Citation for published version

DOI

Link to record in KAR

https://kar.kent.ac.uk/24121/

Document Version

UNSPECIFIED

Copyright & reuse
Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research
The version in the Kent Academic Repository may differ from the final published version. Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the published version of record.

Enquiries
For any further enquiries regarding the licence status of this document, please contact:
researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down information provided at http://kar.kent.ac.uk/contact.html
Computer Science at Kent

Compositional Detection of Zeno Behavior in Timed Automata with Deadlines

Rodolfo Gómez

Technical Report No. 03-09
June 2009

Copyright © 2003 University of Kent at Canterbury
Published by the Computing Laboratory,
University of Kent, Canterbury, Kent, CT2 7NF, UK
Compositional Detection of Zeno Behavior in Timed Automata with Deadlines

Rodolfo Gómez
Computing Laboratory, University of Kent, United Kingdom
R.S.Gomez@kent.ac.uk
June 30, 2009

Abstract
We present a compositional analysis to detect Zeno behavior in Timed Automata with Deadlines. A syntactic analysis is defined, based on Tripakis’ strong non-Zenoness property, which identifies all elementary cycles where Zeno behavior may occur. This analysis is complemented by TCTL reachability properties, which characterize the occurrence Zeno behavior in potentially unsafe cycles.

1 Introduction
Timelocks [6, 7] are anomalous states in timed transition systems, where time divergence is prevented along all execution paths. Hence, timelocks may prevent the exploration of interesting behaviors (e.g., erroneous behaviors), which makes the verification of correctness properties unreliable.

Timed Automata with Deadlines (TAD) [18, 5, 6] are a variant of timed automata [2], where deadlines express the time progress conditions. Deadlines are clock constraints associated with transitions in the automaton, which determine when the transition must be executed. Importantly, neither internal actions nor synchronization on observable actions are made urgent unless they can be executed (TAD are time-reactive [4]). Hence, TAD avoid the most common form of timelocks, where neither actions nor delays may occur (time-actionlocks [6]). On the other hand, Zeno behavior may occur in TAD models, which refers to the anomalous behavior where actions occur infinitely often in finite time.

Unfortunately, unlike time-actionlocks, Zeno behavior cannot be prevented at the semantic level.

Zeno behavior may adopt the form of Zeno runs or Zeno-timelocks. A Zeno run is an infinite run that is not time-divergent (i.e., a run where actions occur infinitely often in finite time). A Zeno timelock is a timelock, s, where a Zeno run exists from any state that is reachable from s. Zeno behavior compromises the verification of correctness properties, where the progress of time is inherently assumed. It is known that time divergence (and thus, the absence of Zeno behavior) can be characterized by liveness properties in TCTL [14] (e.g., see [22]). However, there is little tool support for the analysis of TAD models (the IF toolset [8], and the TAD2TA tool [10], are the notable exceptions), and the verification liveness properties (and in particular, time-divergence) is computationally expensive.

Our contribution. We offer an efficient method to guarantee the absence of Zeno behavior in TAD networks. The method is based on an improved, compositional application of Tripakis’ original strong...
non-Zenoness analysis [20]. The method is compositional and works on the syntax of network components, which makes it potentially more efficient than liveness analysis of time-divergence [14, 19]. Moreover, it provides the additional benefit of identifying all possible sources of Zeno behavior directly on the TAD network, which facilitates model debugging. The tradeoff, which is inherent to the analysis being applied at syntax level, is that the occurrence of Zeno behavior cannot be confirmed. False positives may be returned in the form of cycles in the component automata where Zeno behavior may (or may not) occur. In order to reduce, or even eliminate such false positives, we also derive simple TCTL reachability formulae, which characterize the occurrence of Zeno behavior in the offending cycles.

The combined syntactic and reachability analysis, as proposed in this paper, may potentially eliminate the need to perform liveness analysis. In addition, this approach can be easily implemented in verification tools for TAD models: the syntactic analysis works on the structure of automata, and the proposed TCTL reachability formulae express a simple class of safety properties (e.g., these can be verified in the IF toolset [8] and the TAD2TA tool [10]).

Related Work. Timelocks have been studied extensively in the literature of formal notations for timed systems, e.g. in timed process algebras [16, 17] and timed automata [14, 18, 5, 20, 6, 7, 11]. In particular, [20] and (more recently) [7, 11] provide detailed studies of Zeno behavior in timed safety automata [13]. Also, liveness analysis of time-divergence can be performed in a few model-checkers for timed automata, including Kronos [22], Uppaal [3] and RED [21]. However, to the best of our knowledge, this is the first time that Zeno behavior is studied on timed automata with deadlines, and the first attempt to propose feasible alternatives to liveness analysis.

The analysis presented in this paper is a compositional extension of our previous analysis of Zeno behavior on networks of timed safety automata [7], in the sense that the network’s product automaton need not be constructed. In particular, compositionality is facilitated by the semantics of urgency in TAD.

Organization of this paper. Section 2 presents the formal syntax and semantics of Timed Automata with Deadlines, and defines Zeno behavior. Section 3 and 4 resp. present the compositional methods to detect (or rule out) Zeno behavior. Conclusions are given in Section 5.

2 Timed Automata with Deadlines

This section presents a common form of Timed Automata with Deadlines [18, 5, 6], where transitions are classified either as lazy actions (non-urgent), eager actions (urgent as soon as they are enabled), or delayable actions (urgent on their upper bounds). Formally, we will define the model using eager and lazy actions as the only primitives; delayable actions can be derived from these [5].

Preliminaries. Let \(CA = \{a, b, \ldots\} \) and \(HA = \{a?, a! \mid a \in CA\} \) (we define complementary labels, s.t. \(a! = a? \) and \(a? = a! \)). Let \(D = \{\text{lazy}, \text{eager}\} \). Let \(C \) be the set of clocks (variables that range in the non-negative reals, \(\mathbb{R}^+ \)). Let \(\Phi \) be the set of clock constraints over \(C \), s.t.

\[
\phi \in \Phi := \text{true} \mid x \sim c \mid x - y \sim c \mid \phi \land \phi
\]

where \(x, y \in C, \sim \in \{<, >, =, \leq, \geq\} \) and \(c \in \mathbb{N} \). A valuation is a mapping from \(C \) to \(\mathbb{R}^+ \). Let \(V \) be the set of valuations. Let \(\models \) denote the satisfiability of clock constraints over valuations. Let \(v \in V \), \(\delta \in \mathbb{R} \) and \(r \subseteq C \). The valuation \(v + \delta \in V \) is defined s.t. \((v + \delta)(x) = v(x) + \delta \) if \(v(x) + \delta \geq 0 \), and \((v + \delta)(x) = 0 \) otherwise, for all \(x \in C \). The valuation \(r(v) \in V \) is defined s.t. \(r(v)(x) = 0 \) for all \(x \in r \), and \(r(v)(x) = v(x) \) for all \(x \notin r \).
Syntax and semantics. A timed automaton with deadlines (TAD) is a tuple of the form $A = (L, l_0, Lab, T, C)$, where L is a set of locations; $l_0 \in L$ is the initial location; $Lab \subseteq CA \cup HA$ is a set of labels; $T \subseteq L \times \delta \times Lab \times D \times 2^C \times L$ is a set of transitions (edges) and $C \subseteq \mathbb{C}$ is a set of clocks.

