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THE INVARIANTS OF THE THIRD SYMMETRIC POWER

REPRESENTATION OF SL2(Fp)

ASHLEY HOBSON AND R. JAMES SHANK

Abstract. For a prime p > 3, we compute a finite generating set for the
SL2(Fp)-invariants of the third symmetric power representation. The proof
relies on the construction of an infinite SAGBI basis and uses the Hilbert
series calculation of Hughes and Kemper.

1. Introduction

Consider the generic binary cubic over a field F of characteristic not 3:

a0X
3 + 3a1X

2Y + 3a2XY 2 + a3Y
3.

Identifying

X =

[
0
1

]
and Y =

[
1
0

]

induces a left action of the general linear group GL2(F) on the third symmetric
power

V := SpanF[ Y
3, 3Y 2X, 3Y X2, X3 ]

and a right action on the dual V ∗ = Span
F
[a3, a2, a1, a0]. For example

σ =

[
1 1
0 1

]
acts on V ∗ as




1 3 3 1
0 1 2 1
0 0 1 1
0 0 0 1




with a3 = [1 0 0 0], a2 = [0 1 0 0], a1 = [0 0 1 0], a0 = [0 0 0 1]. The action on
V ∗ extends to an action by algebra automorphisms on the symmetric algebra
F[V ] = F[a3, a2, a1, a0]. For any subgroup G ≤ GL2(F), we denote the subring
of invariant polynomials by F[V ]G.

Throughout we assume that F has characteristic p > 3. Thus Fp ⊆ F and
SL2(Fp) ≤ GL2(F). The primary goal of this paper is to compute a finite
generating set for F[V ]SL2(Fp). We note that V is the unique four-dimensional
irreducible representation of SL2(Fp) (see, for example, [2, pp. 14–16]). Also,
for p 6= 7, F[V ]SL2(Fp) is not Cohen-Macaulay and in fact has depth 3 [13,
§5]. In the language of L.E. Dickson [6, Lecture III §9], we give a fundamental
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2 ASHLEY HOBSON AND R. JAMES SHANK

system for the formal modular invariants of the binary cubic. Dickson con-
sidered this problem but was only able to identify a few specific invariants.
We proceed by constructing the required invariants and then proving that the
given set generates F[V ]SL2(Fp). Our proof relies on the construction of an
infinite SAGBI basis and uses the Hilbert series calculation of Hughes and
Kemper [8]. Recall that a SAGBI basis is a Subalgebra Analog of a Gröbner
Basis for Ideals. SAGBI bases were introduced independently by Robbiano-
Sweedler [11] and Kapur-Madlener [9]; a useful reference is Chapter 11 of
Sturmfels [15] (who uses the term canonical subalgebra basis). The ring of
invariants of a modular representation of a p-group always has a finite SAGBI
basis for an appropriate choice of term order, see [14]. A finite SAGBI basis
for the ring of invariants of the Sylow p-subgroup of SL2(Fp) was computed
in [12]. Extensive preliminary calculations for small primes, using MAGMA
[4], involving SAGBI bases and the relative transfer map, lead to the given
generating set (see [7]). We use the graded reverse lexicographic order with
a0 < a1 < a2 < a3. For background material on term orders and Gröbner
bases see Adams-Loustaunau [1]. For background material on the invariant
theory of finite groups see Benson [3], Derksen-Kemper [5] or Neusel-Smith
[10].

A classical example of an invariant of a binary form is the discriminant,
which in this case can be written as

D := 3a22a
2
1 − 4a3a

3
1 − 4a32a0 + 6a3a2a1a0 − a23a

2
0.

Following Lecture III of L. E.Dickson’s Madison Colloquium [6] we identify
the SL2(Fp)-invariant

L := 3(ap2a1 − a2a
p
1)− (ap3a0 − a3a

p
0).

Let B denote the Borel subgroup of SL2(Fp) consisting of upper triangular
matrices and let P denote the unique Sylow p-subgroup of B. Observe that
P is cyclic of order p and is also a Sylow p-subgroup of SL2(Fp). Define

N :=
∏

τ∈P

(a3)τ.

By Corollary 2.4, N · a0 is SL2(Fp)-invariant (or see [6]).

For a subgroup H of a group G, choose coset representatives G/H and
define the relative transfer

trGH : F[V ]H → F[V ]G

f 7→
∑

τ∈G/H

(f)τ.

The transfer, trG, is the special case when H is the trivial group. Define

K := −trSL2(Fp)(ap−1
1 ).

We show in Lemma 2.10 that K is non-zero with lead monomial ap−1
2 .
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For ω ∈ F
∗
p, the diagonal matrix

ρω =

[
ω 0
0 ω−1

]
acts on V ∗ as




ω3 0 0 0
0 ω 0 0
0 0 ω−1 0
0 0 0 ω−3


 .

This motivates the definition of a multiplicative weight function on monomials
by

wt(ai) = 2i− 3.

Thus for any monomial β, we have (β)ρω = ωwt(β)β. Since ωp−1 = 1, it is
convenient to assume that the weight function takes values in Z/(p − 1)Z.
Since B is generated by elements of P and ρω for ω ∈ F

∗
p, it is clear that the

B-invariants are precisely the isobaric P -invariants of weight zero (modulo
p− 1).

We show in Lemma 2.1 that N is isobaric of weight 3 (modulo p−1). Let c
denote the smallest positive integer satisfying 3c ≡(p−1) 0. Thus c = (p− 1)/3
if p ≡(3) 1 and c = p− 1 if p ≡(3) −1. Then N c is B-invariant and

δ := tr
SL2(Fp)
B (N c)

is SL2(Fp)-invariant. It follows from Theorem 2.5 that the lead monomial of
δ is apc3 . We show in Theorem 2.12 that {D,K,Na0, δ} forms a homogeneous
system of parameters, i.e., the set is algebraically independent and F[V ]SL2(Fp)

is a finite module over F[D,K,Na0, δ].

