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We extend the common theme of random Apollonian packing of circles to consider orientable grains

with a noncircular shape. Systems of up to 106 grains are examined for a range of polygonal and elliptical

shapes using both the random Apollonian packing model and the new rotational random Apollonian

packing model which takes into account the extra rotational degree of freedom of noncircular grains. We

identify the constraining length Dc that limits growth of the grain during the packing process and find that

a universal relation exists between grain shape and the scaling properties of the system.

DOI: 10.1103/PhysRevLett.101.120602 PACS numbers: 05.10.�a, 45.70.�n, 61.43.Bn, 81.10.Aj

Scientists have long considered space filling problems in

which nonoverlapping units of smaller and smaller sizes

are placed according to a given set of rules [1–4]. The

oldest known packing of this kind is the Apollonian pack-

ing (AP) of circles introduced by Apollonius of Perga

around 200 B.C. [5]. This packing is formed by placing a

circular disk in the space between three mutually touching

disks so that it just touches the other three. The procedure

is then continually repeated, filling the new gaps generated

by the addition of each new disk. Apollonian packing leads

to a dense system, with the size of the circles becoming

smaller and smaller and the packing fraction approaching

� ¼ 1 in the limit of an infinite number of disks. The AP

model was generalized by Manna [6,7] to consider the case

where the centers of the disks are chosen randomly (RAP,

Fig. 1). This model was further extended by Andrienko,

Brilliantov, and Krapivsky (ABK model) to allow multiple

disks to nucleate simultaneously with a linear growth rate

[8–10]. Dodds and Weitz [11] showed some of the univer-

sal features of these models (AP, RAP, ABK, etc.), consid-

ering them in terms of a broad class which they refer to as

‘‘packing-limited growth’’ (PLG) models. In PLG models,

grains are seeded randomly, they grow according to a given

rule, and they stop growing when they collide with another

grain. Dodds and Weitz highlighted the fact that the RAP

and ABK models converge as the number of placed grains

increases. This is the consequence of a coupled mechanism

where the number of pores increases and their sizes de-

crease. Thus for the ABK model, collisions of growing

grains increasingly occur with already placed grains (the

sole mechanism of packing in the RAP model), while

collisions with other growing grains become increasingly

unlikely.

In PLG models, the inverse cumulate distribution NðrÞ
of the grain sizes (number of grains with sizes larger than

or equal to r) in the limit of small sizes behaves accord-

ingly with

NðrÞ ¼ n0

�

r

r0

�

1��
; (1)

where n0 is the number of grains at which the relation

becomes valid and r0 is the effective grain size at which

this takes place. The decay of the pore space volume (� ¼
1��) with the total number of packed elements n is also

described by a power law (for large n) with

�ðnÞ ¼ �0

�

n

n0

�

��
; (2)

where �0 is the pore space volume at which the relation

FIG. 1 (color online). RAP packings of 500 circles (top left)

and triangles (top right). RRAP packing of 500 ellipses with

aspect ratio � ¼ 0:7 (bottom left) and RRAP packing of tri-

angles (bottom right). Grains pack more densely in the RRAP

model as a result of being able to rotate during the packing

process.

PRL 101, 120602 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

19 SEPTEMBER 2008

0031-9007=08=101(12)=120602(4) 120602-1 � 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.101.120602


becomes valid when n0 grains have been packed. It has

been shown [11] that the two exponents� and� are related

by � ¼ 1þ 2
�þ1

, and we have verified that this relation

also holds for polygonal and elliptical shapes in both the

RAP and rotational random Apollonian packing (RRAP)

models (Fig. 2). We refer to � as the packing efficiency

exponent as it is a measure of how quickly a particular

shape fills space. Combining this expression for � with

Eqs. (1) and (2), one can verify that the fractal dimension is

Df ¼
2

�þ1
.

Dodds and Weitz obtained numerical estimates of the

scaling exponents � and � for the RAP model, and the

ABK model for the cases of disks growing heterogene-

ously, exponentially and linearly. They find a universal

exponent � ’ 2:56, independent of the growth dynamics.

In a further study Dodds and Weitz consider the role of

shape in a RAP model consisting of grains composed of

squares, rectangles, and grains formed from combining

sets of rectangles [12]. They find that the exponent �
is shape dependent, taking values in the range of 2:56 �
� � 3.