Given a transition $t = (l, a, g, d, r, l') \in T$, l is the source location, a is the label; g is the guard; d is the deadline, r is the reset set and l' is the target location (resp., $src(t), lab(t), g(t), d(t), r(t)$ and $tgt(t)$). Transitions labeled with $a \in CA$ (resp. $a \in HA$) will be referred to as completed actions (resp. half actions). Transitions with deadline lazy (resp. eager) will be referred to as lazy actions (resp. eager actions).

A TAD network is a tuple $|A| = (A_1, \ldots, A_n)$, where $A_i = (L_i, l_{i,0}, Lab_i, T_i, C_i)$ is a TAD $(i : 1..n)$. Let $\mathbb{C} = \bigcup_{i=1}^{n} C_i$ (we say that $x \in \mathbb{C}$ is a shared clock if $x \in C_i \cup C_j$ for some $1 \leq i \neq j \leq n$; otherwise x is a local clock). The behavior of $|A|$ is given by the timed transition system [15] $(S, s_0, Lab \cup \mathbb{R}^+, T)$, where $S \subseteq (\prod_{i=1}^{n} L_i) \times \mathbb{V}$ is the set of states (states are denoted $s = \langle \bar{l}, v \rangle$, where $\bar{l} \in \prod_{i=1}^{n} L_i$ and $v \in \mathbb{V}$); $s_0 \in S$ is the initial state ($s_0 = \langle \bar{l}_0, v_0 \rangle$, s.t. $\bar{l}_0 = \langle l_{1,0}, \ldots, l_{n,0} \rangle$ and $\forall x \in \mathbb{C}, v_0(x) = 0$); $Lab = CA$ is the set of action labels and $T \subseteq S \times Lab \cup \mathbb{R}^+ \times S$ is the smallest set of transitions that satisfies the following conditions.

(Transitions in T may be action transitions, (s, a, s') where $a \in Lab$, or delay transitions, (s, δ, s'), where $\delta \in \mathbb{R}^+$. We refer to elements of $\prod_{i=1}^{n} L_i$ as location vectors. We use $\bar{l}[l'_i/l_i]$ to denote substitution of l'_i for l_i in the location vector $\bar{l} = \langle l_1, \ldots, l_n \rangle$.)

1. (completed actions) $\left(\langle \bar{l}, v \rangle, a, \langle \bar{l}[l'_i/l_i], r_i(v) \rangle\right) \in T$ if
 $(l_i, a, g_i, d_i, r_i, l'_i) \in T_i$, $a \in CA$ and $v \models g_i$

2. (synchronization) $\left(\langle \bar{l}, v \rangle, a, \langle \bar{l}[l'_i/l_i][l'_j/l_j], (r_i \cup r_j)(v)\rangle\right) \in T$ if
 $(l_i, a!, g_i, d_i, r_i, l'_i) \in T_i$, $(l_j, a?, g_j, d_j, r_j, l'_j) \in T_j$ and $v \models g_i \land g_j$ $(i \neq j)$

3. (delays) $\left(\langle \bar{l}, v \rangle, \delta, \langle \bar{l}, v + \delta \rangle\right) \in T$ if
 $\delta \in \mathbb{R}^+$ and for all $\delta' \in \mathbb{R}^+$, $\delta' < \delta$: (1) $(v + \delta') \not\models g(t)$ for all $t \in T_i$ $(i : 1..n)$ s.t. $lab(t) \in CA$, $src(t) = l_i$ and $d(t) = eager$; and (2) $(v + \delta') \not\models g(t_i) \land g(t_j)$ for all $t_i \in T_i, t_j \in T_j$ $(i, j : 1..n, i \neq j)$ s.t. $lab(t_j) = lab(t_i), src(t_i) = l_i, src(t_j) = l_j$ and $d(t_i) = eager$.

where $(\bar{l}, v) \in S$ and $\bar{l} = \langle l_1, \ldots, l_n \rangle$.

A run is a finite or countably infinite sequence of transitions in the timed transition system. We say that a run is infinite if action transitions occur infinitely often. The accumulated delay of a run is the limit of the sum of all delays in the sequence. A run is time-divergent if its accumulated delay is infinite. The projection of a run ρ over a network component A_i is the sequence of actions of A_i that are embedded in the transition of ρ.

We say that an action is enabled (in a given state) if its source location is in the current location vector, and its guard holds true in the current valuation. We use the term matching actions to refer to any pair of half actions, t and \bar{t}, s.t. t and \bar{t} are in different components of the network and have complementary labels. We say that an action is executable (in a given state) if it is enabled and either is a completed action, or is a half action and there exists an enabled matching action. Matching actions must be executed simultaneously, and half actions cannot be executed autonomously.

Definition 2.1. (Loop) Let A be an automaton, and T be the set of all actions in A. A loop in A is an elementary cycle in the graph of A, i.e., a sequence $lp = t_0 \cdots t_{n-1}$ where $t_i \in T$, $tgt(t_i) = src(t_{i+1 \mod n})$ and $src(t_i) \neq src(t_j)$, for all $0 \leq i \neq j < n$.

