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disaster: a model to fortify capacitated facilities
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Abstract

Planning to mitigate the impacts of a disaster can be an important activitytfioprivate
companies and public agencies. In this paper we consider a supply system that provides
needed goods or services to a region that may be the subject of some type of disaster
such as an attack by a terrorist or the result of a natural event or actitersupply

system is represented by a set of existing capacitated facilities. We assume that the loss of
one or more facilities to a disaster will tighten available supply andaiserhe distances

over which the service or good must be delivered, thereby increasing operatoarob
reducing service. Such a disaster may even reduce the capacity of thessuagg/to

the extent that the goods must be rationed as remaining supply may be outstripped by
demand. We consider the case where resources may be available to mitigate some of the
impacts of a possible disaster by the advanced protection of one or more fadiliies

show how this problem can be formulated as a “tri-level” optimization model and propose

a solution approach based on a tree search strategy. We demonstrate the policy
implications of this model using a hypothetical planning problem. Through this exampl

we show how the results of our model can be used to inform planners and policy makers
in disaster mitigation planning.

Keywords: facility protection, disaster mitigation, bilevel programming,
capacitated flow and transport
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1. Introduction

Advanced planning is an important activity within the context of disaster gaarent.

The major objective of such planning should be to identify the possible impacts of a given
type of disaster and then to determine the best plan of dotionitigating the effects of

such an event. For example, when Hurricane Katrina hit the gulf coast of Lowsidna
Alabama, disaster was not completely avoided, but it was mitigated by advanced
planning. Even though the U.S. Army Corp of Engineers had requested funding over a
number of years to upgrade the levee and pump system of New Orleans, the U.S.
Congress had not allocated funds for the project and New Orleans was left with a
protection system that failed. To look at the immense damage caused by the storim as wel
as the number of stranded people overlooks the fact that the majority of the péple sa
departed the city based upon an advanced plan involving reversing the direction of city
bound lanes of a major interstate highway. This “contraflow” evacuation plan helped
evacuate the majority of the inhabitants in a timely and efficient (Wégishon 200%
Without that plan, this disaster would have been much worse.

It is important to recognize that advanced disaster planning is an importarfottask
government agencies as well as private companies, although the objectives may be quite
different. Whereas public agencies are principally concerned with saving lives and
preventing damages like flooding, private companies are concerned with protecting their
facilities and keeping goods and services flowing. Large retailers, as an example, often
plan for hurricane season in the southeast U.S. by stockpiling goods like water and
plywood (Albright 2009). Without this advanced planning, it is quite possible thdt loca
demand would cause shortages of critical supplies. important issue is that, although

the objectives may be quite different, advanced planning may be strategigadistant

across the spectrum of government agencies and private corporations in order to deal with

a potential disaster.

Over the last few years there has been an increased interest in modeling litye dfagi
supply and service systems due to some disruptive event (see for example Brown et al.
2006; Snyder et al. 2006; Murray et al. 2008; Church and Scaparra 2006). This focus has
been split between network fragilityWood 1993; Wollmer 1964; O’Kelly and Kim

2007; Murray et al. 2003; Zhuang and Bier 2007; Peterson and Church 2008) and facility
system fragility (Church et al. 2004; Rawls and Turnquist 2006) over @ raitge of

events from natural disasters to intentional strikes. Although thatliter of system
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disruption is historically rooted in the military problem of interdict{®¥ollmer, 1964;

Israeli and Wood 2002), recent disasters such as 9-11 have forced planners and policy
makers to ask what might happen (Hagand Longstaff 2002; Haimes 2Q@Brubesic et

al. 2003) as well as how to plan within the uncertainty of what mightllzefsystem

(Altay and Green 2006; Church and Scaparra 2006; Rawls and Turnquist 2006; Ukkusuri
and Yushimito 2008; Alcada-Almeida et al. 2009 ). A few recent papers haygetbon

how to optimize system protection within a limited budget (Azaiez and Bier, BD6W&n

et al. 2006, Church and Scaparra 2006). Notably lacking in past model development is
the optimal protection of a system of capacitated facilities. Since most éscdjpierate
within defined levels of operation or capacity, most of the past wonkotdre directly
applied in real world settings. Our objective of this paper is to propose a noodéiuct

which optimizes a limited amount of protection resources among a set of caphcitat
facilities in order to mitigate a worst case disaster event. We show omdbel can be

used to help inform planners and policy makers in disaster planning.

