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Abstract: In epidemiology, bio-environmental research and many other scien-

tific areas, the possible long-term cumulative effect of certain factors has been

well acknowledged, such as air pollution on public health, exposure to radiation

as a possible cause of cancer, among others. However, there is no known statis-

tical method to model these effects. To fill this gap, we propose in this paper

a semi-parametric time series model, called the functional additive cumulative

time series (FACTS) model, and investigate statistical properties. We develop

an estimation procedure that combines the advantages of kernel smoothing and

polynomial splines smoothing. As two case studies, we analyze the effect of

air pollutants on respiratory diseases in Hong Kong and the human immunity

against influenza in France. Based on the results, some of the important issues

in epidemiology are addressed.

Keywords: Cumulative effect; Generalized additive model; Local linear smoother;

Nonlinear time series; Polynomial splines; Single-index model.

1 Introduction

In epidemiology, cumulative effect refers to the fact that long-term exposures to harmful

environments impair public health by cumulation. The cumulative effect has been noted to
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be the main cause of many diseases although short-term/individual effects may be insignifi-

cant. For example, continual exposure to air pollution affects the lungs of growing children

and may aggravate or complicate medical conditions in the elderly (Galizia and Kinney,

1999). The extent to which an individual is harmed by air pollution usually depends on

the total exposure to the damaging chemicals. Another example is the cumulative effect of

ultraviolet radiation as a major cause of skin cancer (Young, 1990). A sunburn develops

when the amount of ultraviolet radiation exposure is greater than what can be protected

against by the skin’s melanin. Skin responds to cumulative sun exposure by thickening and

hardening, resulting in leathery skin and wrinkles later in life and the risk of skin cancer.

Cumulative effects are also observed in many other areas besides epidemiology. Examples

include loss of wetland habitats, climate change and increased risk of flooding. In fact, as-

sessing cumulative effects is an essential mission of the Environmental Protection Agency of

USA (Report - Considering Cumulative Effects Under NEPA; http://www.epa.gov), World

Health Organization (WHO) and other similar organizations. Investigations on specific cu-

mulative effects can be found in the existing literature. See, for example, Smith & Spaling

(1995) and Ceriello et al (2002), Dubé et al (2006) and the references therein.

Long-term cumulative effects, although recognized as important, have not been properly

modelled or quantified by existing methodologies, and are thus often ignored before they

become serious and by then too late to act. In fact, most existing time series models

focus on the effects of a few individual history data points, which might fail to capture

the cumulative effect. As a motivating example, we consider the effect of air pollution on

the number of daily hospital admissions in Hong Kong. Fig. 1 presents several aspects of

the data collected in Hong Kong from January 1, 1994 to December 31, 1998. The data

includes a set of variables. To make our point, we for the moment merely consider the

effect of the daily average level of nitrogen dioxide (NO2,t, in ppb) on the number of daily

hospital admissions of patients suffering from respiratory problems. The daily average level

of NO2 on any single day does not have much explanatory power over the daily number of

admissions as suggested in Fig.1(a) and Fig.1(c). On the other hand, a much larger portion
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of its variation can be explained by the overall pollution level of NO2 in the past 220 days,
∑220

τ=0 NO2,t−τ , as shown in Fig.1(b) and Fig.1(d).
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Figure 1: The level of NO2 and number of patients suffering from respiratory diseases in Hong
Kong. Panel (a) is the plot of the number of patients on day t against the level of NO2 on day t− 5,
the latter day having the largest correlation coefficient with the number of patients among all past
days; (b) is that against the total/cumulated levels of NO2 over the past 220 days. (c) is the fitted
number of patients based on the level of NO2 on day t−5 using a kernel smoothing; (d) is that based
on the total/cumulated level of NO2. over the past 220 days

In this paper, we shall adopt a semi-parametric approach to analyze the cumulative

effect, with the following technical considerations. (1) Unknown link functions. As suggested

by Fig.1(b), the cumulative effect of NO2 tends to be nonlinear and to increase more

rapidly as the cumulation level increases. A nonparametric function is introduced as the

link function; a nonparametric smoothing method will be used for the estimation. (2) The

pattern of cumulation weight. In the above example, the upper limit in the summation,
∑D

τ=1 NO2,t−τ , is obtained by maximizing, with respect to D, the correlation coefficient

between the summation (as a function of D) and the number of hospital admissions on day
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t. It is more appropriate to consider a set of data-driven weights in the summation, i.e.
∑D

τ=1 wτNO2,t−τ , where D should be data adaptive and wτ need to be estimated subject to
∑D

τ=1 wτ = 1. (3) Multivariate analysis. In the Hong Kong data example, it is very likely

that besides NO2, other pollutants and weather conditions also contribute to the variation

in the number of hospital admissions. To incorporate all these factors, one option is to adopt

an additive structure. See, e.g., Hastie & Tibshirani (1996) and Dominici et al (2002). (4)

Monotonicity. As suggested by Fig.1(b), higher level of cumulative pollution should result

in more hospital admissions. This motivates us to impose monotone constraint on the link

function. Similar assumptions could also be imposed on the weight function wτ , if suggested

by empirical evidence.

Among the various smoothing methods of estimating a semi-parametric model, the poly-

nomial spline smoothing and the kernel smoothing appear to be dominant with respective

advantages. For example, the polynomial spline smoothing is more convenient for incorpo-

rating global constraints on the functions, while the kernel smoothing is more convenient

for local Taylor expansion and approximation. In this paper we shall use polynomial splines

for function estimation and kernel smoothing for local approximation in estimating the cu-

mulative weights. By doing so, the computations are simplified as a standard quadratic

programming problem, for which there exist very efficient and fast algorithms.

The rest of the paper is organized as follows. In section 2, we propose the functional

additive cumulative time series (FACTS) model. Through a penalized spline smoothing

approach, we derive the asymptotic properties of the penalized least squares estimator of

the new model. To implement the estimation, a semi-parametric procedure which combines

polynomial splines smoothing and kernel smoothing is developed in section 4. In section 5,

we are back to the study of the cumulative effect of air pollution on respiratory diseases

in Hong Kong. Some of the questions posed by the WHO are answered based on the

study. Section 6 is another case study on infectious diseases and human immunity, a proper

modeling of the two is essential for policy decision making relating to vaccination and disease

control. See e.g. Ferguson et al (2003). Based on the weekly notified influenza cases in
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France (www.sentiweb.org), a decreasing pattern of immunity is revealed.

2 A semi-parametric model for the cumulative effect

Suppose Yti
def
= Y (ti), i = 1, · · · , n, is the (discrete) response time series and {Z(t),X(t)}, t ≥

0, are multivariate (continuous) time series with Z(t) = (1, Z1(t), · · · , Zp(t))� and X(t) =

(X1(t), · · · ,Xq(t))�. An important model concerning the relationship between Yti and

{Z(t),X(t)} is the semiparametric additive model

E{Y (ti)|Z(s),X(s), s ≤ ti} = β�Z(ti) + g1(X1(ti − τ1)) + · · · + gq(Xq(ti − τq)), (1)

where β is an unknown p−dimensional parameter vector, gk, k = 1, · · · , q, are unknown

link functions and τk, k = 1, ..., q, are lags. See, e.g., Hastie & Tibishirani (1993), Liu and

Stengos (1999) and Dominici et al (2002).

