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a b s t r a c t

We present three models of how transcription factors (TFs) bind to their specific binding sites on the
DNA: a model based on statistical physics, a Markov-chain model and a computational simulation.
Comparison of these models suggests that the effect of non-specific binding can be significant. We also
investigate possible mechanisms for cooperativity. The simulation model suggests that direct
interactions between TFs are unlikely to be the main source of cooperativity between specific binding
sites, because such interactions tend to lead to the formation of clusters on the DNA with undesirable
side-effects.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Controlled binding of transcription factors (TFs) to one or more
specific binding sites is an important mechanism for cells to
regulate gene expression. It is therefore a key-challenge for the
cell to be able to control the occupation of individual regulatory
sites with the respective TFs in response to changes of external
conditions. The overall qualitative form of TF binding is well
known; if there is a single binding site, then the probability of the
binding site to be occupied approaches 1 as the concentration of
free TFs in the cell increases. This saturation curve is often
modeled using the Michaelis–Menten function. If there are more
than one binding sites, then the transition from low to high
binding probabilities is more pronounced and often modeled
using the so-called Hill-equation (see below). There are a number
of models that can reproduce these overall predictions in a
qualitative way. These models are, however, not all equivalent
with respect to their key-assumptions. In many practical
modeling situations the simplest models will do; however, for
other purposes, such as for example model-based parameter
estimation, it will be desirable to have a more detailed model. This
article will present three different models of TF binding. Its main
purpose is to (i) explore their properties and predictions (ii) show
how they are related to one another and (iii) show their
limitations.

Gene activation and TF binding is commonly modeled using
differential equation approaches (see for example Murray, 2008;
Chu et al., 2008; Narang, 2006; Narang and Pilyugin, 2007; Zhu
et al., 2007) or piecewise-linear differential equations (see for
example Alon, 2006; Batt et al., 2005). Differential equation
models are very convenient from a practical point of view because
there is a well developed body of theory to either solve them
analytically or at least numerically. The fundamental assumption
underlying any such model, however, is that variables are
continuous—an assumption that is often too far from the truth
to be useful in biological systems. The genome is often realized by
only a single molecule and TF numbers can be low (several
hundreds). Most differential equation approaches assume that TFs
and their binding sites are suspended in the well stirred
cytoplasm. As we will show in this contribution, the assumption
of the cell being a well stirred reactor makes a qualitative
difference to the behavior of the model when compared to models
that take into account a modest amount of spatial organization.

The assumption of well-stirred reactors can be relaxed in
simulation based approaches such as discrete event simulation
algorithms (Gillespie, 1972; Gibson and Bruck, 1998; Ramsey et al.,
2005), stochastic model checkers (Kwiatkowska et al., 2001) and
process algebras (Regev et al., 2001) (to name but a few). For the
understanding of TF binding to specific simulation models are
possible choices, but not necessarily the most convenient ones,
because the representation of a large number of non-specific
binding sites can lead to overly complicated models. Another
approach are models based on statistical physics. Ackers et al.
(1982) developed a model of the gene regulation of the l-phage
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repressor (also see Ben-Naim, 1997, 1998). More recently Bintu
et al. (2005a, b) presented a number of models to calculate the
gene activation function of various operator architectures. The
idea of these approaches is to take the weighted sum over all
states of the system that are of interest and to divide this by the
weighted sum over all possible states to calculate the (steady
state) probability of the states of interest to be observed.

Such statistical physics models are very useful in that they
often lead to formulas to calculate various quantities associated
with the model of interest. One usually has to rely on computa-
tional algebra systems to compute the results, but this is normally
still much faster than a discrete-event based simulation of the
same system. On the downside, for moderately complex systems
formulating the partition function (that is the sum over all
possible states) can be a taunting exercise in combinatorics. It is
presumably for this reason that previous authors made a number
of simplifying assumptions to keep their statistical physics models
tractable. In particular they ignored non-focal TFs and assumed
that there are no intra-species TF–TF interaction with cooperative
effect except between the specific binding sites.

In this contribution we are not so much interested in
calculating a specific biological scenario, but instead we are
interested in the differences between various modeling ansatzes to
TF-binding. We recognize that modeling always requires simplify-
ing assumptions, but it is essential to understand what error any
such simplifying assumption causes. In order to come to a better
understanding of this, we compare three modeling approaches.
Firstly, based on the above-mentioned works by Bintu and Ackers,
we develop a statistical physics models of the binding of TFs to
DNA. Our model is somewhat less concrete than previous work,
but allows for an arbitrary number of specific binding sites. In the
appendix to this article we also present an extension that models
the case of an arbitrary number of TFs, although we do not
elaborate this extended model. One of the immediate conclusions
we could draw from this statistical physics model is that in order
to compute the probability of a certain number of specific binding
sites to be occupied only the number of focal TFs are important.
Non-specifically binding TFs can be ignored. However, using a
discrete-event computational simulation, we can show that for a
slight relaxation of these assumptions, this conclusion becomes
incorrect.

We also compare the computational and the statistical model
with a Markov-chain model. The latter has the advantage that it
can easily incorporate cooperativity and leads to some relatively
easy-to-compute formulas. However, this comes at the cost of
having to neglect the statistical contribution of non-specific
binding, and thus leads to a qualitatively different model. Seen
from this perspective, it is questionable to what degree one can
generalize from conclusions won from models of gene activations
that ignore non-specific binding.