In the next section, we present a short review of past work that is relates gooblem

that we address in this paper. We then formulate a planning model for a cagacitate
logistics system comprised of a set of demands and facilities, where one or mdresfacili
may be rendered inoperable due to a disaster. We assume that resourcesahie avail
fortify or protect some of the facilities and the problem is to allocate thegbion
resources so that the system is as resilient as possible in the eventsasteods
intentional strike or natural event. Protection resources and strategies can vary
considerably depending on the type of system and possible disruption. For example,
protecting against an earthquake may involve seismic upgrading, building a new
approach bridge to an industrial site, or providing a backup power generator system so
that the facility can operate during the loss of electrical powere®mag against
flooding may involve relocating a facility to higher ground, providing pumps and
generators to keep a facility dry, or even developing a storm wall. Protectingteaya
interdictor may involve added security/guards, perimeter fencing, surveillaneasam
hardened internet and communication systems, etc. Whatever the type of disaster, we
assume that there is some set of possible actions which can be taken to enhance protection
and keep a facility in operation. Although the proposed model is designed to represent a
generic system, we expect that the proposed construct here will be modified forcspecifi
applications. The important element is that the model is extensible and ientgties

of the general planning problem for protection in light of a potential disagéer

giving a model formulation and discussing how it can be solved, we present an
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application to a hypothetical data set to underscore the insights that may be gdmnerated
using the model in practice to support disaster planning. Finally, we conclude with a short

discussion on possible refinements.

2. Background

Optimization has been used in the design and operation of many logistics ssystem
ranging from public systems (e.g. optimal fire station location) to preeteor systems

(e.g. warehouse location and capacity allocation). Although the common emphasis is
directed towards modeling for an optimal design or an efficient operation, some efforts
have been directed at determining weakness in system design and operation. An example
of this is the identification of the critical links of a network, associated with a network’s

ability to handle traffic flow. Historically, modelers have approached thee isd
detectingsystem weakness with the perspective of an “interdictor” who plans to strike a

system. Assume that the “interdictor” has enough resources to strike and render useless K

arcs of a network (Wollmer 1964)he question is: “what K arcs when removed have the

greatest impact on the remaining system?” Suppose the underlying operation is to ship

items along the shortest path between an origin and a destination. The objettige of
interdictor would be to take out the arcs which would maximize the length ehtntest

route from the origin to the destination (Israeli and Wood 2002). Since the shoutest

may well change when an arc is removed, the problem is somewhat complicated to solve
(Israeli and Woods 2002). The solution to this type of interdiction moistek ghe
analyst and planner an understanding as to which links are critical as welwhdsatt

extent system operation can be compromised by losing a specific number of network
links. Thus, the solution represents a worst case, as the model seeks to find the most
disruptive solution associated with an event level of some specified magnitude, whether
natural or intended. In the next few paragraphs we briefly characterize past research on
interdiction associated with networks and facilities. The interested readed sloosult
Snyder et al. (2006) for a review on system reliability and disruption and Brachman and
Church (2009) and Altay and Green (2006) for a review of modeling for disaster

management.

Network interdiction models were first develop@dthe 1960’s (see Church et al. 2004
for a review). Wollmer (1964) proposed a network interdiction model to altyim
reduce the maximum flow possible through a graph. This particular problem has
remained a key research problem (Lim and Smith 2007). Besides modeling the

interruption of flow and paths, there has also been an interest in modeling overall
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connectivity and possible cases of failure. A good example of this type of anslifsas i

of Grubesic et al. (2003) where the problem was to analyze topologically thefloss
internet services and communication connectivity when certain internet backbone links
are compromised. It should also be mentioned that interdiction may be based opbn a c
For example, some arcs may be easier to knock out than others. When interdiction costs
vary, then interdiction is assumed to be resource limited and is subject to a budget

constraint.

Interdiction models have also been developed to involve a system of facilities. The first
facility interdiction model involved the well known p-median location problehe p-
median model involves the location of a set of p facilities (uncapacitatedjdén to
minimize the weighted distance of serving a set of weighted demand points. It is assumed
that each demand will be served by their closest facility. The related fatiéitgiction

model involves finding which r facilities, when removed, increases the weighted distanc
of service the most (Church et al. 2004). Although most of the past researobelmas
posed where the act of interdiction is always successful when an element is selgcted (
facility or network link), it has also been modeled probabilistically. Supihagevhen a

facility is struck by an interdictor, the interdictor fails a certairceetage of the time.

We can then define the probabilistic facility interdiction problem as: whéatisvorst-

case possible loss of a facility system when r facility strikes are allowleeke the
probability of any successful interdiction is set at some value less thequal to 17?

