
Otero, Fernando E.B., Freitas, Alex A. and Johnson, Colin G. (2009) A hierarchical
classification ant colony algorithm for predicting gene ontology terms.
 In: Pizzuti, C. and Ritchie, M.D. and Giacobini, M., eds. Evolutionary Computation,
Machine Learning and Data Mining in Bioinformatics 7th European Conference.
Lecture Notes in Computer Science, Lectur . Springer, Berlin, Germany,
pp. 68-79. ISBN 978-3-642-01183-2.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/24128/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1007/978-3-642-01184-9_7

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/24128/
https://doi.org/10.1007/978-3-642-01184-9_7
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

A Hierarchical Classification Ant Colony

Algorithm for Predicting Gene Ontology Terms

Fernando E. B. Otero, Alex A. Freitas, and Colin G. Johnson

Computing Laboratory, University of Kent, Canterbury, UK
{febo2,A.A.Freitas,C.G.Johnson}@kent.ac.uk

Abstract. This paper proposes a novel Ant Colony Optimisation algo-
rithm for the hierarchical problem of predicting protein functions using
the Gene Ontology (GO). The GO structure represents a challenging
case of hierarchical classification, since its terms are organised in a di-
rect acyclic graph fashion where a term can have more than one parent —
in contrast to only one parent in tree structures. The proposed method
discovers an ordered list of classification rules which is able to predict all
GO terms independently of their level. We have compared the proposed
method against a baseline method, which consists of training classifiers
for each GO terms individually, in five different ion-channel data sets
and the results obtained are promising.

Key words: hierarchical classification, ant colony optimisation, protein
function prediction

1 Introduction

The large amount of uncharacterised protein data available for analysis has lead
to an increased interest in computational methods to support the investigation
of the role of proteins in an organism. Protein classification schemes, such as
the Gene Ontology [1] are organised in a hierarchical structure, allowing the
annotation of protein at different levels of detail. In a hierarchical protein clas-
sification scheme, nodes near the root of the hierarchy represent more general
functions while nodes near the leaves of the hierarchy represent more specific
functions. The hierarchy also defines parent-child relationships between nodes
were the child node is a specialisation of the parent node. From a data mining
perspective, hierarchical classification is more challenging than single-level ‘flat
classification’ [2]. Firstly, it is generally more difficult to discriminate between
classes represented by leaf nodes than more general classes represented by in-
ternal nodes, since the number of examples per leaf node tends to be smaller
compared to internal nodes. Secondly, an example may have more than one class
predicted depending of its level in the class hierarchy and these predictions must
satisfy hierarchical parent-child relationships.

This paper focuses on hierarchical protein function prediction using the Gene
Ontology (GO) ‘molecular function’ domain. Note that the GO has a complex
hierarchical organisation, where nodes are arranged in a directed acyclic graph

(DAG) structure and a particular node can have more than one parent — in
contrast to only one parent in tree structures. We propose a new Ant Colony
Optimisation (ACO) [3] classification algorithm, named hAnt-Miner (hierarchi-
cal classification Ant-Miner), for the hierarchical problem of protein function
prediction using the GO structure. The proposed method discovers classification
rules that predict functions at all levels of the GO hierarchy, and at the same
time, which are consistent with the parent-child hierarchical relationships.

The remainder of this paper is organised as follows. Section 2 reviews related
work. Section 3 describes the proposed hierarchical classification method using
ACO. Section 4 describes the methodology used for the data preparation. Section
5 presents the computational results of the proposed method. Finally, Section 6
draws the conclusion of this paper and discuss future research directions.

