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CHARACTER DEFLATIONS AND A GENERALIZATION

OF THE MURNAGHAN–NAKAYAMA RULE

ANTON EVSEEV, ROWENA PAGET AND MARK WILDON

Abstract. Given natural numbers m and n, we define a deflation map

from the characters of the symmetric group Smn to the characters of Sn.

This map is obtained by first restricting a character of Smn to the wreath

product Sm oSn, and then taking the sum of the irreducible constituents

of the restricted character on which the base group Sm × · · · × Sm acts

trivially. We prove a combinatorial formula which gives the values of

the images of the irreducible characters of Smn under this map. We

also prove an analogous result for more general deflation maps in which

the base group is not required to act trivially. These results generalize

the Murnaghan–Nakayama rule and special cases of the Littlewood–

Richardson rule. As a corollary we obtain a new combinatorial formula

for the character multiplicities that are the subject of the long-standing

Foulkes’ Conjecture. Using this formula we verify Foulkes’ Conjecture

in some new cases.

1. Introduction

Tableaux combinatorics is a pivotal theme in the representation theory

of the symmetric groups. Fundamental results in this area include the

Murnaghan–Nakayama rule for the values taken by irreducible characters

of symmetric groups and the Littlewood–Richardson rule (as well as its

special case, Young’s rule), which determines the restrictions of irreducible

characters to Young subgroups of symmetric groups.

The two main results of this paper are Theorems 1.5 and 6.3, which give

a combinatorial description of the restrictions of characters of symmetric

groups to their maximal imprimitive subgroups. Theorem 1.5 is a simul-

taneous generalization of the Murnaghan–Nakayama rule and Young’s rule.

Theorem 6.3 gives a further generalization, in which Young’s rule is replaced

by a family of special cases of the Littlewood–Richardson rule.

As a corollary of Theorem 1.5, we obtain in Proposition 5.1 a new recur-

sive formula for the character multiplicities that are the subject of Foulkes’
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Conjecture, a long-standing problem which spans representation theory, in-

variant theory and algebraic combinatorics. We use this formula to verify

Foulkes’ Conjecture in some new cases, extending the results in [14]. Fig-

ures 3 and 4 in §5 show some of the data computed using this formula.

1.1. Character deflations. We now introduce the ideas needed to state

Theorem 1.5. By a construction originally due to Frobenius, the irreducible

characters of the symmetric group Sr are canonically labelled by the parti-

tions of r. As is usual, we write χλ for the irreducible character labelled by

the partition λ, and χλ/µ for the character labelled by the skew-partition

λ/µ. We refer the reader to [8, Chapter 2] or [19, §7.18] for a construction

of these characters and to [19, page 309] for background on skew-partitions.

For each r ∈ N, it is well known (see, for example, [4, Exercise 5.2.8])

that the maximal imprimitive subgroups of Sr are precisely the imprimitive

wreath products Sm o Sn ≤ Sr for m, n ∈ N such that mn = r. Let ϑ be a

character of Sm, and let V be a representation of Sm affording ϑ. Then V ⊗n

is a representation of the base group Sm× · · · ×Sm. The complement Sn of

this base group acts on V ⊗n by permuting the factors:

g(v1 ⊗ · · · ⊗ vn) = vg−1(1) ⊗ · · · ⊗ vg−1(n)

for g ∈ Sn and v1, . . . , vn ∈ V . These two actions combine to give a rep-

resentation of Sm o Sn on V ⊗n (see [8, 4.3.6]). We shall denote by ϑ̃×n the

character of Sm oSn afforded by this representation. We also need the char-

acters of Sm oSn whose kernel contains Sm × · · · × Sm. These characters are

precisely the inflations of the characters of Sn to Sm oSn along the canonical

surjection Sm o Sn � Sn. If ν is a partition of n, we denote by InfSmoSnSn
χν

the irreducible character of Sm oSn constructed in this way. It is easily seen

that the characters ϑ̃×n InfSmoSnSn
χν obtained by multiplying characters of

these two types are irreducible. (By [8, Theorem 4.3.33], any irreducible

character of Sm oSn is induced from a suitable product of characters of this

form. We note that this result will not be used in this paper.)

Given a finite group G, we let C(G) denote the abelian group of virtual

characters of G.

Definition 1.1. Let m, n ∈ N and let ϑ be an irreducible character of Sm.

Let ξ be an irreducible character of Sm o Sn. We define

DefϑSn ξ =

χν if ξ = ϑ̃×n InfSmoSnSn
χν where ν is a partition of n

0 otherwise.

Let DefϑSn : C(Sm o Sn) → C(Sn) be the group homomorphism defined by

linear extension of this definition. Given ψ ∈ C(Sm oSn), we say that DefϑSn ψ
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is the deflation of ψ with respect to ϑ. Let DefresϑSn : C(Smn) → C(Sn) be

the group homomorphism defined by

DefresϑSn χ = DefϑSn ResSmnSmoSn χ

for χ ∈ C(Smn).

In the case when ϑ is the trivial character of Sm, we shall omit ϑ and

simply write DefSn and DefresSn . If V is a complex representation of Sm oSn
with character χ, then DefSn χ is the character of the maximal subrepre-

sentation of V on which the base group Sm × · · · × Sm acts trivially.

Theorem 1.5 gives a combinatorial rule for the values of DefresSn χ
λ/µ

where λ/µ is a skew-partition of mn. In order to state this rule, we review

and extend the definition of a border-strip tableau (see [19, §7.17]).

Recall that a skew-partition σ/τ is said to be a border strip (or rim hook)

if the Young diagram of σ/τ is connected and contains no 2 × 2 square.

The length of the border strip σ/τ is |σ/τ | and its height is defined to be

one less than its number of non-empty rows. If λ/µ is a skew-partition,

then we define a border-strip tableau of shape λ/µ to be an assignment of

the elements of a set J ⊆ N to the boxes of the Young diagram of λ/µ

so that the rows and columns are non-decreasing, and for each j ∈ J , the

boxes labelled j form a border strip; if J = {1, . . . , k}, and for each j ∈ J
the border strip formed by the boxes labelled j has length αj , then we say

that the tableau has type (α1, . . . , αk). We need the following three further

definitions, which are illustrated in Figure 1 and Example 1.6 below.

Definition 1.2. Let T be a border-strip tableau. The sign of T is defined

by sgn(T ) = (−1)h, where h is the sum of the heights of the border strips

forming T .

1 1 2 4 4 4
1 2 2

1 1
1
3

3 3

Figure 1. A border-strip tableau of shape (8, 5, 3, 2, 2, 2)/(2, 2, 1, 1, 1) and type

(6, 3, 3, 3). The heights of the border strips labelled 1, 2, 3, 4 are 3, 1, 1, 0 respectively,

and the sign of this border-strip tableau is thus −1.
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Definition 1.3. Let λ/τ be a border strip in a partition λ. If the lowest-

numbered row of λ met by λ/τ is row k then we define the row number of

λ/τ to be k, and write N(λ/τ) = k.

Note that if T is a border-strip tableau of shape λ/µ and type (α1, . . . , αk)

then there are partitions

µ = λ0 ⊂ λ1 ⊂ · · · ⊂ λk−1 ⊂ λk = λ

such that for each j ∈ {1, . . . , k}, the border strip in T labelled j is λj/λj−1.

Definition 1.4. Let m, n ∈ N and let λ/µ be a skew-partition of mn. Given

a composition γ = (γ1, . . . , γd) of n, let γ?m = (γ1, . . . , γ1, . . . , γd, . . . , γd)

denote the composition of mn obtained from γ by repeating each part m

times. An m-border-strip tableau of shape λ/µ and type γ is a border-strip

tableau of shape λ/µ and type γ?m such that for each j ∈ {1, 2, . . . , d}, the

row numbers of the border strips

λ(j−1)m+1/λ(j−1)m, . . . , λjm/λjm−1

corresponding to the m parts in γ?m of length γj satisfy

(1) N(λ(j−1)m+1/λjm) ≥ · · · ≥ N(λjm/λjm−1).

Let

aλ/µ,γ =
∑
T

sgn(T )

where the sum is over all m-border-strip tableaux T of shape λ/µ and type γ.

Theorem 1.5. Let m, n ∈ N and let λ/µ be a skew-partition of mn. If γ

is a composition of n and g ∈ Sn has cycle type γ then

(DefresSn χ
λ/µ)(g) = aλ/µ,γ .

Example 1.6. Let λ = (6, 5, 3, 2) and let µ = (3, 1). The three different

2-border-strip tableaux of shape λ/µ and type γ = (1, 2, 3) are shown below.

2 6 6
1 5 5 6

3 4 5
3 4

4 6 6
1 2 4 6

3 5 5
3 5

2 6 6
1 4 4 6

3 5 5
3 5

As required by Definition 1.4, for each j ∈ {1, 2, 3}, the row number of

the border strip labelled 2j − 1 in each tableau is at least the row number

of the border strip labelled 2j. Thus the first border strip corresponding

to each part of γ is added no higher up in each partition diagram than

the second. The sums of the heights of the border strips forming these

tableaux are 4, 4 and 3 and so their signs are +1, +1 and −1, respectively.
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By Definition 1.4 we have aλ/µ,γ = 1. Hence Theorem 1.5 implies that

(DefresS6 χ
(6,5,3,2)/(3,1))(g) = 1 if g ∈ S6 has cycle type (1, 2, 3).

Deflation is closely related to plethysm of Schur functions (see [12, §I.8]).

In fact, using the standard correspondence between characters of symmetric

groups and symmetric functions, one can show that the special case γ = (n)

of Theorem 1.5 is equivalent to a result proved in [3, Section 9]. Also, in

the special case µ = ∅, the combinatorial description of Theorem 1.5 can

be shown (using our Lemma 4.2 below) to be equivalent to the one given

for plethysm by Macdonald [12, §I.8, Example 8]. These connections are

discussed in more detail in §7.

