivalence:

For all M ∈ B, T(M) = M as a Z(p) module, but on T(M), the Adams operation

ψk now equals kp−1ψk : M −→ M for all k ∈ Z.

An object M ∈ A is defined as a collection of modules M = (Mn)n∈Z , where

Mn ∈ B , together with isomorphisms

T(Mn)
∼=
−→ Mn+2p−2 for all n ∈ Z.

The resulting category A is equivalent to the category of E(1)∗E(1)comodules, with

E(1) denoting the Adams summand of plocal K theory with coefficient groups

E(1)∗ ∼= Z(p)[v1, v
−1
1 ], |v1| = 2p− 2.
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Note the following: For X a spectrum, the E(1)∗E(1)comodule E(1)∗(X) is an object

of A in the above sense by taking Mn := E(1)n(X), and the operations ψk being the

usual Adams operations.

From now on B will be viewed as the subcategory of A consisting of those objects

(Mn)n∈Z such that

Mn =

{
M if n ≡ 0 mod 2p− 2

0 otherwise

for a Z(p) module M with Adams operations as before. This describes a socalled split

of period 2p− 2 of A: B ⊂ A is a Serre class such that
⊕

0≤i<2p−2

B −→ A

(Bi)0≤i<2p−2 7−→
⊕

0≤i<2p−2

Bi[i]

is an equivalence of categories, where [i] denotes the ifold internal shift in the grading,

i.e., M[i]n = Mi−n.

Now we describe the source of Franke’s equivalence.

Definition 6.1 The category C2p−2(B) of twisted cochain complexes with values in B

is defined as follows:

An object is a cochain complex C∗ with Ci ∈ B for all i together with an isomorphism

of cochain complexes

αC : T2p−2(C∗) −→ C∗[2p− 2] = C∗+2p−2.

The morphisms are those morphisms of cochain complexes f : C∗ → D∗ that are

compatible with the periodicity isomorphisms, i.e., the following diagram commutes:

T2p−2(C∗)
αC //

T2p−2(f )

��

C∗[2p− 2]

f [2p−2]

��

T2p−2(D∗)
αD // D∗[2p− 2].

Such a cochain complex C∗ is called injective if each Ci is injective in B . A morphism

in C2p−2(B) is called a quasiisomorphism if it induces an isomorphism in cohomology.

C∗ is called strictly injective if it is injective, and, for each acyclic complex D∗ , the

cochain complex Hom∗
C2p−2(B)

(D∗,C∗) is again acyclic.
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Proposition 6.2 [Fra96, 1.3.3, Proposition 3] There is a model structure on C2p−2(B)

such that

• weak equivalences are the quasiisomorphisms,

• cofibrations are the monomorphisms,

• fibrations are the componentwise split epimorphisms with strictly injective ker

nel.

Notation D2p−2(B) denotes the derived category of C2p−2(B), i.e., the homotopy

category of this model category with respect to the above model structure.

Franke’s functor R : D2p−2(B) −→ Ho(L1S) now reconstructs a spectrum from the

algebraic data given by C∗ for each twisted cochain complex C∗ over B . The idea is

to first associate a spectrum to each of the boundaries of C∗ and the quotients of C∗

by the boundaries. These spectra Xβi
and Xγi (1 ≤ i ≤ 2p− 2) are put into a diagram

Xβ1
... Xβi−1

Xβi
Xβ2p−2

Xγ1

OO
22

Xγi−1

OO
aa

Xγi

OOaaD
D
D
D
D
D
D
D

...

__

Xγ2p−2
.

OO

In the next step, the Xβi
’s and Xγi ’s are pasted together by the homotopy colimit of

this diagram. So all in all, the result is a spectrum X = R(C∗) ∈ Ho(L1S) assigned to

a twisted cochain complex C∗ ∈ D2p−2(B).

The condition that p is odd is a special case of the condition that the splitting index of

the abelian category A (into 2p − 2 shifted copies of B ) is bigger than the injective

dimension of A, which is 2. This ensures sparseness in certain Adams spectral

sequences which the proof of Franke’s theorem relies on. For details, see [Fra96,

Section 2] and [Roi07, Section 13].

Next, we note that

Proposition 6.3 The categories D2p−2(B) and Ho(L1S) are not Quillen equivalent.

