
Mobile Processes, Mobile Channels and Complex Dynamic Systems

Eric Bonnici and Peter H. Welch

Abstract— This paper explores a process-oriented approach
to complex systems design, using massive fine-grained con-
currency, mobile channels and mobile processes. The complex
systems studied are self-organising, with emergent and evolving
behaviours (apparent at the global level) arising from massive
interactions between relatively simple components (that have
only local knowledge). Classical ant foraging is used as a case
study. Processes are used to represent space, environmental
factors and the ants themselves. Ant processes (like all pro-
cesses) only have knowledge of their internal state (looking for
food, looking for their nest) and what they can glean from
their local neighbourhood (by interacting with the processes
making up that neighbourhood). The networks constructed are
dynamic, changing as the ants move around and environmental
factors are introduced and modified. The paper reports on
two mechanisms for achieving this: channel mobility and
process mobility. The language for implementation is occam-
π, which has the necessary concurrency mechanisms built in
as fundamental primitives and whose semantics is rooted in
the process algebras of CSP and the π-calculus. Performance
figures are given, including speedup curves for multicores, and
some conclusions drawn.

I. INTRODUCTION

Complex systems are the result of emergent behaviour

arising from the mass interaction of underlying components

whose individual behaviours are relatively simple and where

the rules of interaction are also simple [14], [3], [4]. Exam-

ples include social insects (such as bees, ants, and termites)

which display interesting, unexpected and complex behaviour

when working together. On its own, of course, an insect is

still a very complex system. However, the complexities of

individual insects are not sufficient to explain the complexity

of social insect colonies [14], meaning that a group of insects

can display behaviour that is far more complex than any of

the individuals taking part. The complex cooperation needed

for this arises without any need for guidance from a leader

or the existence of a global plan [4]. No central control may

have other advantages; for example, if part of the colony gets

destroyed whilst foraging for food, the rest of the society can

remain unaffected.

Our thesis is that programming models need to reflect

these mechanisms to keep them simple and that process

oriented concurrency is a good candidate for that reflection.

occam-π is a language that provides such a programming

model. It gives direct expression to concurrency, including

processes, communication, barriers, choice (prioritised and

non-deterministic), dynamic network construction, mobile

channels, mobile barriers and mobile processes. Its overheads

are sufficiently light to support millions of fine-grained

processes on standard microprocessors; its runtime kernel

Eric Bonnici and Peter H. Welch are with the Computing Laboratory,
University of Kent, CT2 7NF, UK: email {eb708,p.h.welch}@kent.ac.uk.

automatically and efficiently exploits multicore (without pro-

grammer intervention) and it distributes over clusters of

machines (with programmer intervention). Stable reasoning

about their construction (e.g. the absence of deadlock and

race hazards) follows from the formal and compositional

process algebras (CSP and π-calculus) that underlie its

definition. It has significant potential for modelling complex

systems, including biological mechanisms [11], and we ex-

plore part of this in this paper.

II. COMPLEX DYNAMIC SYSTEMS AND OCCAM-π

occam-π is an imperative state-full language built around

the concurrency model of Hoare’s CSP [5], [12]. Compiler

enforced language rules prevent unsynchronised access to

shared resources, so that no data race hazards can happen.

Strict aliasing control enables this and provides a simple

semantics for assignment.

occam-π extends the classical occam2.1 language [6]

through the careful blending in of dynamic mechanisms

from Milner’s π-calculus [8] – in particular, mobile channels,

barriers and processes [17], [18], [11], [16], [2].

A full summary is not possible in this paper and the reader

is referred to the last group of references cited above and

the extensive on-line documentation – such as [10]. We limit

ourselves here to the key ideas relevant to this paper.

A. Processes

A process encapsulates state and runs in its own thread, or

threads, of control. Unlike an object, which relies on external

threads to execute its methods, a process is in charge of its

own behaviour (which makes them easier to design, program

and reason about). Processes interact through synchronising

on shared events (e.g. communication channels and multiway

barriers). A network of synchronising processes is itself a

process, just at a higher level of abstraction. A process may

refuse any event (e.g. take-this-stuff) at any time for internal

reasons (e.g. no-room). This constrains the behaviour of the

network in which it is embedded, shaping that for safe and

correct higher-level function. Communication and synchro-

nisation also enable safe access to data. With the additional

checks mandated by occam-π, the complete absence of race

hazards is guaranteed. Classical skills of serial programming

remain valid – no locking algorithms are needed to ensure

that concurrency introduces no surprises. The semantics of

concurrency are compositional.