We prove Theorem 1.5 in §§2–4. The only prerequisites, apart from some

basic character theory, are the Murnaghan–Nakayama rule and the com-

binatorics of the abacus. In addition to being self-contained, our proof is

highly combinatorial in the sense that the key steps, given in §3, can all be

stated in terms of explicit bijections between certain classes of tableaux.

1.2. Some special cases. It is clear than if m = 1 then DefresSn χ = χ for

any character χ of Sn, and so the special case m = 1 of Theorem 1.5 asserts

that χλ/µ(g) = aλ/µ,γ for any skew-partition λ/µ of n and any element

g ∈ Sn of cycle type γ. Equivalently,

χλ/µ(g) =
∑
T

sgn(T )

where the sum is over all border-strip tableaux of shape λ/µ and type γ.

This is the Murnaghan–Nakayama rule, as stated in [19, Equation (7.75)].

It should be noted that we require the Murnaghan–Nakayama rule in §3.3

below, and so our work does not provide a new proof of this result. In prac-

tice the Murnaghan–Nakayama rule is most frequently used as a recursive

formula for the values of characters or skew characters. Equation (10) at

the end of §4 formulates Theorem 1.5 in this way.

As Stanley observes in [19, page 348], it is far from obvious that the

character values given by the Murnaghan–Nakayama rule applied to a skew-

partition λ/µ and a composition γ are independent of the order of the parts

of γ. This remark applies even more strongly to Theorem 1.5. For example,

the reader may check that if λ/µ = (6, 5, 3, 2)/(3, 1), as in Example 1.6,

and γ′ = (2, 1, 3), then there is a unique 2-border-strip tableau of shape

(6, 5, 3, 2)/(3, 1) and type γ′. Thus aλ/µ,γ′ = 1, but the sums defining aλ/µ,γ
and aλ/µ,γ′ are different.

Another special case of Theorem 1.5 worth noting occurs when g is the

identity element of Sn. If ξ is an irreducible character of Sm oSn then either
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the base group B = Sm × · · · × Sm is contained in the kernel of ξ and

〈ResB ξ, 1B〉 = ξ(1), or 〈ResB ξ, 1B〉 = 0. Hence, by linearity, we have

(2) (DefresSn χ)(1) = 〈ResB χ, 1B〉

for any character χ of Smn. It now follows from Theorem 1.5 and Frobenius

reciprocity that

aλ/µ,(1n) =
〈
χλ/µ, IndSmnSm×···×Sm 1Sm × · · · × 1Sm

〉
for any skew-partition λ/µ of mn. It is clear from Definition 1.4 that

aλ/µ,(1n) is the number of semi-standard tableaux of shape λ/µ and type

(mn). Therefore, by setting µ = ∅ in the previous equation, we obtain a

special case of Young’s rule (see [8, 2.8.5] or [19, Proposition 7.18.7]).

1.3. Outline of the paper. The remainder of the paper proceeds as fol-

lows. Throughout, we shall adopt the convention that if α is a partition of

r ∈ N, then gα ∈ Sr is an element of cycle type α, and zα is the size of

the centralizer of gα in Sr. (The choice of gα within the conjugacy class is

irrelevant.) If α = (α1, . . . , αk), we write nα = (nα1, . . . , nαk).

In §2 we prove Proposition 2.2, which implies that if χ is a character

of Smn and g ∈ Sn, then (DefresSn χ)(g) is the average value of χ on the coset

of the base group Sm×· · ·×Sm in Sm oSn corresponding to g. Equation (2)

above is a special case of this result. In the case when g ∈ Sn is an n-cycle,

we obtain Proposition 2.6(ii), which implies that if λ/µ is a skew-partition

of mn, then

(3) DefresSn χ
λ/µ(g) =

∑
α

χλ/µ(gnα)

zα

where the sum is over all partitions α of m, and nα denotes the partition

obtained from α by multiplying each of its parts by n.

In §3 we state a theorem of Farahat (see [5, Section 4]), which gives a

formula for the character values χλ/µ(gnα) appearing on the right-hand side

of (3). We then give a character-theoretic proof of this theorem.

In §4 we combine the results of §3 and §4 to show that Theorem 1.5 holds

when g ∈ Sn is an n-cycle (Proposition 4.3) and then to deduce it in general.

In §5 we apply our results on deflations to Foulkes’ Conjecture on per-

mutation characters of the symmetric group. In particular, we prove a new

recursive formula for the character multiplicities that appear in this conjec-

ture. Using this formula we check Foulkes’ Conjecture in some new cases,

extending the results in [14].

In §6, we consider the more general deflation maps DefϑSn . When ϑ =

χ(a,1b) is labelled by a hook partition, Theorem 6.3 gives a combinatorial
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description of the value of DefresϑSn χ
λ/µ on an n-cycle. This result general-

izes the case γ = (n) of Theorem 1.5 and may be viewed as a simultaneous

generalization of the Murnaghan–Nakayama rule and a special case of the

Littlewood–Richardson rule. We also give an illustrative example showing

how our methods can be used to compute values of deflated characters in

the non-hook case.

Finally, in §7, we discuss the aforementioned connections between Theo-

rem 1.5 and results in [3, 12] stated in terms of symmetric functions.

2. Deflation by averaging

Let m, n ∈ N. We shall think of Sm o Sn as the group of permutations of

{1, . . . ,m} × {1, . . . , n}

that leaves invariant the set of blocks of the form ∆j = {(1, j), . . . , (m, j)},
1 ≤ j ≤ n. Given h1, . . . , hn ∈ Sm and g ∈ Sn, we write (h1, . . . , hn; g) for

the permutation which sends (i, j) to (hgji, gj). This left action is equivalent

to the action defined in [8, 4.1.18]. Let B = Sm × · · · × Sm denote the base

group in the wreath product. As shorthand, if k = (h1, . . . , hn) ∈ B then

we shall write (k ; g) for (h1, . . . , hn; g).

Lemma 2.1. Let m, n ∈ N, let ϑ be an irreducible character of Sm, and let

ξ be an irreducible character of Sm o Sn. Let g ∈ Sn. If ξ = ϑ̃×n InfSmoSnSn
χν

for some partition ν of n then

1

|B|
∑
k∈B

ξ(k ; g)ϑ̃×n(k ; g) = χν(g),

and if ξ ∈ Irr(Sm o Sn) is not of this form then the left-hand side is zero.

Proof. Suppose that the left-hand side is non-zero. The character ϑ̃×n of

Sm oSn restricts to the irreducible character ϑ×· · ·×ϑ of B. Hence we may

draw upon [7, Lemma 8.14]: suppose N / G, χ is an irreducible character

of G whose restriction to N is also irreducible and ξ ∈ Irr(G). Under these

conditions [7, Lemma 8.14(b)] states that if
∑

x∈Ng ξ(x)χ(x) 6= 0, for some

g ∈ G, then ResGN χ is a constituent of ResGN ξ, and part (c) of the same

lemma establishes that 1
|N |
∑

x∈Ng |χ(x)|2 = 1. We apply the former with

G = Sm o Sn, N = B and χ = ϑ̃×n to deduce that
〈

ResB ξ,ResB ϑ̃×n
〉
6= 0.

It follows by Frobenius Reciprocity that ξ is a constituent of

IndSmoSnB (ϑ× · · · × ϑ) =
∑
ν

χν(1)ϑ̃×n InfSmoSnSn
χν ,

where the sum is over all partitions ν of n. Since ξ is irreducible we must

have ξ = ϑ̃×n InfSmoSnSn
χν for some ν. Therefore the left-hand side in the
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lemma is
χν(g)

|B|
∑
k∈B

(
ϑ̃×n(k ; g)

)2
,

which is equal to χν(g) by [7, Lemma 8.14(c)] as stated above. �

By Definition 1.1, we have DefresϑSn(ϑ̃×n InfSmoSnSn
χν)(g) = χν(g) for all

g ∈ Sn. The next proposition therefore follows immediately from Lemma 2.1.

Proposition 2.2. Let m, n ∈ N, let ϑ be an irreducible character of Sm,

and let ψ be a character of Sm o Sn. If g ∈ Sn then

(DefϑSn ψ)(g) =
1

|B|
∑
k∈B

ψ(k ; g)ϑ̃×n(k ; g). �

Corollary 2.3. Let m, n ∈ N, let ϑ be an irreducible character of Sm, and

let ψ be a character of Sm o Sn. If g ∈ Sn is an n-cycle then

(DefϑSn ψ)(g) =
1

m!

∑
h∈Sm

ψ(h, 1, . . . , 1; g)ϑ(h).

Proof. Suppose that g is the n-cycle (x1 x2 . . . xn). By [8, 4.2.8], the permu-

tations (h1, . . . , hn; g) and (h′1, . . . , h
′
n; g) ∈ Sm o Sn are conjugate in Sm o Sn

if and only if the elements hxnhxn−1 . . . hx1 and h′xnh
′
xn−1

. . . h′x1 are con-

jugate in Sm. In particular, each conjugacy class of Sm o Sn which meets

{(k ; g) : k ∈ B} has a representative of the form (h, 1, . . . , 1; g). More-

over, the number of elements (h1, h2, . . . , hn; g) conjugate to (h, 1, . . . , 1; g)

is m!n−1|hSm |, since h2, . . . , hn may be chosen arbitrarily, and then h1 must

be chosen so that hxnhxn−1 · · ·hx1 ∈ hSm . It follows that∑
k∈B

ψ(k ; g)ϑ̃×n(k ; g) = m!n−1
∑
h∈Sm

ψ(h, 1, . . . , 1; g)ϑ̃×n(h, 1, . . . , 1; g).

The explicit formula given in [8, Lemma 4.3.9] to compute the charac-

ter value ϑ̃×n(h1, h2, . . . , hn; g) is particularly straightforward in the case

when g is an n-cycle: if g = (x1 x2 . . . xn) then ϑ̃×n(h1, h2, . . . , hn; g) =

ϑ(hxnhxn−1 · · ·hx1). It then follows by applying this to the expression we

previously obtained that∑
k∈B

ψ(k ; g)ϑ̃×n(k ; g) = m!n−1
∑
h∈Sm

ψ(h, 1, . . . , 1; g)ϑ(h).