2 Related Work on Gene Ontology Term Prediction

Much work on hierarchical classification of protein functions using the Gene On-
tology has been focused on training a classifier for each GO term independently,
using the GO hierarchy to determine positive and negative examples associated
with each classifier [4], [5], [6]. Predicting each GO term individually has several
disadvantages [7]. Firstly, it is slower since a classifier need to be trained n times
(where n is the number of GO terms in the GO being predicted). Secondly, some
GO terms could potentially have few positive examples in contrast to a much
greater number of negative examples, particularly GO terms at deeper levels
of the hierarchy. Many classifiers have problems with imbalanced class distri-
butions [8]. Thirdly, individual predictions can lead to inconsistent hierarchical
predictions, since parent-child relationships between GO terms are not imposed
automatically during the training. However, more elaborate approaches can cor-
rect the individual predictions in order to satisfy hierarchical relationships —
e.g. a Bayesian network is used to correct the inconsistent predictions of a set of
SVM classifiers in [9]. Fourthly, the discovered knowledge identifies relationships
between predictor attributes and each GO term individually, rather than rela-
tionships between predictor attributes and the GO hierarchy as a whole, which
could give more insight about the data.

In order to avoid the aforementioned disadvantages of dealing with each
GO term individually, a few authors have proposed classification methods that
discover a single global model which is able to predict GO terms at any level of
the hierarchy. Kiritchenko et al. [10] present an approach where the hierarchical
problem is cast as a multi-label problem by expanding the label set (GO terms)
of an example with all ancestor labels (ancestor GO terms). Then, a multi-label
classifier is applied to the modified data set. For some examples, there is still need
for a post-processing step to resolve inconsistencies in the GO terms predicted.
Clare et al. [11] presented an adapted version of C4.5, which is able to deal with
all GO term at the same time. They focused on discovering only a subset of very
good rules for human analysis, rather than building a complete classification
model for classifying the whole data set.

3 Proposed Method

The target problem of the proposed hAnt-Miner method is the discovery of hi-
erarchical classification rules in the form IF antecedent THEN consequent. The
antecedent of a rule is composed by a conjunction of predictor attribute condi-
tions (e.g. LENGTH > 25 AND IPR00023 = ‘yes’) while the consequent of a
rule is composed by set of class labels (GO terms) in potentially different lev-
els of the GO hierarchy (e.g. GO:0005216, GO:0005244 — where GO:0005244
is a subclass of GO:0005216). IF-THEN classification rules have the advantage
of being intuitively comprehensible to biologists. hAnt-Miner divides the rule
construction process into two different ant colonies, one colony for creating rule
antecedents and one colony for creating rule consequents, which work in a co-
operative fashion. Due to this paper’s size restrictions this section assumes the
reader is familiar with standard Ant Colony Optimisation (ACO) algorithms [3].

In order to discover a list of classification rules, a sequential covering ap-
proach is employed to cover all (or almost all) training examples. Algorithm 1
presents a high-level pseudo-code of the sequential covering procedure. The pro-
cedure starts with an empty rule list (while loop) and adds a new rule while the
number of uncovered training examples is greater than a user-specified maximum
value (MaxUncoveredCases parameter). At each iteration, a rule is created by
an ACO procedure (repeat-until loop). Given that a rule is represented by trails
in two different construction graphs, antecedent and consequent, two separated
colonies are involved in the rule construction procedure. Ants in the antecedent
colony create trails on the antecedent construction graph while ants in the con-
sequent colony create trails on the consequent construction graph. In order to
create a rule, an ant from the antecedent colony is paired with an ant from
the consequent colony, so that the construction of a rule is synchronized be-
tween the two ant colonies. Therefore, it is a requirement that both colonies
have the same number of ants (ColonySize parameter). The antecedent and con-
sequent trails are created by probabilistically choosing a vertex to be added to

Algorithm 1: High level pseudo-code of the sequential covering procedure.
begin

training set ← all training examples;
rule list ← ∅;
while |training set| > max uncovered examples do

rulebest ← ∅;
i← 1;
repeat // ACO procedure

rulei ← CreateRule(); // use separate ant colonies for antecedent and consequent

Prune(rulei);
UpdatePheromones(rulei);
if Q(rulei) > Q(rulebest) then

rulebest ← rulei;
end

i← i + 1;
until i ≥ max number iterations OR rule convergence;
rule list ← rule list + rulebest;
training set ← training set − Covered(rulebest, training set);