Using this context, Church and Scaparra (2007) were able to show how to generate an
operational “reliability envelop” for a system of facilities subject to natural or intended

harm. Note that, if the probability of success is somewhat low, an interdictostriiay

one facility many times in order to increase the overall probaliitysuccessfully
eliminating a key facility (Losada et al. 2009). dmelated work Rawls and Turnquist
(2006) have developed an emergency supply system location model based upon a set of
predefined scenarios. Each scenario is based upon a set of failures, where specific nodes
and links are not available for that scenario. For their model they defined eaclioscenar
on a specific hurricane storm track and assumed that specific locationses irotiat
scenario would be knocked out by the storm. The overall objective was to locaté a set

facilities, such that the expected cost of resupply over all scenarios is minimized.

Research on supply systems deployment has also included the possibility of system
protection. Interdiction can be thought of as an act by nature or man. In eithdrrcage i

be successful without taking some type of protective action. The first niodel
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incorporate protection as an action in a facility operations model involved tharmmedi
problem, where it was assumed that a limited number of facilities, g, could be hardened
or protected from a disaster or interdictor (Church and Scaparra 2007). Thevebjes

to optimally allocate the protective resources in order to reduce the lossenultht
happen by interdiction. This model was called the r-interdiction median probigm w
fortification. Network link protection has been considered in two types ofgrablthe
shortest path interdiction protection (Cappanera and Scaparra 2008) and the dasign of
seismically protected road network to ensure the safe distribution ofiesigfler an
earthquake (Viswanath and Peeta 2003). A review of many of the models that have been
defined specifically for emergency management can be found in Brachman and Church
(2009).

It is important to mention that many of the models that have been developed to solve for
the most destructive case or to identify how to best protect a systemimitéd|
resources are posed within the context of bi-level optimization. Sockelmare often
describedasa two person game (Stackelberg 1952), where the top level is the leader and
the bottom level is the follower (Dempe 2002; Colson et al. 2007). For exan®kepth

level in a model that optimizes protective resources, involves selecting iikshor
facilities to be fortified. The bottom level involves the “interdictor” which will attempt to

do the most harm given that some elements are fortified and others are not. What makes
this problem hard to solve is that the bottom level solution is a functidredbp level
resource allocation and the top level resource allocation is a function of tben bevel
disruption. Bi-level problems by their very nature can be very difficuficlue as each

level contains an objective that is the exact opposite of the next. This isafigpece if

integer decision variables appear in both levels (Moore and Bard 1990). In fact, @ only
few cases has it been possible to cast a mix-integer bi-level problersiagiealevel
problem. Examples of casting a bi-level problem as a single level problebe dannd

in Church and Scaparra (2006) and Scaparra and Church (2008a). The fact that the
combined problems of protection and destruction are hard to model in a combined fashion
has served as a major impediment or barrier to progress in thisatesRecent work
(Brown et al. 2006) has helped to provide insights as to how these complicated models

might be solved.

Although the above review has only listed a small number of the many contribiations
the systems literature involving disasters and protection, it does charadteredédnt to

which specific actions, both disruptive and protective, have been optimized thi¢hin
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context of service and supply systems. It should be mentioned here that past work has
concentrated principally on capacitated network flow and shortest patHictiter or
uncapacitated facility interdiction and protection. Unfortunately, mosemsysioperate

with capacity limits, and when a facility has been struck by disaster, aftdaulities

may not have enough combined capacity to handle the supply needs of those originally
served by the damaged facility. That is, most of the past facility ojtilmizwork does

not apply to the type of problem that one might find in disaster supply nrarateOur
objective, here, is to propose a model construct which will help to fill that gap. In the next
section we propose a model which optimizes a limited amount of protective resources
among a set of capacitated facilities serving a set of demand points inicondigigate a

worst case disaster event involving the loss of one or more facilities. Coalbgpthis

model contains three levels: the top level- allocates protective resourc@dgtimediate

level - interdicts one or more facilities; and the bottom level- opeestaficiently as
possible the remaining facilities and serves demand as best as possible. |Estesrta

are three types of decisions being made by two different actors: 1) the systemoroper
decides what to protect and operates what is left as efficiently as possidl 2) the
interdictor decides what facilities to disrupt as a worst case evahbulgh we use the

term “interdictor” to represent the role of disruption, it represents in general some event

doing harm, e.g. a terrorist or a natural disaster, which disrupts tlemsysaximally

within limits (even hurricanes and major natural disasters do not destnyyhing). We

will use the terni‘fortification” to represent the type of protective action that is taken to

fend off a destructive strike, whether natural or man-made. Thus, ddel rthat we
propose is somewhat general in its scope, and we expect that it will be tailored fo
specific applications. Finally, we will show how results from this genadel can be

used to help inform planners and policy makers in disaster planning based upon a

hypothetical case study.