Our analysis is itself based on a number of simplifying key-
assumptions: We assume that the DNA is a linear string of binding
sites (see below for details). For a particular type of TF only some
of the binding sites are specific. TFs bind to all sites, but much
stronger to specific than to non-specific sites. In all models below
we assume that there are two types of TFs. The focal TF-type will
have a particular set of specific binding sites on the DNA and will
be the molecular type we are interested in. Throughout this
manuscript, this will be referred to as type-1 TF. The second type
of TF—type-2 TFs—subsumes all other TFs present in the cell. They
are of no direct interest other than their possible interference with
the binding properties of type-1 TFs. Furthermore, in this
contribution we will assume (except in the Markov-chain model)
that all TFs are always bound to the DNA (although possibly to
non-specific sites), rather than be freely suspended in the
cytoplasm. They find the specific sites through repeated binding

and unbinding to/from non-specific sites, rather than through
direct attachment from an unbound state. In cells a certain
proportion of TFs will normally be freely suspended in the
cytoplasm (Kao-Huang et al., 1977; Wunderlich and Mirny, 2008).
It feels safe to ignore this effect given that it seems unlikely that a
TF directly binds to the specific site from a suspended state in the
cytoplasm.

We compare the models by asking the following question with
each of them: Given SS specific binding sites, SNS non-specific
binding sites, N1 TFs of type-1 and N2 type-2 TFs, what is the
steady state probability that 0pkpSS of specific binding sites are
occupied? We will describe our statistical physics model in
Section 2.1; this model is limited to consider two types of TFs. A
more general version of the model including a derivation can be
found in Appendix A. A simple Markov-chain model of the same
system will be described in Section 2.2. Both of these models will
be compared to the computational model described in Section 2.3.
Section 3 will present simulation results obtained with the
computational model and relate the three models to one another.
Section 4 concludes this article.

2. Models

2.1. Statistical physics model

We start with the simplest possible case to illustrate the basic
principle of statistical physics-based models of TF binding. We
assume that TFs are freely suspended in a perfectly mixed
aqueous environment of the cytoplasm. Then following Sneppen
and Zocchi (2006) we can write the statistical weight of l TFs
being bound as

Zl ¼
ð2V

ffiffiffi
2

p
ðmkBTÞð3=2ÞÞN$l

ðN $ lÞ!
exp $

lG
kBT

" #
(1)

Here V is the cell volume, m the mass of the TF and kB the
Boltzmann constant and T the temperature. Setting F ¼
2V

ffiffiffi
2

p
ðmkBTÞð3=2Þ one can rewrite this equation as

Zl ¼
FN

ðN $ lÞ!
exp $

lG0

kBT

" #
(2)

where G0 ¼ Gþ ln F is the apparent binding free energy. This form
draws all changes from F that depend on the number of binding
sites into the apparent binding free energy. If there are altogether
three binding sites then the probability of exactlymo3 sites being
bound is given by

Pðexactly mÞ ¼
Zl¼mP3
i¼0Zl¼i

(3)

This model would be valid for a short polymer with relatively few
non-specific binding sites. DNA molecules, on the other hand,
have a large number of binding sites and non-specific binding of
TFs to these sites needs to be taken into account. The simplest
case is to consider only a single TF with binding free energy Gs for
the specific site and Gn for the non-specific sites. Assume that the
DNA is a sequence of non-overlapping binding sites, of which SNS
are non-specific and there is exactly one specific binding site (i.e.
SS ¼ 1). Depending on the binding strength and the temperature,
the TF will spend a certain (stochastic) amount of time bound to a
binding site, before detaching and re-attaching to a different site.
It thus performs a randomwalk on the DNA. We are not concerned
about the details of the random walk here (though see
Wunderlich and Mirny, 2008) although we do assume that over
an infinite time the TF will sample every site an infinite number of
times. In the long run the cumulative binding time to any
particular site will depend on the binding strength. For each of the
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non-specific sites the statistical weight is given by (Ackers et al.,
1982; Bintu et al., 2005a)

wNS ¼ F exp $
Gn

kBT

" #
(4)

Here, kB is the Boltzmann constant, T the temperature, and F a
factor that takes into account some geometrical particulars of the
TF and the DNA sequence and is not further characterized.1 Note
that wNS is the statistical contribution of a single non-specific site
only; in order to obtain the total weight of all non-specific sites
wNS needs to be multiplied by the number of possible ways to
occupy the non-specific sites. For the present case of a single
particle this is simply the number of non-specific sites SNS; hence
the total statistical weight of the TF binding to non-specific sites is
given by

ZNS ¼ SNSwNS (5)

Similarly, the statistical weight of the TF being bound to the
specific site can be written as

ZS ¼ F exp $
Gs

kBT

" #
(6)

Since there is only one specific site and one TF this case captures
all possible ways to occupy the specific site. In order to calculate
the probability Pb of a TF to occupy the specific binding site we
divide its statistical weight by the total statistical weight of all
possible configurations (compare Gerland et al., 2002):

Pb ¼
ZS

ZS þ ZNS
¼

1

1þ SNSF exp
Gs $ Gn

kBT

" # (7)

Pb is a sigmoidal function of Gs making the transition from 1 to 0
as Gs increases (assuming a fixed Gn). Hence, for a fixed number of
non-specific sites the probability of the specific site to be occupied
increases to 1 with Gs ! $1, i.e. increasing binding strength of
the specific site. For a fixed specific free energy, but an increasing
number of specific sites, Pb falls exponentially to 0.

