
Stepney, Susan and Polack, Fiona and Welch, Peter, eds. (2008) Cosmos
2008 Complex Systems Modelling and Simulation: Proceedings of the 2008
Workshop on Complex Systems Modelling and Simulation. Luniver Press,
136 pp. ISBN 978-1-905986-17-0.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/24109/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/24109/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Proceedings of the 2008 Workshop on

Complex Systems Modelling and Simulation

CoSMoS 2008

.

Susan Stepney, Fiona Polack, Peter Welch,

Editors

CoSMoS 2008

Luniver Press
2008

Published by Luniver Press
Frome BA11 6TT United Kingdom

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

CoSMoS 2008

Copyright c© Luniver Press 2008

All rights reserved. This book, or parts thereof, may not be reproduced
in any form or by any means, electronic or mechanical, including photo-
copying, recording or by any information storage and retrieval system,
without permission in writing from the copyright holder.

ISBN-10: 1-905986-17-3
ISBN-13: 978-1-905986-17-0

While every attempt is made to ensure that the information in this
publication is correct, no liability can be accepted by the authors or
publishers for loss, damage or injury caused by any errors in, or omission
from, the information given.

V

Preface

We are pleased to be running the first CoSMoS workshop in association
with the thirty-first Communicating Process Architectures Conference
(CPA 2008), in York, UK. Complex Systems often involve a large num-
ber of agents, which can be modelled as processes, communicating and
interacting, resulting in emergent properties. As such, the architectures
of complex systems simulators fit well with the scope of the CPA series
of conferences.

The genesis of this workshop is the similarly-named CoSMoS research
project, a four year EPSRC funded research project at the Universities
of York and Kent. The project aims are stated as:

The project will build capacity in generic modelling tools and
simulation techniques for complex systems, to support the mod-
elling, analysis and prediction of complex systems, and to help
design and validate complex systems. Drawing on our state-of-
the-art expertise in many aspects of computer systems engineer-
ing, we will develop CoSMoS, a modelling and simulation process
and infrastructure specifically designed to allow complex systems
to be explored, analysed, and designed within a uniform frame-
work.

As part of the project, we are running annual workshops, to dissem-
inate best practice in Complex Systems modelling and simulation. To
allow authors the space to describe their systems in depth we put no
stringent page limit on the submissions.

We did not want these workshops to be focussed on our own project;
rather, we wanted to embrace the wider complex systems community, so
that we could all benefit from the whole community’s experiences and
best practices. So we are delighted at this first workshop to have papers
from a range of contributors, from a range of backgrounds including
computer science, clinical medicine, immunology, and plant biology.

Ognen Paunovski, George Eleftherakis, and Tony Cowling have a
detailed description of their multi-agent simulation framework to inves-
tigate emergence. They include an interesting blend of formal modelling,
simulation, and validation and verification steps. They apply their ap-
proach to a small case study of animal herding.

Robert Alexander, Ruth Alexander-Bown, and Tim Kelly explore
some of the problems that arise when engineering safety critical complex
systems, and in particular, how one might argue the validity of simulation
data in a safety case analysis.

VI

Philip Garnett, Susan Stepney, and Ottoline Leyser apply the CoS-
MoS project’s modelling approach outside the project itself, for the pur-
poses of building a detailed simulation of a complex biological system:
auxin transport canalisation in plant stems. Here the focus is very much
on the biological process itself, rather than on more generic systems con-
cerns, yet generic principles can still be extracted.

Finally, some members of the CoSMoS team itself, Paul Andrews,
Fiona Polack, Adam Sampson, and Jon Timmis, and their biological
collaborators Lisa Scott and Mark Coles, delve into questions that arise
from using the initial CoSMoS toolset and method to simulate an im-
munological process. In particular, how can the simulation be validated,
be argued to have any relevance to reality?

It is interesting to see some common themes emerging already in this
very first workshop, in particular the emphasis on validation.

Our thanks go to all the contributors for their hard work in getting
these papers prepared and revised, and to our programme committee for
their prompt, extensive and in-depth reviews of all the papers submit-
ted. We hope that readers will enjoy this set of papers, and come away
with insight on the state of the art, and some understanding of current
progress in Complex Systems Modelling and Simulation.

Susan Stepney, Fiona Polack (University of York)
Peter Welch (University of Kent)

August 2008

VII

Programme Committee

Rob Alexander, University of York, UK
Paul Andrews, University of York, UK
Fred Barnes, University of Kent, UK
Richard Paige, University of York, UK
Fiona Polack, University of York, UK
Adam Sampson, University of Kent, UK
Susan Stepney, University of York, UK
Jon Timmis, University of York, UK
Peter Welch, University of Kent, UK

VIII

.

Table of Contents

CoSMoS 2008

Framework for Empirical Exploration of Emergence using
Multi-Agent Simulation . 1
Ognen Paunovski, George Eleftherakis, Tony Cowling

Engineering Safety-Critical Complex Systems 33
Robert Alexander, Ruth Alexander-Bown, Tim Kelly

Towards an Executable Model of Auxin Transport Canalisation . . 63
Philip Garnett, Susan Stepney, Ottoline Leyser

Simulating biology: towards understanding what the simulation
shows . 93
Paul S. Andrews, Fiona Polack, Adam T. Sampson, Jon
Timmis, Lisa Scott, Mark Coles

X

.

Framework for Empirical

Exploration of Emergence using

Multi-Agent Simulation

Ognen Paunovski1, George Eleftherakis2, and Tony Cowling3

1 South East European Research Centre (SEERC), 17, Mitropoleos St.,
54624 Thessaloniki, Greece ogpaunovski@seerc.org

2 City College, 13, Tsimiski St., 54624 Thessaloniki, Greece
eleftherakis@city.academic.gr

3 University of Sheffield, Regent Court, 211 Portobello St., Sheffield, S1
4DP. UK. a.cowling@dcs.shef.ac.uk

Abstract. In recent years the concept of emergence has gained
much attention as computer systems have started exhibiting
properties usually associated with complex systems. Although
emergence creates many problems for engineering complex com-
puterized systems by introducing undesired behaviour, it also
offers many possibilities for advancements in the area of adap-
tive self-organizing systems. However, at the moment, the in-
ability to predict and control emergent phenomena prevents us
from exploring its full potential or avoiding problems in exist-
ing complex systems. Towards this end, this paper proposes a
framework for structured empirical study of complex systems
exhibiting emergence. The framework relies on agent-oriented
modelling and simulation as a tool for examination of specific
manifestations of emergence. The main idea is to use an iterative
simulation process in order to build a coarse taxonomy of causal
relations between the micro and the macro layers. In addition to
detailed description of the framework, the paper also elaborates
different aspects of ongoing work on herd dynamics case study.

1 Introduction

There is a variety of systems which are perceived as complex. In the natu-
ral world, cells, immune systems, nervous systems, ant colonies and many
others can be viewed as complex systems. Similarly in the human world,
a wide range of cultural and social systems like families, political parties,

2 Paunovski, Eleftherakis, Cowling

companies, scientific communities, economical markets and many others
are also complex systems. However in recent years the study of complex
systems attracted considerable interest in the field of computer science.
One of the main reasons for this trend is the increase in the complexity
of computer based systems, which are becoming complicated, open and
distributed [1].

The importance of emergent behaviours in computer systems can be
viewed from two aspects. From an engineering perspective mastering the
control of the emergent phenomena can be very useful. Emergence is re-
sponsible for self-organization, self-optimization, adaptation and other
beneficial properties encountered in complex systems. The utilization of
these emergent behaviours in an information system can benefit the de-
velopment and performance of the system by making it highly available,
scalable and robust. However on the other hand, a greater concern con-
cern for computer scientists and software engineers is the appearance
of undesired emergent behaviour or so-called “misbehaviour”. Emergent
misbehaviour can be viewed as an unexpected behaviour which may have
an undesired effect on the system. An example presented in [2] shows that
complete degradation of the service can occur in a fairly simple multi-
tiered distributed application due to a small increase in database server
latency. Examples like this show that it is vital to prevent the appearance
of emergent misbehaviour in computer based systems. However since the
phenomenon of emergence is inevitably linked with the complexity of the
information systems, it cannot be simply avoided. Consequently there is
a need to devise means for the development of correct systems which
will guarantee (to some extent) that there will be no undesired emergent
behaviour at runtime.

Nevertheless given the stochastic nature of emergence, in practice it
is infeasible to formally verify the appearance of emergent behaviour [3].
Therefore in recent years agent-oriented modelling and simulation has
been suggested as a tool which can shed light on the problem [4, 5, 6].
The idea is to model the components of a complex system as agents and
use them in simulation-based experiments. Nevertheless so far there is
no study which deals with the practicalities of constructing a framework
for analysis of emergent formations. In this paper, we are addressing
this issue by proposing a structured two-phase framework for empirical
exploration of emergent behaviour through multi-agent modelling and
simulation. The initial phase of the framework addresses the verification
and validation of the multi-agent model, while the second phase is an
experimental process aimed at determining the causal relations between
the micro-level interaction and the visible effects of emergence at the
macro-level. The end goal of this process is to address the problem of

Framework for Empirical Exploration of Emergence 3

analysing emergent behaviour in complex systems through a structured
set of well defined activities and practices. As an ongoing work the paper
also addresses the application of the proposed process and activities to
a case study dealing with formation and dynamics of herds in animals.

The rest of the paper is structured as follows. Section 2 offers a in-
troductory discussion on emergence. The application of the multi-agent
paradigm for modelling of complex systems is elaborated in section 3.
Section 4 provides a structured overview of the proposed framework fol-
lowed by a detailed discussion of the practices envisioned as part of the
framework. The ongoing work on the herd formation case study is de-
scribed in section 5. Finally conclusions and future work are summarized
in section 6.

2 Emergence and types of emergence

The basic idea behind emergence was popularized by Anderson in [7],
where he argued that a simple component interaction can give rise to
complex phenomena which are more than a simple sum of the com-
ponents’ behaviours. A simple example of this is the liquidity in wa-
ter. There is nothing to suggest, in a single H2O molecule, that many
molecules at room temperature have the property of liquidity. Another
example is the interaction among local weather patterns, which influ-
ence emergent formations like hurricanes, tornados, temperature inver-
sions and other weather phenomena. Similarly stock market crashes can
be viewed as emergent phenomena based on the interaction between
traders on the stock market. The phenomena of consciousness in the
human brain follows the same basic principle of emergence. While one
neuron is a relatively simple entity, the collective interplay of millions of
neurons in the human brain can result in something much more than a
simple sum of the neuron’s properties and behaviour.

If we examine these examples in more detail, we can come to the con-
clusion that emergence describes a system where a global phenomenon
arises from the local interactions between the individual (micro level)
components of the system. However due to the diversity and complexity
of emergent phenomena, in natural as well as social systems, different sci-
ences have focused on different aspects in the investigation of emergence.
Consequently there is a variety of definitions [8, 9, 10, 11, 12, 13, 14] used
to describe emergence, but none is generally accepted. Nevertheless in
order to continue the discussion on emergence, there is a need for a work-
ing definition within the field of computer science. The authors of this
paper adopted the definition proposed by Wolf and Holvet in [6], where
they view emergence as part of the system:

4 Paunovski, Eleftherakis, Cowling

“...when there are coherent emergents at the macro-level that
dynamically arise from the interactions between the parts at the
micro-level. Such emergents are novel w.r.t the individual parts
of the system.”

In this context, “coherent emergents” denotes orderly (logically or aes-
thetically) consistent effects (properties, behaviours, structures, patterns)
which are products of the process of emergence at the macro (system)
level, caused by interactions at the micro (individual, elementary) level.
While this definition describes the basic principle behind emergence, it
gives almost no insight into the particular manifestations of emergence.
Therefore in order to understand the forms of emergence there is a need
to differentiate and classify different types of emergent phenomena.

Very often the concepts of weak and strong emergence are used in
order to differentiate between emergent phenomena [9]. However this
classification, although relevant for philosophical discussions, is too gen-
eral in order to be useful in the field of computer science. Consequently
there is a need for a more clearly defined classification structure like
the one proposed by Fromm in [15], where he builds upon the classifi-
cation for cellular automata proposed by Wolfram [16]. He distinguishes
four primary classes (types I-IV) based on the causal relations of the
phenomena. Furthermore the classification follows a gradation in com-
plexity. Class I contains the simplest emergent phenomena with a single
feed-forward relation which can be found in engineered systems (e.g. in-
tentional design of a machine like a clock, computer program etc.) and
systems exhibiting aggregated emergent phenomena (e.g. wave front in
water, avalanches, cascades). Classes III and IV have the highest com-
plexity. Class III phenomena have multiple feedbacks, both positive and
negative. This type is common in open systems with high complexity and
it is usually associated with activator-inhibitor systems (e.g. patterns in
biological entities, stock market rush, prisoner’s dilemma) as well as
evolutionary and adaptive systems (evolution of ecosystems, sudden sci-
entific or mental revolutions and so on). Class IV on the other hand,
contains emergence of completely new complex systems (culture, life).
From an engineering perspective a particularly interesting case is type II
emergence which encompasses systems exhibiting self-organization and
other useful properties (type IIA), as well as emergent phenomena which
are based on imitation and self-amplification (type IIB). The latter sub-
type is responsible for the so called negative emergent behaviours like
crashes and bubbles in the stock market, explosions of social unrest,
buzz in the news and so on. In principle these are the same phenom-
ena perceived as misbehaviour in computer systems. Consequently the

Framework for Empirical Exploration of Emergence 5

framework proposed in this paper is primarily concentrated on emergent
phenomena of this type (II).

3 Multi-agent modelling of complex systems
exhibiting emergence

Many researchers [4, 5, 8, 17, 18] dealing with the problems posed by
emergence agree that an initial approach in understanding emergence
should be done through Multi-Agent Systems (MAS). There are several
main reasons behind such claims. First of all there is a natural correspon-
dence between the structure of complex systems and MAS. They both
rely on many individual components (agents) in order to achieve their
goals. Each agent in an MAS is autonomous and able to interact in a
stochastic manner with other agents. Moreover there is no limitation on
the interaction scenarios, which means that an agent is able to commu-
nicate indirectly on multiple levels by modifying the local environment,
which arguably is the most common approach used for communication
in natural complex systems. For example ants communicate indirectly to
each other by dropping pheromone which modifies the environment and
serves as a guide towards food. Another correspondence between MAS
and complex systems is the level of complexity. An MAS can achieve
almost any level of complexity and thus a multi-agent system of specific
complexity is essentially a complex system.

Nevertheless this does not mean that any MAS is complex or exhibits
emergent behaviour by default. There are several properties common in
MAS exhibiting emergence [19]:

– Agent mobility, or visible states for fixed systems - e.g. spatial
repositioning for mobile agents, .

– Ability to influence the environment - e.g. chemotaxis, self-
replication and other approaches for modifying the environment.

– Ability to distinguish groups and individuals - e.g. flocking of
birds as a model composed of individual agents and groups (flocks).

In addition, it can be argued that the basic multi-agent modelling
concepts, of abstraction, decomposition and organization [19], match the
requirements for modelling complex systems. The ability to abstract al-
lows the designer to simplify the representation of the system by hiding
unnecessary complexity. Some properties of the model are emphasized
while others are suppressed. This is very important when dealing with a
system whose entities may be complex systems themselves. Otherwise it
would be very difficult (if not impossible) to develop a complete model
of the system.

6 Paunovski, Eleftherakis, Cowling

The idea behind decomposition is to divide a complex problem into
several smaller, more manageable components. Thus each component
could be examined and analysed in relative isolation. Nevertheless the
application of decomposition in systems exhibiting emergence is a very
delicate issue. Decomposition of a system might diminish the emergent
phenomena. For example dividing a living entity into parts could result in
bunch of dead pieces. This is because “life”, as an emergent phenomenon,
relies on interaction between different components in the system and
might not be a property of the component itself. Consequently it cannot
be examined in isolated components. Nevertheless this does not mean
that decomposition is useless in the case of emergence, but that it is
important to devise an appropriate decomposition strategy which will
not influence the phenomenon.

The third concept discussed by Jennings and Woodridge in [19] is
organization. Although the development of an individual agent is a rel-
atively straightforward process, the intentional design of the organiza-
tional structures of agents is extremely difficult. This is primarily due
to the dynamicity and unpredictability of interaction patterns within
the system. This unpredictability is a big problem from an engineering
perspective since it diminishes the predictability of the system. However
in the case where the agent system is used as a model in a simulation
study, the uncertainty of the runtime dynamics is not a disadvantage
nor a problem for that matter. In fact it offers the unique possibility for
the investigator to gain insight into the possible behaviour that might
be exhibited by the modelled system under certain conditions.

Although at the moment MAS may be the best tool for modelling
complex systems, the modelling of complex systems exhibiting emer-
gence faces several difficulties. One of the fundamental problems is the
inability to capture the emergence with a model of the system. It is vis-
ible only during runtime operation of the system. Furthermore by its
definition emergence introduces novelty at the system level which can-
not be deduced from the properties of the individual components. So
the developer of the MAS model cannot simply design a synthesis rule,
which will encapsulate how combination of the elementary components
gives rise to emergent properties. When emergence is concerned things
simply do not add up in the way they are supposed to.

4 Description of framework for exploration of
emergent behaviours

The framework proposed in the following sections is devised in order
to provide a general framework for empirical examination of emergent

Framework for Empirical Exploration of Emergence 7

phenomena through multi-agent simulation. The fundamental idea is
based on incremental increase of the knowledge about the causes and
effects of the emergent phenomenon under study.

4.1 General Overview

The main object of the study is a multi-agent model of the specific sys-
tem which exhibits emergence. The animation of this model is the pri-
mary method of achieving synthesis of the elementary behaviours into a
macro-level emergent behaviour. In addition, the animation of the model
generates the data which can be used as basis for the top-down delin-
eation and traceability of cause and effects. In this manner, the proposed
framework incorporates the two-way experimental method proposed by
Edmonds and Bryson [4, 5]. The overall process can be divided into two
phases: model verification and experimentation.

– The initial phase encompasses the development and validation of the
model in respect to the expected behaviour. The idea is to use it-
erative refinement to the model in order to bring it closer to the
desired behaviour. Thus building confidence about the model opera-
tion. This is an important step, which aims to provide an alternative
to formal verification and validation, since it cannot be achieved for
complex systems with stochastic interactions [4]. Once the model is
validated the process can move to the second phase.

– The second phase of the investigation is an “experimental” stage.
It is essentially an analytical process aimed at detection of invari-
ants, interaction patterns, local properties and other elements that
have influence on the emergent formations. The goal of this process
is to detect the possible causes and their impact on the observable
emergent behaviours. The mechanism proposed in the framework is
essentially based on the experimental scientific method. The investi-
gator forms a testable hypothesis and puts it to a test through mod-
ification of the model and animation (simulation). The observation
of the model execution and the analysis of the gathered data should
support or refute the hypothesis, thus increasing the understanding
of the specific emergent phenomenon.

A phase, as defined in the framework, can contain several iterative cy-
cles. Each cycle is composed out of predefined arrangement of activities
(steps) and transitions. An activity defines the tasks (operations) which
need be performed at a particular point, while the transitions define the
output from one activity and the input to the next one. The section that
follows contains a detailed overview of the activities envisioned as part

8 Paunovski, Eleftherakis, Cowling

Individual
Entity

Communication
Environment

Emergent
Behaviour

Conclusions

Models of Individual Agents

Observation

Complete Multi-Аgent
Simulation Model

Analysis

Simulation
Execution

System
Description

Complex System
Under Study

ITERATION Hypothesis

2

Modelling

Modelling
&

Implementation

Formal Verification

3

1

4

5 Analysis
Evaluation

Refinement

7

6

8

Execution
Data

EMPTY

NON_EMPTY

FULL

 add_part

 become_empty

 remove_part

 add_part

 become_full

M=(set_of (ITEM_TYPE, ID), capacity)

 remove_part

 ignore_add

Buffer

Fig. 1. Artifacts and transitions in the proposed framework

of the framework. Examples related to herd dynamics case study (elab-
orated in section 5) are used, where appropriate, in order to illustrate
certain concepts in an activity.

4.2 Activities and Transitions

Figure 4.2 presents a detailed overview of the activities and transitions
envisioned in a cycle. However it has to be noted that the first two
steps are performed only in the initial cycle of the first phase. The steps
deal with the system description and model specification. The steps 3-
8 represent the elements of a single iteration. The description of the
activities, transitions and the corresponding artifacts is summarized as
follows:

– Activity 1: The initial transition is a jump from the real system to
its theoretical description. Depending on the system being studied
the most appropriate person to perform the description is an expert

Framework for Empirical Exploration of Emergence 9

in the field of study. For example in the case of a natural system,
like the herd formation in animals [26, 33], this transition should be
performed by biologists.

– Activity 2: The second activity focuses on the analysis of the system
description from the initial step, in order to derive the major prop-
erties of the multi-agent model. The overall properties of the model
should capture three aspects:
• The properties of each type (if more than one) of agent in the

model. In the case of herd formation the document should pro-
vide the specification of the properties of an individual animal.
• The properties of the environment and types of communication

used. This could include an explicit communication protocol or
some indirect way of communication between the agents, or inter-
action between the agent and the environment. In the herd for-
mation scenario example the communication is achieved through
modification of the environment by repositioning of the animals.
• The properties of the emergent phenomena. The major focus

should be on clear (quantifiable, if possible) definition of a par-
ticular manifestation of emergence. The characteristics of the
emergent phenomenon could be defined through macroscopic
variables [6] or other indicators. In the herd scenario such an
indicator could be the level of herd cohesion.

– Activity 3: Based on the specification developed in the previous ac-
tivity, an appropriate model for each type of agent needs to be de-
veloped. A good practice is to use a formal modelling language, so as
to be able to verify the properties of the model in order to determine
that there are no undesired discrepancies and errors.

– Activity 4: The models of the individual agent, developed in the
previous activity, should be combined with the appropriate repre-
sentations (models) of the environment and communication in order
to form the complete multi-agent model of the system. An important
issue in this activity is the relationship between the individual agent
and the environment, which is supposed to enable non-deterministic
multilevel interaction.

– Activity 5: At this point the complete model should be transformed
(implemented) in an environment which should allow animation of
the model. The selection of simulation environment may vary de-
pending on the system under study. A visual animation of the model
may prove very useful in cases like the herd formation. Although
animation is a bottom-up process, all of the data required for the
top-down delineation needs to be generated during the animation
process. Therefore it is essential that parameters which define the
model’s behaviour, both at micro and macro levels, are recorded

10 Paunovski, Eleftherakis, Cowling

in sufficient details for later analysis. This data should present two
views on the executed simulation.
• First it should contain quantitative measurements on the state

of the model at a particular time frame, offering traceability in
terms of continuous model execution.
• The second type of data should provide insight into the proper-

ties of the macroscopic level. This could be achieved through a
set of global variables. For example, in the herd formation sce-
nario such global variable could be “herd cohesion” which will
indicate the strength of the herd.

– Activity 6: This step involves analysis of the simulation data gathered
in the previous step. The goal of the analysis process is different in
the two phases.
• In the initial phase (development and verification) the analysis

of the data should be done in order to evaluate the current state
of the model in respect to the desired model. Parts of the data
can be used in order to trace possible errors in the model.
• In the experimental phase the analysis of the gathered data

should be compared with the expected outcomes in order to test
the hypothesis. The analysis should focus on evaluation of the
stability of emergent behaviour in the model and detection of
patterns by means of statistical and correlation analysis as well
as detection of invariants. Based on the findings the investigator
can derive conclusions about the behaviour of the model in the
particular simulation run.

– Activity 7: This step involves evaluation of the simulation data in
order to quantify the behaviour of the model and emergent phenom-
ena.
• In the first phase, the goal of this activity is to identify elements

of the model which cause discrepancies in the model behaviour
from the desired one. Thus to be able to define (if any) the
required changes to the model in order to bring it closer to the
expected behaviour.
• In the second phase the main focus is on formulation of a hypoth-

esis which will be examined in the next iteration. The hypothesis
should be empirically testable by making changes to the model.
In addition, the investigator should define criteria according to
which the hypothesis will be supported or refuted.

– Activity 8: The final stage of the cycle can be viewed as an initial
stage of the next iteration and involves modification (refinement) of
the model in order to test the hypothesis set. As can be seen from the
diagram, the modification can be done on all aspects of the model
including the individual agent, the environment and communication.

Framework for Empirical Exploration of Emergence 11

Additionally changes in the data reporting routines of the simulation
environment may be needed in order to gather additional data.

The discussed steps represent a single cycle in an iterative process, while
the number of iterations is not fixed it should be sufficient to support
or refute the hypothesis being examined. In this manner the proposed
framework adopts an experimental approach to exploring emergence in
already existing systems.

However since the object of the study is a model of the real system
rather than the system itself, there is a major concern that the developed
model might not possess sufficient details, i.e. it might omit important
factors or make wrong assumptions about the system. If it did, the model
would be potentially useless in respect to the goals of the study. This
is the main reason why the verification and validation of the model is a
very important part for the success of the study.

4.3 Verification and validation of the model

The verification and validation of the model is incorporated as an initial
phase of the proposed framework. The main goal of the tasks in this
phase is to minimize the potential discrepancies between the real system
and the model. In respect to this, several issues concerning validation
and verification need to be addressed.

Figure 4.3, taken from Sargent’s work in [20], presents overview of the
modelling process in relation to the validation and verification steps. The
problem entity denotes the “real” system which is the object of the study,
while the conceptual model is an abstract representation of the system
which is developed during the modelling process. The validation of the
conceptual model should determine whether the model corresponds to
the real system for the intended purpose. Although the practical details
of various validation techniques are beyond the scope of this discussion
(for more information see [20]), there are several issues that need to
be considered. In this context perhaps the most important issue is the
selection of a representation technique. There are several aspects that
need to be taken into account when selecting a representation technique
[21]:

– The expressive power of the representation technique. Can the model
be fully captured with the particular technique?

– The technical knowledge of the people to whom this model will be
communicated. Other people, involved in the study, should be able
to understand the notation used to describe the model.

– The application of formal analysis and verification of the model in
the particular form.

12 Paunovski, Eleftherakis, Cowling

Real System
(problem entity)

Programmed
(Computerized)

Model

Communicated
(Conceptual)

Model

Conceptual
Model

Validation

Programmed
Model

Verification

Analysis
and

Modelling

Programming and
Implementation

Experimentation

Operational
Validation

Data
Validity

Fig. 2. Overview of verification and validation steps in a modelling process,
taken from [20].

– Automation of the transformation, from communicative to program-
med model. How can the conceptual model be transformed (imple-
mented) into a form which can be animated and used in a simulation
study?

Given the variety of representation techniques, there is no generic solu-
tion to all of these problems. The success of a particular representation
schema depends on the system under study as well as the environment
and people involved in the study. Therefore we avoid proposing a par-
ticular technique as part of the framework. Nevertheless we strongly
believe that a formal representation should be used in order to develop
the model of the individual agent. By using formal methods the inves-
tigator can verify that the model of the individual agent is correct and
can therefore focus its attention on the validation of the communication
and interaction between the agents. However not all formal methods are
suitable for modelling agents. In general, in order for a formal method
to be useful for modelling agents, it should satisfy the following criteria
[22]:

– to model both the data and the internal changes of an agent,

Framework for Empirical Exploration of Emergence 13

– to model separately the behaviours of an agent and the ways in which
the behaviours interact with each other,

– to be intuitive, practical and effective towards the implementation
of an agent,

– to facilitate the development of correct agents.

Although the use of formal techniques may be applicable to an individual
agent, in practice it is infeasible to formally verify a complex multi-agent
system with stochastic interaction [4]. Consequently in this case the most
appropriate solution is to informally validate the interacting multi-agent
model by means of simulation. However in order to do so the conceptual
model needs to be implemented (programmed) in a form which can be
executed. The transition from the conceptual to the programmed model
is the second step in the validation and verification process presented
in figure 4.3. The primary concern here is to ensure correctness and
correspondence of the implementation to the conceptual model design.
In the best case this transformation could be done using a tool (which
has been extensively tested) which will automate the transformation
process and ensure correctness. However depending on the problem and
the representation technique used, such a tool might not be available.
In this case the transformation needs to be performed manually. In this
context, verification techniques which are used in software engineering
could be applied here [23]. Detailed analysis of various testing techniques
is beyond the scope of this discussion, for a comprehensive overview see
[24].