Let \(lp \) be a loop in automaton \(A \). Let \(l_0, A \) denote the initial location of \(A \). Let \(T_A \) denote the set of actions in \(A \). \(\text{Locs}(lp) \) and \(\text{Act}(S) \) are the sets of all locations and actions in \(lp \), resp. An entry location of \(lp \) is a location \(l \in \text{Locs}(lp) \) s.t. \(l = l_0, A \) or there exists \(t \in T_A \setminus \text{Act}(lp) \) s.t. \(tgt(t) = l \). \(\text{EntryLocs}(lp) \) is the set of entry locations of \(lp \). \(CA(lp) \) and \(HA(lp) \) are the sets of completed actions and half actions in \(lp \), resp. We say that \(lp \) is a synchronizing loop if \(HA(lp) \neq \emptyset \), and a completed loop otherwise. \(\text{Guards}(lp) \) and \(\text{Resets}(lp) \) are the sets of guards and clocks that are reset in \(lp \), resp. Given a set of loops \(S \), we define the generalized sets \(\text{Locs}(S) \), \(\text{Act}(S) \), \(\text{EntryLocs}(S) \), \(CA(S) \), \(HA(S) \), \(\text{Guards}(S) \) and \(\text{Resets}(S) \), as expected.

Definition 2.2. (Traversal) Let \(|A| \) be a TAD network. Let \(A \) be a component automaton of \(|A| \), and let \(lp \) be a loop in \(A \). Let \(\rho \) be a run in the TAD network. We say that \(\rho \) traverses \(lp \) if the sequence of actions that defines \(lp \) is a subsequence in the projection of \(\rho \) over \(A \) (note that, delays and other components’ actions may occur while \(\rho \) is traversing \(lp \)). Given a set of loops \(S \), a run \(\rho \) traverses \(S \) if \(\rho \) traverses each loop in \(S \).

Definition 2.3. (Zeno run, Time-actionlock and Zeno timelock) A Zeno run is an infinite run that is not time-divergent (i.e., a run where actions occur infinitely often in finite time). A timelock is a state where time-divergent runs do not exist. We distinguish between time-actionlocks and Zeno timelocks. A time-actionlock is a timelock where all runs are finite. A Zeno timelock is a timelock, \(s \), where a Zeno run exists from any state that is reachable from \(s \).

Examples. Figure 1 shows a TAD network with two components, \(S \) and \(T \), where \(x \) and \(y \) are local clocks, \(a! \) is an eager action and \(a? \) is a lazy action (we have omitted the labels of completed actions, as these are not relevant to the example). Consider any state \(s = (l, v) \), where \(l = (S, T, 1) \), \(v(x) \geq 1 \) and \(v(y) \leq 1 \). By semantics of eager actions (see the rule for generating delays in the timed transition system), time cannot pass whenever eager actions can be executed, thus the maximum allowed delay from \(s \) is \(\delta \in \mathbb{R}_{\geq 0} \) s.t. \((v + \delta)(y) = 1 \) (note that, any \(\delta' > \delta \) would make the eager action \(a! \) executable). However, neither delays nor actions may occur at \(s + \delta \), because \(a? \) is not yet enabled. By definition, the state \(s \) (and any \(s' \) reachable from \(s \)) is a time-actionlock.

Consider the TAD model shown in fig. 2 (this example is adapted from [3]). The automaton \(\text{Lamp} \) models the behavior of a 3-state lamp. At the pressing of a button (press?), the lamp changes from \text{Off} to \text{Dim}. If the button is pressed again quickly (in less than 5 t.u.), the state changes to \text{Bright}. Instead, if the button is pressed after the lamp has been \text{Dim} for at least 5 t.u., the lamp is switched off. Pressing the button while the lamp is \text{Bright} also switches it off. Timing constraints are expressed on the clock \(x \).

\(\text{LazyUser} \) and \(\text{EagerUser} \) are two different environments for the lamp. The automaton \(\text{LazyUser} \) models a user who can press the button at any time. This is modeled by making \text{press!} a lazy action. The automaton \(\text{EagerUser} \) models a user who continuously attempts to press the button, asap. This is modeled by making \text{press!} an eager action. (The automaton \(\text{Clock} \) will help us illustrate the nature of Zeno behavior).

Consider the network \(|A|_{\text{lazy}} = \langle \text{Lamp}, \text{LazyUser}, \text{Clock} \rangle \). This network exhibits a Zeno run that cycles through \text{Off}, \text{Dim} and \text{Bright} in less than 5 t.u. (the user can be arbitrarily fast). However,
delays are not prevented in any state. Thus, from any state in the behavior of \(|\mathcal{A}_{\text{lazy}}|\), there is at least
one infinite, time-divergent run where \(\text{Clock}\) ticks once every time unit. On the other hand, Zeno
runs are possible in the network \(|\mathcal{A}_{\text{eager}}| = \langle\text{Lamp}, \text{EagerUser}, \text{Clock}\rangle\), but here the passage of time is
prevented in all states. Thus, by definition, all states in the behavior of \(|\mathcal{A}_{\text{eager}}|\) are Zeno-timelocks.
Moreover, as components synchronize implicitly on the passage of time, \(\text{Clock}\) never ticks (even though
it is conceptually independent from the rest of the network). The global effect of Zeno-timelocks may
also be seen in the network \(|\mathcal{A}_{\text{users}}| = \langle\text{Lamp}, \text{LazyUser}, \text{EagerUser}\rangle\), where the behavior of \(\text{EagerUser}\)
and \(\text{LazyUser}\) can no longer be distinguished (users’ actions may interleave but no delay is allowed
between consecutive moves).

In order to see the effect of Zeno behavior on verification, consider the following liveness formulae
in TCTL [1].

\[
\psi_{\text{weak}} = \forall \square \exists \lozenge \geq 1 \text{true} \quad \psi_{\text{strong}} = \forall \square \forall \lozenge \geq 1 \text{true}
\]

The formula \(\psi_{\text{weak}}\) expresses a weak form of time-divergence: \(\psi_{\text{weak}}\) is satisfiable (in the behavior of
a TAD network) if there exists at least one time-divergent run at any reachable state. Note that, the
satisfiability of \(\psi_{\text{weak}}\) on the network characterizes the absence of Zeno-timelocks (\(|\mathcal{A}_{\text{lazy}}| \models \psi_{\text{weak}}\) and
\(|\mathcal{A}_{\text{eager}}| \not\models \psi_{\text{weak}}\)). However, Zeno runs may occur even when \(\psi_{\text{weak}}\) holds true. Absence of Zeno runs
is expressed by the formula \(\psi_{\text{strong}}\), which holds true when all infinite runs are time-divergent and all
finite runs can be extended to time-divergent runs (\(|\mathcal{A}_{\text{lazy}}| \not\models \psi_{\text{strong}}\) and \(|\mathcal{A}_{\text{eager}}| \not\models \psi_{\text{strong}}\).