end

end

the current trail (antecedent or consequent) based on the values of the amount
of pheromone (τ) and a problem-dependent heuristic information (η) associated
with vertices. There is a restriction that the antecedent of the rule must cover at
least a user-defined minimum number of examples (MinCasesPerRule parame-
ter), to avoid overfitting. Once the rule construction procedure has finished, the
rule constructed by the ants is pruned to remove irrelevant terms from the rule
antecedent and consequent.Then, pheromone levels are updated using a user-
defined number of best rules (UpdateSize parameter) and the best-so-far rule is
stored. The rule construction procedure is repeated until a user specified num-
ber of iterations has been reached (MaxIterations parameter), or the best-so-far
rule is exactly the same in a predefined number of previous iterations (Conver-

genceTest parameter). The best-so-far rule found, based on a quality measure
Q, is added to the rule list and the covered training examples (examples that
satisfy the rule’s antecedent conditions) are removed from the training set.

The proposed hAnt-Miner is an extension of the ‘flat classification’ Ant-Miner
[12] in several important ways, as follows. Firstly, it uses two separate ant colonies
for constructing the antecedent and the consequent of a rule. Secondly, it uses a
hierarchical classification rule evaluation measure to guide pheromone updating.
Thirdly, it uses a new rule pruning procedure. Fourthly, it uses heuristic functions
adapted for hierarchical classification.

3.1 Construction Graphs

Antecedent Construction Graph. Given a set of nominal attributes X =
{x1, . . . , xn}, where the domain of each nominal attribute xi is a set of values
Vi = {vi1, . . . , vin}, and a set of continuous attributes Y = {y1, . . . , yn}, the an-
tecedent construction graph is defined as follows. For each nominal attribute xi

and value vij (where vij is the j-th value belonging to the domain of xi) a vertex
is added to the graph representing the term (xi = vij). For each continuous
attribute yi a vertex is added to the graph representing the continuous attribute
yi. Since continuous attribute vertices do not represent a complete term (condi-
tion) to be added to a rule, when an ant visits a continuous attribute vertex, a
threshold value is selected to create a term using ‘<’ or ‘≥’ relational operators
(e.g. yi < value). The selection of this value is deterministic and incorporates
task-specific knowledge, increasing the effectiveness of the algorithm [13].

Then, vertices representing an attribute term (nominal or continuous) are
connected to every other vertex referring to another attribute term, with the
restriction that there are no edges between nominal attribute vertices referring
to the same attribute (to avoid terms such as ‘IPR00023 = yes’ and ‘IPR00023
= no’ being included in the same rule). As a result, attribute term vertices
are almost fully-connected. In addition, a dummy vertex ‘start ’ is added and
unidirectionally connected to all vertices in the construction graph. This vertex
represents the starting point for creating trails.

Consequent Construction Graph. Since the class labels are hierarchically
structured as a directed acyclic graph (DAG), this structure can be directly used

to represent the consequent construction graph as follows. For each class label
li ∈ L, where L is the hierarchy of class labels, a vertex is added to the graph.
Subsequently, for every child vertex lj of li where lj, li ∈ L, a directed connection
from li to lj is added to the graph. As a result, the consequent construction graph
is a DAG, which is exactly the DAG of classes of the target problem, containing
all classes and all parent-child class relationships in the target problem. Ants
traverse the graph from the root vertex towards a leaf vertex. A created trail
represents a set of predicted class labels, consistent with the hierarchy (satisfying
parent-child relationships).

3.2 Rule Evaluation

Since the target problem of hAnt-Miner is the discovery of hierarchical classifi-
cation rules, a variation of the hierarchical measure proposed in [10] is used to
evaluate rules constructed by ants. The measure is a combination of both preci-
sion and recall hierarchical measures, and it takes into account the fact that an
example belongs not only to its more specific class label, but also to all ancestor
class labels according to the class hierarchy (except the root class label, since all
examples trivially belong to the root class label by default).