3. Protecting facilities in order to deal with a disaster: Model
development

In this section, we present the mathematical formulation of the three-levelit@szhc-
Interdiction Median problem with Fortification, referred to in the followasyCRIMF.

The formulation uses the following set of parameters and decision variables.

Parameters
N set of n demand nodes (indexed hy i
F set of p existing facilities (indexed by j)
F= demand at nodie



G capacity at facility |

d; cost for serving customer i from facility

a penalty for not serving customer i (per unit of demand)
r number of possible losses

q number of facilities that can be hardened

Decision Variables

z 1 if facility j is protected; O otherwise

S 1 if facility j is interdicted; O otherwise

X fraction of demand i served by facility j after interdiction
u fraction of demand i which is not served after interdiction

The variables;zand srepresent the upper level protection variables and the middle level
interdiction variables, respectively. The variablgs and w are used in the lower
operational level to evaluate the system efficiency after protection and interdiction.

The trilevel formulation of CRIMF is as follows:

max K(z) @)
2.2j =1 (2)
jeF
zj {01}, VjeF ()
K(z)= max H(9 4)
Ysj=r 5)
jeF
sj<l-z;, VjeF (6)
Sj € {01, VjeF (7)
H(S)=min Y Y djxj+ > U (8)
ieN jeF ieN
D% +ui>g, VieN 9
jeF
iZI:\Ixij <(@-sj)cj, VjeF (10)
Xj 20, VjeF,ieN (12)
u>0, VieN (12)



The CRIMF model identifies the optimal allocation of q protection resourgdeshizh
minimizes the cost function, K (1). This function represents the maximum damage,
terms of service and lost sale costs, that can be inflicted to the systerheftesst of r
facilities. The correct value of K is computed in the middle level problem,emier
interdictor allocates r offensive resources (5) among the unproteciittefa(t) so as to
maximiz the system’s cost (4). In turn, the computation of the system costs after
interdiction, H, requires solving the lower level operational problenthétoperational

level, the objective is to minimize the total cost (8), which includesake for servig

the customers and the lost sale cost incurred when some customer demands cannot be met
due to the insufficient capacity of the system after interdiction. Constr@instate that

all customer demand needs to be accounted for, either as demand allocated to some
operational facility or as unmet demand. The facility capacity restrictiensadeled in
constraints (10), which also prevent the allocation of customers to interéhcibiies.

The integrality of the protection and interdiction variables is enforced by const(a)

and (7) respectively, whereas constraints (11) and (12) state the non-negstivie
operational variables. Note that the cardinality constraints on the oHessd/defensive
resources, (2) and (5) respectively, can be replaced by budget constraiatsyitédm
facilities have different protection and interdiction costs. The solution metigpdol
described in the next sections can be easily adjusted to handle this case.

4. Integer bilinear reformulation of the interdictor-user problem

In this section, we show how the two bottom level problems (interdictor andcasebe
collapsed into a single level problem. This level reduction is based upon theatibser

that, given any solutioato the interdiction problem, the lower level operational problem

is a transportation problem in the continuous variables x and u only. It is teerefo
possible to take the dual of this problem to obtain a single level interdjmtadriem

which inherently incorporates the optimal system operations. Duality techrigwes

been extensively used to solve bilevel programs with linear inner problems (see for
example Wood 1993, Israeli and Wood 2002, and more recently Lim and Smith 2007,
Bayrak and Bailey 2008 and Losada et al. 2009). In our case, duality is used to reduce the

initial tri-level defender-interdictor-user model to a bilevel program.

Let pj and 7 j be the dual variables associated with the demand constraints (9) and the

capacity constraints (10) respectively. Then, the interdiction-user probsem be

reformulated as a mixed-integer bilinear problem as follows:



K(Z): max Zaipi - ZCJ (l—Sj )7Z'J (13)

ieN jeF
pi—-mj<dj, VieN,jeF (14)
pi<%, VieN (15)
jeZst =r (16)
sj <1-zj, VieF a7)
sje{0l, VjeF (18)
pi >0, VieN (19)
7j 20, VieF (20)

To resolve the non-linearity in the objective function introduced by the dtializ we
use a simple linearization technique which consists of replacing each bilinear ter

@-sj)zj with a new variablevj (with vj>0) and adding the following

linearization constraints to the model:

Vi S(l—Sj)M (21)

VjZ?Z'j—SjM (22)

The use of constraints (21) and (22) ensures that the new model using the replacement

variablesV is equivalent to the bilinear model (13)-(20). In fact S =1 in the bilinear

model (and hence the bilinear term is zero), from constraints (21) and (22) wihdiave

-M <Vj <0. As the variablesvj are non-negative, it must be thavtj =0.
Conversely, ifsj =0 and the bilinear term is equal to; , from constraints (21) and

(22) we have thatﬂj SV < M . As the replacement variablej appears in the

objective of a maximization problem with a negative coefficient, at optyrialiill take

the smallest possible value, i.e.j . A possible value for the constant M to tighten the

formulation isM = max(max;0;, max;;d;;).

The resulting single level formulation of the interdictor-user problem is:
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K(z)= max Y ajp - Y.cjv; (23)

ieN jeF

pi—-mj<dj, VieN,jeF (24)
Vizzj-sjM, VjeF (25)
vVi<@-sj)M, VjeF (26)
2.8j =T (27)
jeF

sj<1-zj, VjeF (28)
s;j {08, VjeF (29)
0<pi <Y, VieN (30)
i,V >0, VjeF (31)

This formulation is a linear MIP and can hence be solved by standard, off-the-shelf

optimization software.

5. Solving the bilevel CRIMF to optimality

As previously mentioned, by collapsing the interdictor-user problem into a sewgle |
program, CRIMF becomes a bi-level problem. We can therefore solve it by using the
implicit enumeration algorithm originally proposed to solve the uncapacitatemnedf

the r-interdiction median problem with fortification (Scaparra and Church 008
Different variants of this implicit enumeration method have been successfullgdfyli
solving other protection problems, which could not be easily solved by standard
decomposition methods commonly used for bilevel programs. Examples of successful
applications can be found both within the context of uncapacitated fapildiection

(Liberatore et al. 2009) and network protection (Cappanera and Scaparra 2009).

The core of the approach is based upon the observation that an optimal protection strategy
must include at least one of the facilities which are interdictedeiroptimal solution to

the interdiction problem without fortification (Church and Scaparra 2006). This
observation can be used recursively within an implicit enumeration scheme to resluce th

number of protection strategies to be evaluated.

The implicit enumeration algorithm is implemented as a search on a binary tre. A
root node, the interdiction problem (23)-(31) is solved by a MIP solver to ideh&fy

optimal set of interdictions when no protection takes place. Then a branching procedure is
11



started on the protection variables associated with the facilities in theabptterdiction

set, called the candidate set of branching variables (CS). When a proteciaevais
sdected from the CS of the current tree node and fixed to one, a new tree node is
generated and an interdiction problem is solved with an additional consttaictt w
prevents the interdiction of facility j. The optimal solution to this probiemerates the
candidate set of variables to branch on associated with the new node. When a protection
variable zis selected from the CS and fixed to zero, a new tree node is generated which
inherits the CS from its parent node but without the varigblé the CS of the new node

is empty, the node is fathomed; otherwise a new variable is selected from it for branching.
A leaf node is reached when exactly g protection variables are fixed to ogeaagpath

from the root node to the current node. The algorithm visits the tree nodesragtora
depth-first strategy and at each node the variable to branch on is selecretbat flaom

the CS.

A nice feature of this approach is that the size of the tree and, hence, the wfimber
interdiction problems (23)-(31) which are solved during the execution, is noteafflegt
the number of facilities in the initial configuration, p, but only by theumeters q and

(the reader is referred to Scaparra and Church, 2008 for a formal. gkddijionally, at
termination, the algorithm identifies all optimal protection strategfesiore than one
exists, thus providing a system planner with the flexibility of choosing the prdferr

alternative on the base of other managerial and planning criteria.

6. Experimental Results

We have conducted a set of computational experiments to assess the overall efésctivene
of the CRIMF modelling approach and to provide some managerial insights on the
potential impact of protection strategies on system efficiency improvement#icaigc
we have focused the analysis on 1) the tractability of the CRIMF model; 2) plaetiof
protective resources on overall cost reduction in case of disruption; ame Srisitivity

of the protection strategies to the number of potential losses.

