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ABSTRACT. This paper proposes a constrained empirical likelihood confidence region for a

parameter in the semi-linear errors-in-variables model. The confidence region is constructed by

combining the score function corresponding to the squared orthogonal distance with a constraint on

the parameter, and it overcomes that the solution of limiting mean estimation equations is not

unique. It is shown that the empirical log likelihood ratio at the true parameter converges to the

standard chi-square distribution. Simulations show that the proposed confidence region has

coverage probability which is closer to the nominal level, as well as narrower than those of normal

approximation of generalized least squares estimator in most cases. A real data example is given.

Key words: confidence regions, coverage probability, errors-in-variables, empirical likelihood

ratio, interval length

1. Introduction

Consider the linear errors-in-variables (EV) regression model

Y ¼ xsb0 þ �; X ¼ xþ u; ð1Þ

where b0 is a p � 1 vector of unknown parameters, x and u are the p � 1 unobservable

random covariates and measurement error vectors, respectively, Y is a scalar response and � is

the model error. It is assumed that x and (�, us)s are independent. In the last two decades, the

linear EV model (1) has frequently been used in practice and has attracted considerable

attention in the statistical literature. Basic results for model (1) can be found in Fuller (1987).

Recently, Carroll et al. (1995) discussed estimation of the regression parameter in linear and

non-linear EV model, and He & Liang (2000) gave the asymptotic properties for an

orthogonal regression approach for model (1).

The empirical likelihood as an alternative to the bootstrap for constructing confidence

regions non-parametrically was introduced by Owen (1988). But instead of resampling with

equal probability weights like the bootstrap, it works by profiling out a multinomial likelihood

supported on the sample. The method defines an empirical likelihood ratio (ELR) function to

construct confidence regions. Important features of the empirical likelihood method are its

automatic determination of the shape and orientation of the confidence region by the data. In

the independent and identically distributed (i.i.d.) data settings, empirical likelihood and its

associated properties have been well studied for different statistical models, see Owen (1990),

Hall & La Scala (1990), Hall & Owen (1993), Qin & Lawless (1994) and references therein. For

independent but not identically distributed variables, Owen (1991) was the first to apply

empirical likelihood to regression models, and Qin (1999) and Shi & Lau (2000) introduced the

empirical likelihood method into semi-parametric models. Some related work can be found in

Chen (1993, 1994), Wang & Jing (1999), Wang & Zhu (2001), Wang & Li (2002), Wang & Rao

(2002) and Chen & Cui (2003), among others.

As a generalization of the linear EV model (1), we consider the semi-linear EV model in

which the response is assumed to be linearly related to one or more true variables and the
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relation to an additional variable (say time t) is assumed to be non-parametric. The specific

semi-linear EV model considered here is

Y ¼ xsb0 þ gðtÞ þ �; X ¼ xþ u; ð2Þ

where t is a real-valued variable such that it ranges over a non-degenerate compact interval of

one dimension which, without loss of generality, can be the unit interval [0, 1], � is an

unobservable error variable and u is a p � 1 unobservable error vector with

E½ð�; usÞs� ¼ 0; Cov½ð�; usÞs� ¼ r2Ipþ1; ð3Þ

where r2 > 0 is an unknown parameter, b0 is a p � 1 vector of unknown parameters, and g is

an unknown smooth function of t.

Assumption (3) is needed for identification of model (2), see Fuller (1987, p. 30, pp. 39–42,

p. 124). It is assumed that x and u are independent, and Rx ¼ Cov(x) and Ru ¼ Cov(u) are the

covariance matrices of the covariates and the measurement error, respectively. In order to

identify model (1), we usually assume Rx is a positive definite matrix (PDM) and Ru/var(�) ¼
R0 is a known p � p PDM. Without loss of generality (otherwise, transform X by R�1=2

0 X , the
corresponding b0 is R1=2

0 b0), we assume (3) which means � and u have the same dispersion

parameter r2. In some cases, y and x are measured in the same way, e.g. if they are both blood

pressure measurements. Hence, it is often reasonable to assume that variances of � and u are

equal, see Carroll et al. (1995, Section 2.3.2). It is also the standard framework of orthogonal

regression taken by Cui & Li (1998), Liang et al. (1999, p. 1523) and He & Liang (2000).

Another way to identify model (1) is to assume that Ru is a known p � p PDM (or estimator of

Ru is available). If there are replicated observations from model (2), then assumption (3) can be

dropped.

Cui & Li (1998) has considered the estimates of the parameters b0, r
2 and smooth function

g(t) for model (2). Under some weak conditions, they showed that the estimators of b0 and r2

are strongly consistent and asymptotically normal. Liang et al. (1999) considered the ortho-

gonal regression approach, Zhu & Cui (2003) studied a semi-linear EV model with errors in

the linear and the non-linear parts. Qin (1999) and Shi & Lau (2000) constructed the empirical

likelihood confidence regions of the parameter b0, respectively, in the semi-linear model

Y ¼ xsib0 þ gðtÞ þ �, and proved the confidence regions are consistent. Cui & Chen (2003)

constructed a constrained ELR confidence region of b0 in the linear EV model (1), and showed

that the ELR confidence region is consistent as well as Bartlett correctable. They compared the

coverage probability, the stability and the length of the constrained ELR confidence intervals

with that of the classical generalized least squares (GLS) approach (i.e. based on normal

approximation of GLS estimator). They concluded that the ELR confidence region has some

superiority over its competitor.

Here we apply the ELR approach for the semi-linear EV model (2) and give a non-

parametric version of Wilk’s theorem for �2 log ELR of b0, see section 2 for more details.

