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Bayesian Analysis (2010) 5, Number 1, pp. 45–64

Default priors for density estimation with
mixture models

J.E. Griffin∗

Abstract. The infinite mixture of normals model has become a popular method
for density estimation problems. This paper proposes an alternative hierarchical
model that leads to hyperparameters that can be interpreted as the location, scale
and smoothness of the density. The priors on other parts of the model have
little effect on the density estimates and can be given default choices. Automatic
Bayesian density estimation can be implemented by using uninformative priors
for location and scale and default priors for the smoothness. The performance of
these methods for density estimation are compared to previously proposed default
priors for four data sets.

Keywords: Density Estimation, Dirichlet process mixture models, Mixtures of
normals, Normalized Generalized Gamma processes

1 Introduction

Infinite mixture of normals models, and particularly Dirichlet process mixture of nor-
mals models, have become the preferred method for density estimation in the Bayesian
nonparametric literature (alternative methods are described by Walker et al. (1999) and
Mueller and Quintana (2004)). The most widely used infinite mixture of normals model
writes the unknown density as

f(y) =
∫

N(y|µ, σ2) dG(µ, σ2) (1)

where N(y|µ, σ2) is the probability density function of a normal distribution with mean
µ and variance σ2 and G is a discrete distribution with an infinite number of atoms.
This mixing distribution G can also be written as

G =
∞∑

i=1

wiδµi,σ2
i
. (2)

where δx is the Dirac measure that places mass 1 on the point x,
∑∞

i=1 wi = 1 a.s.,
(µ1, σ

2
1), (µ2, σ

2
2), . . . are i.i.d and the component weights vector w = (w1, w2, . . . ) are

independent of (µ1, σ
2
1), (µ2, σ

2
2), . . . (the assumption of independence is common but

dependence is discussed by James et al. (2008)). This is a flexible model which can
represent any continuous distribution on the real line. The Bayesian estimation of these
models was initially investigated by Ferguson (1983) and Lo (1984). To fit the model a
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46 Default priors for density estimation

prior needs to be placed on G, the mixing distribution, or alternatively w and µi, σ
2
i . A

standard choice is a Dirichlet process prior. Recently, there has been interest in alterna-
tive forms of prior for G. Suggestions have included: Poisson-Dirichlet processes (Ish-
waran and James 2001), Normalized independent increment processes (Nieto-Barajas
et al. 2004) and normalized generalized gamma process (Lijoi et al. 2007). This paper
considers the prior on (µ, σ2). We will see that the prior on w often has little effect on
the estimate of the density, f , with the hierarchical model developed in this paper.

Inference in mixture models can be seen as a model selection problem. Therefore, the
prior distribution of µ and σ2 plays an important role in a Bayesian analysis. However,
the prior distribution of (µ1, σ

2
1), (µ2, σ

2
2), . . . has received little attention and conjugate

choices such as µi ∼ N(µ0, σ
2/n0) and σ−2

i ∼ Ga(α, β), which was suggested by Escobar
and West (1995), or the non-conjugate choice µi ∼ N(µ0, σ

2
0) and σ−2

i ∼ Ga(α, β) have
predominated. It is well-known that the prior distributions cannot be chosen to be
uninformative and so the prior introduces a scale through α, β and n0 or σ2

0 . Escobar
and West (1995) suggest interpreting n0 as a smoothness parameter and this idea will
be developed in this paper. Alternatively, several authors have proposed data-based
priors which define some of the hyperparameters as a function of the data to allow
automatic scaling of the prior. An alternative prior for finite mixture models was pro-
posed by Robert and Titterington (1998) who assume a correlated prior for the means
µ1, µ2, µ3, . . . , µk (where the mixture model has k components) by defining the condi-
tional distribution of µj given µ1, . . . , µj−1. This allows them to place noninformative
priors on location and scale of the first component.

The original work of Ferguson (1983) and Lo (1984) assumes that the component
variances σ2

i in equation (2) share a common value σ2

f(y|σ2) =
∫

N(y|µ, σ2) dG(µ) (3)

G =
∞∑

i=1

wiδµi . (4)

This prior has more recently been studied by Ishwaran and James (2002). Typically
a hyperprior would be assumed for σ2 which can be given a vague, proper prior. A
drawback with this model is the single variance hyperparameter σ2 which may be an
overly restrictive assumption. If parts of the density can be well-represented by a
normal distribution with different variances then imposing this constraint will lead to
the introduction of many extra normal distributions to model areas with larger spreads.
However, the extra modelling introduced by allowing different variances may only be
necessary for good predictive performance for certain types of distribution. One aspect
of this paper is to consider when the simpler model gives a similar performance to the
more complicated model.