This very simple model illustrates the basic behavior of TF
binding to specific and non-specific sites, but is by itself rather
unrealistic. Firstly, normally there will be more than one TF in the
cell, there will potentially be more than one specific binding site,
and moreover there will be many types of TFs each with their own
specific binding sites. In order to keep the complexity of the model
manageable we will assume that the specific binding sites are
bound with free energy Gs by the N1 type-1 TFs, whereas all other
binding sites have a binding free energy Gn; the N2 TFs of type-2
bind all sites with Gn. This latter assumption is of course not strictly
correct as there will be specific binding sites for every species of TF.

If we again use F1 and F2 as factors that take into account
geometric aspects of the system, then setting F ¼ F1 ¼ F2 one can
write the partition function as follows:

Z ¼
XSS

i¼0

SS

i

 !
SNS

N1 $ i

 !
SS þ SNS $ N1

N2

 !

&FN2þN1 exp $
N2Gn

kBT
$

iGs

kBT
þ
ðN1 $ iÞGn

kBT

" #
(8)

Analogously to the partition function in Eq. (6) this partition
function sums over all possible configurations of TFs of type-1 and
type-2 binding to specific and non-specific sites. In order to
calculate the probability of a particular configuration, one needs
to normalize the statistical weight of the configuration in question
by the partition function Z. For example, the probability of exactly

one specific binding site being occupied by a TF of type-1 is

Pðexactly oneÞ ¼
Zi¼1

Z
(9)

where Zi¼1 denotes the summand in Eq. (8) where i ¼ 1. The reader
can easily convince herself that this partition function leads to the
same binding probabilities as Eq. (7) for SS ¼ 1, N2 ¼ 0 and N1 ¼ 1.
Note that Eq. (9) is independent ofN2, i.e. the number of TFs of type-2
and the geometric factors F. This means that, at least in this simple
model, the binding probability of type-1 TFs to their specific sites
does not depend on the number of type-2 TFs. Similarly independent
of N2 is the probability that all binding sites are occupied:

Pðall threeÞ ¼
Zi¼3

Z
(10)

Indeed, it can be easily seen that the binding probability of any
configuration of type-1 TFs binding to specific sites is independent of
N2. Note, however, that this conclusion depends on the simplifying
assumption that the binding free energy of type-2 TFs is the same for
all binding sites. In general this will not be the case. To illustrate this
consider the (extreme) case where type-2 TFs have the exact same
binding characteristics as type-1 TFs, i.e. bind to all sites with the
same free energy as type-1 TFs. In this case, the probability to find a
certain number of specific binding sites occupied by type-1 TFs will
crucially depend on the number of type-2 TFs. The partition function
of this system can be written as follows:

Zs ¼
X
i¼SS
j¼i

j¼maxð0;i$N2 Þ
i¼maxð0;N1þN2$SNS Þ

SS

i

 !
i

j

 !
SNS

N1 $ j

 !
SNS $ N1 þ j

N2 $ iþ j

 !

&FN1þN2 exp $
iGs

kBT
$ ðN1 þ N2 $ iÞ

Gn

kBT

" #
(11)

Here the double index in the summation symbol indicates two
nested sums with the inner index indicating a summation for each
value of i. The statistical weight of the configurations where all SS
specific binding sites are occupied by type-1 TFs is given by

wa ¼
SNS

N1

 !
SNS $ N1

N2 $ SS

 !
FN1þN2 exp $

SSGs

kBT

" #

& exp $ðN1 $ SS þ N2Þ
Gn

kBT

" #
(12)

Here we make the reasonable assumption that there are more type-2
TFs than specific binding sites, i.e. N24SS. As before, the probability
of all SS binding sites being occupied is Ps ¼ waZ

$1
s . It can be easily

seen that Ps reduces to Eq. (9) for N2 ¼ 0 and SS ¼ 1. More generally,
in the case of N2 ¼ 0 then Ps gives the probability that all specific
binding sites are occupied when type-2 TFs always bind with Gn.

The mathematical model equation (8) leads to the familiar
saturation curves that one would expect from gene activation
functions (see in this context also Bintu et al., 2005a, b). In
particular, using Eq. (8) to calculate the probability that a TF is
bound to a unique specific binding site yields

Pðunique specific site boundÞ ¼
expð$GsÞ

expð$GsÞ þ
SNS
N1

$ 1

" #

¼
N1

N1 þ KðSNS $ N1Þ
(13)

Here we assumed kBT ¼ 1 and Gn ¼ 0 and K ¼ expðGsÞ. For SNS
large compared to N1 this expression is well approximated by a
Michaelis–Menten function (which is also frequently used to
describe the dynamics of gene activation functions). Whether or
not this assumption is indeed met will depend on the binding free
energy to the specific site. The approximation is only good when
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already a small number of TFs will guarantee full occupation of
the binding sites.