2.1 Prevention of Timelocks and Zeno Behavior in TAD networks

Time-reactivity [4] is a desirable property of timed transition systems. This property holds if, from any
state, either time may pass or actions can be executed. The following syntactic restriction guarantees
the time-reactivity of TAD networks: For any action \(t\), if either \(d(t) = \text{eager}\) or there exists \(\bar{t}\) s.t.
\(d(\bar{t}) = \text{eager}\), then \(g(t)\) must be left-closed.\(^1\) This restriction guarantees that delays are prevented only
when eager actions can be executed (see the semantic rule for delays). We assume, in this paper, that
TAD networks satisfy this requirement. (Note that, action \(a?\) in fig. 1 is guarded with \(y>1\), which is
not left-closed.)

On the other hand, Zeno runs and Zeno timelocks are difficult to prevent in TAD networks. Any
solution that is implemented at the level of semantics is likely to enforce minimum delays between the
consecutive executions of actions, which would severely constrain the set of abstract models that can
be written in the formalism.

3 Compositional Detection of Zeno Runs

This section explains how to exploit the syntax of loops in components of a TAD network, in order
to discover all possible sources of Zeno runs. This analysis is complemented by TCTL reachability

\(^1\)A guard \(g\) is left-closed if the interval \(\{\delta \in \mathbb{R} | (v + \delta) \models g\}\) is either left-closed or left-unbounded, for all \(v \in \mathbb{V}, v \models g\).
For conjunctions of single-clock constraints, \(g\) is left-closed if \(x > c\) does not occur in \(g\), for any \(x \in \mathbb{C}\) and \(c \in \mathbb{N}\).
formulæ, which characterize the occurrence of Zeno runs on unsafe loops (i.e., those loops where the absence of Zeno runs could not be guaranteed by the syntactic analysis). The main results are stated in Theorems 3.1 and 3.3.

3.1 A syntactic analysis to confirm the absence of Zeno behavior

We apply Tripakis’ strong non-Zenoness property [20] to discover those loops which cannot be traversed infinitely often by Zeno runs, i.e., those whose syntax force at least one time unit to pass between consecutive iterations.

Definition 3.1. (Strong non-Zenoness) A loop is strongly non-Zeno (or SNZ, for short) if there is a clock that is both reset and bounded from below in the loop. Formally, a loop $lp = t_0 \ldots t_{n-1}$ is a SNZ loop if there exists $x \in \mathbb{C}$, $0 \leq i, j < n$, $m \in \mathbb{N}$, $m > 0$, s.t. $x \in r(t_i)$ and $g(t_j) \Rightarrow x \geq m$. (We refer to loops that are not SNZ as NSNZ loops.)

Tripakis proved that Zeno runs cannot occur in timed safety automata [14] if all cycles in the automaton (but not necessarily elementary cycles) are SNZ [20, 19]. In previous work, we exploited synchronization to derive a weaker sufficient condition for the absence of Zeno runs in networks of timed automata [7, 12], which allows NSNZ loops in the network as long as those loops cannot be traversed without simultaneously traversing SNZ loops. This analysis was more efficient and precise than the one originally proposed in [20, 19]; more efficient, because only elementary cycles needed to be considered; more precise, in the sense that it produced fewer false positives, because a bigger class of interactions among loops could be recognized as safe (i.e., time-divergent in the presence of infinite iterations).

The idea in [7, 12] was to identify which groups of NSNZ loops (either completed loops of groups of synchronizing loops with matching actions) could possibly complete an iteration without necessarily synchronizing with SNZ loops. If no such offending group was found, the analysis guaranteed the absence of Zeno runs (and therefore, by definition, the absence of Zeno-timelocks). Otherwise, the occurrence of Zeno runs could not be confirmed. However, the analysis could confirm that, if Zeno runs indeed occurred in the network, these runs must necessarily traverse (infinitely often) all loops in some offending group. Hence, the syntactic analysis identified all loops in the network where Zeno runs could possibly occur.

By way of example, Figure 3 shows a network $|A = (S, T)|$ with two synchronizing loops. The loop in S is SNZ, because the clock x is bounded from below ($x > 1$) and reset ($x := 0$) in the loop. The loop in T is a NSNZ loop. However, the network is free from Zeno runs, because infinite runs must necessarily traverse the SNZ loop infinitely often, i.e., they have infinite accumulated delay. Equivalently, through synchronization, the SNZ loop prevents the NSNZ loop from being iterated arbitrarily fast.

Figure 3: Infinite synchronization between SNZ and NSNZ loops is time-divergent

In what follows, we show that a similar analysis can be applied to TAD networks. Compared to our previous work [7, 12], here we add a simple syntactic check to improve the precision of the analysis. The check aims to eliminate false positives that are produced by NSNZ synchronizing loops that have been
grouped together based on their matching actions, but where the ordering of the half actions prevents a complete joint iteration. This class of false positives is illustrated by fig. 4. This figure shows two NSNZ synchronizing loops, one in component S and the other in component T, which can be grouped based on matching actions. However, given that the only entry locations are S0 and T0, these loops cannot synchronize jointly to produce complete iterations.

Definition 3.2. (NSNZ group) Let |A be a TAD network. A NSNZ group is a finite, non-empty set of loops in the component automata of |A, S, s.t. (a) either all loops in S are NSNZ synchronizing loops or S is a singleton which contains a NSNZ completed loop; (b) for any clock x ∈ C and action t in some loop in S, if x ∈ r(t) then there is no action t' in any loop in S s.t. g(t') ⇒ x ≥ m, for any m ∈ N, m > 0; (c) all loops in S, which belong to the same component automaton of |A, form a strongly connected subgraph; and (d) t ∉ HA(S) for all t ∉ HA(S).

Definition 3.3. (Entry vector) Let S be a NSNZ group. Let A1, ..., Am be all distinct component automata that have at least one loop in S. Let Li denote the set of locations of Ai, i : 1..m. An entry vector of S is a location vector of the form ⟨l1, ..., lm⟩, where li ∈ Li ∩ EntryLocs(S) for all i : 1..m.

Definition 3.4. (Unfolding) Let S be a NSNZ group. Let ℓ be an entry vector of S. An unfolding of S from ℓ is a cycle σ of the form:

\[\sigma = \ell_1 \xrightarrow{\alpha_1} \ell_2 \ldots \ell_k \xrightarrow{\alpha_k} \ell_1 \]

where

1. ℓ = ℓ1 and ℓi ⊆ Locs(S) for all i : 1..k;
2. ℓi ≠ ℓj for all i ≠ j, i, j : 1..k;
3. either ℓi+1 = ℓi[tgt(t)/src(t)], αi = t, t ∈ CA(S) and src(t) ∈ ℓi, or ℓi+1 = ℓi[tgt(t)/src(t), tgt(ℓ)/src(ℓ)], αi = (t, ℓ), t, ℓ ∈ HA(S) and src(t), src(ℓ) ∈ ℓi, for all i : 1..k; and
4. for each t ∈ Act(S), there is some i : 1..k s.t. αi = t or αi = (t, ℓ).