This paper proposes a new prior structure for univariate density using infinite mix-
tures of normals models which use noninformative prior distributions to define a default
prior for Bayesian density estimation. Matlab code to implement the methods are avail-
able from http://www.kent.ac.uk/ims/personal/jeg28/index.htm

http://www.kent.ac.uk/ims/personal/jeg28/index.htm�
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The paper is organised in the following way: section 2 discusses an alternative pa-
rameterisation of the normal mixture model and useful prior distributions for this pa-
rameterisation, section 3 briefly discusses the computational methods to fit these models
(which are fully described in the appendix), section 4 applies these methods to four pre-
viously analysed univariate data sets with different levels of non-normality, section 5
discuss these ideas and some areas for further research and an appendix describes all
samplers needed to fit the models and the propriety of the posterior of the proposed
model.

2 A hierarchical infinite mixture model

The model in (3) and (4) will be used as a starting point and the form of further
levels of the hierarchy will be considered. This seems like a small change to the model
but it can have a large effect on the performance of the infinite mixture model for
density estimation. The main feature of the proposed hierarchical model is that prior
information can be directly placed on the unknown density f and a parameter controlling
its smoothness, which contrasts with the standard Bayesian approach which places prior
information directly onto the mixing distribution. The structure allows the construction
of hierarchical models with little prior information which encourage good predictive
performance (as illustrated in section 4) and which can be used to define automatic
Bayesian density estimation procedures.

Initially it is assumed that all component variances are equal and a Common Com-
ponent Variance (CCV) model is defined by

yi|µi ∼ N(µi, aσ2)

µi ∼ G

G ∼ DP(MH) (5)

where 0 < a < 1 and DP(MH) represents a Dirichlet process (Ferguson 1973) with mass
parameter M > 0 and centring distribution H = N(µ0, (1 − a)σ2). The parameters µ0

and σ2 can be interpreted as the location and scale of the marginal distribution since
the prior predictive distribution of yi is normal with mean µ0 and variance σ2.

The parameter a can be interpreted as a measure of the smoothness. If a is close to
1 then all component means µi will tend to be close to µ0 and the marginal distribution
will tend to be close to the normal predictive distribution. If a is close to zero then the
components will have a small variance and the centres will be independent draws which
are normally distributed with a variance close to σ2. The distribution of the number of
modes is directly related to the smoothness of the unknown distribution since modes are
determined by local features of the realized distribution. Figure 1 shows a number of
realized distributions and the distribution of the number of modes for different choices
of a and M . The prior distribution of the number of modes may not correspond well
with the number of components with non-neglible weight if the mixture contains several
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M = 5 M = 15 M = 50
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Figure 1: The prior distribution of the number of modes of f in (i) and a sample of
densities in (ii) under different hyperparameter choices

components with non-neglible weight which are not well separated. The number of
modes for any realized distribution is calculated by finding the number of maxima in
the density function. The graphs of the prior distribution of the number of modes
indicates that it is more clearly effected by the choice of a rather than M . Values of
a between 0.1 and 0.2 indicate a prior belief of bi- or tri-modality wheareas a = 0.02
indicates support to a number of modes between 3 and 9. These observations are helpful
for defining a prior distributions for a. The model in equation (5) is a reparameterisation
of the usual conjugate model which has the form

yi|µi ∼ N(µi, ψ)

µi ∼ G

G ∼ DP(MH)

and H = N(µ0,
ψ
n0

). The new prior distribution is a reparameterisation where σ2 =(
n0+1

n0

)
ψ and a = n0

n0+1 . As noted by Escobar and West (1995) n0 plays a key role as
a smoothing parameter. However, in many application of these methods the parameter
n0 is assumed fixed with a fairly small value implying a prior preference for unsmooth
densities. If n0 is assumed unknown then a prior is usually placed on (ψ, n0) rather than((

n0+1
n0

)
ψ, n0

n0+1

)
. An alternative, non-conjugate prior is suggested by Richardson and
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Green (1997) who define H(µ, σ2) = N(ζ, κ−1)Ga(σ−2|α, β) in a finite mixture model
with a Gamma hyperprior on β.

The Constant Component Variance model can represent any distribution on the
real line but if the distribution has several modes with different variability around them
then the model will tend to use a few normals to represent the components with larger
variances. Consequently, it is useful to have a model which allows different variances
to capture these distributions. The extended model is called the Different Component
Variance (DCV) model and assumes that

yi|µi ∼ N
(

µi, a
ζi

µζ
σ2

)

µi ∼ G

G ∼ DP(MH)

where H = N(µ0, (1 − a)σ2) and µζ = E[ζi], which is assumed to be finite. An inverse
gamma distribution with shape parameter φ > 1 and scale parameter 1 would be a
standard choice for the distribution of ζi, which is the conditionally conjugate form. It
is no longer true that yi ∼ N(µ0, σ

2). However, E[yi] = µ0 and V[yi] = σ2 and the
distribution will be close to normal if φ is large.
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Figure 2: C(x1, x1) with a standard normal predictive distribution and various values
of a

To look at the effect of the prior for w and the parameter a, the following quantity
is considered

Cov[f(x1), f(x2)] = C(x1, x2)
∞∑

i=1

E[w2
i ]

where

C(x1, x2) = E[N(x1|µi, aσ2ζi)N(x2|µi, aσ2ζi)]− E[N(x1|µi, aσ2, ζi)]E[N(x2|µi, aσ2, ζi)].