6.1 Data Sets and Experimental Setup

The computational experiments were conducted on a benchmark data set, frequently used
in location analysis: the London, Ontario data set (Goodchild and Noronha T9&3

data set contains 150 demand nodes, and distances are based upon a road network. Using
this data set, & have solved problem instances for different combinations of the

parameters p, g and r. Namely, we congidealues of p in {20, 25, 30}, qin {1, 2, 3, 4,
12



5} andr in {1, 2, 3, 4, 5}. In our testing, we assumed that the p facilities in the initial
configuration are located at the optimal sites identified by solving a capacitatedign

problem. As the London data set does not contain information about facility capacities,

Xii
0.9p°

for each value of pwe set the capacity of the facilities equal This choice is

eqguivalent to assuming that the capacity utilization of the system under normaiorondi
is about 90% or, in other words, that the system has a 10% built-in idle capamitiy,

we assumed that the lost sale cost incurred if a customer cannot receive afégviae
disruption is larger than the cost of serving any customer from any facitity isystem.
More specifically, for each customemie setd; = 1.5max;;d;; .
The experiments were run on a PC equipped with an Intel Core 2 CPU @ 2.4 GHz, 3GB
of RAM and Windows XP Professional operating system. The implicit enumeration
algorithm described in Section 5 was implemented in C++ and compiled using Microsoft
Visual C++ .NET 2003. The interdiction problems (23)-(31) at each node of the

enumeration tree were solved using the MIP solver Cplex 11.

6.2 Computational Analysis

The results of our computational investigation are summarized in Table 1 ard2labl
Table 1 displays the objective function value of the optimal protection gigatéor
various combinations of the parameters. Reading the table by row, we can dbserve
each system size, p, and protection resource level, g, the impact of additional losses on
the system operational cost. Conversely, each column highlights the impact on the
objective of increasing the protection resources. A more in-depth analyie ttter

issue is provided in the following section.

For the same combinations of parameters, Table 2 shows the computing time in seconds.
The solution times suggest that we can solve to optimality CRIMF instancealisfic

size with relative ease, if the number of possible losses is small. As expéeed, t
computing effort increases appreciably for larger values of r, larger syatanisigher

levels of protection resources. Whereas all the instances with r < 2 weed #ola

matter of seconds, larger values of this parameter led to much higher runmagTime

most difficult instance (p = 30, g = 5, r = 5) required more than a day to be s$olved
optimality. However, given that this kind of protection models is strataginature,
computing times in this order of magnitude are not overly critical anddepresent an
impediment to the actual implementation of the optimal protection strategiesallQwe

can conclude that the CRIMF model is tractable for all the selected combinations of
13



parameters. Also, we believe that these ranges of parameter values are the most
interesting from a practical point of view. A coordinated attack on osithaltaneous

loss of a much larger number of facilities than the ones considered here seetigtianrea

or, at least, very unlikely to occur. Also, the effects of interdictind fortification are

much less critical in systems with a very large number of facilities, algestiter levels

of redundancies present in such systems. Thus the case handled here with systems of
around 30 facilities and possible losses of 4-5 facilities seems quiteice@listhe other

side, fortification resources could vary considerably. We have reported results for
protection strategies involving the fortification of up to 5 fa@iiti but our modelling
approach can handle larger values as well, especially if the number of interdictions, which

is the real critical element of the approach, is small.

Table 1. Objective values for the London, Ont. data set and different vélpes and r

p r=1 r=2 r=3 r=4 r=5
g=1 146,091.49 181,437.34 374,022.61 587,408.95 80256
g=2 143,269.58 178,895.82 373,906.37 584,615.28 79832
20 g=3 140,640.15 171,150.05 370,833.41 582,509.06 795,97
g=4 140,409.57 170,172.52 369,481.99 580,218.68 795K42
g=5 140,406.91 170,107.07 368,105.01 579,142.22 78%R078
g=1 127,892.53 153,265.74 228,495.65 393,654.45 56488
g=2 124,960.03 150,999.82 225,191.95 390,720.46 562859
25 g=3 124,169.93 148,909.87 222,876.47 389,744.09 56403
qg=4 123,362.77 144,310.84 220,408.47 388,750.33 55§39
g=5 121,180.59 142,107.89 218,074.57 386,808.49 55857
g=1 110,621.32 125,830.69 147,235.51 251,914.07 39224
g=2 106,093.07 119,684.24 145,398.43 250,496.84 393183
30 g=3 104,969.78 118,077.38 140,471.42 248,534.05 390,63
g=4 104,853.24 117,964.80 138,018.79 246,463.88 38288
g=5 104,637.45 117,442.56 137,346.00 246,410.57 38789

