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AbstratIn previous papers we have proposed an elementary disipline of strong funtional pro-gramming (ESFP), in whih all omputations terminate. A key feature of the disipline isthat we introdue a type distintion between data whih is known to be �nite, and odatawhih is (potentially) in�nite. To ensure termination, reursion over data must be well-founded, and oreursion (the de�nition shema for odata) must be produtive, and bothof these restritions must be enfored automatially by the ompiler. In our previous workwe used abstrat interpretation to establish the produtivity of oreursive de�nitions inan elementary strong funtional language. We show here that similar ideas an be appliedin the dual ase to hek whether reursive funtion de�nitions are strongly normalising.We thus exhibit a powerful termination analysis tehnique whih we demonstrate an beextended to partial funtions.
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UKC Computing Laboratory TR 2-00 51 IntrodutionWe are interested in the development of an Elementary Strong Funtional Programming(ESFP) system. That is, we wish to exhibit a language that has the strong normalization(every program terminates) and Churh-Rosser (all redution strategies onverge) proper-ties whilst avoiding the omplexities (suh as dependent types, omputationally irrelevantproof objets) of Martin-L�of's type theory [20℄. We would like our language to have a typesystem straightforwardly based on that of Hindley-Milner [22℄ and to be similar in usageto a language suh as Miranda1 [35℄. The full ase for suh a language is set out in [36℄but we reap its main potential bene�ts here:� Suh a language will allow both diret equational reasoning and simple indutionpriniples | we do not have to worry about unde�ned elements when verifyingproperties.� There is no dihotomy between lazy and strit evaluation as we shall have the Churh-Rosser property and strong normalisation. This means that we have evaluation trans-pareny, or what may be termed true referential transpareny. We believe that thishas the added bene�ts of making program optimisation, debugging and parallelisa-tion easier to ahieve.� Sine it does not have the omplexities of type theory it is suÆiently elementary tobe used for programming at the undergraduate level. Moreover, it is more satisfatoryfrom the pedagogial point of view: typially undergraduates are given step-by-stepevaluations to perform whih are done stritly in the reursive ase, even in a lazylanguage suh as Haskell (see [28℄). Then, in�nite strutures, with the same syntaxand types, are evaluated lazily.In ESFP we make a lear distintion between data (�nite strutures | initial algebras)and odata (in�nite strutures | �nal oalgebras). We have desribed the harateristisof the latter in [31℄ and have extended syntati heks devised by Coquand [6℄ in TypeTheory, and Gim�enez [17℄, in the Calulus of (Indutive) Construtions, to hek whetheroreursive de�nitions are well-formed. Our analysis, used the idea of guardedness (i.e.that oreursive ourrenes only our beneath onstrutors), �rst proposed by Milner inthe area of proess algebras [23℄.In this paper we apply the dual ideas to the dual strutures, data. This extendsthe Gim�enez work [17℄ in the area of reursion. In partiular, our analysis allows somenon-primitive reursive algorithms whih has been ahieved by formulating a size desentdetetion algorithm as an abstrat interpretation. The key point of using the abstratinterpretation method is that it allows us to determine the level of destrution of an atualparameter when a funtion is applied within a reursive all.We also extend our analysis to ope with partial funtions using a simple subtypingmehanism. Furthermore, this extension allows a wider lass of total algorithms to be1Miranda is a trademark of Researh Software Limited.



6 A Hierarhy of Languages with Strong Termination Propertiesaepted. As an illustration of the power of our analysis, we show how it an aeptEulid's gd algorithm, whih is unde�ned for two zero inputs.This subtyping mehanism is itself extended using projetion sequenes so that we anshow that the standard de�nition of mergeSort terminates. The projetion sequene meh-anism also enables us to aept programs that are de�ned reursively on nested indutivetypes. Whilst it is naturally undeidable whether a reursive funtion is well-de�ned, theextension to guardedness that we present here makes programming more straightforwardin a strongly normalizing funtional language. We also suggest that our work may besuitable as an enhanement to the algorithm for reognising strongly normalising reursiveforms in the Coq system [5℄.Overview of this Paper. In x 2 we de�ne our EFP language whih may be seen asthe rudimentary heart of any funtional programming system. We then present a semantiproperty, onstruted from standard termination theory, that guarantees termination of anEFP program in x 3. This termination ondition then serves as the basis for the abstratinterpretation-based analysis that we develop in x 4. This analysis is strong enough toshow that both Akerman's funtion and the standard, naive de�nition of quiksort bothterminate. We then, in x 5, seek to broaden the lass of algorithms permitted within thelanguage by introduing a simple subtyping mehanism that allows ertain partial funtionsprovided that they are applied to terms of the orret subtypes. To ope with nestedindutive types and the assoiated shemes of reursion we develop the analysis given inx 6. This method, using projetion sequenes, is then developed further in x 7 to produea more sophistiated subtyping mehanism whih allows the subtypes of substrutures tobe aptured, thus widening further the lass of ESFP programs. In x 8 we disuss howthe analysis developed an be plaed within a general analysis framework whih may beparameterised by the redution semantis of the language and hene the idea of normalform. This means that our analysis an be extended to show not only the termination ofprograms to weak normal form (the standard for strit funtional languages) but also anshow termination to (strong) normal form, inluding redutions under lambdas. Finally,in x 9 we disuss related work and in x 10 we onlude.2 An ESFP LanguageWe now present the harateristis of types and terms in an ESFP language. We shall referto the language that we desribe below, whih onsists of the ore of languages suh asMiranda or Haskell together with some basi syntati restritions, as our basi elementaryfuntional programming language whih we shall all EFP. Our full ESFP language willonsist of this basi language together with an augmentation to the type-heking systemwhih ensures that a program will terminate.



UKC Computing Laboratory TR 2-00 72.1 Data and CodataFirstly, in our basi EFP language, we make a distintion between data (�nite strutures ofindutive types) and odata (in�nite strutures of oindutive types). The reason for doingthis is that funtions ating upon data should perform a omputation whilst reursivelydesending through a struture whilst those produing odata will be building a struture,possibly using some inputs. The semanti issues for in�nite data strutures, in whihwe explain what it means for odata funtions to be produtive and Churh-Rosser, areexplored further in [32℄.2.2 TypesAlgebrai data type de�nitions are basially as they appear in Haskell and eah typeonstrutor should our only one in all the type de�nitions. In our abstrat syntax, eahtype onstrutor is labelled Ci, where i is a natural number. There are the following addedrestritions on algebrai type de�nitions:1. Only stritly positive ourrenes are allowed in the indutive de�nition of types.This means that in the de�nition of a type, T , say, T may not our within thedomain of any funtion spae in the de�nition of T . For example, the followingwould not be allowed:data ilist def= C (ilist �! Int)2. T may not be de�ned via polymorphi type U where T ours as an instantiationof U . For example, we would not allow rosetrees whih an be given the followingde�nition:data Rosetree a def= Leaf a jNode [Rosetree a℄3. T may not be de�ned via a type U whih is transitively de�ned using T .4. T must have a base ase i.e. one with no reursive ourrenes of T .We use the standard notion of ground types i.e. types whih do not ontain in their de�-nition any funtion types.2.3 ExpressionsDe�nition 2.1 The syntati domains of our EFP language are as follows:D De�nitionsF Funtion namesH Funtion parameter namesC ConstrutorsM Pattern variablesG PatternsE Expressions



8 A Hierarhy of Languages with Strong Termination Properties
Syntax d 2 D fi 2 Fxi;j 2 H ei 2 ECi 2 C pi 2 Gvi;r 2 Md ::= fi def= �xi;1 : : : xi;n:eie ::= xi;j j fi jCi e1 : : : er j e1e2 j ase es of hp1; e1i : : : hpr; erip ::= Ci vi;1 : : : vi;rOperational Semantisxi;j 2 Dom(Env(E)) Env(E)(xi;j)�Env(E) xi;j �Env(E)  (V ars)8i 2 f1 : : : (j � 1)g:nf(ei) ej �Env(E) j (nf(j))Cie1 : : : er �Env(E) Cie1 : : : ej�1jej+1 : : : er (Constr)fi def= �xi;1 : : : xi;n:Eifi �Env(E) �xi;1 : : : xi;n:Ei (Fun) e1 �Env(E) �x:e; e2 �Env(E)  (nf())e1e2 �Env(E) e[=x℄ (Appl)(91i:es �Env(E) Ciei;1 : : : ei;n) (pi � Civi;1 : : : vi;n);8j:ei;j �Env(E) i;j (nf(i;j))ase es of hp1; e1i : : : hpr; eri�Env(E) ei[i;1=vi;1 : : : i;n=vi;n℄ (Case)Table 1: The Syntax and Semantis of Data in EFP



UKC Computing Laboratory TR 2-00 9De�nition 2.2 The abstrat syntax and appliative order operational semantisof data within our language is given in Table 1.Normal forms within the language are either lambda abstrations or onstrutor ex-pressions of the form Cii;1 : : : i;r where all the i;j are in normal form. The fat that anexpression  is in normal form is denoted nf().The set of normal forms of expressions of the language (i.e. the values of the system)is denoted V. This set inludes, ?, the unde�ned value.The set of algebrai values of the basi EFP language is denoted VA and onsistsof the subset of V that are of algebrai type. This inludes ?, the unde�ned value.The redution relation, �Env(E), is a \big-step" one, relative to the environment Env(E)whih binds losed expressions to free variables.In order to help ensure termination, we stipulate that ase expressions must be ex-haustive over the patterns of the type:De�nition 2.3 A ase expression, of the form, asesofhp1; e1i : : : hpr; eni is exhaustiveover the patterns (of the type of s) i� for every onstrutor of the type of s ours within atthe head of the patterns, pi. Furthermore, patterns nested within a pattern must themselvesbe representable as exhaustive ase expressions upon a simple variable.De�nition 2.4 The typing system for basi EFP expressions is that of Hindley-Milner[22℄. As in languages suh as Miranda and Haskell, the same onstrutors that appear intype de�nitions appear in the same form within expressions in the language.We use T(e) to denote the type of expression e and Unify(e1; e2) to indiate that thetypes of expressions e1 and e2 unify.De�nition 2.5 A sript, S, onsists of a set of funtion de�nitions, fi (where i is aninteger) from the syntati domain of funtion names, F. The indies of F form a set, ISf.Eah funtion fi has formal parameters labelled xi;1; xi;2 : : :.We use Ar(fi) to denote the arity of funtion fi. That is, the variable index set,ISfi, of a funtion fi onsists of (i; j) pairs where 0 � j � Ar(fi). FT(e) is used to indiatethat an expression is of non-ground type.Note in the above that 0 is always inluded in this set, even though (i; 0) does not label anyvariable in the sript. This, as we shall see in x 4, is beause we need to �nd the ontributionmade by onstant i.e. non-variable fators to the semanti size of an expression.Additional assumptions. Pattern mathing over an input to a funtion will be takento mean the appliation of a ase expression to an input. We shall use Haskell-style syntaxfor formal parameters and patterns. Furthermore, nested patterns will be unsugared asnested ase expressions. We also assume that super-ombinator abstration (inludinglambda lifting) has been applied to the original program so that we simply have a set oftop-level de�nitions and that there are no de�nitions by partial appliation. This meansthat we an ope with where de�nitions in our programs. Finally, we assume that, dueto the standard isomorphism, A� B �! T � A �! B �! T , unurried programs aretranslated into their urried equivalents.