At a point when this transition from the conceptual to the pro-
grammed model is complete, the investigator has the means to validate
the complete multi-agent model of the system. This is the final veri-
fication and validation step in figure 4.3 (operational validity) which
aims to validate the correspondence between the behaviour exhibited
by a programmed model and the real system. The final behaviour of
the programmed model must have a reasonable accuracy in respect to
the real system and exhibit the intended applicability to be used in the
experimental stage. According to Sargent [20] a general division of the
operational validation process suggests two main approaches:

– Objective approaches, which usually rely on statistical or mathemat-
ical proof of the correspondence between the model and the real sys-
tem. This approach is much more difficult (compared to the second
one) in terms of effort and time, but it has much higher credibil-
ity. Nevertheless it is not always applicable, especially in the case of
complex systems.

– Subjective approaches, which basically rely on techniques where the
final decision of the performed comparison (between the model and

14 Paunovski, Eleftherakis, Cowling

the real system) is made by the investigator. These kinds of ap-
proaches are usually used to ensure operational validity of complex
systems, since it is in practice impossible to this in a formal way.

The idea that we propagate through the framework is to use mathemati-
cal validation where applicable, however since this is rarely the case with
complex systems, we suggest an iterative process which will enable the
investigator to gradually build confidence in the behaviour of the model.

4.4 Two-way experimental approach

The experimental phase follows the validation phase and can commence
once the investigator has confirmed that the model is valid. As previously
discussed the main aim in this stage is to explore the causal relation be-
tween the micro and the macro levels through an iterative experimental
approach. In each experiment the role of the investigator is to formulate
a hypothesis and then test it by executing an appropriate simulation. In
order to do so, the simulation conditions or even the model itself can be
modified. This process in essence resembles the so called “general scien-
tific method”, where by testing a hypothesis the knowledge about the
system is gradually increased.

The investigation of the data from the simulation execution as envi-
sioned in the proposed framework is addressed in a manner similar to
the two-way approach proposed by Conte and Castelfranchi in [25]. It
encompasses both bottom-up and top-down processes in order to analyse
micro-macro connections.

The bottom-up process facilitates attaining collective behaviour
from the individual agents. It offers insight on how their behaviour is
combined and aggregated. The role of the investigator during this pro-
cess is to identify interactions that have an immediately visible result at
the system level. Additionally through observation of the model anima-
tion the investigator has the opportunity to gain insight into systems’
operation. This knowledge can be very useful in the top-down analysis.

The top-down process is concentrated on analysis of the data gath-
ered during the simulation. The analysis process should address several
issues:

– Behaviours of micro entities
Deduce the behaviour of the individual element (agent) from the
global behaviour of the system. This includes identification of how
the micro elements behave at a given time instance, also what be-
haviour should be visible at the micro level given the behaviour of

Framework for Empirical Exploration of Emergence 15

the overall system, as well as define how the behaviour of the sys-
tem imposes restrictions on the behaviour of an agent (top-down
feedback).

– Behaviour of emergent phenomenon
Define a set of global variables which indicate different aspects of
the observed phenomenon. Where applicable avoid specifying binary
variables. If possible devise a metric for each of the variables. Define
values for the variables for each time instance. Compare changes in
the variable values (if more than one variable). Correlate the changes
in a variable with micro level events.

– Associate roles and states
Identify the possible roles and role transitions for the micro level en-
tities (agents) in terms of responsibilities, permissions and activities.
Identify the possible states and state transitions for the system at the
macro-level. Determine the possible roles of the micro level compo-
nents for a particular state at the macro-level. Identify (if possible)
how state changes at the macro-level influence the role changes at
the micro-level. Associate the role changes at the micro level with
the state transitions at the macro-level.

– Communication and conflicts
Identify the micro level communication (interaction) and coordina-
tion mechanisms and if possible determine tolerable conflicts and
inconsistencies. This means identification of the type of communi-
cation (interaction) exhibited by the agents as well as the reason
for the initiation of communication. Additionally it is important to
determine if there are repetitive interaction patterns and how a par-
ticular interaction pattern in the micro level yields an observable
system behaviour and the macro-level.

It has to be noted that both processes (bottom-up and top-down)
are complementary to each other and share a common goal. Therefore
the findings of the bottom-up observation and top-down analysis need
to complement each other. Any contradictory findings need to be further
examined either by re-examining the data or by repeating the simulation
in an iterative manner until the conflict is resolved. The findings need
to be consistent in order to determine the micro level factors which have
observable influence on the emergent behaviour at the macro-level.

5 Case Study: Herd Dynamics

The herd dynamics model was developed on the basis of the work done by
Gueron et al. [26]. The model follows a Lagrangian modelling approach,
which avoids continuum constraints in favour of discrete individual based

16 Paunovski, Eleftherakis, Cowling

modelling. The basic idea behind this approach is that group formation
and dynamics is a result of sequence of decisions made by individual en-
tities. This kind of approach is more appropriate [27] when dealing with
large bodied animals, compared to Eulerian modelling approach where
the individuals are expressed through units of volume. Furthermore an
individual based modelling approach is more suitable for studying emer-
gent behaviour, due to the fact that it gives opportunity to correlate the
collective behaviour to the individual decisions.

The model description and specification (derived in activities 1 and 2)
in terms of the properties of the individual animal, communication and
environment as well as the emergent behaviour exhibited are presented in
section 5.2. The developed models of the individual animal, the multi-
agent model (corresponding to activities 3 and 4) and the simulation
environment are presented in section 5.3.

5.1 Herd formation as emergent behaviour

Group formation is a common characteristic for many social animals.
Shaw [28] examined the grouping in fish, where numerous individuals
form a social aggregation known as a school. Similar aggregations can
be found in birds forming flocks, as well as various species of mammals
which manage to form herds [29]. Most observations made towards un-
derstanding the dynamism of a herd suggest that both small and large
groups rely on local coordination between the individuals to form a herd
[26]. Consequently one can argue that a herd, as an aggregation of the in-
dividuals, can be viewed as a global pattern which emerges from actions
of individuals in their interaction with neighbours.

Nevertheless there are arguments, like the one put forward in [30],
where the authors claim that flocking (and presumably herding as simi-
lar phenomena) is not an emergent behaviour since it lacks the element
of surprise due to widespread use. Thus the authors argue that through-
out the years (since 1987 when Reynolds [31] created the famous “boids”
simulation), we have become aware of the underlying principles and thus
the appearance of the phenomena is no longer a surprise and therefore
not emergence. This view overemphasizes the observer’s surprise as vital
for emergence. While this approach comes close to Rosen’s [32] view of
emergence, it obscures the micro-macro relation as significant for appear-
ance of the phenomenon. Thus it moves the view on emergence towards
the appearance of “mystery” in the eye of the observer. Although the
relation of the observer and the emergence is very intriguing (and by no
means should be discarded), the authors of the paper adopt the view
that emergence is a property of the system. The formation of a herd has

Framework for Empirical Exploration of Emergence 17

a functional significance to the system by decreasing the risk of preda-
tors and increasing the possibility for mating [33], which in turn affects
the persistence of the herd. In addition the formation of a herd is novel
in respect to the individual animals which comprise the herd. There is
nothing to suggest in a single animal that when in large numbers these
animals would form a herd. Therefore we argue that a herd is an emer-
gent phenomenon due to its functional significance to the system and
introduction of novelty in respect to the properties of an individual ani-
mal.

5.2 Model Description and Specification

An animal in the model is represented by an agent with two main pa-
rameters: movement speed and movement direction. In order to simplify
the model only three speeds (slow, normal and fast) were taken into ac-
count. While having the same general direction, the animals have the
ability to move laterally left or right. Additionally it is assumed that the
model is composed out of homogeneous entities with equal body sizes
and movement speeds. Therefore the movement speed and direction at
time t for animal A are dependent on A’s speed, direction and the po-
sition of A’s neighbours at time t-1. While there is no explicit message
exchange between the animals, they do interact with each other through
modification of the environment by means of spatial repositioning. The
environment is represented by a two dimensional grid-like space with uni-
form fields. At the particular time instance only one agent can occupy
a particular space in the grid. Therefore based on the position of the
neighbours an animal is faced with a set of constraints where it is able
to move. Furthermore the position of the neighbouring animals is vital
for the animal’s decision where to move next. The approach followed in
[26] defines the decision making process through evaluation of influence
zones. An influence zone is a spatial area on a predefined distance rel-
ative to the individual in question. This approach assumes three zones
(stress, neutral and attraction), which are depicted in figure 3. A brief
explanation of the zones follows:

– The stress or personal zone, is of highest importance (compared
to the other zones) and it is the primary factor which determines the
actions taken by the animal. The need for individual space causes
individuals to be repelled by their neighbours when their personal
space is invaded [26]. Thus depending on the position of the neigh-
bours in the stress zone the animal moves in opposite direction or
increases/decreases its speed.

18 Paunovski, Eleftherakis, Cowling

Attraction

Neutral

Stress

zone

zone

zone

front rear

right

left

Fig. 3. Overview of the neighbour influence zones, based on [26]

– The neutral zone is an intermediate zone with no rear dimension.
If the neighbours are in the neutral zone the animal does not react.
However when all of neighbours are on the same side the animal
moves toward them. This kind of behaviour according to Hamilton
[33] is a display of “selfishness” as the animal is moving towards the
centre of the herd in order to reduce the chance of being attacked by
predators.

– The attraction zone influences change in the agent’s direction and
speed. The presence of neighbours in the attraction zone means that
an animal is on the “edge” of the herd. Consequently the instinctive
response for an animal is to move towards the group in the attraction
zone.

5.3 Model of the individual animal and the multi-agent
model

Based on the description elaborated in the previous section, the model
of an individual animal was developed using X-machine formal notation.
An X-machine is a general computational machine introduced by Eilen-
berg [34] and extended by Holcombe [35]. In many ways it looks like a
Finite State Machine (FSM), however it is extended with memory. A
deterministic stream X-machine [47] is an 8-tuple

X = (Σ,Γ,Q,M,Φ, F, q0,m0)

where:

Framework for Empirical Exploration of Emergence 19

High
Speed

Low
Speed

No change

Laterally
Left Laterally

Right

Herd Movement

moveLeft

increaseSpeed

increaseSpeed

moveLeft
moveRight

decreaseSpeed

decreaseSpeed

moveRight

moveLeft

decreaseSpeed

moveRight

High Speed
Right

High Speed
Left

increaseSpeed

increaseSpeedLeft increaseSpeedRight

increaseSpeedLeft increaseSpeedRight

M=(x_cor, y_cor, speed, lateral_movement, neighbourhood)

move

moveNormal
moveNormal

Fig. 4. Diagrammatic X-machine model of an animal in the study.

– Σ and Γ are the input and output alphabets respectively.
– Q is the finite set of states.
– M is the (possibly) infinite set called memory.
– Φ, the type of the machine X, is a set of partial functions ϕ that map

an input and a memory state to an output and a possibly different
memory state, ϕ : Σ ×M → Γ ×M .

– F is the next state partial function, F : Q × Φ → Q, which given a
state and a function from the type Φ determines the next state. F
is often described as a state transition diagram.

– q0 and m0 are the initial state and initial memory respectively.

A diagrammatic representation of the X-machine model of an indi-
vidual animal is presented in figure 4. The model does not focus directly
on the influence zones, but rather captures the internal decision making
structure of the animal. The states represent the movement direction
and speed at a particular time instance, while the transitions represent
a change in the animal’s movement speed and/or direction.

Using formal stream X-machines notation, the definition of the ani-
mal from figure 4 is the following:

– The set of inputs is Σ = zone × direction where

20 Paunovski, Eleftherakis, Cowling

zone = {empty, stress, neutral, attraction}

and

direction = {none, front, left, right, rear,
left_front, left_rear, left_right, right_front,
right_rear, front_rear, left_front_rear,
left_front_right, left_rear_right, right_front_rear}

– The set of outputs is Γ = MESSAGES, where

MESSAGES = {noChange, movingFast, movingSlow,
movingLeft, movingRight,
movingFastRight, movingFastLeft}

– The set of states is Q = {noChange, highSpeed, lowSpeed,
movingLeft, movingRight, highSpeedRight, highSpeedLeft}.

– The memory contains the position of the animal, its speed and di-
rection as well as the position of its neighbours at time t− 1. Conse-
quently M = (x_cor, y_cor, speed, moving_direction, neighbor-
hood), where x_cor and y_cor are real numbers, while the speed =
{5, 10, 15} (denoting slow, normal and fast movement speeds) and
moving_direction = {left, normal, right}. Also the neighbor-
hood = zone × direction which holds the zone and neighbour po-
sition.

– The type of the machine is Φ = {increaseSpeedLeft, moveNormal,
move, ...} the labels in the transitions in figure 4.

The functions ϕ ∈ Φ of the model are presented in X-Machines De-
scription Language (XMDL) [36]. Using XMDL as the modelling lan-
guage, X-System (an XMDL interpreter) allows animation of X-Machine
models. This enables the designer to get insight into the behaviour of the
model and determine possible problems and/or test different modelling
alternatives. In order to demonstrate XMDL, we present an example
function increaseSpeedLeft, which is defined in XMDL as:

#fun increaseSpeedLeft((attraction, ?direction),

(?x, ?y, ?s, ?d, ?n)) =

if ?s >= 10 and ?direction belongs {left, front_left} and

?d belongs {normal, left} then ((movingFastLeft),

(?newX, ?newY, ?s, left, (attraction, ?direction)))

where ?newY <- ?y + 15 and ?newX <- ?x - 5.

Nevertheless in many cases there is a need to formally prove cer-
tain properties of the model. The formal verification technique for X-
machine models enables the model designer to formally verify the devel-
oped model against temporal logic formulas which express the properties

Framework for Empirical Exploration of Emergence 21

that the system should have. For this purpose an extended version of
temporal logic, named XmCTL [37], can be used. Different properties of
the systems are expressed in XmCTL and then verified against the X-
machine model through model checking (for more information see [49]).
An example of XmCTL properties of the individual animal are presented
below:

– This formula implies that there is no memory instance where the
speed of the animal is less or equal to 0, or in other words that the
agent is always moving.

AG Mx(speed > 0)

– There exists a computational path where in all states of this path the
speed of the agent is 10 (normal) until it changes to 15 (high speed).

E[Mx(speed = 10) U Mx(speed = 15)]

– For all computational paths when the agent is in “noChange” state
and there is a neighbour in the stress zone coming from the “front”
direction, the agent always reduces its speed in the next state (i.e
moves to “lowSpeed” state) .

AG [EF Mx(M(moving direction) = normal ∧ speed =
10 ∧ neighbourhood = (stress, front))⇒ AX Mx(speed = 5)]

Although X-machines offer intuitive modelling of an individual ani-
mal, in a case of a complete complex system the computational model
will need too many states, making the entire model incomprehensible.
Furthermore, depending on the complexity, in some cases the task of
developing such a model seems nearly impossible. To address this short-
coming, the paradigm was further developed in order to facilitate com-
munication between individual X-machines through Communicating X-
machines [38, 39]. The Communicating X-Machines model consists of a
number of single X-machine models, which are able to exchange mes-
sages. Thus the communicating approach uses decomposition in order
to separate the problem into smaller more manageable components and
then synthesizes the overall behaviour by specifying the communication
pathways between the components. There are several variations how this
is achieved; for a detailed overview refer to [40]. The main disadvantage
of the Communicating X-Machines paradigm is inability to deal with
dynamic restructuring of communication pathways as well as efficiently
deal with non-deterministic communication. Although the approach fol-
lowed in [41] promises to resolve these issues, by combining the Com-
municating X-Machines with ideas from P-Systems [48], at the moment

22 Paunovski, Eleftherakis, Cowling

tools supporting the practical application of the approach are still under
development.

Consequently for the purpose of modelling the multi-agent system as
well as execution of the simulation experiments, NetLogo [42] was se-
lected as the most appropriate platform. NetLogo allows modelling and
animation of agent like entities in a simulation environment supported by
a scripting language, visual animator and data output mechanisms. Be-
sides the visual animator which is an excellent tool for observation of the
model behaviour (especially in this case, when dealing with herd forma-
tion), another argument for choosing this platform is the correspondence
between X-Machines model encoded in XMDL and the NetLogo script-
ing language. For example the “increaseSpeedLeft” function presented
in XMDL above, has similar structure in NetLogo as presented below.

to-report increaseSpeedLeft [zone? direction?]

if zone? = "attraction" [

ifelse s? >= 10 and member? direction? ["left" "front_left"]

and member? d? ["normal" "left"]

[report (list true "movingFastLeft" (list (xcor + 15)

(ycor + speed-lateral) 15 "left") ((zone?) (direction?)))]

[report (list false)]]

report (list false)

end

Nevertheless a simple translation of the individual model from XMDL
to NetLogo is not sufficient in order to create the complete multi-agent
model. The individual models need to be connected in order to interact
together. In order to achieve this, we have developed a simulation mecha-
nism (implemented in NetLogo) which is able to use the decision-making
architecture of an animal by feeding appropriate inputs to it (based on
the state of the environment) and then modifying the environment ac-
cording to the output of the animal’s reasoning process. Thus by utilizing
indirect communication through the environment we are able to achieve
interaction between multiple animals. While the developed simulation
mechanism is tailored for the herd formation study, we are working on
constructing a generic simulation mechanism coupled with a tool for au-
tomatic translation of XMDL to NetLogo. This will decrease the time
and effort required for implementing the model in NetLogo in the case
of modifying the model and reduce the number of errors in the process.

5.4 Animation and data analysis

The animation (execution) of the model is vital in synthesising the emer-
gent properties from the individual behaviour of the animals. However in

Framework for Empirical Exploration of Emergence 23

order for this process to be useful in the context of the study, appropri-
ate data needs to be gathered. The data needs to address the behaviour
of the individuals and their interaction (the micro level) as well as the
emergent phenomena (the macro-level) in both quantitative and quali-
tative manner. In the case study in question, gathering data about the
behaviour of an individual animal is pretty straightforward as their input
and output can be easily recorded for later analysis. However gathering
data about the properties of the herd formations is much more compli-
cated. In fact in order to achieve this, there is a need for a mechanism
that will continuously detect (and evaluate) groups of animals and their
dynamics as the model is being animated.

We believe that the most natural and straight forward way to detect
herd formations is through visual inspection of the spatial distribution
of the animals. While other approaches like meta-modelling may be ap-
plicable, this approach has a major advantage of being independent from
the specific modelling technique and the language in which the model
is encoded. In this manner the detection of herds is essentially a spa-
tial clustering problem, where the goal is to group similar objects into
clusters, so that the elements of the cluster have similar properties (ie.
they spatially close). When dealing with a clustering problem, in most of
the cases there are clearly defined criteria which allow differentiation of
clusters. However in the case of herd formation, the criteria for differen-
tiating between different groups of animals are far from clearly defined.
The main problem is the inability to arrive at a formally quantifiable
definition of a herd which will be generally accepted in different contexts
by all possible observers. For example one might say a group of animals
needs to be reasonably close together and have sufficient members in
order to form a herd. However these criteria guided by “reasonably” and
“sufficient” quantities are unclear and ambiguous. This is the main rea-
son why fuzzy reasoning approach is a perfect candidate for developing
the herd detection mechanism. Furthermore fuzzy reasoning allows uti-
lization of inherently inexact concepts in the way humans differentiate
herds, within an automated computer based process.

It has to be noted that our approach is quite different from classic
fuzzy clustering approaches (for more information on fuzzy clustering
see [43, 44]). We apply concepts from fuzzy set theory in order to deal
with the imprecise nature of the herd clustering criteria rather than us-
ing it to express fuzzy membership to multiple clusters. In the developed
recognition scheme each entity is assigned to a single cluster and does not
possess membership levels to multiple clusters. Furthermore, since in our
study the emphasis is on herd formation as an emergent phenomenon,
our approach combines bottom-up and top-down directions as part of

24 Paunovski, Eleftherakis, Cowling

1. Determine relevant parameters for single individual (A).

a. Find the all of A’s neighbours (number of neighbours).

b. Find the average distance to A’s neighbour.

a. Identify a group (Bset) of B’s strong neighbours (animals with high HBV).

b. For the group Bset identified in the previous step, find all neighbours.

a. Find the number of animals in Bset(herd size).

b. Find the average belong value for animals in Bset.

c. Find the spatial area covered by the animals in Bset.

2. Use fuzzy reasoning to determine the Herd Belonging Value (HBV) for all animals.

4. Determine parameters relevant for fuzzy reasoning for Bset .

5. Use fuzzy reasoning in order to determine the herd cohesion value for Bset.

3. Identify an individual (B) with high herd belonging value

B
O

T
T

O
M

-U
P

P
H

A
S

E

T
O

P
-D

O
W

N

P
H

A
S

E

T
R

A
N

S
IT

IO
N

P
H

A
S

E

Fig. 5. The developed reasoning algorithm for automated herd detection

a two-way reasoning process. A brief overview of the developed reason-
ing algorithm is presented in figure 5. Although the operations in the
reasoning process are sequentially interconnected, they can be logically
divided into three major phases.

– The first phase is the bottom-up reasoning phase, which aims to
evaluate the preference of an individual animal to be part of the
herd. This reasoning process is depicted by steps 1 and 2 in figure
5, and it is primarily concerned with identification of the individual
preferences for an animal to be part of a herd. Towards this end, two
major factors (properties) of an animal are taken into account: the
average neighbour distance and the number of neighbours. The re-
sult of the reasoning process, called “Herd Belonging Value” (HBV),
denotes the animal’s preference to be part of a herd.

– The second phase of the reasoning process, depicted by step 3 in fig-
ure 5, is the transition from the evaluation of the individual animal,
towards reasoning about a group of animals. The identification of the
group is primarily depended on the animal’s preference to be part
of the herd (HBV). The HBV is used to determine a set of animals
which form the core of the herd. Once the core group is identified all
neighbouring animals in the area are added to form a group which
will be evaluated in the next phase.

– Once the groups potentially forming herds are identified, the rea-
soning process continues with the evaluation of the group coherence.
This is in fact the top-down reasoning phase which is depicted by
steps 4 and 5 in figure 5. In addition to the group’s average HBV,
also the group size and the spatial area occupied are taken into ac-
count as input parameters into the reasoning process. The reasoning

Framework for Empirical Exploration of Emergence 25

 Population: 200; Zones: Stress = 1m, Neutral = 2m ; Population: 100; Zones: Stress = 2m, Neutral = 4m ;

herd

herd

animals with

high HBV

animals with

high HBV

animals with

low HBV animals with

low HBV

Fig. 6. Partial screen capture of the herd recognition during model execution.
Labels and arrows are added for presentation purpose.

output variable called herd cohesion is an indication of the strength
of the herd. If the value of this variable is above a threshold defined
by the investigator the group is visualized as a herd.

The discussed design of the fuzzy reasoner was implemented as a
Java-based extension to the Netlogo simulation model. It uses the FuzzyJ
libraries [45] in order to support the fuzzy reasoning process. The eval-
uation of the reasoner was done in two steps. First of all, the implemen-
tation of the reasoner was tested in order to evaluate the influence of a
single input variable on the output variable for both herd belonging value
and herd cohesion variables. The results of this testing led to revisions
in the fuzzy set distribution for certain input variables.

The second step of the evaluation was focused on the reasoner’s abil-
ity to detect herd formations during the execution of the model. A major
constraint in this process was the fact that clear-cut “correct” output
could not be determined due to the nature of the herd detection problem.
Consequently the intuition of the investigation team on herd formation
patterns was used as basis for comparison. Thus the process was based
on an estimate of how closely the developed reasoner matched what the
investigators considered to be a herd in a given context.

In simulation scenarios with near optimal values the reasoner per-
formed well. This is shown in the screen captures presented in figure 6.
It managed to clearly differentiate between loose groups and herd for-

26 Paunovski, Eleftherakis, Cowling

mations. However, several simulation scenarios revealed problems when
there was an extreme increase or decrease in the animal population. In
order to resolve the issue there is a need to incorporate a population
density function as part of the reasoning process. To this end there is
ongoing work to express the scales of the fuzzy variables through a func-
tion of the population density.

In addition to the herd detection mechanism, there is also ongoing
research in developing methods for automatic invariant detection in the
simulation data. An invariant is an internal property of a particular
software program, model, or a design that is true at the particular point
(or points) during the program is execution [46]. Invariants can be very
useful as part of software engineering, however at the same time they can
be used in order to gain insight into hidden parts of a simulation model
design. By finding relations between different events occurring during
model execution, a dynamic invariant detector can be a useful tool in
finding correlations between micro and macro behaviours.

The two discussed tools (for automated detection of herd formations
and dynamic invariant detection), are vital in carrying out the data
analysis process.

6 Conclusions

In recent years the phenomenon of emergence, as one of the fundamental
properties of complex systems, managed to capture significant attention
from the scientific community. There are several reasons behind this de-
velopment. First of all, emergence seems to be everywhere in nature. It
appears in different forms and shapes in a variety of systems from simple
to the most complex. It is responsible for a variety of fascinating prop-
erties and behaviours. The ability to engineer emergent phenomena can
be very beneficial in many areas of science and technology. For example,
from computer science perspective, utilization of emergent phenomena
like self-organization and adaptation can significantly advance the devel-
opment of computer systems. On the other hand, emergence can also be
viewed as negative phenomena, it can significantly infringe the functional
performance of engineered systems. This prospect is especially concern-
ing since there is an ongoing trend in engineering open distributed sys-
tems with growing complexity. Nevertheless at the moment there are no
studies dealing with the practicalities of constructing a framework (com-
prised of well defined process supported by a set of practices and tools)
which will guide the analysis of emergent formations in existing systems.

We address this issue by proposing a framework for empirical ex-
ploration of emergent formations. The core idea is to offer a structured

Framework for Empirical Exploration of Emergence 27

approach which utilizes iterative multi-agent simulation as means for
experimental examination of emergent manifestations. The goal of the
process is to gradually increase the understanding of the causal rela-
tions between the individual (micro) and emergent (macro) levels of the
system under study.

Nevertheless such a study can only yield beneficial results when it
is applied on a “correct” model of the system. Therefore ensuring the
correctness of the model is of paramount importance. In our view, the
best way to deal with this issue is to use formal techniques to verify
the correctness of the individual components (agents). The formal val-
idation of the complete multi-agent model on the other hand is often
impossible (due to complexity) or too expensive in terms in time and
effort. Consequently we propose to validate the model through iterative
simulation and refinement. The second phase is focused on experimental
analysis of the emergent behaviour. It is essentially an analytical process
aimed at detection of causal relations in the model, through evaluation
of hypothesis about the expected behaviour of the model under certain
conditions. Thus the main idea is to incrementally identify the causal
relations between the behaviour of the agents at the micro level and the
emergent phenomenon at the macro-level.

In addition to the proposed framework, this paper also discusses an
ongoing work in a herd dynamics study. In this context the paper elab-
orates the theoretical basis for the model, the specification and the cor-
responding models of an individual animal as well as the multi-agent
model and simulation environment. Furthermore a solution to the prob-
lem of automatic herd detection is presented as a required initial step in
the analysis of the model behaviour.

Since the presented case study is work in progress, the immediate
research focus in the upcoming period will be to address issues leading
to its completion. To this end, there are several ongoing tasks:

– Revision of the herd detection mechanism in order to incorporate
population density functions.

– Development of a tool for automatic translation of XMDL to Net-
Logo.

– Development of methods for automated invariant detection.

Once this work is completed, the study will continue with the valida-
tion and verification phase of the study. During this process the model
will be refined until it posses the required level of detail and exhibits
the expected behaviour. After that the study will be moved to the sec-
ond phase where the casual relations in the model will be examined as
described in the second phase of the framework.

28 Paunovski, Eleftherakis, Cowling

Upon the completion of the study the proposed framework will be
evaluated and revised accordingly. Following this, future work will also
include development of a second case study, exhibiting more complex
emergent phenomena. While the herd dynamics case study was primarily
used as a simple example of emergence where the framework could be
developed and revised based on the practical experience, the aim of the
second case study will be to test the ability of the proposed process and
practices to guide the process of detecting emergent misbehaviour in a
distributed computer based systems.

References

[1] Bullock S. and Cliff D., “Complexity and emergent behaviour in ICT
systems,” Hewlett Packard, Tech. Rep. HPL-2004-187, 2004.

[2] Mogul J. C., “Emergent (Mis)behavior vs. Complex Software Systems,”
HP Laboratories Palo Alto, Tech Rep. HPL-2006-2, 2006.

[3] Wegner P., “Why interaction is more powerful than algorithms”, in Com-
munications of ACM, 1997, vol. 40(5), pp. 80-91.

[4] Edmonds B. and Bryson J., “The insufficiency of formal design methods
- the necessity of an experimental approach - for the understanding and
control of complex MAS”, In: Proceedings of the International Conference
on Autonomous Agents and Multi-Agent Systems, 2004, pp. 938-945.