2.2. Markov-chain model

It is possible to extend the statistical physics model equation (8)
to include cooperativity between TFs. This normally requires
recursive relations to calculate the probability of a specific micro-
state of the system. Developing this is beyond the scope of this
contribution. However, a simplified model that assumes perfect
mixing in the cytoplasm and ignores the effect of DNA as a reservoir
for particles allows more compact modeling of cooperativity.
Assume that all non-specifically bound TFs are conceptually
concentrated into one single non-specific site that acts as a
‘‘reservoir’’ for TFs. This simplified scenario corresponds to the case
where non-specifically bound TFs are suspended in the cytoplasmic
solution (note that this is also the assumption behind the Sneppen
and Zocchi model equation (2)). Binding to the specific sites
happens with a specific rate that depends on the affinity of the TF to
the binding site and the concentration of the TFs.

A thus simplified system can be described as a ðSS þ 1Þ state
continuous time Markov-chain; the individual states of this chain
correspond to 0;1; . . . ; SS specific sites being occupied. Markov-
chains are normally represented as n& n matrices that describe
the rate (in the case of continuous time Markov-chains) or
probability (in the case of discrete time Markov-chains) of
transition between the possible states. We take here as an
example the case of three specific binding sites. The transition
matrix for this case is then given by

Q ¼

$3Nkb 3Nkb 0 0

kuC$2 $kuC$2 $ 2ðN $ 1ÞkbC1 2ðN $ 1ÞkbC1 0

0 2kuC$1 $2kuC$1 $ ðN $ 2ÞkbC2 ðN $ 2ÞkbC2

0 0 3ku $3ku

2

66664

3

77775

(14)

Here Qij is the rate of transition from state i to state j; the state Q00

is represented by the top left entry of the matrix. N is the number
of TFs; kb and ku are the phenomenological binding and unbinding
rates, respectively. The factor of 3 in Q01 is due to the fact that
there are three free binding sites. C'l is the cooperativity modifier,
i.e. a factor that determines how the forward and backward
binding rates are changed when l binding sites are occupied in the
case of C$1 or when l binding sites are free in the case of C$1. If
this value is41 then we deal with positive cooperativity (i.e. once
one site is bound binding to further sites is facilitated), otherwise
cooperativity is negative. To illustrate the origin of the entries of
this matrix, consider as an example Q12 (given by 2kuC$1); this
term describes the transition from a state where two specific sites
are occupied to a state where only one is. The transition rate is
given by twice the unbinding rate of a single bound TF, kb, because
at any time either of the two could unbind; the C$1 term modifies
this rate depending on the cooperativity of the system. The entry
Q32 (ðN $ 2ÞkbC2) describes the transition rate from a state where
two TFs are already bound to a state where all specific binding
sites are occupied. In this case, there are only N $ 2 TFs in the
cytoplasm (because two are bound already); hence the basic rate
of binding kb must be multiplied by the number of TFs that could
bind and a cooperativity modifier ðC2Þ. The rationale for all other
entries is similar.

The steady state distribution vector p of such a continuous
time Markov-chain is given by the solution to

p (Q ¼ 0
X

i

pi ¼ 1

This is a system of equations that can be solved for each of the pi.
Solving it for p4 yields

p4 ¼
NðN $ 1ÞðN $ 2Þ

N3 $ 3N2 þ 2N þ K3 þ c$1ð3K2N þ 3K2N2 $ 3KNÞ
(15)

Here we assumed that all cooperativity terms C'l ¼ c to simplify
the equation and we set K:¼ kub=kb. In the limit of infinite
cooperativity c ! 1 the parenthesis in the denominator goes to 0,
leading to the expression:

lim
c!1

p4 ¼
NðN $ 1ÞðN $ 2Þ

NðN $ 1ÞðN $ 2Þ þ K3
(16)

This expression is well approximated by a Hill function as long as
N is large enough.2 Eq. (16) suggests that the Hill coefficient is
limited by the number of binding sites. This indicates that switch
like gene activation functions need to include additional mechan-
isms, simply because the number of TFs controlling one particular
gene is limited. In order to achieve thresholding or switching
behavior it might be necessary to couple gene activation to
transduction pathways (such as the Koshland Goldbeter, Goldb-
eter and Koshland, 1981; Tyson et al., 2001, switch) or to form
multimer TFs (also see Tyson et al., 2003 in this context).

Turning our attention now to the case of no cooperativity, i.e.
c ¼ 1 Eq. (15) becomes

p4 ¼
NðN $ 1ÞðN $ 2Þ

N3 $ 3N2 þ 2N þ K3 þ 3K2N þ 3KN2 $ 3KN
(17)

This model can be related to the statistical physics model
equation (8). In particular, looking at the probability of three
binding sites being occupied in Eq. (10) if one ignores the
contribution from the non-specific sites to the statistical weight,
i.e. SNS=ðSNS $ N1þ iÞ ¼ 1, then the statistical model corresponds
to the Markov-chain model in Eq. (14). In this case Eq. (10) can be
expanded as

Pðall threeÞ ¼
3!

N

3

" #
expð$3GÞ

P3
i¼0i!