10 A Hierarhy of Languages with Strong Termination PropertiesTermination and redution sequene. Note that we have spei�ed an appliativeorder redution sequene in whih expressions are redued to weak normal form [29℄, whihis similar to the redution strategy and notion of normal form used in strit funtionallanguages suh as SML [24℄. This does not mean that ESFP programs must be evaluatedstritly: we simply use this redution strategy for data to demonstrate that our analysis willensure termination in this ase, hene guaranteeing strong normalisation. The fat that weonly redue as far as weak normal form is also unproblematial sine we assume that lambdaabstrations only our as part of top-level de�nitions. Thus the system we shall presentwill, in fat, ensure termination in a suitable subset of all urrent funtional programmingsystems suh as Haskell and SML. We shall show in x 8 how this an be generalised furtherso that strong normalisation will be ensured i.e. programs will terminate even if redutionsunder lambda abstrations are allowed.2.4 EFPIn the light of the above desription, we are now in a position to give the de�nition of ourbasi language.De�nition 2.6 The elementary funtional programming language, written EFP,onsists of a funtional programming language where1. Data and odata and onsequently reursive and o-reursive funtions are syntati-ally separate, as in x 2.1.2. The syntax of types obeys that of x 2.2.3. The syntax and semantis of the expressions and types of expressions obeys that givenin x 2.3, inluding Defns 2.1 { 2.5.We write Aept(S;EFP) to denote the fat that a sript, S, meets the above onditionsfor EFP.3 A Semanti Termination ConditionWe now exhibit a termination ondition based upon abstrating the sizes of terms inthe EFP language. The termination ondition is based upon a semanti, undeidableproperty of atual parameter expressions. The property is, basially, that there is somewell-founded desent upon some lexiographi ordering of the arguments for any reursiveall of the funtion. The fat that well-founded desent upon one argument will ensuretermination will mean that termination will be guaranteed in the lexiographi ase forseveral arguments, as is disussed in [2℄. We shall all this the monotoni desent property.The termination analysis that we shall develop in later setions will be a safe approximationto this ondition.



UKC Computing Laboratory TR 2-00 113.1 The Monotoni Desent PropertyDe�nition 3.1 The reursive sub-omponents of a losed algebrai expression e, isde�ned asRe(e) 4=� Si=ri=1UnifySub(ei; e) if e� Cj e1 : : : erfg otherwiseHere, UnifySub(e1; e2) denotes the reursive sub-omponents of e1 that unify with e2:-UnifySub(ei; e2) 4=( fe1g if Unify(e1:e2)Sii=1 = sUnifySub(ei; e2) if e� Cj e1 : : : erfg otherwiseDe�nition 3.2 The size of a losed expression2, e, is de�ned as follows:� If e is not an algebrai type or if e does not have a normal form then jej = !.� If e is of algebrai type and normalises then,jej 4=� 0 if Re(e) = fg1 +Pe02Re(e) je0j otherwiseIn produing a ondition for strong normalisation, we need to distinguish between eahall of a funtion in the program text and, in addition, eah all within the evaluation ofa funtion upon some arguments.De�nition 3.3 Let P be a program i.e. a set of funtion de�nitions. Within P there are�nitely many alls of eah funtion, f , whih we an label with positive integers to getlabelled alls of the form fk. We all k a stati label.Similarly, there are ountably many reursive alls of eah fk that our in the redutionpath of some initial expression, f t1 : : : tn. We label these, fk;1; fk;2 : : :The arguments of eah fk;i will be labelled ek;i1 : : : ek;in .The above labelling enables us to give a haraterisation of the distint (in terms of pointsin the program text) reursive alls of a funtion that are enountered during an evaluation.De�nition 3.4 Let Calls(f t1 : : : tn) be the set of stati label-distint alls of f that areredexes within an appliative-order redution of f t1 : : : tn where t1 : : : tn are losed terms.De�nition 3.5 The jth argument of a funtion f is termed monotoni desending forF � Calls(f t1 : : : tn), written MonDes(f; j; F ), i�(8k:8i:jek;ij j � jtjj) ^ (9fm 2 F:8i:jem;ij j < jtjj)2We an also give the size of an open expression, when evaluating with respet to an environmentEnv(E), and denote this jejEnv(E)



12 A Hierarhy of Languages with Strong Termination PropertiesDe�nition 3.6 Let f be a funtion de�ned on n arguments and let F � Calls(f t1 : : : tn)(where t1 : : : tn are losed terms that are well-typed but otherwise arbitrary).Then f has the monotoni desent property (written MDP(f; F )) i� F � fg _(9j:MonDes(f; j; F ) ^ MDP(f; F 0)). Here, F 0 � FnFdesj and Fdesj 4= ffk j fk 2 F ^8i:jek;ij j < jtjjgThe above says that there must be some argument, j, of f whih is both desending atsome reursive all point in the program and, moreover, must not be asending at anyother reursive all point. Furthermore, f must have the monotoni desent property atall reursive all points where j is not desending.3.2 Termination Theorem for MDPIn this setion we state and prove that the monotoni desent property, oupled withexhaustive ase expressions, ensures termination under the operational semantis of EFP.We �rst show that there annot be in�nitely many alls that desend on an argumentif that argument does not asend.Lemma 3.1 Suppose that a funtion f has a desending argument, j, on F � Calls(f t1 : : : tn)for some t1 : : : tn. Let S = maxfr2F desj I(f r; t1 : : : tn) where F desj is as given in the de�ni-tion of the monotoni desent property (Defn. 3.6) and I(f r; t1 : : : tn) is the ordinal numberof times that f r ours within the evaluation of f t1 : : : tn.Then S � jtjjProof. By indution on jtjj.Base ase (where jtjj = 0)In this ase there annot be any alls of any f r 2 F desj sine then by de�nition thenjer;ij < jtjj = 0, whih ontradits our de�nition of size.Indutive ase (where jtjj > 0)If f t1 : : : tn � E(fr;1 er;11 : : : er;1n ) where f r 2 F desj then, due to the desending argu-ment property, jer;1j j < jtjj. Thus, by the indution hypothesis (for jer;1j j), there areat most jer;1j j alls of f r in f er;11 : : : er;1n Consequently, there are at most jtjj alls ofany f r.We thus obtain our termination theorem.Theorem 3.1 Suppose the following about the de�nition of a funtion f of arity n:� f is de�ned aording to the rules of EFP.� Apart from reursive alls of f (whih may indiretly our in funtions alled by f),the de�nition of f omprises only onstants and funtions whih terminate under theoperational semantis of EFP.



UKC Computing Laboratory TR 2-00 13� f has the monotoni desent property.Then f terminates on all inputs, t1 : : : tn, following the operational semantis of EFP givenin Table 1.Proof. By indution on the number of elements in F � Calls(f t1 : : : tn).Base ase (where Calls(f t1 : : : tn) = fg)In this ase there are no reursive alls. It follows that sine all other expressions areSN and ase expressions are exhaustive, f must also be SN .Indutive aseMDP(f; F ) implies that there exists a desending argument of f , j, say. By Lemma 3.1there are at most jtjj alls of any f r 2 F desj . Consequently, in the redution se-quene of f t1 : : : tn, there must be an ith all in of some f r 2 F desj suh thatCalls(f er;i1 : : : er;in ) \ F desj = fg. Sine f has the monotoni desent property on anyinputs, it must have the monotoni desent property on Calls(f er;i1 : : : er;in ). Thus asthe number of elements in Calls(f er;i1 : : : er;in ) is less than the number of elements inCalls(f t1 : : : tn), it follows by indution that f er;i1 : : : er;in is terminating and onse-quently f t1 : : : tn is terminating.3.3 Example of a funtion with the MDPWe now show that Akerman's funtion has the MDP.Example 3.1 Akerman's funtion, ak is de�ned as follows:ak mn def=asemof0! n+ 1(Sum0)!ase nof0! ak m0 1(Su n0)! ak m0 (ak mn0)We an argue that Akerman's funtion has the MDP as follows: Note that if the �rstinput, m, is 0 then the MDP holds trivially. Otherwise, there are three reursive alls of ak ,ak m0 1, ak m0 (ak mn0) and ak mn0 whih are labelled as ak1, ak2 and ak3, respetively.Then, for arbitrary inputs m and n, MonDes(ak ; 1;Calls(ak mn)) (where, if m > 0,Calls(ak mn) = fak1; ak2; ak 3g) sine in ak1 and ak2, jm0j < jmj whilst in ak3, jmj = jmj.It also follows that MonDes(ak ; 2; fak 3g) sine in ak3, jn0j < jnj.Hene, it follows that ak has the monotoni desent property. 3



14 A Hierarhy of Languages with Strong Termination Properties4 Termination Analysis By Abstrat InterpretationIn this setion we de�ne an abstrat interpretation3 to detet whether a reursive funtionde�nition has the monotoni desent property.We assume to start with that we do not have any nested or mutually indutive types.This means that where E � Cie1 : : : er,Re(E) = fei jUnify(ei; E)gObviously, this set is deidable. In Set. 6 we shall see how the analysis may be extendedto enompass nested indutive types.4.1 Stati semantisStarting from our basi, operational semantis we wish to obtain a series of abstrat ap-proximations to the idea of size of an expression and its size relative to a given parameter.Eah suessive approximation will be an abstrat semantis of the preeding onretesemantis. Following the Cousots' approah [11℄, we wish to obtain an adjoint relation-ship between eah abstrat and onrete semantis. The maps, are abstration, denoted�, whih maps from a onrete to an abstrat semantis, and onretisation, denoted ,mapping in the opposite diretion. To do so, we need to de�ne a stati semantis basedupon our operational semantis. This will form our initial onrete semantis.De�nition 4.1 The set of semanti properties of our basi ESFP language, denoted Pis de�ned as P 4= }(V),The set of algebrai semanti properties of our basi ESFP language, denoted PAis de�ned as PA 4= }(VA ).De�nition 4.2 The stati semantis of basi ESFP expressions, O [[ � ℄℄ 2 E�Env(E ) 7!P is de�ned as follows: O [[ e ℄℄Env(E) 4= f�  if (e�Env(E) ) ^ nf()? otherwise g4.2 Relative size semantisWe require that the sizes of expressions are in fat relative to some given input.De�nition 4.3 The relative size domain, R, is the omplete lattie, Z[f!;�!g (where> = ! and ? = !), with lub operator max and the following additive and multipliativeoperations:! + s = s+ ! = ! �! � s = s � �! = �!�! + s = s+ (�!) = s s1 � s2 = s1 + s2 (s1; s2 2 Rnf�!g)s1 + s2 = s1 +Z s2 (s1; s2 2 Z) s1 � s2 = s1 + (�s2)De�nition 4.4 The relative size semantis of an expression, e, with respet to a pa-rameter x, is de�ned as: R [[ e ℄℄x 4=maxf�Env(E):jejEnv(E) � jEnv(E)(x)jg3See [8℄ for an overview of abstrat interpretation.