[5] Edmonds B., “Using the experimental method to produce reliable self-
organised systems”, In: Proceedings of the 2nd International Workshop
on Engineering Self-Organising Applications (ESOA 2004), 2004, pp. 84-
99,.

[6] De Wolf T. and Holvoet T., “Towards a methodology for engineering
self-organising emergent systems”, In: Self-Organization and Autonomic
Informatics (I), H. Czap, R. Unland, C. Branki, and H. Tianfield (ed.),
Frontiers in Artificial Intelligence and Applications, 2005, vol.135, pp.18-
34.

[7] Anderson P. W., “More is different,” Science New Series, 1972, vol.
177(4047), pp. 393-396.

[8] Bar-Yam Y., “Dynamics of Complex Systems,” Perseus Books, 1997.
[9] Chalmers D.J., “Varieties of Emergence,” Department of Philosophy, Uni-

versity of Arizona, USA, Tech. rep./preprint, 2002.
[10] Simon H. A., “The Architecture of Complexity: Hierarchic Systems,” In:

Proceedings of the American Philosophical Society, 1962, vol. 106, pp.467-
482.

[11] Bedau M., “Weak emergence,” Philosophical Perspectives: Mind, Causa-
tion, and World, 1997, vol. 11, pp. 375-399.

[12] Holland, J. H., “Emergence: From Chaos to Order,” Reading, MA:
Addison-Wesley, 1998.

[13] Jones S., “Organizing Relations and Emergence,” In: Proceedings of the
Artificial Life VIII: The 8th International Conference on the Simulation
and Synthesis of Living Systems, 2002, pp. 418-422.

Framework for Empirical Exploration of Emergence 29

[14] Goldstein, J., “Emergence as a Construct: History and Issues,” Emer-
gence: Complexity and Organization, 1999, vol. 1, pp. 49-72, .

[15] Fromm J., “Types and forms of emergence,” Complexity Digest, vol.
25(3), 2005.

[16] Wolfram S., “Universality and complexity in cellular automata,” Physica
D: Nonlinear Phenomena, 1984, vol. 10(1-2), pp. 1-35.

[17] Conte R. and Castelfranchi C., “Simulating Multi-Agent Interdependen-
cies: A Two-Way Approach to the Micro-Macro Link,” In: Social Science
Microsimulation, Troitzsch K. G., Mueller U., Gilbert N. and Doran J.
(eds.), Springer-Verlag Berlin, 1996, pp. 394-415.

[18] Fromm J., “Ten questions about emergence,” Complexity Digest, vol.
40(15), 2005.

[19] Jennings N. R. and Wooldridge M., “Intelligent agents: theory and prac-
tice,” Knowledge Engineering Review, 1995, vol. 10(2), pp. 115-152.

[20] Sargent R. G., “Verification, validation, and accreditation of simulation
models,” In: Proceedings of the 2000 Winter Simulation Conference, 2000,
pp. 50-59.

[21] Balci O., “Guidelines for successful simulation studies,” In: Proceedings
of the Winter Simulation Conference, 1990, pp. 25-32.

[22] Eleftherakis G., Kefalas P., Sotiriadou A. and Kehris E., “Modelling bi-
ology inspired reactive agents using X-machines,” In: Proceedings of the
International Conference on Computational Intelligence (ICCI04), 2004.

[23] Kehris E., Eleftherakis G. and Kefalas P., “Using X-machines to Model
and Test Discrete Event Simulation Programs,” Systems and Control:
Theory and Applications, N. Mastorakis (ed.), World Scientific and En-
gineering Society Press, 2000, pp. 163-168.

[24] Whitner R. B.and Balci O., “Guidelines for selecting and using simula-
tion models verification techniques,” Department of Computer Science,
Virginia Polytechnic Institute and State University, Virginia, Tech. Rep.
TR-89-17, 1989.

[25] Conte R. and Castelfranchi C., “Simulating multi-agent interdependen-
cies. A two-way approach to the micro-macro link,” In: Social science
microsimulation, 1995, pp. 394-415.

[26] Gueron S., Levin A. and Rubenstein D. I., “The Dynamics of Herds:
From Individuals to Aggregations,” Journal Theoretical Biology, 1996,
vol. 182, pp. 85-98.

[27] Okubo A., “Dynamical aspects of animal grouping: Swarms, schools,
flocks and herds,” Advanced Biophysics, 1986, vol. 22, pp.1-4.

[28] Shaw E., “Schooling fishes,” American Scientist, 1978, vol. 66, pp. 166-
175.

[29] Underwood R., “Vigilance behaviour in grazing African ungulates,” An-
imal Behaviour, 1982, vol. 79, pp. 82-107.

[30] Ronald M.A. E., Sipper M. and Capcarrere M. S., “Design, Observation,
Surprise! A test of Emergence,” Artificial Life, 1999, vol. 5(3), pp. 225-
239.

[31] Reynolds C.W. , “Flocks, herds, and schools: A distributed behavioral
model,” In: Computer Graphics, pp. 25-34, 1987.

30 Paunovski, Eleftherakis, Cowling

[32] Rosen R. , “Anticipatory systems,” Pergamon Press, New York, 1985.
[33] Hamilton W. D., “Geometry for the selfish herd,”, Journal of Theoretical

Biology, 1971, vol. 31, pp. 295-311.
[34] Eilenberg S., “Automata, Machines and Languages,” Academic Press,

New York, 1974.
[35] Holcombe M., “X-machines as a Basis for Dynamic System Specification,”

Software Engineering Journal, 1988, vol. 3(2), pp. 69-76.
[36] Kefalas P., “XMDL user manual: version 1.6.,” Dept. of Computer Sci-

ence, CITY College, TR-CS07/00, 2000.
[37] Eleftherakis G., Kefalas P., and Sotiriadou A., “XmCTL: Extending Tem-

poral Logic to Facilitate Formal Verification of X-machines Models”,
Analele Universitatii Bucuresti, Matematica-Informatica, 2001, vol. 50,
pp. 79-95.

[38] Kefalas P., Eleftherakis G. and Kehris E., “Modular System Specification
using Communicating X-machines,” Dept. of Computer Science, CITY
College, TR-CS11/00, 2000.

[39] Kefalas P., Eleftherakis G., and Kehris E., “Communicating X-machines:
from theory to practice”, In: Advances in Informatics, Y.Manolopoulos,
S.Evripidou, A.Kakas (Eds), LNCS 2563, 2003, pp.316-335.

[40] Aguado J. and Cowling A., “Systems of Communicating X-machines for
Specifying Distributed Systems,” University of Sheffield, Research Report
CS-02-07, 2002.

[41] Stamatopoulou I., Gheorghe M. and Kefalas P., “Modelling of Dynamic
Configuration of Biology-Inspired Multi-Agent Systems with Communi-
cating X-machies and P Systems,” In: Proceedings of the 5th Interna-
tional Workshop in Membrane Computing (WMC’04), Milan, Italy, June
14-16, 2004.

[42] Wilensky U., “NetLogo 3.1.3 User Manual,” Center for Connected Learn-
ing and Computer-Based Modeling, Northwestern University, Evanston,
IL, 1999.

[43] Bezdek J., “Pattern Recognition with Fuzzy Objective Function Algo-
rithms,” Plenum Press, 1981.

[44] Baraldi A. and Blonda P., “A survey of fuzzy clustering algorithms for
pattern recognition,” International Computer Science Institute, Berkeley,
CA, TR-98-038.

[45] National Research Council of Canada’s Institute for Information Technol-
ogy, “Java library for Building Fuzzy Systems (FuzzyJ Toolkit),” Avail-
able online at: http://iit-iti.nrc-cnrc.gc.ca/projects-projets/

fuzzyj_e.html.
[46] Ernst M. D., Perkins J. H., Guo P. J., McCamant S. , Pacheco C.,

Tschantz M. S. and Xiao C. , “The Daikon system for dynamic detection
of likely invariants,” Science of Computer Programming, 2007.

[47] Ipate F. and Holcombe M. , “Specification and testing using generalised
machines: a presentation and a case study,” Software Testing, Verification
and Reliability, pp. 61-81, 1998.

[48] Păun Gh., “P systems with active membranes: attacking NP compete
problems,” Automata, Languages and Combinatorics, 2001, vol. 6(1), pp.
7590.

Framework for Empirical Exploration of Emergence 31

[49] Eleftherakis G., “Formal verification of X-Machine models: Towards for-
mal development of computer based systems”, PhD Thesis, Department
of Computer Science, University of Sheffield, UK, 2003.

32 Paunovski, Eleftherakis, Cowling

Engineering Safety-Critical Complex

Systems

Robert Alexander1, Ruth Alexander-Bown2, Tim Kelly1

1 Department of Computer Science
University of York, York, YO10 5DD, UK

{robert.alexander, tim.kelly}@cs.york.ac.uk
2 Royal United Hospital, Bath
ruth@alexander-bown.com

Abstract. Some of the complex systems with which the CoS-
MoS project is concerned are safety-critical, and if such systems
are ever to be built and operated then they will need to be
certified safe to operate. By looking at how conventional safety-
critical systems are developed, we can find basic principles for
safety-critical complex systems – this may be harder or easier
than non-safety-specialists expect. In this paper, we outline cur-
rent safety engineering methods and illustrate them using an
artificial platelet case study. We also summarise our previous
work on using simulation in safety engineering, and make some
observations about applying simulation to very small systems.

1 Introduction

The CoSMoS project [6] is concerned with the engineering of complex
systems. Some proposed complex systems are safety-critical – they have
the potential to cause human injury or loss of life. Engineers devel-
oping safety-critical systems must meet a range of legal requirements,
and to achieve this they must use considerable safety-specific technical
knowledge. To outsiders (used to the engineering, particularly software
engineering, of non-safety-critical systems) the methods used in safety-
critical systems engineering may seem arcane, and in places even primi-
tive or backwards. Nevertheless, failing to follow these methods may lead
to the development of systems that can never be used because of safety
concerns.

Sections 2 and 3 of this paper provide a primer in current safety-
critical systems thinking for complex system researchers and developers.

34 Alexander, Alexander-Bown, Kelly

This is not a complete solution to safety concerns, or a cookbook ap-
proach to safety engineering. It does, however, provide the non-safety-
expert with a starting point for appreciating the specific challenges that
safety-critical complex systems pose. Equally, it should provide some in-
sight into what is not needed under current safety regimes, and thereby
open up avenues that may have seemed impractical before.

In Section 4, we have taken the Artificial Platelet (AP) system used as
a case study by the TUNA project [30] and performed an initial hazard
identification on the concept. We then use this to illustrate a number
of the safety engineering issues raised in the previous section, and to
highlight some of the problems that complex systems present.

To supplement the above, and with particular relevance to the sim-
ulation aspects of the CoSMoS project, Section 5 reviews previous work
by some of the authors on simulation-based analysis of complex Systems
of Systems (SoS). This illustrates how simulation techniques can move
engineered systems from the unmanageable to the potentially tractable.
Some of the extant challenges faced by this work will be equally (or
more) salient to the CoSMoS project.

Finally, Section 6 discusses some of the unique aspects of engineering
and simulation for very small artefacts.

The emphasis throughout is on the practical implications for complex
system engineering (in terms of practical needs) and research (in terms
of research objectives).

2 The Need for Safety Engineering

Safety engineering is relevant to a great many endeavours; specifically,
any situation where human injury or death is possible. In the UK, the
legal requirement to perform safety activities stems from the Health and
Safety Executive and the 1974 Health and Safety at Work act [9]. For
example, the HSE imposes a duty of care on employers with respect to
the safety of their staff.

Certain industries, such as air transport and nuclear energy, are ex-
plicitly regulated, and specific legal duties are imposed on manufacturers
and operators. These go beyond the common requirements imposed by
the HSE; for the most part, the regulations are concerned with prevent-
ing major accidents. A recent overview of the relevant safety regulations
for a number of different industries can be found in Jones [10]. A com-
mon theme is that before an installation or product can be operated or
sold, it must be certified – an independent safety assessor must agree
that it appears to be adequately safe.

Engineering Safety-Critical Complex Systems 35

Safety in regulated industries is governed by safety standards – docu-
ments that lay down what procedures must be followed in order to claim
adequate safety (and thereby achieve certification). These standards are
(generally) industry specific. For example, DO-178B [27] covers the safety
of aircraft software, while Def Stan 00-56 [32] sets safety requirements
for all UK military equipment.

Traditionally, most standards were prescriptive; they laid down a set
of procedures to follow and processes to perform. If a product devel-
oper followed the process, they could claim an adequate safety effort.
For example, a software-related standard might mandate code reviews,
MC/DC test coverage, and the use of a programming language subset
designed to eliminate common coding errors. Examples of prescriptive,
process-based standards are DO-178B and the obsolete Def Stan 00-56
Issue 2 [31].

Prescriptive standards are problematic for two reasons. First, they
present a safety problem: there is not particularly strong reason to believe
that merely following any given process to the letter will necessarily
lead to a safe system. Second, they strongly restrict the technologies
(e.g. algorithms and hardware) that can be certified as safe. This second
problem would prevent the certification of the complex systems with
which the CoSMoS project is concerned.

Because of the problems with prescriptive standards, there has been
an increasing move towards goal-based safety standards. Such standards
define the measure of safety that is required (for example, expected lives
lost per operating hour), and the evidence of safety that must be sup-
plied, then require system developers to present a structured argument
that their system will meet the required level of safety. Rather than man-
dating processes or technology choices, goal-based standards set the bar
for safety achievement and put the onus on system developers to pro-
vide evidence of safety. Provision of such evidence for complex systems
is of obvious relevance to the CoSMoS project. Examples of goal-based
standards include Def Stan 00-56 Issue 4 [32], which is particularly clear
and straightforward.

Safety thinking, particularly in its goal-based form, is making in-
roads into other domains. For example, the ISO is developing an Assur-
ance Case standard which will lay down standards for arguing non-safety
properties of software systems. In the long term, it may be that stan-
dards for arguing dependability (the umbrella term that includes safety,
security and other attributes – see Despotou in [8]) become widespread
across many engineering domains.

36 Alexander, Alexander-Bown, Kelly

Hazard

Accident

Safe

Accident

Contrib
uting
Factors

Contrib
uting
Factors

Contrib
uting
Factors

Root
cause

Root
cause

Root
cause

Root
cause

Fig. 1. Causes, Hazards and Accidents (reproduced from [24])

3 The Basics of Safety Engineering

In this section, we give an overview of how a system developer can per-
form safety engineering and end up with a system that is safe to operate.
It is written with the assumption that there is a goal-based safety stan-
dard in place that the developer must meet, but we feel that this overall
approach is a strong one even where there is no legal requirement to
follow it. We can only give a very general outline here – anyone per-
forming safety engineering will need to use (or develop) a lot of other
domain-specific guidance.

3.1 Hazards and Risk

At the very core of safety engineering is concept of the hazard. In its
simplest sense, a hazard is a state which it is dangerous for the system
to be in. Def Stan 00-56 defines a hazard as “A physical situation or
state of a system, often following from some initiating event, that may
lead to an accident.” [32].

An example hazard for a car is “Loss of steering control”. An example
for a chemical plant is “Tank temperature exceeds flash point of contents”.
There is no hard rule for when one hazard is sufficiently distinct from
another – hazards are a view that we impose on a system in order in
order to manage the huge numbers of possible accidents and causes of
those accidents (see Figure 1 for an illustration of this).

The process of identifying hazards is called hazard identification, and
the process of deriving causes and consequences (accidents) for hazards

Engineering Safety-Critical Complex Systems 37

is known as hazard analysis. These activities need to happen early in
any safety-critical engineering project, and should be updated through-
out the lifecycle (even during operation). A variety of techniques exist
for guiding engineers through this process, such as Functional Failure
Analysis (FFA) (see Pumfrey in [24]) and HAZOP (see Kletz in [13]).

3.2 Predictive Analysis

Once hazards have been identified, we need to determine how often they
will occur and what (how severe) the consequences will be if they do.
The severity of each hazard needs to be measured in some standard way
– several classification systems exist, but many can be seen in terms of
mathematical expectation of loss of life (or a combination of that and
the expectation of monetary cost). The combination of probability and
severity is known as the risk posed by the hazard, and the combined risk
from all hazards provides the total system risk.

A convincing prediction of hazard probability and severity is critical
for safety certification. As noted in Section 2, certification requires that
a developer show that the risk posed by the system is acceptable, and
prediction of hazard risk is the centre of that.

3.3 Safety Requirements

In many cases, the inherent hazards in a system will make it unaccept-
ably dangerous in its “naked man” (no safety measures) form. From
hazard analysis, engineers will have to derive a number of additional
system requirements that, if met, will reduce the risk posed by a hazard.
These safety requirements then drive later safety engineering activity,
and obviously have knock-on effects as they interact with requirements
from other sources (e.g. the system’s basic functional and performance
requirements).

Safety requirements may be qualitative (“If a wheel locks, then the
anti-lock braking system must engage”) or may be quantitative (“The
probability of a pressure relief valve jamming shut must be no more than
1× 10−4 per operating hour”).

In a goal-based safety regime, how safety requirements are met is
up to the developer. The key, however, is that the developer must pro-
vide evidence that the requirements are adequate (that they really will
provide the desired increase in safety) and that they have actually been
achieved in the implemented system. The level of confidence needed will
depend on the level of risk posed by the system’s identified hazards –
more dangerous systems require correspondingly better evidence.

38 Alexander, Alexander-Bown, Kelly

Even if a requirement is actually adequate and is actually met (from
the perspective of some hypothetical all-seeing observer), it may still be
that the system developer cannot convincingly show this. This is particu-
larly likely for novel systems and novel technologies. The simulation and
analysis methods proposed by the CoSMoS project are clearly relevant
here.

3.4 The Safety Case

A safety case is a document that presents a compelling structured argu-
ment that a system is safe, for some explicit definition of “safe”. It is on
the basis of the safety case that a regulator (or other independent safety
assessor) approves a system for safety certification. For example, the re-
quired standard of safety might be expressed in terms of “Expected loss
of life per operating hour”.

There are several ways to structure and express a safety case. A plain
natural language presentation can be used, or a tabular format, although
there is increasing use of explicit argument structure notations such as
the Goal Structuring Notation (GSN) (see Kelly in [11]).

Below the level of notation, a safety case must be organised in some
systematic way so that the completeness and adequacy of the argument
can be assessed. Several different safety argument patterns are presented
in [11]. Perhaps the simplest structure is a breakdown by identified haz-
ards – such a case would argue that all hazards had been identified, that
all hazards had been adequately mitigated, and that the combined risk
from all mitigated hazards was acceptable. The rest of this paper will
assume such a structure.

The standard of argument in a safety case is informal, in the manner
described by Toulmin in [29]. Formal notations and formal proof are em-
phatically not required – indeed, we are a very long way from a formal
language that could adequately express all the diverse aspects of a safety
case. Rather than proof, a safety case seeks to establish adequate confi-
dence that the safety argument is sound. Specifically, it needs to provide
evidence that the safety requirements derived from hazard analysis are
met.

The level of confidence required for any particular claim depends
on the system and the claim. Def Stan 00-56 makes this explicit: the
required confidence depends on the risk posed by the system, its com-
plexity and the degree of novelty (either in terms of technology or appli-
cation). Specifically, it states: “The quantity and quality of the evidence
shall be commensurate with the potential risk posed by the system and
the complexity of the system” [32] – the novelty issue is presented in an
additional diagram (the “McDermid Square”). “Complexity” here is not

Engineering Safety-Critical Complex Systems 39

in the CoSMoS sense – rather, it means merely “complicatedness”. (In
any case, this is contingent on the developer’s ability to understand and
manipulate the system; it is in some sense “analysability”.)

One part of any safety case will be the claim that the derived safety
requirements are adequately complete. Typically, the developer will as-
sert that all hazards have been identified, and that the set of require-
ments derived from each is adequate. Such claims can be difficult because
they involve assertions about the (absence of) the unknown. They are,
nevertheless, absolutely essential – if there is a missing hazard (or a miss-
ing cause of a known hazard) then the estimated total system risk could
be very wrong.

In particular, a simple claim of adequate effort in hazard analysis is
not sufficient – if the system being argued about is extremely compli-
cated, and uses technologies that are poorly understood, then it may not
be possible to make an adequate completeness claim. It may, therefore,
not be possibly to certify the system – the developer may have to go
back to the drawing board, changing the design or concept until it is
tractable to analysis.

3.5 Operational Safety Management

Once a system has a safety case, has been certified, and is in active use,
it still needs active management if it is to remain safe. The safety level
of the system needs to be monitored and maintained. This operational
safety management is critical because this is the point where prior safety-
related modelling and analysis encounters the reality of the system in its
real operating environment. The practical evidence coming from real
operation has far higher confidence than the evidence from prior models
or pre-operation tests.

System operators can and should track the accident and incident
rates for the system. This can be used to estimate the actual safety risk
of the system. Such safety performance management allows us to assess
whether the risk levels claimed in the safety case are accurate. When
a discrepancy is found, the developer must re-assess the safety of the
overall system in the light of this change, and may need to change the
design or operational procedures to restore an adequate level of safety.
When this happens, the safety case should be updated; a safety case
should be a living document.

3.6 Conservatism

A common theme throughout safety engineering (and indeed, through-
out all safety-critical industries) is conservatism. Safety-critical systems

40 Alexander, Alexander-Bown, Kelly

are built using well-established technologies, methods and tools, often af-
ter similar non-safety developers have moved on. System developers are
often extremely reluctant to change their development processes, archi-
tectural assumptions or even programming languages. In some sectors it
is difficult or impossible to certify systems using technologies that have
been accepted for decades in non-safety domains (for example, it is cur-
rently difficult to use software control in a UK nuclear energy system
because the regulators will not accept it).

Conservatism in terms of technology is often motivated by the prac-
ticality of convincing analysis or by perceived protection from human
error. Determinism is also a factor – if it is hard for an engineer to
predict the precise behaviour of a system component at a critical time,
then it is hard for them to claim that it meets any associated safety
requirement.

As an example of conservatism and its motivation, consider mem-
ory management in software. Many software developers working in non-
safety industries use languages such as Java and platforms such as the
Java Virtual Machine that provide garbage collection, and therefore au-
tomatically reclaim dynamically-allocated memory. By contrast, soft-
ware developers who are working on safety-critical software are gener-
ally unable to dynamically allocate memory at all (it is prohibited by the
MISRA C subset [19] and simply not supported by the SPARK language
[4].) They are, in a sense, two whole paradigms behind.

It is not true that dynamic memory allocation is fundamentally in-
compatible with safety. It is, however, a notorious source of programmer
errors and very difficult to statically analyse. In particular, it is difficult
to assert that the memory needed by the software will never exceed the
amount that is available. By contrast, if a software program only uses
static memory allocation, it is easy to determine how much memory is
required.

Garbage collection provides some protection from programmer error
(the classic case of losing all pointers to an allocated memory block
before releasing it, thereby causing an unrecoverable “memory leak”) but
does nothing to bound the worst-case memory usage of a program. In
addition to this, most garbage collection schemes are non-deterministic;
it is impossible to predict exactly when the garbage collector will be
called or how long it will take.

Conservatism will be a major obstacle to the creation of safety-critical
complex systems. This will be both in its intuitive, “gut-feeling” form
(complex systems are strange architectures implemented using strange
algorithms on strange substrates) and in its well-reasoned form (if we
can’t predict the worst case behaviour of a particular emergent algo-

Engineering Safety-Critical Complex Systems 41

rithm, then we may be forced to eschew it in favour of a conventional,
centralised algorithm that we can understand – even if the average per-
formance is much worse).

4 Safety of Complex Systems

To illustrate some safety activities in the context of a complex system,
we will use the Artificial Platelet (AP) system. The AP system was used
as a case study by the TUNA project (see [28] and [26]). It provides
a set of artificial platelets that can be injected into a patient’s blood
stream to speed up wound clotting (for example after a serious accident).
Obviously, this has inherent safety risk, so safety engineering is essential.

Section 4.1 gives an initial identification of accidents and hazards
for the AP system concept, and Section 4.2 discusses the architectural
implications of some of these hazards. Section 4.3 then shows how a
safety case could be developed from this starting point.

4.1 Initial Accident and Hazard Identification for the AP
Concept

As noted in Section 3.4, it is critical that safety engineers identify all
the hazards that a system can exhibit. The set of hazards is unique to
the particular system being developed – it may not be shared with other
systems using the same technologies or approaches.

For well-established types of systems (such as cars and chemical
plants) the types of accidents that can occur are well understood (e.g.
crashes and explosive reactions). We can therefore move straight to in-
dentifying hazards. The AP system is highly novel, however, and the set
of possible accidents is not obvious. We must, therefore, identify a set of
accident scenarios before we can identify all hazards.

Tables 1 and 2 show the output of an initial accident and hazard
identification for the AP concept, developed by brainstorming between
the authors (two academics specialising in safety engineering and a med-
ical doctor). This method (safety engineers brainstorming with domain
experts) is a common and important way to start the identification of
hazards.

The accident scenarios presented in Table 1 are events occuring at a
relatively large scale, and are events that we care about directly (they
are events that have very direct consequences for the survival and future
health of patients). The hazards in Table 2 are events at the level of
the AP system that are not necessarily of immediate concern, but which

42 Alexander, Alexander-Bown, Kelly

ID Description Notes / Causes & Consequences

A1 AP fail to form clot If not announced may delay other treatment.

A2 Clot is too short-lived Human platelet transfusions have a very lim-
ited lifespan and are often used in people who
have low platelets who are actively bleeding,
or alternatively, immediately prior to an op-
eration. Temporary clotting is of little value
and AP would need to at least match the cur-
rent human platelet lifespan.

A3 Clot blocks blood vessel Could cause stroke, coronary thrombosis
or potentially a pulmonary embolism. An-
nouncement required at inter-platelet/multi-
agent level.

A4 AP cause Disseminated
Intravascular Coagula-
tion (DIC) – widespread
clots form in multiple
vessels

Usually fatal. Very poorly understood phe-
nomena – root cause is not known, but
platelets are involved in the mechanism. Un-
regulated clotting occurs, which leads to
haemorrhage as clotting factors and platelets
are subsequently used up.

A5 Allergic reaction to AP May be immediate or delayed. Effect could
range from minor symptom (e.g. rash) to fa-
tal anaphylaxis.

A6 AP act as infection vec-
tor

Particularly dangerous given that patient is
already in poor health.

A7 AP damage permeable
membrane

AP may interact differently in response to
the body’s permeable membranes such as in
the kidneys filtering system. It could cause
an obstruction or pass through the kidney
filtering system inappropriately. This could
damage the filtering apparatus and lead to
renal impairment or even organ failure.

A8 AP prevent secondary
haemostasis

May prevent formation of stable, long-term
clot.

Table 1. Identified AP Accident Scenarios

could lead to one or more of the identified accident scenarios. In particu-
lar, they could lead to accidents without anything else going wrong. Note
how one hazard may lead to multiple accident scenarios. Indeed, it is
often possible to group many similar accidents under a smaller number
of hazards; this may help to keep the safety case manageable (this was
shown diagramatically in Figure 1).

A note on immune response: Hazard H2 and accident scenario A5
may be caused by an immune response, and because the immune system

Engineering Safety-Critical Complex Systems 43

ID Description Notes / Causes & Consequences

H1 AP go somewhere they
shouldn’t

e.g. crossing the blood-brain barrier. May
cause A3 or A7.

H2 AP destroyed by immune
system

May cause A1 or A2. Detection and an-
nouncement may be difficult.

H3 AP lifespan too short May cause A2.

H4 AP form oversized clot May cause A3.

H5 AP contaminated with in-
fectious agent

May cause A6. May depend on platelet
storage arrangement – might need to be
stored at or near body temperature. Bac-
terial infection most likely in this scenario.

H6 AP have unexpected in-
teraction with permeable
membrane

i.e. their interaction is unlike that of nat-
ural platelets. May cause A7.

H7 AP fail to release mediators
for secondary haemostasis

May cause A8 (see clotting cascade dia-
gram in Figure 2).

Table 2. Identified AP Hazards

learns this may become worse over time. If an immune response did
occur, the first application of AP to a given patient would have no visible
ill effects, while the second might have very severe ones.

It is important to remember that safety engineers aren’t very worried
about hazards that always happen – such hazards will become obvious
before long. Their prime concern is with hazards that will rarely man-
ifest, but not so rarely as to be of no concern. A common baseline (in
process plants and aviation) is that all hazards combined should cause
a fatality no more than once every 106 years, but this varies widely.