Definition 3.5. (ZR group) A ZR group is a NSNZ group, S, s.t. (a) S admits at least one unfolding, and (b) no proper subset S′ ⊂ S admits unfoldings.

Theorem 3.1. In TAD networks, the absence of ZR groups implies the absence of Zeno behaviors.

Proof. We prove an equivalent claim: Zeno runs in TAD networks traverse ZR groups infinitely often. Let ρ be a Zeno run. By definition of Zeno runs, ρ must traverse some loop infinitely often (because ρ is an infinite run), but ρ cannot traverse SNZ loops infinitely often (because infinite traversals of SNZ loops entails time-divergence). Then, (infinitely often) either ρ traverses a NSNZ completed loop or a group of NSNZ synchronizing loops. Traversal implies unfolding, hence (by definition) such loops are part of a ZR group.

![Figure 4: Synchronizing loops with matching actions, which cannot synchronize jointly](image-url)
A note on complexity. The number of NSNZ loops in a given component is (at most) exponential in the size of the component (i.e., in the number of locations and transitions in the automaton). However, in practice, the majority of component loops will be SNZ loops, and most of the NSNZ loops will synchronize only with SNZ loops. Hence, the number of NSNZ groups is usually small.

This leaves us with the problem of checking for existence of unfoldings in a given NSNZ group, S. Note that, if S is a single NSNZ completed loop, then S trivially admits unfoldings; else, S is a group of synchronizing NSNZ loops and the interleaving of completed actions in the loops is irrelevant to the existence of unfoldings. Now, given an entry vector ℓ of S, the existence of unfoldings in S from ℓ can be checked with a DFS-based algorithm, which attempts to traverse the loops in S (synchronizing on half actions when necessary) to produce a non-empty sequence of actions that starts and ends in ℓ. Therefore, checking whether S is a ZR group can be solved in space proportional to $|\text{Act}(S)|$, and in time proportional to $e \times m^k$, where e is the number of entry vectors of S, m is the maximum number of matching actions $\bar{t}_1, \ldots, \bar{t}_m \in \text{HA}(S)$ for any $t \in \text{HA}(S)$ (where \bar{t}_i, \bar{t}_j are in different loops, for all $1 \leq i \neq j \leq m$), and k is the number of different output actions in $\text{HA}(S)$.

Example. Figure 5 shows four components S_a, T_a, S_b and T_b. Consider the network $|A = \langle S_a, T_a \rangle$. There are two NSNZ loops in S_a, with entry locations S_{1a} and S_{2a}, and one NSNZ loop in T_a, with entry location T_{1a}. This is a ZR group with a single unfolding, σ_a.\(^2\)

$$\sigma_a = \langle S_{1a}, T_{1a} \rangle \xrightarrow{\langle a?, a \rangle} \xrightarrow{\langle b?, b \rangle} \xrightarrow{\langle c? , c \rangle} \xrightarrow{\langle d?, d \rangle} \langle S_{1a}, T_{1a} \rangle$$

Now, consider the network $|B = \langle S_b, T_b \rangle$. There are two NSNZ synchronizing loops in S_b, with entry locations S_{1b} and S_{2b}, and one NSNZ loop in T_b, with two entry locations, T_{1b} and T_{3b}. There are two possible unfoldings here, σ_b from $\langle S_{1b}, T_{1b} \rangle$ and σ_b' from $\langle S_{2b}, T_{3b} \rangle$, as follows.

$$\sigma_b = \langle S_{1b}, T_{1b} \rangle \xrightarrow{\langle b?, a \rangle} \xrightarrow{c_1} \xrightarrow{\langle a?, a \rangle} \xrightarrow{\langle b?, b \rangle} \xrightarrow{c_1} \langle S_{1b}, T_{1b} \rangle$$

$$\sigma_b' = \langle S_{2b}, T_{3b} \rangle \xrightarrow{\langle b?, b \rangle} \xrightarrow{c_1} \xrightarrow{\langle a?, a \rangle} \xrightarrow{c_1} \xrightarrow{\langle a?, a \rangle} \langle S_{2b}, T_{3b} \rangle$$

The previous examples showed that, the existence of unfoldings depend on entry locations, and that a loop may synchronize with many interconnected loops in different components of the network (or with a single loop, more than once) in order to complete an unfolding. The following example shows that several different unfoldings may exist starting in the same entry vector. Figure 6 shows a TAD network with three components R, S, and T. This network exhibits a single ZR group, which is formed by all the component loops and has $\ell = \langle R_0, S_0, T_0 \rangle$ as its only entry vector. Two unfoldings are possible from ℓ, σ_R and σ_T, depending on which with component, R or T, S synchronizes first.

\(^2\)When the unfolding in question is clear, we will omit the intermediate location vectors, and we will refer to the actions involved by their labels.
\[
\sigma_R = (R_0, S_0, T_0) \xrightarrow{(a?, a!)} (R_1, S_1, T_0) \xrightarrow{(a?, a!)} (R_1, S_2, T_0) \xrightarrow{(b?, b!)} (R_0, S_0, T_0)
\]

\[
\sigma_T = (R_0, S_0, T_0) \xrightarrow{(a?, a!)} (R_0, S_1, T_0) \xrightarrow{(a?, a!)} (R_1, S_2, T_0) \xrightarrow{(b?, b!)} (R_0, S_0, T_0)
\]

3.2 A reachability analysis to confirm the occurrence of Zeno runs

The existence of ZR groups in the network does not imply the occurrence of Zeno runs (i.e., the converse of Theorem 3.1 does not hold). However, for a large class of ZR groups (convergent ZR groups), it is possible to obtain a sufficient and necessary condition for the occurrence of Zeno runs, which itself can be expressed by simple reachability formulae in TCTL [14]. This is stated in Theorem 3.3.

Definition 3.6. (Convergent ZR group) A ZR group S is convergent if the conjunct \(x > 0 \) does not occur in any \(g \in \text{Guards}(S) \), for any \(x \in \text{Resets}(S) \).

Lemma 3.2. Let \(S \) be a convergent ZR group, and \(\rho \) a Zeno run that traverses \(S \) infinitely often. Then, there exists a Zeno run \(\rho' \) that traverses \(S \) infinitely often, s.t. delay(\(\rho' \)) = 0.