UKC Computing Laboratory TR 2-00 154.3 Abstrat Expression DomainDe�nition 4.5 The set of all type-orret substitution instanes of expressions, de-noted E s is de�ned as:E s 4= fe[a=x℄ j e 2 E ; 8i:ai 2 E s ;Unify(xi; ai)gDe�nition 4.6 The abstrat expression domain, denoted E, onsists of the powersetof all type-orret substitution instanes of expressions i.e. E 4= }(E s) We denote the topof this omplete lattie by >E.De�nition 4.7 The domain of pattern variable expression environments, M, on-sists of funtions binding pattern mathing variables to elements of E i.e. M 4= M 7! ENote that in the above, E is an in�nite omplete lattie. In order to ensure that thelosure analysis alulation terminates we need to introdue approximations to the standardnotion of expression substitution. These approximations are an example of a widening, atehnique introdued and shown to be sound by the Cousots [12℄.De�nition 4.8 The abstrat expression substitution of an abstrat expression, b fora variable x within an abstrat expression a, denoted a[b =E x℄, is de�ned via standardexpression substitution thus:>E[b =E x℄ 4= >Efeg[>E =E x℄ 4= � >E if x 2 FV(e)feg otherwisefe1g[fe2 =E x℄ 4= fe1[e2 =E x℄gWe an de�ne a series of suh substitutions, a[b1 =E x1 : : : br =E xr℄, also in an analogousway to that for standard substitution.In partiular, we need to approximate in the ase where we may be substituting expres-sions involving the parameters of a funtion for those parameters. The de�nition of ap-proximation that we introdue below prevents an in�nite growth in the size of substitutedexpressions.De�nition 4.9 The approximation of b with respet to x, where b is a vetor ofabstrat expressions, is de�ned as, Apx(b;x) 4= b0 whereb0i 4=( >E if bi = >E>E if bi = feig ^ 9j:j 6= i ^ xj 2 FV(ei)feig bi = feigWe an use the above de�nition in order to onstrut simultaneous substitutions overabstrat expressions.



16 A Hierarhy of Languages with Strong Termination PropertiesDe�nition 4.10 The simultaneous substitution of a vetor b of abstrat expressionsfor a vetor x of formal parameters within a vetor of abstrat expressions, a, de�ned as,a[b =E x℄ 4= a0 where a0i = ai[b01 =E x1 : : : b0jxj =E xjxj℄ and b0 = Apx(b;x).Similarly we de�ne substitutions of abstrat expression environments within an abstratexpression as follows: bj[�℄ is the simultaneous E substitution, bj[�(x)=x℄x2FV(bj)^x2Dom(�).Likewise, we may substitute within an abstrat expression environment, whih we denoteas �[b=xi℄4.4 Closure AnalysisWe now desribe an auxiliary analysis that allows us to abstrat higher-order appliations.This losure analysis, whih is based on that given devised by Palsberg, Bondorf and Sesto�[18, 26℄, takes an appliation, F a and produes a set of triples of the form (fi;a; �), wherefi is a funtion label, a is an atual parameter sequene and � is an environment bindingexpressions to pattern mathing variables. We shall see that the latter is neessary inorder to determine whether a redution in the size of an argument to a reursive all hasourred. Furthermore, Ar(fi) � jaj, where jaj is the length of a i.e. we ensure that eahatual parameter an be bound to some formal parameter of a funtion.We �rst need to de�ne the abstrat domains that omprise our losure analysis.De�nition 4.11 The abstrat funtion label domain, denoted F, onsists of all possiblesingleton sets of funtion labels together with the empty set and the set of all funtion labels(whih is equivalent to F and whih we denote here >F) i.e.F 4= ffgg [ fFg [ [fi2FfffiggThe powerset of the produt of the above de�nitions then de�nes our abstrat spae oflosures.De�nition 4.12 The abstrat losure domain, C, is de�ned as follows:C 4= }(F� E� �M)where E� denotes �nite sequenes of elements of E. The top of C is denoted >C.De�nition 4.13 The losure analysis semanti operator, C 2 E�Env(E)�M�E� 7! C,is de�ned in Table 2.De�nition 4.14 The abstrat losure funtion of a funtion, fi def= �xi;1 : : : xi;n:ei, isde�ned for a given environment of non-ground expressions �, and a sequene of atualparameter expressions, a, as fmi �a 4= C [[ ei ℄℄�;fg aAn abstrat losure funtion, fmi , produes a set of funtion, atual parameter sequenepairs where the atual parameter expressions are in terms of the formal parameters offi. However, these atual parameter expressions need to be transformed into expressionsinvolving the parameters of the alling ontext.
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C [[x ℄℄�;� a 4= 8>><>>: >� if �(x) = >E _ �(x) = >Ef(fg;a; �)g if �(x) = fgC [[ e ℄℄�;� a if �(x) = feg _ �(x) = feg (1)C [[ fi ℄℄�;� a 4= ( f(ffig;a; �)g if Ar(fi) � jajf(f;e; �0) j (f;d; �) 2 fmi �0 g otherwise (2)C [[Ct a1 : : : ar ℄℄�;� a 4= i=r[i=1f(f; b; �) j (f; b; �) 2 ei ^ TC(f; b)g (3)C [[ ase sof hpr; eri ℄℄�;� a 4= i=r[i=1 C [[ ei ℄℄�;�i a (4)C [[Gd ℄℄�;� a 4= C [[G ℄℄�;� (hfdgi++ a) (5)In (2), if xi are the formal parameters of fi,�0 4= f(xi;j 7! bj[�℄) j j 2 f1 : : :Ar(fi)g;FT(bj)gwhere b 4= ha1 : : : aAr(fi)i,  4= haAr(fi)+1 : : : ajaji, e 4= d[b =E xi℄ and �0 4= �[b =E xi℄.In (4), �i 4= (Sj=jpijj=1 BC(pi;j; s; �)) and BC(pi;j ; s; �) 4= �fpi;j := sgIn (3), TC(f; b) indiates that f b is a type-orret appliation; 8b:TC(>C; b;)Table 2: De�nition of C [[E ℄℄�;� a



18 A Hierarhy of Languages with Strong Termination Properties4.4.1 Corretness.Finally, we show that our losure analysis is orret in the sense that it is a superset of thelosures evaluated during omputation of an appliation.Theorem 4.1 The losure analysis is safe in the sense that any appliation that would beevaluated in the standard semantis is aptured by the losure analysis.Proof. By indution on the struture of expressions. 24.5 Abstrat interpretation of relative sizeWe now onstrut an abstrat interpretation over the expression syntax to approximatethe idea of relative size. We require an abstration that an be used to ompute anapproximation of the relative size semantis of an expression. To do this, we alulate theontribution to the size of an expression made by eah formal parameter in the urrentsope. For example, in the expression, 1 + x, the parameter x makes a ontribution to thesize of the result. In addition, there is a onstant fator, due to literal parts of expressions.In the previous example, there is a onstant size fator of 1 as a onsequene of the literal1.
Ai;j [[x ℄℄�;� 4= 8>>>>><>>>>>: 0 if x � xi;j�! if x � xi;kAi;j [[ t ℄℄�;� � 1 if �(x) = ftg ^Unify(x; t)! otherwise (6)Ai;j [[ fk ℄℄�;� 4= 8<: fak;0 fg if Ar(fk) = 0 ^ j = 0�! otherwise (7)Ai;j [[Ct a1 : : : ar ℄℄�;� 4= s(Re(E); i; j; �; �) (8)Ai;j [[ ase sof hpr; eri ℄℄�;� 4= k=rmaxk=1 Ai;j [[ ek ℄℄�;�k (9)Ai;j [[F a ℄℄�;� 4= max fapa(f; i; j;a; �; �) j (f;a; �k) 2 C [[F ℄℄�;� hfagig (10)Table 3: De�nition of Ai;j [[E ℄℄�;�Before giving our full abstrat interpretation, we must �rst abstrat the idea of re-ursive sub-omponents, as given in Defn 3.1. To start with we shall make a simplifyingassumption, that no nested type de�nitions are allowed. We shall relax this stipulation inSet. 6. This means that in this ase, we have the following de�nition.



UKC Computing Laboratory TR 2-00 19De�nition 4.15 The set of reursive subomponents of an algebrai expression isde�ned for our abstrat interpretation as follows:ReAbs(Cie1 : : : er) 4= fei jUnify(ei; (Cie1 : : : er))gWe an now give a de�nition for our semanti operator that is going to abstrat the ideaof relative size.De�nition 4.16 The relative size analysis operator, A 2 ISfi� E �Env(E)�M 7! R,is de�ned over the struture of expressions in Table 3 with auxiliary de�nitions given inDefns 4.17{4.19. In the de�nition, � is an environment binding funtion type expressionsto variables, whilst � is an environment binding pattern-mathing variables of algebraitypes to expressions. i is a funtion index whilst 0 � j � Ar(fi).De�nition 4.17 We de�ne the onstrutor abstrat size funtion, s 2 }(E ) � ISfi �Env(E)�M 7! R, whih appears in (8) in Table 3, as follows:s(fg; i; 0; �; �) 4= 0 (11)s(fg; i; j; �; �) 4= �! (12)s(R; i; 0; �; �) 4= 1 + sv (13)s(R; i; j; �; �) 4= ( ! if 9sk1 ; sk2 2 S:(k1 6= k2) ^ (sk1 > �!) ^ (sk2 > �!)�! if sv = �!1 + sv otherwise (14)In the above,S 4= Map (Ai;j [[ � ℄℄�;�)R (15)sv 4= Xsk2S sk (16)Here Map is the mapping funtor, de�ned in the standard way, over sequenes.De�nition 4.18 The A operator is lifted to the E domain as follows:Ai;j [[>E ℄℄�;� 4= ! (17)Ai;j [[ feg ℄℄�;� 4= Ai;j [[ e ℄℄�;� (18)De�nition 4.19 We de�ne the abstrat appliator for size analysis, apa, whih isused in (10) in Table 3, as follows.apa(>F; i; j;a; �; �) 4= ! (19)apa(fg; i; j;a; �; �) 4= ! (20)apa(ffkg; i; j;a; �; �) 4= (fak � aa) + vj (21)In the above, fak 4= [fak;1 �0 : : : fak;Ar(fk) �0℄ and aa 4= [Ai;j [[ a1 ℄℄�;� : : :Ai;j [[ ajaj ℄℄�;�℄.vj 4=� fak;0 �0 if j = 0�! otherwise



20 A Hierarhy of Languages with Strong Termination PropertiesDe�nition 4.20 The relative size abstration of a funtion, fi def= �xi;1 : : : xi;n:ei, rel-ative to parameter j, is de�ned for a given environment of non-ground expressions �,as: fai;j � 4= lfp(Fi;j;�)Here, Fi;j;� is the funtional de�ned as, Fi;j;�(fai;j �) 4=Ai;j [[ ei ℄℄�;fg. x 4.5.1 details how theleast �xpoints are alulated. Where there is no ambiguity, we shall write a funtionalsimply as F .Performing the abstrat interpretation with j = 0 gives the onstant size fator of theexpression. Eah expression thus has Ar(fi) + 1 interpretations under the A operator.Disussion of the A operator. The key lauses in the de�nition given in Table 3 are(6) and onstrutor expressions (8) (and Defn 4.17). In the ase of variables, the size resultdepends upon whether a math is made with the parameter with respet to whih we areanalysing. In the ase of pattern-mathing variables, if the variable is in � it must bea reursive sub-omponent of the value that it is bound to. Otherwise, its relative sizeannot be determined and so this must be approximated by !. This reets the fat thatwe annot determine, in general, the sizes of data elements of strutures.In the ase of onstrutors, we have to determine whih are the reursive subomponentsof the expression and take the abstrat relative sizes of those (see (15) in Defn 4.17).However, if j 6= 0 and the variable xi;j ontributes to the abstrat size of the onstrutorexpression more than one (through separate subtrees of the onstrutor expression) then !results (see (14)). This is beause a multipliative fator of relative size has been deteted(i.e. the size of the expression is kxi;j where k � 2) whih annot be aepted by ouranalysis.As would be expeted, if we are �nding the size of an expression, e relative to a variable,xi;j then the result is �! if xi;j does not our in e.Lemma 4.1 Let xi;j be a formal parameter of a funtion fi. Then if xi;j does not ourwithin an expression e, Ai;j [[ e ℄℄�;� = �!.Proof. By a simple strutural indution over e. 24.5.1 Determining least �xpoints for size analysis.We form abstrat size funtions whih may be reursive. We now disuss how their �xpointsare alulated, in view of the fat that we have an in�nite hain as our abstrat domain R.Lemma 4.2 The funtionals de�ned for the abstrat size funtions are monotoni andontinuous. That is,8a1; a2 2 R:a1 � a2 ) F (a1) � F (a2)and F (max(a1; a2)) = max(F (a1); F (a2))