As discussed earlier, the consequent of a rule is represented by a complete
trail from the root class vertex to a leaf class vertex. In DAG structures, multiple
paths between a given pair of class labels can exist. Therefore, immediately after
an ant finishes building the consequent for rule r, the set of predicted class labels
Pr of rule r is extended with the corresponding ancestor labels (Pr

′) as

Pr
′ = Pr ∪ {∪li∈Pr

Ancestors(li)} − lroot , (1)

where Ancestors(li) corresponds to all ancestor class labels of the class label li
and lroot is the root class label of the hierarchy. The hierarchical micro-averaged
measures of precision (hP) and recall (hR) are computed as

hP =

∑
i∈Sr

|Ti∩Pr
′|

|Pr
′|

|Sr|
hR =

∑
i∈Sr

|Ti∩Pr
′|

|Ti|

|Sr|
, (2)

where Sr is the set of all examples covered by (satisfying the rule antecedent of)
rule r and Ti is the set of true class labels of the i-th example. The hierarchical
precision (hP) is the average number of true class labels that are predicted by
rule r divided by the total number of predicted class labels across the examples
covered by rule r. The hierarchical recall (hR) is the average number of true class
labels that are predicted by rule r across the examples covered by rule r divided
by the total number of true class labels which should have been predicted across
the examples covered by rule r.

The rule quality measure Q is defined as a combination of the hP and hR

measures, equivalent to the hierarchical F-measure, given by Equation (3)

Q = hF =
2 · hP · hR

hP + hR
. (3)

3.3 Rule Pruning

The rule pruning procedure aims at improving the rule quality by removing
irrelevant terms that might have been added during the rule construction process
and it is applied as soon as the rule construction is completed. Recall that a rule
is composed by antecedent and consequent parts, which in turn are represented
by different ant trails that might contain irrelevant vertices.

A rule undergoes the pruning procedure as follows. At the first step, the
quality of the rule is computed using the quality measure Q as given by Equation
(3). In the second step, the rule is submitted to an iterative removal of the last
term added to its antecedent while the quality of the rule is improved. At each
iteration, the consequent of a candidate rule is also submitted to an iterative
removal of the last added class label in an attempt to improve the generalization
behaviour of the candidate rule. Note that, for the purpose of both these iterative
removal procedures, the terms and classes (in the antecedent and consequent,
respectively) are considered as an ordered list, and terms and classes are removed
in an order inverse to the order in which they were added to the rule.

Algorithm 2 describes the rule pruning. Let ruler be the rule undergoing
the pruning procedure and qr be the quality measure of ruler. At each iteration
of the outer repeat loop in Algorithm 2, a candidate rule rulei is created by
removing the last term of the antecedent of ruler and its quality measure qi

is computed. Subsequently, j (0 < j < |rulei.consequent|) candidate rules are
sequentially created by removing the last j class label(s) of the consequent of
rulei. This is implemented by the inner repeat loop in Algorithm 2. If the quality
measure of a rulej is higher than qi, rulei is substituted by rulej. Finally, rulei

substitutes ruler if qr ≤ qi, completing an iteration of the pruning procedure.
This procedure is repeated until ruler has just one term left on its antecedent
or a candidate rule rulei does not improve the quality over ruler (i.e. qr > qi).

Algorithm 2: Rule pruning procedure pseudo-code.
begin

rulebest ← rule;
qbest ← Q(rulebest);
repeat

antecedent← rulebest.antecedent − last term(rulebest.antecedent);
rulei ← antecedent + rulebest.consequent;
qi ← Q(rulei);
consequentj ← rulebest.consequent;
repeat

consequentj ← consequentj − last class(consequentj);
rulej ← antecedent + consequentj ;
if (Q(rulej) > qi) then

rulei ← rulej ;
qi ← Q(rulej);

end

until |consequentj | = 1 ;
if (qi ≥ qbest) then

rulebest ← rulei;
qbest ← qi;

end

until qi < qbest OR |rulebest.antecedent| = 1 ;

end

3.4 Pheromone Trails

Pheromone Initialisation. In order to reinforce trails followed by ants that
constructed good rules, pheromone values are associated with edges in the an-
tecedent and consequent construction graphs. For each vertex i of both an-
tecedent and consequent construction graphs, the initial amount of pheromone
deposited at each edge is inversely proportional to the number of edges originat-
ing at vertex i, computed as

τedgeij
(t = 0) =

1

|Ei|
, (4)

where Ei is the set of edges originating at vertex i, edgeij is the edge that
connects vertex i to its j-th neighbour vertex and t is the time index. As a result
of Equation (4), the same amount of pheromone is initially associated with every
edgeij coming out from vertex i.