Now apply Proposition 2.2 to the left-hand side. �

The following definition and lemma allow for a more convenient statement

of Corollary 2.3.
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Definition 2.4. Let m, n ∈ N, let g ∈ Sn be an n-cycle, and let ψ be a

character of Sm o Sn. We define ω(ψ) to be the class function on Sm such

that

ω(ψ)(h) = ψ(h, 1, . . . , 1; g)

for all h ∈ Sm.

Lemma 2.5. Let m, n ∈ N. If g ∈ Sn is an n-cycle and h ∈ Sm has cycle

type α then (h, 1, . . . , 1; g) ∈ Sm o Sn has cycle type nα.

Proof. It suffices to show that if O is an orbit of h on {1, 2, . . . ,m} then

O × {1, . . . , n} is an orbit of (h, 1, . . . , 1; g) in its action on {1, . . . ,m} ×
{1, . . . , n}. We leave this to the reader as an easy exercise. �

The next proposition follows easily from Lemma 2.5 and Corollary 2.3.

Proposition 2.6. Let m, n ∈ N, and let χ be a character of Smn.

(i) If α is a partition of m then

ω(ResSmoSn χ)(gα) = χ(gnα).

(ii) If ϑ is an irreducible character of Sm and g ∈ Sn is an n-cycle then

(DefresϑSn χ)(g) = 〈ω(ResSmoSn χ), ϑ〉

=
∑
α

χ(gnα)

zα
ϑ(gα)

where the sum is over all partitions α of m. �

The character value χ(gnα) in part (i) is the subject of Theorem 3.3; we

shall see that combining this theorem with part (ii) gives Equation (8) in

§4 below. Note also that part (ii) of the proposition implies Equation (3)

in §2.

3. Skew characters

In this section we state and prove a result on the values of skew characters

on elements of the form gnα (Theorem 3.3). First, we give the necessary

combinatorial definitions. In several arguments we shall refer to James’

abacus notation for partitions, as described in [8, page 78].

3.1. Quotients of skew-partitions. We shall define n-quotients and n-

signs for the following class of skew-partitions.

Definition 3.1. Let m, n ∈ N. We say that a skew-partition λ/µ of mn

is n-decomposable if there exists a border-strip tableau of shape λ/µ and

type (nm).
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Definition 3.2. Let m, n ∈ N and let λ/µ be an n-decomposable skew-

partition of mn. Let Γ(λ) be an abacus display for λ on an n-runner abacus

using tn beads for some t ∈ N. Let Γ(µ) be the abacus display for µ obtained

by performing an appropriate sequence of m upward bead moves on Γ(λ).

(This is possible since λ/µ is n-decomposable.) Let (λ(0), . . . , λ(n−1)) and

(µ(0), . . . , µ(n−1)) be the n-quotients of λ and µ corresponding to Γ(λ) and

Γ(µ), respectively. The n-quotient of λ/µ is defined to be

(λ(0)/µ(0), . . . , λ(n−1)/µ(n−1)).

We define the n-sign of λ/µ, denoted εn(λ/µ) to be the sign of any border-

strip tableau of shape λ/µ and type (nm).

To avoid cumbersome restatements, we adopt the convention that λ(i)/µ(i)

always has the meaning of Definition 3.2 above. It is clear from the abacus

that µ(i) is a subpartition of λ(i) for each i ∈ {0, . . . , n − 1}, and so the

n-quotient is well-defined. It follows from Proposition 3.13 in [15], or our

Proposition 3.6 below, that the n-sign of a skew-partition is well defined.

See §3.4 below for an example of these definitions and all the results in this

section.

We remark that it appears to be impossible to define the n-core of an ar-

bitrary skew-partition. The example λ/µ = (2, 2)/(1) and n = 2 illustrates

the obstacles that arise. Representing λ on a 2-runner abacus as

◦ ◦
• •

we see that either bead may be moved up, giving two different skew-partitions

from which no border strip of length 2 can be removed, namely (2)/(1)

and (1, 1)/(1). The 2-quotients corresponding to these bead moves, namely

((1),∅) and (∅, (1)), are also different.

Theorem 3.3 (Farahat). Let m, n ∈ N and let λ/µ be a skew-partition

of mn. Let α be a partition of m. If λ/µ is not n-decomposable then

χλ/µ(gnα) = 0. If λ/µ is n-decomposable and (λ(0)/µ(0), . . . , λ(n−1)/µ(n−1))

is its n-quotient, then

χλ/µ(gnα) = εn(λ/µ) IndSmS`0×···×S`n−1

(
χλ

(0)/µ(0) × · · · × χλ(n−1)/µ(n−1))
(gα)

where |λ(i)/µ(i)| = `i.

This result, stated in the alternative language of star diagrams, was first

proved in [5, Section 4]. The special case where µ is the n-core of λ also

follows from the correction by Thrall and Robinson [21] to Section 7 of

Robinson [18] or, alternatively, from Littlewood’s result in [11, Section 2].
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Farahat’s proof depends on an algebraic argument using Schur functions. A

character-theoretic proof is given by Kerber, Sänger, and Wagner: see [10,

Equation 3.6]. In the remainder of this section, we give a shorter character-

theoretic proof of Theorem 3.3, expressing each side of the theorem as a sum,

and then constructing a bijection between the summands. An example to

illustrate this bijection is given in §3.4. (Our bijection is similar to that

defined using Brettspiele in [10].)

3.2. A model for induction from a Young subgroup. The following

general result on the values of a character induced from a Young subgroup

will be used in the proof of Theorem 3.3. (The notation is chosen to be

consistent with this later use.)

Lemma 3.4. Let (`0, . . . , `n−1) be a composition of m ∈ N. For each i ∈
{0, . . . , n− 1}, let ϑi be a character of S`i. If g ∈ Sm then

IndSmS`0×···×S`n−1
(ϑ0 × · · · × ϑn−1)(g) =

∑
t

ϑ0(gα0(t)) . . . ϑn−1(gαn−1(t))

where the sum is over all (`0, . . . , `n−1)-tabloids t such that gt = t, and

αi(t) is the cycle type of the permutation induced by g on the entries of row

i+ 1 of t.

Proof. Let t1, . . . , tN be the (`0, . . . , `n−1)-tabloids. Let s be an (`0, . . . , `n−1)-

tabloid fixed by the Young subgroup S`0 × · · ·×S`n−1 . For each j such that

1 ≤ j ≤ N , choose xj ∈ Sm such that tj = xjs. Let ϑ = ϑ0 × · · · × ϑn−1.
For each g ∈ Sm we have(

IndSmS`0×···×S`n−1
ϑ
)
(g) =

∑
j

ϑ(x−1j gxj)

where the sum is over all j such that

x−1j gxj ∈ S`0 × · · · × S`n−1 ,

or, equivalently, over all j such that gtj = tj . If ∆1, . . . ,∆q are the orbits

of g on row i+ 1 of tj , then x−1j ∆1, . . . , x
−1
j ∆q are the orbits of x−1j gxj on

row i + 1 of s. Hence x−1j gxj acts with cycle type αi(tj) on row i + 1 of s

and so

ϑ(x−1j gxj) = ϑ0(gα0(tj)) . . . ϑn−1(gαn−1(tj)).

The lemma follows. �
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3.3. Proof of Theorem 3.3. Let m, n ∈ N and let λ/µ be a skew-partition

of mn. Let α be a partition of m. If there is a border-strip tableau of shape

λ/µ and type nα then it is clear from the abacus that λ/µ is n-decomposable.

Hence if λ/µ is not n-decomposable then, by the Murnaghan–Nakayama

rule, χλ/µ(gnα) = 0.

We may therefore assume that λ/µ is n-decomposable. Let `i = |λ(i)/µ(i)|
for each i ∈ {0, . . . , n− 1} and let H = S`0 × · · · × S`n−1 . To show that

(4) χλ/µ(gnα) = εn(λ/µ) IndSmH
(
χλ

(0)/µ(0) × · · · × χλ(n−1)/µ(n−1))
(gα),

we shall use the following generalization of border-strip tableaux.

Definition 3.5. Let m, n ∈ N. Let λ/µ be an n-decomposable skew-

partition and let α = (α1, . . . , αk) be a composition of m. A n-quotient

border-strip tableau of shape λ/µ and type α is an n-tuple (T0, . . . , Tn−1) of

border-strip tableaux such that

(a) for each i ∈ {0, . . . , n− 1}, the shape of Ti is λ(i)/µ(i), and

(b) for each j ∈ {1, . . . , k}, the boxes in the Ti labelled j lie in a single

tableau, where they form a border strip of length αj .

By the Murnaghan–Nakayama rule we have

χλ/µ(gnα) =
∑

sgn(T )

where the sum is over all border-strip tableaux of shape λ/µ and type nα.

The bijection in the following proposition implies that

(5) χλ/µ(gnα) = εn(λ/µ)
∑

sgn(T0) . . . sgn(Tn−1)

where the sum is over all n-quotient border-strip tableaux (T0, . . . , Tn−1) of

shape λ/µ and type α. An illustrative example of the bijection is given in

Figure 2 in §3.4 below.

Proposition 3.6. Let λ/µ be an n-decomposable skew-partition of mn and

let α = (α1, . . . , αk) be a partition of m. There is a canonical bijection be-

tween border-strip tableaux of shape λ/µ and type nα and n-quotient border-

strip tableaux of shape λ/µ and type α. Under this bijection, if T is mapped

to (T0, . . . , Tn−1), then

sgn(T ) = εn(λ/µ) sgn(T0) . . . sgn(Tn−1).

Proof. Let T be a border-strip tableau of shape λ/µ and type nα. The

abacus gives a canonical bijection between border strips in λ/µ of length

n` and border strips of length ` in the skew-partitions λ(i)/µ(i) for i ∈
{0, . . . , n − 1}. If the border strip of length nαk in T corresponds to a
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border strip of length αk in λ(ik)/µ(ik), then we label the corresponding

boxes in the Young diagram of λ(ik)/µ(ik) by k. Removing these border

strips from the tableaux concerned and iterating the process with the border

strip of length nαk−1, and so on, we obtain a canonical bijection between

border-strip tableaux of shape λ/µ and type nα and n-quotient border-strip

tableaux of shape λ/µ and type α.