UKC Computing Laboratory TR 2-00 21Proof. By strutural indution over funtionals whih are onstruted from the max, +, �and � operators, together with onstants from the R domain. 2The least �xpoint of eah funtional instane orresponding to an abstrat size funtionthus exists and an be found by omputing the asending Kleene hain, F r(�!), for 0 � r,where F 0(�!)4=��!, and F r+1(�!)4=F (F r(�!)). Sine the abstrat domain is in�nite,however, onvergene is not guaranteed within a �nite number of steps. The simple hainstruture of our domain however ensures the following:Lemma 4.3 Let F be a funtional orresponding to an abstrat reursion equation formedfrom our abstrat interpretation of relative sizes. Then either lfp(F ) = F 2(�!) or lfp(F ) =!:Proof. By indution on the struture of funtionals. 2Widening of the �xpoint iteration proess. Consequently, we an modify our least�xed point iteration method so that if the seond iteration is not a �xpoint then ! is givenas the result. This is an example of a widening proess [12℄. Here, the widening onsistsof a family of operations that depend upon the iteration, similar to that in [7℄.De�nition 4.21 Let L be a omplete lattie4. Then a widening is a family of operators(indexed over N), 5n 2 L� L 7! L, whih meets the following onditions:1. 8x; y 2 L; r 2 N :(x v (x5r y)) ^ (y v (x5r y))2. For all inreasing hains, x0 v x1 v : : :, the inreasing hain de�ned by, y0 4=x0; yr+1 4= yr 5r+1 xr+1 is not stritly inreasing.In the above, v is the ordering on L.De�nition 4.22 The upward iteration sequene with widening is de�ned as fol-lows:U0 4= ?Ur+1 4= Ur if F (Ur) v Ur4= Ur 5r F (Ur) otherwiseAs shown in [12℄, the upward iteration sequene with widening reahes a �xpoint within�nitely many steps and, furthermore, is a sound upper approximation of the least �xpointof the funtional.We thus de�ne the widening operator for our size analysis.4Atually, the domain need only be a CPO.



22 A Hierarhy of Languages with Strong Termination PropertiesDe�nition 4.23 The widening operator for relative size analysis, a5r 2 R�R 7! R,is de�ned as follows:xr a5r yr 4= ! if (r > 3) ^ xr 6= yr4= max(xr; yr) otherwiseLemma 4.4 The a5r operator is a widening operator in the sense of Defn 4.21.Proof. The proof is simply by an examination of the de�nitions. 2De�nition 4.24 The �xpoint omputation of the funtional assoiated with eah rel-ative size abstration of a funtion is de�ned by the upward iteration sequene given inDefn 4.22 where the widening operator used is a5r, whih was presented in Defn 4.23.Note that in the light of Defn 4.24 and Defn 4.22 we ould have shortened the last lauseof Defn 4.23 so that simply yr results rather than max(xr; yr).Lemma 4.5 The �xpoint omputation given in Defn 4.24 �nds the least �xpoint of therelevant funtional and omputes it in �nitely many steps.Proof. By Lemma 4.3, Lemma 4.4 and [12℄. 24.5.2 Combining abstrat size omponents.The above has given a method of alulating the size omponent of an expression due toa given parameter or, in the ase where j = 0 in the size analysis, due to onstant fatorsother than variables. We now show how we ombine the relative size information withrespet to all the parameters of a funtion and with respet to onstant fators, to givenan abstration of the total size of an expression relative to a given input.De�nition 4.25 The abstrat size vetor of an expression e, with respet to the en-vironments of funtion expressions, �, and pattern mathing expressions, �, is de�ned asfollows:s(e; i; �; �) 4= 24 Ai;1 [[ e ℄℄�;�...Ai;Ar(fi) [[ e ℄℄�;� 35We need to aggregate the elements of an abstrat size vetor so that the result is greater orequal to the size of the expression relative to one partiular parameter. To do this we notethat we annot, of ourse, determine the value of jEnv(E)(xi;j)j � jEnv(E)(xi;k)j for j 6= kin general. Consequently, if Ai;j [[ e ℄℄�;� is not �! for j 6= k then R [[ e ℄℄xi;k is unknown ingeneral. In suh a situation we must safely approximate with the ! value, whih leads tothe following de�nitions.



UKC Computing Laboratory TR 2-00 23De�nition 4.26 The jth weighting vetor is a vetor with a 0 in the j position if xi;jis of algebrai type. Otherwise, where xi;j is not algebrai, ! is in the jth position. ! is inall other positions, regardless of their types.De�nition 4.27 The abstrat interpretation of relative sizes over expressions is de�nedby the omponent size semantis of an expression, e, with respet to a parameter, xi;j:R# [[ e ℄℄i;j 4= �Env(E):(wjs(e; i; fg; fg)) where juxtaposition indiates vetor produt.Theorem 4.2 The omponent size semantis is a safe approximation of the relative sizesemantis.Proof. By strutural indution for some expression E and the de�nition of the abstratsize vetor.4.6 Deteting Reursive CallsGi[j℄ [[x ℄℄�;� 4= hi (22)Gi[j℄ [[ fk ℄℄�;� 4= 8>><>>: fgk[j℄ fg if Ar(fk) = 0 ^ k 6= jh
i if Ar(fk) = 0 ^ k = jhi otherwise (23)Gi[j℄ [[Ct a1 : : : ar ℄℄�;� 4= k=r℄k=1 ak (24)Gi[j℄ [[ ase sof hpr; eri ℄℄�;� 4= ℄(Gi[j℄ [[ s ℄℄�;�; (k=r℄k=1(Gi[j℄ [[ ek ℄℄�;�k))) (25)Gi[j℄ [[F a ℄℄�;� 4= ℄(f 0;a;�0)2C [[F ℄℄�;� hfagi(apg(f ; i; j;a; �0; �0)℄(i=jaj℄i=1 ai))gTable 4: De�nition of Gi[j℄ [[E ℄℄�;�For a funtion, fi, we need to perform an analysis of the de�nition of fi whih produesa representation of all potential reursive alls. Eah reursive all will be represented bya omponent size transformation.De�nition 4.28 The onstant fators vetor and the variable fators matrix fora sequene of expressions, e, and with respet to the parameters of funtion fi and envi-ronments, � and �, are denoted (i; e; �; �) and v(i; e; �; �), respetively, and de�ned as



24 A Hierarhy of Languages with Strong Termination Propertiesfollows:(i; e; �; �) 4= 24 Ai;0 [[ e1 ℄℄�;�...Ai;0 [[ ejej ℄℄�;� 35v(i; e; �; �) 4= 24 Ai;1 [[ e1 ℄℄�;� : : : Ai;Ar(fi) [[ e1 ℄℄�;�... ...Ai;1 [[ en ℄℄�;� : : : Ai;Ar(fi) [[ en ℄℄�;� 35De�nition 4.29 The omponent size transformation (CST) for a sequene of ex-pressions, e, and with respet to the parameters of funtion fi and environments, � and �,is de�ned as a pair of a variable fators matrix and a onstant fators vetor thus:T(i; e; �; �) 4= (v(i; e; �; �); (i; e; �; �))If (V1;k1); (V2;k2) are CSTs then(V1;k1) ? (V2;k2) 4= (V1V2; (V1k2 + k1))if the relevant matrix multipliations are de�ned.The set of CSTs is denoted T and >T is the CST with all ! omponents.We again use an abstrat interpretation proess to disover all the omponent size trans-formations that orrespond to the atual parameters of a reursive all of funtion fj thatmay be reahed by redution from a all of funtion fi. A sequene of CSTs, orrespondingto the reursive alls will be omputed by the following operator.De�nition 4.30 The abstrat alls operator, G 2 ISf � ISf � E � Env(E) � M 7! T�,and is de�ned over the struture of expressions in Table 4. In the de�nition, U, denotesthe onatenation of sequenes of CSTs and other auxiliary de�nitions follow below.De�nition 4.31 We de�ne the abstrat appliator for alls analysis, apg 2 F�ISf�ISf � E� �M� Env(E) 7! T� whih is used in (26) in Table 4, as followsapg(>F; i; j;a; �; �) 4= h>Ti (26)apg(fg; i; j;a; �; �) 4= hi (27)apg(ffkg; i; j;a; �; �) 4= 8<: hi if (jaj < Ar(fk))hT(i;a; �; �)i if fk � fjUT02fgk[j℄�k(Map (?T(i;a; �; �))T0 if fk 6� fj (28)In the above, Map is the standard mapping funtor from the ategory of sets to that ofsequenes and (?T(i;a; �; �)) denotes right transformation multipliation.De�nition 4.32 For eah funtion, there is a family of abstrat alls funtions whihgive the CSTs for the reursive alls of funtion fj within the de�nition of funtion fi:f gi[j℄� 4= lfp(Fi[j℄;�)Here, Fi[j℄;� is the funtional de�ned as, Fi[j℄;�(f gi[j℄ �) 4= Gi[j℄ [[ ei ℄℄�;fg. As before, we write Ffor Fi[j℄;� and details of the omputation are given in x 4.6.1.



UKC Computing Laboratory TR 2-00 25Disussion of the G operator. In the de�nition of G, the signi�ant lause is (26).There a test for a reursive all is made. Note also that mutual reursion is dealt with byomposing CSTs produed by the reursive all and the atual parameters.As with size analysis, the following holds.Lemma 4.6 Consider funtions fi and fj. Then if fj does not our within the de�nition,E, of fi or, transitively, any funtion alled by fi then, Gi[j℄ [[E ℄℄�;� = hi.Proof. By a simple strutural indution over E. 24.6.1 Calulating �xpoints for alls analysis.As with size analysis, there is a potential for the alls analysis to spawn an in�nite asendingKleene hain during the alulation of �xpoints. Indeed, sine eah CST is omposed ofelements of R it is a onsequene of Lemma 4.3 that the alls analysis must onverge toa �xpoint by the third iteration in the Kleene asending hain omputation or else the�xpoint ontains an element of a CST that is TopAR. We onsequently de�ne a wideningoperation (see x 4.5.1) to make the omputation �nite.De�nition 4.33 The widening operator for alls analysis, g5r 2 T� � T� 7! T�,is de�ned as the pointwise appliation of a5r aross orresponding elements in the twosequenes of CSTs, xr and yr. Where one sequene is longer than the other, those CSTsare inluded in the same positions in the resulting sequene.Lemma 4.7 The g5r operator is a widening operator in the sense of Defn 4.21.Proof. The proof is again simply by an examination of the de�nitions. 2De�nition 4.34 The �xpoint omputation of the funtional assoiated with eah allsabstration of a funtion is de�ned by the upward iteration sequene given in Defn 4.22where the widening operator used is g5r, whih was presented in Defn 4.33.Lemma 4.8 The �xpoint omputation given in Defn 4.34 �nds the least �xpoint of therelevant funtional and omputes it in �nitely many steps.Proof. Again, by Lemma 4.3, Lemma 4.7 and [12℄. 24.7 Abstrat Desent PropertyWe are now in a position to present an abstrat property that will guarantee the terminationof programs with EFP. The main onept is that, analogously to the monotoni desentproperty, de�ned over Calls(fit1 : : : tn), we may de�ne the abstrat desent propertyover a matrix that represents the sizes of arguments to the reursive alls of a funtion.Firstly, we de�ne a matrix that gives the relative abstrat sizes of the arguments to allpotential reursive alls of a given funtion.