B. Channel Bundles, Servers and Clients

Processes communicate through zero-buffered strongly

typed channels. A sending process blocks until its message

is taken. A receiving process blocks until a message is

232978-1-4244-2959-2/09/$25.00 c© 2009 IEEE

sent. When needed, buffered channels are easy to intro-

duce with extra processes. Communication occurs between

a single sender and receiver; multiple senders (respectively

receivers) may share the same channel-end but only one

sender (receiver) at a time may use it, with competing senders

(receivers) queued. Channels may be grouped into bundles,

with each element carrying a different message structure and

used in differing directions.

Client-server systems typically consist of server processes

waiting for a request on one element within a channel bundle,

the end of which is exclusive to that server, and returning

information on another channel element. Client processes

make requests and receive answers from the other end of

the channel bundle, which is shared by all clients. A client-

server transaction is atomic – it cannot be interleaved with

transactions with other clients on the same bundle.

Process networks built purely from client-server relation-

ships and which have no cycles in those relationships are

deadlock free [7]. The models outlined in this paper make

heavy use of client-server relations (with regions of space

modelled by servers and passing traffic modelled by clients),

but they are not pure client-server systems.

C. Barriers and Phases

Barriers, [18], enable many processes to synchronise.

When one process offers to synchronise on a barrier, it blocks

until all processes registered on that barrier also synchronise

– the last one to do so releases all the others. Barrier

registration is automatic and cannot be side-stepped – if a

process has a reference to a barrier, it is registered. Processes

may be registered on many barriers. The registration set of

a barrier is dynamic as processes acquire reference, lose

reference or terminate.

In our models, client processes (e.g. ants) use barriers

to coordinate access to the space servers into time-distinct

phases [18], [11]. In each cycle (i.e. time step of the

simulation), each client goes through two phases – each one

scheduled by a barrier:

while alive

seq

sync observe

... observe the world (interact with local sites)
sync modify

... change the world (interact with local sites)

The above occam-π pseudo-code shows the main loop

structure for these clients. The observe barrier ensures that

all processes enter their observe the world phases together:

they all see the same world view, as nothing changes during

this period. Having made their plan(s), they wait for each

other on the modify barrier before entering their change the

world phases together: in this period, they may be competing

with each other for limited resources (e.g. to move to the

same site), changing their local environment (e.g. depositing

pheromone) and actually moving themselves. Competition is

resolved by the site servers.

Within individual phases, the whole system behaves as a

pure client-server network, with no client-server cycles, and

is therefore deadlock free. Thus, each phase terminates. We

may now ignore those phases and consider the remaining

behaviour. This comprises all the client processes looping

through the above cycles, with new ones appearing and old

one terminating at arbitrary moments. However, the occam-

π rules (enforced at compile time) ensure that all alive

processes are registered on the two barriers and, since they

all synchronise on them in the same sequence and in every

cycle, the system is deadlock free at this level. Therefore,

the whole system is deadlock free.

The occam-π language rules also ensure (at compile time)

that no race conditions on shared data is possible. So we can

be confident of these basic safety elements in our design.

D. Dynamics and Mobility

Both channels and processes may be constructed at run-

time. Network topologies, even between existing processes,

may change.

There are two ways of doing this: channel mobility and

process mobility. In a sense that we are still discovering,

these are dual notions. Network dynamics can be captured

by either, but the ease and efficiency of capture varies. In

some circumstances, mobile channels work better; in others,

we should use mobile processes. In work reported to date

(e.g. [11]), only mobile channels have been considered. Apart

from acceptance and performance trials, this is the first

exploration (of which we are aware) of the mobile process

mechanisms within occam-π.

In addition to traditional data, channels may carry ends of

channels (actually ends of channel bundles). For example, a

client process may construct a new channel bundle, send one

end down a channel to a server and keep the other. The server

may fork a temporary process to service the client through

the received bundle, in parallel with other client transactions.

Alternatively, the server may forward that channel bundle end

to another server that is better equipped to deal with it. Either

way, the original client has a new connection to a process

with which it was previously unconnected.

An ant process holds the client-end of a channel bundle

to its current site. It can request the client-end of a bundle

to a neighbouring site (always held by the site) to be sent

over the reply channel in the bundle currently held. Once

received, it can let go its previous channel bundle and it is

connected to its new site – the ant has moved.