It is easily verified that d := a21 − a2a0 and e := 2a31 + a0(a3a0 − 3a2a1) are
isobaric P -invariants of weight −2 and −3 respectively. Define

ẽ := tr
SL2(Fp)
B (Ne).

We will show, see Theorem 3.1, that for p ≡(3) 1, the SL2(Fp)-invariants are
generated by

D,K,L,Na0, δ, ẽ

and an explicitly described finite subset of the image of the transfer. For
p ≡(3) −1 the additional invariant

d̃ := tr
SL2(Fp)
B (N

p+1
3 d)

is required.

2. Preliminaries, lead monomials and tête-à-têtes

For the remainder of the paper we use G to denote SL2(Fp). The following
generalises [13, 2.4].

Lemma 2.1. If f is an isobaric polynomial of weight λ, then trP (f) is isobaric
of weight λ. Furthermore N is isobaric of weight 3.
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Proof. The result follows from the fact that P is normal in B. For ω ∈ F
∗
p

(
trP (f)

)
ρω =

∑

τ∈P

(f) τρω =
∑

τ ′∈P

(f) ρωτ
′

=
∑

τ ′∈P

ωλ (f) τ ′ = ωλtrP (f).

Thus trP (f) is isobaric of weight λ. A similar calculation gives wt(N) =
wt(a3) = 3. �

Let Q denote the subgroup generated by the transpose of σ, i.e., the lower
triangular Sylow p-subgroup, and define

η :=

[
0 1
−1 0

]
.

Lemma 2.2. Q ∪ {η} is a set of coset representatives for B in SL2(Fp).

Proof. Since the index of B in SL2(Fp) is p + 1, we have the right number
of elements. To show that the cosets (σT )nB are distinct for n = 1, . . . , p, it
is sufficient to show that (σT )nB 6= B for n < p; this is clear. To show that
ηB 6= (σT )nB, it is sufficient to show that η−1(σT )n 6∈ B; this is a straight
forward calculation. �

Lemma 2.3. Na0 = −a3
∏

τ∈Q(a0)τ .

Proof. Consider the orbits

a3P = {a3 + 3sa2 + 3s2a1 + s3a0 | s ∈ Fp}

and

a0Q = {s3a3 + 3s2a2 + 3sa1 + a0 | s ∈ Fp}.

Thus

Na0 = a0
∏

s∈Fp

(a3 + 3sa2 + 3s2a1 + s3a0) = a0a3
∏

s∈F∗

p

(a3 + 3sa2 + 3s2a1 + s3a0)

= a0a3
∏

s∈F∗

p

s3
((

s−1
)3

a3 + 3
(
s−1

)2
a2 + 3s−1a1 + a0

)

= a3




∏

s∈F∗

p

s3




∏

τ∈Q

(ao) τ = −a3
∏

τ∈Q

(ao) τ

�

Since {σ, σT} generates SL2(Fp), any polynomial which is both P -invariant
and Q-invariant is SL2(Fp)-invariant, giving the following corollary (see also
Lecture III §9 of [6]).

Corollary 2.4. Na0 is SL2(Fp)-invariant.
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Theorem 2.5. Suppose f is an isobaric P -invariant with wt(N ·f) = 0. Then
a0 divides trGB(N · f) − N · f and, if a0 does not divide f , the lead terms of

trGB(N · f) and N · f are equal.

Proof. Using the fact that Na0 is SL2(Fp)-invariant we see that

trGB(N · f)−N · f = Na0
(
trGB

(
fa−1

0

))
−N · f

= N
(
a0tr

G
B

(
fa−1

0

)
− f

)
.

Observe that (a0)η = −a3. Thus, using the coset representatives from Lemma 2.2,
we have

a0tr
G
B

(
fa−1

0

)
− f = a0




∑

τ∈Q\{1}

(f)τ

(a0)τ
−

(f) η

a3


 .

From Lemma 2.3, N is a least common multiple of {a3}∪{(a0)τ | τ ∈ Q\{1}}.
Taking N as the common denominator in the above sum gives

a0tr
G
B(fa

−1
0 )− f =

a0J

N

for some polynomial J . Therefore trGB(N · f) − N · f = a0J . If a0 does not
divide f , then the lead term of N · f is not divisible by a0 and is also the lead
term of trGB(N · f). �

We use LM to denote lead monomial and LT to denote lead term. It is
clear that LM(N) = ap3. In the following lemmas, we use the lead monomial
calculations from [12]. Note that although the basis used in [12] is different
from the one used here, the change of basis is upper triangular and so the lead
monomial calculations still apply.

Lemma 2.6. For m = 2 + ⌊3j/(p− 1)⌋,

LM
(
trGB

(
N jtrP

(
a
(m−1)(p−1)−3j
2 ap−1

3

)))
= apj3 a

m(p−1)−3j
2 =: γj.

Proof. We know from [12, 3.3] that trP (ab2a
p−1
3 ) has lead monomial ab+p−1

2 if
1 ≤ b ≤ p− 1. Since m = 2+ ⌊3j/(p− 1)⌋, we have 3j/(p− 1)− 1 < m− 2 ≤
3j/(p − 1), which simplifies to 0 < (m − 1)(p − 1) − 3j ≤ p − 1. The result
then follows from Lemma 2.1 and Theorem 2.5. �

Lemma 2.7. For 0 ≤ j ≤ (p− 1)/2,

LM
(
trGB

(
N jtrP

(
ap−1−j
3

)))
= apj3 ap−1−2j

2 aj1 =: βj.