In particular, R is not derived from a Quillen equivalence.

Proof The proof of this relies on the mapping spaces with respect to D2p−2(B) and

Ho(L1S). The categories D1(A) and D2p−2(B) are not simplicial, but the technique
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of framings of [Hov99, Chapter 5] allows the definition of a reasonable mapping space

functor

mapC(−,−) : Ho(C)× Ho(Cop) −→ Ho(sSet*)

for any pointed model category C .

A Quillen equivalence F : C −−→←− D : G would induce an isomorphism of mapping

spaces

mapC(X, Y)
∼
−→ mapD(LF(X), LF(Y))

for X, Y in C .

Back to our special case: The category C2p−2(B) is abelian, so for all C1,C2 ∈

C2p−2(B), the nsimplices of mapC2p−2(B)(C1,C2) form an abelian group, and the

simplicial structure maps are group homomorphisms, so mapC2p−2(B)(C1,C2) is not

just a simplicial set but a simplicial abelian group. From Proposition III.2.20 of

[GJ99], it follows that mapC2p−2(B)(C1,C2) is a product of EilenbergMacLane spaces.

However, there are spectra for which the mapping spaces over L1S are not products of

EilenbergMacLane spaces, for example mapL1S
(S0, S0) ∼= QL1S0 = colimn Ω

nL1Sn.

Thus, C2p−2(B) and L1S cannot be Quillen equivalent and C2p−2(B) provides an exotic

model for L1S .

6.2 A criterion for exotic models

In this subsection, let L1S denote the model category of spectra with the K(p) local

model structure for p > 2. How can we check in general whether a stable model

category C provides an exotic model for L1S or not?

In fact, we are going to prove that the answer to this question relies on the behaviour of

just one element in the stable homotopy groups of the sphere: C is an exotic model for

Ho(L1S) if and only if X ∧ α1 = 0 for α1 ∈ π2p−3S0 and X ∧− : S −→ C as before.

The action of π∗S0 on morphism sets

We look at the action of π∗S0 on the morphism sets of a stable homotopy category C

in order to single out possible exotic models for Ho(L1S). In addition to the mapping

space functor

mapC(−,−) : Ho(Cop)× Ho(C) −→ Ho(sSet*)
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introduced in the proof of Proposition 6.3, one can use framings again to define a

functor

−⊗− : Ho(C)× Ho(sSet*) −→ Ho(C)

such that

A⊗− : Ho(sSet*) −−→←− Ho(C) : mapC(A,−)

is an adjoint functor pair for A ∈ C [SS02, Construction 2.4]. For Y, Z ∈ C , we now

use this functor to define a left action

πnS0 ⊗ [Y, Z]Ck
µ
−→ [Y, Z]Cn+k.

Let f ∈ [Y, Z]Ck = Hom0
Ho(C)(Σ

kY, Z) = Hom0
Ho(C)(Y ⊗ Sk, Z). (Note that the

suspension functor Σ defined in Section 2 is isomorphic to the functor − ⊗ S1 ,

with S1 denoting the simplicial 1sphere.) For α ∈ πnS0 we choose a representative

a : Sn+l −→ Sl in Ho(sSet*). The element f ⊗ a now lies in [Y ⊗ Sk ⊗ Sn+l, Z ⊗ Sl]C0
which is isomorphic to [Y, Z]Cn+k since C is stable.

Definition 6.4 We now define µ(α, f ) := α · f to be the unique element in [Y, Z]Cn+k

such that (α · f ) ⊗ idSl = f ⊗ a in [Y ⊗ Sn+k+l, Z ⊗ Sl]C0 . (For details, see [SS02],

Construction 2.4.)

Definition 6.5 Let C and D be stable model categories. A functor

Λ : Ho(C) −→ Ho(D)

is called π∗S0 exact [SS02, Definition 2.2] if Λ is exact and π∗S0 linear, i.e., compat

ible with the π∗S0 action.

There is an important example of a π∗S0 linear functor: If F : C −→ D is a left

Quillen functor, then its left derived functor LF : Ho(C) −→ Ho(D) is π∗S0 exact

[SS02, Lemma 6.1]. Later in this section, we are going to apply this to the left Quillen

functor X ∧ − : S −→ C from the Universal Property of Spectra.