One important variant of this is finding hazards that will manifest
often under certain circumstances – in the AP case, this might mean
only for some patients, only when administered in combinations with
some drugs, or only for patients with some other medical condition.

H5 (AP contaminated with infectious agent) shows how performing
safety analysis early can save effort (and maybe save your engineering
project). If you know that preventing bacterial growth on AP (or in their
storage medium) is critical, then you can take steps to achieve this. If
you don’t know that this is critical until late in the project, then you
might have made design decisions that conflict with this. For example,
your AP might have to be stored at human body temperature (which is
ideal for bacterial growth).

It is important to remember that you don’t have to argue safety in
all possible situations, provided that you can argue that you know when

44 Alexander, Alexander-Bown, Kelly

Exposed
Collagen

Release and activate
mediators limiting
aggregation, coagulation
e.g. antithrombin

Release mediators that
initiate aggregation and
promote coagulation

Cross-links platelets to
fibrinogen

HAEMOSTATIC PLUG

Cross-linked fibrin

Activates
fibrinolysis

+ve feedback

Clotting
proteins

Activates coagulation
cascade, including factor
Xa

Aggregation

Vessel injury

Platelets
detect
collagen

Fig. 2. Clotting Cascade (after [7])

your system is not safe to use. Taking A3 as an example, the AP system
might not be safe to use on a patient with a cardiac stent, because the
stent may be a likely site for an unwanted artificial clot. If you know this,
you can explicitly exclude this situation from the safety case (except to
note that this restriction will be clearly documented).

Tables 1 and 2 are, of course, only a starting point, but they illustrates
the typical form and character of a high-level hazard analysis. It is likely
that there are possible accidents that are not covered by Table 1. There
are certainly ways that those accidents could occur that are not covered
by the hazards in Table 2 (for example, no hazard is identified that could
lead to accident scenario A4). During the development of the AP system,
the hazard list would be expanded and additional detail would be added.
Further brainstorming with other domain experts (and more specialised
experts) would be valuable (the Oxford Handbook of Acute Medicine
[25] gives “abnormal platelet behaviour” as a possible cause for many
different conditions, and various platelet-related disorders are discussed
in [15]).

As more sophisticated models became available, engineers would use
a variety of hazard analysis techniques that work over these models.
Some general-purpose methods were identified in Section 3.1, and Sec-
tion 5 outlines a possible simulation-based technique. For example, the
HAZOP technique (see [13]) is widely used for analysing process di-
agrams in chemical plants. It could be adapted for use on biological

Engineering Safety-Critical Complex Systems 45

process diagrams, such as the clotting cascade shown in Figure 2. (It
should be noted that Figure 2 is a simplified representation of the cas-
cade, only touching on the secondary (non-platelet) part; more detailed
representations exist.)

One corollary of the above hazard analysis is that the safety of the AP
system has a tremendous dependency on the behaviour of the patient’s
immune system. Any simulation-based attempt to address these hazards
will need to be paired with a reasonable immune system model. Most
likely, this environment model will be built up over time (e.g. through
concept, design, animal trials and human trials). Scope control is crucial
here – developers may need to restrict the use of simulation to where it
is explicitly needed (e.g. for “emergent hazards”).

In some ways, the AP system is an easy example because we already
have natural platelets to learn from. If we were considering an entirely
novel bloodstream-dwelling nanomachine, we’d have a more difficult job.
For example, consider whether the hazards presented by an artificial
heart are the same as those of a natural heart – there is probably signif-
icant overlap (particular those hazards concerned with the blood vessels
around the heart) but the artificial heart has a very different internal
mechanism.

4.2 Individual and Multi-agent Hazards

H1 (AP in wrong location) could potentially be detected by an individual
AP – the AP to detect that the surrounding tissue is of the wrong type.
By contrast, hazard H4 (AP form oversized clot) is a state at the inter-
platelet (i.e. multi-agent) level, and can be detected only by something
that has an overall awareness of multiple APs.

This is an architectural distinction – it is much easier to argue that a
hazard is mitigated if it can be resolved at the individual platelet level.
For example, an AP could be built to detect whether it was in or near a
blood vessel, and to self-destruct if it was not. Alternatively, it might be
possible to argue that the lifespan of an AP, although long enough to be
useful for clotting, is not long enough to cause problems in other tissue.
On a theoretical level, these kinds of arguments are straightforward –
they’re much like the ones we use in existing safety-critical systems.

By contrast, it is difficult to achieve and argue mitigation for multi-
agent hazards. Most likely, an engineer would need to argue that the
platelet would be able to detect that the AP system had formed a clot
where it was not needed, and then disassemble it. This is an extra require-
ment for emergent behaviour (extra to those needed to provide useful
clotting in the first place). If this approach was taken, this would be an
example of a safety requirement as introduced in Section 3.3.

46 Alexander, Alexander-Bown, Kelly

(One alternative might be to detect unwanted clots through exter-
nal imaging, but this would raise a variety of issues including imaging
equipment availability, interaction of imaging actions with other treat-
ment of a critically injured patient, and human factors such as ability to
see small developing clots in obscure locations).

‘Detect’ in the above paragraphs could have a number of meanings.
One is that the AP has some kind of explicit knowledge of its state (and
can therefore take an explicit action) – this is the norm for conventional
systems. Another is that the AP is engineered so as to only be stable
under a narrow set of ‘safe’ conditions. For example, it might be that
the AP could be designed only to be stable in the physical and chemical
environment of a suitable blood vessel – if it was in any other location,
it would break up and become inert. For ultra-simple (e.g. nanoscale-
assembled) agents the latter approach may be the only viable one.

Nanoscale devices may be novel in that they are built on a single
substrate, without the traditional divisions between e.g. software and
hardware in a conventional vehicle or robot. They may be built from a
single material, both logic and actuators, making them closer to a clock-
work device than an electronic robot. In safety engineering, we often
rely on the software-hardware divide to manage and contain the soft-
ware contribution to hazards. More generally, this illustrates how novel
technology may break existing safety techniques.

4.3 Building a Safety Case for the AP System

A common and practical approach to building safety cases is to argue
that all hazards presented by the system present an acceptably low risk.
Figure 4 shows the top level of a possible safety case for the AP system,
presented in the Goal Structuring Notation (GSN).

Arguments in GSN have a hierarchical structure. At the top of the
structure is a goal which takes the form of a particular claim about the
system (in Figure 4 this is the node RisksTolerable). The level below
that breaks this down into multiple child goals. Each of these child goals
then broken down in turn, until we reach a point where the goals can
be supported by (“solved by”) explicit evidence (evidence is shown in
a GSN diagram as a “Solution” node). Between any goal and its child
goals a strategy may be used; this explains how the breakdown is being
performed (in Figure 4, ArgOverHazards shows that we are claiming
that the risk from all hazards is tolerable on the basis that the risk
associated with each identified hazard is tolerable). Figure 3 gives a key
to the symbols used in GSN; for a more comprehensive description of
the notation, see [11] or [12].

Engineering Safety-Critical Complex Systems 47

System can
tolerate single

component
failures

Fault tree
for Hazard

H1

All Identified
System
Hazards

Context
Undeveloped Goal

(to be developed further)

Goal Solution

Argument by
elimination of
all hazards

Strategy

Fig. 3. Principal Elements of the Goal Structuring Notation (from [12])

(Note: The strategy ArgOverHazards breaks down the argument in
terms of the top-level hazards that were identified in Table 2).

The context node DefTolerable is very important – it defines the
term ‘tolerable’ that is used in the rest of the argument. The definition
used here, “expectation of less than 10−6 accidents per use” is arbitrary,
although not untypical of existing safety arguments. If we knew what
the regulator in this case would require as a standard of safety, then we
can change our definition (although we might then need to change our
argument structure in order to meet it).

It is important to note that the definition of ’tolerable’ provided by
DefTolerable applies to the whole AP system active within a particu-
lar patient; it sets a probablistic tolerability for accidents at the macro
level. This may eventually be converted into probablistic requirements
on behaviour at the micro level in terms of individual AP. The value
of the probabilites used at that level would depend on the macro-level
tolerability, the number of AP likely to be given in a single treatment
(for AP, that could be billions) and the ability of the overall AP system
to mitigate undesired behaviour by a small number of AP. No simple
mapping from macro-level accident rates to micro-level failure or hazard
rates is possible.

The big advantage of arguing over hazards, compared to other ways
of structuring a safety case, is that we can adopt a unique argument
structure for claiming that each hazard is tolerable. Figure 6 illustrates
this for hazard H6 – we argue over the various membranes that the AP

48 Alexander, Alexander-Bown, Kelly

RisksTolerable

The risk presented by all
hazards is at a tolerable
level

SystemHazards

Identified system
hazards

DefTolerable
Tolerable is defined as
expectation of less
than 10E-6 accidents
per use

n-2

ArgOverHazards
Argument over
identified system
hazards

XTolerable

Risk associated with
{Hazard X} is tolerable

MembraneTolerable

Risk associated with
interaction with membranes
is tolerable

ShortLifespanTolerable

Risk associated with short
AP lifespan is tolerable

Fig. 4. Top Level of AP Safety Case

could encounter, attempting to show that the interaction with each will
be safe. Similarly, Figure 7 shows the argument for hazard H3 – in this
case, we argue across the normal and abnormal cases, then (in Figure 8)
over the possible causes of the abnormal case.

Notice how Figure 8 ends with undeveloped goals (indicated by the
diamonds underneath them). Before this safety case could even poten-
tially be accepted, the developer would need to decompose it further
until they reached solutions (shown as circles in e.g. Figure 6).

In a real safety case, parallel arguments would be needed for the
completeness of hazard and cause identification, and about the combined
risk from all hazards. The latter is straightforward but the former can
be very hard – see Section 5.5. There would probably, also, need to be
more context and strategy nodes.

The ‘trick’ exploited by this safety case structure is that it deals
with as many hazards as possible by simple means. Neither of the haz-
ard arguments shown involves appeal to complex emergent properties –
instead, we have dealt with two hazards in relatively simple terms. This
allows us to focus our effort on where it is most needed (on the com-
plex, emergent accident hazards like H4). Complex hazards will require
the development of new techniques and patterns. Some progress towards
this has been made in unpublished work by Polack [23].

Engineering Safety-Critical Complex Systems 49

MembraneTolerable

Risk associated with
interaction with membranes
is tolerable

ArgMembranes

Argument over
membranes exposed to
vascular system

MembraneModel

Model of human
vascular system

n-2

XTolerable

Risk associated with
{Membrane X} is tolerable

RenalMembraneTolerable

Risk associated with
interaction with renal
membrane is tolerable

ArgTheorySimTrial

Argument over theory,
simulation and trials

TheoryMembrane

Theory states that AP interaction
with renal membrane should be
the same as natural platelet
interaction with renal membrane.

SimMembrane

Low-level simulation of renal
membrane shows no
interaction of AP with
membrane

NoRenalAnimal

No damage to renal
membrane was reported in
animal tests

NoRenalTrials

No symptoms of damage to
renal membrane were
observed in clinical trials

RenalTheory

Theory of renal
membrane
interactions

RenalSim

Simulation
results

RenalAnimals

Results of renal
membrane

examination from
test animals

RenalTrials

Patient
symptom

reports from
clinical trials

Fig. 5. Argument over Membranes

In the argument fragments above, the argument’s legs are combined
informally, and would rely on expert judgement to assess the overall
contribution of evidence to the top goal. The general intuition is that
when there is a goal solved by N child goals, then adding an additional
diverse child goal will increase the confidence in the parent. There is
no accepted, explicit method of assessing and combining argument con-
fidence, although [5] and [17] comment on what engineers seem to do
in practice. (In particular, Littlewood and Wright show in [17] how the
“extra leg” intuition may be misleading in some cases).

To adequately assess the strength of complex arguments, a systematic
method for propagating confidence through the argument is desirable.

50 Alexander, Alexander-Bown, Kelly

ShortLifespanTolerable

Risk associated with short
AP lifespan is tolerable

LifespanAcceptable

AP lifespan will be
acceptably long in all cases

DefAccLong

'Acceptably Long' is
defined to be average
lifespan of natural
platelets

APLifeNormalOk

AP lifespan is
acceptable under
optimal conditions

LifespanExp

Results of AP
lifespan

experiments

ArgNormPath
Argument over normal
and pathological
cases

APLifePathOk

AP lifespan is acceptable
under pathological
conditions

ArgShortLifeCause

Argument over possible
causes of short AP
lifespan

Fig. 6. Argument for Short Lifespan Hazard

Weaver, in [33], presents a system of Safety Assurance Levels (SALs) for
performing this propagation. Each low-level goal is assigned a SAL (from
1 to 4) and these propagate up through the argument until the top goal
is reached. Independent child goals may give their parent a SAL that
is higher than either of them; interdependent child goals will give their
parent a SAL that is the lowest of all of them. The weakness of SALs is
that it is not clear what a given SAL means in tangible terms (if a goal
has SAL 2, what exactly does that mean about the system being argued
about?).

A mechanism for assigning truly quantitative confidence in useful
real-world terms would be very valuable. Littlewood, in [16], discusses
how such a mechanism might be found in Bayesian Belief Nets, which can
express structural relationships between beliefs in terms of probability,

Engineering Safety-Critical Complex Systems 51

ArgShortLifeCause

Argument over possible
causes of short AP
lifespan

LifespanNotImmune

AP lifespan will not be
reduced by immune system
attack

ShortNotDrug

AP lifespan will not be
reduced by interaction with
prescribed drugs

NoDrugMaterial

No prescribed drugs are
known to interact with
material from which AP are
constructed

NoDrugTrials

No AP-drug interactions
were observed in clinical
trials

TheoryAPImmune

Theory states that AP don't
resemble anything that the
human immune system will
attack

TrialsAPImmune

There was no evidence in
trials of immune attack on
AP

Fig. 7. Argument About Causes of Abnormally Short Lifespan

although he also notes that there are a number of unsolved problems
with the approach.

5 Simulation in Safety Engineering – An Example

Two of the authors previously developed a simulation-based approach to
hazard analysis for complex systems-of-systems (SoS). The work, carried
out as part of the HIRTS DARP project, was in response to increasing
integration of large-scale SoS such as network-enabled military units and
Air Traffic Control (ATC). An overview of the work follows; for more
detail, see Alexander [1].

The motivating concern for the work was that large-scale SoS are not
very tractable to conventional hazard identification and analysis tech-
niques. The SoS of concern are complex (in the sense used by CoSMoS),
immensely complicated, distributed, and very heterogeneous. Our scope
was limited to hazard identification and analysis – we didn’t attempt
to provide confirmatory safety analysis (this has certain implications,
which are discussed in Section 5.5, below).

Merely identifying and explaining hazards is difficult in SoS. If we
have a failure in one entity, what is the consequence at the SoS level. For
example, if a reconnaissance aircraft in a military unit spots a civilian
car and believes it is an enemy tank, what happens to the car? The
consequence depends on the capabilities of the other entities in the SoS,
the operational procedures in force, and many properties of the SoS’s

52 Alexander, Alexander-Bown, Kelly

dynamic state (right down to the psychological disposition of the humans
involved: are they relaxed or on edge? Are they expecting the enemy
or do they think there’s a ceasefire? Do they want to see the enemy?)
Timing may be a critical factor (when does the misidentification occur,
with respect to the patrol times of other reconnaissance entities?).

It may be, in a complex SoS, that we don’t even need a “failure”
in order for an accident to occur. It may be that under certain circum-
stances, under certain system states, normal behaviour by all the entities
involved is enough to cause an accident. This could be seen as an exam-
ple of “negative emergence”. The enormous state space of an SoS makes
these dangerous states, and the paths to them, difficult to discover.

This leads to the concept of an SoS Hazard – a state of an SoS. Tak-
ing the Def Stan 00-56 definition of ‘hazard’ (from Section 3.1) we can
define this as “A condition of a SoS configuration, physical or otherwise,
that can lead to an accident.” We can explicitly exclude from this those
hazards that are confined to a single entity – states where an entity has
suffered a failure and may go on to directly cause an accident (for ex-
ample, an aircraft suffers an engine failure and crashes into the ground).
These single entity hazards are relatively tractable using current tech-
niques. It is the multiple-entity hazards that are challenging. (A similar,
but more general, concept of complex system hazard could be defined).
The aim of the work discussed in this section is to find and explain SoS
hazards.

5.1 Method Overview

The method requires, first, that the SoS safety team develop a multi-
agent model of the SoS. They do this by taking an appropriate source
model (such as a description of the system in the Ministry of Defence’s
MODAF notation [18]) and identifying specific safety concerns that they
need to model (such as collisions between aircraft). They must also iden-
tify (a) the vignettes that the SoS will be expected to participate in
and (b) a set of reasonable deviations that may occur in practice, such
as a system suffering a particular kind of failure. The resulting multi-
agent model must be implemented in a multi-agent simulation frame-
work, thereby making the model executable.

Once an executable model is available, the ‘space’ represented by the
deviations of that model must be explored. This is performed by running
the model with different combinations of deviations and observing the
results.

As each run executes, the actions and states of the system compo-
nents are logged so that they can be studied later. This invariably pro-
duces a huge volume of output. To aid comprehension of this data, ma-

Engineering Safety-Critical Complex Systems 53

system that is not provided by high-level mathematical models. For
emerging classes of system, this kind of insight is extremely valuable.

The authors have developed a process for using multiagent simulation to
perform hazard analysis, which will be summarised here. Further details
can be found in [9].

3.1 Overall Process
In this process, the SoS safety team must develop a multiagent model of
the SoS. They do this by taking an appropriate source model (such as a
MODAF description of the system) and identifying specific safety concerns
that they need to model (such as collisions between aircraft). They must
also identify (a) the vignettes that the SoS will be expected to participate
in and (b) a set of reasonable deviations that may occur in practice, such
as a system suffering a particular kind of failure. The resulting multiagent
model must be implemented in a multiagent simulation framework,
thereby making the model executable.

Once an executable model is available, the ‘space’ represented by the
deviations of that model must be explored. This is performed by running
the model with different combinations of deviations and observing the
results.

As each run executes, the actions and states of the system components
are logged so that they can be studied later. This invariably produces a
huge volume of output. To aid comprehension of this data, machine
learning techniques can then be used to extract high-level descriptions of
hazards, and, once interesting accident runs are identified, causal
explanations can be derived using an agent tracing tool.

An outline of this process is shown in figure 1, and key aspects are
expanded on in the following sections.

Figure 1 – Overview of SoS Hazard Analysis Process

Build
Model

Analyse
Model

Source Model

Top-level
Safety Concerns

Top-level
Safety Requirements

Policy

Modify SoS

System Design

Configuration

Evaluate
Results

Fig. 8. Overview of the SoS Hazard Analysis Process

chine learning techniques can then be used to extract high-level descrip-
tions of hazards. These descriptions are relationships between certain
combinations of deviations and certain accident events. Once interesting
accident runs are identified, causal explanations can be derived using an
agent tracing tool. Engineers can then use the explanations to study the
plausibility of the simulated accidents, and modify the SoS configuration
or operating arrangements in light of the more credible relationships.

An outline of this process is shown in Figure 8, and key aspects are
expanded on in the following sections.

5.2 Modelling Approach

A common concern in simulation modelling is that, in going from a
paper model to an implemented simulation, distortions and errors can
be introduced. To help alleviate this, we adopted the concept of explicit
concerns. These concerns were initially expressed in terms of aspects of
the source model, and then updated and checked at each modelling stage
or iteration of the model. These concerns could be either deviations or
accidents, and provided a starting point in terms of causes and their

54 Alexander, Alexander-Bown, Kelly

eventual consequences. The rest of the process then works from there to
derive the intermediate paths and states that linked them.

In addition to deviations coming from the concerns, we provided a
method for deriving agent deviations by applying a set of five guide
words to a six-part breakdown of a generic agent model. This is similar
to the existing methods FFA and HAZOPS mentioned in Section 3.1.

The process we used for developing the agent model was an adapta-
tion of the Prometheus process (see [22] for a description). Although this
was not a true refinement method, requiring considerable engineer input,
it structured the process and provided a range of cross-checks between
the several stages of model development. For example, Prometheus leads
developers to describe inter-agent communication in terms of high-level
protocols before the agents themselves are developed in detail. Once the
agents are developed, the Prometheus Design Tool (described in [21])
will automatically check that the agents have the message types defined
that they need in order implement the protocol. (It cannot, however,
verify that they will restrict their message sequences to those allowed by
the protocol.)

The CoSMoS project aims to provide methods for developing high-
quality declarative models (rather than the partial MODAF models that
we worked with) and offers the prospect of more systematic refinement
from model to simulation. However, even if we had been able to perform
a true refinement from source model to implementation, we still would
not be able to assume that the simulation represents the real world.
For our explicit purposes (hazard analysis only) this is not necessarily
a problem, but we cannot escape it entirely. See Section 5.5 for further
discussion of this issue.

5.3 Analysis Techniques

Once the model has been built, it must be analysed. The analysis tech-
nique must select simulation runs to be performed so as to achieve ade-
quate coverage of the parameter space of the simulation while spending
the minimum of computation time. We would like to exhaustively ex-
plore the parameter space demarcated by all agent deviations, because
this would reveal all behaviour paths that were implemented by the sim-
ulation model. In practice, this will be impossible unless we use a toy
example.

Our solution was to specify a probability for the occurrence of each
deviation (in any given simulation run), and then perform runs only for
those combinations where the combined probability is above a certain
threshold. The simulation engine decides whether or not to run each
combination by comparing its combined probability to a threshold for

Engineering Safety-Critical Complex Systems 55

‘incredibility of failure’. This concept originally stems from the nuclear
industry – dangerous situations that appear to be more improbable than
this threshold are not studied further in hazard analysis. A value for this
is given in [2] as 10−7 per year of operation (equivalent to 10−11 per
hour), and this value is adopted here.

Once those runs have been performed, the accidents that occurred
need to be identified and their causes found. The former task is relatively
easy, since the set of possible accidents is small. The latter, however, is
harder, and machine learning techniques have been adopted to make it
tractable.

For our purposes, the task of machine learning can be viewed as one
of function approximation from a set of training instances expressed as
input-output pairs; given a function specification (a set of named input
parameters (the ‘features’ used for learning) and a particular form of
output value), the algorithm learns the relationship between combina-
tions of parameter values and the output of the target function for those
values.

In our approach, the features represent parameters of the simulation
and the output values are the consequences within the simulation. All
the features used in the current work are deviations that are applied to
the model, and the target function is the set of accidents that occurs
during the simulation run. We used a decision-tree learning algorithm
because it could learn from Boolean-valued parameters (deviations) and
discrete-valued outputs (accidents), and present the resulting rules in
human-readable form.

The output of the learning algorithm is a set of rules that describes
the relationship between deviations and accidents. For example, a rule
might be “Aircraft 1 lost radio comms causes aircraft 1 to collide with
aircraft 2”. Such rules, however, only explain how accidents occur in very
broad terms. In order to choose appropriate definitions of our hazards,
or to take action to prevent or mitigate them, more detailed information
about causation is required.

Lam and Barber, in [14] present a tool-supported approach to the
comprehension of agent systems. Given a log of the events that occurred
in a single simulation run and an event of interest within that run, the
tool tries to explain why that event happened in terms of its immediate
causes. Those causes can each then be explained in the same way, and the
process repeated until the final explanation is in terms of the initial state
of the simulation or ‘external’ events that occurred. This explanation,
complete or partial, can be expressed as a causal graph leading to the
event that we asked the tool to explain.

56 Alexander, Alexander-Bown, Kelly

A simple example of such an explanation would be of the form “UAV
1 received a percept indicating the location of an enemy unit. This caused
it to form a goal of destroying that enemy unit, which it selected the
‘air strike’ plan to resolve, and as a consequence of that plan the UAV
conducted the ‘attack’ action using a laser-guided bomb”.

The tool achieves this by storing what Lam and Barber call ‘back-
ground knowledge’. This is a set of possible causal relationships between
events of different types and different properties. As the tool tries to ex-
plain each event, it reviews these rules to find which earlier events could
have caused it.

Once the analysis is complete, the analyst must evaluate the signif-
icance of the results, in consultation with the rest of the project safety
team and other stakeholders. It is likely, particularly early on in devel-
opment, that the analysis will reveal problems with the SoS that need
to be resolved. As indicated in Figure 8, this may involve changes to the
configuration of the SoS, to the design of the individual elements, or to
the operational safety policy under which the SoS operates.

5.4 Strengths

By using simulation, our approach is able to search a huge amount of
the state space. By using probability as a heuristic for the selection of
runs, we can prioritise our explanations towards those parts of the space
that are most likely to occur in practice. The approach is particularly
strong in this regard when compared to the manual techniques that have
traditionally been used in this role.

Using simulation paired with machine learning and tracing (rather
than an explicit exploration technique such as model-checking) allows
engineers to use the approach with almost any kind of multi-agent model.
For example, agent state may be modelled in terms of discrete states or
continuous-value parameters, and agent behaviour may be defined by
pre-written scripts or by a neural network.

The tracing tool provides a head start to analysts who want to ex-
plain how a particular accident happened. Simple learning of relation-
ships between deviations and accidents may not be sufficient for human
comprehension – in particular, it is difficult for humans to read extensive
logs of simulation events. Animation can help here, but it is still difficult
to see causes that are well-separated in terms of time.

The key value of the approach is that if it finds one hazard in an SoS
that was not found by other means, then it is useful. This is true even if
it also identifies a number of hazards that are initially plausible but turn
out to be unrealistic. As it is not intended to provide confirmatory safety
analysis, errors and omissions are acceptable as long as some hazards

Engineering Safety-Critical Complex Systems 57

are realistic. (There could, of course, come a point where the cost of
investigating false hazards made the approach impractical.)

In , we applied our approach to two plausible case studies (one of
them purely hypothetical, the other provided by industry) and derived
some interesting hazards. It is important that this be replicated in a real
industrial or operational development, but these results are promising.

All of the above is likely to be true and relevant for the use of sim-
ulation in CoSMoS. It is important to note, though, that if simulation
is to be used in direct support of a safety argument then it must aim
higher than the work described in this section, particularly in terms of
gaining confidence in the results (see ‘Challenges’, below).

5.5 Challenges

The approach described above raises a number of challenges. If the CoS-
MoS project uses simulation in a similar role, it will have to face these
challenges.

The biggest concern with this work is the question of completeness
– whether or not an adequately complete set of hazards, and causes
of those hazards, has been identified. There are two aspects of this –
completeness with respect to model (does the analysis reveal all the
hazards in the simulated model), and completeness of the model with
respect to reality (does the model implement, and reveal in simulation,
all the hazards that exist in the real system). Some confidence that there
are no unidentified serious hazards is vital for building a safety case.
Ultimately, such a confidence cannot be empirically observed; it must
come down to theory, theory about when it is reasonable to believe that
your hazard analysis is complete.

A second concern is related – does the approach provide a false sense
of security? Any safety technique or process will have an effect on the
perceptions of the engineers involved. A highly detailed simulation model
(especially when combined with an attractive animation) may convince
engineers that lack of hazards is evidence of their absence. Put another
way – any hazard identification or hazard analysis has an implicit, in-
tuitive role in safety analysis. The key is that it should give confidence
only in proportion to its adequacy.

A final concern is that the explanations produced by the tracing
tool may be too compelling. If the tracer leads naturally to a plausible
explanation of a mechanism by which a hazard can occur, they may
cause engineers to ignore other alternative explanations.

58 Alexander, Alexander-Bown, Kelly

6 The Challenges of Small-Scale Simulation

One can draw a distinction between large-scale simulation (such as the
simulations of military units and air traffic discussed in Section 5) and
small-scale simulation (such as the simulation of cells and nanites with
which CoSMoS is primarily concerned). It could be suggested that in
large-scale simulation the properties of the agents (including their local
behaviour) are well understood, and that the role of simulation is to
combine these to determine their emergent behaviour when they work
together. In the small-scale case, the behaviour of the agents may be
less well known, and the role of the simulation is to explain (and allow
analysts to comprehend) the observed high-level behaviour in terms of
low-level rules.

Alternatively, the distinction between large and small could be re-
placed by one between and engineering and scientific simulation. Engi-
neering simulation is concerned with modelling well-understood parts in
situations where their combined behaviour is too complex to understand;
scientific simulation is concerned with understanding how parts give rise
to well-understood high-level behaviour.