Proof. From [12, 3.2], trP (ab3) has lead monomial a
2b−(p−1)
2 ap−1−b

1 if (p−1)/2 ≤
b ≤ p− 1. Simplifying (p− 1)/2 ≤ p− 1− j ≤ p− 1 gives 0 ≤ j ≤ (p− 1)/2.
The result then follows from Lemma 2.1 and Theorem 2.5. �

Lemma 2.8. For m = 2 + ⌊3j/(p− 1)⌋ and j 6= ⌈(m− 2)(p− 1)/3⌉,

LM
(
trGB

(
N jtrP

(
ap−2
3 a

(m−1)(p−1)+3−3j
2

)))
= apj3 a

m(p−1)+1−3j
2 a1 =: ∆j .
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Proof. Using [12, 3.4], LM(trP (ap−2
3 ab2)) = ab+p−3

2 a1 for 2 ≤ b ≤ p − 1. As in
the proof of Lemma 2.6, we have 0 < (m− 1)(p− 1)− 3j ≤ p− 1. Therefore
3 < (m− 1)(p − 1) + 3 − 3j ≤ p + 2. Thus the lead monomial calculation is
valid as long as (m− 1)(p− 1) + 3− 3j 6∈ {p, p+ 1, p+ 2}. This simplifies to
j 6∈ {(m− 2)(p− 1)/3 + ε/3 | ε ∈ {0, 1, 2}}, i.e., j 6= ⌈(m− 2)(p− 1)/3⌉. The
result then follows from Lemma 2.1 and Theorem 2.5. �

Lemma 2.9. For p ≡(3) −1 and j = (2p− 1)/3, . . . , p− 2,

LM
(
trGB

(
N jtrP

(
a

5p−7
3

−j

3 a22

)))
= apj3 a

7p−5
3

−2j

2 a
j− 2p−4

3
1 =: φj.

Proof. From [12, 3.5], LM(trP (ab3a
2
2)) = a2b−p+3

2 ap−1−b
1 for (p−2)/3 ≤ b ≤ p−1.

The inequalities (p− 2)/3 ≤ (5p− 7)/3− j ≤ p− 1 simplify to (2p− 4)/3 ≤
j ≤ (7p − 5)/6 = p − 1 + (p + 1)/6. Thus the lead monomial calculation is
valid for the given range of j. The result then follows from Lemma 2.1 and
Theorem 2.5. �

Define ξ = 3a22 − 4a3a1.

Lemma 2.10. K = − trP (ap−1
3 )− ap−1

0 ≡(a0) (3ξ)
p−1
2 + ap−1

1 .

Proof. A simple calculation gives trP (ap−1
1 ) = −ap−1

0 (or see [12, 3.2]). Since
wt(ap−1

0 ) = 0 and the index of P in B is p − 1, we have trB(ap−1
1 ) = ap−1

0 .
Using the coset representatives from Lemma 2.2 gives

−K = trG(ap−1
1 ) = trGB(a

p−1
0 ) = ((a0)η)

p−1 + trQ(ap−1
0 ) = ap−1

3 + trQ(ap−1
0 )

= ap−1
3 +

∑

s∈Fp

(s3a3 + 3s2a2 + 3sa1 + a0)
p−1

= ap−1
3 + ap−1

0 +
∑

s∈F∗

p

(s3a3 + 3s2a2 + 3sa1 + a0)
p−1

= ap−1
3 + ap−1

0 +
∑

s∈F∗

p

s3(p−1)(a3 + 3s−1a2 + 3(s−1)2a1 + (s−1)3a0)
p−1

= ap−1
0 +

∑

t∈Fp

(a3 + 3ta2 + 3t2a1 + t3a0)
p−1 = ap−1

0 + trP (ap−1
3 )

≡(a0)

∑

t∈Fp

(a3 + 3ta2 + 3t2a1)
p−1

≡(a0)

∑

t∈Fp

∑

a+b+c=p−1

(
p− 1

a, b, c

)
tb+2caa3(3a2)

b(3a1)
c.

It is well known that
∑

t∈Fp
ti is −1 if i is a positive multiple of p − 1 and 0

otherwise. Thus, for a, b, c non-negative with a + b + c = p − 1, we see that∑
t∈Fp

tb+2c is non-zero only when b + 2c = p − 1 or b + 2c = 2(p − 1). If

b+ 2c = 2(p− 1) then c = p− 1 and a = b = 0. If b+ 2c = p− 1 then a = c.
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Therefore

−K ≡(a0)

(
p− 1

0, 0, p− 1

)
(−1)(3a1)

p−1 −

p−1
2∑

c=0

(
p− 1

c, b, c

)
(3a2)

p−1−2c(3a1a3)
c

−K ≡(a0) −ap−1
1 − 3

p−1
2

p−1
2∑

c=0

(
p− 1

c, b, c

)
(3a22)

p−1
2

−c(a1a3)
c.

Simplifying binomial coefficients modulo p gives
(

p− 1

c, p− 1− 2c, c

)
=

(
2c

c

)
= (−4)c

(p−1
2

c

)
.

Thus
K ≡(ao) a

p−1
1 + 3

p−1
2 (3a22 − 4a1a3)

p−1
2 ,

as required. �

A similar calculation using the identity
(

p− 2

a, p− 3− 2a, a+ 1

)
≡(p) −2(a+ 1)

(
2a+ 1

a

)
≡(p) −2(−4)a

(p−3
2

a

)

gives the following lemma.

Lemma 2.11. trP (ap−2
3 ) ≡(a0) 6a1(3ξ)

p−3
2 .

Theorem 2.12. The set {D,K,Na0, δ} is a homogeneous system of parame-

ters.

Proof. With out loss of generality, we may assume F is algebraically closed.
We will show that the variety associated to (D,K,Na0, δ)F[V ], say V, consists
of the zero vector.

Suppose v ∈ V. Since Na0(v) = 0, there exits g ∈ SL2(Fp) such that
a0g(v) = 0. Replacing v with g(v) if necessary, we may assume a0(v) = 0.