It only remains to prove the assertion about signs. Since εn(λ/µ) is the

common sign of any λ/µ-tableau of shape λ/µ and type (nm), it suffices to

show that if T is a λ/µ-tableau of type nα and U is a λ/µ-tableau of type

nβ then

sgn(T )sgn(U) = sgn(T0) . . . sgn(Tn−1)sgn(U0) . . . sgn(Un−1).

Starting from Γ(λ) with the beads numbered in order of their positions,

perform the sequence of bead moves corresponding to T , then perform the

inverse of the sequence of bead moves corresponding to U . Let σ be the

resulting permutation of the beads. Each time a border strip of height ` is

removed or added, the permutation required to restore the order of numbers

is an `+1-cycle. Therefore sgnσ = sgn(T )sgn(U). On the other hand, σ per-

mutes the beads on each runner amongst themselves, and a similar argument

now shows that sgn(σ) = sgn(T0) . . . sgn(Tn−1)sgn(U0) . . . sgn(Un−1). �

Comparing Equations (4) and (5) we see that to complete the proof of

Theorem 3.3, it suffices to show that

(6)
∑

sgn(T0) . . . sgn(Tn−1) = IndSmH
(
χλ

(0)/µ(0) × · · · × χλ(n−1)/µ(n−1))
(gα)

where the sum is over all n-quotient border-strip tableaux (T0, . . . , Tn−1) of

shape λ/µ and type α. In fact Equation (6) follows from Lemma 3.4 and

the Murnaghan–Nakayama rule, by some manipulations that are essentially

formal. By Lemma 3.4 we have

IndSmH
(
χλ

(0)/µ(0) × · · · × χλ(n−1)/µ(n−1))
(gα)

=
∑
t

χλ
(0)/µ(0)(gα0(t)) . . . χ

λ(n−1)/µ(n−1)
(gαn−1(t))

(7)

where the sum is over all (`0, . . . , `n−1)-tabloids t such that gαt = t and

αi(t) is the cycle type of the permutation of row i+ 1 of t induced by gα.

For such a tabloid t, let

f(t) =
∑

sgn(T0) . . . sgn(Tn−1)

where the sum is over all n-quotient border-strip tableaux (T0, . . . , Tn−1)

of shape λ/µ and type α, such that Ti has a border strip labelled j (of

length αj) if and only if the elements of the orbit of gα corresponding to the
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part αj lie in row i + 1 of t. The Murnaghan–Nakayama rule implies that

if gαt = t then

χλ
(0)/µ(0)(gα0(t)) . . . χ

λ(n−1)/µ(n−1)
(gαn−1(t)) = f(t),

and so, by Equation (7),

IndSmH
(
χλ

(0)/µ(0) × · · · × χλ(n−1)/µ(n−1))
(gα) =

∑
f(t)

where the sum is over all (`0, . . . , `n−1)-tabloids t such that gαt = t. Every

n-quotient border-strip tableau of shape λ/µ and type α corresponds to

some tabloid t such that gαt = t. Thus∑
sgn(T0) . . . sgn(Tn−1) =

∑
f(t)

where the left-hand sum is over all n-quotient border-strip tableaux of shape

λ/µ and type α, and the right-hand sum is over all (`0, . . . , `n−1)-tabloids t

such that gαt = t. Equation (6) now follows on comparing the two preceding

equations.

3.4. Example. We give an example of the correspondences used in the

proof of Theorem 3.3. Take m = 5 and n = 3, and let

λ/µ = (8, 5, 3, 2, 2, 2)/(2, 2, 1, 1, 1).

Any border-strip tableau of shape λ/µ and type (35) has either two or four

3-border-strips of height 1, with the rest of height 0, so ε3(λ/µ) = 1. Let

α = (2, 1, 1, 1). By the Murnaghan–Nakayama rule, χλ/µ(g3α) is the sum

of the signs of the four border-strip tableaux of type λ/µ and type 3α =

(6, 3, 3, 3) shown in Figure 2. Their signs are +1, −1, −1, −1, respectively,

so χλ/µ(g3α) = −2. These tableaux are in bijection with the four 3-quotient

border-strip tableaux of shape λ/µ and type α = (2, 1, 1, 1) shown in Fig-

ure 2; since sgn3(λ/µ) = 1, the bijection is sign preserving.

The 3-quotient of λ/µ is
(
(1, 1, 1), (3, 1)/(1, 1),∅

)
, so the characters of S3

and S2 we must consider are the sign character and the trivial character,

respectively. Taking g(2,1,1,1) = (12) ∈ S5, and following the end of the

proof of Theorem 3.3, we see that there are four (3, 2)-tabloids fixed by

(12), namely

3 4 5
1 2

, 1 2 3
4 5

, 1 2 4
3 5

, 1 2 5
3 4

,

in the order corresponding to the tableaux shown in Figure 2. The corre-

sponding values of the function f used in the proof of Theorem 3.3 are +1,

−1, −1, −1 respectively. It should be noted that in general there will be

several tableaux corresponding to each product of character values

χλ
(0)/µ(0)(gα0(t)) . . . χ

λ(n−1)/µ(n−1)
(gαn−1(t));
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1 1 1 1 1 1
2 2 2

3 3
3
4

4 4

1 1 3 4 4 4
1 3 3

1 1
1
2

2 2

1 1 2 4 4 4
1 2 2

1 1
1
3

3 3

1 1 2 3 3 3
1 2 2

1 1
1
4

4 4

( 2
3
4

, 1 1 ,∅
) ( 1

1
2

, 3 4 ,∅
) ( 1

1
3

, 2 4 ,∅
) ( 1

1
4

, 2 3 ,∅
)

Figure 2. The bijection in Proposition 3.6 between border-strip tableaux of

shape (8, 5, 3, 2, 2, 2)/(2, 2, 1, 1, 1) and type (6, 3, 3, 3) and 3-quotient border-strip

tableaux of the same shape and type (2, 1, 1, 1). The shapes of the border-strip

tableaux forming each 3-quotient border-strip tableau are given by the 3-quotient of

(8, 5, 3, 2, 2, 2)/(2, 2, 1, 1, 1), namely
(
(1, 1, 1), (3, 1)/(1, 1),∅

)
. To make clear the skew-

shape, the tableaux of shape (3, 1)/(1, 1) are drawn as (3, 1)-tableaux with two empty

boxes.

it is a special feature of this example that each f(t) has a single summand,

and so the bijection extends all the way to tabloids.

4. Proof of Theorem 1.5

We shall prove Theorem 1.5 by induction on the number of parts of γ.

Most of the work occurs in proving the base case when γ has a single part.

In the first step we combine the results of §3 and §4. For later use in §6, we

state the following proposition for a general deflation map.

Proposition 4.1. Let m, n ∈ N, let ϑ be an irreducible character of Sm,

and let λ/µ be a skew-partition of mn. Let g ∈ Sn be an n-cycle. If λ/µ is

not n-decomposable, then DefresϑSn(g) = 0. If λ/µ is n-decomposable, then

(DefresϑSn χ
λ/µ)(g) = εn(λ/µ)

〈
IndSmH

(
χλ

(0)/µ(0) × · · · × χλ(n−1)/µ(n−1))
, ϑ
〉
,

where H = S|λ(0)/µ(0)| × · · · × S|λ(n−1)/µ(n−1)|.

Proof. If λ/µ is not n-decomposable then, by Theorem 3.3, χλ/µ(gnα) = 0

for all partitions α ofm. Hence, by Proposition 2.6(ii), (DefresϑSn χ
λ/µ)(g) = 0.

If λ/µ is n-decomposable then, using Proposition 2.6(i), we may restate The-

orem 3.3 as

(8) ω(ResSmoSn χ
λ/µ) = εn(λ/µ) IndSmH

(
χλ

(0)/µ(0) × · · · × χλ(n−1)/µ(n−1))
.

The result now follows from Proposition 2.6(ii). �

It is clear from the condition on row numbers in Equation (1) in Defi-

nition 1.4 that if λ/µ is a skew-partition of mn then there is at most one
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m-border-strip tableau of shape λ/µ and type (n). The following lemma

gives a more precise condition. Recall that a skew-partition σ/τ is said to

be a horizontal strip if the Young diagram of σ/τ has no two boxes in the

same column.

Lemma 4.2. Let m, n ∈ N and let λ/µ be a skew-partition of mn. If λ/µ

is n-decomposable, and each λ(i)/µ(i) is a horizontal strip, then there is a

unique m-border-strip tableau of shape λ/µ and type (n); this tableau has

sign εn(λ/µ). Otherwise there are no such tableaux.

Proof. Suppose that T is an m-border-strip tableau of type (n) and shape

λ/µ. Then by Definition 3.1, λ/µ is n-decomposable. Let Γ(λ) be an n-

runner abacus display for λ using tn beads for some t ∈ N. Let Γ(µ) be

the abacus display for µ obtained from Γ(λ) by an appropriate sequence of

m single bead moves, so that in each move a bead is slid upwards into a

gap immediately above it. We label the positions on the abacus from top

to bottom so that the positions in row r of an abacus display are numbered

(r − 1)n, . . . , rn − 1 (as usual). Observe that the row number of a border

strip of length n in T corresponding to a bead in position p of Γ(λ) is the

number of beads in positions p + 1, p + 2, . . . of Γ(λ). Therefore if p < p′

and the beads in positions p and p′ of Γ(λ) both correspond to border strips

in T , then in the sequence of bead moves corresponding to T , the bead in

position p′ is moved upwards before the bead in position p.