Pheromone Updating. The pheromone trails followed by ants are updated
based on the quality of the rule that they represent, which in turn guides future
ants towards better trails. Since a rule is composed by antecedent and consequent
trails, the pheromone update procedure is divided in two steps.

In the first step, the trail that represents the antecedent of a rule r is updated
as follows. Starting from the dummy ‘start’ vertex (0-th vertex), the pheromone
value of the edge that connects the i-th vertex to the (i + 1)-th vertex (0 ≤ i <

|rule.antecedent|) is incremented according to

τedgeij
(t + 1) = τedgeij

(t) + τedgeij
(t) · qr , (5)

where i and j are the i-th and j-th vertices of an edge from i to j in the trail
being updated (edgeij) and qr is the quality measure of rule r — Equation (3).

In the second step, the pheromone value of every edge of the consequent
of rule r that connects the i-th vertex to the (i + 1)-th vertex (0 < i <

|rule.consequent|) is incremented according to Equation (5). Note that, before
computing the rule quality, the consequent is expanded to include all ancestor
class labels of the class labels originally added to the rule’s consequent by an
ant, since there can be multiple paths between class labels, as detailed in sub-
section 3.2. However, during pheromone updating, only the actual trail that was
followed to create the original consequent is updated. This avoids reinforcing
trails that did not directly contribute to the consequent construction.

Pheromone Evaporation. This is implemented by normalizing the pheromone
values of edges of each construction graph G (antecedent and consequent). The
normalization procedure indirectly decreases the pheromone of unused edges,
since the pheromone of used edges has been increased by Equation (5). This
normalization is given by

τedgeij
=

τedgeij∑
τedgeij

∈G

τedgeij

. (6)

3.5 Heuristic Functions

Antecedent Heuristic Function. The heuristic function used in the an-
tecedent construction graph is based on information theory, more specifically,
it involves a measure of the entropy associated with each term (vertex) of the
graph. In the case of nominal attributes, where a term has the form (xi = vij),
the entropy for the term is computed as

entropy(termxi=vij
) =

|L|∑

k=1

−p(lk | termxi=vij
) · log2 p(lk | termxi=vij

) , (7)

where p(lk | term(xi=vij)) is the empirical probability of observing class label lk
conditional on having observed xi = vij (attribute xi having the specific value
vij) and |L| is the total number of class labels. The entropy is a measure of the
impurity in a collection of examples, hence higher entropy values correspond to
more uniformly distributed classes and smaller predictive power for the term
in question. Equation (7) is a direct extension of the heuristic function of the
original Ant-Miner [12] (for ‘flat classification’) into the problem of hierarchical
classification.

In the case of continuous attributes, where a vertex represents just an at-
tribute (and not an attribute-value pair), a threshold value v is chosen to dy-
namically partition the continuous attribute yi into two intervals: yi < v and
yi ≥ v. hAnt-Miner chooses the threshold value v that minimizes the entropy of
the partition, given by

entropy(yi, v) =
|Syi<v|

|S|
· entropy(yi < v) +

|Syi≥v|

|S|
· entropy(yi ≥ v) , (8)

where |Syi<v| is the total number of examples in the partition yi < v (partition
of training examples where the attribute yi has a value less than v), |Syi≥v| is
the total number of examples in the partition yi ≥ v, |S| is the total number of
training examples, and entropy(yi < v) and entropy(yi ≥ v) are the entropy of
the terms represented by (yi < v) and (yi ≥ v) as given by Equation (7).