The covariance, Cov[f(x1), f(x2)] can be expressed as the product of two parts. The
first part, C(x1, x2), is determined by a and the second part,

∑∞
i=1 E[w2

i ], is determined
by the choice of prior for w. It follows that

∑∞
i=1 E[w2

i ] = 1
M+1 if a Dirichlet process

mixture is chosen. Figure 2 shows C(x1, x1) with various values of a. The variability
decreases as the value of a increases but a second effect is also clear: the variability
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is monotonic decreasing in x for small values of a. Consequently large a represents a
confidence in the density at the mean but less confidence in the density in the region
around one standard deviation.
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Figure 3: Prior correlation between the density values at two points x1 and x2 for a
model with a standard normal predictive distribution and various values of a where
darker colours represent larger correlations

The correlation between the density values at two points can be expressed as

Corr[f(x1), f(x2)] =
C(x1, x2)√

C(x1, x1)C(x2, x2)
.

The correlation structure of f(x) is independent of the choice of prior for w. Therefore
we can interpret a as a correlation parameter. Figure 3 shows the autocorrelation
structure for various values of a with darker regions representing stronger correlation.
For small a the dark area is almost contained by two parallel lines which suggests that
the correlation is a function of the distance between two points only. As a increases this
pattern disappears and larger absolute values of x are associated with much larger ranges
(the distance at which the autocorrelation is equal to some small prespecified value).
The measures considered in this section quantify the relationships that are evident from
the figure 1. The parameter a controls the local prior behaviour of the density function
and the Dirichlet process mass parameter controls the general variability. It seems
reasonable given the results on the variance and correlation of the density function to
assume that these relationship will largely carry over to other nonparametric priors. The
following section uses these ideas to develop prior distribution for a and the location
and scale parameters µ0 and σ2.

2.1 Specification of hyperparameters

The parameterization discussed in the previous section suggests placing independent
priors on the location, scale and the smoothness of the unknown distribution. As
Mengersen and Robert (1996) noted this is linked to standardisation of the data. Trans-
forming to yi−µ0

σ allows subsequent development of the model to be considered scale
and location free. There are two standard choices of prior for the location µ0 and
the scale σ2: the improper Jeffreys’ prior p(µ0, σ

2) ∝ σ−2 and the conjugate choice
p(µ0, σ

−2) = N(µ|µ00, n00σ
2)Ga(σ−2|α, β). The second choice is proper and so leads to

a proper posterior and a proof of the propriety of the posterior with improper prior is
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given in Appendix B.

The hyperparameter a is restricted to (0, 1) and we consider a Beta prior distribution.
This represents beliefs about the smoothness of the unknown density. Priors which
places a lot of mass on small values of a would correspond to a strong prior belief that
the unknown density is unsmooth. The mass parameter of the Dirichlet process, M , is
given a prior suggested by Griffin and Steel (2004),

p(M) = θη Γ(2η)
(Γ(η))2

Mη−1

(M + θ)2η
.

where θ can be interpret as a prior sample size and η is a variance parameter for which
the prior becomes more concentrated with larger η. They suggest using η = 3 as a
default value.
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Figure 4: The prior distribution of the number of modes of F and a sample of densities
under different hyperparameter choices

Figure 4 shows realisations of the density and the distribution of the number of
modes for various choice of the prior distribution of a and M . If we choose a to follow a
uniform distribution (Be(1, 1)) then the distribution of the number of modes is peaked
around 1. This prior is giving strong support to a unimodal density with a broadly
normal shape. The choice of a Be(1, 10) places substantial mass on values of a less
than 0.2 implying less smooth distributions. It gives a prior modal value of 2 for the
number of modes and relatively flat shape supporting a large range of modes. This
could represent a more sensible prior distribution in density estimation where we might
expect to have a large departure from normality with several modes. A compromise
between these priors is given by a Be(1.75, 10.25) prior which implies a modal number
of modes of 1 but with a wider spread than the Be(1, 1).
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3 Computational methods

The fitting of Dirichlet process mixture models have been greatly helped by the devel-
opment of efficient MCMC methods. The model with a Common Component Variance
model is a conjugate Dirichlet process which can be fitted using standard methods
(MacEachern 1998; Neal 2000) and the Different Component Variance model is non-
conjugate and can be fitted using the methods described in Neal (2000) (his algorithm
8 was used to implement the examples in this paper). Inference about the unknown mix-
ing distribution and the density f is possible using the method of Gelfand and Kottas
(2002). These methods are specific to Dirichlet process priors and computational ap-
proaches for more general priors are developed by Papaspiliopoulos and Roberts (2008),
Kalli et al. (2010) and Griffin and Walker (2010). All methods make use of the Gibbs
sampler and the full conditional distribution for each parameter are fully described in
each paper. A full description of the algorithms needed to fit the models is given in the
appendix.