Let i ∈ {0, . . . , n − 1}. Suppose that Γ(λ) has beads in positions nq + i

and nq′+i where q < q′, and that Γ(µ) has no beads in positions n(q+1)+i,

. . . , nq′ + i. The bead in position nq + i of Γ(λ) prevents the bead initially

in position nq′ + i from reaching its final position in Γ(µ). Therefore the

bead in position nq + i must be moved before the bead in position nq′ + i

reaches its final position. This contradicts the previous paragraph. Hence

there exist xj ∈ N0 and yj ∈ N0 such that the beads on runner i of Γ(λ)

are in positions {i+ nxj : 1 ≤ j ≤ s}, the beads on runner i of Γ(µ) are in

positions {i+ nyj : 1 ≤ j ≤ s} and

(9) y1 ≤ x1 < y2 ≤ x2 < · · · < ys ≤ xs.

It easily follows that λ(i)/µ(i) is a horizontal strip. Then, by Proposition 3.6,

sgn(T ) = εn(λ/µ).

Conversely, suppose that λ/µ is n-decomposable and each λ(i)/µ(i) is a

horizontal strip. Then the inequality (9) on the bead positions in each run-

ner holds. We now describe a sequence of m single upward bead moves that

transforms Γ(λ) into Γ(µ), and thus corresponds to a border-strip tableau T

of shape λ/µ and type (n)?m. At each step, locate the bead with maximal
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position p such that there is no bead in position p of Γ(µ). Slide that bead

up into position p−n. This is possible by inequality (9). The row numbers

of the border strips of length n corresponding to this sequence of moves

are increasing, so T is a m-border-strip tableau of shape λ/µ and type (n).

Uniqueness is clear since there is always at most one m-border strip tableau

of shape λ/µ and type (n). �

We can now complete the proof of the base case.

Proposition 4.3. Let m, n ∈ N and let g ∈ Sn be an n-cycle. If λ/µ is a

skew-partition of mn then

(DefresSn χ
λ/µ)(g) = aλ/µ,(n).

Proof. If λ/µ is not n-decomposable then aλ/µ,(n) = 0 by Lemma 4.2. Propo-

sition 4.1 implies that the result holds in this case.

Now suppose that λ/µ is n-decomposable. Let `i = |λ(i)/µ(i)| for each

i ∈ {0, . . . , n− 1}. By Proposition 4.1 and Frobenius reciprocity, we have

(DefresSn χ
λ/µ)(g) = εn(λ/µ)

〈
χλ

(0)/µ(0) , 1S`0

〉
. . .
〈
χλ

(n−1)/µ(n−1)
, 1S`n−1

〉
.

Theorem 2.3.13(ii) of [8] states that if σ/τ is a skew-partition of ` then

〈
χσ/τ , 1S`

〉
=

1 if σ1 ≥ τ1 ≥ σ2 ≥ τ2 ≥ · · ·

0 otherwise,

and it is easily seen that this first condition precisely picks out the cases

where σ/τ is a horizontal strip. Therefore (DefresSn χ
λ/µ)(g) = εn(λ/µ) if

each λ(i)/µ(i) is a horizontal strip, and otherwise (DefresSn χ
λ/µ)(g) = 0.

The proposition now follows from Lemma 4.2. �

For the inductive step we need the following lemma and proposition. The

former is well-known and can be deduced from [8, 2.3.12]. We write µ ⊆ λ

if µ is a subpartition of λ (i.e. the Young diagram of µ is contained in that

of λ).

Lemma 4.4. Let λ/µ be a skew-partition of r. If 1 ≤ c < r then

ResSc×Sr−c χ
λ/µ =

∑
τ

χτ/µ × χλ/τ

where the sum is over all partitions τ such that µ ⊆ τ ⊆ λ and |τ/µ| = c.

For later use we state and prove the following proposition for a general

deflation map.
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Proposition 4.5. Let m, n ∈ N and let λ/µ be a skew-partition of mn. Let

ϑ be an irreducible character of Sm. Let g ∈ Sn. If g = kh where k ∈ S`
and h ∈ Sn−`, then

(DefresϑSn χ
λ/µ)(g) =

∑
τ

(DefresϑS` χ
τ/µ)(k)(DefresϑSn−` χ

λ/τ )(h)

where the sum is over all partitions τ such that µ ⊆ τ ⊆ λ and |τ/µ| = m`.

Proof. Let B be the base group of the wreath product Sm o Sn ≤ Smn.

Choose a subgroup Sm` × Sm(n−`) ≤ Smn containing B. If ψ is a character

of Sm o Sn then it is easily checked that

ResS`×Sn−`(DefϑSn ψ) = (DefϑS` ×DefϑSn−`)(ResSmoSnSmoS`×SmoSn−` ψ).

Hence

ResS`×Sn−`(DefresϑSn χ) = (DefresϑS` ×DefresϑSn−`)(ResSmnSm`×Sm(n−`)
χ)

for any character χ of Smn. The proposition now follows from the expression

for ResSm`×Sm(n−`) χ
λ/µ given in Lemma 4.4. �

We are now ready to prove Theorem 1.5. Let m, n ∈ N and let λ/µ be

a skew-partition of mn. Let γ = (γ1, . . . , γd) be a composition of n. Let

g ∈ Sn have cycle type γ and let h ∈ Sn−γ1 have cycle type (γ2, . . . , γd). Note

that, by Lemma 4.2, if τ/µ is a skew-partition of mγ1 then there is at most

one m-border-strip tableau of shape τ/µ and type (γ1). We shall denote

this tableau by Tτ/µ when it exists. By Definition 1.4, aτ/µ,(γ1) = sgn(Tτ/µ)

(or is zero if no such tableau exists). It follows that Proposition 4.3 may be

restated as (DefresSγ1 χ
τ/µ)(k) = sgn(Tτ/µ), where k ∈ Sγ1 is a γ1-cycle and

(DefresSγ1 χ
τ/µ)(k) = 0 if no tableau Tτ/µ exists. It therefore follows from

Proposition 4.5 that

(10) (DefresSn χ
λ/µ)(g) =

∑
τ

sgn(Tτ/µ)(DefresSn−γ1 χ
λ/τ )(h)

where the sum is over all partitions τ such that µ ⊆ τ ⊆ λ, |τ/µ| = mγ1

and there is an m-border-strip tableau of shape τ/µ. By induction on the

number of parts of γ we have

(DefresSn χ
λ/µ)(g) =

∑
τ

sgn(Tτ/µ)aλ/τ,(γ2,...,γd)

with the same conditions on the sum. It is clear that if T is anm-border-strip

tableau of shape λ/µ and type γ then the border strips in T corresponding

to the m parts of length γ1 in γ?m form an m-border-strip tableau of shape

τ/µ for some τ . Therefore the right-hand side of the previous equation

is aλ/µ,γ . This completes the proof of Theorem 1.5.
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5. An application to Foulkes’ Conjecture

For m, n ∈ N, let φ(m
n) be the permutation character of Smn acting

on all unordered set partitions of {1, 2, . . . ,mn} into n sets each of size m.

Equivalently, φ(m
n) = IndSmnSmoSn 1. Foulkes’ Conjecture asserts that if m ≤ n

then 〈
φ(m

n), χλ
〉
≥
〈
φ(n

m), χλ
〉

for all partitions λ of mn. Equivalent formulations of Foulkes’ Conjecture

exist in the language of general linear groups, symmetric polynomials, and

geometric invariant theory. Despite having been attacked from all these

directions (and more), Foulkes’ Conjecture has only been proved when m ≤
4 (see [2] and [13]), asymptotically when n is very large compared to m

(see [1, page 352]) and, in a computational result of Müller and Neunhöffer

[14], when m + n ≤ 17. For further background we refer the reader to [20,

Problem 9]. For some recent results on the constituents of φ(m
n) see [16]

and [6].

In this section we use character deflations to prove a new recursive for-

mula for the character multiplicities in Foulkes’ Conjecture. Firstly, using

Frobenius reciprocity, then the inflation-deflation reciprocity relation

(11) 〈DefSn ψ, χ〉 =
〈
ψ, InfSmoSnSn

χ
〉
,

where ψ is a character of Sm oSn and χ is a character of Sn, we observe that〈
φ(m

n), χλ
〉

=
〈

DefresSn χ
λ, 1Sn

〉
.

Proposition 5.1. Let m, n ∈ N. If λ is a partition of mn then〈
φ(m

n), χλ
〉

=
1

n

n∑
`=1

∑
µ

ε`(λ/µ)
〈
φ(m

n−`), χµ
〉

where the second sum is over all partitions µ of `m such that there exists

an m-border strip tableau of shape λ/µ and type (`).

Proof. We have seen that〈
φ(m

n), χλ
〉

=
〈

DefresSn χ
λ, 1Sn

〉
=

1

n!

∑
g∈Sn

(DefresSn χ
λ)(g).

We may write each g ∈ Sn as a product of an `-cycle containing the letter 1

and some h ∈ Sn−` acting on the remaining letters. The number of possible

such `-cycles is (n− 1)!/(n− `)!, hence〈
φ(m

n), χλ
〉

=
1

n!

n∑
`=1

(n− 1)!

(n− `)!
∑

h∈Sn−`

(DefresSn χ
λ)(xh)
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where x is the `-cycle (1 2 . . . `). We now apply Proposition 4.5 to see that〈
φ(m

n), χλ
〉

=
1

n

n∑
`=1

1

(n− `)!
∑

h∈Sn−`

∑
µ

(DefresS` χ
λ/µ)(x)(DefresSn−` χ

µ)(h),

where the sum is over partitions µ ⊆ λ with |λ/µ| = m`. Since x is an `-

cycle, Proposition 4.3 shows that (DefresS` χ
λ/µ)(x) is ε`(λ/µ) if there exists

an m-border-strip tableau of shape λ/µ and type (`) and is zero otherwise.