The rest of the paper is organized as follows. In section 2, we introduce the methodology and

main results. Some simulation results and an example are presented in sections 3 and 4 to

compare the ELR confidence region with GLS approach, the proof of the main results is given

in the appendix.

2. The construction of the constrained ELR confidence region

Suppose that fXi ¼ (Xi1, Xi2, . . . ,Xip)
s, ti, Yi, i ¼ 1, . . . , ng is a sample of size n from model

(2). As g(t) is unknown, we define a series of probability weight function wni(t), which satisfyPn
j¼1 wnjðtiÞ ¼ 1 ð1 � i � nÞ. The kernel weight function, for example, can be taken as
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wniðtÞ ¼
Kððt � tiÞ=anÞPn
j¼1 Kððt � tjÞ=anÞ

;

where K(Æ) is a probability density function with c1If|x| � r0g � K(x) � c2If|x| � r0g for

some positive constants c1, c2 and r0, an > 0 is a sequence of smooth parameter, IfÆg denotes

the indicator function. Then a �nominal� estimator of g is defined as the form

ĝnðtÞ ¼
Xn
i¼1

wniðtÞðYi � xsib0Þ:

Replacing g(t) by ĝnðtÞ in the first equation of model (2), we get

~Yi ¼ ~xsib0 þ ~��i ; ~Xi ¼ ~xi þ ~ui; ð4Þ

where ~Yi ¼ Yi �
Pn

j¼1 wnjðtiÞYj, ~Xi ¼ Xi �
Pn

j¼1 wnjðtiÞXj, ~xi ¼ xi �
Pn

j¼1 wnjðtiÞxj, ~ui ¼ ui �Pn
j¼1 wnjðtiÞuj, ~��i ¼ ~gðtiÞ þ ~�i with ~�i ¼ �i �

Pn
j¼1 wnjðtiÞ�j, ~gðtiÞ ¼ gðtiÞ �

Pn
j¼1 wnjðtiÞgðtjÞ. Let

d2ðbÞ ¼ 1

n

Xn
i¼1

ð ~Yi � ~X s
i bÞ

2

1þ kbk2
; ~ZniðbÞ ¼ ~Xið ~Yi � ~X s

i bÞ þ
ð ~Yi � ~X s

i bÞ
2b

1þ kbk2
:

Note that model (4) is little different from model (1), and f~��i g are still i.i.d. approximately

with Eð~��i Þ � 0 since ~gðtiÞ � 0. Therefore, we treat model (4) as (1) approximately

and use the orthogonal regression approach which is presented in Cui & Li

(1998), Liang et al. (1999) and He & Liang (2000) to define the GLS estimator of b0 as

follows

b̂n ¼ argmin
b2Rp

d2ðbÞ ¼ argmin
b2Rp

1

n

Xn
i¼1

ð ~Yi � ~X s
i bÞ

2

1þ kbk2
:

In fact, if �i, xi and ui are assumed to be normal and independent in model (2) without g(t),
then the MLE of b is just a solution of minimizing the d2(b), see Fuller (1987, Section 2.2.1). It

follows from @d2ðbÞ=@b
���
b¼ b̂n

¼ 0 that

Xn
i¼1

~Xið ~Yi � ~X s
i b̂nÞ þ

ð ~Yi � ~X s
i b̂nÞ

2 b̂n
1þ k b̂nk2

" #
¼ 0; ð5Þ

it means that the b̂n satisfies
Pn

i¼1
~Znið b̂nÞ ¼ 0, and

Pn
i¼1

~ZniðbÞ ¼ 0 has at least one solution

no matter if E ~ZniðbÞ is 0 or not. Meanwhile, the ELR evaluated at b by the estimation functionPn
i¼1

~ZniðbÞ ¼ 0 is defined as

RðbÞ ¼ sup
Yn
i¼1

npi :
Xn
i¼1

pi ~ZniðbÞ ¼ 0; pi � 0;
Xn
i¼1

pi ¼ 1

( )
: ð6Þ

Intuitively speaking, ~bn should converge to b0 if b0 is a unique solution of limn!1EZni(b) ¼
0, where

Pn
i¼1

~Znið ~bnÞ ¼ 0. However the solution is not unique, this implies that the ordinary

empirical likelihood confidence region fb : R(b) � rg of b0 is not consistent. We then

propose a constrained empirical likelihood confidence region of parameter b0 with a level as

follows:

CRa ¼ fb : RðbÞ � r; d2ðbÞ � ksðR̂Þg ð7Þ

where ksðR̂Þ is the smallest eigenvalue of R̂ ¼ 1
n

Pn
i¼1

~Xi ~X s
i , 0 � r � 1 depends on a.
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Shi & Lau (2000) constructed an empirical likelihood confidence region for linear semi-

parametric models without errors in the variable (i.e. ui ¼ 0) as CsL ¼ fb : R(F) � r,

F << Fng. The relationship (l ¼ T(F )) between the parameter b and the distribution F

(discrete distribution on fY1, . . . ,Yng with probability pi) is given by
Pn

i¼1 pi ~Xi~�iðbÞ ¼ 0, where

~�iðbÞ ¼ Yi � X s
i b� ĝnðtÞ: Our CRa is different from the one of Shi & Lau (2000), as it involves

a constraint set fb : d2ðbÞ � ksðR̂Þg. The restriction is necessary as there are at least two

roots (no more p þ 1 roots) for the equation limn!1 E ~ZniðbÞ ¼ 0 [see (16) in the appendix and

E ~Zniðb0Þ ¼ Oða2nÞ ¼ oðn�1=2Þ uniformly in i under the assumptions of the paper]. Thus, if b0 and
b1 ( 6¼b0) are such two roots and there is no constriction d2ðbÞ � ksðR̂Þ in CRa, then

Pfb0 2 CRag ¼ Pfb1 2 CRag ¼ 1� aþ oð1Þ

indicating that the probability of confidence region covering the faulty value b1 is equal to that

the probability covers the true value b0, and the confidence region is not consistent. More

details were given by Cui & Chen (2003). On the contrary, if we impose the restriction

d2ðbÞ � ksðR̂Þ, then for 8b 6¼ b0, limn!1Pfb 2 CRag ¼ 0 (see theorem 2), this means the

confidence region is consistent.