Channels may also carry processes. These must be spe-

cially declared as mobile process types having a specific

interface of synchronisation parameters (which we can think

of as sockets into which channels must be plugged before it

can be activated). Instances are referenced through variables

and constructed at runtime. Initially passive, they may be

moved through channels like any ordinary data. Language

rules ensure that only one process at a time has reference to

any individual mobile element – communication of a mobile

really moves it (i.e. the sending process loses it) [1].

A process holding a mobile process (its platform) may

activate it by plugging it into a set of locally available and

compatible channels. The mobile process then runs and can

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 233

use the channels provided. At any time, the mobile process

may suspend its activity and become passive again. Control

then returns to its platform process (which was suspended

while its mobile runs), which may send it on through any

channel that is typed to carry it. When re-activated by some

other platform, the mobile resumes from the exact point it

suspended with all its private state intact, but now with the

different set of external channels it has been given.

More details of how these different mechanisms are used

in our ant models, together with performance comparisons,

are given in the next section.

III. ANT FORAGING MODEL

A process oriented model of ants foraging for food has

been constructed. The architecture is massively parallel and

fine-grained, modelling directly notions of space, locality and

time. It also directly reflects the dynamics of a changing en-

vironment, the movement of autonomous agents within space

and all interactions between all parties (fixed or mobile).

A. Architecture

This architecture evolves that described in [11], with

adaptations to use mobile processes and allow many agents

per site. The world is made up of many site processes

connected through channels to form a two dimensional space.

These site processes act as server processes responding to

requests made by client processes. The client processes are

ants (which move from site to site) and pheromones (which

the ants deposit at sites, which do not move and which

gradually evaporate). The site processes also do not move –

unless we want to model a universe where the space topology

is dynamic (e.g. for the introduction of worm holes!). Each

site represents a different and limited area of space, allowing

a limited number of ants to be present at any moment. No

limit is imposed on the amount of pheromone present at a

site (their molecules are much smaller than ants).

Fig. 1. The server processes

Each site services a channel bundle through which any

number of clients can interact. Each site also has reference

to the client-ends of its eight neighbour sites – not to use

for communication with its neighbours (which would cause

deadlock through client-server cycles), but to provide links

that the ants may use to explore its locality and, if so minded,

to move.

In Figure 1, the cubes represent the site processes, and

the cylinders pointing down to them are the channel bundles

which each site services. The dotted arrows pointing to

neighbouring sites’ channel bundles indicate references to

the client ends of those bundles.

The ants have two states representing goals: looking for

food and looking for the nest. Whenever a goal is reached,

the ant is given a reward which allows it to deposit more

pheromone making its trail stronger.

Pheromones are processes whose on-the-fly construction

is triggered by ants arriving at virgin sites. They become

attached to those sites. These processes control a level of

pheromone (passive data) recorded in their sites, gradually

reducing that strength over time and modelling evaporation.

They are topped up by any further arrival of ants and

terminate when (if) their controlled level reaches zero. In

our current model, they do not replicate and diffuse to

neighbouring sites, though they easily could.

Time is modelled by barrier synchronisation of the pro-

cesses that must be aware of time: in this study, the ants and

pheromones.

Site processes do not need to be aware of the passing of

time. If there are no ants or pheromone present, they wait

passively for something to appear. This waiting requires zero

processor cycles: sites perform no active polling. A waiting

site will be awakened (i.e. re-scheduled) by its next visitor.

This saves much computation since there are a great many

sites, most of which will be passive at any one time.

Visualisation of the evolving system is managed by map-

ping the state of each site (the number of ants present, the

levels of pheromone, the presence of food, the presence of an

obstacle) to a colour on a single pixel of a two dimensional

graphics window. Each site shares its pixel with a rendering

process that sees the whole pixel matrix. This sharing is

made safe through the renderer synchronising with the ant

and pheromone processes on the observe and modify

barriers (section II-C) and only rendering in the observe

phase (when nothing is changing). Users may interact with

this visualisation (through mouse clicks) to introduce food

and place obstacles. In this model, food and obstacles have

no autonomous behaviour and are modelled by passive data

(part of the state of the containing site).

B. Ants and Pheromone

When searching (i.e. not following a trail of pheromone),

ants do not move completely at random. They move by a

combination of random walk and a preference for moving

forward, a preference that grows weaker each time it is sat-

isfied. The greatest percentage chance for movement is given

to the previous direction, with lower and lower percentages

given to steeper and steeper turns. This prevents 180 degree

234 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

turns and results in more ant-like searching, rather than the

Brownian motion effect of a pure random walk.