This second conceptualisation leaves potential for engineering sim-
ulation of small-scale entities. Can we, however, really know the fine
detail of tiny things? For example, platelets may be relatively simple
when compared to (e.g.) white blood cells, but they are still not com-
pletely understood. Some aspects of their high-level behaviour are also
unexplained, such as the causes of the DIC phenomena mentioned in Ta-
ble 1. The behaviour of entities such as platelets cannot be understood
without reference to the environment that they operate in; for platelets
this is, at the very least, the human vascular system. This creates a huge
demand for knowledge, particularly for knowledge of combinatorial in-
teractions between the diverse entities and processes in the system and
the environment.

One can go further, however. Can we really know the precise local
behaviour of large-scale entities such as vehicles? We certainly know gross
detail (weight, dimension, maximum engine output), but as we move
to progressively finer detail (mechanical tolerances, network protocols,
presence of software faults) it becomes harder to fully describe, or indeed
to know at all. Behaviour over the long term, as the system degrades
through operation and is maintained, is particularly difficult to predict.
Engineers have often been surprised by the behaviour of vehicles; for
example, consider the 1974 air crash caused by the hard-to-shut cargo
door on the DC-10 aircraft [3]. Safety engineering, when dealing with
the levels of safety that we now expect in our society, deals with tiny
probabilities.

Engineering Safety-Critical Complex Systems 59

It can be observed that, for real systems, the small-scale is always
present inside the large scale. An aircraft may have a human pilot – the
pilot contains blood which contains platelets. If we drill down further,
into the individual platelets and (primarily) the mitochondria which they
contain, then we have the respiratory cycle whereby they generate the
power to operate. This cycle is invisible at the high level, but is intricate
at the sub-cellular level; e.g. a diagram of the Krebs Cycle in [20] has 25
edges and 26 nodes (of which 17 are unique substance names).

The respiratory cycle is simple for the SoS engineer – at worst, they’ll
need to think of air, water and calories (e.g. blood sugar levels affect
alertness). For the AP engineer, however, the respiratory cycle is close
enough to be a concern – it is possible that AP will interact with the
substances involved at a molecular level (e.g. it might be that AP attract
and accumulate a respiratory by-product). This illustrates how small-
scale engineering dredges up fine detail. As we move down into the micro-
scale and nano-scale, phenomena that were manageable (indeed, barely
of concern) in the large become critically important.

Ultimately, however, it is the high level that matters. For safety en-
gineering, this means that we need adequately compelling evidence that
the identified safety requirements are met (at the level of the whole sys-
tem). For those properties of the system that are not relevant to any
safety requirement, we do not need any evidence. Of course, there may
need to be an argument made that these properties are truly irrelevant.
Put another way - we do not need accurate models of the whole system.
We do need evidence that we can predict certain key properties, and that
the values of those properties will be suitable. And we can constrain the
situations under which we need to predict these properties by explicitly
restricting the situations in which the system is allowed to be used.

There is a further aspect that may make the CoSMoS approach more
practical – as noted in Section 3.5, safety management and safety per-
formance measurement are critical. Many aspects of system behaviour
will only ever be discovered in real-world operation. If we can provide
the initial confidence that a complex system is safe to operate, and have
effective safety management in place, then we may be able to detect un-
expected hazards before they occur and deal with them before they are
able to cause an accident.

7 Conclusions

Safety engineering matters for many domains. In industries that are ex-
plicitly regulated (such as aviation or nuclear power) then conformance
to explicit engineering standards is mandatory. Outside of those fields,

60 Alexander, Alexander-Bown, Kelly

it is still often the case that employers or product manufacturers have
a duty of care towards their employees or users, and therefore need to
ensure that the engineered systems they use are adequately safe. In-
creasingly, this requires system developers to present a structured safety
case, incorporating argument and evidence, that a mandated level of
safety has been achieved.

When producing a safety case, we need to present an argument that
the system is acceptably safe, given the risk posed by the hazards present
in the system. We do not need irrefutable proof, and we do not need
evidence (however weak) of total safety. In particular, we don’t need to
make any claims at all about those aspects of the system that are not
safety-critical.

Architecture is a powerful tool – we don’t need ensure that every
component of a system behaves safely, provided we can argue that the
overall architecture system architecture will keep it in line. For example,
it doesn’t matter if a controller component proposes a hazardous act if
we have a monitor component that can reliably veto that act. Complex
systems, however, (along with micro-scale devices) prevent the use of
many common architectural approaches and so present a major safety
challenge. In particular, it is not at all clear how emergent properties
could be bounded in this way.

In safety engineering, conservatism is a fact. It is present at every
level, from working engineers through to governments (and then on to
the general public). Complex systems are likely to face opposition sim-
ply because they are novel and little-understood, quite apart from the
(genuine) technical difficulties they present. Resolving the technical chal-
lenges will help gain acceptable, but showing engineered complex systems
working reliably in non-safety domains will be critical.

The real engineering of complex, safety-critical, micro-scale systems
such as the AP system may be some way off, but we can start to work
out what claims we will need to make, and how we can generate the
evidence we need to make those claims. This way, when the technology
becomes ready we may actually be able to use it.

Acknowledgements

The authors would like to thank Fiona Polack and Susan Stepney for
illuminating discussions about the CoSMoS project, and for providing
access to reference [23].

Engineering Safety-Critical Complex Systems 61

References

[1] Robert Alexander. Using Simulation for Systems of Systems Hazard
Analysis. PhD thesis, University of York, 2007.

[2] F Ammirato, M Bieth, O J V Chapman, L M Davies, G Engl, C Faidy,
T Seldis, D Szabo, P Trampus, Ki-Sig Kang, and J Zdarek. Improve-
ment of in-service inspection in nuclear power plants. Technical report,
International Atomic Energy Agency, 2004.

[3] Aviation Safety Network. Accident description 03 MAR 1974, 8 June
2007 2007. http://aviation-safety.net/database/record.php?id=

19740303-1, accessed 17 June 2008.

[4] John Barnes. High Integrity Software: The SPARK Approach to Safety
and Security. Addison Wesley, 2003.

[5] Robin E Bloomfield, Bev Littlewood, and David Wright. Confidence: its
role in dependability cases for risk assessment. In Proceedings of the 37th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN ’07), 2007.

[6] CoSMoS project team. Complex systems modelling and simulation infras-
tructure, 2008. http://www.cosmos-research.org/caseforsupport.

html, accessed 17 June 2008.

[7] Patrick Davey. Medicine at a Glance. Blackwell Science, 2002.

[8] G Despotou and T Kelly. The need for flexible requirements in dependable
systems. In Proceedings of the 4th International Workshop on Require-
ments for High Assurance Systems (RHAS), 2005.

[9] Health and Safety Executive. Health and safety at work etc act, 1974.

[10] Martin Jones. Development of an operational safety case within an ex-
isting safety management system. Master’s thesis, University of York,
2007.

[11] T P Kelly. Arguing Safety - A Systematic Approach to Managing Safety
Cases. Phd thesis, University of York, 1998.

[12] T P Kelly and R A Weaver. The goal structuring notation — a safety ar-
gument notation. In The Dependable Systems and Networks 2004 Work-
shop on Assurance Cases, 2004.

[13] Trevor Kletz. HAZOP and HAZAN: Identifying and Assessing Process
Industry Hazards. Institution of Chemical Engineers, 3rd edition, 1992.

[14] D N Lam and K S Barber. Comprehending agent software. In Proceedings
of the Fourth International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS-2005), 2005.

[15] R J Liesner and S J Machin. Clinical review ABC of clinical haematology:
Platelet disorders. BMJ, 314(7083), 1997.

[16] Bev Littlewood. Limits to dependability assurance — a controversy re-
visited (or: A question of ’confidence’), 2007.

[17] Bev Littlewood and David Wright. The use of multi-legged arguments to
increase confidence in safety claims for software-based systems: a study
based on a BBN analysis of an idealised example. IEEE Transactions on
Software Engineering, 2007.

62 Alexander, Alexander-Bown, Kelly

[18] MODAF Partners. MOD architectural framework executive summary,
2005-08 2005.

[19] Motor Industry Software Reliability Association. MISRA-C:2004 —
guidelines for the use of the C language in critical systems, 2004.

[20] Michael Muller. Krebs cycle pictures and summary, 2008. http://www.

uic.edu/classes/bios/bios100/summer2003/krebsfull.htm, accessed
21 July 2008.

[21] Lin Padgham, John Thangarajah, and Michael Winikoff. Tool support
for agent development using the prometheus methodology. In Proceedings
of the first international workshop on Integration of Software Engineering
and Agent Technology (ISEAT 2005), Melbourne, Australia, 2005.

[22] Lin Padgham and Michael Winnikoff. Developing Intelligent Agent Sys-
tems: a Practical Guide. John Wiley & Sons, 2004.

[23] Fiona Polack. Argumentation and the design of emergent systems. http:
//www-users.cs.york.ac.uk/~fiona/PUBS/Arguments.pdf, 2008.

[24] D J Pumfrey. The Principled Design of Computer System Safety Analy-
ses. Dphil, University of York, 1999.

[25] Punit Ramrakha and Kevin Moore. Oxford Handbook of Acute Medicine.
Oxford University Press, 2rev edition, 2004.

[26] Carl Ritson. A process orientated biological simulation using occam-.
Technical report, University of Kent, 2006.

[27] RTCA and EUROCAE. DO-178B: Software considerations in airborne
systems and equipment certification, March 1999 1999.

[28] Steve Schneider, Ana Cavalcanti, Helen Treharne, and Jim Woodcock. A
layered behavioural model of platelets. In ICECCS 2006. IEEE, 2006.

[29] Stephen Toulmin. The Uses of Argument. Cambridge University Press,
1958.

[30] TUNA project team. TUNA: Final report, 2008. http://www.cs.york.

ac.uk/nature/tuna/outputs/finalreport.pdf, accessed 17 June 2008.
[31] UK Ministry of Defence. Defence standard 00-56 issue 2 — safety man-

agement requirements for defence systems, December 1996 1996.
[32] UK Ministry of Defence. MOD interim defence standard 00-56 issue 4 —

safety management requirements for defence systems, June 2007 2007.
[33] R. A. Weaver. The Safety of Software - Constructing and Assuring Ar-

guments. PhD thesis, University of York, 2003.

Towards an Executable Model of

Auxin Transport Canalisation

Philip Garnett1, Susan Stepney2, and Ottoline Leyser1

1 Area 11, Department of Biology, University of York, YO10 5YW, UK
prg500@york.ac.uk

2 Department of Computer Science, University of York, YO10 5DD, UK

Abstract. We describe our use of a modelling and develop-
ment process to specify and implement biological simulations
that involves the development of several different UML models
to capture different perspectives on the system being modelled,
in particular the investigation of various emergent properties.
We use this process in the case of an auxin canalisation simula-
tion, investigating the processes of auxin transport as guided by
PIN proteins, in a developing plant. We discuss our preliminary
results of investigating one hypothesis of PIN protein placement
that fails to demonstrate canalisation in simulation.

1 Introduction

The simulation of biological systems presents a significant challenge re-
quiring knowledge from all branches of science to capture all the relevant
aspects of the biological, chemical and physical processes occurring. The
challenge is made more difficult by the complex nature of biology: it is
hard to make good assumptions about how a particular process is regu-
lated. The quality of information available is important: the best solution
based on the information at hand may not be the real solution, but more
a reflection of how insufficient the current data are. Or the data may be
excellent but missing a part of the picture altogether. Also the connec-
tivity of processes in biology is often very high, therefore the question of
the level of abstraction and simulation complexity is important. If the
abstraction level is too high we risk ruling out simulations producing
emergent behaviour; too low, and the simulations produced could be dif-
ficult to work with. So the decisions made when producing a simulation
are important, as a balance must be sought between complexity and the
all important emergent behaviours.

64 Garnett, Stepney, Leyser

Here we present how we are using the CoSMoS lifecycle [3] to develop
abstract models and executable simulations of a biological system, in
order to test different hypotheses of how certain biological processes
may work.

We are using this approach to investigate auxin canalisation in the
plant Arabidopsis. Auxin is a plant growth hormone. The process of auxin
canalisation occurs between auxin production sites and auxin sinks; in
the plant stem, it results in the development of vascular tissue between
new sites of auxin production and existing vascular tissue. We are in-
terested in understanding how this complex self-organising process is
regulated in the cells of the plant. Due to the complexity of canalisation,
and some gaps in the biological knowledge of how and what is causing
the canals to form, we are developing executable computer simulations in
order to test multiple hypotheses. We are using UML (Unified Modelling
Language) [25] to model the biology as we understand it, the simulated
biology, and the details of the implementation. The hope is that the hy-
potheses tested by the simulations might indicate experiments that can
then be tried in the lab to further our understanding, and to drive new
simulations.

We find that the combination of UML and object-oriented program-
ming maps naturally to the kind of biological processes that we are
modelling. Biological entities, such as proteins and cells, map directly to
objects in the UML models, which are then implemented as objects in
the program code. The interactions between these biological entities sim-
ilarly map directly to associations between objects in the UML models,
which are then implemented as communications between objects in the
program code. This allows us to build models containing the biological
entities that we believe to be involved in canalisation, and then produce
simulations that we can use test various hypotheses about the biological
processes of interest. If an hypothesis is correct we should see emergent
behaviour that is consistent with the real biological behaviour when the
simulation is run; if not we can then return to the UML models and
implement our next hypothesis. This provides a process to assist us in
determining if our simulated biology is consistent with the real biology.
Additionally, the UML diagrams are relatively accessible to biologists,
allowing them to provide input to the model of the simulation without
the need to understand the code.

This is a report of a work in progress on the modelling and simu-
lation of a biological system. In section 2 we discuss the use of UML
as a suitable modelling language. In section 3 we overview the process
we are using for modelling, designing, and implementing biological sys-
tem simulations. In sections 4, 5, and 6 we present our initial Domain,

Auxin Transport Canalisation 65

Software, and Refined Software Models of auxin canalisation, and in sec-
tion 7 we discuss some of the issues of building the resulting simulator.
In section 8 we present some preliminary results on the auxin canalisa-
tion hypotheses, and conclude with a discussion of our experiences in
section 9.

2 Modelling biology and simulations with UML

UML [25] is a modelling language comprising a suite of diagramming
notations. It was originally developed to provide a standard concrete
syntax for software modelling.

There are a large number of ways of developing software with UML.
For example, the process can start by looking at high level interactions
in the system being described [25]. This includes the ways that various
external actors interact with, or use, the system (where these external
actors include users and other systems). This is normally modelled in a
Use Case Diagram supported by textual usage scenarios. The high level
model is gradually refined by adding detail. Further diagrams are used
to drill down details of how the system is built, what the objects are,
what information they exchange and when those exchanges of informa-
tion need to take place. This eventually results in a code skeleton being
created for the objects with the attributes in place and the methods
waiting to be implemented.

The process of developing biological models with UML is similar to
the processes used for development using the Systems Biology Markup
Language (SBML) [15, 10, 14]. However, as we are implementing our pro-
grams in object-oriented (OO) programming language Java, the ability
to produce code skeletons from UML easily and flexibly with tools such
as Rational Rose[16] is an advantage. UML is considered to be platform
independent, as the diagrams can be transformed into a wide variety of
different outputs.

As well as classic object-oriented technologies, UML is well suited
to agent-based modelling [24] (where an agent can be thought of as an
object with its own thread of control, allowing highly parallel systems
of multiple agents). Biological “agents”, such as cells and proteins, can
be modeled as UML agents. There are many processes in cells acting
in parallel. Some of these processes are individually sequential, such as
expression of proteins in response signals detected in the cell. The signals
might cause a number of events such as protein expression, which then
in turn causes more events to occur. This sequential behaviour is often
called a cell pathway. The parallel behaviour comes from this type of
process occurring in a number of different pathways in one cell of the

66 Garnett, Stepney, Leyser

plant at the same time, and in many cells at the same time throughout
the plant.

We are not the first to apply UML and related modelling notations
to the modelling of biology. There are a number of published cases where
these have been successfully used to produce biological models [8, 17, 35].

We have taken a simple iterative approach, where UML models are
developed, turned into the simulation code and tested. Then any neces-
sary alterations are fed back into the beginning of the process, to ensure
the models and code are consistent. We have not found it necessary to
use all of the multifarious diagrams available in UML; we describe only
the ones that we have found to be of greatest use.

3 Overview of the modelling lifecycle

In [8] we identify a conceptual framework for developing bio-inspired
algorithms that takes a principled approach of building models of the
biological system of interest, developing abstract computational mod-
els from this, then instantiating these computational models to produce
bio-inspired algorithms. This framework can be adapted to producing
simulations of complex (biological) systems, by implementing the ab-
stract computational models to produce simulators.

Fowler [12, p.5] identifies two perspectives that can be used when
building models: the conceptual perspective, representing “a description
of the concepts of a domain of study”, and the software perspective,
where “the elements of the UML map pretty directly to the elements in
a software system”.

The CoSMoS (Complex Systems Modelling and Simulation) project3

is developing a complex systems simulation development infrastructure
(preliminary work is reported in [2, 28]). The CoSMoS lifecycle [3] has
grown from the conceptual model and Fowler’s perspectives, and adds
the concept of an Analysis Model. It identifies the following components
(summarised in figure 1):

Domain Model: a “top down” conceptual model of the real world
system to be simulated, derived from the domain experts, from the liter-
ature, and (possibly) from further observations and experiments needed
to provide sufficient data for modelling. Some modelling decisions about
what to put in and what to leave out are made here. The model may
explicitly include various emergent properties, since from a top down
perspective it may not be obvious that these are emergent; or, if we are

3 http://www.cosmos-research.org/, EPSRC grants EP/E053505/1,
EP/E049419/1

Auxin Transport Canalisation 67

CoSMoS : 1

domain
model

(emergent)

analysis
model

(emergent?)

lifecycle

software model
(eg, agents)experiment,

observe

experiment,
observe

refine,
implementcompare,

validate

remove,
simplify,

add

domain

simulator

predict

Fig. 1. The components of the CoSMoS basic lifecycle (after [3]).

aware of the emergent properties, it may not be obvious what low level
processes produce them.

Software Model: a “bottom up” model of how the real world sys-
tem is cast as a simulation. This includes: a definition of the system
boundary (what parts of the Domain Model are being simulated); sim-
plifying assumptions and abstractions; removal of emergent properties
and replacement with the local interactions that are hypothesised to re-
sult in them; extra simulation-only concepts, such as “physics” engines
to implement real world processes in possibly unnatural ways, user inter-
faces to view and control the simulator, and “probes” to produce output
data for analysis.

Simulator: the executable implementation. The development of the
Simulator from the Software Model is a standard software engineering
process.

Analysis Model: a “top down” conceptual model of the simulated
world, derived from observations and experiments on the simulation.
The model may explicitly include various observed emergent properties.
This model is compared to the Domain Model in order to test various
hypotheses, such as the validity of the simplifications used to derive the
Software Model.

In a large simulation development this basic lifecycle can be aug-
mented with extra steps [3], such as the development of a Refined Soft-
ware Model, describing the detailed simulator design and platform-

68 Garnett, Stepney, Leyser

specific implementation details, which is a a refinement of the Software
Model used as the basis for producing code.

The CoSMoS lifecycle is neutral in its choice of modelling language(s).
For example, it could use a mix of text, biological “cartoons”, Soft Sys-
tems’ Rich Pictures [7], and mathematical equations to describe the Do-
main Model, and any standard software engineering technique to define
the Software Model. Here we use mostly UML supported with text.

This process allows us to separate implementation details from the
biology being simulated. This offers a number of advantages. It makes
the individual models and accompanying diagrams simpler, as they are
focussed on specific perspectives. As we are partly using UML as a com-
munication tool it is advantageous for the diagrams to be as simple as
possible. Different groups are more interested in certain perspectives: for
example, biologists are probably more interested in a clear representation
of the biology, rather than how the data I/O and GUI work.

4 Domain Model: auxin transport

4.1 Modelling

The process of auxin transport canalisation is complex, and is not fully
understood. This makes it a natural target for modelling, but also a
challenge. Our eventual goal is to produce models and simulations of
shoot branching, but in order to do this we first have to understand the
mechanism of auxin canalisation.

We have therefore started producing an executable model of the
canalisation process. We are using the CoSMoS approach, in UML, start-
ing from our background biology derived from the literature, and from
wet lab experiments by Leyser and her group (summarised below). We
use that to develop a UML Domain Model that includes all the necessary
biology for the model to function, but keeps the model as simple as pos-
sible. We then develop a UML Software Model, and refine it to develop
the simulator program itself, via the production of code skeletons. This
helps us to ensure that the reasons for how and what is in the various
models is carefully considered, and we are able to make comparisons
with how the model simulates biology compared with how we think the
biology works. Finally, we analyse the outputs of the simulator.

We produce abstract UML models of cells assisted by UML-based
software development tool Rational Rose [16], and implement the simu-
lator in Java.

Auxin Transport Canalisation 69

4.2 Overview of biological domain

We summarise the background biology here to provide context; more
detailed information than given here informs out full model.

There are many mathematical models of nearly all aspects of plant
development [29], and many concerned with auxin transport [19]. We are
interested in producing executable models as we believe that this type
of modelling lends itself well to biological systems and might offer an
alternative perspective that yields results [11].

We are developing models of the formation of auxin transport canals,
particularly the transport canals that form in the stem of plants and
often go on to differentiate into vascular tissue. This process is known as
auxin transport canalisation and its regulation is not clearly understood.

We are looking at the regulation of shoot branching, where lateral
axillary buds on the main stem of a plant activate and start to grow. Our
eventual aim is to model the canals that form from a newly activated
bud and progress into the existing main vascular tissue of the stem.
Experiments indicate a correlation between the activation and growth of
a bud and its ability to transport auxin out into the stem vascular tissue
[5]. Therefore, the regulation of canalisation in the bud is linked to the
regulation of shoot branching.

Auxin transport canals form between sites of auxin production and
auxin removal: sources and sinks. In order for a canal to form between the
bud (the source) and the stem vasculature (the sink), the stem vascula-
ture must behave as a relatively strong sink compared to the surrounding
tissue. If the stem vasculature is already transporting large amounts of
auxin, it has no further capacity for auxin transport, so its sink strength
is relatively reduced, and the canal does not form. Therefore the bud
does not activate, and does not grow into a branch. However, if there
is spare capacity for auxin transport in the vasculature, then it is a rel-
atively stronger sink. This allows auxin canalisation to occur, so auxin
can be transported out of the bud, allowing the bud to develop into a
new branch [5, 26].

The formation of the canals between the sources and sinks is due
to aspects of the biology of auxin transport (figure 2). Auxin is a weak
acid and is able to enter cells passively from the more acidic apoplast
(intercellular space) by crossing the cell membrane. However once in the
pH-neutral cytoplasm of a cell it becomes deprotonated and therefore is
not able to recross the cell membrane passively. The auxin is able to leave
the cell only with the assistance of transport proteins. One particular
family of auxin transport proteins, PIN proteins, are polarly localised in
cells, often to only one face of the cell [23].

70 Garnett, Stepney, Leyser

Fig. 2. A “cartoon” (informal picture) of the biology of auxin transport into
cells. Auxin (IAA) can enter cells passively, or it can be actively transported
by AUX/LAX proteins. Once in the cell its only method of escape is active
transport by proteins like PIN [23].

In their capacity as auxin exporters, PIN proteins are important to
the process of canalisation. The exact details of how PIN localisation is
regulated are unknown, but increasing amounts of data and some prior
modelling work are providing possible mechanisms. One hypothesis, by
Sachs, suggests that auxin facilitates its own flow: both the ability of a
cell to transport auxin and the polarity of the auxin flow increase with
the amount of auxin being transported [31]. Therefore as the transport
capacity increases the cells in the canal become better sinks and draw
in more auxin. This process has been modelled by Mitchson and he
showed it to work [21, 22], but the model has a few problems. Firstly, it
predicts canals of high flow and low concentration, whereas experimental
evidence suggests that there is both high flux and high concentration
[34, 4]. Secondly, both Sachs’ and Mitchson’s models require the cells to
be able to measure the flux of auxin; as yet a mechanism to do this has
not been identified in the plant, although that does not mean that one
does not exist.

Auxin Transport Canalisation 71

More recent data on some aspects of the processes provides more
details of what should be in the models. Auxin is up-regulating its own
transport by increasing the amount of PIN protein available to transport
auxin [27]. If the negative regulators of PIN accumulation, such as the
MAX pathway, are removed, transport increases and the vasculature is
able to transport more auxin [5]. Thus the more auxin in a cell, the more
it can transport. In Arabidopsis the mutation of genes in the MAX path-
way results in a phenotype of increased branching [33], which supports
the theory that bud activation, and therefore branch number, is linked
to the stem auxin sink strength.

PIN proteins are important to the canalisation process as they export
auxin out of the cells, and their polar localisation patterns are responsible
for complex transport patterns in a number of plant tissues [30, 9, 13].
Improved knowledge of PIN has also enabled development of simulations
of auxin transport systems with high concentration and high flux [13, 18].
However, what directs the PIN in the cells into the polar patterns that
are seen remains an important problem: if PIN is positioned by detection
of auxin flux, as Sachs suggests [31], then what is the mechanism in cells
that is detecting auxin flux?

4.3 Domain Model Use Cases

We start building our UML Domain Model from the background biolog-
ical material. One approach to building UML models is to start with use
cases, that capture the user requirements or how they want to use the
system. That is not appropriate here, as we are not modelling what is
wanted, but what is. So instead, in the domain model, we take the view
that use cases capture a high level view of what the system “does”, such
as regulate proteins and transport auxin (figure 3).

This approach maps well to the ways biologists describe their do-
mains. We have not found a need to develop this model further, by
developing the more detailed usage scenarios necessary in a traditional
system requirements elicitation process. Such scenarios might be found
necessary for capturing more detailed behaviours (“so, how does it reg-
ulate proteins?”), and would presumably need to be modified from their
traditional format.

4.4 Domain Model class diagram

We model the biological entities of interest as objects and classes. This
approach works well here, because much of cellular biology can be thought
of as interactions of discrete objects that result in complex behaviours.

72 Garnett, Stepney, Leyser

Fig. 3. The Domain Model Use Case diagram. This captures what the Plant
does.

However, it should be noted that the class diagram, although maybe the
most natural starting point for a object-oriented software developer, is
not the most natural way for biologists think about and describe their
domain, particularly in identifying associations between classes.

We consider the different parts of the cells, such as the cell membrane
and vacuoles (cellular compartments), and the proteins like PIN and
hormones like auxin, all as objects. One of the objects of interest at
this level of model is the auxin canal. This is an emergent property of
the lower level interactions. We model it explicitly here to capture its
biological properties so that later simulation outputs can be related to
it.

Figure 4 shows our Domain Model class diagram of the biologically
relevant parts of the system (deciding what is biologically relevant is also
part of the modelling process). In detail, it shows the following classes
(type of objects) and relationships between the objects4:

4 This detailed description is provided here to help biologists to interpret
the diagram; there is nothing in the explanatory text not included in the
diagram.

Auxin Transport Canalisation 73

Fig. 4. The Domain Model class diagram.

– A Plant has one Apoplast (the space between cells), one or more
Cells, and an optional Auxin Canal. (It also has other components,
but these are not being modelled, even at the system level.)

– An Apoplast is part of one Plant, and has zero or more Auxin molecules.
– An Auxin molecule is in the Apoplast or in a Cell. (The relationship

lines say that it may be in an Apoplast and it may be in a Cell; the
excludes condition says that it is one or the other).

– An Auxin Canal is part of one Plant, and has one or more Cells.
– A Cell may be part of an Auxin Canal; it is part of a Plant. It has

zero or more Auxin molecules, zero or more Efflux Proteins, and zero
or more Influx Proteins. It has one Membrane and one Vacuole.

– An Efflux Protein is in one Cell; an Influx Protein is in one Cell.
– A Membrane is part of a Cell; a Vacuole is part of a Cell.

We impose an extra condition on the loop of relationships5 containing
the Plant, Auxin Canal, and the Cells: Consider a Cell that is part of an
Auxin Canal that is part of a Plant, that Cell is also directly part of
the same Plant. (There is no loop of relationships containing the Plant,
Auxin Canal, Cells, Auxin, and Apoplast: the apparent loop is broken by
the excludes condition.

5 By “loop” we are referring to the two possible paths from Cell to Plant, one
via the Auxin Canal, and the other directly.

74 Garnett, Stepney, Leyser

Fig. 5. State diagram for the Cell. (Since we are not explicitly modelling cell
birth or death, no start or end states are needed.)