The maximum in (6) may be found via Lagrange multipliers, the value for pi is given by

pi ¼ 1=½nð1þ ks ~ZniðbÞÞ� for fixed b, where k satisfies 1
n

Pn
i¼1

~ZniðbÞ=ð1þ ks ~ZniðbÞÞ ¼ 0: Hence,

the �2 log ELR at b from (6) is

lðbÞ ¼ �2 logRðbÞ ¼ 2
Xn
i¼1

ð1þ ks ~ZniðbÞÞ:

Now we state the main results as follows.

Theorem 1

Under the conditions C1–C5 listed in the appendix, we have

lðb0Þ�!
d:

v2p as n ! 1:

where ��!d: � denotes convergence in distribution.

According to theorem 1, we construct an a-level ELR confidence region of b based on (7) as

CRa ¼ fb : lðbÞ � Ca; d2ðbÞ � ksðR̂Þg; ð8Þ

where Ca satisfies Pfv2p � Cag ¼ 1� a:

Remark 1. From the proof of theorem 2, we have d2ð b̂nÞ � d2ðb0Þ � ksðR̂Þ; a.s., then

Pðd2ðb0Þ � ksðR̂ÞÞ ! 1 and P ðb0 2 CRaÞ ¼ P ðlðb0Þ � Ca; d2ðb0Þ � ksðR̂ÞÞ ! 1� a: The

asymptotic properties of l(b0) are mainly dependent on those of the four quantities

n�1=2
P

i
~Zniðb0Þ, n�1

P
i
~Zniðb0Þ ~Zs

niðb0Þ; n�1
P

i k ~Zniðb0Þk2 and maxi k ~Zniðb0Þk. Moreover,

these four quantities can be replaced by n�1/2P
iZni(b0), n�1P

i Zniðb0Þ Zs
niðb0Þ;

n�1P
ikZni(b0)k2 and maxikZni(b0)k respectively (see smoothing approach in lemma 4), where

Zniðb0Þ ¼ XiðYi � X s
i b0Þ þ ðYi � X s

i b0Þ
2b0=ð1þ kb0k2Þ in model (1). Rather than weighted chi-

square distribution, l0ðb0Þ!
d:
v2p and (16) in the appendix yield lðb0Þ!

d:
v2p where l0(b0) stands

for �2 log ELR at b0 corresponding to Zni(b0).

Theorem 2

fb : d2ðbÞ � ksðR̂Þg is a convex set and not empty as n is large enough. Moreover, if b 2 Rp is a

constant vector and b 6¼ b0, then limn!1Pfb 2 CRag ¼ 0, where CRa is in (7).
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Theorem 3

If b� ¼ b0 � n�1=2R�1
v X1=2c for c 2 Rp is a constant vector, then under conditions C1–C5 listed in

the appendix, we have

lðb�Þ�!d v2pðkck
2Þ ðn ! 1Þ;

where Rv ¼ Cov(vi) and vi is shown in condition C1, kck2 is the non-central parameter and X is

defined as

X ¼ ð1þ kb0k2Þr2Rþ Cov ð�i � usib0Þui þ ð�i � usib0Þ
2 b0
ð1þ kb0k2Þ

" #
: ð9Þ

3. Simulations

In this section, we report results from a simulation study designed to evaluate the performance

of the proposed ELR confidence region (8) and compare it with the GLS confidence region

(i.e. based on the normal approximation of GLS estimator b̂n). Our simulations show that the

ELR confidence region has coverage probability close to the nominal level and is narrower

than that of GLS for most cases.

Cui & Li (1998, theorems 1 and 2) showed that the GLS estimator b̂n of b0 for linear semi-

linear EV models with random covariate variable t is strongly consistent and asymptotically

normal. We can adopt the same strategy as in Cui & Li (1998) and lemmas 1–4 to get that our

GLS estimator b̂n of b0 for semi-linear EV models with deterministic covariate variable t in

this paper also has the following properties:

b̂n �! b0 a:s:; r̂2n �! r2 a:s:;
ffiffiffi
n

p
X�1=2Rvð b̂n � b0Þ�!

d:
Nð0; IpÞ;

R̂ ¼ 1
n

Pn
i¼1

~Xi ~X s
i � r̂2nIp �! Rv a:s: and 1

n

Pn
i¼1

~Zniðb0Þ ~Zs
niðb0Þ ¼ Xþ oð1Þ a:s:; where r̂2n ¼

1
n

Pn
i¼1ð ~Yi � ~X s

i b̂nÞ
2=ð1þ k b̂nk2Þ, see also Liang et al. (1999) for special case. We shall use

X̂n ¼ 1
n

Pn
i¼1

~Znið b̂nÞ ~Zs
nið b̂nÞ to estimate X, it can be derived that X̂n is consistent estimator of X

from lemmas 3 and 4. In this sense, we have
ffiffiffi
n

p
X̂�1=2

n R̂ð b̂n � b0Þ�!
d:

Nð0; IpÞ.
As p ¼ 1, b̂n has an explicit form,

b̂n ¼
2
Pn

i¼1
~Xi ~Yiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð
Pn

i¼1ð ~Y 2
i � ~X 2

i ÞÞ
2 þ 4ð

Pn
i¼1

~Xi ~YiÞ2
q

�
Pn

i¼1ð ~Y 2
i � ~X 2

i Þ
:

Then, a two-side confidence interval for b0 with level a is given by

ð b̂n � Z1�a=2X̂
1=2
n =ð

ffiffiffi
n

p
R̂Þ; b̂n þ Z1�a=2X̂

1=2
n =ð

ffiffiffi
n

p
R̂ÞÞ; ð10Þ

where U(Za) ¼ a, U(Æ) is the cdf of the standard normal distribution. The explicit form of b̂n
cannot be expressed when p � 2, but the numerical solution of b̂n can be given by using the

eigenvector decomposition. Based on the asymptotic normality of b̂n, we construct the GLS

confidence region as follows:

CRa ¼ fb : nðb� b̂nÞsR̂1ðb� b̂nÞ � Cag; ð11Þ

where Ca satisfied P ðv2p � CaÞ ¼ 1� a and R̂1 ¼ R̂X̂�1
n R̂.

We shall compare the performance of our ELR with GLS approach. Let ti ¼ i/n be equal

spaced points on [0, 1], g(t) ¼ sin (pt), � � N(0, r2). The kernel method is used to determine a
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weight function wni(t) with K(u) ¼ (3/4)(1 � u2)If|u| � 1g and bandwidth an ¼ 1.06snn
�1/3 �

0.306n�1/3 (sn is the standard deviation of ftig), the bandwidth h used here is the histogram

bandwidth, it may not be optimal but an experimental choice. Cross-validation criteria is

helpful for choosing optimal h. The four cases of distributions for u and v below are con-

sidered, where cases 1 and 2 are for p ¼ 1 with b0 ¼ 1 and h(t) ¼ t, cases 3 and 4 are for p ¼ 2

with b0 ¼ (1, 1)s and h(t) ¼ (t, t2)s.

Case 1. v � N(0, 1) and u � N(0, r2).
Case 2. v � Uð�

ffiffiffi
3

p
;
ffiffiffi
3

p
Þ and u � Uð�

ffiffiffi
3

p
r;

ffiffiffi
3

p
rÞ.

Case 3. v � U(D1) and u � U(D2), where U(Di) denotes the uniform distribution on Di(i ¼
1, 2) with D1 ¼ ½�

ffiffiffi
3

p
;
ffiffiffi
3

p
�2 and D2 ¼ ½�

ffiffiffi
3

p
r;

ffiffiffi
3

p
r�2.

Case 4. v � N(0, I2) and u � N(0, r2I2), where I2 is the 2 � 2 unit matrix.

First, we display the curves of �2 log (R(b)) by ELR approach in Fig. 1A, B for cases 1 and

2, respectively, with r ¼ 0.3; indicating that the �2 log (R(b)) reaches minimum value 0 at

two points which are very close to the true value b0 ¼ 1 and the faulty value b ¼ �1,

respectively. Moreover, the curve near those two points is approximately in quadratic form

and the set fb : � 2 log(R(b)) < Cag is actually a union of two separate intervals. Our con-

strictive region fd2ðbÞ � ksðR̂Þg remains just the one covering the true value and gets rid of the

faulty one. For p ¼ 2, case 3 with n ¼ 50 and 100 are considered, respectively. The 95%

confidence regions of ELR and GLS are shown in Fig. 2(A) for n ¼ 100, and Fig. 2(B) for

n ¼ 50. The two confidence regions are close for n ¼ 100, but there are some differences for

n ¼ 50. The area of ELR confidence region seems more smaller than that of GLS confidence

region and the true vector b0 is more close to the centre of ELR confidence region. The ELR

confidence region is overall rather reasonable.

Next, we shall make a comparison of coverage probability. Sample size is chosen to be 30,

50, 100 and 200 and the level a is fixed at 0.05. The coverage probabilities are calculated

for the ELR and GLS methods based on 1000 replications. Tables 1 and 2 present coverage

probability comparisons. It can be shown that the ELR outperforms the GLS method in

all four cases considered as the coverage probability of ELR confidence region is close

to designed probability than that of GLS. It is also interesting to note that the coverage

accuracies for both generally increase to the designed probability as the sample size n becomes

larger.

The case 1 is used for comparison of the length ratio (ELR confidence interval length/GLS

confidence interval length) of ELR and GLS confidence intervals. The result is shown in

–2
 lo

g(
R

 (b
 ))

–2
 lo

g(
R

 (b
 ))

0

50

100

150

200

0

50

100

150

200

250

–1.5 –1.0 –0.5 0.0

b b
0.5 1.0 1.5

–2 log(R(b))

Restrictive region

–1.5 –1.0 –0.5 0.0 0.5 1.0 1.5

–2 log(R(b))

Restrictive region

(A) (B)

Fig. 1. (A) �2 log R(b) versus b for case 2. (B) �2 log R(b) versus b for case 4.
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Table 3. The length ratio is smaller than 1 when r ¼ 0.3, r ¼ 0.6 and n � 50, and r ¼ 0.9 and

n � 200. It means that the ELR confidence intervals has shorter length than that of GLS if r is

smaller relatively and the sample size is large. This is reasonable due to ELR method’s

automatic determination of shape and orientation of the confidence region by the data.

Usually, the length of ELR confidence interval is shorter than that of GLS confidence interval

in the linear EV model, see Gao & Cui (2001) and Cui & Chen (2003). Unlike linear EV model,

0.85

0.90

0.95

1.00

1.05

1.10
b 2

b 1 b 1

0.85 0.90 0.95 1.00 1.05

0.7

0.8

0.9

1.0

1.1

b 2

1.20.8 0.9 1.0 1.1

(A) (B)

Fig. 2. (A) Confidence region for p ¼ 2 with n ¼ 100. (B) Confidence region for p ¼ 2 with n ¼ 50.