Other rules have been introduced. If an ant has not found

food after searching for a defined number of steps, it gives up

and tries to make its way back to the nest. However, a small

probability is set for giving up the search for food before that

defined maximum has been reached. This introduces further

emergent overall behaviour, reducing the number of ants that

get lost (i.e. cannot find a trail back to the nest).

Following a pheromone trail is not randomised: ants move

towards the highest concentration, subject to there being

room. However, another probability controls whether an ant

following a pheromone trail abandons it and heads off at

random. The benefits of this will be discussed in section IV.

Direction preference probabilities (and the rules for their

decay), the maximum search length, and the give up search

anyway and abandon trail probabilities were initially set by

guesswork. They evolved to the set of values used by observ-

ing the resulting behaviours in the model and comparison

with moving images of real ants. Of course, this would be

an interesting challenge for an evolutionary algorithm – but

we confess to doing this by hand (and eye).

Ants deposit pheromone on the site in which they currently

reside by sending it a message containing the type and

amount of pheromone to deposit. The site reacts by forking

off a pheromone process to control its evaporation (unless

one already exists for that particular variety). In our model,

sites have no sense of time so cannot do this unaided. The

pheromone processes, on the other hand, synchronise on the

barriers and can track time.

Ants deposit two types of pheromone: food and nest. If

an ant finds sites containing pheromone, it will tend to move

to the neighbouring site containing the largest amount of

pheromone relevant to its current goal (find food or find its

nest), depositing the opposite pheromone just before it moves

(reinforcing a trail back to the nest or the food).

Fig. 2. A layout of pheromone close to a nest

Figure 2 shows an example of pheromone intensity levels

across a grid of site processes. In this case, the middle site

is the nest and contains the greatest level. Levels decrease

every step taken away from it. If an ant is following the nest

pheromone back to the nest, then all it has to do is always

travel towards the largest pheromone level that it can see

from its current location. If there are equally large levels,

then the ant chooses the one closest to its previous direction

of travel (which means the ant prefers to keep moving in a

straight line).

The simulation starts with all ants in the nest. As they

move out, they search for food. Once a food source is

discovered, the ant looks for home. Gradually, and just

from the low-level rules programmed in the ant processes, a

trail emerges as more and more ants discover the relevant

pheromone signals. This trail formation is not explicitly

programmed into the model but emerges from the mass

interactions of sites, ants and pheromones. The trail gets

stronger and straighter as it gets reinforced by continual use.

C. Mobility

Mobility in the system is achieved via one of two meth-

ods: either by using mobile channels or by using mobile

processes.

1) Mobile Channels: Ants move between sites by asking

its current site for the client end of the channel bundle

serviced by its destination site. The current site has this refer-

ence, since the destination site will be one of its neighbours.

The site delivers that channel bundle client end through one

of the channels in its own bundle to the requesting ant. The

requesting ant receives this new channel bundle end and lets

go the one it was previously holding. It is now attached to

the new site – it has moved.

Fig. 3. Mobile channels (before ant movement)

Fig. 4. Mobile channels (after ant movement)

Figure 3 shows an ant process communicating with the

leftmost site process. This ant wishes to move to the process

to the right. The ant requests and receives the client end

of the destination site’s channel bundle, attaches to it, and

releases its grasp on the previous channel end – Figure 4.

The ant has moved from one site process to another.

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 235

2) Mobile Processes: Instead of achieving mobility via

the movement of channel ends, processes may be declared

to be mobile themselves. Mobile processes must be plugged

in (through channels) to an environment (other processes). To

do this, they rely on a platform process which receives them,

plugs them in and activates them and, when they suspend,

sends them on their way again. A mobile process must

suspend before it can move. Once suspended, the mobile

process may be sent down a channel and reconnected within

a different environment.

For some applications, the platforms that handle mobile

processes can be permanent and pre-assigned. For our model,

this platform cannot be the site process itself since, other-

wise, it would not be able to to do anything once it had

activated the mobile – it would have to await its suspension.

So instead, the site forks off a special platform process just to

manage the newly arrived mobile for the duration of its visit.

This allows any number of mobiles to be plugged into the site

(though the site limits that for its own reasons) and for the

site to continue to service them. Fortunately, the overheads

for forking processes, shutting them down and recovering

their resources (e.g. memory) are extremely small in occam-

π (section IV-B).