Proof. Let \(\rho \) be a Zeno run that traverses \(S \) infinitely often. Let \(s \) be any state in \(\rho \) that is reachable after \(\rho \) has traversed \(S \) at least once. W.l.o.g., choose \(s \) s.t. \(s \xrightarrow{s'} s' \xrightarrow{s''} s'' \) are the next two transitions in \(\rho \), where \(s' \in \mathbb{R}^+ \) and \(a \in CA \). Assume that \(t \in \text{Act}(S) \) is the completed action in \(S \) whose execution is represented by the action transition \(s' \xrightarrow{a} s'' \) (the argument holds also if \(s' \xrightarrow{a} s'' \) represents the synchronization of half actions in \(S \)). Note that, action \(t \) is also enabled in \(s \); otherwise \(g(t) \Rightarrow x > 0 \) for some clock \(x \) which was reset in \(\rho \) after the last previous execution of \(t \) and before \(s \) was reached (which contradicts the premise that \(S \) is a convergent ZR group). Then, from \(s \), no delay transition in \(\rho \) is necessary for the execution of action transitions (i.e., the valuation at \(s \) ensures the traversal of \(S \) regardless of delays). Therefore there exists a Zeno run \(\rho' \) that traverses \(S \) infinitely often, starts in \(s \), s.t. delay(\(\rho' \)) = 0. \(\square \)

Definition 3.7. (Reachability formula \(\varphi_{ZR} \)) Let \(|A| \) be a TAD network. Let \(S \) be a ZR group in \(|A| \). Let \(\ell = \langle l_1, \ldots, l_m \rangle \) be an entry vector of \(S \). Let \(A(j) \) denote the component in \(|A| \) that contains \(l_j \), for each \(j : 1..m \). We define a TCTL reachability formula, \(\varphi_{ZR}(S, \ell) \), as follows.

\[
\varphi_{ZR}(S, \ell) \triangleq \exists \Diamond (\bigwedge_{j:1..m} A(j).l_j \land \bigwedge_{g \in \text{Guards}(S)} g)
\]

Theorem 3.3. Let \(|A| \) be a TAD network. Let \(S \) be a convergent ZR group in \(|A| \). The following conditions are equivalent.

1. There exists a Zeno run that traverses \(S \) infinitely often.

3We consider reachability formulae of the form \(\exists \Diamond \phi \), where \(\phi \) is a state formula built from clock constraints, references to automata locations, and Boolean operators.
2. \(\varphi_{ZR}(S, \ell) \) holds true in \(|A|\), for some entry vector \(\ell \) that admits an unfolding of \(S \).

Proof. ((1) \(\Rightarrow \) (2)). Let \(\rho \) be a Zeno run that traverses \(S \) infinitely often. We can choose \(\rho \) s.t. it has zero accumulated delay, by Lemma 3.2. Let \(s \) be any state in \(\rho \) that is reachable after \(\rho \) has traversed \(S \) at least once, and s.t. the location vector in \(s \) contains some entry vector \(\ell \) of \(S \) (note that, \(\ell \) admits the unfolding of \(S \) that is represented by the next traversal of \(S \) by \(\rho \) from \(s \)). Necessarily, all states in \(\rho \) after \(s \) (including \(s \)) have the same valuation, which simultaneously satisfies all \(g \in Guards(S) \). Hence, \(s \models \varphi_{ZR}(S, \ell) \).

((2) \(\Rightarrow \) (1)). Let \(\ell \) be an entry vector which admits an unfolding of \(S \). Let \(s = (\bar{l}, v) \models \varphi_{ZR}(S, \ell) \), i.e., \(\bar{l} \) includes \(\ell \) and \(v \) satisfies all \(g \in Guards(S) \). Necessarily, a state \(s_0 \) can be reached from \(s \) by traversing \(S \) without delay. (Otherwise, given that \(\ell \) admits an unfolding of \(S \) and \(v \) satisfies all \(g \in Guards(S) \), it must be the case that \(g \Rightarrow x > 0 \) for some \(x \in Resets(S) \) and \(g \in Guards(S) \), which contradicts the premise that \(S \) is a convergent ZR group.) Then, there must exist an elementary cycle in the timed transition system of \(|A|\), of the form: \(s_0 \xrightarrow{a_0} s_1 \ldots s_{n-1} \xrightarrow{a_{n-1}} s_n \), where \(s_0 = s_n \), each transition \(s_i \xrightarrow{a_i} s_{i+1} \) represents the execution of some action in \(S \), and \(v_0 = \ldots = v_n = Resets(S)(v) \). This cycle represents a Zeno run. \(\square \)

Example. Figure 7 shows five components, \(S, Ta, Tb, Tc \) and \(R \). Consider the TAD network \(|A| = \langle S, Ta \rangle \), the ZR group \(S_a \) defined by the loops at \(S1 \) and \(T1a \), and the entry vector \(\ell_a = \langle S1, T1a \rangle \). For \(S_a \) to exhibit Zeno runs, \(\ell_a = \langle S1, T1a \rangle \) should be reachable with a valuation \(v \) that satisfies \(v(x) > 2 \) and \(v(y) < 1 \). This state witnesses \(\varphi_{ZR}(S_a, \ell_a) \), which is defined as follows.

\[
\varphi_{ZR}(S_a, \ell_a) = \exists \diamond (S.S1 \land Ta.T1a) \land x > 2 \land y < 1
\]

On the other hand, consider the network \(|B| = \langle S, Tb \rangle \), the ZR group \(S_b \) defined by the loops at \(S1 \) and \(T1b \), and the entry vector \(\ell_b = \langle S1, T1b \rangle \). Zeno runs cannot occur in \(S_b \), because \(\ell_b \) cannot be reached with a valuation \(v \) that satisfies \(v(x) > 2 \) and \(v(y) < 1 \) (this is prevented by the guard \(y<1 \) in completed action \(c3 \)). Correspondingly, the formula \(\varphi_{ZR}(S_b, \ell_b) \) fails to hold in \(|B| \).

\[
\varphi_{ZR}(S_b, \ell_b) = \exists \diamond (S.S1 \land Tb.T1b) \land x > 2 \land y < 1
\]

Finally, let us show an example that justifies the restriction imposed by convergent ZR groups. Consider the network \(|C| = \langle S, Tc, R \rangle \). This network contains a non-convergent ZR group, \(S_c \), defined by the loops at \(S1 \) and \(T1c \) (note that, \(y>0 \) and \(y:=0 \) occur in the self loop at \(T1c \)). \(S_c \) has a single entry vector, \(\ell_c = \langle S1, T1b \rangle \). The formula \(\varphi_{ZR}(S_c, \ell_c) \) holds true in \(|A| \); however, Zeno runs do not occur on \(S_c \) because delays are prevented by the eager loop in \(R0 \). Thus, in general, \(\varphi_{ZR} \) cannot be applied over non-convergent ZR groups.