26 A Hierarhy of Languages with Strong Termination PropertiesDe�nition 4.35 The abstrat alls matrix of reursive alls of funtion fi is de�nedthus: ACM(i) 4= fr j (v; ) 2 f gi[i℄ fggwhere, if xi;j is an algebrai argument, rj 4=wjvj + j, wj is the jth weighting vetor andvj is the jth olumn of v. If xi;j is non-algebrai then rj 4= !.Lemma 4.9 Let t1 : : : tAr(fi) be arbitrary inputs to a funtion fi. Then there exists abijetion between ACM(i) and Calls(fi t1 : : : tAr(fi)) where eah row of a struture is mappedto the row with the same index in the other. Furthermore, eah row of ACM(i) orrespondsto the same program point as the orresponding row in Calls(fi t1 : : : tAr(fi)) .Proof. This an be shown by onsdiering program points with respet to the de�nitions ofCalls(fi t1 : : : tAr(fi)) and ACM(i). 2De�nition 4.36 The jth argument to fi (i.e. xi;j) is said to be an abstratly mono-toni desending argument, written AMD(xi;j) (or simply AMD(j) where the ontext islear), if8rk 2 ACM(i):(rk;j � 0) ^ (9d:rd;j < 0)De�nition 4.37 A funtion fi has the abstrat desent property, denoted ADP(A),where A � ACM(i), if and only if9j:AMD(j) ^ ADP(A0)where A0 = fre j (re 2 A) ^ (re;j = 0)gLemma 4.10 Let A be the abstrat alls matrix of a funtion fi and suppose that fi hasthe abstrat desent property. Then if A0 is an matrix formed by eliminating any numberof rows from A, ADP(A0).Proof. Follows diretly from the de�nition. 2The above result means that if the abstrat desent property holds for all reursivealls of a funtion then it holds for a subset of those alls.Theorem 4.3 A funtion fi that has the abstrat desent property has the monotonidesent property.Proof. The proof follows from the safety of the previous omponents of the analysis. 2Corollary 4.1 Suppose the following of a funtion fi:� fi is de�ned aording to the rules of EFP.� Apart from reursive alls of fi (whih may indiretly our in funtions alled by fi),the de�nition of fi omprises only terminating onstants and funtions.� fi has the abstrat desent property.Then fi terminates under the EFP redution relation.Proof. By Theorems 3.1 and 4.3. 2



UKC Computing Laboratory TR 2-00 274.8 ESFP0Our analysis, whih an ensure termination, means that we an de�ne an ESFP languagethus:De�nition 4.38 The language ESFP0 onsists of EFP together with a hek that allde�nitions within a sript have the abstrat desent property. That is, for a sript, S.Aept(S;ESFP0) 4() Aept(S;EFP) ^ 8i 2 ISf :ADP(ACM(fi))4.9 ExamplesWe now show that the above analysis is powerful enough to aept Akerman's funtion(whih we showed in Ex 3.1 had the monotoni desent property) and also the standard(naive) de�nition of the qsort funtion as being terminating on all type-orret and termi-nating arguments.Example 4.1 [Akerman's Funtion℄ The analysis of Akerman's funtion (de�ned inEx 3.1), whih shows that ADP(ACM(ak)), proeeds as follows:We refer to the lauses of the outer ase expression as E0 and of the inner ase expressionas E00.We make the following de�nitions for environments of abstrat expressions:� = fm0 := fmgg�0 = fm0 := fmg; n0 := fnggWe also need to perform losure analysis for the three (reursive) appliations that ourwithin the funtion de�nition.C [[ ak m0 ℄℄fg;� hf1gi = C [[ ak ℄℄fg;� hfm0g; f1gi [By (5)℄= f(fakg; hfm0g; f1gi; �)g [(2)℄ (29)C [[ ak m0 ℄℄fg;�0 hfak mn0gi = f(fakg; hfm0g; fak mn0gi; �0)g [Sim. to (29)℄ (30)C [[ ak m ℄℄fg;�0 hfn0gi = f(fakg; hfmg; fn0gi; �0)g [Sim. to (29)℄ (31)We assume the following abstrations of the + operator whih has its standard reursivede�nition.+a0 fg = 0 [From base ase of when 2nd arg is 0℄ (32)+a1 fg = ! [As 1st arg ours in result and reursion is by 2nd arg℄ (33)+a2 fg = �! [As 2nd arg does not our in the result℄ (34)



28 A Hierarhy of Languages with Strong Termination PropertiesThe relevant appliations of the abstrat size operator are as follows:Aak ;1 [[m0 ℄℄fg;� = Aak ;1 [[m ℄℄fg;� � 1 = 0� 1 = �1 [(6)℄(35)Aak ;2 [[m0 ℄℄fg;� = Aak ;2 [[m ℄℄fg;� = �! [(6)℄(36)Aak ;0 [[m0 ℄℄fg;� = Aak ;0 [[m ℄℄fg;� = �! [(6)℄(37)Aak ;1 [[ 1 ℄℄fg;� = �! [Lemma 4.1℄(38)Aak ;2 [[ 1 ℄℄fg;� = �! [Lemma 4.1℄(39)Aak ;0 [[ 1 ℄℄fg;� = 1 [(8)℄(40)Aak ;1 [[m0 ℄℄fg;�0 = �1 [As (35)℄(41)Aak ;2 [[m0 ℄℄fg;�0 = �! [As (36)℄(42)Aak ;0 [[m0 ℄℄fg;�0 = �! [As (37)℄(43)Aak ;1 [[ ak mn0 ℄℄fg;�0 = apa(fakg; ak ; 1; hfmg; fn0gi; fg; �0) [(10) and (31)℄= ! [(62) below℄(44)Aak ;2 [[ ak mn0 ℄℄fg;�0 = ! [(63) below℄(45)Aak ;0 [[ ak mn0 ℄℄fg;�0 = �! [(64) below℄(46)Aak ;1 [[m ℄℄fg;�0 = 0 [(6)℄(47)Aak ;2 [[m ℄℄fg;�0 = �! [(6)℄(48)Aak ;0 [[m ℄℄fg;�0 = �! [(6)℄(49)Aak ;1 [[n0 ℄℄fg;�0 = �! [(6)℄(50)Aak ;2 [[n0 ℄℄fg;�0 = �1 [Sim. to (35)℄(51)Aak ;0 [[n0 ℄℄fg;�0 = �! [(6)℄(52)Aak ;1 [[n+ 1 ℄℄fg;� = �! [Lemma 4.1℄(53)Aak ;2 [[n+ 1 ℄℄fg;� = ! [(33)℄(54)Aak ;0 [[n+ 1 ℄℄fg;�0 = 0 [(32) and (34)℄(55)Aak ;1 [[ ak m0 1 ℄℄fg;� = [aka1 fg; aka2 fg℄ � [�1;�!℄ [(10), (29), (35) and (38)℄= �1 � aka1 fg [Mult℄(56)Aak ;0 [[ ak m0 1 ℄℄fg;� = [aka1 fg; aka2 fg℄ � [�!; 1℄ + aka0 fg [(10), (29), (37) and (40)℄= aka2 � 1 fg+ aka0 fg [Mult℄(57)Aak ;0 [[ ak mn0 ℄℄fg;�0 = [aka1 fg; aka2 fg℄ � [�!;�!℄ + aka0 fg [(10), (49) & (52)℄



UKC Computing Laboratory TR 2-00 29= aka0 fg [Mult℄(58)Aak ;1 [[ ak mn0 ℄℄fg;�0 = [aka1 fg; aka2 fg℄ � [0;�!℄ [(10), (47) & (50)℄= aka1 fg � 0 [Mult℄(59)Aak ;0 [[ ak m0 (ak mn0) ℄℄fg;�0= [aka1 fg; aka2 fg℄ � [�!; aka0 fg℄ [(10), (30), (31), (43), (46) & (58) ℄= aka2 fg � aka0 fg+ aka0 fg [Mult℄ (60)Aak ;1 [[ ak m0 (ak mn0) ℄℄fg;�0= [aka1 fg; aka2 fg℄ � [�1; aka1 fg � 0℄ [(10), (30), (31), (41), (44) & (59) ℄= (aka1 fg � �1) + (aka2 fg � (aka1 fg � 0)) [Mult℄ (61)We need to ompute the following instanes of the abstrat size operator:apa(fakg; ak ; 1; hfmg; fn0gi; fg; �0)= [faak ;1 fg; faak ;2 fg℄ � [0;�!℄ [Defn 4.19, (47) & (50)℄= [faak ;1 fg � 0;�!℄ [Mult℄ (62)apa(fakg; ak ; 2; hfmg; fn0gi; fg; �0)= [faak ;1 fg; faak ;2 fg℄ � [�!;�1℄ [Defn 4.19, (48) & (51)℄= [�!; faak ;2 fg � �1℄ [Mult℄ (63)apa(fakg; ak ; 0; hfmg; fn0gi; fg; �0)= [faak ;1 fg; faak ;2 fg℄ � [�!;�!℄ + faak ;0 fg [Defn 4.19, (49) & (52)℄= faak ;0 fg [Mult℄ (64)We need to ompute the following relative size abstrations of the ak funtion:faak ;2 fg = lfp(Fak ;2;fg) [Defn 4.20℄Fak ;2;fg(faak ;2 fg) = Aak ;2 [[ asemofE0 ℄℄fg;fg [Defn 4.20℄= max(!;Aak ;2 [[E00 ℄℄fg;�) [(9) and (54)℄= ! [max℄ (65)faak ;0 fg = lfp(Fak ;0;fg) [Defn 4.20℄Fak ;0;fg(faak ;0 fg) = Aak ;0 [[ asemofE0 ℄℄fg;fg [Defn 4.20℄= max(0;Aak ;0 [[E00 ℄℄fg;�) [(9) and (55)℄Aak ;0 [[E00 ℄℄fg;� = max(Aak ;0 [[ ak m0 1 ℄℄fg;�; [(9)℄



30 A Hierarhy of Languages with Strong Termination PropertiesAak ;0 [[ ak m0 (ak mn0) ℄℄fg;�0)= max((1 � aka2 fg+ aka0 fg); [(57) and (60)℄(aka1 fg � 0 + aka0 fg))lfp(Fak ;0;fg) = ! [From (65)℄ (66)faak ;1 fg = lfp(Fak ;1;fg) [Defn 4.20℄Fak ;1;fg(faak ;1 fg) = Aak ;1 [[ asemofE0 ℄℄fg;fg [Defn 4.20℄= max(�!;Aak ;1 [[E00 ℄℄fg;�) [(9) and (53)℄Aak ;1 [[E00 ℄℄fg;� = max(Aak ;1 [[ ak m0 1 ℄℄fg;�; [(9)℄Aak ;1 [[ ak m0 (ak mn0) ℄℄fg;�0)= max((�1 � aka1 fg); [(56) and (61)℄((aka1 fg � �1)+(aka2 fg � (aka1 fg � 0))))F 1ak ;0;fg(�!) = �! = F 0ak ;0;fg(�!) [Mult℄We onsequently generate the following CSTs:T(ak ; ak m0 1; fg; �) = �h �1 �!�! �! i; h �!1 i� (67)T(ak ; ak m0 (ak mn0); fg; �) = �h �1 �!�! ! i; h �!! i� (68)T(ak ; ak mn0; fg; �) = �h 0 �!�! �1 i; h �!�! i� (69)We alulate the alls analysis of ak as follows:akg[ak ℄ fg = Gak [ak ℄ [[ asemof E0 ℄℄fg;fg [Defn 4.32℄= Gak [ak ℄ [[E0 ℄℄fg;fg [Lemma 4.6℄= ℄Gak [ak ℄ [[ ak m0 1 ℄℄fg;�Gak [ak℄ [[ ak m0 (ak mn0) ℄℄fg;�0 [(25)℄= hT(ak ; ak m0 1; fg; �);i [(26), (29){(31) & Defn 4.31℄T(ak ; ak m0 (ak mn0); fg; �);T(ak ; ak mn0; fg; �) (70)= h(h �1 �!�! �! i; h �!1 i)(h �1 �!�! ! i; h �!! i)(h 0 �!�! �1 i; h �!�! i)iWe �nally have the following result for ACM(ak ) (an instane of Defn 4.35):ACM(ak) = " �1 1�1 !0 �1 #