N

i

" #
expð$iGÞ

(18)

Here again we set kBT ¼ 1 for notational convenience. Expanding
the binomial coefficients in Eq. (18) and setting K ¼ eG yields after
some simple yet tedious manipulations:

Pðall threeÞ ¼
NðN $ 1ÞðN $ 2Þ

K3 þ 3NK2 þ 3N2K $ 3NK þ N3 $ 3N2 þ 2N
(19)

This is the same as Eq. (17) showing the equivalence of the Markov
model with the statistical physics model when the statistical
contribution of the non-specific binding sites is ignored in the
latter. A similar exercise shows that the Sneppen and Zocchi
model equation (2) can be brought into the same form.

2.3. Computational model

This section describes a computational simulation model of TF
binding. This model explicitly represents the DNA sequence and
the TFs populating the sequence. The DNA sequence is a random
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string of length l composed of a four letter alphabet. Its length and
composition bias can be set arbitrarily by the user. TFs bind to the
DNA string with free energy GðsÞ, where s is the particular
sequence to which the TF attaches; when the sequence s of the
string coincides with the specific binding site, then we call s the
binding motif. The length of s is equal for all TFs and fixed during a
simulation and equal for all TFs in the model (in all simulations
considered here the length was kept fixed at the arbitrary value
of 9). We used two different rules to determine the binding
energy:

(1) There are only two binding energies, namely a specific binding
energy and a non-specific one. TFs bind with the non-specific
free energy Gn unless they are of type-1 and the binding
sequence exactly matches the binding motif, in which case the
TF binds with energy Gs. This rule corresponds exactly to the
above described theoretical model equation (8), but is an
approximation with respect to the real biological case. It is
more realistic to assume that the non-specific binding free
energy is sequence dependent.

(2) For TFs of type-1 the binding energy is calculated as GðsÞ ¼
Ss! ( dsi ;sti where st denotes the binding motif and ! a factor
representing the contribution from each matching nucleotide
and dx;y ¼ 1 for x ¼ y and 0 otherwise. So, for example, if the
binding motif is aatc and the actual sequence is atgc then
GðatgcÞ ¼ !1 þ 0þ 0þ !4 ¼ 2!. TFs of type-2 bind either with
a user determined fixed energy G2 or with the same motif
matching rule as type-1 TF.

The second scenario is generally held to be a good approximation
to the bio-chemical reality (see Gerland et al., 2002); the first
binding rule is still of interest here because the binary distinction
between specific and non-specific binding sites allows a direct
comparison of the computational model with the statistical
physics model. Note, however, that even the first rule is somewhat
different to the above mathematical model (8) that assumed the
DNA to be partitioned into separated binding sites. In the
computational model each TF has a binding motif of length l
and thus occupies at least l nucleotides. On circular DNA strands
there will still be L binding sites if the DNA is composed of L
nucleotides.

The update algorithm of the model is as follows:

(1) The simulation is initialized by populating the DNA string
with a user-determined number of TFs of type-1 and type-2.
The time is set to zero and each TF is assigned a binding time
drawn from an exponential distribution with mean GðsÞ,
where s indicates the particular binding site and GðsÞ the free
binding energy appropriately calculated for TFs of different
types (see above).

(2) The TFs are placed in a list ordered with respect to the
remaining binding time; the TF with the lowest remaining
binding time is the top element.

(3) The top TF of this list is updated, i.e. removed from its current
binding site and moved to a randomly chosen new position.

(4) The system time is set to Tb þ Tu where Tb is the system time
when the top TF attached to its current site and Tu is the total
time it was bound to this site.

(5) A new binding position is determined for the TF as in step 1
and it is assumed that the time required for TF to move from a
position to the next is negligible compared to the time they
spend bounded to the DNA.

(6) A new binding time is determined for this TF and it is added to
the ordered list at the appropriate position.

(7) The procedure continues with step 3.

The location of the specific binding sites on the DNA can be
determined by the user. During the simulation the cumulative
occupation time of each of the specific binding sites is recorded.
After a user-specified system-time (i.e. not real simulation time)
the simulation is stopped and estimates for the relevant binding
probabilities are calculated by dividing the actual occupation time
by the total system time. In the limit of an infinite system time
this would give an exact value for the binding probabilities,
however, at the expense of an infinite simulation time. In practice
we found a system simulation time of 100 000 time units to be
sufficient to give fairly accurate estimates of the binding
probabilities (as indicated by the scatter of the results) while
allowing reasonable simulation times.

The model also allows cooperativity. In real systems there are
at least two different possible sources for cooperativity. One way
to think about it is that attachment of a TF leads to a local
conformational change of the DNA which in turn leads to an
increased (or decreased) binding affinity of other TFs. Another
possible source of cooperativity is direct interaction between TFs:
If two TFs bind close to one another and form bonds between
them as well as with the polynucleotide then this will result in an
increased period of residency of the individual TFs on their
respective binding sites. Which one of those mechanisms is
biologically more important is unclear; indeed there might be
other causes of cooperativity. Corresponding to those two possible
mechanisms in the model the user can choose between two types
of cooperativity. Cooperativity-1 is assumed to be effective at the
specific binding sites only; one can think of it as being mainly
caused by indirect effects (such as conformational changes of the
DNA). Cooperativity-2 is effective between any pair of adjacent
type-1 TFs whether or not they are bound to specific sites.
Biologically, cooperativity-2 can be thought of as being due to
direct TF–TF interactions.