Table 1. The coverage probability of confidence regions when r ¼ 0.3

n

Case 1 Case 2 Case 3 Case 4

ELR GLS ELR GLS ELR GLS ELR GLS

30 0.849 0.844 0.843 0.820 0.836 0.830 0.833 0.829

50 0.881 0.878 0.907 0.895 0.883 0.875 0.878 0.869

100 0.926 0.922 0.929 0.914 0.925 0.920 0.917 0.912

200 0.934 0.925 0.937 0.928 0.932 0.930 0.928 0.923

Table 2. The coverage probability of confidence regions when r ¼ 0.9

n

Case 1 Case 2 Case 3 Case 4

ELR GLS ELR GLS ELR GLS ELR GLS

30 0.848 0.847 0.842 0.782 0.834 0.825 0.831 0.823

50 0.894 0.890 0.906 0.819 0.869 0.867 0.886 0.875

100 0.931 0.927 0.937 0.873 0.919 0.908 0.921 0.918

200 0.940 0.935 0.939 0.927 0.937 0.932 0.939 0.934

Table 3. The length ratio of confidence intervals for case 1

n r ¼ 0.3 r ¼ 0.6 r ¼ 0.9

30 0.908 (0.009) 1.038 (0.183) 1.130 (0.398)

50 0.873 (0.078) 0.985 (0.090) 1.107 (0.215)

100 0.788 (0.112) 0.923 (0.055) 1.006 (0.065)

200 0.696 (0.145) 0.878 (0.074) 0.940 (0.047)

Value represent average (SD).
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the smoothing method is applied to semi-linear EV model which leads a non-i.i.d. model (4), it

might reduce the accuracy of ELR confidence interval when the variance of error is large

relatively and the sample size is small. This phenomenon may be dependent on the second-

order property of ELR approach.

4. Example

Finally, we demonstrate the comparisons of both confidence intervals through an example.

We consider the relationship between body height and arm span (x) and age using a sample

of n ¼ 32 observations (the data set can be downloaded from the web-page: http://

math.bnu.edu.cn/�chj/datahl.ps). This data set comes from the junior class of statistical

major in Beijing Normal University, China. Students measured their body height and arm

span by the same roll ruler. The pairs scatter plots of observed body height (Y: in cm) versus

age (in months), observed arm span (X: in cm) versus age, and Y versus X are shown in

Fig. 3 A–C, respectively. We would like to establish the relationship of Y and (x, age).

Fig. 3(C) shows us there is a statistical linear relationship between Y and X, where X is

observed variable of x with error u whose variance is assumed to be approximately equal to

the variance of error due to the same measurement tool. On the contrary, we seem not to
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Fig. 3. The plots of (A) Body height versus age, (B) arm span versus age, (C) body height versus arm

span, (D) Y � ĝðtÞ versus arm span (X).

160 H. Cui and E. Kong Scand J Statist 33

� Board of the Foundation of the Scandinavian Journal of Statistics 2006.



know exactly what relationship between Y and age from Fig. 3(A). So we adopt a working

semi-linear EV model,

Y ¼ xbþ gðtÞ þ error; X ¼ xþ u:

where t ¼ m/31 2 [0, 1], m ¼ age � 231 stands for the months with respect to minimum age

(231 months and birth date is 9/1985), 31 is the range of such relative months. The bandwidth

h is also taken as h ¼ 1.06snn
�1/3. The plot of Y � ĝðtÞ versus observed arm span (X) is shown

in Fig. 3(D). In this sense, we get GLS estimator b̂ ¼ 0:812, the GLS confidence interval with

level a ¼ 0.05 is (0.679, 0.944) and its confidence interval length is 0.265. Meanwhile, the ELR

confidence interval with level a ¼ 0.05 is (0.682, 0.938) and the confidence interval length is

0.256. This implies the ELR confidence interval length is shorter than that of GLS method

with the same level. Figure 4 shows the plot of �2 log(R(b)) versus b.
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Appendix: Proof of main results

Some conditions used in the paper are listed below:

(C1) xi ¼ h(ti) þ vi, where h(t) ¼ (h1(t), h2(t), . . . , hp(t))
T, vi ¼ (vi1, . . . , vip)

T 2 Rp are un-

known random vectors with E(vi) ¼ 0, Ekvik4 < 1 for 1 � i � n and kÆk is Euclidean

norm.

(C2) g, hj(1 � j � p) 2 Lip, where

Lip ¼: ff : sup
s;t2½0;1�

jf ðsÞ � f ðtÞj � Cjs� tj for some positive constant Cg:

(C3) 0 � t0 � t1 � 	 	 	 � tn�1 � tn ¼ 1, and max1�i�n|ti � ti�1| ¼ O(log n/n).

(C4) For some positive sequence an with na4n ! 0 and
ffiffiffi
n

p
an= log

3 n ! 1, wni(Æ) satisfies:

(1) supt2[0,1]max1�i�nwni(t) ¼ O(log n/(nan)).

(2) supt2½0;1�
Pn

i¼1 wniðtÞIfjti � tj > ang ¼ OðanÞ.
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Note that the conditions (C1–C3) are used commonly in non-parametric estimation, see

Gao et al. (1995) and Qin (1999).