Note that D ≡(a0) a21ξ. From Lemma 2.10, K ≡(a0) (3ξ)
p−1
2 + ap−1

1 . Thus

a21K − 3(3ξ)
p−3
2 D ≡(a0) a

p+1
1 . Therefore a1(v) = 0. Since LM(K) = ap−1

2 in
the grevlex order, we have a2(v) = 0. Since LM(δ) = apc3 , we have a3(v) = 0.
Therefore v is the zero vector. �

If f and h are polynomials with LT(f) = LT(h), we refer to f − h as a
tête-à-têtes (see [11] or [12]).

Theorem 2.13. There is an infinite family of tête-à-têtes in F[V ]SL2(Fp), de-

fined as follows:

h1 = K · tr
SL2(Fp)
B (Ne)−D · tr

SL2(Fp)
B (NtrP (ap−2

3 )),

h2 = K · h1 − (3D)
p−1
2 · tr

SL2(Fp)
B (Ne),

hi = K · hi−1 − (3D)
p−1
2 · hi−2 for i ≥ 3,

with LT(hi) = 2ap3a
p+2+(i−1)(p−1)
1 for i ≥ 1.
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Proof. The proof is by induction on i. Recall that LT(D) = 3a21a
2
2. From

Lemma 2.10, LT(K) = ap−1
2 . Using Theorem 2.5 and Lemma 2.11, we have

LT(trGB(N trP (ap−2
3 )) = 2

3
a1a

p−3
2 ap3 and LT(trGB(Ne)) = 2a31a

p
3. Thus h1 is in-

deed a tête-à-tête. Since LT((3D)(p−1)/2) = (a1a2)
p−1, it is sufficient to prove

LT(hi) = 2ap3a
p+2+(i−1)(p−1)
1 for i ≥ 1.

Define

r1 = K · e−D · trP (ap−2
3 ),

r2 = K · r1 − (3D)
p−1
2 · e,

ri = K · ri−1 − (3D)
p−1
2 · ri−2 for i ≥ 3.

Since K and D are G-invariant, we have hi = trGB(Nri). Thus, using Theo-

rem 2.5, it is sufficient to prove LT(ri) = 2a
p+2+(i−1)(p−1)
1 for i ≥ 1.

Note that e ≡(a0) 2a31 and D ≡(a0) a21ξ. Thus, using Lemma 2.10 and
Lemma 2.11,

r1 ≡(a0) ((3ξ)
p−1
2 + ap−1

1 ) · 2a31 − a21ξ · 2(3
p−1
2 )a1ξ

p−3
2 = 2ap+2

1 .

Similarly

r2 ≡(a0) ((3ξ)
p−1
2 + ap−1

1 ) · 2ap+2
1 − (3a21ξ)

p−1
2 · 2a31 = 2a

(p+2)+(p−1)
1 .

Using the induction hypothesis,

ri ≡(a0) ((3ξ)
p−1
2 + ap−1

1 ) · 2a
p+2+(i−2)(p−1)
1 − (3a21ξ)

p−1
2 · 2a

p+2+(i−3)(p−1)
1

≡(a0) 2a
p+2+(i−1)(p−1)
1 ,

as required. �

3. Generators and Hilbert series

This section is devoted to the proof of the main theorem.

Theorem 3.1. For p > 3, F[V ]SL2(Fp) is generated by

• elements from the image of the transfer

• D,K,L, δ, Na0, ẽ and

• for p ≡ −1 mod 3, d̃.

The generators from the image of the transfer fall into three families:

(1) trSL2(Fp)(N ja
(m−1)(p−1)−3j
2 ap−1

3 ) where

j =

{
1, . . . , (p− 4)/3 for p ≡ 1 mod 3
1, . . . , p− 2 for p ≡ −1 mod 3

and m = 2 + ⌊3j/(p− 1)⌋;
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(2) trSL2(Fp)(N jap−1−j
3 ) where

j =

{
1, . . . , (p− 4)/3 for p ≡ 1 mod 3
1, . . . , (p− 2)/3 for p ≡ −1 mod 3;

(3) and trSL2(Fp)(N jap−2
3 a

(m−1)(p−1)+3−3j
2 ) where

j =

{
2, . . . , (p− 4)/3 for p ≡ 1 mod 3
2, . . . , p− 2 with j 6= (p+ 1)/3, (2p− 1)/3 for p ≡ −1 mod 3

and m = 2 + ⌊3j/(p− 1)⌋.

For p ≡ −1 mod 3, we have the further family of invariants:

trSL2(Fp)(N ja
5p−7−3j

3
3 a22), j =

2p− 1

3
, . . . , p− 2.

Let C denote the proposed generating set and let R denote the algebra
generated by C. Since the elements of C are homogeneous invariants, R is a
graded subalgebra of F[V ]G. Recall that the Hilbert Series of a graded vector
space M = ⊕∞

ℓ=0Mℓ is the formal power series HS(M, t) =
∑∞

ℓ=0 dim(Mℓ)t
ℓ.

Since R is a graded subalgebra of F[V ]G, we have HS(R, t) ≤ HS(F[V ]G, t).
We prove the theorem by showing these series are equal.

Define G := C∪{hi, ∀i ≥ 1} and let LT(G) denote the subalgebra generated
by the lead monomials of the elements of G. In each of the two cases, p ≡ 1
mod 3 and p ≡ −1 mod 3, we choose a graded subspace Z of LT(G), giving a
chain of inequalities:

HS(Z, t) ≤ HS(LT (G), t) ≤ HS(LT (R), t) = HS(R, t) ≤ HS(F[V ]G, t).

We calculateHS(Z, t) and compare with Hughes-Kemper [8] to showHS(Z, t) =
HS(F[V ]G, t). This proves that C is a generating set and G is a SAGBI basis.