In this work we consider a model in which grains can

have a noncircular shape and consider packings with a

range of polygonal and elliptical shapes. We examine the

detailed role that shape plays in determining the properties

of the generated packings. We first achieve this by gener-

ating RAP packings of grains [12], for a range of different

shapes, with each grain seeded with a randomly deter-

mined angle of orientation. This approach, however,

ignores the additional degree of freedom of noncircular

grains. In the RAP model, a grain stops growing on colli-

sion with another grain. However, a larger nonoverlapping

grain can be placed, if the grain is allowed to take advan-

tage of its additional rotational degree of freedom, choos-

ing the orientation about its center point which allows the

largest grain size to be placed (Fig. 1). We term this new

model rotational random Apollonian packing. Simulations

are initially seeded with 4 grains at random positions and

orientations and all simulations use periodic boundary

conditions. For both models we find that Eqs. (1) and (2)

are verified (Fig. 2). For each shape, we determine the

exponents � (RAP) and �0 (RRAP) by fitting the power-

law regions of log�ðnÞ vs logn. A clear power-law behav-

ior is evident when n > 1000 grains have been packed, as

shown by the linear trends at large n. Multiple packings of

n ¼ 106 were generated for shapes in both the RAP and

RRAP models. The data were averaged and the standard

deviation of the estimate of � and �0 for each grain shape

was determined. Smaller packings of n ¼ 105 were also

generated and it was verified that the packing efficiency

exponents coincide with those for n ¼ 106.

As an initial verification of our simulation we deter-

mined � from RAP simulations of circles and of squares,

finding � ¼ 0:277ð2Þ for circles and � ¼ 0:224ð2Þ for

squares. (The numbers in parentheses indicate the standard

deviation of our estimates for the last digit.) These are

consistent with the values of � ¼ 0:278ð1Þ (circles) and
� ¼ 0:223ð2Þ (squares) found by Dodds andWeitz [11,12].

Then we consider the logical progression of s-sided
polygons that are circumscribed by a circle: s ¼ 3 (equi-

lateral triangle), s ¼ 4 (square), s ¼ 5 (pentagon), and so

on, with s ! 1 tending toward a circle. The variation of

the exponents � and �0 for this set of shapes is shown in

Fig. 3. They show a very interesting behavior as the number

of edges is increased. For the RAP case, the exponent� has

a quite smooth increase from � ¼ 0:181ð2Þ for s ¼ 3 to a

value of � ¼ 0:275ð2Þ for s ¼ 20. A very different behav-

ior is found for our new RRAP model. The maximum�0 ¼
0:328ð2Þ is found for square grains and this is followed by a
slow decrease with �0 ¼ 0:279ð2Þ found for s ¼ 20. The
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FIG. 2. The decay of the pore space volume for triangles and

pentagons for n ¼ 106 in both the RAP (filled symbols) and

RRAP (open symbols) models. Inset shows inverse cumulate

distribution NðrÞ of the grain sizes. The clear power-law regions

verify the validity of Eqs. (1) and (2) in both RAP and RRAP

models.

FIG. 3 (color online). Variation of the packing efficiency ex-

ponents � (filled symbols) and �0 (open symbols) as the number

of edges of the packed grains increases.
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data clearly show that both the RAP and RRAP models

converge towards the value for circles [� ¼ 0:277ð2Þ], as
expected when the number of edges is increased and the

additional rotational degree of freedom becomes

unimportant.

We have also considered elliptical grains, again gener-

ating packings using both the RAP and RRAP models

(these simulations use n ¼ 105 grains). The variation of

� and �0 with the aspect ratio � (minor axis length/major

axis length) is shown in Fig. 4. For the RAP case, we

observe an initial flat region, where the ellipses have a �
value close to that of circles. For larger ellipticities, we see

a very rapid drop off in �, with � ¼ 0:124ð2Þ found for

� ¼ 0:1. Simulations using the RRAP model again show a

very different behavior for �0. There is an initial rapid

increase in �0 with ellipticity, with a maximum value of

�0 ¼ 0:359ð3Þ found for � ¼ 0:5. Above this value there

is a slow drop off in �0, with �0 ¼ 0:341ð2Þ found for

� ¼ 0:1.
The packing efficiency exponents� and�0 are measures

of how quickly the various shapes are able to fill in space in

the RAP and RRAP models. Larger packing efficiency

exponents are associated with packings that on average

have grains with a larger area at a given step in the packing

process. To determine the relationship between the packing

efficiency and the shape of the grain we need to consider

how the area of the grain is constrained in each packing

model. We can achieve this by identifying where contacts

between grains typically occur. This provides us with a

constraining length Dc associated with the contact points.

In the RAP model, the growth of the grains is constrained

by a single contact between the growing grain and an

already placed grain. For straight edged convex grains,

collisions in the RAP model in general occur between a

vertex (which is at the farthest distance Dc ¼ Dmax from

the center of the grain) and the edge of the other grain. (The

only other possibilities would be a collision between two

grains exactly at their respective vertices or with both

grains aligned edge to edge, both of which would require

the orientation of the grains to be identical and so have

infinitesimal probability to occur.) Contrarily, ellipses in

the RAP model will contact atDmax only when one grain is

oriented at exactly matching angles to the surface of the

other grain. In general, collisions between ellipses will

occur at arbitrary points on each ellipses surface. Thus in

this case the constraining length Dc is the average distance

from the center of the ellipse to its boundary Dc ¼ Dav ¼
2a
�
Kð1� ��2Þ. (Here K is an elliptic integral of the second

kind and a is the length of the minor axis.)