Cooperativity-1 is implemented as follows:

) Upon binding to a specific site S the total number of occupied
specific binding sites (other than the current) is determined.
This number is n.

) Assuming n40, two random binding times are drawn from an
exponential distribution. Firstly, T1 is the binding time for the
specific binding site in absence of cooperativity; T2 is the
binding time taking into account cooperativity and is drawn
from an exponential distribution with mean Gs þ ncM where cM

is the cooperativity parameter specified by the user. Note that
cM is different from the cooperativity parameter c of the
Markov-chain model. In the computational model, the case of
no cooperativity is realized by cM ¼ 0 whereas in the Markov-
chains model it is c ¼ 1. In general there is no simple
relationship between c and cM .

) The TF at S binds for a period of T2; the other TF at specific
sites have the value maxð0; T2$ T1Þ added to their binding
time.

The algorithm for cooperativity-2 is similar, yet instead of
taking into account all TFs bound to specific sites all TF modify
their binding properties according to the number of TF of the same
type that bind to immediately adjacent sites.

3. Results and discussion

We first check that the mathematical model (8) indeed
matches the predictions of the computational model given the
same parameters. Fig. 1 confirms for a specific set of parameters
(see figure caption) that there is good agreement between the
model and the theoretical predictions; note that Fig. 1 shows
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results obtained from simulations with overlapping binding sites,
whereas the model equation (8) assumes non-overlapping sites.3

The simulation results show a certain degree of noise; this noise
could be reduced by increasing the time over which results are
averaged, although only at the expense of increased computa-
tional costs. We could also confirm the prediction of the
theoretical model that the probability of specific sites being
occupied is independent of the number of type-2 TFs (data not
shown).

While the statistical physics model equation (8) does agree
with the simulation results, the Markov-chain model equation
(15) does not (data not shown). As discussed above, the Markov-
chain model is in general not equivalent to the statistical physics
model equation (8) even for the case of c ¼ 1. It is therefore not
surprising that it does not reproduce the data for the same value
of K .

Fig. 2 shows a fit of the Markov-chain model to two
simulations of the computational model with identical para-
meters but cooperativities of cM ¼ 1 and 5, respectively (see
legend of Fig. 2). In both cases a good fit can be obtained and the
fit correctly assigns a higher cooperativity factor to the cM ¼ 5
simulation. It also assigns a different K to both simulations, which
is incorrect, as these simulations are only distinguished by their
different cooperativities but not by their K. Attempting to fit the
Markov-chain model with the K obtained for the cM ¼ 1 case to
the simulation with cM ¼ 5 however, is not successful, as can be
seen in Fig. 2.

Fig. 3 shows example simulations of the system with
cooperativity-2 (i.e. local TF–TF interactions) enabled. If there is
only one TF-species in the simulation then, for medium and high

numbers of TFs and medium to high cooperativity the occupation
probabilities obtained from simulation runs fell into two distinct
classes: During each particular run the specific binding sites were
either (close to) permanently or (nearly) never occupied with
very little in between. Which of those outcomes is realized
in a particular run is a probabilistic choice of the system (with
some bias; see below). The splitting of outcomes is clearly visible
in Fig. 3 for the simulation with only one species; for more than
about 150 TF the occupation probabilities are either very high or
very low. Note that this effect is an artifact of the limited
averaging time to estimate the occupation probability. More
accurate estimates of the true occupation probabilities are
possible but would become increasingly expensive in terms of
computing time. Note, however, that biological cells are limited by
a similar time constraint. They themselves do not ‘‘see’’ the true
steady state of a system but must average over some finite time-
period. The above failure of the computational model to give an
accurate estimate of the steady state probabilities, although an
artifact, is therefore likely to be of some biological relevance.

The underlying cause for this effect is the formation of clusters
of adjacent TFs forming strong cooperative bonds to the DNA.
Once such a cluster forms it would be very stable over time. If it
happens to cover the specific binding sites, then these will be
stably occupied for a long time. If, however, they are not covered,
then the stability of the clusters means that the waiting time
before they are covered will be very long. The transition between
situations where the TFs cover their specific sites and where they
are not is very slow. For moderately strong cooperativities, TF–TF
interactions provide a much larger contribution to the binding
strength than the specific sites. One would thus expect the
importance of (i.e. frequency of binding to) the specific binding
sites to diminish relative to the clustering effect.

This is confirmed by Fig. 4 which provides another perspective
of the same phenomenon. It shows a histogram of the observed
fraction of times of the specific sites being occupied for many
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3 Strictly speaking Fig. 1 only confirms the agreement between model and
simulation for the particular parameter set used. However, we found similar (or
better) agreement for all parameter sets we tested (data not shown).
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re-runs of the model with identical parameter settings (see figure
caption for details). For high cooperativity ðcM ¼ 5Þ the bars of the
histogram concentrate at the extreme ends near the occupation
probabilities of 1 or 0 indicating that the specific sites are either
always covered or never. Lowering the cooperativity from 5 to 1

reveals a different picture. There is still the possibility that the
specific binding sites are never covered or (nearly) always; in
addition there is another maximum around 0.3 showing that in
some simulations the specific sites are sometimes covered; this
suggests that there are a number of runs where the formation of
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clusters does not happen or happens to a lesser degree. Lowering
the cooperativity even further to below 1 (data not shown) will
lead to a single maximum around a specific probability.