The invariants D,K,Na0, and δ have lead monomials LM(D) = a22a
2
1,

LM(K) = ap−1
2 , LM(Na0) = ap3a0 and LM(δ) = apc3 , where c = (p − 1)/3 if

p ≡(3) 1 and a = p− 1 if p ≡(3) −1. Define

A := F[a22a
2
1, a

p−1
2 , ap3a0, a

pc
3 ],

the algebra generated by LM(D), LM(K), LM(Na0) and LM(δ). In each of
the two cases we will define Z as an A - submodule of LT(G). For a monomial
ae33 ae22 ae11 ae00 we assign a parity (e2mod2, e1mod 2) and observe that the action
of A preserves parity.

The p ≡ 1 mod 3 Case

Recall from Theorem 2.13 that the lead monomials of the tête-à-têtes hi are
LM(hi) = ap3a

p+2+(i−1)(p−1)
1 for i ≥ 1. By Lemma 2.5 the lead monomial of

the invariant ẽ = tr
SL2(Fp)
B (Ne) is equal to ap3a

3
1. Hence we have



10 ASHLEY HOBSON AND R. JAMES SHANK

ni := ap3a
3+i(p−1)
1 for i ≥ 0

as the lead monomials of ẽ and hi. Denote

αij := nj−1
0 ni = apj3 a

3j+(p−1)i
1 , 1 ≤ j ≤ (p− 1)/3, i ≥ 0

and

ǫij := LM(L)αij = apj3 ap2a
1+3j+(p−1)i
1 , 1 ≤ j ≤ (p− 1)/3, i ≥ 0.

Define Z to be the A - module generated by the monomials

B := {1, LM(L), γj , βj,∆j , αij, ǫij | i ∈ N} .

where 1 ≤ j ≤ (p − 1)/3 for the α and ǫ families, 1 ≤ j < (p − 1)/3 for the
γ and β families, and 1 < j < (p − 1)/3 for the ∆ family; see Lemma 2.6,
Lemma 2.7 and Lemma 2.8 for the definition of γj, βj and ∆j , and compare
with the range of j for the families of transfers in Theorem 3.1.

The action of LM(Na0) and LM(δ) on Z is essentially free: every monomial
in Z with a factor of ae00 is divisible by LM(Na0)

e0 and the remaining power

of a3 determines the power of LM(δ). Let Z̃ denote the span of the monomials
in Z which are reduced with respect to LM(Na0) and LM(δ). Then

HS(Z, t) =
HS(Z̃, t)

(1− tp+1)(1− tp(p−1)/3)
.

Define Z̃j to be the span of the monomials in Z̃ of the form apj3 ae22 ae11 . Then

Z̃ =

(p−1)/3⊕

j=0

Z̃j.

We proceed by computing HS(Z̃j, t) for j = 0, 1, . . . , (p − 1)/3. For fixed j,

we determine the monomials apj3 ax2a
y
1 ∈ Z̃j . This set can be identified with

a subset of the integral lattice in the xy-plane. Each element of B gives rise
to a F[LM(D),LM(K)]-submodule corresponding to a cone in the xy-plane.

The monomials in Z̃j correspond to the union of these cones. The cones
corresponding to elements of B of different parity are disjoint.

For j = 0, the only elements of B are 1 and LM(L) = ap2a1, of parity (0, 0)
and (1, 1) respectively. Thus

HS(Z̃0, t) =
1 + tp+1

(1− t4)(1− tp−1)
.

For j = (p− 1)/3 = c, the elements of B fall into two families:

• αic = apc3 a
p−1+i(p−1)
1 for i ∈ N, with parity (0, 0);

• ǫic = apc3 a
p
2a

p+i(p−1)
1 for i ∈ N, with parity (1, 1).
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For parity (0, 0): Note that α0c LM(K) = LM(δ) LM(D)
p−1
2 6∈ Z̃. Further-

more, for i > 0, we have αic LM(K) = αi−1,c LM(D)
p−1
2 . Thus it is sufficient

to count the monomials αic LM(D)ℓ with i, ℓ ∈ N.

For parity (1, 1): Note that ǫ0c LM(K) = LM(δ) LM(L) LM(D)
p−1
2 6∈ Z̃.

Furthermore, for i > 0, we have ǫic LM(K) = ǫi−1,c LM(D)
p−1
2 . Thus it is

sufficient to count the monomials ǫic LM(D)ℓ with i, ℓ ∈ N.

Counting monomials and identifying the appropriate geometric series gives

HS(Z̃c, t) =
tpc(tp−1 + t2p)

(1− t4)(1− tp−1)
=

tpc+p−1(1 + tp+1)

(1− t4)(1− tp−1)
.

In the case j = 1, we have the following elements of B:

• αi1 = ap3a
3+i(p−1)
1 for i ∈ N, with parity (0, 1);

• β1 = ap3a
p−3
2 a1, with parity (0, 1);

• γ1 = ap3a
2p−5
2 , with parity (1, 0);

• ǫi1 = ap3a
p
2a

4+i(p−1)
1 for i ∈ N, with parity (1, 0).

For Parity (0, 1): Since α01 LM(K) = β1 LM(D) and αi1 LM(K) = αi−1,1 LM(D)
p−1
2 ,

for i > 0, it is sufficient to count the monomials αi1 LM(D)ℓ and β1 LM(K)i LM(D)ℓ.

For Parity (1, 0): Since ǫ01 LM(K) = γ1 LM(D) and ǫi1 LM(K) = ǫi−1,1 LM(D)
p−1
2 ,

for i > 0, it is sufficient to count the monomials ǫi1 LM(D)ℓ and γ1 LM(K)i LM(D)ℓ.

Counting monomials and identifying the appropriate geometric series gives

HS(Z̃1, t) =
tp(t3 + tp−2 + tp+4 + t2p−5)

(1− t4)(1− tp−1)
.

We now consider the case where j = 2k is even and 2 ≤ j < p−1
3
. The

relevant monomials are:

• αij = apj3 a
3j+i(p−1)
1 for i ∈ N, with parity (0, 0);

• βj = apj3 ap−1−2j
2 aj1, with parity (0, 0);

• γj = apj3 a2p−2−3j
2 , with parity (0, 0);

• ∆j = apj3 a2p−1−3j
2 a1, with parity (1, 1);

• ǫij = apj3 ap2a
3j+1+i(p−1)
1 for i ∈ N, with parity (1, 1).