4 Examples

The Bayesian model developed in this paper will be illustrated on a series of data sets
previously analysed in the literature: the galaxy data, acidity data, enzyme data and
sodium lithium data. The “galaxy” data was initially analysed by Roeder (1990) and
introduced into the Bayesian literature by Roeder and Wasserman (1997). It has become
a standard data set for the comparison of Bayesian density estimation models and their
related computational algorithms. The data records the estimated velocity (×10−2)
at which 82 galaxies are moving away from our galaxy. The “acidity” data refers to
a sample of 155 acidity index measurement made on links in north-central Wisconsin
which are analysed on the log scale. The “enzyme” data measures the enzymatic activity
in the blood of 245 unrelated individuals. It is hypothesised that there are groups of slow
and fast metabolizers. These three data sets were previously analysed in Richardson and
Green (1997). The “sodium lithium” data was previously analysed by Roeder (1994) and
measures the cell sodium-lithium countertransport (SLC) in six large English kindreds.
Some summary statistics for the four data sets are shown in table 1. In all analyses the
prior for M is set to have hyperparameters θ = 5 and η = 3 and ζi ∼ IG(2, 1). Two prior
choices for a were chosen: Be(1, 10) and Be(1, 1) which represent a prior distribution
with substantial prior mass on a wide range of modes and prior distribution that places
a lot of a mass on a single mode. All MCMC samplers were run 50000 iterations with the
first 5000 iterations used as a burn-in period, which seemed sufficient for convergence
of the number of clusters.

4.1 Results

Figure 5 shows the predictive distribution (solid line) and a 95% highest probability
density region of f(x) for each of the four data sets when the prior distribution is Be(1, 1)
(the results are largely unchanged by the alternative prior distributions described in



J. E. Griffin 53

Data set sample size mean standard deviation
Galaxy 82 20.8 4.6

Log Acidity 155 5.11 1.04
Enzyme 245 0.62 0.62

Sodium Lithium 190 0.26 0.099

Table 1: Summary statistics for the 4 data sets

Galaxy Acidity Enzyme Sodium Lithium
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Figure 5: Posterior predictive densities for the four data sets with a pointwise 95% HPD
interval

section 2.1). These results are very similar to previous analyses, although the galaxy
data results do differ largely from analyses described in Marin et al. (2006) and Roeder
and Wasserman (1997) who find a single mode between 20 and 24 rather than the two
modes inferred in this analysis. The extra mode has been found in a number of other
analyses e.g. Richardson and Green (1997).

a M
Be(1, 1) Be(1, 10) Be(1, 1) Be(1, 10)

Ga 0.04 (0.01, 0.12) 0.03 (0.01, 0.10) 3.73 (1.14, 10.80) 3.93 (1.31, 10.06)
Ac 0.16 (0.04, 0.46) 0.10 (0.03, 0.27) 3.47 (0.95, 10.66) 3.23 (0.83, 9.48)
En 0.06 (0.01, 0.23) 0.05 (0.01, 0.16) 2.40 (0.75, 6.40) 2.39 (0.69, 7.31)
S L 0.44 (0.12, 0.82) 0.17 (0.04, 0.41) 3.71 (0.79, 15.01) 2.25 (0.49, 6.69)

Table 2: The posterior distribution of a summarised by the posterior median with 95%
credibility interval in brackets for the 4 data sets (Ga is Galaxy, Ac is Acidity, En is
Enzyme and S L is Sodium Lithium) and two priors for a

Table 2 shows summaries of the posterior distributions of a and M under the two
prior distributions of a. The results show that the distributions which are less smooth
(in particular the multi-modal galaxy data) have smaller estimates of a, which is es-
timated with good precision in each case. Unsurprisingly the unimodal distribution
of sodium lithium has the highest estimates of a. This supports the interpretation of
a as a smoothness parameter. The posterior distribution is robust to the choice be-
tween the two prior distribution when the densities are estimated to be less smooth.
For distributions which have higher levels of smoothness the prior distribution is much
more influential. This mostly shows a prior-likelihood mismatch since the tighter prior
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distribution places nearly all its mass below 0.2 and neglible mass above 0.3. Clearly
under the more dispersed prior distribution the posterior distribution for the acidity
and sodium lithium data sets place mass at larger values. This suggests that a dis-
persed prior distribution will be useful when we are unsure about the smoothness and
likely modality of the data. The posterior inferences of M for each data set show only
small differences between the posterior median and credibility intervals, illustrating that
differences in modality will not be captured in these models by the M parameters.
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Figure 6: Posterior distribution of the number of modes for the four data sets