Universal Property of K(p) local spectra

Let us return to the proof of the Universal Property for K(p) local spectra and its first

step, the question whether the spectra Hom(X, Y) are K(p) local for Y ∈ C . This

is again equivalent to the modp homotopy groups of Hom(X, Y) being v1 periodic

[Bou79, §4].
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Let M = M(Z
/

p) denote the modp Moore spectrum. For odd primes, the v1 self

map of M of smallest existing degree is not v
p2

1 as in the case p = 2, but

v1 : Σ2p−2M −→ M

itself. So a spectrum Hom(X, Y) is K(p) local if and only if the precomposition

morphism

(v1)∗ : [M,Hom(X, Y)]Sn −→ [M,Hom(X, Y)]Sn+2p−2

is an isomorphism for all n. By adjunction, this is equivalent to

(X ∧ v1)∗ : [X ∧M, Y]Cn −→ [X ∧M, Y]Cn+2p−2

being an isomorphism for all n. The morphism X ∧ v1 lies in

[X ∧M,X ∧M]C2p−2
∼= [Φ(L1M),Φ(L1M)]C2p−2

∼= [M,M]
L1S
2p−2 = Z

/
p{v1}.

So (X ∧ v1)∗ is either an isomorphism or the zero map.

The element α1 ∈ π2p−3L1S0 = Z
/

p{α1} factors as

α1 = pinch ◦v1 ◦ incl,

which can be computed by similar methods to those in Section 5. It follows that

X ∧ v1 = 0 if and only if X ∧α1 = 0. Let us investigate the two cases X ∧α1 = 0 and

X ∧ α1 6= 0 separately.

X ∧ α1 = 0

We are going to prove that in this case, C and L1S cannot be Quillen equivalent by

using the π∗S0 action defined earlier in this section.

The functor X ∧ − : S −→ C from the Universal Property of Spectra is a left Quillen

functor, and therefore its left derived X ∧ − is π∗S0 linear. (Again, we omit the L for

left derived from our notation.) So the diagram

π∗S0 ⊗ [S0, S0]S∗
µ

//

id⊗(X∧−)

��

[S0, S0]S∗

X∧−

��

π∗S0 ⊗ [X,X]C∗
µ

// [X,X]C∗
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commutes. Consequently, for α ∈ π∗S0 we have

X ∧ α = X ∧ (IdS0 ·α)

= (X ∧ −) ◦ µ(α, IdS0)

= µ ◦ (id⊗(X ∧ −))(α, IdS0)

= µ(α,X ∧ IdS0)

= µ(α, IdX)

= α · IdX .(6)

Let us assume that there is a functor

F : L1S −→ C

that is part of a Quillen equivalence. (Without loss of generality, let F be a left

Quillen functor.) So then its derived functor LF would be a π∗S0 exact equivalence, in

particular [S0, S0]
L1S
∗ and [X,X]C∗ would be isomorphic as π∗S0 modules. However,

this cannot be the case as

α1 · IdX = X ∧ α1 = 0 and α1 · IdS0 = α1 6= 0.

So we have shown

Proposition 6.6 If X ∧ α1 = 0, then L1S and C are not Quillen equivalent.

Next, we will see that the condition X ∧α1 6= 0 is both necessary and sufficient for the

existence of a Quillen equivalence between L1S and C .

X ∧ α1 6= 0

We have seen at the beginning of this subsection that X∧α1 6= 0 implies that the modp

homotopy groups of a spectrum Hom(X, Y) are v1 periodic. Therefore, all Hom(X, Y)

are K(p) local for Y ∈ C . With the methods of Proposition 3.2 it now follows that

X ∧ − : L1S −−→←− C : Hom(X,−)

is a Quillen functor pair for X = Φ(L1S0).