For parity (0, 0): Observe that βj LM(K) = γj LM(D)k, α0j LM(K) = βj LM(D)j

and αij LM(K) = αi−1,j LM(D)(p−1)/2 for i > 0. Thus it is sufficient to count
the monomials αij LM(D)ℓ, βj LM(D)ℓ and γj LM(D)ℓ LM(K)i, for i, ℓ ∈ N.

For parity (1, 1): Since ǫ0j LM(K) = ∆j LM(D)3k and ǫij LM(K) = ǫi−1,j LM(D)
p−1
2

for i > 0, it is sufficient to count the monomials ǫij LM(D)ℓ and ∆j LM(K)i LM(D)ℓ.

Counting monomials and identifying the appropriate geometric series gives

HS(Z̃2k, t) = t2kp
(
t6k + t2p−2−6k + tp+6k+1 + t2p−6k

(1− t4)(1− tp−1)
+

tp−1−2k

1− t4

)
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for k = 1, . . . , p−7
6
.

For j = 2k + 1 odd with 1 < j < (p− 1)/3, the elements of B are:

• αij = apj3 a
3j+i(p−1)
1 for i ∈ N, with parity (0, 1);

• βj = apj3 ap−1−2j
2 aj1 with parity (0, 1);

• ∆j = apj3 a2p−1−3j
2 a1 with parity (0, 1);

• γj = apj3 a2p−2−3j
2 with parity (1, 0);

• ǫij = apj3 ap2a
3j+1+i(p−1)
1 for i ∈ N, with parity (1, 0).

For parity (0, 1): Observe that βj LM(K) = ∆j LM(D)k, α0j LM(K) =
βj LM(D)j and αij LM(K) = αi−1,j LM(D)(p−1)/2 for i > 0. Thus it is sufficient
to count the monomials αij LM(D)ℓ, βj LM(D)ℓ and ∆j LM(D)ℓ LM(K)i, for
i, ℓ ∈ N.

For parity (1, 0): Since ǫ0j LM(K) = γj LM(D)3k and ǫij LM(K) = ǫi−1,j LM(D)
p−1
2

for i > 0, it is sufficient to count the monomials ǫij LM(D)ℓ and γj LM(K)i LM(D)ℓ.

Counting monomials and identifying the appropriate geometric series gives

HS(Z̃2k+1, t) = t(2k+1)p

(
t6k+3 + t2p−2−6k−3 + tp+6k+4 + t2p−6k−3

(1− t4)(1− tp−1)
+

tp−2−2k

1− t4

)

for k = 1, . . . , p−7
6
.

The even and odd formulae can be put in a common form: for 1 < j <
(p− 1)/3,

HS(Z̃j, t) =
tjp (t3j + t2p−2−3j + tp+1+3j + t2p−3j + tp−1−j(1− tp−1))

(1− t4)(1− tp−1)
.

Summing over j and simplifying gives

HS(Z, t) =
Numer(t)

Denom(t)

where

Numer(t) = (1 + tp+1 + tp+3 + t2p−2 + t2p+4 + t3p−5 + tp−1(t2p−2 − t(p−1)(p−1)/3)

+ t
p(p−1)

3
+p−1 + t

p(p−1)
3

+2p)(1− tp−3)(1− tp+3)

+ (t2p−2 + t2p)(t2p−6 − t(p−3)(p−1)/3)(1− tp+3)

+ (1 + tp+1)(t2p+6 − t(p+3)(p−1)/3)(1− tp−3)

and

Denom(t) = (1− t4)(1− tp−3)(1− tp−1)(1− tp+1)(1− tp+3)(1− t
p(p−1)

3 ).

This agrees with the calculation ofHS(F[V ]G, t) by Hughes-Kemper [8, 2.7(d)].
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The p ≡ −1 mod 3 Case

In this case the lead monomial of δ = trGB(N
c) is a

p(p−1)
3 and the generators

of Z will be monomials divisible by apj3 for j ≤ p − 1. Using Lemma 2.5 the

lead monomial of d̃ is a
(p+1)/3
3 a21. As in the proof of the p ≡(3) 1 case, we

denote the lead monomials of ẽ and hi by ni = ap3a
3+i(p−1)
1 for i ≥ 0. Define

s := ⌊3j/(p− 1)⌋,

αij := LM(d̃)snin
j−1−s(p−1)/3
0 = apj3 a

3j+(p−1)(i−s)
1 , 1 ≤ j ≤ (p− 1), i ∈ N

and

ǫij := LM(L)αij = apj3 ap2a
3j+(p−1)(i−s)+1
1 , 1 ≤ j ≤ (p− 1), i ∈ N.

Further, we assign the following notation:

λ := LM(d̃)γ p−2
3

= a
p 2p−1

3
3 ap2a

2
1,

µ := β1 · γ p−2
3

= a
p p+1

3
3 a2p−3

2 a1,

ηj := LM(d̃)βj−(p+1)/3 = apj3 a
5p−1

3
−2j

2 a
j− p−5

3
1 for

p+ 4

3
≤ j ≤

2p− 1

3
.

Define Z to be the A – module generated by

B := {1, LM(L), αi,j, ǫi,j, γj, βj,∆j , φj, λ, µ, ηj | i ∈ N}.

where the ranges in j are given above or in the statement of Theorem 3.1

As in the p ≡(3) 1 case, the action of LM(Na0) and LM(δ) on Z is essentially

free. Let Z̃ denote the span of the monomials of Z which are reduced with
respect to LM(Na0) and LM(δ). Then

HS(Z, t) =
HS(Z̃, t)

(1− tp+1)(1− tp(p−1))
.