UKC Computing Laboratory TR 2-00 313Example 4.2 [Quiksort℄ The quiksort (qsort) funtion is de�ned as follows:y�[℄ ++ z def= zy�(f : r) ++ z def= f : (r ++ z)�lter pm�[℄ def= [℄�lter pm�(h : t)j p h def= h : �lter p tjotherwise def= �lter p tqsort l�[℄ def= [℄qsort l�(a : x) def= s++ [a℄ ++ bwheres def= qsort (�lter (� a)x)b def= qsort (�lter (> a)x)The analysis of qsort proeeds as follows: The fat that qsort has the abstrat desentproperty follows from the following:�ltera2 fp := f(� a)gg = 0�ltera2 fp := f(� a)gg = 0We get also, for the analysis for the list input and onstant fators, respetively,[!; 0℄ � [�!;�1℄ = �1[!; 0℄ � [�!;�1℄ + 0 = 0Consequently, ACM(qsort) = h �1�1 i. 35 Adding SubtypingAs we have seen, the above analysis is powerful enough to show that quiksort terminates.However, the lass of funtions admitted is still inadequate for the purposes of ESFPsine we annot, for example, make de�nitions via a head of list funtion (or any similarprojetion) sine suh a funtion is only partial. Moreover, the operational behaviour ofertain total funtions depends upon the form of the input e.g. whether the input is greaterthan zero. We would like to have a method of extending the analysis to partial funtionsso that there is a well-de�ned sub-domain over whih they are total and so that they areonly ever applied over expressions within this sub-domain.



32 A Hierarhy of Languages with Strong Termination PropertiesTo do this we use a simple notion of subtyping, using sets of onstrutors of an algebraitype. That is, onstrutor Ci is within the subtype of a if and only if a� Ci e1 : : : eAr(Ci)for some expressions ej.Note that we do not have any notion of subtyping of funtions: this is beause we arerestriting attention to expressions of algebrai type.We now proeed to give an overview of how the analysis is modi�ed.� Eah of the abstrat semanti operator (and orrespondingly eah abstrat funtion)has extra parameters, representing environments binding subtype sets to variablesof algebrai types. Thus the modi�ed operators are, A1i;j [[ i ℄℄��;�e and G1i[j;�j℄ [[ i ℄℄��;�e.In eah ase, � is an environment of subtypes, whilst in the latter ase, �j is theenvironment of subtypes that fj was alled with i.e. we no longer math simply onthe funtion label but the subtyping environments must math too.� As well as a set of CSTs, our new analyses, modi�ed for subtyping, need to indiatewhether or not funtion appliations have been at the orret subtypes. This an bedone by pairing the result with a Boolean ag to indiate the subtype-orretness ofeah appliation or, as we have hosen, to return the top of the CST domain (>T asthe result if a funtion does not have the abstrat desent property for the subtypesof the arguments to whih it is applied.� The main hange, and the point of this method, is at ase expressions: instead ofanalysing all possible expressions that may result we only analyse those that maththe subtype of the swith expression s. For example,G1i[j;�j℄ [[ ase s of hpi; eii ℄℄��;� def= [(G1i[j;�j℄ [[ s ℄℄��;�; (k=r[k=1Gk))where Gk = � G1i[j;�j ℄ [[ ek ℄℄�k�k;� if H(pk) 2 S [[ s ℄℄�k�;�fg otherwiseHere, H(pk) is the head onstrutor of the pattern pk and S [[ s ℄℄�k�;�, whih is alsode�ned by abstrat interpretation, gives an approximation to the subtype of theswith, s. �k is formed by adding the possible subtypes of the pattern mathingvariables to the environment, �.� Subtype environments need to be partitioned into the possible ombinations of sin-gleton sets when a funtion is enountered. For example, suppose we have the envi-ronment fm :=f0; Sg; n :=fSgg (where 0 and S are the onstrutors for the naturals)then this gives rise to two environments, fm:=f0g; n:=fSgg and fm:=fSg; n:=fSgg.� The weighting vetors an also be re�ned sine, for a base ase onstrutor, the sizeof the expression must be 0 whilst for an indutive ase onstrutor, suh as Su itmust be at least 1. Thus, if a base onstrutor results for a funtion then it representssize desent from an input xi;j that is assumed to redue to an expression with anindutive ase onstrutor, suh as Su.



UKC Computing Laboratory TR 2-00 335.1 An Elementary Funtional Language with Expliitly Unde-�ned ValuesWe extend the algorithms permitted in the system that we are developing by introduingan expliit unde�ned value error into our language. This is the ounterpart of the theerror expressions of Miranda or unaught exeptions in SML whih produe a runtimeerror together with a diagnosti. However, the point of the error onstrut is that itindiates a lause that should never be reahed and it is up to the analyser to hek thatit is impossible for the program to evaluate to that program point. In that sense, whenthe termination analysis desribed below has been performed to ensure that a funtionwill terminate, the error expressions orrespond to the abort onstrut that appears inMartin-L�of's type theory | abort expressions only appear so as to adhere to the prinipleof omplete presentation [33℄.De�nition 5.1 For eah type, A, there is an errorA expression that does not have anyassoiated redution rules. The semantis of expressions involving errorA (whih we donot give here expliitly) orresponds to the semantis of exeptions in a strit language suhas ML [24℄.Generally, we write error when the ontext is lear or irrelevant.Consequently, we de�ne a new variant of our EFP language.De�nition 5.2 The EFPe language onsists of the EFP language together with the ad-dition of error expressions. If a sript, S, meets the riteria of EFPe then we writeAept(S;EFPe).5.1.1 The abstrat semantis of error.In the abstrat analyses whih follow below x 5.3{5.4 we do not give the abstrat semantisfor the error onstrut sine in eah ase it is the > of the relevant domain. For sizeanalysis (see Defn 5.14), for example, A1i;j [[ error ℄℄��;� 4= !.5.2 The Abstrat Subtyping DomainDe�nition 5.3 Let T be an algebrai type in our basi ESFP language. Then the abstratsubtyping domain for T , denoted ST , is de�ned as, ST 4=}(CsT ). For non-algebrai types,ST is ffgg.We normally write S instead of ST where the type is either lear from, or irrelevant to, theontext.The onretisation of suh abstrat values is straightforward.De�nition 5.4 The onretisation of elements of the abstrat subtyping domain is de�nedvia the mapping ST 2 ST 7! PA , so that for s 2 STST s 4= fv j (v � Civ1 : : : vAr(Ci)); 8j:nf(vj);Ci 2 sg [ f?g



34 A Hierarhy of Languages with Strong Termination PropertiesWe also write Env(S) to mean the environment where eah xi;j is bound to elementsof the appropriate subtyping domain. Sine suh environments are used to onstrain thedomain over whih a funtion may terminate, we now de�ne them more fully.De�nition 5.5 A subtyping environment for a funtion fi is an environment, �, inwhih eah xi;j is bound to an element of ST(xi;j).A valid subtyping environment is a subtyping environment, �, in whih eah xi;jof algebrai type is bound to a non-empty value. We write ValidSub(�).De�nition 5.6 Let �1 and �2 be two subtyping environments of funtion fi. Then thejoin of �1 and �2, denoted �1 t �2, is de�ned thus:�1 t �2 4= fxi;j 7! �1(xi;j) [ �2(xi;j) j xi;j 2 Dom(�1):gSimilarly the meet, denoted �1 u �2, is de�ned,�1 u �2 4= fxi;j 7! �1(xi;j) \ �2(xi;j) j xi;j 2 Dom(�1):gSine we need to determine whether a reursive all of a funtion has been mathedwith the orret subtypes, we need to aertain whether a subtyping environment inludesthe one we are trying to math.De�nition 5.7 A sub-subtyping environment (often written simply as sub-environmentwhere the meaning is lear) of a subtyping environment of a funtion fi, �, is a subtypingenvironment, �0, for whih, 8j:�0(xi;j) � �(xi;j). We denote the fat that � is a sub-subtyping environment by �0 v �.Conversely, we also use the term, super-subtyping environment.If we one environment does inlude another we still need to perform an analysis on thesubtyping environment that lies outside the intersetion.De�nition 5.8 The sub-environment di�erene between two environments, � and �0,where �0 v �, and denoted ���0 is de�ned as the set di�erene upon orresponding bindingsin the two environments i.e.�� �0 4= fxi;j 7! �(xi;j)� �0(xi;j)gIn our atual analyses we only take one onstrutor per algebrai argument in oursubtyping environments and then join the results on eah of these sub-environments todetermine the subtyping environment over whih the funtion is de�ned.De�nition 5.9 Let � be a subtyping environment. Then the singleton partition of �,denoted SP(()�) onsists of all the sub-subtyping environments ontaining only singletonsets as algebrai subtypes.