Analogously to Section 4, we now show that Hom(X,X) is equivalent to the K(p) local

sphere by showing that the map

λ : L1S0 −→ Hom(X,X)
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is a π∗ isomorphism. Again, this is the case if and only if

Ψ : [S0, S0]L1S
n

X∧L−
−−−→ [X,X]Cn

Φ−1

−−→ [S0, S0]L1S
n

is an isomorphism for all n ∈ Z. For n = −1, ..., 2p − 1 this follows easily as the

only nontrivial homotopy groups of L1S0 in this range are π0L1S0 = Z(p){ι} and

π2p−3L1S0 = Z
/

p{α1} [Rav84, 8.10.(b)]. By our assumption that X ∧α1 6= 0 we can

conclude that Ψ(α1) is a nonzero multiple of α1 . With the 5lemma it follows that

Ψ : [M, S0]L1S
n −→ [M, S0]L1S

n

is an isomorphism for n = 0, ..., 2p− 2.

We now use that v1 : Σ2p−2M −→ M is an isomorphism in Ho(L1S), so by

proceeding with exactly the same method as in Proposition 4.1 we conclude that

λ : L1S0 −→ Hom(X,X) induces a π∗ isomorphism between L1S0 and Hom(X,X),

and so, analogously to Theorem 4.2,

X ∧ − : L1S −−→←− C : Hom(X,−)

is a Quillen equivalence for odd primes.

We summarize this subsection in the following theorem:

Theorem 6.7 Let Φ : Ho(L1S) −→ Ho(C) be an equivalence of triangulated cate

gories, where L1S denotes the category of spectra with the K(p) local model structure

for p odd. Then L1S and C are Quillen equivalent if and only if

X ∧ α1 6= 0, for X = Φ(L1S0), α1 ∈ π2p−3S0
= Z

/
p{α1}.

However, while this Theorem tells us if a model C for L1S is exotic or not, it does not

answer the question of whether two exotic models are Quillen equivalent.

In particular, let us call a model algebraic if it is a model that is also an abelian category,

such as Franke’s example C = C2p−2(B). An algebraic model is necessarily exotic

by the mapping space argument given in the proof of Proposition 6.3. It would be

interesting to find out if two algebraic models are automatically Quillen equivalent or

not.
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A Proof of Lemma 3.4

Lemma 3.4 For η, ν, σ, y0, y1, and µ in π∗L1S0 as before, we have

• X ∧ η = Φ(η) or = Φ(η) +Φ(y1)

• X ∧ ν = uΦ(ν), for some odd u ∈ Z

• X ∧ σ = ūΦ(σ), for some odd ū ∈ Z

• X ∧ µ = Φ(µ) or = Φ(µ) +Φ(η2σ)

• X ∧ y0 = Φ(y0)

• X ∧ y1 = Φ(y1).

Proof X ∧ η

On the mod2 Moore spectrum M , 2 IdM factors as

M
pinch
−−−→ S1 η

−→ S0 incl
−−→ M,

and this composition is nonzero. Here, pinch denotes the map that “pinches” off the

bottom cell of M , and incl denotes the inclusion of the zerosphere into the bottom

cell of M . Consequently, 2 IdL1M factors as

L1M
pinch
−−−→ L1S1 η

−→ L1S0 incl
−−→ L1M.

Recall that η survives K(2) localisation. We now consider the exact triangle

S0 2
−→ S0 incl

−−→ M
pinch
−−−→ S1

in Ho(S). The functor X ∧ − : Ho(S) −→ Ho(C) is exact on the homotopy level, Φ

is exact and X ∧ S0 ∼= Φ(L1S0), so we can choose an isomorphism

X ∧M ∼= Φ(L1M)

such that X ∧ pinch corresponds to Φ(pinch) and X ∧ incl corresponds to Φ(incl).

The functor X ∧ − is additive on the homotopy level, so

(7) X ∧ 2 IdL1M = 2 IdX∧M 6= 0,

since

[X ∧M,X ∧M]C0
∼= [Φ(L1M),Φ(L1M)]C0

∼= [M,M]
L1S
0
∼= Z

/
4{IdL1M}.

Furthermore, 2 IdX∧M factors as
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X ∧M
X∧pinch
−−−−−→ X ∧ S1 X∧η

−−→ X ∧ S0 X∧incl
−−−−→ X ∧M.

Consequently,

X ∧ η ∈ [X,X]C1
∼= Z

/
2{Φ(η),Φ(y1)}

cannot be zero.