Note that there is no use of inheritance in figure 4, despite the fact
that Efflux Protein and Influx Protein are both kinds of protein, for ex-
ample. We find that we make relatively little use of inheritance in our
Domain Models, because it is not necessary in order to understand and
capture the biological domain, which is more interested in detailed dif-
ferences than abstracted similarities. The Software model, on the other
hand, exploits inheritance to provide abstraction and code reuse.

4.5 Domain Model state diagrams

The use case diagram and class diagram help with the identification
and organisation of the different objects of the model, but provide little
information about how those objects behave and how they interact.

Interactions are often captured in UML using sequence diagrams,
and these show the passage of information between objects over time. In
biology the order and direction of interactions is less clearly defined: the
next step in the interaction sequence might not occur; the process might
back up to the previous step in the sequence. For example, there is no
guarantee of progression down a biochemical cell pathway. This makes
capturing timing of events difficult with sequence diagrams.

UML has another way to capture how objects change over time: state
diagrams. These diagrams show the different states an object can be in,
and how the object moves from one state to another in response to an
event. Such state diagrams also appeal to biologists, as they appear to
map closely to the way that biological processes are understood.

State diagrams for the state changes associated with a Cell are shown
in figure 5, for Auxin hormone in figure 6, and for PIN proteins (a kind
of EffluxProtein) in figure 7. The states of these objects are linked, and a
change in the state of one object is linked to that of the others. The state

Auxin Transport Canalisation 75

Fig. 6. State diagram for Auxin. Defining and expressing this type of compli-
cated behaviour is where state diagrams can prove useful. The figure shows
the different states auxin can progres through, and the events that can trigger
those state changess.

of a cell is defined by the what is happing in that cell, which is determined
by what the proteins and hormones are doing. At the moment, we are
performing this linking by textual annotations.

Figure 5 shows that a Cell can be producing Auxin, PIN protein (an
EffluxProtein), and AUX/LAX protein (an InfluxProtein). Not all cells
are capable of making auxin, but they are all capable of producing PIN,
which they do in response to the amount of auxin they have, so PIN
production might be on even if there is no auxin production.

Figure 6 shows the state diagram for Auxin. It can be in four main
states:

76 Garnett, Stepney, Leyser

– in the cytoplasm (the inside part of the cell that is not vacuole). It
is created here, and may degrade (be destroyed) here. It is in its
deprotonated form. It is diffusing around, which either leaves it in
the cytoplasm, or moves it to be:

– on the inside of the cell membrane, where it is in one of two substates,
next to PIN, or not next to PIN. If it is not next to PIN, it diffuses
back in the cytoplasm. If it is next to PIN, is transported out of the
cell to be:

– on the outside of the cell membrane, where it is in one of two substates,
next to AUX/LAX, or not next to AUX/LAX. If it is next to AUX/LAX,
is transported into the cell to be on the inside of the cell membrane.
If it is not next to AUX/LAX, is can passively influx into the cell to
be on the inside of the cell membrane, or it can start diffusing to be:

– in the apoplast. It is in its protonated form. It is diffusing around,
which either leaves it in the apoplast, or moves it to be on the outside
of the cell membrane, or moves it to be at auxin sink, where it is
removed from the system. Or it may degrade (be destroyed) here.

In reality, an auxin in the cytoplasm may be no different from an
auxin adjacent to a cell membrane: it has no “sense” of where it is.
Therefore the auxin may not have a different biological state when it is
in these different situations. But we can model the biology in terms of
such states.

State diagrams can be used to model alternative hypothesised be-
haviours. Simulations based on these different hypotheses can be com-
pared. For example, figure 7 shows a state diagram for one hypothesis of
PIN protein (an EffluxProtein) behaviour, and figure 8 shows the state
diagram for a slightly different hypothesis for its behaviour. In the latter
case, the PIN protein is allowed to move around on the cell membrane if
it is not transporting auxin. Therefore the moving state is different from
the transporting state when on the membrane of the cell. (Proteins are
able to move around on cell membranes [32] and it is theoretically pos-
sible that a conformational change in response to actively transporting
auxin might stop it from moving.)

When we are considering proteins, the different states in the Domain
Model of the biology correspond more closely to real biological states
than in the case of auxin. Proteins are active molecules, and can undergo
conformational and other changes in response to events. Auxin however
is a very simple molecule, and more of its behaviour is a passive response
to its environment.

Auxin Transport Canalisation 77

Fig. 7. State diagram for the PIN Efflux Protein. The PIN is associated with
the membrane. It can either be actively transporting auxin or sitting idle. If
it is not transporting auxin there is the possibility that it might disassociate
and return to the cytoplasm. If it is transporting then it remains attached to
the membrane.

5 Software Model

5.1 Overview of additional functionality

The Software Model includes the things that our simulation must do to
be able to run. These include the setup procedures required to get the
simulation to a starting point, including things like instantiating cells,
and detecting the internal environment in the cell in order to produce
proteins and hormones. This functionality can be considered from three
points of view: that of the biological plant (captured in the Domain
Model); the simulation of the biology that is required to be there but is
not simulated in a particularly biological way; and the things that need
to be there to produce a successful simulation but are not part of the
biological Domain Model.

As our UML and simulations have developed, the simulated biology
has come to represent the real biology, as currently understood, more

78 Garnett, Stepney, Leyser

Fig. 8. State diagram of an alternative hypothesis for the PIN Efflux Protein,
with different behaviour on the cell membrane: movement on the membrane
is allowed.

closely. However, there are still a few areas where this has not been pos-
sible, or desirable, to achieve. For example, when a cell is created in
the simulation it is necessary to create the cell and then create its mem-
branes, a vacuole and a starting amount of proteins. In reality membranes
partly define a cell: a cell cannot exist without a membrane. Therefore
our simulation is not doing cell creation, or growth, in a particularly
biologically realistic way. It would be more realistic for a cell be the out-
come of a particular arrangement of cell membrane, vacuole and other
cell elements. The increased flexibility of such an approach could in the
future allow for simulation of growth, the lack of which is currently a
limitation.

Auxin Transport Canalisation 79

Fig. 9. The Software Model Use Case diagram, with the Simulation user actor.

The Software Model also includes things like the graphical user in-
terface (GUI), and what I/O the simulation needs to do to provide the
user or external systems with results.

5.2 Software Model Use Cases

A use case diagram is used to capture the user requirements for using
the simulator, in the traditional way (figure 9).

5.3 Software Model Class diagram

The Software Model class diagram is produced from the Domain Model
class diagram (figure 4) and the Software Model use cases. Figure 10
shows only the biologically relevant parts of the Software Model class
diagram (to improve readability, it omits things like the data and visual
output objects).

Certain classes are removed: we decide at this stage not to model the
apoplast explicitly in the simulation. It appears as the gap between the
cells in the visualisation (later). We also remove the explicit Auxin Canal:
this is the emergent property that we desire the simulation to exhibit.

Certain classes are added: we include some inheritance. Proteins and
Hormones share some common features, and we model them as subclasses

80 Garnett, Stepney, Leyser

Fig. 10. The Software Model class diagram, showing only the biological part
of the model.

of the RegElement (regulatory element) class. Classes that support user
interaction are also added (not shown here).

Certain relationships are removed: Auxin is no longer related to Cells.
This highlights a difference between the Software Model and the biology.
In the Software Model, the Auxin is related only to the Plant, as are the
Cells. For ease of implementation with regard to the diffusion of auxin
inside and outside cells, the model records the position of the auxin in
the simulation space (part of the Plant, and the Cells can query the Plant
to discover how much of that auxin is internal to them. This is a suitable
implementation strategy, even though it is not a good model of reality;
it shows how the “same” objects in the Software Model can be quite
different in structure from those in the Domain Model.

A future revision of the simulation will do this differently, by explic-
itly modelling the apoplast (the space between cells that the auxin is in
when not in a cell).

5.4 Software Model State diagrams

The Software Model state diagrams follow the Domain Model, except
that the production of AUX/LAX is left out, and expressed at a fixed
amount and not (currently) regulated.

Auxin Transport Canalisation 81

6 Refined Software Model

6.1 Refined Software Model class diagram

The Refined Software Model class diagram (figure 11) adds implemen-
tation detail to the Software Model class diagram (figure 10). It has all
the methods and attributes of the objects (not shown here) and it is use
to generate the code skeleton.

The Refined Software Model class diagram includes further details of
how some of the biological processes are implemented. For example, the
positions of components are held by Position objects and the singleton
Hashmap object. It may be advantageous to split things in even more
detail if the diagrams become overly complicated, as certain parts of
the implementation are more important than others. Things like the
implementation of diffusion and how positions of cells and hormones are
stored are of greater interest than how the visual output is achieved.

This separation will be even more worthwhile when things like growth
are implemented, as they are likely to be complicated and require de-
tailed diagrams. Also, the implementation of such things is much more
difficult than conceptualising them, and therefore should be open to more
detailed scrutiny to ensure that it is done in a valid way.

The full class model has all the methods and attributes of the classes
added, and it is this that is used to generate the code skeleton. Once
the biology has been produced in both the class diagram and the state
diagrams this is often enough to produce a code skeleton from the UML
for the model. It might be necessary to define more clearly the interac-
tions between the objects using sequence and collaboration diagrams if
the model is large and complicated.

6.2 Refined Software Model state diagrams

The Refined Software Model links the Software Model state diagrams of
different objects, particularly the overlapping parts of the auxin, PIN and
cell state diagrams. This shows how a cell producing auxin influences its
own state as it responds to the change in auxin concentration by making
more PIN protein, and how a cell that does not make auxin, but which
detects that there is auxin in its cytoplasm, responds by starting to
increase production of PIN.

State diagrams are linked by shared events. The Auxin event of en-
tering a cell, either passively or via a protein, is linked to the Cell event
of detecting a change in auxin concentration, which causes the cell to
enter into a PIN production state. At the moment, we are performing
this linking by textual annotations.

82 Garnett, Stepney, Leyser

Fig. 11. A simplified implementation class diagram showing more detail of the
underlying implementation of some of the biology in the model. It gives more
detail on how the positions of different objects are controlled in the model.
The full implementation class diagram shows the classes controlling diffusion
and how the threading of the program is controlled. Some classes have been
omitted for clarity.

This linking of states allows the interactions of the biological objects
to be modelled at a higher level than sequence or collaboration diagrams,
which are more useful for giving details of how the simulations are going
to run. Linking could also be useful to include a notion of space in UML
diagrams like state diagrams; for example, states of different objects may
influence each other in different ways inside or outside a cell.

7 Simulator: Auxin transporter

We have taken the code skeletons produced from the Refined Software
Model UML, and added the remaining code necessary to implement the
executing simulator. Some implementation details are discussed here.

7.1 Molecule diffusion

We have implemented two versions of diffusion for the auxin (the work
to compare the two has not yet been done).

The first to be implemented is the more simple, and will probably
prove to be slightly faster in execution. The method follows an agent

Auxin Transport Canalisation 83

based paradigm, modelling (collections of) auxin molecules as moving
agents.

We need to estimate how much auxin is in a cell; this is a difficult
estimate to make. The biological data for the amount of auxin in a
cell is determined by crushing a section of a plant and measuring how
much auxin there is in total, then dividing that value evenly amongst
the individual cells. This assumes an equal distribution among the cells,
which we believe not to be true, neither are the cells the same size. This
method of estimation results in values for the auxin concentration in one
cell that can vary by about two orders of magnitude.

In our Simulator, this auxin concentration is divided up into auxin
units, the amount that would occupy 1 unit of space in the model (which
is 1 square micron for the 2D model; one cubic micron for the 3D model).
From the biological data, this corresponds to 20–2000 auxin molecules
in each auxin unit [19, 20].

These auxin units diffuse around the model space. We are testing
different ways of implementing this diffusion; currently we are using a
random walk. In this approach, a “clump” of auxin molecules (all those
corresponding to an auxin unit) move about together as one agent.

To test if this “clumping” is a problem, and whether it might be
affecting the results of the simulation, we are currently implementing
a second system of diffusion. This is a more continuous style model:
every unit of space in the simulation has a number of auxin molecules
associated with it. This representation allows a portion of the auxin to
move into a neighbouring space, and also allows different areas of the
simulation space to have different rules, allowing the rate of diffusion
to be altered in different parts of the simulation. This is much more
flexible, but is expected to be more costly in computing power. Having
both systems is useful as it allows us to see if the more flexible but costly
system is necessary, or if we can get enough information out of the simpler
faster system, to determine if our hypotheses for auxin canalisation are
correct.

We are interested to see if some of the features of the simpler system,
that have been tested more, like intra-cellular gradients of auxin, are
present in the newer system; and, if they are, can we see any differences.

We are implementing only one diffusion method for the proteins. This
is the same as the simple agent based auxin diffusion system. Proteins are
much larger than small molecules like auxin, and therefore each protein
unit contains fewer protein molecules, and thus the approximation is less
problematic.

84 Garnett, Stepney, Leyser

7.2 2D and 3D simulations

The simulation has been designed to use much of the same code to model
either 2D or 3D space. This means that we have 2D and 3D simulations
and we know that the underlying algorithms and code is essentially the
same. This is important because if we see significant differences in the
behaviour of the different simulations for a given hypothesis or set of
parameters we can be fairly sure that difference it due to the extra
dimension, as opposed to differences in code.

We want a 2D simulator for performance reasons. A 3D simulation
of 500 cells in an arrangement of 5× 5× 20 cells high (representative of
a section of plant stem exhibiting canalisation) might take a few days to
run to a point where it can be considered finished (our simulations do not
have end points unless some sort of target state is defined, otherwise the
existence of a source and a sink allow the simulation to run forever). A
2D simulation of a similar arrangement of 5×20 cells high (representative
of a longitudinal cross section) might be finished in less than an hour
and require two orders of magnitude less memory (10s instead of 1000s
of Megabytes: not only does the 3D simulation have more cells, but each
3D cell is bigger: 50 × 50 × h voxels, rather than 50 × h pixels), and
is comparatively very slow. If we find that a 3D model is necessary for
realistic results, we will then investigate more efficient implementation
approaches.

An important factor in the 2D simulation is the sizes of intercellular
structures like vacuoles. A vacuole in a plant cells takes up a large amount
of the space, squashing the cytoplasm to the inside of the cell membrane.
Plant cells are 3D, so in our 3D simulation the ratio of cell size to vacuole
size can be similar to what we measure in plant cells. What about 2D
cells? Should a 2D cell look like a 2D cross section of a 3D cell? If so,
should it be a slice through the centre, including the vacuole, or a slice
near the membrane, missing the vacuole? Or should the ratio of 2D areas
be the same as the ratio of the 3D volumes? Also, in a 3D cell, auxin
can go round the vacuole along two axis, but in 2D it is limited to one.
Should, therefore, the 2D vacuole have greater permeability to auxin
than a 3D cell to account for the loss of a whole route to the other side
of the cell?

We are investigating these questions in terms of the various timescales
and scaling factors. However, having comparable 2D and 3D simulations
based on the same implementation will allow us to validate our answers
to these questions.

Auxin Transport Canalisation 85

7.3 User interface

Biologists interact with the simulator through its user interface. In the
current version of our simulator, altering model parameters and setting
initial conditions can be a difficult process, particularly when defining
the spatial arrangement of cells that the simulator uses.

Therefore we have started to develop a Little Language [6] (domain-
specific language) to provide an easier interface to setting up the models
via an interpreted language. This language provides an interface to two
parts of the simulation. Firstly it can be used to set starting parameters
for things such as the relationship between auxin and the expression of
PIN protein, and the size of cells. Secondly, it allows the user to define
what the layout of the cells in the model is, by defining cellular subunits
(groups of similar cells) and then defining how the different subunits are
arranged in the cell space.

8 Analysis Model: preliminary results

Eventually, will will build an analysis model of the simulator output that
is analogous to the domain model. For now we conduct our analysis more
informally.

The visual output from the simulation is shown in figure 12. The
space between the cell membrane and the vacuole is the cytoplasm where
the auxin (black dots) and proteins (gray dots) are synthesised. To avoid
questions of sites of synthesis for now there is simply a certain probability
that any position in the lattice produces a protein or auxin molecule
when required. As the size and space of cells that canalisation occurs in
varies quite widely, it is therefore important that a working hypothesis
for canalisation in the simulation is not too dependent on size and shape.
Therefore it is simple to vary the cell size and the size of the apoplast. It
is also possible to have different sizes of cells in the same model, so long
as care is taken to ensure that the cells align in a sensible way, without
large gaps.

We have tested our first hypothesis for the regulation of auxin canal-
isation (figure 7) with the model as described here. The first hypothesis
is simple and unlikely to be the full story, but it is based on ideas that
might form part of the final hypothesis. The hypothesis tested concerns
the positioning of the PIN proteins. PIN proteins can diffuse in the cy-
toplasm. When they associate with the cell membrane they are fixed in
one position, unable to move. If the PIN protein exported some auxin on
the timestep, it cannot disassociate from the membrane. If it did not do
any transport, there is a certain probability that it can disassociate from

86 Garnett, Stepney, Leyser

Fig. 12. Screen shot from a running simulation. The darker lines are the cell
membranes, and the light lines are the vacuoles. The black dots are auxin units
and the grey dots are either PIN or AUX/LAX proteins (darkest are the PIN).
The middle cell on the top row is the only one producing auxin. The light gray
line in the centre at the bottom of the figure is the auxin sink. This is where
auxin leaves the model. One dot, such as an auxin unit, is 1 micron in size.
To produce a clear figure, the apoplast is increased to 6 microns, from a usual
2 or 3. The cells are 147 microns high and 50 microns wide. For convenience
only a few rows of cells are shown: the full simulation currently uses a 5× 20
array of cells.

the membrane. The idea is that the PIN would naturally congregate on
a membrane where they were able to export auxin.

Simulation of this hypothesis did not produce canals in the experi-
ments carried out so far. This could be due to there being no feedback
between the extra cellular auxin concentration and the PINs pumping
auxin into that space. Therefore only the internal cell conditions stop
the PINs from moving around randomly, as the PINs can respond only
to the internal auxin concentrations of the cytoplasm, and not to the

Auxin Transport Canalisation 87

auxin in the apoplast. Uneven distribution of auxin suggest that PINs
could be responding to these internal conditions.

We intend to experiment further with this idea. We will also carry
out more testing with the current hypothesis, as there maybe parameters
that allow for the internal gradients of auxin to be enough to position
PIN to produce canals.

Next, we will develop our model of auxin canalisation into a more
complete model of shoot branching, to inform new models, and to form
part of a multilayered approach to modelling shoot branching. Each layer
can use an approach to modelling at the level of abstraction most suited
to build a more complete picture.

9 Discussion

Our UML assisted development process has provided a number of ad-
vantages to our simulations.

The diagrammatic nature of UML as tool for producing various levels
of models, including descriptions of program code, has helped produce
simulations that not only work in an intuitive way, but that are built in-
tuitively. Biology maps to UML objects in a way that can be understood
by developers and biologists alike.

The resulting simulations are flexible. By concentrating on building
the biological components and their interactions into the simulations we
are able to test various hypotheses for the regulation of auxin transport.
The results should be reflections of truly emergent behaviours, rather
than due to those behaviours having being hard-coded into the simula-
tion.

The use of different models to capture domain, software, and imple-
mentation details has helped produce conceptually cleaner models.

The Domain Model looks purely at the biology. Here class diagrams
and state diagrams are of greatest use. The class diagrams allow us to
look at the static structure of the model, and how the different parts
are connected together. They can include the emergent properties of
interest, so that we have these properties captured rigorously in a model.
State diagrams provide detailed information of how the objects change
in response to events. They are normally produced by thinking about
the known biology of the different biological elements.

The Software Model does not explicitly include the emergent prop-
erties of the Domain Model: these should emerge from the interactions
of the lower level simulated components, and can be compared against
the Software Model for plausibility. At this stage inheritance is added
to class diagrams, to indicate classifications and generalisations, and to

88 Garnett, Stepney, Leyser

be used in implementation to reuse code and reduce duplication. The
Software Model can also transform biological components to behave in
non-biological ways that are more readily simulatable. For example, we
may require more states to capture events than are provided in the Do-
main Model. The existence of the two models highlights areas where the
simulation is breaking with the biology.

The biological literature gives details of how the experiments that
produced the data were carried out in a lab. It should also be the case
that how a simulation works and produces its data should be equally
well explained, in order to allow independent validation of results and
the sharing of methods and techniques among the modelling community.
The increased use of modelling and the complexity of the simulations
produced make this a more pressing need. UML can provide an effective
way of developing and communicating simulations.

In the long term, UML could be used as an interface into models for
biologists to use directly, to extend and develop models themselves. Our
current work on the use of a Little Language to provide easier access
to some of the deeper parts of the simulations could be extended, for
example, to allow the addition of new proteins and their behaviours
without the need to delve into Java code. (Of course, there is always the
danger that the Little Language itself grows until it is of the complexity
of Java. However, the intention is that it should be couched in biological
domain specific terms, not generic programming terms.)

Eventually, biologists should be able to draw UML diagrams of these
new proteins (or other objects), associate them to other biological ob-
jects, and link them to implementation objects that allow them to func-
tion. The links with the biology would confer the biological behaviour,
and the links with implementation would handle diffusion, positioning,
I/O etc. Or alternatively UML could be used as a simulation code nav-
igational aid to allow direct access important parts of a simulation to
allow biologists to tailor it to their own needs or add new functionality.
UML could allow them to visually locate the part of the simulation that
requires editing without looking though large amounts of code and need-
ing to be able to decypher the way the simulation is constructed. The
models produced would be more general in the capabilities and allow for
more hypotheses to be explored.

Acknowledgements

This work is supported by a BBSRC/Microsoft Research CASE stu-
dentship. Thanks to Fiona Polack for discussions about UML models,
and to the anonymous referees for their detailed comments. Thanks also
to Lauren Shipley for proofreading the paper.

Auxin Transport Canalisation 89

References

[1] ALife XI, Winchester, UK, September 2008. MIT Press, 2008.
[2] Paul S. Andrews, Adam T. Sampson, John Markus Bjrndalen, Susan

Stepney, Jon Timmis, Douglas N. Warren, and Peter H. Welch. Inves-
tigating patterns for the process-oriented modelling and simulation of
space in complex systems. In [1].

[3] Paul S. Andrews, Adam T. Sampson, Fiona Polack, Susan Stepney, and
Jon Timmis. CoSMoS development lifecycle, version 0. Technical report,
University of York, 2008. (in preparation).

[4] Eva Benková, Marta Michniewicz, Michael Sauer, Thomas Teichmann,
Daniela Seifertová, Gerd Jürgens, and Jiŕı Friml. Local, efflux-dependent
auxin gradients as a common module for plant organ formation. Cell,
115(5):591–602, Nov 2003.

[5] Tom Bennett, Tobias Sieberer, Barbara Willett, Jon Booker, Christian
Luschnig, and Ottoline Leyser. The arabidopsis MAX pathway controls
shoot branching by regulating auxin transport. Curr Biol, 16(6):553–563,
Mar 2006.

[6] J. Bentley. Programming pearls: little languages. Communications of the
ACM, 29(8):711–721, 1986.

[7] Peter Checkland and Jim Scholes. Soft Systems Methodology in Action.
Wiley, 1990.

[8] S. Efroni, D. Harel, and I. R. Cohen. Toward rigorous comprehension of
biological complexity: modeling, execution, and visualization of thymic
T-cell maturation. Genome. Res., 13(11):2485–97, jul 2003.

[9] François G. Feugier and Yoh Iwasa. How canalization can make loops: a
new model of reticulated leaf vascular pattern formation. J Theor Biol,
243(2):235–244, Nov 2006.

[10] A. Finney and M. Hucka. Systems biology markup language: Level 2 and
beyond. Biochem Soc Trans, 31(Pt 6):1472–1473, Dec 2003.

[11] Jasmin Fisher and Thomas A. Henzinger. Executable cell biology. Nat
Biotechnol, 25(11):1239–1249, Nov 2007.

[12] Martin Fowler. UML Distilled. Addison-Wesley, 3rd edition, 2004.
[13] Verônica A. Grieneisen, Jian Xu, Athanasius F. M. Marée, Paulien

Hogeweg, and Ben Scheres. Auxin transport is sufficient to generate
a maximum and gradient guiding root growth. Nature, 449(7165):1008–
1013, Oct 2007.

[14] M. Hucka, A. Finney, S. Hoops, S. Keating, and N. Novere. Systems
biology markup language (SMBL) level 2: Structures and facilities for
model definitions. Nature Precedings, 58(2), 2007.

[15] M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Kitano,
A. P. Arkin, B. J. Bornstein, D. Bray, A. Cornish-Bowden, A. A. Cuel-
lar, S. Dronov, E. D. Gilles, M. Ginkel, V. Gor, I. I. Goryanin, W. J.
Hedley, T. C. Hodgman, J-H Hofmeyr, P. J. Hunter, N. S. Juty, J. L.
Kasberger, A. Kremling, U. Kummer, N. Le Novère, L. M. Loew, D. Lu-
cio, P. Mendes, E. Minch, E. D. Mjolsness, Y. Nakayama, M. R. Nelson,
P. F. Nielsen, T. Sakurada, J. C. Schaff, B. E. Shapiro, T. S. Shimizu,

90 Garnett, Stepney, Leyser

H. D. Spence, J. Stelling, K. Takahashi, M. Tomita, J. Wagner, and
J. Wang. The systems biology markup language (SBML): a medium
for representation and exchange of biochemical network models. Bioin-
formatics, 19(4):524–531, Mar 2003.

[16] IBM. Developer of Rational Rose UML editing software. http://www-
306.ibm.com/software/awdtools/developer/rose/index.html, 2008.

[17] N. Kam, I. R. Cohen, and D. Harel. The immune system as a reactive
system. In Proc Visual Lang. and Formal Methods. IEEE, 2001.

[18] Eric M. Kramer. PIN and AUX/LAX proteins: their role in auxin accu-
mulation. Trends Plant Sci, 9(12):578–582, Dec 2004.

[19] Eric M. Kramer. Computer models of auxin transport: a review and
commentary. J Exp Bot, 59(1):45–53, Apr 2008.

[20] Eric M. Kramer. Mode parameters: the devil in the details. The under-
standing and modelling of auxin transport in plants. Advanced Workshop,
Nottingham University, page 16, 2008.

[21] G. Mitchison. A model for vein formation in higher plants. Pro. R. Soc.
Lond., 207:79–109, 1980.

[22] G. Mitchison. The polar transport of auxin and vein patterns in plants.
Phil. Trans. R. Soc. Lond., 295:461–471, 1981.

[23] D. Morris, J. Friml, and E. Zamimalova. Auxin transport. In P. Davies,
editor, Plant Hormones: Biosynthesis, Signal Transduction, Action!,
chapter E1, pages 437–470. Kluwer Academic Publishers, 2004.

[24] J. Odell, H. Parunak, and B. Bauer. Extending UML for agents. In AOIS
Worshop at AAAI, 2000.

[25] OMG. Maintainer of the UML standards. http://www.omg.org, 2008.
[26] Veronica Ongaro and Ottoline Leyser. Hormonal control of shoot branch-

ing. J Exp Bot, 59(1):67–74, Aug 2008.
[27] Tomasz Paciorek, Eva Zaźımalová, Nadia Ruthardt, Jan Petrásek, York-

Dieter Stierhof, Jürgen Kleine-Vehn, David A. Morris, Neil Emans, Gerd
Jürgens, Niko Geldner, and Jiŕı Friml. Auxin inhibits endocytosis and
promotes its own efflux from cells. Nature, 435(7046):1251–1256, Jun
2005.

[28] Fiona A. C. Polack, Tim Hoverd, Adam T. Sampson, Susan Stepney, and
Jon Timmis. Complex systems models: Engineering simulations. In [1].

[29] Przemyslaw Prusinkiewicz and Anne-Gaëlle Rolland-Lagan. Modeling
plant morphogenesis. Curr Opin Plant Biol, 9(1):83–88, Feb 2006.

[30] Didier Reinhardt, Eva-Rachele Pesce, Pia Stieger, Therese Mandel, Kurt
Baltensperger, Malcolm Bennett, Jan Traas, Jiŕı Friml, and Cris Kuh-
lemeier. Regulation of phyllotaxis by polar auxin transport. Nature,
426(6964):255–260, Nov 2003.

[31] T. Sachs. The control of the patterned differentiation of vascular tis-
sues. Advances in Botanical Research Incorporating Advances in Plant
Pathpology, 9:151–262, Jan. 1981.

[32] S. J. Singer and G. L. Nicolson. The fluid mosaic model of the structure
of cell membranes. Science, 175(23):720–731, Feb 1972.