Assuming there is no cooperativity between TFs of different
species one is led to conjecture that introducing type-2 TFs will
tend to reduce the clustering, because the second species would
occupy space and prevent type-1 TFs from forming too long
chains. Fig. 3 shows that introducing a second species of TF on the
DNA indeed restores the (statistical) predictability of TF-binding,
at least up to a certain point (about 300 type-1 TFs in the case of
this graph). Clustering, can only be reversed for low cooperativ-
ities. This can be understood by considering that for high
cooperativities a single pair will tend to have long resident times
on the DNA compared to adjacent type-2 TFs. They will thus
sample a larger number of neighboring TFs, which increases the
probability that one of those is of type-1 and thus increases the
size of the cluster. Hence a higher cooperativity parameter cM

tends to lead to longer chains.
This suggests that cooperativity based on direct TF–TF

interactions is mechanistically problematic and for this reason
possibly selected against over evolutionary times. At least, we
would expect it to be of subordinate importance only, because it
would lead to TF clustering on the DNA if the cooperative
interactions are too strong. On the other hand if they were only
weak then they would lead to a relatively minor modification of
the probability of binding. So either way the conclusion from this
is that localized effects at the specific site, possibly mediated
through conformational changes upon binding of TFs is biologi-
cally more plausible as a mechanism for cooperativity; this is in
line with previous empirical findings (Ben-Naim, 1998).

So far we assumed that the type-2 TFs do not discriminate
between binding sites and generally have a low affinity to the
DNA. The qualitative conclusion from the basic model equation (8)
was that in this case the number of type-2 TFs are immaterial for
the occupation probability of the specific binding sites. In the
context of clustering due to TF–TF interactions, it became
apparent that this conclusion is not always correct. To the extent
that TF–TF cooperativity does exist, it seems that the presence of
type-2 TFs plays a certain role in avoiding the above-mentioned
clustering.

We now extend the basic model and assume that also type-2
TFs have their own binding profile in the sense that their binding

affinities are determined according to the same rules as those of
type-1 TFs. (We do not drop the assumption that the cooperativity
between TFs of different types are negligible.) Fig. 5 shows three
scenarios of this modified system: In the first two scenarios the
binding motifs of type-1 and type-2 TFs are non-overlapping, i.e.
their respective binding motifs do not share a single position. In
this case one type of TF has a minimal binding free energy for the
specific binding sites of the other type and thus spends minimal
time on the specific sites of the other type. For the parameters
used in the example simulation in Fig. 5 the binding probability
increases near linearly and reaches about 0.7 for 50 TFs.

The situation changes very much in the other extreme case
when the binding motifs of both types of TFs completely overlap.
This case can be treated mathematically and is given by Eq. (12).
Both types of TFs have equal binding times (on average) and there
will thus be direct competitive binding to the sites; the
probability of type-1 TFs to bind the specific sites will then
strongly depend on the number of type-2 TFs. Fig. 5 illustrates this
scenario and shows that the (comparatively low number of) type-
1 TFs are crowded out from the specific site by the much higher
number of type-2 TFs. This would make control of the occupation
of the binding sites inefficient.

Control over the operator region can be restored by coopera-
tivity. Fig. 5 shows a simulation of TF-binding to the specific sites
when both type-1 and type-2 binding motifs are identical, but
only type-1 TFs show cooperativity. Already a moderate number
of TFs (about 50) leads to binding probabilities even higher than in
the case of non-overlapping motifs. Interestingly, the increase of
the binding probability as a function of the number of type-I TFs is
very steep. The graph in Fig. 5 uses cooperativity-2, resulting in a
rather noisy transition; cooperativity-1 leads to a similar result
but considerably less noise (data not shown).

The conclusion from this is similar as above: Once one takes
into account that type-2 TFs have themselves a specific binding
profile, then a whole new range of potential interferences
between types of TFs can arise. These effects were not visible in
the statistical physics model equation (8) and they are certainly
absent from the simpler differential equation models in the
literature or the Markov-chain model equation (14). The question
that arises now is to what degree one can still trust any
conclusions that are drawn from the elegant but potentially
over-simplifying models in the literature?
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4. Conclusion

We have presented a statistical physics model of TF binding to
DNA and compared it to a simpler Markov-chain model and a
computational simulation model. The statistical physics based
model (Eq. (8)) predicted that the probability to find a specific
binding site occupied depends only on the number of focal TFs
(i.e. the number of TFs for which this site is specific). This
conclusion, however, is only justified if at least the following two
conditions are met:

) There are no TF–TF interactions: Once one allows for direct
interactions between adjacent TFs, then this can lead to
clustering of TFs on the DNA. The number of non-specific TFs
is then crucial to retain cellular control over the specific sites.

) Type-2 TF have equal affinity to all sites: This assumption is
certainly not correct and changing it can have noticeable
consequences for the binding of TFs to the DNA.

One has to assume that in real genomes, these conditions are
normally not met; hence the statistical physics model above (Eq.
(8)) is incorrect in a qualitative way. Formulating more realistic
partition functions by taking into account sequence dependent
binding or cooperativity is possible in principle; in practice it
quickly leads to very complex and intractable models. The main
reason for this explosion of model complexity is the necessity to
count over all possible states and all possible binding sites.