As we have noticed from the Hong Kong data, effect of pollution on any single day is not

significant. However, persisting pollution over a relatively long period can explain much

of the variation of the number of daily hospital admissions. In other words, cumulative

effects result from individually minor but collectively significant covariates over a period of

time. However, in (1) it is assumed that the expected value of Y (t) depends on only a finite

number of the historical values of X(t), without reference to the cumulative and continuous

effects discussed above. Specifically, for the Hong Kong data, empirical study suggests that

the semiparametric additive model (1) typically does not lead to a good fit; see Fig.5(a)

in Section 6. A straightforward extension of model (1) by simply enlarging the number of

additive components is infeasible, as the resulted model tends to be plagued by unstable

estimation and difficult interpretation in practice.

In this paper, we propose to model the cumulative effect of a single covariate, X1(τ) say

, by its weighted integral over a finite interval, namely

∫ Δ

0
X1(t − τ)θ(τ)dτ,

for some Δ > 0, where θ(τ) ≥ 0 is the weight function defined over [0,Δ]. This, when
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incorporated with the additive structure, leads to the following model

Y (ti) = Z�(t)β0 +
q∑

k=1

gk

(∫ Δ

0
Xk(ti − τ)θk(τ)dτ

)
+ ε(ti), i = 1, · · · , n, (2)

where ε(ti) is the martingale difference with E(ε(ti)2|Z(t),X(s) : s ≤ ti) = σ2, and gk(.)

and θk(.) > 0, k = 1, · · · , q, are unknown smooth functions with

E{gk

(∫ Δ

0
Xk(t − τ)θk(τ)dτ

)
} = 0,

∫ Δ

0
θk(τ)dτ = 1, k = 1, · · · , q, (3)

for identification purposes. Alternative identification conditions can be imposed depending

on the purpose of the modeling. We call model (2) the functional additive cumulative time

series (FACTS) model. gk(.) is referred to as the effect function or the link function and

θk(.) the weight function.

Based on the discussion in Section 1, if warranted by empirical evidence, monotonicity

constraint could be imposed on either θk(.) or gk(.), k = 1, · · · , q or both. To obtain

estimates of model (2) which are consistent with such a constraint is also an important

feature of this paper.

Proposition 2.1 Suppose X(t) is a multi-variate stationary process with a continuous joint

probability density function. Every set of q continuous functions of t can be a sample path

of X(t). Let Z̃(t) = E{Z(t)|X(τ), τ ≤ t}. If E[{Z(t) − Z̃(t)}{Z(t) − Z̃(t)}�] is invertible,

then model (2) is identifiable. In other words, if there exists another set of parameters β̃0

and functions g̃k(.), θ̃k(.) such that (2) and (3) hold, then

β̃0 ≡ β0, g̃k(.) ≡ gk(.), θ̃k(.) ≡ θk(.), k = 1, .., q.

The FACTS model is closely linked with functional regression models. See for example

Ramsay & Silverman (pp. 88, 1997) and James & Silverman (pp.567, 2005). If Xk(t) has

a step sample path, then the integration component of model (2) reduces to a summation,

leading to a discretized version of the FACTS model, i.e.

Y (t) = Z�(t)β0 +
q∑

k=1

gk

( D∑
�=1

Xk(t − �)θk(�)
)

+ εt, (4)
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where θk(�), � = 1, ...,D, k = 1, ..., p are unknown parameters. This is a partially linear

additive single-index model. A special case is the partially linear single-index model; see

e.g. Carroll et al (1996) and Yu & Ruppert (2002).

3 Estimation of FACTS model

Similar to Yu & Ruppert (2002), we adopt a spline smoothing approach to estimate both

the unknown link function gk(.) and the weight function θk. Suppose for each k = 1, · · · , q,

there exist two vectors η0
k and γ0

k , such that we have approximately

gk(ν) = A(ν)�η0
k, θk(τ) = B(τ)�γ0

k ,

where A(ν) and B(τ) are two finite r−dimensional bases function, e.g. cubic splines. Define

b = (b1, ..., br)� =
∫ Δ
0 B(τ)dτ , an r−dimensional column vector with its first component

b1 nonzero, which can always be realized by rearranging the order of the r basis functions.

Then the second equation in (3) can be approximately rewritten as

b�γ0
k = 1, 1 ≤ k ≤ q. (5)

Write γ0
k = (γ0

k,1, ..., γ
0
k,r)

� and define

Xk
ti =

∫ Δ

0
Xk(ti − τ)B(τ)dτ, vi = (Z(ti)�,X1

ti , · · · ,Xq
ti
), ξ = (β�, η�1 , · · · , η�q , γ�1 , · · · , γ�q )�,

where ηi, γi, i = 1, · · · , q are all r × 1 vectors. Define the mean function

m(vi; ξ) = Z�(ti)β +
q∑

k=1

η�k A(γ�k Xk
ti). (6)

Existing methods, such as the penalized spline method in Yu and Ruppert (2002), can be

used to estimate ξ0 = (β0�, η0
1
�
, · · · , η0

q
�
, γ0

1
�
, · · · , γ0

q
�)�, if the value of Xk

ti is available.

However, this is usually not the case in practice, as quite often {X(t)} can only be observed

at discrete time points, although not necessarily with the same frequency as Yti . Suppose

{X(t̃j), j = 1, · · · , } is the observed discrete time series of {X(t)}. If as specified in (A2)

in the Appendix, maxj≥1 |t̃j − t̃j+1| is sufficiently small relative to n, the total number of
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observations on Y (t), then based on the continuous property of B(.) and the sample path

of Xk(.), we can approximate Xk
ti by

Xn,k
ti

=
∑

j:ti−Δ<t̃j≤ti

Xk(t̃j)(t̃j − t̃j−1)B(ti − t̃j),

which, when substituted for Xk
ti in (6), leads to the approximated regression mean function

mn(vi; ξ) = Z�(ti)β +
q∑

k=1

η�kA(γ�k Xn,k
ti

). (7)

Parameter ξ0 can thus be estimated by the penalized least squares estimator (PLSE),

which minimizes

Qn,λ(ξ)
def
= n−1

n∑
i=D+1

{
Yti − mn(vi; ξ)

}2
+ λnδ�Σ δ, (8)

where D = min{i|ti− t̃1 ≥ Δ}, δ = (η�1 , · · · , η�q , γ�1 , · · · , γ�q )�, λn is a penalty parameter and

Σ is an appropriate positive semidefinite symmetric matrix; see Yu and Ruppert (2002).

3.1 Re-parameterization and asymptotic properties

The constraint (5) on γk makes reparameterization necessary in proving the consistency

and asymptotic normality of the PLSE. Let b̃ = (b2, · · · , br)� and φk = (φk,1, · · · , φk,r−1)�.