The inferences about the number of modes is shown in figure 6. The degree of
posterior uncertainty for most of the data sets (with the exception of sodium lithium)
is substantial and is obscured in the posterior predictive distributions. In all cases the
results are shown for the Be(1, 1) prior, as with a, the results are unchanged with the
second prior for the galaxy and enzyme data. The galaxy data supports a range of values
between 3 and 9. The values 5 and 6 receive almost equal posterior support. The acidity
data shows strongest support for 2 modes and some uncertainty about and extra 1 or
2 modes. The enzyme data also shows a large amount of posterior uncertainty about
the number of modes. It shows most support for 3 modes with good support for up to
7 modes. The results are rather surprising given the shape of the posterior predictive
distribution. It seems reasonable to conjecture that the form of the model may lead to
these results. The data can be roughly divided into two groups. The skewness of the
second group can only be captured by a number of normal distributions. This may lead
to rather unrealistic estimates of the number of modes. The sodium lithium data set
results are shown for the Be(1, 1) prior. The posterior distribution strongly supports a
single mode with a posterior probability of about 0.8.
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Figure 7: Posterior predictive densities using the CCV model for the four data sets
using a Normalized Generalized Gamma prior with κ = 0.1, 0.2, 0.3, 0.4, 0.5

The priors considered so far are based on the Dirichlet process. Other priors could
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be considered for the mixing distribution and we would hope that the results are rela-
tively robust to the choice of this prior. To investigate the robustness of the proposed
model, the normalized generalized gamma process is used as an alternative class (Lijoi
et al. 2007) of prior for the nonparametric mixing distribution G. The prior has two
parameters 0 < κ < 1 and M > 0. The Dirichlet process with mass parameter M arises
as a special case as κ → 0 and the Normalized Inverse Gaussian process (Lijoi et al.
2005) arises when κ = 0.5. The CCV model was fitted with M given a Gamma prior
distribution. The predictive distribution for the four data sets are shown in Figure 7
with Normalized Generalized Gamma process for the κ = 0.1, 0.2, 0.3, 0.4, 0.5. Clearly,
the density estimate is robust to the choice of prior for w.

4.2 Comparison to other default priors

Several authors have proposed default priors for mixture models which use summaries
of the data (such as mean or variance) to define certain hyperparameters. They work
with general model

yi|µi ∼ N(µi, σ
2
i )

(µi, σ
2
i ) ∼ G

G ∼ DP(MH)

where the centring measure H for µ and σ2 is to be specified. Richardson and Green
(1997) suggest using the choice H(µ, σ−2) = N

(
a+b
2 , R2/ε

)
Ga(α, β) where b = max{yj},

a = min{yj} and R is the range of the data. The hyperparameter ε is chosen small (they
suggest the default value ε = 1 in their paper) and β ∼ Ga(g, ε2/R2). They suggest
that g < 1 < α. This prior on β allows the model to adapt to the scale of the data
by sharing information between different component variances σ2

j . They suggest α = 2,
g = 0.2, ε2 = 10 as default values in their examples.

Alternatively, Ishwaran and James (2002) propose H(µ, σ2) =∼ N(µ|θ, σ2
µ)U(σ2|0, T )

where θ ∼ N(0, A). The hyperparameter A is chosen large to represent a vague prior
(the authors use A = 1000). The parameters T and σµ are scale parameters are they
suggest taking σµ to equal 4 times the standard deviation of the data and taking T to
equal the variance of the data as default values.

These two default priors are compared to the CCV and DCV models proposed in this
paper. The different default priors are compared using a random fold cross-validation
method with a posterior predictive criteria. The score for prior M is calculated as

S(A) =
1

Km

K∑

i=1

m∑

j=1

log pM (yγij |y−γi)

where pM represents the posterior predictive distribution under prior M , γi is the first m
elements of a random permutation of {1, 2, . . . , n} and y−γi represents the vector y with
the elements γi removed. The use of cross-validation methods to compare predictive
performance is discussed by Gneiting and Raftery (2007). Larger values of the score
show better predictive performance.
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CCV DCV RG IJ
Galaxy -2.50 -2.49 -2.57 -2.65
Enzyme -0.29 -0.27 -0.46 -0.69

Log Acidity -1.13 -1.13 -1.22 -1.22
Sodium Lithium 1.01 1.01 0.78 0.92

Table 3: Log predictive scores for the four data sets with four default priors: Common
Component Variances (CCV) model, Different Component Variances (DCV) model,
Richardson and Green (RG) and Ishwaran and James (IJ)

The scores for the four different data sets are shown in Table 3. The difference
between the CCV model and DCV model are small for all each data set except the
enzyme data where the DCV model outperforms the CCV model. Clearly, the distri-
bution of the data, which has two modes where the density around one mode is much
more spread than the other. This is a case where we would expect the DCV model
to perform better. Both priors outperform the other default priors across all four data
sets. In fact, the cross-validation performance for the galaxy data is slightly better than
the informative prior of Escobar and West (1995) who carefully choose hyperparameters
for their problem. This indicates that the CCV and DCV represent effective priors for
Bayesian density estimation.