Fig. 5. Mobile processes (before ant movement)

Fig. 6. Mobile processes (after ant movement)

In Figure 5, the ant process resides on a platform process

– indicated by the disc under the picture of the ant. As in the

previous example, the ant wishes to move to the right. From

its current site, it gets the client end of the channel bundle

serviced by its chosen destination, communicates that to its

platform and suspends. The platform sends the ant process

through one of the bundle channels to the destination site

and terminates – its job is done. The destination site (which

is already committed to accepting the new ant) receives it,

forks off a new platform process and gives it the ant. The

new platform plugs the ant into the new site – Figure 6. The

ant has moved.

Each mobile process needs to be initialised upon creation.

This is done via an initialisation channel, which is then never

used after initialisation! When the process is moved and

reconnected in a new environment, an initialisation channel

still needs to be plugged in, even though it will never be used.

Currently, this is handled by plugging in a dummy channel

– which is trivial, but tedious and needlessly distracting (see

section V).

IV. OBSERVATIONS AND PERFORMANCE

A. Emergent Behaviour

There should be no difference in the observed behaviour

between the version using mobile channels and that using

mobile processes. None was observed.

The simulation starts with all ants in the nest. All the ants

start off looking for food. Initially, there is no pheromone

anywhere in the simulated world and the ants move around

at ‘random’ (see section III-B). The ants are looking for

food, or food pheromone, which means that they deposit nest

pheromone as they move. This allows them to find their way

back to the nest once a food source is found. Once an ant

locates a food source, it starts to head back home whilst

depositing food pheromone to allow other ants (including

itself) find the way to the food source later. Other ants in the

vicinity of the food pheromone are able to detect this and

follow it to the food source. Just from these low-level rules,

a trail emerges as more and more ants discover the relevant

pheromone signals. The trail gets stronger and straighter as

it gets reinforced by continual use.

Fig. 7. A simple trail

Figure 7 shows such a trail of ants from a food source to

the nest, which is gradually straightening. The nest is located

in the middle of the screen with the food source located at

the end of the trail in the upper right hand corner. The darkest

spots are the ants. The different shades along the trail show

food and nest pheromone intensity levels – the darker the

shade, the more pheromone is present.

Once a trail is formed, it gets reinforced by other ants

using it. Simply following a trail strengthens the intensity

of pheromone laid upon it. Ants following shorter trails

take less time than those following longer ones. Those ants,

therefore, make more frequent trips, resulting in greater

deposits of pheromone. So, shorter trails mean stronger trails.

236 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

This positive feedback recruits further ants, which prefer to

join a stronger trail when given a choice (and making it

stronger still). Since shortest paths are straight lines, trails

that survive will tend to straight lines.

Longer trails that may have formed are eventually aban-

doned by the ants. These trails disappear over time as their

pheromone evaporates. This evaporation plays a negative

feedback role in the simulation, removing longer trails as

their use dwindles. Such behaviours are not explicitly pro-

grammed into the simulation at any level, but are emergent

properties arising from the mass interaction between the low-

level components (ants, pheromones, sites) in the system.

However, if obstacles are present through which the ants

may not pass, there may be no direct straight line between

a nest and a food source.

Fig. 8. An obstructed trail

Figure 8 shows some obstacles placed between the nest

and food source (and over the trail shown in Figure 7).

These obstacles are represented by the three parallel bands at

right-angles to the original trail – someone has dropped three

bricks! Sites containing obstacles refuse entry to ants, which

must therefore choose some other path. Some ants may find

one way round the obstacle and other ants the other. Those

that find these ways lay down pheromone that attracts more

ants and form new trails. But the path that survives will be the

one that takes the shortest time to traverse – i.e. the shortest

way round the obstacle is found. This classic route finding

(e.g. [9]) is demonstrated in our models and shows further

unprogrammed emergent behaviour. Of course, if after this

route has become established the obstacles are removed, the

trail gradually reverts to its original (single) straight line.

As mentioned in section III-B, an ant may decide sponta-

neously to abandon a trail it is following. This enables some

of the ants to search out better paths than the one they are

currently on, keeping the search space open. It also helps

for dynamic environments in which obstacles are introduced

or removed on the fly: the current best path may disappear

(a brick is dropped) or cease to be the best path (a brick is

picked up).

In the case of several food sources, if a closer one is

added after a trail has been set up, then the ants still have a

chance of finding it. Changing the value of this exploration

factor results in a different thickness for the ant trail. If the

exploration factor is set to a high value, then the chance of an

ant abandoning a trail is high and the observed trail becomes

thick. Decreasing the exploration factor results in a thinner

trail being observed. The reason is that there are less ants

abandoning and rejoining the trail than in the former case.