Also, X ∧ η cannot be Φ(y1) either: the composition

L1M
pinch
−−−→ L1S1 y1

−→ L1S0 incl
−−→ L1M

is zero by equation (3) in Section 5. So if X ∧ η = Φ(y1), then

2 IdX∧M = (X ∧ incl) ◦ (X ∧ η) ◦ (X ∧ pinch)

= Φ(incl) ◦ Φ(y1) ◦ Φ(pinch)

= Φ(incl ◦y1 ◦ pinch) = Φ(0) = 0,(8)

which is a contradiction to (7). It follows that either

(9) X ∧ η = Φ(η) or X ∧ η = Φ(η) +Φ(y1).

X ∧ ν

Whether X ∧ η = Φ(η) or X ∧ η = Φ(η) +Φ(y1), we have

X ∧ η3
= (X ∧ η)3

= Φ(η)3.

as ηy1 and y2
1 are both zero in π∗L1S0 . Since in π3L1S0 there is the relation η3 = 4ν ,

we have

4(X ∧ ν) = X ∧ η3
= 4Φ(ν).

As 4Φ(ν) 6= 0 in [X,X]C3
∼= Z

/
8{Φ(ν)}, X ∧ ν has order eight in this group and is

therefore a generator. Consequently

(10) X ∧ ν = uΦ(ν), for some odd integer u ∈ Z.

X ∧ σ

For X ∧ σ we look at the Toda bracket relation

8σ = 〈ν, 8, ν〉 .
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From this we obtain

X ∧ 8σ ∈ 〈X ∧ ν,X ∧ 8,X ∧ ν〉 .

The indeterminacy of this Toda bracket is zero, thus, equality holds. By the computa

tions above, we get

8(X ∧ σ) = X ∧ 8σ = 〈uΦ(ν),Φ(8), uΦ(ν)〉 = u2
Φ(8σ)

which is nonzero in [X,X]C7
∼= Z

/
16{Φ(σ)}. We conclude that X ∧ σ has order 16 in

this group, so

(11) X ∧ σ = ūΦ(σ), for some odd integer ū ∈ Z.

X ∧ µ

Next, we use that µ ∈ 〈2, 8σ, η〉 with indeterminacy η2σ . It follows that

X ∧ µ ∈ 〈X ∧ 2,X ∧ 8σ,X ∧ η〉 .

Using our previous computations, this bracket either equals 〈2,Φ(8σ),Φ(η)〉 or

〈2,Φ(8σ),Φ(η) +Φ(y1)〉.

In the first case, 〈2,Φ(8σ),Φ(η)〉 = Φ(〈2, 8σ, η〉) = {Φ(µ),Φ(µ) +Φ(η2σ)} which is

what we want.

For the second case, we compute

(12) 〈2, 8σ, η + y1〉 ⊇ 〈2, 8σ, η〉+ 〈2, 8σ, y1〉 .

The bracket on the left side has indeterminacy η2σ , which is the same as the

intederminacy of the first bracket on the right side. The last bracket has

indeterminacy zero and contains the set 〈2, 8σ, η〉 y0 = {µy0, µy0 + η2σy0} = {η
2σ}

(by the relations given in (1) on page 18), so it equals {η2σ}. Thus, equality holds in

(12), and we can also conclude in this case that

X ∧ µ ∈ {Φ(µ),Φ(µ) +Φ(η2σ)}.

X ∧ y0

Next, we look at X ∧ y0 . Since y0 is the only nonzero torsion element in

π0L0S0 = Z(2) ⊕ Z
/

2, the element X ∧ y0 must be a torsion element as well,

because the functor X ∧ − is additive. Consequently, X ∧ y0 either equals Φ(y0)

or zero.
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We now make use of the multiplicative relation µy0 = η2σ [Rav84, 8.15.(d)]. We have

already seen that X ∧ η2σ = ūΦ(η2σ) 6= 0, so X ∧ y0 cannot be zero. Consequently,

X ∧ y0 = Φ(y0).

X ∧ y1

Now determining X ∧ y1 is easy: we have y1 = ηy0 , so

X ∧ y1 = (X ∧ η)(X ∧ y0) = Φ(η)Φ(y0) or = Φ(η)Φ(y0) +Φ(y2
0)

which in either case equals Φ(y1) since y2
0 = 0 by [Rav84, 8.15.(d)].
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