5 Discussion

This paper presents an alternative parameterisation of the infinite mixtures of normals
model often used for Bayesian density estimation. The unknown density, f , is treated
as the main parameter of interest and prior information is placed directly onto this
object. This naturally leads to an alternative parameterisation and prior distributions
that are, in certain situations, much easier to specify than previously defined models. In
univariate problem, the model can be fitted using a non-informative prior distribution
for the scale and location. A range of default prior specification are discussed that define
“automatic” Bayesian density estimator to be chosen. These specifications have good
properties over a range of data sets compared to other default schemes.

There are several directions for future research. All examples involve estimating
densities of observables but an appealing aspect of a Bayesian approach is that these
method can be applied to density estimation of unobservable quantities, such as ran-
dom effects (Mueller and Rosner 1997). Previously proposed default methods use the
observed values of the data to set some hyperparameter which becomes more challeng-
ing when modelling unobversable quantities. The approach taken in this paper allows
the nonparametric prior to be centred directly on the standard parametric distribution.
The parameter a then becomes are measure of the departure of the density from the
parametric choice. A main motivation for this alternative approach is placing prior
information on the unknown distribution F rather than the centring distribution H. A
prior is placed directly on the mean and variance of F rather than the more common



J. E. Griffin 57

choice of directly placing a prior on H. This approach could be extended to higher
moments of F to allow skewness or kurtosis to be modelled, which would follow from
allowing H to be skewed or heavy-tailed itself. The prior would then be placed on the
centred moments of F rather than H.
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Appendix A: MCMC algorithms

A.1: Common Component Variances model

The full model is
yi ∼ N(µi, aσ2), i = 1, . . . , n

µi ∼ G,

G ∼ DP(MH)

where H(µ) = N(µ|µ0, (1− a)σ2),

µ0 ∼ N(µ00, λ
−1
0 ), σ−2 ∼ Ga(s0, s1), a ∼ Be(a0, a1)

The full conditionals for the uninformative choice p(µ0, σ
2) ∼ σ−2 arises by taking

s0 = 0, s1 = 0 and λ0 = 0 in the following formulae. As with any mixture model, latent
variables s = (s1, s2, . . . , sn) are introduced to help implement the MCMC samplers.
This model can be sampled using a standard Gibbs sampler for a conjugate Dirichlet
process mixture model. Let µ(1), µ(2), . . . , µ(K) be the distinct values of µ1, µ2, . . . , µn,
nk =

∑n
j=1 I(sj = k), n−i

k =
∑n

i=1;j 6=i I(si = k) and K−i be the number of distinct
values excluding µi.

Updating s

The elements of s are updated from their full conditional which is discrete

p(si = k) ∝
{

n−i
k√
a

exp
{− 1

2aσ2 (yi − µ(k))2
}

1 ≤ k ≤ K−i

M exp
{− 1

2σ2 (yi − µ0)2
}

k = K−i + 1

and can be sampled using inversion sampling.

Updating µ(i)
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The full conditional distribution of µ(i) is N(µ?
i , σ

2
i

?) where

µ?
i =

∑
{j|sj=i} yj

a + µ0
1−a

ni

a + 1
1−a

and σ2
i

?
=

σ2

ni

a + 1
1−a

.

Updating µ0

The full conditional distribution of µ0 is N(µ?, σ2?) where

µ? =

(
σ−2

∑K
i=1 µ(i)

1− a
+ λ0µ00

)/(
σ−2K

1− a
+ λ0

)
and σ2?

= 1
/(

σ−2K

1− a
+ λ0

)
.

Updating σ2

The full conditional distribution of σ−2 is

Ga

(
s0 + (n + K)/2, s1 +

1
2

[∑n
i=1(yi − µ(si))

2

a
+

∑K
i=1(µ(i) − µ0)2

1− a

])
.

Updating a

The full conditional distribution of a is proportional to

a−n/2(1− a)−k/2 exp

{
−1

2
σ−2

[∑n
i=1(yi − µ(si))

2

a
+

∑K
i=1(µ(i) − µ0)2

1− a

]}
.

Let z = a
1−a then the full conditional of z is proportional to

(1 + z)(n+K)/2z−n/2 exp

{
−1

2
σ−2

[
1
z

n∑

i=1

(yi − µ(si))
2 + z

K∑

i=1

(µ(i) − µ0)2
]}

.