UKC Computing Laboratory TR 2-00 35S [[x ℄℄��;� 4= ( �(x) if x 2 Dom(�)>S otherwise (71)S [[ fi ℄℄��;� 4= ( f si fg fg if Ar(fi) = 0fg otherwise (72)S [[Ct a1 : : : ar ℄℄��;� 4= fCtg (73)S [[ ase sof hpr; eri ℄℄��;� 4= i=n[i=1[fS [[ ei ℄℄��;�i jH(pi) 2 S [[ s ℄℄��;�g (74)S [[F a ℄℄��;� 4= [ ff sk �0 �0 j (fk;a; �0) 2 C1 [[F ℄℄��;� ���haig (75)
Table 5: De�nition of S [[E ℄℄��;�5.3 The Analysis of SubtypesWe now desribe an analysis whih safely approximates the subtype of any algebrai ex-pression within the language. Firstly, we need to de�ne how subtypes math a pattern ina ase expression.De�nition 5.10 H(pi) is the head onstrutor of the pattern pi and is de�ned asH(Ct a1 : : : ar) 4= Ct.De�nition 5.11 The analysis of subtypes operator, S 2 E � Env(E) � Env(S) 7! S,is presented in Table 5.5.4 Modi�ed Termination AnalysesWe now give de�nitions that are analagous to those in x 4.5.4.1 Closure analysis with subtyping.De�nition 5.12 The losure analysis with subtyping semanti operator, C1 2 E �Env(E)�M� Env(S)� E� 7! C, is de�ned in Table 6.De�nition 5.13 The abstrat losure funtion with subtyping environment, � ofa funtion, fidef=�xi;1 : : : xi;n:ei, is de�ned for a given environment of non-ground expressions�, and a sequene of atual parameter expressions, a, as fm1i � �a4=S�02SP(()�) C1 [[ ei ℄℄�0�;fg aAs would be expeted, subtyping produes more preise results than for the basi analysiswithout subtyping.
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C1 [[x ℄℄��;� a 4= 8>><>>: >C if �(x) = >E _ �(x) = >Ef(fg;a; �)g if �(x) = fgC1 [[ e ℄℄��;� a if �(x) = feg _ �(x) = feg (76)C1 [[ fi ℄℄��;� a 4= ( f(ffig;a; �)g if Ar(fi) � jajf(f;e; �00) j (f;d; �0) 2 fm1i �0 �0 g otherwise (77)C1 [[Ct a1 : : : ar ℄℄��;� a 4= i=r[i=1f(f; b; �0) j (f; b; �0) 2 C1 [[ ei ℄℄��;� a ^ TC(f; b)g (78)C1 [[ ase sof hpr; eri ℄℄��;� a 4= k=r[k=1[ fC1 [[ ek ℄℄��k;� a jH(pk) 2 S [[ s ℄℄��;�g (79)C1 [[Gd ℄℄��;� a 4= C1 [[G ℄℄��;� (hfdgi++ a) (80)Auxiliary de�nitions are as in Table 2.Table 6: De�nition of C1 [[E ℄℄��;� aLemma 5.1 For any well-formed basi ESFP expression, e, with well-formed funtionenvironment �, well-formed pattern-mathing variable expression environment, �, well-formed subtyping environments, � and well-formed abstrat expression vetor, a,C1 [[ e ℄℄��;� a � C [[ e ℄℄�;� aProof. By inspetion of the de�nitions, in partiular the lauses for ase expressions. 2Corollary 5.1 The abstrat losure funtion with subtyping, �, is more preise than theabstrat losure funtion without subtyping.Proof. Follows from Defn 5.13. 25.4.2 Size analysis with subtyping.De�nition 5.14 The relative size analysis operator with subtyping, A1 2 ISfi �E � Env(E) � M � Env(S) 7! R, is the A operator extended with subtyping and de�nedover the struture of expressions in Table 7 with auxiliary de�nitions given below. In thede�nition, � is an environment binding funtion type expressions to variables, � is anenvironment binding pattern-mathing variables of algebrai types to expressions, and � isan environment binding subtypes to the formal parameters. i is a funtion index whilst0 � j � Ar(fi).De�nition 5.15 The onstrutor abstrat size funtion with subtyping, s1 2}(E )�ISfi�Env(E)�Env(S)M 7! R, is de�ned analagously to Defn 4.17, with A1 replaingA.
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A1i;j [[x ℄℄��;� 4= 8>>>>><>>>>>: 0 if x � xi;j�! if x � xi;kA1i;j [[ t ℄℄��;� � 1 if �(x) = ftg ^Unify(x; t)! otherwise (81)A1i;j [[ fk ℄℄��;� 4= 8<: fak;0 fg fg if Ar(fk) = 0 ^ j = 0�! otherwise (82)A1i;j [[Ct a1 : : : ar ℄℄��;� 4= s1(Re(E); i; j; �; �; �) (83)A1i;j [[ ase sof hpr; eri ℄℄��;� 4= max(k=r[k=1 fA1i;j [[ ek ℄℄��;�k jH(pk) 2 S [[ s ℄℄��;�g) (84)A1i;j [[F a ℄℄��;� 4= max fapa1(f; i; j;a; �; �; �) j (f;a; �k) 2 C1 [[F ℄℄��;� hfagig (85)In addition, if :ADP(k; �0), then frk;�0as 4= !.Table 7: De�nition of A1i;j [[E ℄℄��;�De�nition 5.16 The A1 operator is lifted to the E domain as follows:A1i;j [[>E ℄℄��;� 4= ! (86)A1i;j [[ feg ℄℄��;� 4= A1i;j [[ e ℄℄��;� (87)De�nition 5.17 The abstrat appliator for size analysis with subtyping, apa1,is de�ned as follows.apa1(>F; i; j;a; �; �; �) 4= ! (88)apa1(fg; i; j;a; �; �; �) 4= ! (89)apa1(ffkg; i; j;a; �; �; �) 4= (fka1 � aa1) + vj (90)In the above, �0 4=fxk;1 :=S [[ a1 ℄℄��;� : : : xk;Ar(fk) :=S [[ aAr(fk) ℄℄��;�g. In addition, �0fxk;l :=>Sg,if l > jasj.fa1k 4= [fa1k;1 �0 �0 : : : fa1k;Ar(fk) �0 �0℄ and aa1 4= [A1i;j [[ a1 ℄℄��;� : : :A1i;j [[ ajaj ℄℄��;�℄.vj 4=� fa1k;0 �0 �0 if j = 0�! otherwiseDe�nition 5.18 The abstrat size funtion with subtyping of a funtion, fi def=�xi;1 : : : xi;n:ei, relative to parameter j is de�ned for a given subtyping environment, �iand a given environment of funtion-type parameters, � as, fa1i;j �i � 4=max�02SP(()�i)A1i;j [[ ei ℄℄�0�;fg



38 A Hierarhy of Languages with Strong Termination PropertiesAgain, subtyping produes more preise results for size analysis than for the basi analysiswithout subtyping.Lemma 5.2 For any well-formed basi ESFP expression, e, with well-formed funtionenvironment �, well-formed pattern-mathing variable expression environment, �, and well-formed subtyping environment, �,A1i;j [[ e ℄℄��;� �R Ai;j [[ e ℄℄�;�Proof. Again, by inspetion of the de�nitions. 2Corollary 5.2 The abstrat size funtion with subtyping, �, is more preise than the ab-strat size funtion without subtyping.Proof. Follows from Defn 5.18. 2De�nition 5.19 The abstrat size vetor of an expression e, with respet to the envi-ronments of funtion expressions, �, pattern mathing expressions, �, and subtypes, �, isde�ned as follows:s(e; i; �; �; �) 4= 264 A1i;1 [[ e ℄℄��;�...A1i;Ar(fi) [[ e ℄℄��;� 375De�nition 5.20 The abstrat interpretation of relative sizes over expressions is de�ned bythe omponent size semantis of an expression, e, with respet to a parameter, xi;j anda subtyping environment, �: R# [[ e ℄℄i;j 4= �Env(E):(wjs(e; i; fg; fg; �)) where juxtapositionindiates vetor produt.De�nition 5.21 The onstant fators vetor and the variable fators matrixfor a sequene of expressions, e, and with respet to the parameters of funtion fi andenvironments, �, � and � (an environment of subtypes) are denoted (i; e; �; �; �) andv(i; e; �; �; �), respetively, and de�ned as follows:(i; e; �; �; �) 4= 264 A1i;0 [[ e1 ℄℄��;�...A1i;0 [[ ejej ℄℄��;� 375v(i; e; �; �; �) 4= 264 A1i;1 [[ e1 ℄℄��;� : : : A1i;Ar(fi) [[ e1 ℄℄��;�... ...A1i;1 [[ en ℄℄��;� : : : A1i;Ar(fi) [[ en ℄℄��;� 375De�nition 5.22 The omponent size transformation (CST) for a sequene of ex-pressions, e, and with respet to the parameters of funtion fi and environments, �, � and� (an environment of subtypes) is de�ned: T(i; e; �; �; �) 4= (v(i; e; �; �; �); (i; e; �; �; �))If (V1;k1); (V2;k2) are CSTs then, if the relevant matrix multipliations are de�ned,(V1;k1) ? (V2;k2) 4= (V1V2; (V1k2 + k1))



UKC Computing Laboratory TR 2-00 39G1i[j;�j ℄ [[x ℄℄��;� 4= hi (91)G1i[j;�j ℄ [[ fk ℄℄��;� 4= 8>><>>: fgk[j℄ fg fg if Ar(fk) = 0 ^ k 6= jh
i if Ar(fk) = 0 ^ k = jfg otherwise (92)G1i[j;�j ℄ [[Ct a1 : : : ar ℄℄��;� 4= G1i[j;�j ℄ [[ ak ℄℄��;� (93)G1i[j;�j ℄ [[ ase sof hpr; eri ℄℄��;� 4= ℄(G1i[j;�j ℄ [[ s ℄℄��;�; (k=r℄k=1Gk)) (94)G1i[j;�j ℄ [[F a ℄℄��;� 4= ℄(f ;a;�0)2C1 [[F ℄℄��;� hfagi(apg1(f ; i; j;a; �0; �; �)℄(i=jaj℄i=1 G1i[j;�j ℄ [[ ai ℄℄��;�))(95)In (94), Gk = � G1i[j;�j℄ [[ ek ℄℄��k;� if H(pk) 2 S [[ s ℄℄��;�fg otherwiseTable 8: De�nition of G1i[j;�j ℄ [[E ℄℄��;�5.4.3 Calls analysis with subtyping.De�nition 5.23 The abstrat alls operator, G1 2 ISf � ISf � Env(S) � E � Env(E) �M� Env(S) 7! T�, is the G operator extended with subtyping to loate alls of funtion fjwith subtype environment �j within funtion fi whih has input subtype environment �i. Itis de�ned over the struture of expressions in Table 8.De�nition 5.24 The abstrat appliator for alls analysis with subtyping, apg1 2F� ISf � ISf � E� � Env(E)�M� Env(S)� Env(S) 7! T�, is de�ned as followsapg1(>F; i; j;a; �; �; �; �j) 4= h>Ti (96)apg1(fg; i; j;a; �; �; �; �j) 4= hi (97)apg1(ffkg; i; j;a; �; �; �; �j) 4= 8>>><>>>: hi if (jaj < Ar(fk))fT(i;a; �; �; �)g [R if (fk � fj) ^ �j v �h>Ti if (fk 6� fj) _ (�j 6v �)^:ADP(fk; �0)UT02fgk[j℄ �k �k(Map (?T(i;a; �; �; �))T0) if fk 6� fj (98)In the above, if �00 = ���j is a valid subtyping environment then R � apg1(ffkg; i;a; �; �; �00; �j).Otherwise, R � hiDe�nition 5.25 For eah funtion, there is a family of abstrat alls funtions whihgive the CSTs for the reursive alls of funtion fj with subtyping environment �j within



40 A Hierarhy of Languages with Strong Termination Propertiesthe de�nition of funtion fi for subtyping environment �i and environment of funtion-typearguments, �:f g1i[j;�j℄ � �i 4= [�02SP(()�i)G1i[j;�j℄ [[ ei ℄℄�0�;fgNote that now it is not only neessary to san for ourrenes of fj within the de�nitionof fi but that the ourrenes of fj must our at the stipulated subtyping environment.Furthermore, the searh for ourrenes of fj is direted by the subtyping environment, �ii.e. the given subtypes of the parameters of fi.Again, subtyping produes more preise results for the alls operator than for the basianalysis without subtyping.Lemma 5.3 For any well-formed basi ESFP expression, e, with well-formed funtionenvironment �, well-formed pattern-mathing variable expression environment, �, and well-formed subtyping environment, �,G1i[j;�j℄ [[ e ℄℄��;� �R Gi[j℄ [[ e ℄℄�;�Proof. Again, by inspetion of the de�nitions. 2Corollary 5.3 The abstrat alls funtion with subtyping, �, is more preise than theabstrat alls funtion without subtyping.Proof. Follows from Defn 5.25. 25.5 Termination Criteria Using SubtypingAs mentioned at the beginning of this setion, we �rst need to re�ne our idea of a weightingvetor to take aount of the fat that subtypes give information as to the size of eah input.De�nition 5.26 Let Ct be some onstrutor. Then the minimal size of an expressionthat has Ct at its head is denoted ms 2 C 7! R, is de�ned thus:ms(Ct) 4= n 0 if Ct is a base ase onstrutor1 if Ct is an indutive ase onstrutorDe�nition 5.27 Assume we have s 2 S. Then the minimal subtype size of s, denotedmss 2 S 7! R, is de�ned thus for non-empty s:mss(s) 4=minfms(Ct) jCt 2 sgFor empty s (i.e. non-algebrai arguments), mss(fg) 4=�!.De�nition 5.28 The jth weighting vetor with respet to a subtyping environ-ment � is a vetor with, in the jth position, mss(�(xi;j). ! is in all other positions.