Define

γk(φk) = (b−1
1 (1 − b̃�φk), φk,1, · · · , φk,r−1)�. (9)

Let φ0
k = (γ0

k,2, ..., γ
0
k,r)

�, which is a subvector of γ0
k . By (5), we have γk(φ0

k) = γ0
k. It is

easy to see that γk(φk) is infinitely differentiable in a neighborhood of φ0
k, with the gradient

matrix given by

γ
(1)
k (φk) =

(
−b−1

1 b̃
... Ir−1

)�
, k = 1, ..., q,

where Ir is the r × r identity matrix. Following the above notations, we define

ξγ ≡ ξ = (β�, η�1 , · · · , η�q , γ�1 , · · · , γ�q )�, ξφ = (β�, η�1 , · · · , η�q , φ�1 , · · · , φ�q )�,
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where ξφ is q−dimension lower than ξγ . Consequently, the regression mean function (6) and

its approximation (7) can be reparameterized as

m(vi; ξφ) = Z�(ti)β +
q∑

k=1

η�k A(γk(φk)�Xk
ti),

mn(vi; ξφ) = Z�(ti)β +
q∑

k=1

η�k A(γk(φk)�Xn,k
ti

).

To state the asymptotic results, let

m(1)
η (vi; ξφ) =

⎛
⎜⎝

A
(
γ�1 (φ1)X1

ti

)
...

A
(
γ�q (φq)X

q
ti

)
⎞
⎟⎠ , m

(1)
φ (vi; ξφ) =

⎛
⎜⎜⎝

η1
�A(1)

(
γ�1 (φ1)X1

ti

)
γ

(1)
1 (φ1)

�
X1

ti
...

ηk
�A(1)

(
γ�q (φq)X

q
ti

)
γ

(1)
q (φq)

�
Xq

ti

⎞
⎟⎟⎠ .

Then the gradient of m(vi; ξφ) with respect to parameter ξφ is

m(1)(vi; ξφ) =

⎛
⎜⎝

Z(ti)
m

(1)
η (vi; ξφ)

m
(1)
φ (vi; ξφ)

⎞
⎟⎠ .

and the Jacobian matrix of ξγ with respect to ξφ is given by

J(φ) = ξ(1)
γ (ξφ) =

⎡
⎢⎢⎢⎢⎣

Iqr+p O · · · O
O γ

(1)
1 (φ1) · · · O

...
...

. . .
...

O O · · · γ
(1)
q (φq)

⎤
⎥⎥⎥⎥⎦ , (10)

where O is the r × (r − 1) matrix with entries zero. Let

Ω(ξ) = lim
n

1
n

n∑
i=1

m(1)(vi; ξφ)m(1)(vi; ξφ)�. (11)

Theorem 3.1 Under (A1)-(A7) given in the Appendix, if the smoothing parameter λn =

o(n−1/2), the PLSE ξ̂γ = (β̂�, η̂�1 , · · · , η̂�q , γ̂�1 , · · · , γ̂�q )� with constraints b�γ̂k = 1, k =

1, · · · , q, is strongly consistent and asymptotically normally distributed, i.e.

√
n(ξ̂γ − ξ0) D→ N

{
0, σ2J(φ0)Ω−1(ξ0

φ)J�(φ0)
}

.

Remark Note that the above asymptotic distribution is obtained without monotonicity

constraint imposed on either the estimated link function or the weight function

ĝk(ν) = A(ν)�η̂0
k, θ̂k(τ) = B(τ)�γ̂0

k, k = 1, · · · , q.
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However, as the PLSE estimator is strongly consistent, the aforementioned estimated func-

tion without constraint will automatically satisfy the nonnegative requirement, with proba-

bility 1, if n is large enough. Therefore, the same asymptotic property holds for estimators

both with and without constraint. More details on constrained minimization can be found

in e.g. Liew (1976).

3.2 A semi-parametric implementation

In this section, we focus on estimating parameter ξ0 through minimizing (8) with respect

to ξ with λn fixed as 0. There are two reasons for such a choice of λn. Firstly, as indicated

in Theorem 3.1, for the estimate to be asymptotically normal, we need λn = o(n−1/2).

Secondly in a Monte Carlo study by Yu and Ruppert (2002), they found that the confidence

bands using λ = 0 were often closer to the Monte Carlo bands than that using the true

value of λ. Moreover, based on both simulation study and real data analysis in this paper,

such prefixed value of λn has not caused any serious over-fitting problem.

The implementation of minimizing (8) is not easy, especially if any monotonicity con-

straint is imposed. As noted in Yu and Ruppert (2002), the performance of their estimation

algorithm quite often depends on the starting value and in some cases the least squares es-

timator is not the converging point of the iterations, unless the distribution of the predictor

is close to normal. Since there are many efficient algorithms for quadratic programming

problems, we propose to transform the minimization problem into two separate quadratic

programming problems and to obtain the estimator by iterating between the two program-

ming problems.

Let L denote the number of iterations. As an initial step with L = 0, we select γ
(0)
k such

that θk(ti − ti−τ ) ∝ 1 − τ/D for k = 1, 2, ..., q. Thus, to estimate the FACTS model we

need to estimate β and ηk, k = 1, ..., q. The minimization in (8) is a simple linear regression

estimation in solving β and ηk, k = 1, ..., q. Denote them by β(0) and η
(0)
k , k = 1, ..., q,

respectively. Thus, gk is estimated by g
(0)
k (.) = A(.)�η

(0)
k . After this initial step, we can

follow the idea of the back-fitting algorithm to estimate model (2). See Hastie & Tibshirani
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(1990) for more details. Here we only discuss how to update the nonlinear components in

the model.

Let yn,k
ti

= Yti − Z(ti)�β(L) − ∑
ι �=k g

(L)
ι ((Xn,ι

ti
)�γ(L)). To update the estimators of gk

and γk, we can consider a nominal single-index model

yn,k
ti

= gk(γ�
k Xn,k

ti
) + εn,k

ti
, (12)

where gk(.) = η�k A(.). For ease of exposition, denote yn,k
ti

,Xn,k
ti

, γk, ηk and εn,k
ti

by ỹi, X̃i, γ̃, η̃

and ε̃i respectively. Without constraints, many easily implemented estimation methods are

available for model (12). See for example Härdle & Stoker (1989), Yu & Ruppert (2002),

Yin & Cook (2004) and Xia (2006) among others. Consider a local expansion of gk(γ̃�X̃i)

at x. If (X̃i − x)�γ̃ = o(1), we have the Taylor expansion

gk(γ̃�X̃i) = gk(γ̃�x) + g′k(γ̃
�x)(X̃i − x)�γ̃ + O[{(X̃i − x)�γ̃}2]

= η̃�{A(γ̃�x) + A′(γ̃�x)(X̃i − x)�γ̃} + O[{(X̃i − x)�γ̃}2].