(C5) Eð�4i þ kuik4Þ < 1:

Remark 2. If T1, T2, . . . ,Tn are i.i.d. � U[0, 1] and take ti ¼ T(i)(1 � i � n), where

T(1)� T(2) � 	 	 	 � T(n), then the condition C3 holds automatically. In this sense, the results in

the paper remain true for random ti ¼ T(i). Under the condition C3, if we take the kernel

weight function wni(t) as shown in section 2, then (1) and (2) hold in condition C4. C5 means

that max1�i�n j�ij ¼ oðn1
4Þ a.s. and max1�i�n kuik ¼ oðn1

4Þ a:s:

Lemma 1

Let n1, n2, . . . , nn be i.i.d. random variables with 0 mean and E|ni|
r < 1 (r � 1). Assume that

faki : k, i ¼ 1, 2, . . . , ng is a sequence of numbers. Then

max
1�i�n

j
Xn
k¼1

akink j ¼ O
�
ðn1=rdn _

ffiffiffiffiffiffiffiffiffi
dnsn

p
Þ log n

�
a:s:

where dn ¼ max1�k,i�n|aki| and sn ¼ max1�i�n
Pn

k¼1 jakij:

The proof of lemma 1 can follow completely the proof of lemma 1 in Cui & Li (1998) or Shi

& Lau (2000), we omit it here. The following lemmas are necessary for the proof of theorem 1.

Lemma 2

Let (n1, g1), (n2, g2), . . . , (nn, gn) be bivariate i.i.d. random vectors with 0 mean and E(|ni|
4 þ

|gi|
4) < 1; fn1, fn2, . . . , fnn be a random sequence with max1�i�n|fni| ¼ o(1) a.s.; b1, b2, . . . , bn

be a sequence with max1�i�n|bi| ¼ O(an), then under the condition (C3) and (C4),

ðiÞ E
Xn
i¼1

bi�ni

 !2

¼ Oðnan log nÞ;

ðiiÞ E
Xn
i¼1

ni�gi

 !2

¼ Oðða�1
n log nÞ2Þ;

ðiiiÞ 1

n

Xn
i¼1

fnini ¼ oð1Þ a:s:

where �ni ¼
Pn

j¼1 wnjðtiÞnj, �gi ¼
Pn

j¼1 wnjðtiÞgj:

Proof. From the assumption of lemma 2, we have

ðiÞ E
Xn
i¼1

bi�ni

 !2

¼
Xn
j¼1

Xn
i¼1

biwnjðtiÞ
" #2

En2j � Ca2n
Xn
j¼1

Xn
i¼1

wnjðtiÞn log n=ðnanÞ ¼ Oðnan log nÞ;
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ðiiÞ E
Xn
i¼1

ni�gi

 !2

¼
X
i;j;k;l

wnjðtiÞwnlðtkÞEðninkgjglÞ

� C
X
i

w2
niðtiÞ þ

X
i;j

w2
njðtiÞ þ

 X
i

wniðtiÞ
!2

2
4

3
5

¼ Oððlog n=anÞ2Þ;

ðiiiÞ 1

n

Xn
i¼1

finni

�����
����� � max

1�i�n
jfin

1

n

Xn
i¼1

�����
�����nij ¼ oð1Þ a:s:

Lemma 3

Under the conditions C3 and C4, then

sup
0�t�1

j~f ðtÞj ¼ OðanÞ and max
1�i�n

Xn
j¼1

wnjðtiÞgj

�����
����� ¼ O

� log3=2 nffiffiffiffiffiffiffi
nan

p
�
a:s:

where ~f ðtÞ ¼ f ðtÞ �
Pn

j¼1 wnjðtÞf ðtjÞ with f(t) 2 Lip, g1, g2, . . . , gn are i.i.d. random vectors with

0 mean and Ekgik4 < 1.

Proof. Since f 2 Lip,

~f ðtÞ ¼
Xn
j¼1

wnjðtÞ½f ðtÞ � f ðtjÞ�

¼
Xn
j¼1

wnjðtÞ½f ðtÞ � f ðtjÞ�Ifjt � tjj � ang þ
Xn
j¼1

wnjðtÞ½f ðtÞ � f ðtjÞ�Ifjt � tjj > ang;

it follows from conditions C3 and C4 that j~f ðtÞj � Can: From the condition C4, we obtain

dn ¼ max1�i,j�nwnj(ti) ¼ O(log n/(nan)), sn ¼ max1�i�n
Pn

j¼1 wnjðtiÞ ¼ 1, n1=4dn �
ffiffiffiffiffi
dn

p
when n

is large, then by lemma 1 with r ¼ 4, we have

max
1�i�n

Xn
j¼1

wnjðtiÞgj

�����
����� ¼ Oð

ffiffiffiffiffi
dn

p
log nÞ ¼ O log3=2

nffiffiffiffiffiffiffi
nan

p
� �

a:s:

The proof is complete.

Lemma 4

Under the above conditions C2–C5, we have

n�1=2
Xn
i¼1

~Zniðb0Þ�!
d: ð0;XÞ; 1

n

Xn
i¼1

~Zniðb0Þ ~Zs
niðb0Þ ¼ Xþ oð1Þ a:s:;

max
1�i�n

k ~Zniðb0Þk ¼ oðn1=2Þ a:s: and
1

n

Xn
i¼1

k ~Zniðb0Þk3 ¼ oðn1=2Þ a:s:;

where X ¼ ð1þ kb0k2Þr2Rþ Cov½ð�i � usib0Þui þ ð�i � usi b0Þ
2b0=ð1þ kb0k2Þ�:
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Proof. Since

~Zniðb0Þ ¼ ~Xið ~Yi � ~X s
i b0Þ þ

ð ~Yi � ~X s
i b0Þ

2b0
1þ kb0k2

¼ ½vi þ ui þ ~hðtiÞ � ð�vi þ �uiÞ�½�i � usib0 þ ~gðtiÞ � ��i þ �usib0�
þ ½�i � usi b0 þ ~gðtiÞ � ��i þ �usi b0�

2b0=ð1þ kb0k2Þ ¼: J1i þ J2ib0=ð1þ kb0k2Þ;

it is suffice to prove that

n�1=2
Xn
i¼1

J1i ¼ n�1=2
Xn
i¼1

ðvi þ uiÞð�i � usib0Þ þ opð1Þ ð12Þ

and

n�1=2
Xn
i¼1

J2i ¼ n�1=2
Xn
i¼1

ð�i � usib0Þ
2 þ opð1Þ: ð13Þ

We only prove (12), (13) is proved by the similar way. Denote �ui ¼
Pn

j¼1 wnjðtiÞuj,
�vi ¼

Pn
j¼1 wnjðtiÞvj, ��i ¼

Pn
j¼1 wnjðtiÞ�j. It follows from the condition C5 and lemma 3

that max1�i�n j~hðtiÞ~gðtiÞj ¼ Oða2nÞ,
Pn

i¼1
~hðtiÞð�i � usib0Þ ¼ Opðn1=2anÞ,

Pn
i¼1 ~gðtiÞðvi þ uiÞ ¼

Opðn1=2anÞ, and max1�i�n jð�vi þ �uiÞð��i � �usib0Þj ¼ Oðlog3 n=ðnanÞÞ a:s.
Using (i) and (ii) in lemma 2, we get

Xn
i¼1

~hðtiÞð��i � �usi b0Þ ¼ Opððnan log nÞ1=2Þ;
Xn
i¼1

~gðtiÞð�vi þ �uiÞ ¼ Opððnan log nÞ1=2Þ;

Xn
i¼1

ðvi þ uiÞð��i � �usib0Þ ¼ Op
log n
an

� �
;

Xn
i¼1

ð�vi þ �uiÞð�i � usib0Þ ¼ Op
log n
an

� �
:

Therefore,

n�1=2
Xn
i¼1

J1i ¼ n�1=2
Xn
i¼1

ðvi þ uiÞð�i � usib0Þ þ OpðanÞ þ Op
log3 n
ð
ffiffiffi
n

p
anÞ

� �

þ Opð
ffiffiffi
n

p
a2nÞ þ Opððan log nÞ1=2Þ

¼ n�1=2
Xn
i¼1

ðvi þ uiÞð�i � usib0Þ þ opð1Þ:

Moreover, it can be derived by using the condition C5 and lemma 3 again that

max
1�i�n

j~hðtiÞð�i � usib0Þj ¼ oðn1=4anÞ a:s:; max
1�i�n

j~gðtiÞðvi þ uiÞj ¼ oðn1=4anÞ a:s:;

max
1�i�n

j~hðtiÞð��i � �usib0Þj ¼ oðn�5=8 log3=2 nÞ a:s:;

max
1�i�n

j~gðtiÞð�vi þ �uiÞj ¼ o n�5=8 log3=2 n
� �

a:s:;

max
1�i�n

jðvi þ uiÞð��i � �usi b0Þj ¼ o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log3 n
ð
ffiffiffi
n

p
anÞ

s0
@

1
A a:s:;

max
1�i�n

jð�vi þ �uiÞð�i � usi b0Þj ¼ o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log3 n
ð
ffiffiffi
n

p
anÞ

s0
@

1
A a:s:
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Thus, we have from (iii) in lemma 2 that

J1i ¼ ðvi þ uiÞð�i � usib0Þ þ oð1Þ a:s: and J2i ¼ ð�i � usib0Þ
2 þ oð1Þ a:s:

uniformly in i. This means by (iii) in lemma 2 and the strong law of large numbers that

1

n
~Zniðb0Þ ~Zniðb0Þs ¼

1

n

Xn
i¼1

J1i þ
J2ib0

ð1þ kb0k2Þ

" #
J1i þ

J2ib0
ð1þ kb0k2Þ

" #s

¼ 1

n

Xn
i¼1

�
ðvi þ uiÞð�i � usi b0Þ þ

ð�i � usib0Þ
2b0

1þ kb0k2
	�

ðvi þ uiÞð�i � usib0Þ

þ ð�i � usib0Þ
2b0

1þ kb0k2
	s

þ oð1Þ

¼ Xþ oð1Þ a:s:

and max1�i�n k ~Zniðb0Þk � max1�i�n kJ1ik þmax1�i�n kJ2ik ¼ oðn1=2Þ:
From the proof above, we obtain 1

n

Pn
i¼1 k ~Zniðb0Þk

2 ¼ trðXÞ þ oð1Þ a:s: Then,

1

n

Xn
i¼1

k ~Zniðb0Þk3 � max
1�i�n

k ~Zniðb0Þk
1

n

Xn
i¼1

k ~Zniðb0Þk2 ¼ oðn1=2Þ a:s:

This completes the proof of lemma 4.

Proof of theorem 1

We use lemma 4 and follow the standard proof of theorem 1 in Owen (1990), then theorem 1

can be proved.

Proof of Theorem 2

Let Dn ¼ fb : d2ðbÞ � ksðR̂Þg, where d2ðbÞ ¼ 1
n

Pn
i¼1ð~Yi � ~Xs

i bÞ
2= ð1þ kbk2Þ. Then,

b 2 Dn ()
1

n

Xn
i¼1

ð ~Yi � ~X s
i bÞ

2 � ð1þ bsbÞksðR̂Þ � 0

() bs
�
1

n

Xn
i¼1

~Xi ~X
s
i � ksðR̂ÞIp

�
b�

�
2

n

Xn
i¼1

~Yi ~Xi

�s

bþ 1

n

Xn
i¼1

~Y 2
i � ksðR̂Þ � 0: ð14Þ

Since 1
n

Pn
i¼1

~Xi ~X s
i � ksðR̂ÞIp is an non-negative positive matrix, then the quadratic form of the

left of ��� in (14) is a convex function of b, it follows that Dn is a convex set.