If n + K is even then the distribution can be expressed as a mixture of generalized
inverse Gaussian distributions which is represented as GIG(λ, χ, ψ) which has density

g(x) =
(ψ/χ)λ/2

2Kλ(
√

χψ)
xλ−1 exp

{
−1

2

(χ

x
+ ψx

)}
, x > 0

where Kλ(y) is the modified Bessel function of the third kind. The mixture distribution
has the form

(n+K)/2∑

j=1

wj GIG

(
x

∣∣∣∣∣j − n/2 + 1,

∑n
i=1(yi − µ(si))

2

σ2
,

∑K
i=1(µ(i) − µ0)2

σ2

)
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where

wj =
(

(n + K)/2
j

) 2Kj−n/2+1

(√(∑n
i=1(yi − µ(si))2

) (∑K
i=1(µ(i) − µ0)2

)/
σ4

)

(∑K
i=1(µ(i) − µ0)2

/ ∑n
i=1(yi − µ(si))2

)(j−n/2+1)/2
.

If n + K is odd we use the rejection envelope

(n+K)/2+1∑

j=1

wj GIG

(
x

∣∣∣∣∣j − n/2 + 1,

∑n
i=1(yi − µ(si))

2

σ2
,

∑K
i=1(µ(i) − µ0)2

σ2

)

where

wj =
(

(n + K)/2
j

) 2Kj−n/2+1

(√(∑n
i=1(yi − µ(si))2

) (∑K
i=1(µ(i) − µ0)2

)/
σ4

)

(∑K
i=1(µ(i) − µ0)2

/ ∑n
i=1(yi − µ(si))2

)(j−n/2+1)/2

and a point, z, simulated from this mixture is accepted with probability (1 + z)−1/2.
Then a = z

1+z in either case.

Updating M

M can be updated using an independence Metropolis-Hastings sampler. The Newton-
Raphson method is used to find the mode of the full conditional distribution, then the
proposal distribution is a t-distribution centred at the mode, with α degrees of freedom
and precision parameter λ = α

α+1× -Hessian. A default choice of α would be 3.

A.2: Different Component Variances model

The full model is
yi ∼ N

(
µi, a(φ− 1)ζiσ

2
)
, i = 1, . . . , n

(µi, ζi) ∼ G,

G ∼ DP(MH)

where H(µ, ζ−1) = N(µ|µ0, (1− a)σ2)Ga(ζ−1|φ, 1),

µ0 ∼ N(µ00, λ
−1
0 ), σ−2 ∼ Ga(s0, s1), a ∼ Be(a0, a1)

The full conditionals for the uninformative choice p(µ0, σ
2) ∼ σ−2 arises by taking

s0 = 0, s1 = 0 and λ0 = 0 in the following formulae. As with any mixture model, latent
variables s = (s1, s2, . . . , sn) are introduced to help implement the MCMC samplers.
This model is a nonconjugate Dirichlet process mixture model and can be sampled us-
ing algorithm 8 of Neal (2000). The updating of M is the same as the updating in
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the common component variance model. Let µ(1), µ(2), . . . , µ(K) be the distinct val-
ues of µ1, µ2, . . . , µn and ζ(1), ζ(2), . . . , ζ(K) be the distinct values of ζ1, ζ2, . . . , ζn. Let
nk =

∑n
j=1 I(sj = k), n−i

k =
∑n

i=1;j 6=i I(si = k).

Updating s

To update si we choose a value of m (usually 3 or 4) which is fixed for the whole
algorithm and uses the following step.

• If there is a j such that sj = si for j 6= i then

wj = n−i
j for 1 ≤ j ≤ K and wj = M/m for K + 1 ≤ j ≤ K + m

and simulate µ(i) ∼ N(µ0, (1− a)σ2) and ζ−1
(i) ∼ Ga(φ, 1) for K + 1 ≤ i ≤ K + m.

• Otherwise,

wj = n−i
j for 1 ≤ j ≤ K and j 6= si, wsi = M/m and K + 1 ≤ j ≤ K + m− 1

and simulate µ(i) ∼ N(µ0, (1−a)σ2) and ζ−1
(i) ∼ Ga(φ, 1) for K+1 ≤ i ≤ K+m−1.

Then the elements of s are updated from their full conditional which is discrete

p(si = j) ∝ wj

√
1

ζ(j)
exp

{
− (yi − µ(j))2

2aσ2(φ− 1)ζ(j)

}

and can be sampled using inversion sampling. Finally, any cluster which does not have
a point allocated to it is deleted.

Updating µ(i)

The full conditional distribution of µ(i) is N(µ?
i , σ

2
i

?) where

µ?
i =

∑
{j|sj=i} yj

(φ−1)ζ(i)a
+ µ0

1−a

ni

(φ−1)ζ(i)a
+ 1

1−a

and σ2
i

?
=

σ2

ni

(φ−1)ζ(i)a
+ 1

1−a

.