[33] Petra Stirnberg, Karin van De Sande, and Ottoline Leyser. MAX1 and
MAX2 control shoot lateral branching in Arabidopsis. Development,
129(5):1131–1141, Mar 2002.

Auxin Transport Canalisation 91

[34] C. Uggla, T. Moritz, G. Sandberg, and B. Sundberg. Auxin as a posi-
tional signal in pattern formation in plants. Proceedings of the National
Academy of Sciences of the United States of America, 93:9282–9286, 1996.

[35] K. Webb and T. White. UML as a cell and biochemistry modeling lan-
guage. BioSystems, 80:283–302, 2005.

92 Garnett, Stepney, Leyser

Simulating biology: towards

understanding what the simulation

shows

Paul S. Andrews1, Fiona Polack1, Adam T. Sampson2, Jon
Timmis1,4, Lisa Scott3, and Mark Coles3

1 Department of Computer Science, University of York, UK
{psa,fiona}@cs.york.ac.uk

2 Computing Laboratory, University of Kent, Canterbury, UK
3 York Centre for Immunology and Infection, University of York, UK

4 Department of Electronics, University of York, UK

Abstract. When building simulations of complex systems the
task of validation is often overlooked. Validation helps provide
confidence in the simulation by exploring the link between the
models that we build and the real complex system. We inves-
tigate software engineering validation techniques from outside
the area of complex systems to assess their applicability for the
types of simulation we build. We then provide an example of
how such techniques can be applied to a complex systems sim-
ulation of cells migrating from blood vessels into lymph nodes
through the walls of the blood vessels. We suggest that explic-
itly stating the modelling and simulation assumptions we make
is key to the process of validation. Concluding, we highlight a
possible process for validating complex systems that explicitly
incorporates environmental aspects.

Keywords: complex systems, simulation, modelling, val-
idation

1 Introduction

Simulations are used to model complex systems such as biological phe-
nomena, economies and human societies, for use in research investigation
in vivo, in vitro and in silico. These systems are complex in the sense
of having elaborate behaviour at a high level that is the consequence of

94 Andrews, Polack, Sampson, Timmis, Scott, Coles

many simple behaviours at a lower level. The high-level behaviour can-
not be deduced as a simple combination of low-level behaviours. Space,
time and the environmental context are critical features.

In this paper, we present an initial engineering exploration in to the
validity of a complex system simulation of part of the immune system,
based on collaborative work with the York Centre for Immunology and
Infection (CII), undertaken as part of the CoSMoS project5. We focus
on a part of the conceptual model, and consider how, and to what ex-
tent, it is possible to validate this against the biological evidence of in
vivo experiments. Our modelling assumptions, and validation problems,
bring into consideration the importance of local environmental factors in
modelling such complex systems. The analysis also highlights the limits
of biological imaging based technologies that cannot provide dynamic
insight in to the key features of the system; this in turn highlights areas
where the biological research could focus.

Section 2 presents a review of simulation and its use in scientific re-
search. The following section summarises biological research on the mi-
gration of lymphocytes to lymph nodes. We then explore the engineering
validation of our simulation. Finally, in section 6, we propose an exten-
sion of Sargent’s simulation process to express some of the complications
of complex-systems modelling and simulation engineering.

2 Computer simulation: science and engineering

Computer simulation has been used to explore biological systems for
many years. Traditional simulations generate output from equations (dif-
ferential equations, Markovian models, etc.) that have been developed to
mirror trends or behaviour in, for instance, biological populations. More
recently, computer simulation has been used to model the possible effects
(co-ordinated or emergent) of biological components or organisms acting
in their environment. Essentially, simulations have two purposes: some
are built in co-operation with research scientists in an effort to improve
scientific understanding of natural systems; others are built as artificial
systems to construct and explore alternative realities (either as science
fiction or visions for future engineering). Here, we focus on a case study
whose purpose is to contribute to scientific understanding in immunology
permitting simulation of events that are difficult to experimentally vali-
date in vivo. The aim is to produce a simulation in which the biologist
has confidence and can help direct their wetlab experimental research.
5 The CoSMoS project, EPSRC grants EP/E053505/1 and EP/E049419/1,

http://www.cosmos-research.org/, is building capacity in generic modelling
tools and simulation techniques for complex systems.

Simulating biology: what the simulation shows 95

Computer simulation of biological phenomena is important because
static models cannot capture the dynamic features that characterise the
behaviour of complex systems. For example, systems biologists are in-
creasingly adopting conventional software engineering design diagrams
to express static structures, and patterns of interaction in their models;
these modelling approaches cannot express time, space or the the fea-
tures and consequences of large numbers of interacting instances [24].
Time and space (or at least spatial orgainisation) are essential to com-
plex systems behaviour. A key aspect of space, which is also outside
the remit of conventional modelling, is environmental interaction – both
among components, and of components with their local environment:
the behaviour of a complex system depends critically on the way that
the (collective) components interact with their environment over time;
failure to adequately model the environmental context naturally leads
to non-realistic models of the complex system.

Thus, a scientifically-valid simulation has to extract suitable envi-
ronmental aspects, at an appropriate level of abstraction; it also has
to provide evidence that its environmental representation, as well as its
scientific model, are adequate abstractions from the biological reality.

Despite the importance of realistic abstraction, the validity of com-
puter simulations has not been a significant concern of simulators, except
in the critical systems context. Typically, a simulation is judged by its
ability to produce something like the expected results by a process that
looks a bit like reality, and there is little concern for the quality or sci-
entific relevance of the underlying simulation [11]. Simulations can be
misleading, for instance because the output captures artefacts of the
simulation software rather than patterns of behaviour, or where the at-
tempt to approximate reality results in simulations whose complexity is
as impenetrable as that of the observed system.

Scientific validity, like engineering validity, means that it must be
possible to demonstrate, with evidence, how models express the scientific
realities. Validity implies both adequate abstraction, and adequate de-
velopment processes. Many computer simulations are poorly engineered:
there is little attempt to record design of components or of the envi-
ronmental context used in the simulation system. Assumptions and gen-
eralisations are not documented, and are thus not exposed to scientific
scrutiny. An immediate result of this focus is a long-running intellectual
debate about whether it is possible to do science through simulation
(see [19, 22, 36, 5]). Bullock (in [36]) observes that, to assess the role
and value of complex systems simulation, we need to address deep ques-
tions of comparability: we need a record of experience, of how good
solutions are designed, of how to chose parameters and calibrate agents,

96 Andrews, Polack, Sampson, Timmis, Scott, Coles

and, above all, how to validate a complex system simulation. To address
these problems, we need principled approaches to the development of
computer simulations.

For inspiration in engineering scientifically-valid simulations, we turn
to two areas: non-complex critical systems, and agent modelling. Com-
puter simulation of non-complex (but nevertheless complicated) systems
has a long history, and the need to assure high-integrity and critical-
systems models has led to a corpus of work on developing, verifying and
validating simulation models. In intelligent agent modelling, there are
methods for systems development that focus attention on the different
aspects that need to be considered; some agent work has been taken
forward for use in complex critical systems at the social, or macro, scale.

2.1 The process of simulation development

In high-integrity systems engineering, the foundations of a simulation
process date from the late 1970s. For instance, Sargent (e.g. [28, 30])
presents a process (figure 1) that starts with a problem entity, or de-
scription of the phenomenon to be modelled. From the problem entity,
a conceptual model is developed in a suitable representation – Sargent
reviews diagrammatic models [29], and also notes mathematical or logi-
cal modelling paradigms [30]. Finally, a computerised model implements
the conceptual model.

The simulation process is an iterative cycle, which includes an ex-
perimentation link between the problem entity and the computerised
model. This allows the developers to trial-and-error simulation elements
and settings, and to compare the results to the problem entity.

The second notable aspect of the simulation process is the explicit
inclusion of verification (in the software engineering of the computerised
model) and validation – both of models against reality, and of the data
used to test the conceptual and computerised models. We return to this
aspect in the next section.

The simulation process has much in common with conventional soft-
ware engineering lifecycles – it presents a high-level summary of the nec-
essary attributes of a development, rather than a comprehensive guide
to achieving a high-quality engineered product. This area is addressed
to some extent in agent-oriented modelling.

Sudeikat et al [33] give an insightful review of multi-agent system
development methods, which, like Sargent, focuses on matching meth-
ods to the requirements of specific simulation targets. They identify as
the foci of current methods: internal architecture, social architecture,
communication, autonomy, pro-activity and distribution. Some of the re-

Simulating biology: what the simulation shows 97

(System)

Problem Entity

Data

Validity

Analysis

Modeling

andExperimentation

Validation

Model

Conceptual

Validation

Operational

Model

ConceptualComputerized

Model

Computer Programming

and Implementation

Model

Computerized

Verification

Fig. 1. Sargent’s model of the simulation development process [28]

viewed methods are sophisticated software-engineering approaches, such
as Prometheus [21] (figure 2).

These methods provide an integration layer for the styles of model
(usually diagrams) that are needed to express the static structures and
interactions of the overall conceptual model. Implementation is often well
researched, with platforms, patterns, and workbenches (see, for instance,
the ACE resources, www.econ.iastate.edu/tesfatsi/ace.htm). Agent mod-
elling methods are used in robotics, social agent systems, and similar
areas, but are also entering high-integrity systems engineering: for in-
stance, Alexander [1] uses Prometheus in the simulation of command-
and-control systems. Critical systems use means that some work exists
on adding validation activities to the modelling activities covered in the
original methods.

Two immediate issues arise with the agent modelling methods. The
first is that they are oriented to social systems – including human-scale
high-integrity systems. This means that the technical emphases are on
capturing the autonomy or design for learning – the BDI (beliefs-desires-
intentions [12]) of agents. The second issue is that these methods do not
capture the time, space, and component-quantity aspects of complex sys-
tems, or the layered abstraction aspect, noted above. The representation

98 Andrews, Polack, Sampson, Timmis, Scott, Coles

Fig. 2. The Prometheus development method [21]

of these key features are left to the inspiration of the implementer, and
are thus hidden from validation scrutiny.

2.2 Verification and validation of simulations

There is a significant corpus of work from outside the area of complex sys-
tems on validating and verifying simulation models. However, although
this work proffers general reminders, its direct advice is difficult to adapt
to complex system simulation. Zeigler [39] presents a theory for modelling
and validation of simulations; his theory is predicated on the fact of a ho-
momorphism between conceptual models and simulations, and does not
provide obvious pointers as to how the homomorphism is established –
that is, verification of the development process is assumed.

Similar validation concepts come from Sargent, elaborating the val-
idation aspects of the simulation process (figure 1, above). Sargent [30]
reminds us that a model should be developed for a specific purpose... and
its validity determined with respect to that purpose. Furthermore, Sargent
notes that the level of assurance needed depends on the purpose of the
simulation, and should be set independently of the development of the

Simulating biology: what the simulation shows 99

Technique Comments on Sargent’s suggestions

Animation, operational
graphics

Specifically, graphical visualisation, either of sys-
tem behaviour or of operational parameters

Comparison to other models Comparison to valid analytical models or other
simulation models

Degenerate tests, extreme
condition tests, parameter
variability, sensitivity analy-
sis

Typical domain-style testing of behaviour under
normal and extreme input and operating condi-
tions

Event validity Compare the events in real and simulated sys-
tems

Face validity (ask a domain
expert), traces

Appeal to logic or to domain experts to check the
validity of model components or data

Historical data validation,
predictive validation

Either drive a simulation with historical data and
compare results to reality; or drive a simulation
on current data and compare to independent pre-
dictions of future

Multi-stage validation, com-
bining historical methods:

Three historical approaches can be combined to
develop based on sound theory and assumptions,
with empirical validity checks where possible.

Rationalism The veracity of assumptions is rationally justifi-
able, and valid models arise from valid assump-
tions

Empiricism All assumptions and outcomes are empirically
validated

Positive economics The model can predict the future, so causal rela-
tionships and mechanisms are of no concern

Internal validity Used on stochastic models; comparison of consis-
tency of results across runs

Turing tests Can an expert tell that it is not the real system?

Table 1. Validation techniques for simulation development (based on descrip-
tions from [30])

simulation – good software engineering practice. Sargent’s development
process (lifecycle) for simulations explicitly incorporates verification and
validation activities, and he proposes a range of approaches to validation,
summarised in table 1.

Clearly, some of Sargent’s suggestions are inappropriate for com-
plex systems work: if we knew the workings of the complex system well
enough to understand event validity and traces, we would not need a
computer simulation for research purposes. However, wherever such in-
ternal analyses are possible, they should be conducted. We need to be

100 Andrews, Polack, Sampson, Timmis, Scott, Coles

confident that computer simulations accurately replicate contributory
non-complex features. Comparison with real systems is essential, but is
potentially dangerous – variants on predictive validation can lead to (ac-
cidental) construction of simulations that are self-fulfilling prophesies,
whilst historical data validation tends to pick only the data that best
match the simulation.

Perhaps the most useful of Sargent’s suggestions relate to analysis
of assumptions – though situating this in historical theories of ratio-
nalism and empiricism tends to mask their value. A common (possibly
universal) failing of research simulations is the failure to document the
assumptions that they make, both about the science that underpins the
models, and about the means used to create the simulation. We will
return to assumptions in the case study, below.

2.3 Other computer simulations for biological research

There are a number of current interdisciplinary research projects that
use aspects of software engineering to produce high-quality computer
simulations to support biological research.

PEPA [6, 7] is typical of several approaches that use stochastic pro-
cess algebra to construct models of cell signal transduction pathways. In
PEPA, complementary models are developed of a reagent view and a net-
work view. The models are proven isomorphic with each other, and iso-
morphic with conventional differential equation models of transduction.
Verification (that the implementation captures the conceptual model)
is formal and explicit, and the ability to mimic the analytical models
that the biologists create contributes to the validation of the conceptual
model against the reality. This is akin to Sargent’s comparison to other
models technique, although, in common with other differential equations,
the validity of the analytical models is difficult to show.

Reactive Animation (RA) [10, 9, 14] is another robustly-engineered
research simulation; it uses Rhapsody statecharts (state machines) and
Live Sequence Charts (connectivity diagrams), plus data from biologi-
cal experimentation, to drive powerful biological visualisations (for in-
stance, of T cell activity in the thymus). RA reverse engineers biological
systems, using a well-understood software engineering analogy [27]. RA
thus exemplifies a number of Sargent’s comparatively-based validation
techniques, as well as quality software engineering design and verifica-
tion. In both PEPA and RA, high-quality computer engineering and
attention to validation produces simulations that biologists can rely on
to direct their research.

Whilst these initiatives are both scientifically and computationally
successful, they are not easily generalisable. The specialised components

Simulating biology: what the simulation shows 101

(such as process algebras) and proprietary tools (such as Rhapsody state
charts) tie the initiatives closely to the groups that own them. This
makes it hard to do a comprehensive evaluation of PEPA or RA as
candidate for a general complex system development process – in other
words, it is hard to generalise from these otherwise excellent initiatives
in biologically-driven computer simulation.

In our work, we take inspiration from Sargent’s process and RA mod-
elling. Our conceptual model is a very simple form of state machine, to
express the possible states of a lymphocyte. Like conventional agent
modelling, much of the environmental context is captured between the
conceptual model and the implementation. However, we then apply Sar-
gent’s validations, and a deviational approach to assumption generation
by providing evidence for arguments (based on work by Pumfrey [25],
Srivatankul [31], Allenby [2] and others applying deviational analyses to
safety or security assurance work). This approaches to engineering as-
surance not only reveals limitations (and strengths) of our simulation,
but can also be used to explore the effect of limitations of the biological
knowledge of the system.

The following section provides biological background on the case
study. We then review our simulations, and discuss connotations of our
findings for complex systems modelling.

3 Migration of lymphocytes in the lymph node

3.1 Lymph Nodes

The mammalian immune system possesses many specialised cells that are
collectively known as the leukocytes or white blood cells. The leukocytes
can be divided into a number of distinct groups with different function-
alities. One such group is the lymphocytes, which are vital to recognising
and mounting an immune response to various harmful pathogens such
as bacteria and viruses. The lymphocytes can be further classified into
two distinct populations of cells: B cells and T cells. As well as spe-
cialised cells, the mammalian immune system also comprises a number
of immune organs. One such organ is the lymph node, which is a small
(about the size of a pea in humans) bean-shaped immune organ (figure
3) rich in lymphocytes and other leukocytes, providing a place where im-
mune response to pathogens in the lymph may be triggered and develop.
The structure of the lymph node is made up of a number of specialised
areas supporting different cellular environments. There are hundreds of
lymph nodes in various locations around the body.

Bodily fluid known as lymph drains into lymph node through a num-
ber of afferent lymph vessels connected to the lymphatic system; lymph

102 Andrews, Polack, Sampson, Timmis, Scott, Coles

Fig. 3. Structure of a lymph node from [16]

leaves the lymph node through a single efferent lymph vessel. Lymph
contains many different leukocytes, proteins and other particles (possibly
pathogenic) that have drained from the peripheral parts of the body. The
lymph node is also connected to the circulatory system via a lymphatic
artery and vein. It is through the lymphatic artery that lymphocytes en-
ter the lymph node. Lymphocytes can then migrate through specialised
blood vessels (via a mechanism described below) into the functional tis-
sue of the lymph node. Once there, lymphocytes can interact with other
leukocytes that have encountered pathogens and entered the lymph node
from the lymph, to initiate an appropriate immune response.

3.2 Endothelial Cells, Pericytes and High Endothelial
Venules

Figure 4 summarises the main types of blood vessel present in the body:
arteries are the large vessels that carry oxygenated blood from the heart;
arterioles branch off the arteries carrying blood to the capillaries; capil-
laries are the smallest blood vessels in the body and allow the interchange
of components between the blood and body tissues; venules carry the de-
oxygenated blood from capillaries; and veins then carry de-oxygenated
blood back to the heart.

The internal surface of all blood vessels is made up of endothelial
cells. In the lymph node, a minority of the venules have plump (high)

Simulating biology: what the simulation shows 103

Fig. 4. The relationship between the different types of blood vessel from
http://training.seer.cancer.gov/module anatomy/images/illu capillary.jpg

Fig. 5. A comparison of a normal venule with a lymph node HEV from [20].
In the HEV, the ring of endothelial cells are much larger.

endothelial cells that have a significantly larger diameter than normal
endothelial cells. These venules are called the high endothelial venules
(HEVs) [15] (see figure 5). Areas of HEVs occur in the lymph node at
various points (figure 6).

It is in HEVs that lymphocytes can migrate from the blood though
the endothelial cells into the functional tissue of the lymph node. Only
lymphocytes can interact with and cross HEVs, other leukocytes are ex-
cluded [20]. It is estimated that a quarter of the circulating lymphocytes
migrate from the blood after entering an HEV [13].

HEVs (and other small blood vessels) are surrounded by pericytes,
shown in figure 7. They are a form of vascular smooth muscle cell sur-
rounding endothelial cells that are responsible for constriction and dila-
tion of blood vessels. This regulates blood flow and diameter of the HEV,
and thus affects the ability of lymphocytes to migrate [26]. A large influx

104 Andrews, Polack, Sampson, Timmis, Scott, Coles

Fig. 6. The flow of cells in and out of a lymph node from [20]. Lymphocytes
and dendritic cells enter the lymph node by two routes. Most dendritic cells
enter though afferent lymph, settling near HEVs in paracortex (due both to
lymph node structure and local production of chemokines). Most lymphocytes
enter the lymph node across HEVs.

Fig. 7. Cross-section of a capillary from [4]. EC = endothelial cell, PC =
pericyte, vSMC = vascular smooth muscle cell.

of lymphocytes into the lymph node during an immune response causes
it to visibly swell. This is know as lymph node hypertrophy.

3.3 Lymphocyte Rolling and Migration in the HEV

All leukocytes are able to migrate through blood capillaries via the same
mechanism. Only lymphocytes, however, can migrate through the spe-
cialised HEV in a lymph node. The process of migration is due to an
adhesion cascade of various cell surface receptors and molecules. Origi-
nally identified as a three-step process of rolling, activation and arrest,
the migration process has now been augmented, as shown in figure 8.
Each step is initiated and regulated by specific signalling molecules and
receptors [18].

Simulating biology: what the simulation shows 105

Fig. 8. The leukocyte adhesion cascade from [18]. The three historical steps
are shown in bold.

Fig. 9. Migration of T-cells across HEVs from [16]

To migrate, a leukocyte must pass through endothelial cells, the
endothelial-cell basement membrane and pericytes. Migration through
endothelial cells can be rapid (2-5 minutes), whilst penetrating base-
ment membrane takes longer (5-15 minutes) [18].

Migration of lymphocytes from HEVs is controlled by a specific ar-
ray of adhesion molecules that facilitates lymphocyte migration but bars
other leukocytes (figure 9). Chemokines (chemical signalling molecules)
that are produced by or adherent to HEVs are important in the control
of lymphocyte migration, however, the precise mechanisms by which
chemokines work in vivo are unclear [16]. Several chemokines are prob-
ably required for the movement of lymphocytes through HEV, but how
many and in what order is unclear [20].

106 Andrews, Polack, Sampson, Timmis, Scott, Coles

4 Developing a lymphocyte migration simulation

In section 2.2 we highlighted the importance of explicitly stating the
purpose of a simulation as it will directly influence the design decisions
and assumptions we make. Our aim is to model the migration of lympho-
cytes through the high endothelial venules (HEV) of the lymph nodes,
and construct computer simulations of the lymphocytes as a complex
system. Using these simulations we can investigate possible factors that
lead to the observed lymph node hypertrophy during infection. We are
interested in how the number of migrating lymphocytes changes under
different conditions, thus the desired output of any simulation will be
numerical data detailing lymphocyte migration rates. The simulations
should enable us to test hypotheses such as the increase in lymphocytes
in the lymph node during infection is due to dilation of the high endothe-
lial venules.

In this section, we outline the processes that we use to develop the
simulations; in the section 5 we turn to validation. Following Sargent’s
process, figure 1, the biological literature summarised above provides the
starting context for our case study, the problem entity. Our conceptual
model is first described followed by our computerised model or simula-
tions. To aid the analysis of our modelling and simulation process, we
have laid out our assumptions in table 2. In the descriptions that follow,
we refer to this table where necessary.

4.1 A conceptual model

The first step in building the conceptual model is to identify the different
parts of the system in which we are interested. In terms of a complex
system we can consider the hypertrophy of the lymph node to be the
non-linear (emergent) behaviour under investigation. The main active
component of our system is a population of homogeneous lymphocytes,
which interacts in an environment. This environment is simply the parts
of the body with which the lymphocytes interact with respect to their
migration through HEV in the lymph node.

In terms of the biology, the main cellular actors in the migration
process are the lymphocytes, high-endothelial (HE) cells and pericytes.
We consider HE cells and pericytes together in the form of a tube (a
high-endothelial venule). Lymphocytes travel through the HEVs within
the blood circulation. Outside the HEVs is the lymph node tissue, which
the lymphocytes enter if they successfully migrate through the HEV.
We have classified the different environments that the lymphocytes pass
through as states, with transitions occurring when the lymphocyte moves

Simulating biology: what the simulation shows 107

Label Assumption

1 The detail described in section 3 is correct

2 Lymphocyte migration only takes place in the HEV areas of the lymph
node

3 There is no interaction between lymphocyte agents. Lymphocytes do
not collide.

4 There are no effects from external blood circulation e.g. blood flow is
constant.

5 The volume of blood always there to accommodate size of HEV (i.e.
enough blood to fill whatever size HEV expands to).

6 Once a suitable chemokine signal has been received by a lymphocyte,
it will always migrate. Thus, subsequent stages in the adhesion cascade
(see figure 8) are deterministic.

7 Lymphocytes are essentially equivalent. They express the same levels
of receptors required for rolling and migration.

8 Lymphocyte will always re-enter blood circulation from the lymph
node. Thus, lymphocytes can only exit the system (die) in the blood
circulation state.

9 Lymphocytes are created and die at a constant rate.

10 The HEVs are homogeneous. The endothelial cells and pericytes that
make up the HEV all behave the same making the HEV appear the
same at all points.

11 Lymphocytes flow though the HEV at the same rate.

12 Lymphocytes can be captured and disassociate repeatedly whilst in the
HEV.

13 There is no change in lymphocytes that have disassociated from an
HEV wall, thus all free flowing lymphocyte are the equally likely to
capture.

14 Whilst passing through the HEV there is no change in the state of the
lymphocyte, thus there is no distinction between new and re-circulating
lymphocytes.

15 Proliferation does not occur in the lymph node.

16 The multi-stage adhesion cascade show in figure 8 can be reduced to
two probabilistic stages: capture leading to lymphocyte rolling, and
migration after receiving a chemokine activation signal.

17 The number of lymphocyte chemokine receptors does not change on
the time scale of the simulation.

18 Lymphocytes drain from the lymph node to the blood circulation at a
constant rate.

Table 2. A list of many of our modelling and simulation assumptions. Each
is given a label so that we can refer to it. This is not a complete list, but is
illustrative of the kind of assumptions we make.

108 Andrews, Polack, Sampson, Timmis, Scott, Coles

from one environment to the other. This is summarised by the state di-
agram in figure 10. The four key identified states are:

Blood Circulation: This state encompasses the parts of the body that
the lymphocyte is in when it is not in the HEV or the lymph node tissue.
It provides a place where lymphocytes can enter or leave the system. It is
the state lymphocytes will be in for most of their existence. Assumptions
4, 5, 8 and 9 apply to this state.

HEV Lumen: This state describes the lymphocyte when it is flowing
freely in the lumen of a HEV. Assumptions 10, 11, 13 and 14 apply to
this state.

Rolling: This state represents the lymphocyte when it is rolling on the
interior surface of an HEV (see figure 8). Assumptions 10 and 13 apply
to this state.

Lymph Node: This state describes the lymphocyte when it is present
in functional tissue of a lymph node. Assumptions 15 and 18 apply to
this state.

In addition to these four states, Start and Stop states provide a means
to introduce and remove a lymphocyte.

The state transitions in figure 10 map to the biology in the following
ways:

Creation A newly created lymphocyte will automatically transition into
the blood circulation state. Assumption 9 applies to this transition.

Enter HEV As a lymphocyte is transported around the body in the
blood (the blood circulation state) it will at some point enter an area of
HEV a lymph node. Assumptions 10 and 11 apply to this transition.

Exit HEV Just as a lymphocyte can enter the HEV lumen, it can also
exit the HEV lumen via the blood, transiting from the HEV lumen state
back into the blood circulation. Assumptions 10 and 11 apply to this
transition.

Capture Whilst moving freely in the HEV lumen, a lymphocyte cap-
tures onto the endothelial wall transiting to the rolling state. Assump-
tions 7, 12, 13 and 16 apply to this transition.

Simulating biology: what the simulation shows 109

HEV

Lumen

Rolling
Lymph

Node

Circulation

BloodDeath

C
reatio

n

Enter HEV

Exit HEV

D
is

as
so

ci
at

e C
ap

tu
re

Migrate

D
ra

in

Stop

Start

Fig. 10. A generic state transition diagram for a single lymphocyte. Boxes
represent states a lymphocyte can be in and arrows represent the possible
transitions between states.

Disassociate Just as the lymphocyte can transition from flowing freely
in the lumen to rolling, it can also disassociate from rolling, moving back
to the HEV lumen. Assumptions 7, 12, 13 and 16 apply to this transition.

Migrate During the process of rolling, a lymphocyte receives a chemokine
signal from the endothelial surface of the HEV. If sufficient, this signal
produces a change in the confirmation of receptors on the lymphocyte
leading to a cascade that results in migration of the lymphocyte from
the HEV to the functional tissues of the lymph node. Assumptions 2, 6,
7 and 16 apply to this transition.

Drain After spending time in the lymph node, a lymphocyte drains in
to the lymphatic system via the efferent lymphatic vessel to rejoin the
blood circulation (see figure 6). Assumption 18 applies to this transition.

Death Whilst circulating in the blood, a lymphocyte dies. Assumptions
8 and 9 apply to this transition.

110 Andrews, Polack, Sampson, Timmis, Scott, Coles

Only the allowable transitions are shown, for example a lymphocyte in
the blood circulation state can only enter the HEV via the enter HEV
transition or cease via the death transition. In addition, as this is a
conceptual model, the eight state transitions have a meaning, but no
specific values. The values are assigned at the simulation stage, taking
the form of probabilities.