The situation is very different for the RRAP model. A

grain of any shape is able to continue growing and rotating

until the point that is a minimum distance (Dc ¼ Dmin)

from the center of the grain is constrained by the pore wall.

The other possibility is that the grain cannot achieve this

maximal area, because it gets constrained by contacting

with two separate grains. The likelihood of this second case

will be much higher for grains with a larger anisotropy

(ratio betweenDmin andDmax). This has been verified to be

the case: we measured 38% of grains in RRAP packings of

triangles failing to achieve their maximum size compared

to only 18% for squares and 16% for octagons.

Figure 5 shows the relative sizes of several polygonal

grain shapes with the same Dmax and Dmin lengths. Grains

contacting at Dc ¼ Dmax have the smallest area and con-

versely grains contacting at Dc ¼ Dmin have the largest

area and this leads to smaller packing efficiency exponents

in the RAP case with respect to the RRAP case. But what

about the shape dependence? We can see that the area

decreases with the number of sides when Dmin is con-

strained and instead it increases when Dmax is constrained.

If the grain area at fixed Dc is the parameter controlling

packing efficiency, this should be quantitatively reflected

in the values of � and �0. This is indeed confirmed by

plotting the packing efficiency exponents � and �0 against

the area of the grain using Dc ¼ Dmax ¼ 1 for the RAP

model and Dc ¼ Dmin ¼ 1 for the RRAP model (see

Fig. 6). We observe that all our data for � and �0 for all

FIG. 4 (color online). Variation of packing efficiency expo-

nents � (filled symbols) and �0 (open symbols) for RAP and

RRAP packings of ellipses with ellipticities from � ¼ 1 (circle)

to � ¼ 0:1 (highly elliptical).

FIG. 5 (color online). Relative sizes of a triangle, square,

hexagon, and circle when each grain’s minimum distance Dmin

(left) and maximum distance Dmax (right) from its center to its

edge is the same.
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the polygonal shapes follow a universal trend, with all the

data in the RAP model lying on an almost straight line

which is continued for the data for the RRAP model. Also,

as expected, the triangular shape (which has the largest

anisotropy) in the RRAP model is below the trend, as its

packing efficiency is reduced due to the high percentage of

grains that are unable to achieve their maximum area. By

appropriately rescaling the RAP data for ellipses with

Dc ¼ Dav ¼ 1 (inset of Fig. 6), we see that they also

collapse onto the same line as the data for the straight

edged grains and this trend is continued for ellipses with

low anisotropy (� > 0:7) in the RRAP model. Such a

universal linear relation which holds for a large variety of

grain shapes, grain anisotropies, and for two different

models is a remarkable discovery which allows us to

quantitatively predict the scaling exponents. Specifically,

we obtain � ’ 0:05Ac þ 0:12. Here Ac is the grain’s area

with Dc ¼ Dmax ¼ 1 for polygons in the RAP model, with

Dc ¼ Dmin ¼ 1 for polygons and ellipses in the RRAP

model, and Dc ¼ Dav ¼ 1 for ellipses in the RAP model.

Packing models of the kind considered here have an

applicability to a wide variety of biological and physical

problems [12–14] and also find applications in the study of

advanced materials [5,15]. Our inclusion of the important

effect of grain rotations opens an interesting avenue to

investigate the role shape plays in determining the proper-

ties of such packings.

In conclusion, we have demonstrated the strong depen-

dence of the scaling properties on the grain shape in the

RAP and RRAP models. The observed trends in the pack-

ing efficiency are complex and nonlinear. We have, how-

ever, discovered that these complex behaviors are well

described by a simple linear relation (with the exception

of shapes with very large anisotropies). Of all the shapes

we have considered, the highest packing efficiency �0 ¼
0:359ð3Þ was found for ellipses with �� 0:5 in the RRAP

model. This may be related to the large packing fractions

(above those observed for circles) that have been found in

2D random packings of ellipses [16]. Similar results have

also been observed for packings of ellipsoids [17]. From

the shapes we considered, the circle was found to have the

largest packing efficiency in the RAP model and con-

versely the lowest in the RRAP model. It remains an

open question as to whether the circle is indeed the most

efficient shape in the RAP model; however, clearly shapes

with lower packing efficiencies exist in the RRAP model,

as one need only consider the reduction in the width of a

grain and the resulting tendency toward a line with zero

area and zero packing efficiency. In future work we will

examine other grain shapes, including irregular nonconvex

grains and extend our models to three dimensions.
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