Similar to the proof of lemma 3 (1), we have d2(b0) ! r2 a.s. and R̂ �! Rv þ r2Ip a:s:
Furthermore, ksðR̂Þ �! ksðRvÞ þ r2 a:s: ðn ! 1Þ. It means that

d2ðb0Þ < r2 þ 1

2
ksðRÞ < ksðR̂Þ; a:s: ð15Þ

provided n is large enough. Then Dn is not empty since b0 in it when n is large enough.

Note that ~xi; ~ui;~�i are independent, E~xi ¼ ~hðtiÞ;E~ui ¼ 0;E~�i ¼ 0, sup0�t�1 j~gðtÞj ¼ OðanÞ and
sup0�t�1 j~hðtÞj ¼ OðanÞ, we can easily drive from the formulae of ~ZniðbÞ before (12) that

E ~ZniðbÞ ¼ Covð~xiÞðb0 � bÞ þ ðb0 � bÞsCovð~xiÞðb0 � bÞ
1þ kbk2

bþ Oða2nÞ: ð16Þ

By using ~xi ¼ vi þ ~hðtiÞ � �vi, we get

Covð~xiÞ ¼ Rv þ
Xn
j¼1

w2
njðtiÞ � 2wniðtiÞ

 !
Rv þ Oða2nÞ ¼ Rv þ oð1Þ:
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Therefore, on one hand, if b 6¼ b0 and limn!1 E ~ZniðbÞ ¼ 0, then we have

Rvðb0 � bÞ þ ðb0 � bÞsRvðb0 � bÞ
1þ kbk2

b ¼ 0: ð17Þ

Multiply (b0 � b)s at both sides of (17), we get

ðb0 � bÞsRvðb0 � bÞ þ ðb0 � bÞsbðb0 � bÞsRvðb0 � bÞ
1þ kbk2

¼ 0:

Since Rv is a PDM, we get 1 þ bsb0 ¼ 0. Applying the same method of proving Theorem 3.2

in Cui & Chen (2003), we get

d2ðbÞ ¼ ðb0 � bÞsRvðb0 � bÞ
1þ kbk2

þ r2 þ opð1Þ; and ksðRvÞ þ r2 þ opð1Þ:

It is easy to get �op(1) > ks(Rv)[(kb � b0k2)/(1 þ kbk2) � 1] ¼: d > 0� from �d2ðbÞ < ksðR̂Þ�
and 1 þ bsb0 ¼ 0. Thus, Pfb 2 CRag � Pfd2ðbÞ < ksðR̂Þg � Pfopð1Þ � dg ! 0 as n ! 1.

On the other hand, if b 6¼ b0 and limn!1 E ~ZniðbÞ 6¼ 0, then l(b) ! þ1 a.s. by the standard

proof of empirical likelihood method. Thus,

Pfb 2 CRag � PflðbÞ � Cag ! 0 as n ! 1:

The proof of theorem 2 is complete.

Proof of Theorem 3

We first prove

1

n

Xn
i¼1

~Zniðb�Þ �
1

n

Xn
i¼1

~Zniðb0Þ ¼ n�1=2X1=2cþ opðn�1=2Þ: ð18Þ

Note that

@ ~ZniðbÞ
@b

�����b¼b0

¼ � ~Xi ~X s
i � 2ð~Yi � ~X s

i b0Þb0 ~X s
i

1þ kb0k2
þ ð~Yi � ~X s

i b0Þ
2

1þ kb0k2

 
Ip �

2b0b
s
0

1þ kb0k2

!
;

then it follows from lemma 3 and the proof of lemma 4 that 1
n

Pn
i¼1 @

~ZniðbÞ=@bjb¼b0
¼

�Rv þ oð1Þ a:s. Employing Taylor expansion, we have that

1

n

Xn
i¼1

~Zniðb�Þ �
1

n

Xn
i¼1

~Zniðb0Þ ¼
1

n

Xn
i¼1

@ ~ZniðbÞ
@b

�����b¼b0

ðb� � b0Þ þ opðn�1=2Þ

and (18) is true from b� � b0 ¼ �n�1=2R�1
v X1=2c. Using formulae (16), lemma 3 and the proof

of lemma 4, we obtain

max
1�i�n

k ~Zniðb�Þk ¼ oðn1=2Þ a:s:; 1

n

Xn
i¼1

k ~Zniðb�Þk3 ¼ oðn1=2Þ a:s:

Therefore from the standard proof of Owen (1990), we get

lðb�Þ ¼ n
1

n

Xn
i¼1

~Zniðb�Þ
" #s

1

n

Xn
i¼1

~Zniðb�Þ ~Zs
niðb�Þ

" #�1
1

n

Xn
i¼1

~Zniðb�Þ
" #

þ opð1Þ

¼ n
1

n

Xn
i¼1

~Zniðb0Þ � n�1=2X1=2c

" #s
1

n

Xn
i¼1

~Zniðb�Þ ~Zs
niðb�Þ

" #�1
1

n

Xn
i¼1

~Zniðb0Þ � n�1=2X1=2c

" #

þ opð1Þ:
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Since 1
n

Pn
i¼1

~Zniðb�Þ ~Zs
niðb

�Þ �X¼ oð1Þ a:s:; 1
n

Pn
i¼1

~Zniðb0Þ ~Zs
niðb0Þ �X¼ oð1Þ a:s: and

n
1

n

Xn
i¼1

~Zniðb0Þ
" #s

X�1 1

n

Xn
i¼1

~Zniðb0Þ
" #

�!d: v2p;

we have lðb�Þ �!d: v2pðkck
2Þ as n ! 1. This ends the proof of theorem 3.
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