Define Z̃j to be the span of the monomials in Z̃ of the form apj3 ax2a
y
1. Then

Z̃ =

p−1⊕

j=0

Z̃j .

The calculation of HS(Z̃j, t) for j < (p− 1)/3 is precisely as in the p ≡(3) 1
case.

For j = p+1
3

the elements of B are:

• αi, p+1
3

= a
p p+1

3
3 a

2+i(p−1)
1 for i ∈ N, with parity (0, 0);
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• γ p+1
3

= a
p p+1

3
3 a2p−4

2 with parity (0, 0);

• ǫi, p+1
3

= a
p p+1

3
3 ap2a

3+i(p−1)
1 for i ∈ N, with parity (1, 1);

• µ = a
p p+1

3
3 a2p−3

2 a1 with parity (1, 1).

For parity (0, 0): Observe that LM(D)γ p+1
3

= LM(K)2α0, p+1
3

and αij LM(K) =

αi−1,j LM(D)(p−1)/2 for i > 0. Thus it is sufficient to count the monomi-
als αi+1,(p+1)/3 LM(D)ℓ, α0,(p+1)/3 LM(D)ℓ LM(K)i, and γ(p+1)/3 LM(K)i for
i, ℓ ∈ N.

For parity (1, 1): Observe that LM(D)µ = LM(K)ǫ0, p+1
3

and ǫij LM(K) =

ǫi−1,j LM(D)(p−1)/2 for i > 0. Thus it is sufficient to count the monomials
µLM(K)i and ǫi,(p+1)/3 LM(D)ℓ.

Counting monomials and identifying the appropriate geometric series gives

HS
(
Z̃ p+1

3
, t
)
= tp(p+1)/3

(
t2 + tp+1 + tp+3 + t2p−2

(1− t4)(1− tp−1)
+

t2p−4

1− tp−1

)
.

We now consider the range p+4
3

≤ j ≤ 2p−4
3

. The following table indicates the
monomials and their respective parities:

Monomial Parity j even Parity j odd

αi,j apj3 a
3j−p+1+i(p−1)
1 , i ∈ N (0,0) (0,1)

ηj apj3 a
5p−1−6j

3
2 a

3j−p+5
3

1 (0,0) (0,1)

γj apj3 a3p−3−3j
2 (0,0) (1,0)

∆j apj3 a3p−2−3j
2 a1 (1,1) (0,1)

ǫi,j apj3 ap2a
3j−p+2+i(p−1)
1 , i ∈ N (1,1) (1,0)

For j even, parity (0, 0): We have ηj LM(K) = γj LM(D)(3j−p+5)/6, α0j LM(K) =
ηj LM(D)j−(p+1)/3 and αij LM(K) = αi−1,j LM(D)(p−1)/2 for i > 0. Thus we
need to count αij LM(D)ℓ, ηj LM(D)ℓ and γj LM(K)i LM(D)ℓ.

For j even, parity (1, 1): ǫij LM(K) = ǫi−1,j LM(D)(p−1)/2 and ǫ0j LM(K) =
∆j LM(D)(3j−p+1)/2. Thus we need to count ǫij LM(D)ℓ and ∆j LM(K)i LM(D)ℓ.

Counting monomials and identifying the appropriate geometric series gives:

HS(Z̃j, t) = tjp
(
t3j+2 + t3p−3−3j + t3p−1−3j + t3j−p+1

(1− t4)(1− tp−1)
+

t4(p+1)/3−j

1− t4

)
.

For j odd, the calculations are analogous with the roles of γj and ∆j re-

versed. The contribution to HS(Z̃, t) is the same for both j even and j odd.
Thus for (p+ 1)/3 < j < (2p− 1)/3 we have:

HS(Z̃j, t) = tjp
(
t3j+2 + t3p−3−3j + t3p−1−3j + t3j−p+1 + t4(p+1)/3−j(1− tp−1)

(1− t4)(1− tp−1)

)
.
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For j = 2p−1
3

the monomials to consider are:

• αi, 2p−1
3

= a
p 2p−1

3
3 a

p+i(p−1)
1 for i ∈ N, with parity (0, 1);

• φ 2p−1
3

= a
p 2p−1

3
3 ap−1

2 a1 with parity (0, 1);

• η 2p−1
3

= a
p 2p−1

3
3 a

p+1
3

2 a
p+4
3

1 with parity (0, 1);

• γ 2p−1
3

= a
p 2p−1

3
3 a2p−3

2 with parity (1, 0);

• ǫi, 2p−1
3

= a
p 2p−1

3
3 ap2a

p+1+i(p−1)
1 for i ∈ N, with parity (1, 0);

• λ = a
p p+1

3
3 ap2a

2
1 with parity (1, 0).

For parity (0, 1): αij LM(K) = αi−1,j LM(D)(p−1)/2 for i > 0, α0j LM(K) =
ηj LM(D)(p−2)/3 and ηj LM(K) = φj LM(D)(p+1)/6. Thus we need to count
αij LM(D)ℓ, ηj LM(D)ℓ and φj LM(K)i LM(D)ℓ.

For parity (1, 0): ǫij LM(K) = ǫi−1,j LM(D) for i > 0, ǫ0j LM(K) = λLM(D)(p−1)/2

and λLM(K) = γj LM(D). Thus we need to count ǫij LM(D)ℓ, λLM(D)ℓ and
γj LM(K)i LM(D)ℓ.

Counting monomials and identifying the appropriate geometric series gives:

(3.1) HS
(
Z̃ 2p−1

3
, t
)
= tp(2p−1)/3

(
2tp + t2p−3 + t2p+1

(1− t4)(1− tp−1)
+

tp+2 + t(2p+5)/3

1− t4

)
.