Following Fan, Yao & Tong (1993), for given γ̃ and η̃, the local discrepancy or conditional

variance σ2(x) = E[ε̃2
i |Xi = x] can be estimated by the local linear smoother as

σ̂2(x|γ̃, η̃) =
n∑

i=1

[
ỹi − η̃�{A(γ̃�x) + A′(γ̃�x)(X̃i − x)�γ̃}

]2
K((X̃i − x)�γ̃)

/
n∑

i=1

K((X̃i − x)�γ̃),

where K(v) is a symmetric probability density function, h is a bandwidth and Kh(v) =

h−1K(v/h). Obviously, the best approximation of γ̃ and η̃ should minimize the overall

discrepancy for all x = X̃j , j = 1, · · · , n. Thus, our estimation procedure is to minimize

n∑
j=1

σ̂2(X̃j |γ̃, η̃) =
n∑

j=1

n∑
i=1

[
ỹi − η̃�{A(γ̃�X̃j) + A′(γ̃�X̃j)γ̃�X̃ij}

]2
wij (13)

with respect to γ̃ and η̃, where wij = K(γ̃�X̃ij)/
∑n

i=1 K(γ̃�X̃ij) and X̃ij = X̃i − X̃j . A

similar idea was used in Xia et al (2002).

Without constraints, we can implement minimization (13) easily as follows. Note that

with fixed wij, the minimization of (13) can be decomposed into two separate quadratic
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programming problems with unknown parameters η̃ and γ̃ respectively. We can solve (13)

by iteration as follows. Set the number of iteration � = 0. With initial value γ̃(0) = γ
(L)
k

and w
(�)
ij = K(X̃�

ij γ̃
(�))/

∑n
i=1 K(X̃�

ij γ̃
(�)), the minimization in (13) is equivalent to

min
η̃

η̃�Dnη̃ − 2C�
n η̃, (14)

where

Dn =
n∑

j=1

n∑
i=1

w
(�)
ij A(�)

ij (A(�)
ij )�, Cn =

n∑
j=1

n∑
i=1

w
(�)
ij A(�)

ij ỹi,

with A(�)
ij = A(X̃�

j γ̃(�)) + A′(X̃�
j γ̃(�))X�

ij γ̃
(�). The solution is η̃(�) = D−1

n Cn. With the

updated η̃(�), minimizing (13) with respect to γ̃ is equivalent to

min
γ̃

γ̃�D′
nγ̃ − 2C ′

n
�
γ̃, (15)

where

D′
n =

n∑
j=1

n∑
i=1

w
(�)
ij C(�)

ij (C(�)
ij )�, C ′

n =
n∑

j=1

n∑
i=1

w
(�)
ij C(�)

ij [yi − (η̃(�))�A(X̃�
j γ̃(�))],

with C(�)
ij = (η̃(�))�A′(X̃�

j γ̃(�))X̃ij . The solution to (15) is γ̃(�+1) = {D′
n}−1C ′

n. Set � = �+1.

Repeat (14) and (15) until convergence. Denote the final values by ˜̃γ and ˜̃η respectively.

Finally, we update g
(L)
k (.) by g

(L+1)
k (.)

def
= A(.)� ˜̃η and γ

(L)
k by γ

(L+1)
k

def
= ˜̃γ.

In situations where it is deemed reasonable to assume monotonicity for either link func-

tion or the weight function, monotone estimate of concerned function can be obtained by

applying estimation procedures discussed above with bases function A(ν) and B(τ) chosen

from the monotone spline bases (Ramsay, 1988), for a monotone function can always be

constructed as nonnegative linear combination of monotone spline bases. In this case, the

minimization of (13) is realized through solving the two quadratic programming problems

below alternately. With initial value γ̃(�) = γ
(L)
k and � = 0, we solve

min
η̃

η̃�Dnη̃ − 2C�
n η̃, subject to : η̃2, ..., η̃r ≥ 0, (16)

where η̃ = (η̃1, ..., η̃r)� and denote the solution by η̃(�). Solve

min
γ̃

γ̃�D′
nγ̃ − 2C ′

n
�
γ̃, subject to : γ̃ ≥ 0, (17)
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and denote the solution to (17) by γ̃(�+1). Set � = � + 1. Repeat (16) and (17) until

convergence. Although we do not have a closed form for the solutions of (16) and (17), they

are typically quadratic programming problems. There are many efficient algorithms. See

for example Nocedal & Wright (1999).

Regarding the convergence of the algorithm proposed here, Xia (2006) proved that it

converges at a geometric rate under mild conditions in the case of no constraint. Further-

more, he showed that the asymptotic efficiency is the same as in the case of parametric

estimation methods if the covariates are normally distributed. The same efficiency is appli-

cable to estimation under constraints, which follows from the arguments in Liew (1976).

3.3 Selection of pilot parameters

Suitable values of two pilot parameters, namely the number of the knots of the spline base

function and the bandwidth h, need to be selected. As we will now explain, we only need

to choose the number of knots, since the bandwidth h can be decided based on a well-

known result of the optimal bandwidth and the plug-in idea in Ruppert et al (1995). For

a pre-specified number of knots, the knots are placed at equally spaced sample quantiles of

the predictors (γ̃(�))�X̃i, i = 1, ..., n. We can estimate the link function gk(.) by A(.)�η̂,

where η̂ = (A�
nAn)−1A�

n Y with An = (A(X̃�
1 γ̃(�)), ...,A(X̃�

n γ̃(�)))�. The fitted value of the

response at the n points are Ŷ = An(A�
nAn)−1A�

n Y. Following Craven & Wahba (1979),

we define the generalized cross-validation as

GCV (N) =
||Ŷ − Y ||2/n

(1 − tr(Sn)/n)2
,

where Sn = An(A�
nAn)−1A�

n . The selected number of knots minimizes GCV (N). As

noticed in Yu & Ruppert (2002), the possible range for N can be 5-10 in minimizing

GCV (N). When N is selected, the bandwidth can be calculated by the plug-in method

proposed by Ruppert et al (1995)

h =
[ 4

∫
K2(v)dvσ̂2∫

K(v)v2dvm̄2
nn

]1/5
,

13



where σ̂2 = ||Ŷ − Y ||2/n and

m̄2
n = n−1

n∑
i=1

{g′′k(X̃�
i γ̃(�))}2 = n−1

n∑
i=1

{A′′(X̃�
i γ̃(�))�η(�)}2.

Another bandwidth selection approach is the simple rule-of-thumb of Silverman (1986). By

the rule, the bandwidth is h = cnn−1/5, where cn = 1.06{∑n
i=1(X̃

�
i γ̃(�) − c̄)2/n}1/2 and

c̄ = n−1
∑n

i=1 X̃�
i γ̃(�). This rule has proved efficient in our computation.

4 Statistical simulations of finite samples

To assess the performance of our algorithm with finite sample size, we consider two simulated

examples. In the first one, X(t) are deterministic smooth functions, while the sample paths

of X(t) in the second example are step functions.

Consider the following model

Yt = β�Zt + g1(
∫ 1

0
X1(t − τ)θ1(τ)dτ) + g2(

∫ 1

0
X2(t − τ)θ2(τ)dτ) + 0.5εt,

where εt ∼ N(0, 1) and β = (0.5,−1, 0.5)� . Covariates Zt = (Z1t, Z2t, Z3t) are independent

random vectors with independent elements P (Zkt = 1) = P (Zkt = 0) = 0.5, k = 1, 2, 3,

X1(t) = sin(t) + 1,X2(t) = sin(3t) + 1, and

g1(v) = v1/2 − 0.62, g2(v) = (v − 1)2 − 0.25, θ1(τ) = 4(1 − τ)3+, θ2(τ) = 1.5(1 − τ2)+,

where τ ≥ 0. Monotone decreasing property is imposed upon estimators of the weight

functions θ1(τ) and θ2(τ), while Monotone increasing property is imposed upon the link

function g1(v).