The time it takes for a trail to settle into straight line(s) also

changes. A thick trail settles more quickly than a thin one.

B. Benchmark Results

The mobile channel and mobile process versions of the ant

foraging simulation were compared for their performance.

The models are normally run with graphics visualisation

rendering the state of the system every cycle. Since we are

concerned with the impact of the different overheads for

mobile channels versus mobile processes, the visualisation

was set to render only once every 100 cycles. The models

report counts of cycles-per-second every second.

No food sources were provided so as to promote stable

repeatable results. No pheromone is deposited – its control

process is not mobile, so its introduction would merely add

noise to the overheads we want to compare.

Model behaviour follows the same pattern every run: the

ants just spread out foraging.

Observing the cycles-per-second counts, the highest counts

are at the start when all the ants are close to their nest. These

counts descend to about two thirds of their original values as

the ants spread out, bottoming out to a “steady” value within

a minute (wall clock time). The steadiness of these values

are modulo a noise level of plus-or-minus 1 (i.e. around 7%),

almost certainly caused by noise in the Unix environment in

which they were measured. The counts reported in Figure 9

are mean values, rounded to whole numbers, taken after 80

seconds (i.e. within the steady region). A detailed statistical

analysis has not been conducted.

The reason for the decay in these counts is down to

processor memory cache. At the start, only a few sites are

being interrogated by all the ants. As they spread out, the

number of sites holding ants approaches the number of ants

(since we have many more sites than ants!). A greater number

of active sites means more different memory requests each

cycle and the number of cache misses will grow. Once the

ants have spread out sufficiently so that there is mostly only

one ant per site, more memory requests will be from cache

lines not recently visited and, hence, lost. [This conclusion

was confirmed by running the system with all ants initially

dispersed randomly throughout the space: the lower steady

cycle rates showed up immediately.]

Of course, if we placed food and watched trails emerge,

the ants would become concentrated in the trails, memory

requests would be similarly concentrated and the cycle rate

should increase. But this is difficult to control in a repeatable

way so does not play a part in our benchmark. For compari-

son of the effect of the overheads of mobile channels versus

mobile processes, the no-food scenario suffices.

The parameters for our benchmark are as follows: 5000

ants on a grid of 600 by 600 sites. That is 360,000 site

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 237

processes, 5000 ant processes and a handful of others sup-

porting visualisation, user interaction and other controls. The

total number of active processes, at any particular moment,

will be around 10,000 (one site per ant) once the system has

reached the settled state at which the cycle count is taken.

Note the site processes in this active set will be continually

changing as the foraging ants move around.

Fig. 9. Performance versus number of cores (ants dispersed and foraging)

The machine on which the benchmarks were run is an

eight core Intel Xeon workstation comprising two E5320

quad-core processors running at 1.86GHz. Pairs of cores

share 4MiB of L2 cache, giving a total of 16MiB L2 cache

across eight cores. The benchmarks were run by forcing the

code to restrict itself to using one, two, four or all eight cores

(which is done by setting environment variables observed by

the runtime - i.e. with no change in source or compiled code).

Figure 9 shows speedup curves for performance against

the number of cores used. The two curves show the results

for the mobile channel version (dashed line) and the mobile

processes version (continuous line).

There are two immediate observations. Firstly, there is

only a very modest performance penalty, for this application,

from using mobile processes over mobile channels.

This is despite the higher actual overheads of implement-

ing agent movement using mobile processes – especially with

dynamically forked platforms (as in this system). To move a

mobile process, it must first suspend, its platform must send it

through the channel to its destination and then terminate, that

destination must fork a new platform and give it the mobile

and, finally, the new platform must re-activate the mobile.

On the other hand, to move by receiving the channel bundle

end of its next destination, all a process has to do is ask for

it, receive it and discard its old connection.

Stress testing benchmarks ([17]) show that movement via

mobile channels, with similar cache misses, costs around 100

nanoseconds. For movement via mobile processes, this cost

quadruples. Actual costs depend, of course, on conditions in

the running application – but these figures are in the right

ball park.

On two cores, for example, there are approximately 11

cycles per second. That means 55,000 interrogations (per

second) by the ants of their site processes leading to around

55,000 movements (per second), since the ants have spread

out and will always be able to move. This means around one

movement every 18 microseconds. The above cost estimates

for ant movement mean, therefore, that they account for less

than 3% of the whole load – even if mobile processes are

used.

So, the results are not surprising but, nevertheless, good to

see. They give us confidence that results will be similar for

any application with a modest amount of work for agents to

do in between movements.