Thus〈
φ(m

n), χλ
〉

=
1

n

n∑
`=1

∑
µ

ε`(λ/µ)
1

(n− `)!
∑

h∈Sn−`

(DefresSn−` χ
µ)(h)

=
1

n

n∑
`=1

∑
µ

ε`(λ/µ)
〈
DefresSn−` χ

µ, 1Sn−`
〉

=
1

n

n∑
`=1

∑
µ

ε`(λ/µ)
〈
φ(m

n−`), χµ
〉

where, in each case, the second sum is over all partitions µ ⊆ λ for which

there exists an m-border-strip tableau of shape λ/µ and type (`). �

Proposition 5.1 gives an algorithm for testing Foulkes’ Conjecture for a

single character χλ of Smn that is far faster than more direct methods, such

as those requiring the character values of φ(m
n) and φ(n

m) to be calculated

on all partitions of mn. Timings suggest that it can be significantly faster

than the algorithm used by symmetrica [9], although some of this gain

comes at the expense of increased use of memory. For example, to calculate

all the multiplicities 〈φ(611), χλ〉 for λ a partition of 66 takes 34 minutes

using the Haskell [17] implementation of Proposition 5.1 available from the

third author’s website1, compared to 350 minutes for symmetrica using the

function COMPLETE_COMPLETE_PLET, both running on the same machine.

The graphs in Figures 3 and 4 show a number of intriguing features of the

character multiplicities appearing in Foulkes’ Conjecture. In particular, it

seems plausible that if Foulkes’ Conjecture is false, then a counterexample

occurs when the relevant partition is either very large or very small in the

lexicographic order on partitions of mn with at most n parts.

Using symmetrica, Foulkes’ Conjecture has been checked for all m and n

with m + n ≤ 17 in [14]. Using Proposition 5.1 and the software already

mentioned, we have extended this range. The relevant data is available from

the third author’s website.

1See www.ma.rhul.ac.uk/~uvah099/.
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Figure 4. The top graph shows log2

〈
φ(7

8), χλ
〉
− log2

〈
φ(8

7), χλ
〉

for the partitions of

56 with at most 7 parts for which the smaller multiplicity is non-zero. To increase

their visibility a small number of points have been enlarged. Partitions are ordered

lexicographically, with the smallest partition (87) at the far right. The lower graph

shows log2

〈
φ(7

8), χλ
〉

for those partitions for which
〈
φ(8

7), χλ
〉

= 0; if
〈
φ(7

8), χλ
〉

= 0

then the point is drawn below the axis.
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Corollary 5.2. If m ≤ n and m+ n ≤ 19 then〈
φ(m

n), χλ
〉
≥
〈
φ(n

m), χλ
〉

for all partitions λ of mn. �

6. Generalized deflations

In this section we discuss deflation with respect to an arbitrary irreducible

character ϑ of Sm. In the case where ϑ is labelled by a hook partition,

ϑ = χ(a,1b) where a+b = m, we give a combinatorial description, generalizing

Theorem 1.5. We also prove some other general results, and show how these,

together with the results of §4, may be used to calculate the values of an

irreducible character of Smn deflated with respect to an arbitrary character

of Sm.

Firstly we deduce from Theorem 1.5 an analogous result for deflations

with respect to the sign character. As is usual, if λ is a partition then we

denote by λ′ the conjugate partition to λ.

Proposition 6.1. Let m, n ∈ N and let λ/µ be a skew-partition of mn.

If γ is a composition of n and g ∈ Sn has cycle type γ then

(Defres
sgnSm
Sn

)(g) =

aλ′/µ′,γ if m is even

sgnSn(g) aλ′/µ′,γ if m is odd.

Proof. It is easily seen that

ResSmoSn sgnSmn =


s̃gn×nSm if m is even

s̃gn×nSm sgnSn if m is odd.

Hence if χ is any character of Smn then

Defres
sgnSm
Sn

χ = ηDefresSn(χ sgnSmn)

where η = 1Sn if m is even and η = sgnSn if m is odd. Theorem 7.15.6

of [19] (which is written in the language of skew Schur functions) can be

restated in character theoretic terms as follows: if λ/µ is a skew-partition

of mn then χλ/µ sgnSmn = χλ
′/µ′ . Therefore, by Theorem 1.5, we have

Defres
sgnSm
Sn

(χλ
′/µ′) = η(g)aλ′/µ′,γ ,

as required. �
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It would also have been possible to prove Proposition 6.1 directly from

Proposition 4.1, by reasoning along the same lines as the proof of Theo-

rem 1.5 in §5.

We now turn our attention to the case where ϑ = χ(a,1b) for a hook

partition (a, 1b). For convenience, we use the language of skew shapes (see,

for example, [22]). A skew shape is a finite subset κ of N×N that is convex

with respect to the partial order ≤p defined by (i, j) ≤p (i′, j′) if and only

if i ≤ i′ and j ≤ j′. We identify the skew-partition λ/µ in which λ has t

parts with the skew shape {(i, j) : 1 ≤ j ≤ t, µi + 1 ≤ j ≤ λi}. We define

χκ = χλ/µ and εn(κ) = εn(λ/µ).

Suppose κ is a non-empty skew shape. Then we define the initial box of

κ to be (iκ, jκ) where (iκ, jκ) ∈ κ and, for any i ≤ iκ and j ≥ jκ, if (i, j) ∈ κ
then i = iκ and j = jκ. Similarly, we define the terminal box of κ to be

(kκ, `κ) where (kκ, `κ) ∈ κ and, for any k ≥ kκ and ` ≤ `κ, if (k, `) ∈ κ then

k = kκ and ` = `κ. The initial and terminal boxes exist due to the convexity

of κ. For all (i, j) ∈ κ, iκ ≤ i ≤ kκ and `κ ≤ j ≤ jκ.

We use the term border strip in this context to mean a connected skew

shape which contains no 2 × 2 square. We say that D is a border-strip n-

diagram if D is a finite set of disjoint border strips, each of length n, such

that
⋃
D is a skew shape. We say that D is a horizontal border-strip n-

diagram if whenever (iρ, jρ) is the initial box of some border strip ρ ∈ D,

we have (i, jρ) /∈
⋃
D for all i < iρ. Similarly, D is a vertical border-strip n-

diagram if whenever (kρ, `ρ) is the terminal box of some border strip ρ ∈ D,

we have (kρ, `) /∈
⋃
D for all ` < `ρ.

We define a relation R on the set of border strips of length n by (ρ1, ρ2) ∈
R if ρ1 and ρ2 are disjoint border strips of length n and there exist z ∈ ρ1
and w ∈ ρ2 such that z <p w. Observe that when n ≥ 2 the relation R
is not transitive. We can now state the following combinatorial definition,

which is illustrated in Figure 5 overleaf.

Definition 6.2. Let κ be a skew shape of size mn, let a, b be positive

integers such that a+ b = m, and D and E be two border-strip n-diagrams

such that κ =
⋃

(D ∪ E). We say that (D,E) is an (a, 1b)-like border-strip

n-diagram of shape κ if the following conditions are satisfied:

(1) |D| = a and |E| = b+ 1;

(2) D ∩ E = {σ} where σ is a border strip of length n which contains

the initial box of κ;

(3) D is a horizontal border-strip n-diagram, and E is a vertical border-

strip n-diagram;

(4) there do not exist ρD ∈ D and ρE ∈ E such that (ρE , ρD) ∈ R.
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II

I

I

T

T

T

T

T

Figure 5. A (4, 14)-like border-strip 3-diagram of shape (9, 8, 7, 7, 6, 2, 1)/(5, 5, 3, 3).

Border strips in the horizontal border-strip 3-diagram are shown in light grey and white,

with their initial boxes labelled I; border strips in the vertical border-strip 3-diagram

are shown in light grey and dark grey with their terminal boxes labelled T .

We denote the set of (a, 1b)-like border-strip n-diagrams of shape κ by Bκa,b.

We note that, by a simple counting argument, whenever (D,E) ∈ Bκa,b,
the elements of D are pairwise disjoint, as well as those of E, and we have

(
⋃
D)∩ (

⋃
E) = σ. Definition 6.2 is inspired by the Littlewood–Richardson

Rule (see [8, 2.8.13] or [19, A1.3.3]) in the case of a hook partition (a, 1b). In

this case the rule states that the multiplicity of χ(a,1b) in χκ is the number

of ways to represent κ as a union of two skew shapes α and β satisfying the

following: (1) the size of α is a and the size of β is b + 1; (2) α ∩ β = {x}
where x is the initial box of κ; (3) α is a horizontal strip and β is a vertical

strip; (4) there do not exist y ∈ α and z ∈ β such that z <p y. Thus

(Defχ
(a,1b)

S1
χκ)(1S1) = |Bκa,b|.

This is the case n = 1 of the following theorem.

Theorem 6.3. Let κ be a skew shape of size mn. Let a, b be positive integers

such that a+ b = m. Let g ∈ Sn be an n-cycle. Then

(Defresχ
(a,1b)

Sn
χκ)(g) = εn(κ)|Bκa,b|.

We observe that an (m)-like border-strip n-diagram of shape κ may be

viewed as an m-border-strip tableau of shape κ and type (n) by labelling

the border strips in the unique way so that the condition on row numbers in

Definition 1.4 holds. Thus Theorem 6.3 is a generalization of Theorem 1.5

in the case of an n-cycle.

Example 6.4. We compute (Defresχ
(3,1)

S3
χ(4,4,4))(g) where g is a 3-cycle.

There are two (3, 1)-like border-strip 3-diagrams of shape (4, 4, 4), namely
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({ρ1, ρ2, ρ3}, {ρ3, ρ4}) and ({ρ5, ρ6, ρ7}, {ρ7, ρ8}), where ρi denotes the bor-

der strip consisting of the boxes labelled by i in the tableaux below.

1 2 2 3
1 2 3 3
1 4 4 4

,
5 6 7 7
5 6 7 8
5 6 8 8

.

Since ε3(4, 4, 4) = 1, Theorem 6.3 implies that (Defresχ
(3,1)

S3
χ(4,4,4))(g) = 2.

The proof of Theorem 6.3 requires the following definition, in which we

assume that a+ b = m.