Models that assume that the cell is a perfectly mixed solution
of TFs (such as the above Markov-chain model equation (14)) are
much simpler to formulate and compute. The essential simplifica-
tion of these models compared to statistical physics models is that
they do not take into account that DNA acts as a reservoir for TFs.
As such they ignore a potentially important spatial aspect of the
system. Our comparison indicates that ignoring this effect leads to
models that are fundamentally different to statistical physics
models. The Markov-chain model equation (14) can in general not
be fitted to the statistical physics model that takes into account

non-specific binding. Fig. 2 shows a case where it could be fitted
to simulation results of the computational model with coopera-
tivity-1; in this case it led to a wrong estimate for the binding free
energy of the system.

For theoretical investigations, the increased tractability of the
simplified models will in many cases compensate for their relative
inaccuracy. When they are used to estimate system parameters
(for example via fitting) then these models are normally not
suitable because they would lead to incorrect parameter values.

Appendix A. Generalization of the statistical physics model for
the case of more than two types of TF

In Section 2.1 we only considered the case of 1 type of TF with
specific binding sites and a second type that has no specific
binding sites. It is possible to write down a partition function for
the more general case of n types of TFs (denoted as ai each with its
own number of specific sites Ai). The problem boils down to
correctly counting all possible ways to distribute all TFs of
different types over the possible specific and non-specific sites.
One way to do this is to count all the ways that TFs can be
distributed over the DNA as follows:

(1) Distribute each of the ai over their specific binding sites Ai.
(2) Then distribute the remaining ai over the specific binding sites

of other types of TFs, i.e. all remaining free Aj, where jai.
(3) Finally distribute all remaining TFs over all non-specific sites.

The first step, i.e. distributing each TF of type ai over their Ai

specific binding sites. This leads to a binomial coefficient ðAi
xi
Þ for

each type of TF.
The next step is to distribute the TFs over the remaining free

specific binding sites of other types of TFs. For this we need to
choose for each type of TF j a number of molecules to distribute
over the specific binding sites of all other types of TFs, i.e. we must
select a number ykr of TFs of type k among the binding sites of type
r (here r ¼ q or r ¼ qþ 1 (if q ¼ k)). At every step in the second
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round the total number of TFs already placed on binding sites of
type r is xr þ

P
jok and jar y

j
r so that the number of available

binding sites of type r is Ar $ xr $
P

jok and jar y
j
r; the sum

represents the binding sites occupied in the first round (i.e. the
specific sites occupied by their native TFs) and at every previous
step in this second round (i.e. the specific binding sites that have
so far been nonspecifically bound). The number of ways to place
these ykr TFs of type k on the remaining binding sites of type r is
then

Ar $ xr $
P

jok and jary
j
r

ykr :

0

@

1

A.

Care must be taken to select the indices correctly, i.e.
0pykrpminfAr $ xr $

P
jok and jar y

j
r ; ak $ xk $

P
1phpr and hak y

k
hg.

Finally, having positioned the appropriate numbers of TFs on the
specific binding sites, the still remaining ai $ xi $

P
0pjpn and jaiy

i
j

TFs of type i must be distributed among the nonspecific binding
sites for every one of the types i. The number of ways to do this is
given by the multinomial coefficient

W

z1; z2; . . . ; zi; . . . ; zn;W $
Pn

i¼1zi

 !
¼

W !

z1!z2! . . . zn! W $
Pn

i¼1zi
$ %

!

where zi ¼ ai $ xi $
P

0pjpn and jaiy
i
j. To reduce the notational

complexity, we introduce the sets of allowable indices

Sij ¼ h 2 Nj0phpmin Ar $ xr $
X

jok and jar

yjr ; ak $ xk

8
<

:

8
<

:

$
X

1phpr and hak

ykh

))

and also a shorthand notation for the binomial coefficients

Yk
r ¼

Ar $ xr $
P

jok and jary
j
r

ykr

0

@

1

A

(keep in mind that rak). Our final counting formula is then as
follows:

Zx ¼
Yn

i¼1

Ai

xi

 !
X

y1
2
2S12

Y1
2

X

y1
3
2S13

Y1
3 . . .

X

y1n2S
1
n

Y1
n

X

y2
1
2S21

Y2
1

&
X

y2
3
2S23

Y2
3

X

y2
4
2S24

Y2
4 . . .

X

yn
n$1

2Snn$1

Yn
n$1

W !

z1!z2! . . . zn! W $
Pn

i¼1zi
$ %

!
.

(A.1)

This counts the total number of ways to distribute the TFs
over the various binding sites for a particular assignment of
TFs to their specific binding sites corresponding to the statistical
weight

wx ¼
Xn

i¼1

Faii exp $
X

j

xjG
j
s

kBT
þ
xjG

j
n

kBT

 !0

@

1

A.

In order to obtain the entire partition function Z must be summed
over all feasible values of x.

Z ¼
X

x

Zxwx

Appendix B. Dependence on nucleotide composition

Throughout this article it was assumed that the DNA is not
biased with respect to its base composition. In real bacteria, this
assumption is not correct and needs to be taken into account for
quantitatively correct models of TF-binding. However, our
simulations indicate that the base composition only plays a
relatively minor role. Fig. B1 shows a number of simulations for
DNA strings with extreme nucleotide biases.
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