Five hundred equally spaced observations are drawn from [0, 16π]. With 100 replica-

tions, the mean and standard deviation of the estimated β are respectively (0.5034, -1.0042,

0.4955) and (0.0403, 0.0362, 0.0425). The estimator is quite accurate and stable. The esti-

mated weight functions θk(.) and link functions gk(.) are shown in Fig. 2. All the functions

are estimated with reasonable accuracy.
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Figure 2: Results for Example 4. The black curve in each panel is the true link functions
gk or the true weight functions θk; the cyan/grey curves are the corresponding estimated
functions.

Example 4.1 In this example, X(t) has step sample paths with equal steps, and all the

steps are observed once. The integration in the FACTS model can be written as summations.

Thus, the model can be simplified as

Yti = β1Z1,ti + β2Z2,ti + g1(
D∑

τ=0

θ1(ti − ti−τ )X1,ti−τ ) + g2(
D∑

τ=0

θ2(ti − ti−τ )X2,ti−τ )

+g3(
D∑

τ=0

θ3(ti − ti−τ )X3,ti−τ ) + 0.2εt,

where β1 = 1, β2 = −1, g1(v) = cos(3v) − 0.54, g2(v) = 1 − exp(−v2) − 0.47, g3(v) =

2 exp(40v)/{1+exp(40v)}−0.5 and the weight functions θk(τ) are given by the black curves

as shown in the first 3 panels of Fig.3. Covariates Z1,ti , Z2,ti , i = 1, · · · , n
IID∼ P (Z1,ti =

1) = P (Z1,ti = 0) = 0.5, X1,ti = 0.8X1,ti−1 + e1,ti , X2,ti = 0.6X2,ti−1 + 0.3X2,ti−2 + e2,ti ,

X3,ti = −0.5X3,ti−1 + e3,ti where {εti}, {e1,ti}, {e2,ti} and {e3,ti} are IID N(0,1).

There are 2 unknown parameters and 6 unknown functions. With sample size n =

500 and D = 100, it is obviously difficult to obtain efficient estimates unless useful prior

knowledge is available. However, if we were informed that g3(.) is monotone increasing,

and all the weight functions are monotone decreasing, we could estimate the functions

with unexpected degree of accuracy; as showed by Fig. 3. As for parameters, the mean and

standard deviation of estimated β are respectively (1.0020,−1.0016)� and (0.0324, 0.0300)� .
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Figure 3: Calculation results for Example 4.1. The black curve in each panel is the true
link function gk or the true weight parameters θk, k = 1, 2, 3; the cyan/grey curves are the
corresponding estimated functions.

5 Effects of air pollution on the respiratory diseases

As applications of the proposed methodology, we first consider the motivating example

about the cumulative effect of air pollution on the respiratory diseases in Hong Kong.

The data has been analyzed in literature, e.g. Cai et al (2000), Cai et al (2000) and Fan

and Zhang (1999). However, they did not consider the cumulative effect. All the associ-

ated pollutants and weather conditions are shown in Fig.4, while the number of hospital

admissions of patients suffering from respiratory diseases is shown in Fig.1(c). We take

yti = log(number of hospital admissions of patients suffering from respiratory diseases in

day i) to render the distribution closer to symmetry. For simplicity, we assume that the

population is approximately constant. Since the data are observed at equal time interval,

we consider the following discrete FACTS model

log(yti) =
7∑

d=1

βdDti,d + g1(
D∑

τ=0

θ1,τNti−τ ) + g2(
D∑

τ=0

θ2,τSti−τ ) + g3(
D∑

τ=0

θ3,τPti−τ )

+g4(
D∑

τ=0

θ4,τOti−τ ) + g5(
D∑

τ=0

θ5,τTti−τ ) + g6(
D∑

τ=0

θ6,τHti−τ ) + εt, (18)
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where Nti , Sti , Pti , Oti , Tti and Hti are respectively the average levels of NO2, SO2, PM10,

O3, temperature and humidity on day i; Dd,ti , d = 1, ..., 7, are dummy variables representing

the day of the week. Here, θk,τ = θk(Δτ ) with Δτ = ti − ti−τ for all i ≥ τ > 0.
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Figure 4: The observed time series of average levels of SO2 (in ppb, parts per billion), NO2 (in
ppb), PM10 (in μg/m3), ozone (in ppb), average of temperature (in oC) and average of humidity
(in %), in Hong Kong.

With D = 300, FACTS model (18) gives fitted values as shown in Fig.5(b). As a

comparison, the fitted values of the additive model with lags that give the best fit are

shown in Fig.5(a). These figures suggest that FACTS model (18) can capture the main

signatures of the effects of pollution on the respiratory diseases in Hong Kong, while the

additive model is wide off the mark. We have tried different D with D > 300. We found that

the estimated weights are quite stable in that they tend to be practically zero after some

specific lag. The estimation results are shown in Fig.6. Instead of single-past-day effects as

noticed in Dominici et al (2002), all the pollutants and adverse weather conditions exhibit

cumulative effects for the Hong Kong data, in that a weighted average of pollutants and

weather conditions over the past 50-300 days has a strong effect on hospital admission. As

we can see, FACTS can throw light on how the pollutants affect the diseases. In Hong

Kong, most of the admitted patients of respiratory diseases are not serious sufferers. At the
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Figure 5: Fitted results of the additive model and FACTS model. In panel (a), the blue line
is the observed numbers of hospital admissions and the black line is the fitted numbers by
the additive model. In panel (b), the blue line is the observed number of hospital admissions
and the black line the fitted numbers by the FACTS model.

notified levels of the relevant pollutants in Hong-Kong, the necessity for their admission is

mainly the result of cumulative exposure rather than single-day exposure to the pollutants

or adverse weather conditions. It is therefore not surprising that the single-day-effect given

by the additive model explains only 16.8% of the variation of the hospital admission in

contrast to the 75.4% explained by the FACTS model.

The parameters (β1, · · · , β7) in model (18) are estimated as

(5.38, 5.33, 5.33, 5.32, 5.25, 5.24, 5.24).