Definition 6.5. Let κ be a skew shape of size mn. Define Dκa,b to be the

set of pairs (D,E) where D and E are border-strip n-diagrams such that

κ =
⋃

(D ∪ E) and the following conditions are satisfied:

(1′) |D| = a and |E| = b;

(3) D is a horizontal border-strip n-diagram, and E is a vertical border-

strip n-diagram;

(4) there do not exist ρD ∈ D and ρE ∈ E such that (ρE , ρD) ∈ R.

Note that since |κ| = mn, the border-strips in D and E are necessarily

disjoint. We need the following two lemmas on Dκa,b; their proofs are given

after the proof of Theorem 6.3.

Lemma 6.6. Let κ be a skew shape of size mn, and let a, b be positive

integers such that a+ b = m. Then

〈ω(ResSmoSn χ
κ), IndSmSa×Sb(χ

(a) × χ(1b))〉 = εn(κ)|Dκa,b|.

Lemma 6.7. Let κ be a skew shape of size mn. Let 0 ≤ a < m and

b = m− a. Then

|Dκa,b| = |Bκa,b|+ |Bκa+1,b−1|.

Proof of Theorem 6.3. The proof is by induction on b. Recall that g denotes

an n-cycle. In the case b = 0 we have

(Defresχ
(m)

Sn
χκ)(g) = aκ,(n) = εn(κ)|Dκm,0| = εn(κ)|Bκm,0|,

where the first equality follows from Theorem 1.5 and the second by Lemma 4.2.
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For b > 0, we combine Proposition 2.6 with Lemmas 6.6 and 6.7, Young’s

Rule and the inductive hypothesis to get

(Defresχ
(a,1b)

Sn
χκ)(g) = 〈ω(ResSmoSn χ

κ), χ(a,1b)〉

= 〈ω(ResSmoSn χ
κ), IndSmSa×Sb(χ

(a) × χ(1b))− χ(a+1,1b−1)〉

= εn(κ)|Dκa,b| − (Defresχ
(a+1,1b−1)

Sn
χϑ)(g)

= εn(κ)|Dκa,b| − εn(κ)|Bκa+1,b−1|

= εn(κ)|Bκa,b|,

as required. �

It remains to demonstrate the truth of the two lemmas.

Proof of Lemma 6.6. Let g denote an n-cycle. In the case b = 0,

〈ω(ResSmoSn χ
κ), χ(m)〉 = (DefresSn χ

κ)(g) = aκ,(n) = εn(κ)|Dκm,0|

by Proposition 2.6, Theorem 1.5 and Lemma 4.2. Similarly, the case a = 0

follows using Proposition 6.1:

〈ω(ResSmoSn χ
κ), χ(1m)〉 = (Defres

sgnSm
Sn

χκ)(g) = εn(κ)|Dκ0,m|.

In the general case, let κ = λ/µ. By Frobenius reciprocity and Lemma 4.4,

〈ω(ResSmoSn χ
κ), IndSmSa×Sb(χ

(a) × χ(1b))〉 =

〈
∑
τ

ω(ResSaoSn χ
τ/µ)× ω(ResSboSn χ

λ/τ ), χ(a) × χ(1b)〉,

where the sum is over all partitions τ such that µ ⊆ τ ⊆ λ and |τ/µ| = an.

Using the two extreme cases, it follows that

〈ω(ResSmoSn χ
κ), IndSmSa×Sb(χ

(a) × χ(1b))〉 =
∑
τ

εn(τ/µ)|Dτ/µa,0 |εn(λ/τ)|Dλ/τ0,b |

= εn(λ/µ)
∑
τ

|Dτ/µa,0 | |D
λ/τ
0,b |

= εn(λ/µ)|Dλ/µa,b |

as required. �

The proof of Lemma 6.7 relies upon the following simple result.

Lemma 6.8. Let ρ1 and ρ2 be disjoint border strips, each of length n, such

that (ρ1, ρ2) ∈ R. For t ∈ {1, 2}, let (it, jt) and (kt, `t) be the initial and

terminal boxes respectively of ρt. Then

(1) There exists (r, s) ∈ ρ2 such that either r ≥ i1 and s > j1, or r > k1

and s ≥ `1.
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(2) There exists (t, q) ∈ ρ1 such that either t < i2 and q ≤ j2, or t ≤ k2
and q < `2.

Proof. We prove the first statement only; the second is entirely analogous.

Suppose that (ρ1, ρ2) ∈ R but there exists no (r, s) ∈ ρ2 satisfying the stated

conditions. Since (ρ1, ρ2) ∈ R, there exist (a, b) ∈ ρ1 and (e, f) ∈ ρ2 such

that (a, b) <p (e, f). In particular, i1 ≤ e and `1 ≤ f , and our assumption

implies that f ≤ j1 and e ≤ k1. Thus (e, f) belongs to the rectangle

[i1, k1]×[`1, j1]. The border strip ρ1 divides its complement in [i1, k1]×[`1, j1]

into two connected components, with (e, f) lying to the south east of ρ1 (as

(a, b) ∈ ρ1 satisfies (a, b) <p (e, f)).

Let τ = {(c, j1 + 1) : i1 ≤ c ≤ k1 + 1}∪{(k1 + 1, d) : `1 ≤ d ≤ j1 + 1}, and

observe that our assumption ensures that τ ∩ ρ2 = ∅. The set ρ1 ∪ τ is the

boundary of a certain region ∆. Since (e, f) ∈ ∆ and ρ2 does not intersect

the boundary, the whole border strip ρ2 must be contained in ∆ and, in

particular, ρ2 ⊂ [i1, k1]×[`1, j1]. However, as ρ1 is a border strip of the same

length with initial and terminal boxes (i1, k1) and (`1, j1) respectively, ρ2

must contain the corners (i1, k1) and (`1, j1) and hence intersect ρ1, contrary

to our hypotheses. �

This lemma can be used to verify that if D is a horizontal border-strip

n-diagram with initial box (iσ, jσ) ∈ σ ∈ D then (σ, ρ) /∈ R for all ρ ∈ D.

Indeed, if (σ, ρ) ∈ R then by Lemma 6.8(i) there exists (r, s) ∈ ρ such that

either r ≥ iσ and s > jσ, or r > kσ and s ≥ `σ. The ‘either’ case is

impossible because (iρ, jρ) is the initial box of D. Hence (iρ, jρ) must lie

in [iσ, r] × [s, jσ], to the south of σ, and so a box of σ lies above (iρ, jρ),

contradicting the horizontality of D. Similarly, if E is a vertical border-strip

n-diagram with initial box (iσ, jσ) ∈ σ ∈ E then (ρ, σ) /∈ R for all ρ ∈ E:

indeed if (ρ, σ) ∈ R then by Lemma 6.8(ii) there exists (t, q) ∈ ρ such that

either t < iσ and q ≤ jσ, or t ≤ kσ and q < `σ. The ‘either’ case is again

ruled out because (iσ, jσ) is the initial box of E. Hence

(t, q) <p (kσ, q) ≤p (kσ, `σ),

and so (kσ, q) is a box of E because
⋃
E is convex. But this box lies to the

left of the terminal box of σ, a contradiction. We shall use these observations

in the proof of Lemma 6.7.

Proof of Lemma 6.7. We construct a bijection

f : Bκa,b t Bκa+1,b−1 → Dκa,b.
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Given (D,E) ∈ Bκa,b t Bκa+1,b−1, let σ denote the unique element of D ∩ E.

For (D,E) ∈ Bκa,b, we set f(D,E) = (D,E \{σ}), and for (D,E) ∈ Bκa+1,b−1
we set f(D,E) = (D \ {σ}, E).

Firstly, we verify that f(D,E) ∈ Dκa,b. Suppose that (D,E) ∈ Bκa,b (as

the second case is exactly analogous). The conditions (1′), (3), (4) on

(D,E \ {σ}) follow immediately provided that
⋃

(E \ {σ}) is a skew shape.

Take x <p y <p z with x, z ∈
⋃

(E \{σ}). We know y lies in the skew shape⋃
E, so suppose that y ∈ σ. Then if z ∈ ρE ∈ E \ {σ} we have (σ, ρE) ∈ R,

contrary to condition (4) of Definition 6.2.

To see that f is the bijection we require, we define its inverse map

h : Dκa,b → Bκa,b t Bκa+1,b−1.

For (D,E) ∈ Dκa,b, let σ denote the border strip of D ∪ E containing the

initial box of κ. Then if σ ∈ D we set h(D,E) = (D,E ∪ {σ}) and if σ ∈ E
we set h(D,E) = (D ∪ {σ}, E).

We verify that h(D,E) ∈ Bκa,b t Bκa+1,b−1. Suppose σ ∈ D. To see that⋃
(E∪{σ}) is a skew shape, take x <p y <p z with x, z ∈

⋃
(E∪{σ}). If x, z

lie in the skew shape
⋃
E then so does y, and similarly if x, z ∈ σ then y ∈ σ.

Two cases remain. Firstly, if x ∈ ρ ∈ E and z ∈ σ ∈ D then (ρ, σ) ∈ R,

contrary to the definition of Dκa,b. Secondly, suppose that x ∈ σ ∈ D and

z ∈
⋃
E, and, for a contradiction, that y ∈ ρ ∈ D \ {σ}. Then (σ, ρ) ∈ R,

which is impossible by the first observation following Lemma 6.8. (The

proof that D∪{σ} is a skew shape in the case σ ∈ E is entirely analogous.)

Next we verify that if σ ∈ D then E ∪ {σ} is a vertical border-strip n-

diagram. Let (iσ, jσ) be the initial box of σ and let (kσ, `σ) ∈ σ be the

terminal box of σ. Since E is a vertical border-strip n-diagram, it suffices

to check firstly that there is no box (kσ, `) ∈ ρE ∈ E for ` < `σ, and

secondly that, if ρ ∈ E has terminal box (kρ, `ρ), then (kρ, j) /∈ σ for any

j < `ρ. The first statement is a consequence of the definition of Dκa,b since

the existence of such a box implies (ρE , σ) ∈ R. If the second statement

fails with (kρ, j) ∈ σ, then (σ, ρ) ∈ R and Lemma 6.8(i) implies that there

is a box (r, s) ∈ ρ with either r ≥ iσ and s > jσ, or r > kσ and s ≥ `σ.