We now consider the range 2p+2
3

≤ j ≤ p− 2. The following table gives the
relevant monomials and their parities:

Monomial Parity j even Parity j odd

αi,j apj3 a
3j−2p+2+i(p−1)
1 , i ∈ N (0,0) (0,1)

φj apj3 a
7p−5−6j

3
2 a

3j−2p+4
3

1 (0,0) (0,1)

γj apj3 a4p−4−3j
2 (0,0) (1,0)

∆j apj3 a4p−3−3j
2 a1 (1,1) (0,1)

ǫi,j apj3 ap2a
3j−2p+3+i(p−1)
1 , i ∈ N (1,1) (1,0)

For j even, parity (0, 0): We have φj LM(K) = γj LM(D)(3j−2p+4)/6, α0j LM(K) =
φj LM(D)j−(2p−1)/3 and αij LM(K) = αi−1,j LM(D)(p−1)/2 for i > 0. Thus we
need to count αij LM(D)ℓ, φj LM(D)ℓ and γj LM(K)i LM(D)ℓ.

For j even, parity (1, 1): ǫij LM(K) = ǫi−1,j LM(D)(p−1)/2 and ǫ0j LM(K) =
∆j LM(D)(3j−2p+2)/2. Thus we need to count ǫij LM(D)ℓ and ∆j LM(K)i LM(D)ℓ.

Counting monomials and identifying the appropriate geometric series gives:

HS(Z̃j, t) = tjp
(
t3j−2p+2 + t4p−4−3j + t4p−4−3j + t3j−p+3

(1− t4)(1− tp−1)
+

t5(p+1)/3−j−2

1− t4

)
.
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For j odd, the calculations are analogous with the roles of γj and ∆j re-

versed. The contribution to HS(Z̃, t) is the same for both j even and j odd.
Thus for (2p− 1)/3 < j < p− 1 we have:

HS(Z̃j, t) = tjp
(
t3j+2−2p + t4p−4−3j + t4p−2−3j + t3j−p+3 + t5(p+1)/3−j−2(1− tp−1)

(1− t4)(1− tp−1)

)
.

Finally, we consider the case j = p− 1. The only monomials we have here
are

• αi,p−1 = a
p(p−1)
3 a

p−1+i(p−1)
1 for i ∈ N, with parity (0, 0);

• ǫi,p−1 = a
p(p−1)
3 ap2a

p+i(p−1)
1 for i ∈ N, with (1, 1).

Note that α0,p−1 LM(K) = LM(δ) LM(D)(p−1)/2 6∈ Z̃ and, for i > 0, we have
αi,p−1 LM(K) = αi−1,p−1 LM(D)(p−1)/2. Similarly,

ǫ0,p−1 LM(K) = LM(δ) LM(L) LM(D)(p−1)/2 6∈ Z̃

and, for i > 0, ǫi,p−1 LM(K) = ǫi−1,p−1 LM(D)(p−1)/2. Thus it is sufficient to
count the monomials αi,p−1 LM(D)ℓ and ǫi,p−1 LM(D)ℓ with i, ℓ ∈ N. Counting
monomials and identifying the appropriate geometric series gives

HS(Z̃p−1, t) =
tp(p−1)(tp−1 + t2p)

(1− t4)(1− tp−1)
.

Summing over j and simplifying gives

HS(Z, t) =
Numer(t)

Denom(t)

where

Numer(t) = χ1(t)(1− tp−3)(1− tp+3) + χ2(t)(1− tp+3) + χ3(t)(1− tp−3),

χ1(t) = 1 + tp+1 + tp(p+1) + t(p+1)(p−1) + tp(t3 + tp−2 + tp+4 + t2p−5)

+ tp(p+1)/3(t2 + tp+1 + tp+3 + t2p−4 + t2p−2 − t2p)

+ tp(2p−1)/3(2tp + tp+2 + t2p−3 + t(2p+5)/3(1− tp−1))

+ t3(p−1)(1− t(p−1)(p−5)/3)(1 + tp(p−2)/3+3 + t2p(p−2)/3+2),

χ2(t) = t4(p−2)(1− t(p−3)(p−5)/3)(1 + t2)(1 + tp(p−2)/3+1 + t2p(p−2)/3+2),

χ3(t) = t2p+6(1− t(p+3)(p−5)/3)(1 + tp+1)(1 + tp(p−2)/3−1 + t2p(p−2)/3−2)

and

Denom(t) = (1− t4)(1− tp−3)(1− tp−1)(1− tp+1)(1− tp+3)(1− tp(p−1)).

This agrees with the calculation ofHS(F[V ]G, t) by Hughes-Kemper [8, 2.7(d)].



SL2(Fp)-INVARIANTS OF THE THIRD SYMMETRIC POWER 17

4. Concluding Remarks

We do not claim that the generating sets given in Theorem 3.1 are minimal.
However, for p = 5 and p = 7, MAGMA [4] calculations confirm that the
given sets are minimal generating sets. Recall that the Noether number is
the maximum degree of an element in a minimal homogeneous generating set.
Thus the Noether number is 22 for p = 5 and 16 for p = 7. Examining the
degrees of the polynomials occurring in Theorem 3.1 gives the following.

Corollary 4.1. The Noether number of F[V ]SL2(Fp) is bounded above by

• p2 − p+ 4 if p ≡(3) −1,

• p2−p+12
3

if p ≡(3) 1.

It follows from the proof of Theorem 3.1 that G is a SAGBI basis for
F[V ]SL2(Fp). This means that the set LM(G) generates the lead term alge-
bra of F[V ]SL2(Fp) and if f ∈ F[V ]SL2(Fp) then LM(f) can be written as a
product of elements from LM(G).

Corollary 4.2. F[V ]SL2(Fp) does not have a finite SAGBI basis using the

graded reverse lexicographical order with a0 < a1 < a2 < a3.

Proof. Observe that if aj1 ∈ LM(G) then j = 0 and if m ∈ LM(G) with a3
dividing m, then ap3 divides m. Thus LM(hi) = ap3a

p+2+(i−1)(p−1)
1 is indecom-

posable in the lead term algebra of F[V ]SL2(Fp). �
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