The second observation is that real speed-up is obtained

from multicore processors using the massively fine-grained

concurrency technology built into the occam-π language, its

compiler and runtime. For these models, speedup is super-

linear from one to two cores, not bad from two to four, but

drops off between four and eight.

Of course, normal occam-π applications would simply use

as many cores as are available. No source or compiled code

changes are needed to take advantage of this. It just happens.

V. CONCLUSIONS

Classical emergent behaviours from an ant colony foraging

for food have been reproduced using a modelling and simula-

tion approach that is non-classical, but which closely reflects

real-world mechanisms. System design and implementation

is massively parallel, with any item exhibiting non-trivial

autonomous behaviour (e.g. a hungry ant, an evaporating

pheromone, a location in space) represented by a process.

The networks built and reported here for the ant foraging

model are dynamic, with the number of processes, the num-

ber of connecting events and their topologies under continual

change. These dynamics closely follow similar dynamics

in the real world. There is no particular difficulty in this

approach – indeed, an important point is its simplicity, which

comes from its directness.

This paper has focussed on two alternative mechanisms for

achieving these dynamics: mobile channels and mobile pro-

cesses. These are elements of the occam-π multiprocessing

language, whose language rules, compiler and runtime pro-

vide ultra-light realisation of all the concurrency mechanisms

described. In previous work (e.g. [11]), only mobile channels

have been used for the dynamics. We needed reassurance that

mobile processes were actually practical and efficient for use

in real applications (as opposed to acceptance trials).

Mobile channels and processes are dual mechanisms for

mobility. We note that the former are simpler to program and

have (roughly) half the overheads of the latter – although the

overheads for both are very small. The latter is, for some, a

more attractive mechanism since it reflects more directly the

idea of movement.

For a system running on platforms with distributed mem-

ory (such as a workstation cluster), mobile processes would

be efficient by default, since they really do move to the

machine holding their next environment.

238 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

With mobile channels, the processes stay in their original

machine and plug into the environment to which they have

‘moved’ over networked channels (and suffer much higher

latencies and lower bandwidths for interaction).

This problem may be overcome through extra components

added to the system design. When a mobile process needs to

move between machines, it sends its state as raw data to a

receiving process on the target machine and terminates. The

receiving process forks off a new mobile process and sets

its state with the received state. The process has teleported,

leaving a dead body behind (which automatically recycles its

memory just before dying – i.e. there is no need for garbage

collection). Details are reported in another submission to

CEC 2009 by other authors [13].

We must also note that, at present, the occam-π run-time

does not support the communication of mobile processes be-

tween machines. Until that is implemented, a distributed sys-

tem using mobile processes has to use the same fix described

for mobile channels, when crossing memory boundaries.

There are, however, some problems with the mobile

process model currently presented by occam-π. They are

certainly somewhat trickier to program than mobile chan-

nels. One aspect of this is the single interface that mobile

processes offer to their environments. Sometimes, a mobile

process needs to offer different faces to the world: for

example, when being initialised, used and decommissioned.

Currently, its single interface must be the union of all those

required and dummy channels must be plugged into those

parts that a particular environment does not need. This is

dangerous since care must be taken by the mobile not to use

any channels holding dummies. This is a language design

issue that this work has brought into focus.

The benchmark results show the practicality of the process

oriented mechanisms reported and, especially, the practicality

of occam-π. With liberal use of concurrency (over 10,000

processes active at any time from a pool of more than

370,000), the ants system still runs at around 11 cycles

per second on a standard dual-core processor. Even when

visualisation is turned on (i.e. images rendered every cycle),

the count drops by only one or two. This is fast enough for

rapid feedback from and interaction with such models.

The other information from the benchmarks is how well

this massively concurrent fine-grained process oriented ap-

proach scales over multicores, thanks in large part to the

efficiency of the underlying occam-π technology. Such re-

sults should not cause surprise. Having a sufficient surplus of

logical concurrency over physical concurrency – the principle

of parallel slackness – was one of the tenets of Valiant’s

“bridging model” for general purpose parallel computation,

back in 1990 [15].

ACKNOWLEDGEMENTS

This work was partly supported by the CoSMoS

project (www.cosmos-research.org, EPSRC grants

EP/E053505/1 and EP/E049419/1). We are indebted to all

our colleagues in this project and in the Concurrency sub-

group at Kent for their insights, motivation, encouragement

and technical skills. We are especially grateful to Fred

Barnes, Adam Sampson and Carl Ritson for their work on

the occam-π technology and to Carl for running the reported

benchmarks on the dual quad-core processor at very short

notice.