After the selection of the threshold vbest, the entropy of the term representing
the continuous attribute yi corresponds to the minimum entropy value of the two
partitions and it is defined as

entropy(termyi
) = min (entropy(yi < vbest), entropy(yi ≥ vbest)) . (9)

Equations (8) and (9) are derived from the Ant-Miner version for coping
with continuous attributes, described in [13]. In this current paper the heuristic
function is straightforwardly extended to hierarchical classification as follows.
Since the entropy of the ith-term (nominal or continuous) of the antecedent
construction graph varies in the range 0 ≤ entropy(termi) ≤ log2(|L|−1) (where
|L| − 1 is the number of class labels in the class hierarchy without considering
the root class label) and lower entropy values are preferred over higher values,
the heuristic function is computed as

ηtermi
= log2(|L| − 1) − entropy(termi) , ∀ termi ∈ GA , (10)

where termi is the ith-term of the antecedent construction graph GA. Equation
(10) will give a higher probability of being selected to terms with lower entropy
values, which corresponds to terms with higher predictive power.

Consequent Heuristic Function. The heuristic function used in the conse-
quent construction graph is based on the frequency of training examples for each
class label of the hierarchy, given by

ηli = |TRli |, ∀ li ∈ GC , (11)

where |TRli | is the number of training examples that belong to class label li and
GC is consequent construction graph. Note that the heuristic function has a bias
towards class labels that have a greater number of examples, which therefore will
initially favour the discovery of rules with these class labels in the consequent.
However, due to the use of a sequential covering procedure, rules predicting less
frequent classes will be eventually discovered as well.

4 Bioinformatics Data Preparation

In order to evaluate the proposed method, we have created five data sets invol-
ving ion-channel protein functions. Ion channel proteins are present in all living
cells and they form a pore across the cell membrane [14]. The function of ion
channels is to allow specific inorganic ions (e.g. Na+, K+, Ca2+, Cl−) to cross
the cell membrane. They play an essential role in many cell functions, such as in
functions related to the nervous system, muscle contraction and T-cell activation.

The selection of the protein examples was divided into three steps. In the
first step we selected a subset of the Gene Ontology hierarchy to represent the
hierarchical classes to be predicted. As we focus on ion channel proteins, all the
ancestor and descendant terms of the GO:0005216 (ion channel activity) term
were selected. In the second step, we retrieved protein interaction data from the
IntAct database (release 15/12/2007). Records with database cross-references
to the GO terms selected in the previous step were retrieved. Since many GO
terms (classes) selected in the previous step did not have a reasonable number of
proteins associated with them, we discarded GO terms with less than 10 protein
examples. In the third step, for each protein example retrieved in the previ-
ous step we selected the amino acid sequence and InterPro pattern references
from the UniProt database (release 12.0), using the database cross-reference to
UniProt found in IntAct protein records. We ended up with 147 protein exam-
ples involving 17 GO terms, which were used to create three different data sets.
The first data set (‘DS1 AA’) used the amino acid composition information as
predictor attributes, consisting of the percentage of the sequence composition
relative to each of the 20 different amino acids. The second data set (‘DS1 Inter-
Pro’) used the InterPro pattern information as predictor attributes, consisting of
boolean attributes representing the presence or absence of a particular InterPro
pattern. The third data set (‘DS1 IntAct’) used the IntAct protein interaction
data as predictor attributes, consisting of boolean attributes representing the
presence or absence of a particular interaction.

Using a similar approach, without the restriction of selecting proteins with
protein interaction data available, we increased the number of proteins to 359 ex-
amples to create two additional data sets. The first data set (‘DS2 AA’) used the
amino acid composition information as predictor attributes. The second data set
(‘DS2 InterPro’) used the InterPro pattern information as predictor attributes.