Updating µ0

The full conditional distribution of µ0 is N(µ?, σ2?) where

µ? =

(
σ−2

∑K
i=1 µ(i)

1− a
+ λ0µ00

)/(
σ−2K

1− a
+ λ0

)
and σ2?

= 1
/(

σ−2K

1− a
+ λ0

)
.
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Updating σ2

The full conditional distribution of σ−2 is

Ga

(
s0 + (n + K)/2, s1 +

1
2

[
n∑

i=1

(yi − µ(si))
2

(φ− 1)aζ(si)
+

∑K
i=1(µ(i) − µ0)2

1− a

])
.

Updating a

The parameter a can be updated using mixtures of generalized inverse Gaussian distri-
butions in a similar way to the updating in the common component variance model. If
n + K is even, the mixture distribution has the form

(n+K)/2∑

j=1

wj GIG

(
x

∣∣∣∣∣j − n/2 + 1,

n∑

i=1

(yi − µ(si))
2

(φ− 1)ζ(si)σ
2
,

∑K
i=1(µ(i) − µ0)2

σ2

)

where

wj =
(

(n + K)/2
j

) 2Kj−n/2+1

(√
(
∑n

i=1 bi)
(∑K

i=1(µ(i) − µ0)2
)/

σ4

)

(∑K
i=1(µ(i) − µ0)2

/ ∑n
i=1 bi

)(j−n/2+1)/2

and
bi = (yi − µ(si))

2/[(φ− 1)ζ(si)], 1 ≤ i ≤ n.

If n + K is odd we use the rejection envelope

(n+K)/2+1∑

j=1

wj GIG

(
x

∣∣∣∣∣j − n/2 + 1,

n∑

i=1

(yi − µ(si))
2

(φ− 1)ζ(si)σ
2
,

∑K
i=1(µ(i) − µ0)2

σ2

)

where

wj =
(

(n + K)/2
j

) 2Kj−n/2+1

(√
(
∑n

i=1 bi)
(∑K

i=1(µ(i) − µ0)2
)/

σ4

)

(∑K
i=1(µ(i) − µ0)2

/ ∑n
i=1 bi

)(j−n/2+1)/2

and
bi = (yi − µ(si))

2/[(φ− 1)ζ(si)], 1 ≤ i ≤ n.

A point, z, simulated from this mixture is accepted with probability (1 + z)−1/2. Then
a = z

1+z in either case.

Updating ζ

The full conditional distribution of ζ(i) is IG
(

φ + 1
2ni, 1 + 1

2

∑
{j|sj=i}(xj−µ(i))

2

(φ−1)aσ2

)
.
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B: Proof of a proper posterior for CCV model

To show that the posterior of the CCV model is proper (a similar approach is possible
for the DCV model), we need to check that

p(y) =
∑

s

∫
p(y|θ, µ0, a, σ2)p(θ)p(µ0)p(σ2)p(a) dθdµ0dσ2da < ∞.

It suffices to check that p(y|a, s) < ∞ for all s and a since p(s) and p(a) are proper prior
distributions. Suppose that the allocations s1, s2, . . . , sn have K distinct values and let
Sk = {i|si = k} then

p(y, θ, µ0, σ
2|a, s) =(2π)−(n+k)/2σ−(n+k+2)/2a−n/2(1− a)−k/2

× exp

{
−σ−2

2

[
K∑

k=1

∑

i∈Sk

(yi − θk)2

a
+

K∑

k=1

(θk − µ0)2

1− a

]}

and integrating across θ1, θ2, . . . , θK gives

∫
p(y, θ, µ0, σ

2|θ, a, s)dθ =(2π)−n/2σ−(n+2)/2a−n/2(1− a)−k/2
K∏

k=1

b
−1/2
k

× exp

{
−σ−2

2

[
1
a

K∑

k=1

∑

i∈Sk

y2
i + K

µ2
0

1− a
−

K∑

k=1

c2
k

bk

]}

where bk = nk

a + 1
1−a and ck = µ0

1−a +
∑

i∈Sk
yi

a . Integrating across µ0 gives

∫
p(y, θ, µ0, σ

2, |a, s)dθdµ0 =(2π)−n/2σ−(n+1)/2a−n/2(1− a)−k/2d−1/2
K∏

k=1

b
−1/2
k

× exp

{
−σ−2

2

[
1
a

∑
y2

i −
K∑

k=1

(
∑

i∈Sk
yi)2

bka2
− e2

d

]}

where d =
∑K

k=1(
1

1−a − 1
(1−a)2bk

) and e =
∑K

k=1

∑
i∈Sk

yi

bka(1−a) and clearly

∫
p(y|θ, µ0, a, σ2)p(θ)p(µ0)p(σ2) dθdµ0dσ2 < ∞.