4 Compositional detection of Zeno-timelocks

This section presents a syntactic and compositional analysis to identify all sources of Zeno-timelocks in a TAD network, based on the syntax of ZR groups. This is complemented by TCTL reachability.
formulae, which characterize the occurrence of Zeno-timelocks that are local to the ZR group (i.e., Zeno-timelocks whose witness Zeno runs are confined to the loops in the ZR group). The main results are stated in Theorems 4.1 and 4.2.

4.1 A syntactic analysis to confirm the absence of Zeno-timelocks

We prove that, the occurrence of Zeno-timelocks in TAD networks imply the existence of ZR groups, which admit unfoldings where eager actions are executed at every step. (We refer to such groups as ZT groups.) This yields a syntactic analysis that guarantees the absence (but not the occurrence) of Zeno-timelocks in a TAD network.

Definition 4.1. (ZT group) Let $|A|$ be a TAD network. Let S be a ZR group in $|A|$. We say that S is a ZT group if S admits an unfolding, σ, s.t. σ is of the form:

$$\sigma = \ell_1 \xrightarrow{\alpha_1} \ell_2 \ldots \ell_k \xrightarrow{\alpha_k} \ell_1$$

where, for all $i : 1..k$, there is some eager action $t \in \text{Act}(S)$ s.t. $\alpha_i = t$ or $\alpha_i = (t, \bar{t})$. We will refer to σ as an eager unfolding of S from ℓ_1.

Theorem 4.1. In TAD networks, the absence of ZT groups implies the absence of Zeno-timelocks.

Proof. We prove an equivalent claim: The occurrence of Zeno-timelocks in TAD networks imply the existence of ZT groups. Let s be a Zeno-timelock in the TAD network. By definition of Zeno-timelocks, (a) there are no time-divergent runs from s, and (b) there are Zeno runs starting in any state that is reachable from s. From (a), it follows that, from any s' that is reachable from s, there exists some eager action t in the TAD network, and some $\delta \in \mathbb{R}^+0$, s.t. t is executable in $s' + \delta$. From (b) and the latter observation, there exists a set of eager actions in the TAD network, E, say, which may be executed infinitely often from s. By definition, there exists a ZT group S s.t. $\text{Act}(S) \subseteq E$.

Example. Figure 8 shows three components, R, S and T. Two ZR groups can be formed, S_{RT}, with the loops in R and T, and S_{ST}, with the loops in S and T. Note that, only S_{RT} is a ZT group, which admits the eager unfolding σ_{RT}. Instead, the only unfolding of S_{ST} contains moves that do not involve eager actions.

σ_{RT} = (R1, T1) → a_1||d_1 → b_1||d_1 → c_1||d_1 → d_1||d_1 → (R1, T1)

Note that, once a Zeno-timelock s is reached, it is possible that some of the Zeno runs starting in s do not execute eager actions. Nonetheless, Theorem 4.1 guarantees the existence of Zeno runs that traverse at least one ZT group infinitely often. Thus, we focus our syntactic analysis (and the reachability analysis discussed in the next section) on the construction of ZT groups.
4.2 A reachability analysis to confirm the occurrence of Zeno-timelocks

The existence of ZT groups does not imply the occurrence of Zeno-timelocks (the converse of Theorem 4.1 does not hold). There are several reasons why a given ZT group, S say, may not induce a Zeno-timelock. Clearly, as for ZR groups, S may not be reachable with valuations that permit Zeno runs. A less obvious reason is that S may contain non-eager unfoldings, which may be executed by time-divergent runs. In addition, even if S is traversed by Zeno runs and it only admits eager unfoldings, time-divergent runs may exist which start in some location of S but are not confined to the loops in S, thus escaping the urgency constraints. Unfortunately, whether Zeno runs are confined to S cannot be characterized as a reachability property.

Nonetheless, reachability analysis suffices to confirm that a given ZT group, S, can be reached with a valuation, v, s.t. (a) v allows S to be traversed by Zeno runs with zero accumulated delay, and (b) v simultaneously disables all actions t s.t. $\text{src}(t) \in \text{Locs}(S)$ and $\text{tgt}(t) \notin \text{Locs}(S)$. Thus, once S is reached with v, all runs thereafter are confined to S. We will derive a TCTL reachability property from the syntax of ZT groups, for those ZT groups that only admit eager unfoldings. This property guarantees the occurrence of Zeno-timelocks in the group when it holds true (however, in general, nothing can be concluded when the property fails to hold).

Definition 4.2. (Escape action) Let $|A|$ be a TAD network. Let T be the set of all actions in $|A$. Let S be a ZT group in $|A$. An escape action of S is an action $t \in T$ s.t. $\text{src}(t) \in \text{Loc}(S)$ and $\text{tgt}(t) \notin \text{Loc}(S)$.

Let S be a ZT group. Let $\text{EscAct}(S) \subseteq \text{Act}(S)$ be the set of escape actions in S. Let $\text{EscCA}(S), \text{EscHA}(S) \subseteq \text{EscAct}(S)$ be the subsets of escape completed actions and escape eager actions in S, respectively.

Definition 4.3. (Local Zeno-timelock) Let S be a ZT group. A Zeno-timelock, s, is local in S if (a) a Zeno run exists that starts in s and traverses S infinitely often, and (b) no escape action $t \in \text{EscAct}(S)$ is executable in any state s' that is reachable from s.

Definition 4.4. (Reachability formula φ_{ZT}) Let $|A|$ be a TAD network, and T be the set of actions in $|A$. Let S be a ZT group of $|A$. Let $\ell = \langle l_1, \ldots, l_m \rangle$ be an entry vector of S. Let $A(j)$ denote the component in $|A$ that contains l_j, for each $j : 1..m$. We define the reachability formula, $\varphi_{\text{ZT}}(S, \ell)$, as follows.

$$\varphi_{\text{ZT}}(S, \ell) = \exists \diamond \left(\bigwedge_{j : 1..m} A(j), l_j \land \bigwedge_{g \in \text{Guards}(S)} g \land \bigwedge_{t \in \text{EscCA}(S)} \neg g(t) \land \bigwedge_{t \in \text{EscHA}(S), \forall T} \neg (g(t) \land g(\bar{t})) \right)$$

Theorem 4.2. Let S be a ZT group. Let ℓ be an entry vector of S that only admits eager unfoldings. If $\varphi_{\text{ZT}}(S, \ell)$ holds true in $|A|$, then a Zeno-timelock occurs that is local in S.