5 Computational Results

The proposed hAnt-Miner method was compared against a baseline approach,
which consists of training a classifier for each GO term of the hierarchy indi-
vidually. The J48 classifier (Weka [15] implementation of the well-known C4.5
decision tree algorithm [16]) was chosen in this approach. In this case, the GO
hierarchy was used to determine the set of positive/negative examples for every
individual classifier as follows. For each classifier associated with a particular GO
term (the classifier which predicts if an example belongs or not to the particular
GO term), the set of positive examples consists of all examples that belong to
the GO term in question (as the most specific GO term as an ancestor of their
most specific GO term); the set of negative examples consists of all the remain-
ing training examples. After training the individual classifiers, a test example is
classified in a top-down fashion. First, the example is classified only by the child
classifiers of the root GO term. For each child classifier, if the classifier predicts
the positive class (the example is predicted to belong to the GO term associated
with the classifier), then the example is ‘pushed downwards’ and classified by
its children classifiers. This procedure goes on until a classifier does not predict
the GO term (the example is predicted as a negative example) or when a leaf
classifier is reached. At the end of this procedure, the set of predicted class labels
is consistent with the GO hierarchy.

We compare the performance of hAnt-Miner and J48 in terms of the hierar-
chical measures of precision, recall and F-measure, since standard classification
accuracy measures are not suitable for hierarchical classification (i.e. they do
not account for misclassification errors at different levels of the hierarchy). The
hierarchical measures of precision, recall and F-measure are defined in Equations
(2) and (3) respectively, with the difference that all test examples are considered
as we are evaluating a classification model and not a rule (which is the case in
subsection 3.2). The experiments were conducted running the well-known 10-fold
cross-validation procedure [15] and the results are reported as average values with
standard deviation computed over the 10 different iterations. In all experiments,
the parameters of hAnt-Miner were set to: ‘ColonySize = 20’, ‘MinCasesPerRule

= 5’, ‘MaxUncoveredCases = 10’, ‘ConvergenceTest = 10’, ‘MaxIterations = 500’
and ‘UpdateSize = 1’. We have made no attempt to optimise these parameters
for the data sets used in the experiments. The results comparing the proposed
hAnt-Miner method against J48 are shown in Table 1.

Overall hAnt-Miner achieved better results than J48 in our set of experi-
ments. J48 was significantly outperformed (according to a Student’s t-test —
see Table 1) in two out of five data sets, namely ‘DS1 InterPro’ and ‘DS1 In-
tAct’. These data sets can be considered ‘difficult’ based on their small size (147

Table 1. Hierarchical measures of precision (hR), recall (hR) and F-measure (hF) val-
ues (mean ± standard deviation) obtained with the 10-fold cross-validation procedure
in the five data sets. An entry in the ‘hF’ column is shown in bold if the hierarchical
F-measure value obtained by one of the methods was significantly greater than the
other method — according to a two-tailed Student’s t-test with 99% confidence.

J48 (top-down)
hP hR hF

DS1 AA 0.73 ± 0.04 0.55 ± 0.03 0.63 ± 0.03

DS1 InterPro 0.69 ± 0.04 0.68 ± 0.05 0.69 ± 0.04

DS1 IntAct 0.69 ± 0.03 0.37 ± 0.04 0.47 ± 0.03

DS2 AA 0.71 ± 0.02 0.61 ± 0.02 0.65 ± 0.02

DS2 InterPro 0.91 ± 0.01 0.84 ± 0.02 0.87 ± 0.01

hAnt-Miner
hP hR hF

DS1 AA 0.56 ± 0.06 0.55 ± 0.06 0.56 ± 0.06

DS1 InterPro 0.82 ± 0.04 0.81 ± 0.04 0.81 ± 0.04

DS1 IntAct 0.77 ± 0.04 0.54 ± 0.03 0.63 ± 0.03

DS2 AA 0.63 ± 0.02 0.59 ± 0.02 0.61 ± 0.01

DS2 InterPro 0.83 ± 0.01 0.75 ± 0.01 0.79 ± 0.01

proteins) and distribution of examples in the GO hierarchy (GO terms at deeper
levels of the hierarchy have few examples). Therefore, the poor performance of
J48 could be the result of the problem that there are many more negative ex-
amples than positive examples for each GO node, particularly at deeper level in
the GO hierarchy, which shows that hAnt-Miner is more robust than J48 when
dealing with unbalanced hierarchical class distributions. This problem was not
observed in the experiments concerning the data sets with a greater number of
protein examples, were J48 significantly outperformed hAnt-Miner in the ‘DS2
InterPro’ data set. In the remaining two data sets, namely ‘DS1 AA’ and ‘DS2
AA’, there were no significant difference between both methods.