REFERENCES

[1] F.R.M. Barnes and P.H. Welch. Mobile Data Types for Communicating
Processes. In Proceedings of the 2001 International Conference

on Parallel and Distributed Processing Techniques and Applications

(PDPTA’2001), volume 1, pages 20–26. CSREA press, June 2001.
ISBN: 1-892512-66-1.

[2] F.R.M. Barnes and P.H. Welch. Prioritised dynamic communicating
and mobile processes. IEE Proceedings – Software, 150(2):121–136,
April 2003.

[3] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence From

Natural to Artificial Systems. Santa Fe Institute, Oxford University
Press, New York, 1999.

[4] G. Flake. The Computational Beauty of Nature: Computer Explo-

rations of Fractals, Chaos, Complex Systems, and Adaptation. The
MIT Press, Cambridge, USA, 1998.

[5] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall,
London, 1985.

[6] Inmos Limited. occam2 Reference Manual. Prentice Hall, 1988.
ISBN: 0-13-629312-3.

[7] J.M.R. Martin and P.H.Welch. A Design Strategy for Deadlock-
free Concurrent Systems. Transputer Communications, 3(4):215–232,
October 1996.

[8] R. Milner. Communicating and Mobile Systems: the Pi-Calculus.
Cambridge University Press, 1999. ISBN-10: 0521658691, ISBN-13:
9780521658690.

[9] L. Panait and S. Luke. A Pheromone-Based Utility Model for
Collaborative Foraging. In Proceedings of the Third International

Conference on Autonomous Agents and Multiagent Systems, IEEE
Conference Proceedings, pages 36–43. IEEE Vomputer Society, July
2004. ISBN: 1-58113-864-4.

[10] P.H.Welch. An occam-pi Quick Reference, 2008. https:

//www.cs.kent.ac.uk/research/groups/sys/wiki/

OccamPiReference.
[11] Carl G. Ritson and Peter H. Welch. A Process-Oriented Architecture

for Complex System Modelling. In Alistair A. McEwan, Steve Schnei-
der, Wilson Ifill, and Peter Welch, editors, Communicating Process

Architectures 2007, volume 65 of Concurrent Systems Engineering
Series, pages 249–266, Amsterdam, The Netherlands, July 2007. IOS
Press. ISBN: 978-1-58603-767-3.

[12] A.W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall,
1997. ISBN: 0-13-674409-5.

[13] A.T. Sampson, J.M. Bjørndalen, and P.S. Andrews. Birds on the
Wall: Distributing a Process-Oriented Simulation. In A.M. Tyrell
et al., editor, Proceedings of the 2009 IEEE Congress on Evolutionary
Computation, IEEE Conference Proceedings. IEEE Press, May 2009.

[14] G. Theraulaz, E. Bonabeau, and J. Deneubourg. The Origin of Nest
Complexity in Social Insects. Complexity, 3:15–25, 1998.

[15] L.G. Valiant. A Bridging Model for Parallel Computation. Communi-

cations of the ACM, 33(8):103–111, August 1990.
[16] Peter H. Welch and Frederick R.M. Barnes. A CSP Model for

Mobile Channels. In P.H. Welch, S.Stepney, F.A.C. Polack, F.R.M.
Barnes, A.A. McEwan, G.S. Stiles, J.F. Broenink, and A.T. Sampson,
editors, Communicating Process Architectures 2007, volume 66 of
Concurrent Systems Engineering Series, pages 17–33, Amsterdam,
The Netherlands, September 2008. IOS Press. ISBN: 978-1-58603-
907-3.

[17] P.H. Welch and F.R.M. Barnes. Communicating Mobile Processes:
introducing occam-pi. In A.E. Abdallah, C.B. Jones, and J.W. Sanders,
editors, 25 Years of CSP, volume 3525 of Lecture Notes in Computer

Science, pages 175–210. Springer Verlag, April 2005.
[18] P.H. Welch and F.R.M. Barnes. Mobile Barriers for occam-pi:

Semantics, Implementation and Application. In J.F. Broenink, H.W.
Roebbers, J.P.E. Sunter, P.H. Welch, and D.C. Wood, editors, Commu-

nicating Process Architectures 2005, volume 63 of Concurrent Systems

Engineering Series, pages 289–316, Amsterdam, The Netherlands,
September 2005. IOS Press. ISBN: 1-58603-561-4.

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 239

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