The main simplification (see Assumption 16) we make with regards
to lymphocyte rolling is to reduce the multi-stage adhesion cascade (rep-
resented in Fig. 8) down to two main steps. The first step, captured by
the capture transition, models the capture of lymphocytes on to the
endothelial wall. Once capture has occurred, the lymphocyte is in the
rolling state, waiting to be activated by a chemokine signal. The sec-
ond step, expressed by the migration transition, models the lymphocyte
receiving the chemokine signal; after this it is assumed that the lympho-
cyte succeeds in migration. Other stages in the cascade are assumed to
be either deterministic, or have such small probabilities of failing that
they are insignificant.

4.2 Simulations

A simulation is best thought of as an execution of a model (such as the
lymphocyte model in figure 10) over time. Typically time is implemented
as atomic steps, at which each element in the simulation (each lympho-
cyte) updates. Within a simulation, we need to define rules to determine
when a lymphocyte can transition between states. One way to achieve
this is to assign each transition with a probability of occurring. These
probabilities need to be extracted from the biological detail to represent
what is known to happen in the biology.

We have developed two simulations of the conceptual lymphocyte
migration model described above, which differ in the way spatial aspects
of the environment are represented. In the first, there is no explicit co-
ordinate system, only the four body locations in figure 10. Each of these
four state spaces can contain a number of lymphocyte agents, which
transit from location to location based on a set of rules. This simulation
aims to capture statistically the change in lymphocyte concentrations
in the lymph node as the probabilities on the capture and migration
transitions change.

In the second simulation, the 3-dimensional HEV tube made up of
endothelial cells, and the movement of lymphocytes through that tube,
are explicitly implemented. This supports visualisation of the HEV and
of the lymphocytes, with the HEV lumen and rolling states visually dis-
tinguishable via changes in colour. Again, the model is driven by the

Simulating biology: what the simulation shows 111

L

L

L

L

L

HEV

Lumen
Rolling

Lymph

Node

L

L

L

L

Blood

Circulation

Fig. 11. Process diagram showing how lymphocyte processes (represented as
circled “L”s register with state processes (boxed)

probabilities on the transitions, but because the spatial aspect is ex-
pressed explicitly, the simulation is more obviously closer to the biology.

We refer to the two different simulations as migration-abstract and
migration-space respectively. The description in this section focuses on
the migration-abstract simulation, but draws on elements of the migration-
space simulation when necessary. Our simulations are implemented us-
ing occam-π, a process-oriented programming (POP) language capable
of massive concurrency (for details of why we choose this approach see
[3]).

The migration-abstract simulation implements the state diagram shown
in figure 10 for a population of lymphocyte agents over a period of time.
Using the POP paradigm, each lymphocyte agent is represented as a
process which is connected via a communication channel to one of the
four body place states we are interested in (also represented as pro-
cesses): blood circulation, HEV lumen, rolling on the endothelium, and
in the functional tissue of the lymph node. The process network struc-
ture is shown in figure 11, and directly reflects the topology of the states
in figure 10. Each of the four place state processes shown has a shared
communication channel (shown as a bold arrow), to which any number
of lymphocyte processes can be connected. Each lymphocyte process is
connected to one and only one place process thus ensuring it can only
be in one state at a time. According to process-oriented design rules, the
lymphocyte processes act as clients to the server state processes.

Depending on the transition rules, a lymphocyte process can change
the state process to which it is connected, moving from one place pro-
cess to the next. Channels exist between state processes to enable this
movement, which directly reflect the allowable state transitions in fig-
ure 10. For example, in figure 12 the shaded lymphocyte process moves
from the blood circulation state to the HEV lumen state by disconnect-

112 Andrews, Polack, Sampson, Timmis, Scott, Coles

L

L

Blood

Circulation

L

L

L

HEV

Lumen

L

L

HEV

Lumen

L

L

Blood

Circulation

L

Fig. 12. Process diagram showing how lymphocytes move between state pro-
cesses

ing its communication channel from the blood circulation process and
reconnecting it to the HEV lumen process.

Every lymphocyte process updates once per time step (this is achieved
via the occam-π barrier construct). At each step, the number of lym-
phocyte processes associated with each place process can be recorded,
to allow numerical analysis of the number lymphocytes in each state
over time. A typical simulation run necessarily contains many thou-
sands of lymphocyte processes in order to get close to the biological scale
which contains millions of lymphocytes. New lymphocyte processes can
be added during a simulation run and are automatically connected to
the blood circulation process.

The eight lymphocyte state transitions (figure 10) in the migration-
abstract simulation are each encoded a probabilistic rule. At each time
step, a lymphocyte tests for its possible for transitions. For example, a
lymphocyte in the rolling state can either disassociate to the HEV lumen
state, migrate to the lymph node state or stay in the rolling state. To
determine which of these occurs, a random number is generated for each
lymphocyte and is tested against the possible transitions. If the random
number falls in the range of a transition, then the lymphocyte will transit
into the relevant state. If not, the lymphocyte stays in its current state.

There is a mapping between probabilities and the biological detail.
To achieve an accurate simulation, we need to choose the probabilities
carefully, and try to validate to be confident that they represent what
they are supposed to. It is ongoing work to find good probabilities, the
job of which is not trivial for a number of reasons. Often the exact
biological details are poorly understood or simply not recorded. Facts can
also come from many different sources, based on different experiments
utilising different technologies and subjects. Many of these facts then
have to be combined into a single probability. Thus when constructing
these probabilities we need to document where they have come from and

Simulating biology: what the simulation shows 113

how they map to the probabilities. An example of the type of detail we
would use to construct a probability is that a quarter of lymphocytes
entering HEVs will migrate [13]. By combining this with the numbers of
lymphocytes in the body we can start to build meaning into the capture
and migration probabilities.

The following descriptions examine each transition probability and
suggests the type of biological detail we would need to generate their
values in a simulation:

Creation: The probability for creation is distinct from the other transi-
tion probabilities as it is a function of the population size rather than the
individual lymphocytes. Studies in mice show that about 1 to 2 million
T cells and B cells enter the blood circulation [16]. In a homeostatic envi-
ronment, the numbers of lymphocytes created should equal the number
that die (see death transition below).

Enter HEV, Exit HEV: Lymphocytes continually enter areas of HEV
whilst circulating in the body. The probability of a particular lympho-
cyte doing so needs to reflect an average amount of time not spent in
HEVs. It is consequently inextricably linked to the exit HEV probabil-
ity. The probability needs to encapsulate biological details such as the
relative lengths of the blood circulation system and HEVs, along with
the rates of blood flow.

Capture: In the description of the conceptual model, we discussed what
capture means and the assumptions involved. In the simulation, the cap-
ture probability relates to the biology of the receptors of lymphocytes
and endothelial cells, and the probability that the receptors on each are
close enough to interact. The interaction probability can be based on
the relative sizes of lymphocytes and the diameter of the HEV lumen
taken from the biological data. For example, a smaller lumen diameter
would increase the chances of a lymphocyte being close enough to in-
teract. Conversely, a larger diameter may relate to a larger surface area
of endothelial cell receptors to which the lymphocytes can attach, so a
larger diameter would increase the probability of capture.

Disassociate: This probability is related to the capture probability in
that it takes into account the strength of binding between lymphocytes
and the endothelial cells. A higher concentration of endothelial cell re-
ceptors should reduce this probability.

114 Andrews, Polack, Sampson, Timmis, Scott, Coles

Migrate: The migration probability is dependent on the concentration
of chemokines to induce the confirmation change in the lymphocyte
and/or the likelihood that the lymphocyte picks up the chemokine signal.
The last probability could take into account the numbers of chemokine
receptors on the lymphocyte, and the way in which endothelial cells ex-
press and present them. Assumption 17 applies.

Drain: The drain probability reflects the amount of time it takes for a
lymphocyte that has migrated into the lymph node to exit to the blood
circulation. This time can be dependent on whether the lymphocyte is
activated, but as this frequency is usually very small, we assume the rate
is constant for all lymphocytes (Assumption 18).

Death: A lymphocyte that dies will be removed from the simulation.
The probability to determine this needs to take into account the average
life of lymphocytes. In a homeostatic environment, death is compensated
by creation. Assumption 9 applies.

All probabilities need to be scaled to fit the time step of the simulation.
Each probability is also simulation specific. Our migration-space simu-
lation implements the same conceptual model as the migration-abstract
simulation, employing the same state transitions, and has a need for the
same relevant probabilities. However, the actual probability values are
subtly different. For example the capture probability in the migration-
abstract simulation incorporates the need for a lymphocyte to be near
to the endothelium for capture to occur. In the migration-space simu-
lation, the 3-dimensional space is explicit, thus the capture probability
only encapsulates the biology of receptor binding. The process of vali-
dation needs to explicitly highlight the contributions to transitions, to
make the simulations transparent and open to reasoning.

5 Verification and validation of the simulations

According to Sargent’s process, we need to validate the conceptual model
against the problem entity (and the purpose of the simulation). Ulti-
mately, we also have to argue the operational validity of the comput-
erised model (i.e. determine the behaviour has sufficient accuracy for
its intended purpose), but that is largely outside the scope of this pa-
per. As we will see, validation of the conceptual model reveals the many
gaps in both the science and the computerised model, these gaps inhibit
exploration of any research hypothesis.

Simulating biology: what the simulation shows 115

We can think of the validation process as producing an argument of
validity, in the same way that critical systems developers produce ar-
guments of safety, dependability or security. Note that just as a safety
argumentation never establishes that a system is absolutely safe (no sys-
tem is safe unless it is totally closed and inert), an argument of validity
merely states the case for validity, exposing it to critical consideration.
This is an important observation, because, in any natural complex sys-
tem, we cannot expect to provide a gold-plated guarantee of equivalence
between our conceptual model and the problem entity – indeed, if the
model contained all the complexity needed to exactly mimic the natural
system, it would be intractably large, and too complex to provide any
new research insight.

An argument is expressed as a proposition, and is reasoned on the
basis of some premises, to reach a conclusion. A variety of textual and
diagrammatic techniques allow an argument to be presented with a de-
gree of formality – exposing the premises to analysis and scrutiny (see
[17, §2.6] for a succinct review). Kelly and others [17, 35] adopt the goal
structuring notation (GSN), proposed in [37], to present arguments in-
cluding those relating to the safety or safe design of critical systems [17]
and system dependability [8], and to emphasise the role of argumentation
in design [38].

In conventional safety case argumentation, basic elements are used to
express an argument: goals (decomposable), strategies (to meeting the
goals), justifications, assumptions, contexts, and solutions. Here, our goal
is to validate the conceptual model against the problem entity. For illus-
tration, we focus on one aspect of the conceptual model, the transition
labelled Capture. This reveals many of the issues in validating a complex
system model against a natural problem entity. Whilst we do not present
a systematic analysis here, the approach could be systematised, applying
a deviational approach in the way that is common in safety work (see
[25]) and has more recently been used in security analysis (for example,
[31]).

5.1 The Capture transition and its connotations

The Capture transition takes the lymphocyte from the state HEV Lu-
men, where it is moving freely within the HEV, to the state Rolling,
where it is in the preliminary stage of the migration process. From the
Rolling state, a lymphocyte can revert to the HEV Lumen state by dis-
association, or continue its migration to the functional part of the lymph
node. We might equate Capture to the second stage shown in figure 9,
above.

116 Andrews, Polack, Sampson, Timmis, Scott, Coles

The Capture transition is an abstraction from the cell biology and
biochemistry – which has been well-researched (see the top panel of figure
9, above). However, validation of the Capture probability would require
a separate, lower-level simulation of the capture bio-chemistry (or in vivo
research). In our validation argument, the probability of capture is an
area that we must expose to external review, or to further work.

However, there are other aspects of capture that we must validate,
where the biological basis for our conceptual model is less well under-
stood. We might postulate a context for capture: the chance of a lym-
phocyte being captured depends on (a) the density of active receptors
on the endothelium; (b) the receptors on the lymphocyte; (c) the likeli-
hood of a lymphocyte being close enough to the endothelium for capture.
Thus, our simulation needs to take into account the geometry (as well
as the biochemistry) of the lymphocyte and the HEV, as well as flow
characteristics in the venule. Validation has a choice here. On one hand,
we could attempt to simulate the three-dimensional structural biology
of a HEV – capturing typical venule cell structures and their behaviour
as the HEV constricts and relaxes (an animated version of figures 5 and
7) – and analysing the flow and contact characteristics that determine
lymphocyte interaction with the endothelium chemicals. On the other
hand, we could state our assumption that the probabilities on the tran-
sition from flowing in the HEV Lumen to captured in the Rolling state
adequately captures the geometric and flow aspects of the HEV. The
first option tends to improve the biological realism (and validatability)
of the simulation, at the cost of complicating the conceptual basis of
the model. If we opt for simplicity, we must record the assumption –
which come under a general heading of environmental factors – so that
scientists appreciate the limitations of the simulation.

In the conceptual model, the transition probabilities are constant.
Each probability approximates the effect of many environmental factors,
and each factor must cause fluctuations in the rate of transition in the
short term. However, we assume that behaviour tend towards the norm
over the timescale of the simulation (or the real biology). Again, we
could postulate further research or low-level simulations to validate this
assumption: for instance, we would like to understand the effect of irreg-
ular coverage of pericytes – does this give rise to an uneven longitudinal
profile in the HEV, and if so, does this promote lymphocyte capture at
upstream locations?

This last question identifies a potential paradox in our conceptual
model: we assume constant probabilities of transition, so all lymphocyte
in the HEV Lumen state have an equal probability of being captured;
equal probability implies a homogeneous HEV environment. However,

Simulating biology: what the simulation shows 117

the hypothesis seeks to relate lymphocyte volume in the lymph node
with dilation of the HEV, so we are required to vary the cross-section
(at least) of the HEV, and it is not obvious that this is consistent with
a homogeneous HEV environment (chemically or geometrically).

As we explore the question of the HEV environment further, we dis-
cover that one possible conformation of the contracted HEV has the lin-
ing cells packed in tight folds; the folds relax as the HEV dilates. There
must, therefore, be an intermediate point at which pockets arise between
folds, which we might expect to trap lymphocytes, increasing the chance
of capture. Taking an opposing view, widening the HEV means that
lymphocytes are more able to move away from the venule walls, poten-
tially causing a fall in capture. We cannot currently validate any of the
assumptions about the geometry and flow of the HEV environment, but
we can highlight these assumptions in relation to our simulation results.

We assume that all lymphocytes are the same size – that is, there
is no differential probability across lymphocytes. This can be validated
biologically: the literature gives size ranges for lymphocytes, and we can
determine (by asking immunologists!) whether the range represents sizes
with one lymphatic system or across a species (or what): the simulation
can be driven accordingly. It is noted that much of the data taken from
the literature and used for our simulation was gathered for purposes
other than ours. We must, therefore, assume that the data is still appli-
cable in our domain.

Returning to the probability of the Capture transition, we have used
the conceptual model as the basis for two simulations. In the abstract
simulation (non-spatial), the transition probability must be used to re-
flect the effects of all factors in HEV environment and other relevant
environmental factors. However, in the spatial model, the spatial rela-
tionship between lymphocyte size and location and venule diameter and
conformance is incorporated directly – the transition probabilities ab-
stract only from the biochemistry and the surface characteristics of the
HEV.

We have not identified all assumptions of our conceptual model here.
For example, the model also abstracts from all biochemical factors: we
assume that the probability of transition expresses any underlying vari-
ability in receptor form, binding strength, mechanisms of binding and
expansion, etc. We also abstract away from the cascade details of the
rolling state and the capture, disassociation and migration transitions.

5.2 Breaking with assumptions

Validating the conceptual model against the problem domain (the biol-
ogy) can reveal inconsistencies in the biological detail and mismatches

118 Andrews, Polack, Sampson, Timmis, Scott, Coles

with our assumptions. For example, we may have based a probability
on data that has been revisited and altered by subsequent scientific re-
search; mixed data from incompatible pieces of research; used data from
fixed biological material not appropriate to the simulation. By presenting
our model and simulation assumptions, and the biological detail that has
influenced the design of our simulation, the validation process is made
easier.

If we find a problem in an assumption that breaks the model, we
need to analyse the effects and change the model accordingly. For exam-
ple, assumption 15 states that proliferation (the generation of cellular
clones) of lymphocytes does not occur in the lymph node. Based on ex-
perimentation with the simulator, we might decide that this has an effect.
Consequently we can update the conceptual model with extra states and
transitions. These changes then cascade through subsequent models to
the simulator. We need to check that changing one assumption or value
does not affect the others, and if it does then change these accordingly.
Most incorrect assumptions will not invalidate the entire model or sim-
ulation, but just require editing. Tables of assumptions and biological
details allow traceability through the modelling and simulation process.
For example a domain expert might inspect them and highlight areas of
inconsistencies leading to the model or simulation to be updated.

6 Discussion

Our conceptual model of the lymphocyte system represents a set of de-
sign decisions: we have chosen to abstract to certain (key) states of the
lymphocyte lifecycle, and we have selected probability-based transitions
as a suitable basis for experimenting with lymphocyte concentrations
and HEV dilation. The consequent validation requirements are clearly
dependent on these design decisions. Had we chosen to model at a differ-
ent level of abstraction, or to represent lymphocyte behaviour differently,
we would have different validation requirements (but a similar range of
problems relating our model to the problem entity).

Disparate levels is an inherent problem of complex systems research
and simulation. The validation proposals suggest that some of the con-
ceptual model features could be validated by either lower-level simula-
tion, or exploration of the biology (and biochemistry) at the lower level.
This idea is also inherent to the CoSMoS project – the modelling and
simulation platform that it seeks to develop has as one goal support for
multiple simulation levels. A lesson of validation might be that we need
to identify component levels, as well as component state-and-operations,
so as to facilitate validation where biological detail is uncertain.

Simulating biology: what the simulation shows 119

HIGH−LEVEL

SPECIFICATION

HIGH−LEVEL

in ENVIRONMENT

INTEGRATION

ENVIRONMENT

ENVIRONMENT

SPECIFICATION

COMPONENT for

ENVIRONMENT

COMPONENT

SPECIFICATION

Fig. 13. An architecture for complex system engineering, after [23]

Elsewhere, we have proposed an architecture, and some principles,
for the engineering of simulations exhibiting several layers of complex
behaviour (see [34, 32, 23]). The architecture, figure 13, for complex
systems proposes component specifications, higher-level system specifi-
cations, and a reconciliation (or linguistic integration) via strategic parts
of the common environment. Putting together these architectural ideas
with the need to identify environmental factors in determining the con-
ceptual model (and the implementation detail of the subsequent comput-
erised model), we propose an extension to Sargent’s process, as shown
in figure 14.

There is much work still be to done in the area of validating our
complex system models and simulations. This includes establishing struc-
tured ways to layout our assumptions and biological details that have
influenced our designs. We also need to establish schemes for mapping
between our biological details and simulator parameters. In addition we
are investigating structured argumentation techniques to talk about va-
lidity of complex systems simulations. Our aim is to establish patterns of
validation that are applicable to the validation of many different complex
systems.

7 Summary

We have presented a selective review of engineering approaches to engi-
neering simulations in non-complex systems and agent systems, and used

120 Andrews, Polack, Sampson, Timmis, Scott, Coles

(System)

Problem Entity

Data

Validity

Analysis

Modeling

andExperimentation

Validation

Model

Conceptual

Validation

Operational

Model

ConceptualComputerized

Model

Model

Computerized

Verification

Model of

Features
Environment

Implementation of conceptual model

and relevant environmental features

Fig. 14. Adding environmental concerns to Sargent’s process (figure 1), to
propose a process for complex system simulation

this to initiate a case study simulation development for part of the lym-
phocyte system. The simulation is based on information from biological
literature and part of an ongoing research project in the CII.

Proposing the biological information as our problem entity, and ex-
ploration of proposed immune mechanisms as our goal, we have presented
a simple conceptual model (from which two simulations of different ab-
stractions have been created). Focusing on one part of the conceptual
model, we discuss issues relating to validation of biological research sim-
ulations.

Drawing on work in non-complex systems simulation and agent sys-
tems modelling, we have identified possible features of a process for en-
gineering complex systems simulations. The process is speculative, but
fits our experience of simulating part of the immune system.

The paper presents a first step in an engineering approach towards
scientific computer simulation; the findings are preliminary and not yet
substantiated by repetition or systematic use. However, our findings are
well grounded in wider work on critical systems engineering and assur-
ance, as well as other areas of system simulation.

From the brief exploration of validation, it is clear that arguments
of validity for research-oriented simulations of complex systems are go-
ing to be complicated, and often incomplete – the principle of exposing
assumptions to external scrutiny is an important contribution of this
paper. We expect that argumentation approaches, and deviational anal-

Simulating biology: what the simulation shows 121

ysis, will contribute to the quality and visibility of validation. In short, we
believe that the scepticism over use of computer simulation in complex
systems research can be addressed through well-established engineering
principles, just as it is being addressed in macro-scale complex systems.

8 Acknowledgements

This work is part of the CoSMoS project, funded by EPSRC grants
EP/E053505/1 and EP/E049419/1.

References

[1] R. Alexander. Using Simulation for Systems of Systems Hazard Analysis.
PhD thesis, Department of Computer Science, University of York, 2007.

[2] K. Allenby and T. P. Kelly. Deriving safety requirements using scenar-
ios. In 5th IEEE International Symposium on Requirements Engineering
(RE’01). IEEE Computer Society Press, 2001.

[3] Paul S. Andrews, Adam T. Sampson, John Markus Bjorndalen, Susan
Stepney, Jon Timmis, Douglas N. Warren, and Peter H. Welch. Inves-
tigating patterns for the process-oriented modelling and simulation of
space in complex systems. In To appear: Artificial Life XI: Proceedings
of the Eleventh International Conference on the Simulation and Synthesis
of Living Systems. MIT Press, 2008.

[4] G. Bergers and S. Song. The role of pericytes in blood-vessel formation
and maintenance. Neuro-Oncology, 7(4):452–464, 2005.

[5] J. Bryden and J. Noble. Computational modelling, explicit mathematical
treatments, and scientific explanation. In Artificial Life X, pages 520–526.
MIT Press, 2006.

[6] M. Calder, S. Gilmore, and J. Hillston. Modelling the influence of RKIP
on the ERK signalling pathway using the stochastic process algebra
PEPA. Transactions on Computational Systems Biology VII, 4230:1–23,
2006.

[7] M. Calder, S. Gilmore, J. Hillston, and V. Vyshemirsky. Formal methods
for biochemical signalling pathways. In Formal Methods: State of the Art
and New Directions. Springer, 2008.

[8] G Despotou and T Kelly. Design and development of dependability case
architecture during system development. In 25th International System
Safety Conference. System Safety Society, 2007.

[9] S. Efroni, D. Harel, and I. R. Cohen. Reactive animation: realistic mod-
eling of complex dynamic systems. IEEE Computer, 38(1):38–47, 2005.

[10] S. Efroni, D. Harel, and I. R. Cohen. Emergent dynamics of thymocyte
development and lineage determination. PLoS Computational Biology,
3(1):0127–0135, 2007.

[11] J. M. Epstein. Agent-based computational models and generative social
science. Complexity, 4(5):41–60, 1999.

122 Andrews, Polack, Sampson, Timmis, Scott, Coles

[12] M. Georgeff, B. Pell, M. Pollack, M. Tambe, and M. Wooldridge. The
belief-desire-intention model of agency. In ATAL’98, volume 1555 of
LNCS, pages 1–10. Springer, 2000.

[13] J. Girard and T. Springer. High endothelial venules (HEVs): specialized
endothelium for lymphocyte migration. Immunology Today, 15:449–457,
1995.

[14] D. Harel, Y. Setty, S. Efroni, N. Swerdlin, and I. R. Cohen. Concurrency
in biological modeling: Behavior, execution and visualization. FBTC
2007: Electronic Notes in Theoretical Computer Science, 194(3):119–131,
2008.

[15] P. G. Herman, I. Yamamoto, and H. Z. Mellins. Blood microcirculation
in the lymph node during the primary immune response. The Journal of
Experimental Medicine, 136:697–713, 1972.

[16] C. A. Janeway, P. Travers, M. Walport, and M. J. Shlomchik. Immunobi-
ology: The Immune System in Health and Disease (6th Edition). Garland
Science Publishing, 2005.

[17] T. P. Kelly. Arguing safety – a systematic approach to managing safety
cases. PhD thesis, Department of Computer Science, University of York,
1999. YCST 99/05.

[18] K. Ley, C. Laudanna, M. I. Cybulsky, and S. Nourshargh. Getting to the
site of inflammation: the leukocyte adhesion cascade updated. Nature
Reviews Immunology, 7(9):678–689, 2007.

[19] G. F. Miller. Artificial life as theoretical biology: How to do real science
with computer simulation. Technical Report Cognitive Science Research
Paper 378, School of Cognitive and Computing Sciences, University of
Sussex, 1995.

[20] M. Miyasaka and T. Tanaka. Lymphocyte trafficking across high en-
dothelial venules: dogmas and enigmas. Nature Reviews Immunology,
4(5):360–370, 2004.

[21] L Padgham and M Winikoff. Prometheus: A methodology for developing
intelligent agents. In AOSE III, volume 2585 of LNCS, pages 174–185.
Springer, 2003.

[22] E. Di Paolo, J. Noble, and S. Bullock. Simulation models as opaque
thought experiments. In Artificial Life VII, pages 497–506. MIT Press,
2000.

[23] F. Polack, S. Stepney, H. Turner, P. Welch, and F. Barnes. An architec-
ture for modelling emergence in CA-like systems. In ECAL, volume 3630
of LNAI, pages 433–442. Springer, 2005.

[24] F. A. C. Polack, T. Hoverd, A. T. Sampson, S. Stepney, and J. Timmis.
Complex systems models: Engineering simulations. In ALife XI. MIT
press, 2008. to appear.

[25] D. J. Pumfrey. The Principled Design of Computer System Safety Anal-
yses. PhD thesis, Department of Computer Science, University of York,
2000.

[26] H. K. Rucker, H. J. Wynder, and W. E. Thomas. Cellular mechanisms
of CNS pericytes. Brain Research Bulletin, 51(5):363–369, 2000.

Simulating biology: what the simulation shows 123

[27] A. Sadot, J. Fisher, D. Barak, Y. Admanit, M. J. Stern, E. J. A. Hub-
bard, and D. Harel. Towards verified biological models. IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 2007.

[28] R. G. Sargent. An exposition on verification and validation of simulation
models. In 17th Winter Simulation Conference, pages 15–22. ACM, 1985.

[29] R. G. Sargent. The use of graphical models in model validation. In 18th
Winter Simulation Conference, pages 237–241. ACM, 1986.

[30] R. G. Sargent. Verification and validation of simulation models. In 37th
Winter Simulation Conference, pages 130–143. ACM, 2005.

[31] T. Srivatanakul. Security Analysis with Deviational Techniques. PhD
thesis, Department of Computer Science, University of York, UK, 2005.
http://www.cs.york.ac.uk/ftpdir/reports/YCST-2005-12.pdf.

[32] S. Stepney, F. Polack, and H. Turner. Engineering emergence. In
ICECCS’06, pages 89–97. IEEE Computer Society, 2006.

[33] J. Sudeikat, L. Braubach, A. Pokahr, and W. Lamersdorf. Evaluation of
agent-oriented software methodologies – examination of the gap between
modeling and platform. In AOSE 2004, volume 3382 of LNCS, pages
126–141. Sringer, 2004.

[34] H. Turner, S. Stepney, and F. Polack. Rule migration: Exploring a design
framework for emergence. Int. J. Unconventional Computing, 3(1):49–66,
2007.

[35] R. A. Weaver. The Safety of Software – Constructing and Assuring Ar-
guments. PhD thesis, Department of Computer Science, University of
York, 2003. YCST-2004-01.

[36] M. Wheeler, S. Bullock, E. Di Paolo, J. Noble, M. Bedau, P. Husbands,
S. Kirby, and A. Seth. The view from elsewhere: Perspectives on alife
modelling. Artificial Life, 8(1):87–100, 2002.

[37] S. Wilson, J. McDermid, P. Fenelon, and P. Kirkham. No more spineless
safety cases: A structured method and comprehensive tool support for the
production of safety cases. In 2nd International Conference on Control
and Instrumentation in Nuclear Installations (INEC’95), 1995.

[38] W. Wu and T. Kelly. Towards evidence-based architectural design for
safety-critical software applications. In Architecting Dependable Systems,
volume 4615 of LNCS. Springer, 2007.

[39] B. P. Zeigler. A theory-based conceptual terminology
for m&s vv&a. Technical Report 99S-SIW-064, Ari-
zona Center for Integrative Modeling and Simulation, 1999.
http://www.acims.arizona.edu/PUBLICATIONS/publications.shtml.

124 Andrews, Polack, Sampson, Timmis, Scott, Coles