6 Conclusion

This paper has presented a new Ant Colony Optimisation algorithm, named
hAnt-Miner, for the hierarchical classification problem of predicting protein func-
tions using the Gene Ontology (GO). The proposed hAnt-Miner discovers a
single global classification model in the form of an ordered list of IF-THEN

classification rules which can predict GO terms at all levels of the GO hierarchy,
satisfying the parent-child relationships between GO terms. Experiments com-
paring hAnt-Miner with a baseline method based on J48, where one classifier
is trained individually for each GO term of the hierarchy, have shown positive
results: hAnt-Miner was significantly more accurate that J48 in two (out of five)
data sets, with the reverse being true in just one data set.

There are several possible avenues for future research. It would be interest-
ing to investigate different rule evaluation measures in order to optimise the

quality of constructed rules. Different variations of the rule pruning procedure
could prove to be more effective. Producing an unordered rule set instead of an
ordered rule list could give more flexibility to the algorithm. Finally, it would be
interesting to apply hAnt-Miner to more bioinformatics data sets.

Acknowledgements — The authors acknowledge the financial support
from an European Union’s INTERREG project (Ref. No. 162/025/361). Fer-
nando Otero also acknowledges further financial support from the Computing
Laboratory, University of Kent.

References

1. The Gene Ontology Consortium: Gene Ontology: tool for the unification of biology.
Nature Genetics 25 (2000) 25–29

2. Freitas, A., de Carvalho, A.: A tutorial on hierarchical classification with applica-
tions in bioinformatics. In Taniar, D., ed.: Research and Trends in Data Mining
Technologies and Applications, Idea Group (2007) 175–208

3. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press (2004)
4. Jensen, L., Gupta, R., Stærfeldt, H., Brunak, S.: Prediction of human protein func-

tion according to Gene Ontology categories. Bioinformatics 19(5) (2003) 635–642
5. Lægreid, A., Hvidsten, T., Midelfart, H., Komorowski, J., Sandvik, A.: Predicting

gene ontology biological process from temporal gene expression patterns. Genome
Research 13(5) (2003) 965–979

6. Bi, R., Zhou, Y., Lu, F., Wang, W.: Predicting Gene Ontology functions based on
support vector machines and statistical significance estimation. Neurocomputing
70 (2007) 718–725

7. Blockeel, H., Schietgat, L., Struyf, J., Džeroski, S., Clare, A.: Decision Trees for
Hierarchical Multilabel Classification: A Case Study in Functional Genomics. In:
Proceedings of PKDD-2006, LNAI 4213. (2006) 18–29

8. Japkowicz, N., Stephen, S.: The class imbalance problem: a systematic study.
Intelligent Data Analysis 6 (2002) 429–450

9. Barutcuoglu, Z., Schapire, R.E., Troyanskaya, O.G.: Hierarchical multi-label pre-
diction of gene function. Bioinformatics 22(7) (2006) 830–836

10. Kiritchenko, S., Matwin, S., A.F.Famili: Functional annotation of genes using
hierarchical text categorization. In: BioLINK SIG: Linking Literature, Information
and Knowledge for Biology. (2005)

11. Clare, A., Karwath, A., Ougham, H., King, R.: Functional bioinformatics for
Arabidopsis thailana. Bioinformatics 22(9) (2006) 1130–1136

12. Parpinelli, R., Lopes, H., Freitas, A.: Data mining with an ant colony optimization
algorithm. IEEE Transactions on Evolutionary Computation 6(4) (2002) 321–332

13. Otero, F., Freitas, A., Johnson, C.: cAnt-Miner: an ant colony classification algo-
rithm to cope with continuous attributes. In: Ant Colony Optimization and Swarm
Intelligence (ANTS 2008), LNCS 5217, Springer (2008) 48–59

14. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: The Molecular
Biology of the Cell. 4th edn. Garland Press (2002)

15. Witten, H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques. 2nd edn. Morgan Kaufmann (2005)

16. Quinlan, J.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)