The ‘either’ case is ruled out because (iσ, jσ) is the initial box of σ. In the

‘or’ case, since (kρ, j) ∈ σ, we have kσ ≥ kρ, and therefore r > kσ ≥ kρ,

contradicting that (r, s) ∈ ρ. (The proof that if σ ∈ E then D ∪ {σ} is

a horizontal border-strip n-diagram is simpler, using the definition of Dκa,b
and the fact that (iσ, jσ) is the initial box of ϑ.)

Finally, we must check that if σ ∈ D then there do not exist ρ ∈ D and

ρ′ ∈ E ∪ {σ} with (ρ′, ρ) ∈ R. This is true because (D,E) ∈ Dκa,b, and, by
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the observation following Lemma 6.8, for all ρ ∈ D, (σ, ρ) /∈ R. (Again, the

case σ ∈ E is similar).

We have demonstrated that f and h are well-defined, and by their con-

struction the maps are mutually inverse. �

This completes the proof of Theorem 6.3 on deflation with respect to

hook characters. We now give some results on DefresϑSn χ
λ for an arbitrary

irreducible character ϑ.

Proposition 4.1 combined with the Littlewood–Richardson rule yields the

following corollary, which gives a useful sufficient condition for the deflation

of an irreducible character of Smn to vanish on an n-cycle.

Corollary 6.9. Let m, n ∈ N, let λ be a partition of mn. Let β be a parti-

tion of m and let ϑ = χβ. Let g ∈ Sn be an n-cycle. If (DefresϑSn χ
λ)(g) 6= 0

then λ has empty n-core and moreover, λ(i) ⊆ β for each i ∈ {0, . . . , n− 1},
where (λ(0), . . . , λ(n−1)) is the n-quotient of λ. In this case

(DefresϑSn χ
λ)(g) = εn(λ/∅)cβ

λ(0)...λ(n−1)

where cβ
λ(0)...λ(n−1) denotes a generalized Littlewood–Richardson coefficient.

A related result is Proposition 6.10 below, which gives the degrees of the

deflations of the irreducible characters of Smn to Sn. It may be proved in

the same way as Equation (2) in §1. Note that the right-hand side equals

the generalized Littlewood–Richardson coefficient cλβ...β .

Proposition 6.10. Let m, n ∈ N. Let β be a partition of m and let ϑ = χβ.

Then

DefresϑSn(χλ)(1Sn) =
〈

IndSmnSm×···×Sm χ
β × · · · × χβ, χλ

〉
for any partition λ of mn. �

We end with an example showing how Propositions 4.1, 4.5, and 6.10 and

Corollary 6.9 may be used to calculate the values of an irreducible character

of Smn deflated with respect to an arbitrary character of Sm.

Example 6.11. Let ϑ = χ(2,2). We shall find (DefresϑS4
χ(6,4,4,2))(g) in the

cases where g ∈ S4 is a transposition or a double transposition.

Firstly take g to be a transposition. By Proposition 4.5 we have

(DefresϑS4
χ(6,4,4,2))(g) =

∑
τ

(DefresϑS2
χτ )(1S2)(DefresϑS2

χ(6,4,4,2)/τ )(k)

where k = (12) ∈ S2 and the sum is over all partitions τ of 8. Using

Proposition 6.10 on the first term we obtain

(DefresϑS4
χ(6,4,4,2))(g) =

∑
τ

cτ(2,2)(2,2)(DefresϑS2
χ(6,4,4,2)/τ )(k)
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with the same conditions on the sum. By Proposition 4.1, we need only

consider those partitions τ such that (6, 4, 4, 2)/τ is 2-decomposable. The

2-quotient of (6, 4, 4, 2) is
(
(2, 1), (3, 2)

)
, so the τ we must consider are the

partitions (6, 12), (4, 3, 1), (6, 2), (4, 22), (42), (32, 2), (4, 2, 12), (24), (32, 12).

Calculation shows that cτ(2,2)(2,2) = 1 when τ ∈ P where

P = {(4, 3, 1), (4, 22), (42), (24), (32, 12)}

and that cτ(2,2)(2,2) is zero in the other four cases. Hence by Proposition 4.1

we have

(DefresϑS4
χ(6,4,4,2))(g) =∑

τ∈P
ε2
(
(6, 4, 4, 2)/τ

) 〈
IndS4

H χ(2,1)/τ (0) × χ(3,2)/τ (1) , χ(2,2)
〉

where H = S|(2,1)/τ (0)| × S|(3,2)/τ (1)|. The contributions to the sum from

the elements of P , in the order given above, are −1, +2, +1, +1 and +1

respectively. For example, the 2-quotient of (6, 4, 4, 2)/(4, 2, 2) is(
(2, 1)/(1), (3, 2)/(2, 1)

)
and ε2

(
(6, 4, 4, 2)/(4, 2, 2)) = 1, so the contribution from (4, 2, 2) is〈
IndS4

S2×S2
χ(2,1)/(1) × χ(3,2)/(2,1), χ(2,2)

〉
=
〈

IndS4
1 1, χ(2,2)

〉
= 2.

Therefore (DefresϑS4
χ(6,4,4,2))(g) = 4.

Similar arguments can be used in the case where g is a double transposi-

tion. By Proposition 4.5 we have

(DefresϑS4
χ(6,4,4,2))(g) =

∑
τ

(DefresϑS2
χτ )(k)(DefresϑS2

χ(6,4,4,2)/τ )(h)

where k and h are transpositions, and the sum is over all partitions τ of 8.

Proposition 4.1 and Corollary 6.9 restrict the possible partitions τ to be

considered and show that (DefresϑS4
χ(6,4,4,2))(g) equals∑

τ∈P
ε2
(
τ/∅

)
c
(2,2)

τ (0)τ (1)
ε2
(
(6, 4, 4, 2)/τ

) 〈
IndS4

H χ(2,1)/τ (0) × χ(3,2)/τ (1) , χ(2,2)
〉

where

P = {(4, 3, 1), (4, 22), (42), (24), (32, 12)}

and H = S|(2,1)/τ (0)| × S|(3,2)/τ (1)|. The contributions to the sum from the

elements of P , in the order given above, are +1, +2, +1, +1 and +1 respec-

tively. Hence (DefresϑS4
χ(6,4,4,2))(g) = 6.
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7. Symmetric functions

Finally, we discuss the translation of our results into the language of

symmetric functions. The following well-known facts can be found in [12,

Chapter I]. Let Λ be the ring of symmetric functions with integer coefficients

in variables x1, x2, . . ., and let R =
⊕

n≥0 C(Sn). There is a well-known

canonical ring isomorphism ch: R → Λ, where the ring structure on R is

given, for f ∈ C(Sm) and g ∈ C(Sn), by fg = IndSmnSm×Sn(f × g). Moreover,

the map ch is an isometry with respect to the standard inner products 〈·, ·〉
on R and Λ. If λ/µ is any skew-partition, then ch(χλ/µ) = sλ/µ, the skew

Schur function corresponding to λ/µ. Furthermore, suppose that β and ν

are partitions, with |β| = m and |ν| = n. Denote by sν ◦ sβ the plethysm of

sν and sβ (see [12, §I.8]). Then

(12) ch
(

IndSmnSmoSn( ˜(χβ)×n InfSmoSnSn
χν)
)

= sν ◦ sβ

(see [12, §I.8 and §I.A.6]). By first using Frobenius reciprocity, then the

inflation-deflation reciprocity relation of Equation (11), we have〈
IndSmnSmoSn( ˜(χβ)×n InfSmoSnSn

χν), χλ/µ
〉

=
〈
χν ,Defresχ

β

Sn
χλ/µ

〉
for any skew-partition λ/µ with |λ/µ| = mn. Comparing with Equation (12)

shows that if λ/µ is such a skew-partition then

(13) Defresχ
β

Sn
χλ/µ =

∑
ν

〈sλ/µ, sν ◦ sβ〉χν

where the sum is over all partitions ν of n.

Let pl =
∑

i x
l
i be the power-sum symmetric function, and write pγ =

pγ1 · · · pγd for any composition γ = (γ1, . . . , γd). If γ is a composition of n,

then χν(gγ) = 〈pγ , sν〉 (see [12, Equation (I.7.8)]). Using Equation (13), we

obtain

(Defresχ
β

Sn
χλ/µ)(gγ) =

∑
ν

〈sλ/µ, sν ◦ sβ〉χν(gγ)

=
∑
ν

〈sλ/µ, sν ◦ sβ〉〈sν , pγ〉 = 〈sλ/µ, pγ ◦ sβ〉
(14)

where the sums are over all partitions of n.

In the case when β = (m), we have sβ = hm, where hm is the complete

symmetric function of degree m (see [12, Section I.2]). Thus Equation (14)

shows that Theorem 1.5 is equivalent to the identity

(15) 〈sλ/µ, pγ ◦ hm〉 = aλ/µ,γ .
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In [3, Section 9], Désarménien, Leclerc, and Thibon obtain a formula

which implies that

(16) sµ(pn ◦ hm) =
∑
λ

εn(λ/µ)aλ/µ,(n),

where the sum is over the partitions λ of |µ| + mn such that λ ⊇ µ. (Our

definition of an m-border-strip tableau of type (n) is equivalent to the defini-

tion of a horizontal n-ribbon tableau of weight m in [3].) In fact, the formula

in [3] is more general, giving a combinatorial description of sµ(pn ◦ sκ) for

any partition κ of n. Clearly, Equation (16) is equivalent to Equation (15)

in the case γ = (n); this leads, after some work, to an alternative proof of

Theorem 1.5.

Furthermore, in the special case when µ = ∅, a combinatorial description

of the left-hand side of Equation (15) is given by Macdonald in [12, §I.8,

Example 8]. Using Lemma 4.2, one can see that this description is equivalent

to the definition of aλ,γ .
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