Proof. Let $s = \langle \bar{l}, v \rangle$ be any state s.t. $s \models \varphi_{\text{ZT}}(S, \ell)$. Note that, (a) $\varphi_{\text{ZT}}(S, \ell)$ implies $\varphi_{\text{ZR}}(S, \ell)$, and (b) S is a convergent ZR group. By definition, there exists some $t \in \text{Act}(S)$ and $x \in \mathbb{C}$ s.t. $x > 0$ is a conjunct in $g(t)$. Also, either t or $\bar{t} \in \text{Act}(S)$ is an eager action, because only eager unfoldings exist from ℓ. But t is not left-closed, which contradicts our well-formedness assumption on TAD networks § 2). Thus, by Theorem 3.3, there exists a Zeno run, ρ, which starts in s, traverses S infinitely often, s.t. $\text{delay}(\rho) = 0$. Now, consider any state $s' = \langle \bar{l}', v' \rangle$ that is reachable from s. The projection of \bar{l}' over the component automata of S is a location vector in some eager unfolding of S from ℓ, because v disables all escape actions from S. In addition, time cannot pass from s', because the existence of eager unfoldings (and the fact that v satisfies all clock constraints of actions in S) ensures that eager actions exist in s'. Hence, by definition, s is a Zeno-timelock that is local to S. \square
Example. Figure 9 shows four components, S, Ta, Tb and Tc. Consider the TAD network |A = ⟨S,Ta⟩ and the ZT group S_a, formed by the loops synchronizing on a! and a?. The entry vector is ℓ_a = ⟨S1,T1a⟩. Zeno-timelocks occur in S_a with valuation v s.t. v(x) > 1 and v(y) = 0 (Zeno runs occur that disable the escape actions b? and b!). This is confirmed by the reachability analysis, as ϕ_{ZT}(S_a, ℓ_a) holds true in |A.

\[
ϕ_{ZT}(S_a, ℓ_a) = ∃(S.S1 ↪ Ta.T1a ∧ x > 1 ∧ y < 2 ∧ ¬(true ∧ y ≥ 2))
\]

In contrast, consider the TAD network |B = ⟨S,Tb⟩ and the ZT group S_b, formed by the loops synchronizing on a! and a?. The entry vector is ℓ_b = ⟨S1,T1b⟩. Zeno-timelocks cannot occur in S_b, because any valuation that reaches ℓ_b and allows the traversal of S_b, also enables the escape actions b! and b? (the synchronization b!!b? leads back to ⟨S0,T0b⟩, where time may pass again). The reachability formula, ϕ_{ZT}(S_b, ℓ_b), fails to hold in |B (it is, in fact, trivially unsatisfiable).

\[
ϕ_{ZT}(S_b, ℓ_b) = ∃(S.S1 ↪ Tb.T1b ∧ x > 1 ∧ y < 2 ∧ ¬(true ∧ true)) = false
\]

The previous example showed a case where the characteristic reachability formula failed to hold, and no Zeno-timelock occurred in the network. The following example shows that, in general, nothing can be inferred when the reachability formula fails to hold. Consider the TAD network |C = ⟨S,Tc⟩ and the ZT group S_c, formed by the loops synchronizing on a! and a?. The entry vector is ℓ_c = ⟨S1,T1c⟩. Here, a Zeno-timelock occurs that is not local to S_c, and this cannot be inferred by reachability analysis. Note that, when ℓ_c is reached with a valuation v, s.t. v(x) > 1 and v(y) = 0, Zeno runs exist that traverse S_c but also the loops on b!!b? again, and the passage of time is prevented in all states because b! is eager (here, b? is the only escape action of S_c). However, the reachability formula, ϕ_{ZT}(S_c, ℓ_c), fails to hold in |C because any valuation that allows the traversal of S_c also enables synchronization on b!!b?.

\[
ϕ_{ZT}(S_c, ℓ_c) = ∃(S.S1 ↪ Tc.T1c ∧ x > 1 ∧ y < 2 ∧ ¬(true ∧ true)) = false
\]

5 Conclusions and Future Work

We proposed a number of methods to check for Zeno behavior in TAD networks. These methods are based on a compositional application of Tripakis’ strong non-Zenoness property, which works on the syntax of loops (elementary cycles) in component automata. These methods are compositional, in the sense that they are informed by the syntax of loops in component automata and do not require the construction of the network’s product automaton.

A purely syntactic analysis was proposed to confirm the absence of Zeno runs, which either guarantees that the TAD network is free from Zeno runs, or it identifies all groups of loops that can potentially be traversed by Zeno runs, infinitely often. This method is complemented by TCTL reachability formulae, which are derived from the syntax of offending loops (i.e., those groups of loops identified by the
syntactic analysis), and which hold true when Zeno runs occur in the loops. Thus, reachability analysis offers a way to reduce false positives. These methods were extended to check for Zeno-timelocks, based on the identification of groups of NSNZ loops, which both may be traversed by Zeno runs and iterate using eager actions at every step. However, reachability analysis could only characterize the occurrence of certain classes of Zeno-timelocks, namely, those whose Zeno runs are confined to a given set of loops.

We would argue that, compositionality was facilitated by the semantics of deadlines. Although, it is possible to port these methods to TA networks, such analysis would be more difficult to implement because invariants express urgency indirectly.

Future work will consider the implementation of these methods, and the integration with available tools for the analysis of TAD models. We believe that, this combined approach is more efficient than verification of time divergence by liveness properties. Moreover, the proposed TCTL formulae can be verified with the simplest form of reachability analysis supported in verification tools (for instance, these formulae can be verified in the IF toolset; and also in Uppaal, given the translation suggested in [10, 9]). Our syntactic analysis can also be applied to TAD models with discrete variables on finite domains (i.e., similar to the extensions of timed automata supported by Uppaal). On the other hand, due to interactions between data variables, the reachability formulae no longer characterize Zeno runs. For instance, these formulae may be satisfiable by valuations that allow only finitely many consecutive iterations (which prevents the occurrence of Zeno runs). Some form of termination analysis may help to identify such cases, but this is subject of further research.

References