14



Table 2. Running times (sec.) for the London, Ont. data set and diffataas\of pq and r

p r=1 r=2 r=3 r=4 r=5
q=1 1.23 7.89 29.02 32.78 27.28
q=2 1.97 16.56 83.10 78.58 77.56
20 g=3 2.80 29.36 255.84 173.64 251.94
q=4 3.44 46.30 536.99 403.03 555.38
q=5 4.06 65.64 935.79 732.54 1,131.2
q=1 1.89 23.38 179.13 283.32 283.95
q=2 2.78 41.97 424.39 810.51 1,173.4
25 =3 3.67 73.41 796.16 1,626.42 3,645.4
q=4 6.98 112.50 1,203.80 2,961.13 8,398.4
q=5 7.86 154.42 1,993.71 5,523.97 17,155.
q=1 2.47 49.48 362.14 1,311.12 1,822.9
q=2 4.13 123.63 900.10 3,772.30 7,273.9
30 g=3 5.88 242.49 1,802.05 9,083.70  23,750..
q=4 6.91 394.93 3,270.84  21,240.75  58,955.
q=5 11.70 551.72 6,288.59  47,558.06 119,013

6.3 Marginal Efficiency Analysis

The purpose of this section is to present a practical analysis framewbekptsystem
analysts and policy makers identify efficient employments of protective resousieg,

the results of the CRIMF model. Specifically, we analyze the impact that addlition
protection investments may have on the overall system efficiency (or cost reduction) i
case of disruptions of different magnitude. We illustrate the analysis usirgiden,
Ontario data set with 20, 25 and 30 operating facilities. The results of the awladysis
displayed in Fig. 1. The column graph shows the percentage marginal efficiency
improvement, in terms of reduced service and lost sale costs, derived frondiaual
protection. It can be noted that the marginal efficiency gains are not monotonically
decreasing in the number of fortifications. Each column presents the marginal
improvement in system efficiency associated with each added levetii€dtion. As an
example, in a system with 20 facilities (p = 20) and 2 possible losses (the Z)ptimal
protection of a single facility (g = 1) results in an efficiency increase of slightly mame th
2.5% (the lowest segment of the second column in the graph). The protection of the
second facility contributes an additional 1.5% improvement (resulting imota t

improvement of 4% for the first two facilities protected). However, theatgst
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percentage marginal benefit is obtained when the third facility is protectedyiglais a

further 4% improvement with an overall efficiency gain of more than 8%.

The graph in Fig. 1 also highlights possible resource wastage. For instance, svBén p
and r = 3 (third column), there is almost no added value in protecting tiibeacather

than one, whereas the protection of a third facility more than triples then retur
investment compared to the second fortification. In such a situation, senuagtments

are warranted only to protect one or three facilities, depending upon the resource
availability, risk tolerance and minimum efficiency requirement. Howevenirisgc
investment for protecting two facilities should be avoided for this case. Finally, ittis wor
noticing that the percentage efficiency improvements are more noticeable when th
system is still able to provide service to all the customers in spite ofigheptibn,
whereas they are less pronounced when lost sale costs are incurred. As an example, the
system with 20 facilities is still able to satisfy all customer demandmef or two
facilities are lost due to disruption (columns 1 and 2 in the graph). However, ifathree
more facilities are disrupted, the remaining facilities cannot suppthaltiemand. The
percentage efficiency improvement in these cases is somewhat less noticeablas(colum
3, 4 and 5). A similar behaviour can be noticed for the systems with 25 and 30 facilities.

r

1 2 3 45 1 2 3 45 1 23 45
2000 +—A—i 20—
18%
16%
14%
12%
10%
8% A
6% -
4%
2% A
0% -

mg=>5
Q=14
Dq:3
Dq:2
Eg=1

Marginal Efficiency Improvemen

Fig. 1. Marginal percentage improvement in efficiency due to any addipooigction
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6.4 Solutions Sensitivity to the Number of Potential Losses

In this final section, we address the issue of estimating the parameteranalyge the
impacts of making a miscalculation/estimation of this parameter in tefmshich
optimal protection strategy is selected. The choicei®fa critical one and fixing it to a
specific value may seem subjective. The number of terrorist targets or potenéialdass

to catastrophic events, in fact, cannot be estimated on the base of histoacahdias
therefore difficult to predict accurately. To overcome this potential abrorhg of our
modeling approach, we have solved the CRIMF model for different values of r.éWe th
used the results obtained to infer core sets of key facilities to harden and, é&vetatual
identify the best protection strategy across the range of r values considerecmple

of this analysis is depicted in Tables 3, 4 and 5 for the London, Ontario datihs80w
facilities and assuming that resources are available to protect 5 fadites). Table 3
displays the optimal protections and interdiction responses identified WggsGRIMF
with values of r ranging between 1 and 5. It can be seen that there are sorak critic
facilities (e.g., facility 47) that are selected in every protection plan, indepgnderihe
number of expected losses. On the other side of the spectrum, some facilitieppear

in one protection or interdiction set (e.g. 111 and 117).