Their corresponding standard errors are all around 0.0075, indicating that the day-of-the-

week effect is significant: high admission at the beginning of the week and low admission

at the weekend. Of course, the “weekend-effect” is due to human behavior rather than

the pollutants as noticed in Forster & Solomon (2003); the weather and pollution levels

in Hong Kong show no such effect. Pollutants NO2, O3, PM10 and weather conditions

demonstrate strong adverse effects on health, while the effect of SO2 is relatively small due

to the measures taken by the Hong Kong Government in 1990’s to reduce the level of SO2;

18



45 50 55 60
weighted average

pa
rt

ia
l r

es
id

ua
ls

/e
ffe

ct
   

   
   

 NO
2

(a1)

0 100 200 300
0

0.1

0.2

days elapsed

cu
m

. w
ei

gh
ts

NO
2 (b1)

15 20 25
weighted average

SO
2

(a2)

0 100 200 300

0
0.1
0.2
0.3

days elapsed

SO
2 (b2)

40 45 50 55 60
weighted average

PM
10

(a3)

0 100 200 300

0

0.1

0.2

days elapsed

PM
10 (b3)

20 25 30 35 40
weighted average

pa
rt

ia
l r

es
id

ua
ls

/e
ffe

ct
   

   
   

 O
3

(a4)

0 100 200 300

0

0.1

0.2

days elapsed

cu
m

. w
ei

gh
ts

O
3 (b4)

16 18 20 22 24 26 28
weighted average

Temperature

(a5)

0 100 200 300

0
0.2
0.4
0.6

days elapsed

Temperature (b5)

65 70 75 80 85
weighted average

Humidity

(a6)

0 100 200 300

0
0.1
0.2
0.3

days elapsed

Humidity (b6)

Figure 6: Calculation results for the pollution and respiratory diseases. (a1)-(a6) are the estimated
cumulative effect functions (the central line) and corresponding 95% pointwise confidence intervals
(upper and lower lines) for the pollutants and weather conditions; (b1)-(b6) are correspondingly the
estimated accumulation weight functions and 95% confidence intervals. The solid vertical lines are
roughly the thresholds above which the effect starts to appear.

see Hedley et al (2002).

Based on the estimated effect functions gk(.), there are thresholds at which the effects

start to increase; see Fig.6(a1)-(a4). The thresholds are listed in Table 1. For NO2 and

PM10, our thresholds roughly coincide with the National Ambient Air Quality Standards

(NAAQS) in USA. However, our analysis suggests that the cumulative effects of SO2 and O3

start to increase at much lower levels than stipulated by NAAQS. Epidemiological studies

suggested that O3 affects the forced vital capacity at a much lower level; see Abelson (1997).

Delfino et al (1997) also suggested a threshold at 29ppb of O3 for old people. Sunyer et al

(2003) demonstrated statistically that SO2 starts to increase asthma hospital admissions at

a very low level. In other words, our analysis lends support to those epidemiology studies
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that suggest that the effect of SO2 and O3 on the respiratory diseases is far more pronounced

than suggested by the current NAAQS. Therefore, we urge that the NAAQS standards be

revised to lower levels in the interest of public health.

Table 1: Threholds and National Ambient Air Quality Standards (NAAQS)
Standards NO2 SO2 O3 PM10

FACTS model 56ppb 18ppb 28ppb 46μg/m3

NAASQ∗ 53ppb 30ppb 80ppb 50μg/m3

(annual) (annual) (24 hours) (annual)
∗ these standards can be found at http : //www.epa.gov/air/criteria.html

For the weather conditions, both an unusually cold season and an unusually hot season

can aggravate the diseases; see Fig.6(a5). This statistical observation is consistent with the

medical observation that unduly cold weather or unduly hot weather is not favorable to

disease sufferers: the transmission rate for viruses and diseases is higher in cold season thus

exacerbating other diseases; hot weather increases the risk of dehydration and other adverse

effects ; see Rastogi et al (1998) and McGeehin & Mirabelli (2001). The wetter weather

causes more hospital admissions of respiratory diseases; see Fig.6(a6). This statistical evi-

dence is also consistent with the biological understanding that wetter weather makes easier

fungal colonization, thus worsening the air quality and causing health problems; see Ezeonu

et al (1994).

6 Decay of immunity against influenza

Influenza is a very important infectious disease arising as a series of seasonal epidemics.

A weekly notified time series of influenza-like cases in France is shown in Fig.7. In hu-

man influenza (type A), immunity to re-infection is finite, particularly because the virus

undergoes a combination of year-to-year antigenic drift and occasional dramatic shift in

haemagglutinin and neuraminidase surface protein; see Nicholson et al. (1998). Pease

(1987) conjectured that immunity to influenza will decay linearly with time elapsed, while

Couch & Kasel (1983) argued that immunity lasts for more than 4 years. However, there

have been few quantitative investigations of how immunity decays with time since recovery.

It is not difficult to see that the decaying of immunity is a “cumulative” procedure. In the
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following, we will focus on FACTS modeling of the decaying pattern of human immunity

against this particular disease.
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Figure 7: Weekly notified cases of flu-like diseases in France

Let p(τ) denote the probability that a host is susceptible at time τ after his/her last

recovery from the disease. For simplicity, we make the following homogeneity assumption.

The value of p(τ) depends only on the time, τ , elapsed after the last recovery from infection.

Note that p(τ) is an increasing function. Suppose that p0 is the limit of p(τ) as τ → ∞.

We call κ(τ) = 1 − p(τ)/p0 relative immunity. It is easy to see that 0 ≤ κ(τ) ≤ 1 and κ(τ)

is a decreasing function of τ . Let yt−τ denote the number of hosts infected at time point

t − τ ; each of them has the aforementioned probability p(τ) at time t to be re-infected,

i.e. their immunity at t is κ(τ). We assume that when recovering from the infection at

time t, a person’s immunity is built up from this infection alone. The expected number of

susceptibles (within these yt−τ hosts) is yt−τp(τ) = p0yt−τ (1 − κ(τ)). If a person has never

been infected before, we may simply take him/her as having been infected in the remotest

past. Among the population N =
∫ ∞
0 yt−τdτ , which is again assumed to be constant, the

total number of susceptibles at t is then

St =
∫ ∞

0
yt−τp(τ)dτ = p0{N −

∫ ∞

0
yt−τκ(τ)dτ}.

The general susceptible-infected-recovered-susceptible (SIRS) mechanism suggests the fol-

lowing model

dyt

dt
= βty

α
t Sγ

t ; (19)
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see Liu et al (1987), Anderson & May (1991) and Finkenstädt & Grenfell (2000). In the

model, βt describes the seasonal effect. We can make the model more flexible by replacing

Sα
t with ν(St) or μ(

∫ Δ
0 yt−τκ(τ)dτ}), where ν(.) and μ(.) are unknown link functions. See

Xia et al (2005). The function μ(.) describes the functional relation between the expected

number of immune hosts and expected cases in the next time unit.

In practice, we can only observe the dynamics at discrete time. Let yti be the cases in a

time period ti − ti−1. The time period ti − ti−1 is usually one week. Following Finkenstädt

& Grenfell (2000) and Xia et al (2005), model (19) can be approximated by

yti = βtiy
α
ti−1

μ(
D∑

τ=0

yti−τ κ(ti − ti−τ )).

Considering approximately 52 weeks in a year, dummy variables Dk,t are employed to

describe weekly seasonal variations in infection rate: Dk,ti = 1 if k = ti(mod52); 0 otherwise.

Write βti = exp{∑52
τ=1 �kDk,tτ }, where �k are seasonal force parameters. A convenient

stochastic model is then a discrete time FACTS model

log(yti) =
52∑
i=1

�kDk,ti + α log(yti−1) + μ̃(
D∑

τ=0

yti−τ κ(ti − ti−τ )) + εti , (20)

where μ̃(.) = log{μ(.)}.
Results based on the weekly notified influenza cases in France are shown in Fig. 8. We

have that α̂ = 0.93 (SE = 0.013) and that the variance of εti is 0.21. Note that the variance

of zti = log(yti) is 2.46. The proportion of the variance of {zti} that can be explained by the

model is R2 = 91.5%. Therefore FACTS model fit the dynamics quite well. We conclude

that (I) the expected number of immune hosts has a significant negative effect on the number

of cases in the next time unit. This is in line with the SIRS mechanism. However, the

quantitative relation between yti , yti−1 and the expected number of susceptibles, as shown

in Figs 8(a)-(b), is more complicated than that assumed in (19). (II) The estimated seasonal

infection rates as shown in Fig.8(c) are consistent with the general medical observation that

in the winter, the forces of infection are stronger than those at other periods (Nicholson

et al. 1998). (III) The epidemics in France has a decay function of immunity as shown

in Fig.8(d). It is noteworthy that the decay pattern of immunity is different from the
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Figure 8: Results for the influenza data in France. Panel (a) is log(yti) plotted against the linear
part in model (20). In panel (b), the dots are the corresponding partial residuals after removing the
linear part in model (20). The x-axis is the expected immunized number

∑D
τ=0 yti−τ κ(ti − ti−τ ). The

solid line is the estimated link function, the dash lines are the 95% pointwise confidence intervals
for μ̃(.). Panel (c) is the estimated seasonal forces; the dash lines are their corresponding 95%
confidence intervals. Panel (d) is the estimated decay function of immunity and its 95% confidence
interval, represented by a solid line and dashed lines respectively.

conjecture of Pease (1987). In the first few months, the recovered hosts have high level

of immunity. After that, the immunity decreases quite quickly. After about 8-12 months

(say 50 weeks), the immunity level is relatively low. However, this low level of immunity

will last for as long as another 2 years. To explain this particular patter of decay of the

immunity, two factors emerge: (1) the fast decay of immunity at the beginning may partly

reflect hospital notification biases–if individuals are rapidly re-infected, they may not have

clinical notification. It might also reflect the fact that drift speed could in turn depend

on the number of cases; see Boni et al. (2003). Our result is also consistent with the

claim that short-term immunity is ‘strain-transcending’; see Ferguson et al. (2003). (2)

The subsequent slow decay pattern could reflect gradual effects of drift, though this is a

complex picture because influenza-like illness subsumes influenza B, influenza A subtypes
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and possibly other respiratory infections. The overall immunity can last as long as three

years though it is relatively weak. In this sense, our results lend support to the arguments

of Couch & Kasel (1983) and Murphy & Clements (1989).

Appendix

For ease of exposition, denote ξφ by ξ and the corresponding parameter space by Ξ. We

need the following assumptions to prove the consistency of the least squares estimators.

(A1) The observations {Z(ti),X(ti), Yti}n
i=1 are strictly mixing. Specifically X(t) = m(t)+

B(t), where m(t) is continuous deterministic function of t and B(t) is the standard

Brownian motion.

(A2) δX:= max
i≥1

|t̃i+1 − t̃i| = O(n−1).

(A3) The parameter space Ξ is compact, and the mean function m(v; ξ) is continuous on

Ξ for any fixed v.

(A4) The regression mean function m(v; ξ) is twice continuously differentiable in a neigh-

borhood of ξ0.

(A5) n−1
∑n

i=1{m(vi; ξ) − m(vi; ξ∗)}2 converges to certain limit function uniformly in

ξ, ξ∗ ∈ Ξ, and

Q(ξ) = lim
n

1
n

n∑
i=1

{m(vi; ξ) − m(vi; ξ0)}2 (21)

has a unique minimum at ξ = ξ0.

(A6) The true parameter vector ξ0 is an interior point of Ξ.

(A7) Ω(ξ0) exists and is nonsingular, with

Ω(ξ) := lim
n

1
n

n∑
i=1

m(1)(vi; ξ)m(1)(vi; ξ)� (22)

and n−1
∑n

i=1
∂2m(vi;ξ)
∂ξj1

∂ξj2
, j1, j2 = 1, · · · , 2qr + p, converge uniformly in Ξ in a neigh-

bourhood of ξ0.
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Remark To guarantee the consistency of the semi-parametric implementation, the ob-

servations in (A1) need to be strongly mixing. See for example Fan et al (1996) and Xia et al

(2002). (A2) is imposed to ensure the uniform convergence of Xn,k
ti

to Xk
ti for all i = 1, · · · , n

(Lemma 6.1). Such requirement is commonly made in dealing with continuous-time model

but with only discretized data available, especially in finance and biology, see e.g. Fan &

Zhang (2003) and Fan & Jiang (2005). Assumptions (A3)-(A7) are similar to those in Yu

& Ruppert (2002), and the uniform convergence assumption is needed to guarantee the

continuity in ξ of the limit function.

Proof of Proposition 2.1 For ease of exposition, we only consider q = 2. Let Z̃(t) =

E{Z�(t)|X(s), s ≤ t}. We have

E{Yt|X(s), s ≤ t} = Z̃�(t)β0 +
q∑

k=1

gk

(∫ Δ

0
Xk(t − τ)θk(τ)dt

)
. (23)

Subtracting (2) by (23), we have

Yt − E{Yt|X(s), s ≤ t} = {Z(t) − Z̃(t)}�β0 + εt.

By the assumption of the invertibility of the matrix, it follows that

β0 = [E{Z(t) − Z̃(t)}{Z(t) − Z̃(t)}�]−1E[{Z(t) − Z̃(t)}{Yt − E(Yt|X(s), s ≤ t)}].

Therefore, β0 is uniquely determined. Let Ỹt = Yt − Z�(t)β0 and m(x1(s), x2(s) : s ≤ t) =

E{Ỹt|X1(s) = x1(s),X2(s) = x2(s) : s ≤ t}. It follows that

m(x1(s), x2(s) : s ≤ t) =
2∑

k=1

gk(
∫ Δ

0
xk(t − τ)θk(τ)dτ).

For any two sample paths x̃2(s) and x2(s), define

Δ2(x̃2(t), x2(t)) =
m(x1(s), x̃2(s) : s ≤ t) − m(x1(s), x2(s) : s ≤ t)∫ Δ

0 {x̃2(t − τ) − x2(t − τ)}dτ
.

Let x̃a
2(s) = x2(s) + h{1 − (s − t)2/h2}I(|s − t| < h), we have

lim
h→0

Δ2(x̃a
2(t), x2(t)) = θ2(0)g′2(

∫ Δ

0
x2(t − τ)θ2(τ)dτ). (24)
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Let x̃b
2(s) = x2(s) + h{1 − (s − t + v)2/h2}I(|s − t + v| < h), we have

lim
h→0

Δ2(x̃b
2(t), x2(t)) = θ2(v)g′2(

∫ Δ

0
x2(t − τ)θ2(τ)dτ).

It follows that

θ2(v)/θ2(0) = lim
h→0

Δ2(x̃b
2(t), x2(t))/ lim

h→0
Δ2(x̃a

2(t), x2(t))

is determined by the conditional mean function m(.), which together with
∫

θ2(v)dv = 1

establishes the identifiability of the function θ2(.). Similarly, the other weight functions are

identifiable.