To identify the overall best protection set, we consider the optimaéqgtian plan
computed for a giver r and evaluate the cost of that plan if a different numlomses |

occur in practice. The results are displayed in Table 4. The minimum cost in each column
is achieved along the diagonal, since in this case the assumed number of losses is the one
occurring in reality. For all the other cases, it is possible to computxtéet to which

the cost may increase if thhés misestimated. The absolute cost increase for each pair of
assumed-actual number of losses is displayed in Table 5. The maximum and average cost
increase for each assumed valuer @re also displayed in the last two columns. This
analysis suggests that the best protection strategy for this problem ingtaheeoine
obtained with r = 2 as it results in the minimum maximum and average absoletsexr

in cost. Note that the protection plans identified with high valueq@fyr r=4 or r=15)

can perform quite poorly if the extent of the disruption is smaller. In this tasagct,

cost increases of about 7% can be observed as compared to the optimal protection plans

(e.g. if the actual r is 2 or 3).

Although stochastic models which explicitly take into account expected numbers of

losses have been developed for the uncapacitated RIMF (Liberatore et al. 2008,

Liberatore and Scaparra 2009), these models cannot be easily adjusted to deal with
17



capacity restrictions. In the absence of more advanced stochastic modelgetlod ty
analysis illustrated above may represent a viable alternative for the identification of sound

protection strategies against disruptions of unknown magnitude.

Table 3. Optimal protections and interdictions for the London, Ont. data sgiv@thand g = 5.

r Optimal Protection Set Optimal Interdiction Set

1 47 56 66 119 149 141

2 47 56 84 141 149 66 108

3 8 47 119 141 149 56 66 84

4 47 66 84 117 141 56 70 108 111

5 47 56 66 70 84 39 103 141 144 1/

Table 4. Cross-comparison of r-optimized CRIMF solutions acrofesetit number of facility

losses. Objective function values.

Assumed

number of Actual number of losses

losses r=1 r=2 r=3 r=4 r=5
r=1 104,637.45 119,684.24 145,398.43 250,705.21 3918821
r=2 104,969.78 117,442.56 140,471.42 247,382.91 39197133
r=3 106,093.07 118,077.38 137,346.00 250,496.84 392240
r=4 110,621.32 125,830.69 146,662.16  246,410.57 39(¥634
r=5 110,621.32 125,830.69 147,235.51 251,914.07 387,898

Table 5. Cross-comparison of r-optimized CRIMF solutions acrofesetit number of facility
losses. Absolute increase in costs.

Assumed

number of Actual number of losses

losses r=1 r=2 r=3 r=4 r=5 Max Avg
r=1 0.00 2,241.68 8,052.43 4,294.64 3,523.70 8,052.4223%86
r=2 332.33 0.00 3,125.42 972.34 3,335.79 3,335.79 1,BE
r=3 1,455.62 634.82 0.00 4,086.27 7,442.09 7,442.09 Z[®:
r=4 5,983.87 8,388.13 9,316.16 0.00 2,836.52 9,316.1804%)3
r=5 5,983.87 8,388.13 9,889.51 5,503.50 0.00 9,889.51535)9
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7. Summary and Conclusions

Policies to mitigate possible emergency events such as natural and man-made disasters
are facing increasing scrutiny. Mitigation strategies include among others thetiprot

or hardening of physical infrastructure components so as to make service and supply
systems more resilient to external disruptions and circumscribe the harppfal effects

of disruptive events. In this paper, we have proposed a new modeling approach to identify
sound protection strategies for capacitated facility systems, so thadlimibtection
resources are utilized in the most trenchant way possible. The introductoampanity
constraints within a protection-interdiction model greatly increasesdmplexity of the
problem and requires the formulation of a three-level program. We showed how this
multi-level program can be reduced to a bi-level model by dualizatitimedhner level

user problem. This bi-level model can be solved by the implicit enumeration algorithm
proposed in Scaparra and Church 2008b for the uncapacitated problem. We have also
presented an application of this model and suggested how model results could be used in

advanced planning.

In terms of future work, we envision several possible extensions and variatiors of th
proposed protection model. These may include: stochastic components, multi-period
planning models, multi-tier supply systems and inventory management issues. Analogous
models which optimize protection strategies against expected losses rathewothan

case losses will also be investigated.
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