By (24) and the identifiability of θ2(.), the derivative of g2(.) is identifiable. By the first

assumption in (3), g2(.) is identifiable. Similar arguments can be applied to g1(.). �

Lemma 6.1 Under (A1) and (A2), we have

Xn,k
ti

− Xk
ti = O((n/ log n)−1/2) a.s. (25)

uniformly for all k = 1, · · · , q and i = 1, · · · , n.

Proof For T
def
= tn, Brownian motion B(t), t ∈ (0, T ) and any fixed c > 1, with probability

one, there exists δ > 0, such that

|B(t) − B(t + h)| ≤ c|h/ log h|−1/2 for any t ∈ [0, T ) and h < δ

Substitute n−1 for h and we have (25) as m(t) is uniform continuous on [0, T ]. �

Let Ωn(ξ) = lim
n

n−1
∑n

i=1 m
(1)
n (vi; ξ)m

(1)
n (vi; ξ)�. The following Lemma shows that

Ωn(ξ) is a good approximation of Ω(ξ).

Lemma 6.2 Under (A2)-(A4) and (A7), we have Ωn(ξφ) − Ω(ξφ) → 0 and

n−1
n∑

i=1

∂2mn(vi; ξφ)
∂ξj1∂ξj2

− n−1
n∑

i=1

∂2m(vi; ξφ)
∂ξj1∂ξj2

→ 0

almost surely and uniformly in Ξ in a neighborhood of ξ0, for j1, j2 = 1, · · · , 2qr + p.
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Proof The result follows directly from Lemma 6.1 and an application of the Cauchy-

Schwartz Inequality.

Proof of Theorem 3.1 Following the proof of Yu & Ruppert (2002), write

Qn,λ(ξ)=
1
n

n∑
i=D+1

{
Yti − mn(vi; ξ)

}2
+ λnδ�Σδ

=
1
n

n∑
i=D+1

{
Yti − m(vi; ξ0) + m(vi; ξ0) − m(vi; ξ) + m(vi; ξ) − mn(vi; ξ)

}2
+ λnδ�Σδ

=
1
n

n∑
i=D+1

ε2
ti +

2
n

n∑
i=D+1

{m(vi; ξ0) − m(vi; ξ)}εti +
1
n

n∑
i=D+1

{m(vi; ξ0) − m(vi; ξ)}2

+
2
n

n∑
i=D+1

{m(vi; ξ) − mn(vi; ξ)}εti +
1
n

n∑
i=D+1

{m(vi; ξ) − mn(vi; ξ)}2

+
2
n

n∑
i=D+1

{m(vi; ξ) − mn(vi; ξ)}{m(vi; ξ0) − m(vi; ξ)} + λnδ�Σδ

=
1
n

n∑
i=D+1

ε2
ti + T1 + T2 + T3 + T4 + T5 + T6. (26)

All the following convergence is uniform for all ξ ∈ Ξ almost surely, taken when n → ∞ with

δn → 0 unless otherwise stated. First note that by Lemma 6.1, we have Tk → 0, k = 3, 4, 5

under (A3)-(A5) and (A7). Under (A4) and (A5), the remaining terms can be handled in

exactly the same manner as in Yu and Ruppert (2002). Therefore,

Qn,λ(ξ) → Q(ξ) + σ2 uniformly for all ξ ∈ Ξ. (27)

The strong consistency of PLSE estimator ξ̂n,λ thus follows from parallel arguments in Yu

and Ruppert (2002).

As ξ̂n,λ is consistent estimate of ξ0 and mimimizes

Qn,λ(ξ)=
1
n

n∑
i=D+1

{
Yti − mn(vi; ξ)

}2
+ λnδ�Σδ

Taylor expansion of Qn,λ(ξ) near ξ0 yields

0 =
∂Qn,λ

∂ξ

∣∣∣
ξ̂n,λ

=
∂Qn,λ

∂ξ

∣∣∣
ξ0

+
∂2Qn,λ

∂ξ∂ξ�
∣∣∣
ξ̃
(ξ̂n,λ − ξ0),

where ξ̃ is a vector between ξ̂n,λ and ξ0. Consequently, we have

√
n(ξ̂n,λ − ξ0) = −

{∂2Qn,λ

∂ξ∂ξ�
∣∣∣
ξ̃

}−1√
n

∂Qn,λ

∂ξ

∣∣∣
ξ0

.
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It is sufficient to prove the following two results:

√
n

∂Qn,λ

∂ξ

∣∣∣
ξ0

D→ N(0, 4σ2Ω(ξ0)) (28)

and

∂2Qn,λ

∂ξ∂ξ�
∣∣∣
ξ̃

P→ 2Ω(ξ0). (29)

To prove (28), notice that

∂Qn,λ

∂ξ
= − 2

n

n∑
i=D+1

{
Yti − mn(vi;φ)

}
m(1)

n (vi; ξ) + 2λn[0, δ�Σ]�

and

∂Qn,λ

∂ξ

∣∣∣
ξ0

= − 2
n

n∑
i=D+1

{
εti +

q∑
k=1

η0
k
�[A(η0

k
�
Xk

ti) − A(η0
k
�
Xn,k

ti
)]
}

m(1)
n (vi; ξ0) + 2λn[0, {δ0}�Σ]�.

As λn = o(n−1/2), the last term can be ignored. Under (A2) and (A3), it follows

A(η0
k
�
Xk

ti) − A(η0
k
�
Xn,k

ti
) = o(n−1/2), uniformly in i and k,

which together with Lemma 6.2 leads to

2√
n

n∑
i=D+1

q∑
k=1

η0
k
�[A(η0

k
�
Xk

ti) − A(η0
k
�
Xn,k

ti
)]m(1)

n (vi; ξ0)→0. (30)

By (A1) and Central Limit Theorem for martingale differences, we have

1√
n

n∑
i=D+1

εtim
(1)
n (vi; ξ0) D→ N(0, σ2Ω(ξ0)). (31)

Combination of (30) and (31) yields (28).

For (29), we have

∂2Qn,λ

∂ξ∂ξ�
|ξ̃ =

2
n

n∑
i=D+1

m(1)
n (vi; ξ)m(1)

n (vi; ξ)�|ξ̃

− 2
n

n∑
i=D+1

{
Yti − mn(vi; ξ)

}∂2mn(vi; ξ)
∂ξj1∂ξj2

|ξ̃ + 2λnΣ

=2Ωn(ξ̃) − 2
n

n∑
i=D+1

{
Yti − m(vi; ξ̃)

}∂2mn(vi; ξ)
∂ξj1∂ξj2

|ξ̃

− 2
n

n∑
i=D+1

{
m(vi; ξ̃) − mn(vi; ξ̃)

}∂2mn(vi; ξ)
∂ξj1∂ξj2

|ξ̃ + 2λnΣ.
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The first term on the right hand side goes to 2Ω(ξ0) by Lemma 6.2, (A7) and the fact that

ξ̃→ξ0 almost surely. The second term is op(1) as argued in Yu and Ruppert (2002). By

Lemma 6.1 and (A3), the last two term are also to op(1). This completes the proof of (29).

�
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