UKC Computing Laboratory TR 2-00 41De�nition 5.29 The abstrat all matrix of reursive alls of funtion fi is de�nedwith respet to a subtyping environment, �, thus:ACM(i; �) 4= fr j (v; ) 2 f g1i[i;�℄ fg�gwhere, if xi;j is an algebrai argument, rj 4=wjvj+j�mss(�(xi;j)), wj is the jth weightingvetor with respet to the subtyping environment � and vj is the jth olumn of v.If xi;j is non-algebrai then rj 4= !.De�nition 5.30 The jth argument to fi (i.e. xi;j) with subtyping environment � is saidto be an abstratly monotoni desending argument, written AMD(xi;j; �) (or simplyAMD(j; �) where the ontext is lear), if8rk 2 ACM(i; �):(rk;j � 0) ^ (9d:rd;j < 0)The jth argument is said to be abstratly stritly desending, written ASD(xi;j; �) if8rk 2 ACM(i; �):(rk;j < 0)De�nition 5.31 A funtion fi has the abstrat desent property for the subtypingenvironment �, denoted ADP(A), where A � ACM(i; �), if and only if9j:AMD(j; �) ^ ADP(A0)where A0 = fre j (re 2 A) ^ (re;j = 0)gLemma 5.4 If a funtion fi has the abstrat desent property for the subtyping environ-ment � then it has the abstrat desent property for any �0 where �0 is a proper sub-environment of �.Proof. This is a onsequene of Lemma 4.10 and Defns 5.13, 5.18 and 5.25 where we use thesingleton partition of a subtyping environment to de�ne the respetive abstrat funtions.2 However, if we take two subtyping environments on both of whih fi has the abstratdesent property then it is not neessarily the ase that fi has the ADP on the join of the twoenvironments if fi has more than one argument. (There may be di�erent lexiographialorderings used to ful�ll the ADP in eah ase.) However, the following does hold.Lemma 5.5 Suppose that a funtion fi has the abstrat desent property on subtype en-vironments �1 and �2 and that there exists a j suh that ASD(xi;j; �1) and ASD(xi;j; �2).Then fi has the abstrat desent property on �1 t �2.Proof. The de�nitions of the losure, size and subtyping analyses mean that in eah asetheir results are the joins of the results on the two sub-environments. This means that allentries in the abstrat alls matrix for the joined subtype environment must be less than0 as the entries for �1 and �2 are less than 0. Furthermore, the number of rows in theabstrat alls matrix is the sum of the rows for the matries pertaining to �1 and �2. 2The abstrat desent property for a partiular subtyping environment means that ithas the monotoni desent property for those subtypes.



42 A Hierarhy of Languages with Strong Termination PropertiesTheorem 5.1 Suppose that a funtion fi has the abstrat desent property for the sub-typing environment �. Then fi restrited to the subtypes of � has the monotoni desentproperty.Proof. Similar arguments apply as for Theorem 4.3 2Corollary 5.4 Suppose that a funtion fi is de�ned aording to the rules of the basiESFP language and that fi has the abstrat desent property for the subtyping environment�. Then fi terminates on all arguments restrited to the subtyping environment �.5.6 ESFP with Subtyping | ESFP1Our new analysis, whih is enhaned by subtyping, means that we an de�ne a moreexpressive ESFP language.De�nition 5.32 The language ESFP1 onsists of EFPe together with a hek that allde�nitions within a sript have the abstrat desent property for some valid subtyping en-vironment. That is,Aept(S;ESFP1) 4() Aept(S;EFPe) ^ 8i 2 ISf :9�i 2 Envi(S):ValidSub(�i) ^ ADP(ACM(fi; �i))where ADP(ACM(fi); �i)) follows Defns 5.29{5.31.5.7 Example of the Analysis Using SubtypingAn ESFP enoding of Eulid's gd algorithm, whih is not de�ned for two zero inputs, isas follows:gd mn def=asemof 0! ase nof 0! error; (Su n0)! n(Sum0)! ase ompare mnof EQ ! m; LT ! gd m (n�m); GT ! gd (m� n)n0 - b def=0; (Su a') - 0 def= (Su a'); (Su a') - (Su b') def=a' - b'The analysis of the funtion, showing that gd terminates for two non-zero inputs, proeedsas follows: � = fm := fSg; n := fSggG1gd [gd;�℄ [[Egd ℄℄=fg;�G1gd [gd ;�℄ [[ ase omparemnof E0 ℄℄�0fg;��0 = �fm0 := f0; Sg; n0 := f0; Sgg;� = fm0 :=m;n0 := ng= fg [ G1gd [gd;�℄ [[ gd (m� n)n ℄℄�0fg;� [ G1gd [gd;�℄ [[ gd m (n�m) ℄℄�0fg;�



UKC Computing Laboratory TR 2-00 43G1gd [gd;�℄ [[ gd (m� n)n ℄℄�0fg;� =(gdg1[gd ;fm:=f0g;n:=fSgg℄; " A1gd ;m [[m� n ℄℄�0fg;� A1gd;n [[m� n ℄℄�0fg;�A1gd ;m [[n ℄℄�0fg;� A1gd ;n [[n ℄℄�0fg;� #;" A1gd;0 [[m� n ℄℄�0fg;�A1gd ;0 [[n ℄℄�0fg;� #!)
�a11 fa := fSg; b := fSgg = �a11 fa := f0; Sg; b := f0; Sgg � �1�a11 fa := f0; Sg; b := f0; Sgg = max(�!; 0;�a11 fa := f0; Sg; b := f0; Sgg)The least �xed point of the above is 0 and thus,�a11 fa := fSg; b := fSgg = �1�a12 fa := fSg; b := fSgg = �a12 fa := f0; Sg; b := f0; Sgg � 0�a12 fa := f0; Sg; b := f0; Sgg = max(�!;�!;�a12 fa := f0; Sg; b := f0; Sgg)Thus, �a11 fa := fSg; b := fSgg = �! and G1gd [gd;�℄ [[ gd (m� n)n ℄℄�0fg;� = �h 0�! i ; h �1 �!�! 0 i�Similarly, we get: G1gd [gd ;�℄ [[ gd m (m� n) ℄℄�0fg;� = �h �!0 i ; h 0 �!�! �1 i�Thus the ACM for gd with the subtyping environment � is: h �1 00 �1 iThis satis�es the abstrat desent property.6 Nested Indutive TypesOur abstrat interpretation operates by reognising syntati sub-omponents of otherexpressions. These sub-omponents our as pattern-mathing variables within ase ex-pressions. We may onsequently have ase expressions applied to expressions involvingpattern-mathing variables. Some pattern-mathing variables will indiate a size desentwithin a reursive struture whilst others will indiate arbitrary data extrated from thestruture. For example, in the ase of lists where we may math a list l against a patternof the form (h : t) for non-empty lists, jtj < jlj for all lists. However, the head, h, may be ofarbitrary size. In the ase of rosetrees, though, where a list of rosetrees is a sub-omponentof an internal node, an element of suh a list will be a subtree of the original tree andonsequently represents size desent.We thus make our basi EFP language less restritive by removing two of the onstraintsupon the de�nition of algebrai types.De�nition 6.1 The language EFP+ onsists of EFPe with restritions 2 and 3 of x 2.2removed. If a sript, S, meets the riteria of EFP+ then we write Aept(S;EFP+).



44 A Hierarhy of Languages with Strong Termination Properties6.1 Projetion SequenesWe onsequently need an extended spae of expressions whih relates pattern-mathingvariables to the expressions that they math. We �rstly de�ne projetion sequenes whihwill represent the sequene of operations required to extrat an element from a struture.These will be onstrained so as to enable the alulation of least �xed points within theabstrat interpretation framework.De�nition 6.2 The set of projetions, �, is de�ned as follows:� 4= f�i;j j 9Ci 2 C :Ar(Ci) � jgDe�nition 6.3 The set of projetions from type S to type T, denoted �S!T , isde�ned as the restrition of � to projetions with domain S and range T .The projetions above have the following interpretation. �i;j e 7! ei;j if and only ife� Ciei;1 : : : ei;r. We shall only use suh a projetion in a ontext where it is de�ned i.e.where e does redue to the appropriate pattern.We form length-onstrained sequenes of projetions as follows:De�nition 6.4 The set of projetion sequenes, Pd, onsists of singleton subsets of the setof all sequenes of projetions of length � d, �d, together with >P, the set of all possibleprojetions and fg, the bottom of the lattie indued by the subset ordering on Pd.>P indiates any possible omposition of projetions from a given data struture. Wherethere is no ambiguity, we represent singleton sets of sequenes of projetions simply by theprojetion sequene itself e.g. �. In addition, we shall assume in the rest of this setionthat d is 2 and thus we shall write Pd simply as P. In Set. 8, we shall disuss the e�et ofother possible values of d on the analysis. We shall write j�j to denote the length of thesequene �.De�nition 6.5 The set of projetion sequenes, PdS!T , onsists of singleton subsets ofthe set of all sequenes of projetions of length � d and of type S ! T , �dS!T , togetherwith >, the set of all possible projetions of the required type, and fg.De�nition 6.6 The set of types projetable by an d length projetion sequene from atype T , denoted PdT , is de�ned as, PdT 4= fV jPdT!V 6= fgg.The projetion sequenes are used to determine whether a omposition of projetionsupon a struture is endomorphi i.e. the types of the domain and range are the same.De�nition 6.7 The omposition of a non->P sequene of projetions is denoted J(�)and is de�ned asJ(fg)4=Fold Æ id� where Fold is the standard fold atamorphism over se-quenes. However,J(>P) is unde�ned (reeting the fat that this represents any possibleombination of projetions).



UKC Computing Laboratory TR 2-00 45De�nition 6.8 A projetion sequene, �, is termed endomorphi, and denoted Endo(�)if and only if 9A:J(�) :: A! AThe empty projetion sequene is endomorphi (as it represents the identity) whilst >Pis not endomorphi.De�nition 6.9 A projetion sequene, �, is termed reduing and denoted Red(�) if itis both endomorphi and not the empty projetion sequene.6.2 Projetion ExpressionsWe an now ombine the projetion sequenes de�ned above with our basi expressionsyntax to form new, abstrat expressions as follows.De�nition 6.10 A projetion expression, denoted �de (where d indiates that projetionexpressions are onstruted from Pd sequenes), is a pair of a sequene of projetions anda basi expression (as de�ned in Set. 2.3) or a substitution instane of a basi expression.The set of projetion expressions, PE, is thus de�ned, PE 4= P� EAn endomorphi projetion expression is a projetion expression that inludes anendomorphi projetion sequene. A reduing projetion expression is a projetionexpression that inludes a reduing projetion sequene.The informal onrete semantis of a projetion expression is that it is the appliation ofthe omposition of the sequene of projetions to the (basi) expression e.6.3 Binding Sets of Projetion ExpressionsWe bind sets of projetion expressions to pattern-mathing variables within an environ-ment, �. Sine, in our language, we assume that we only have single-level patterns, weshall only bind pattern-mathing variables to elements of P1E.We need to de�ne a new domain of environments binding projetion expressions topattern mathing variables sine that given in Defn 4.7 only makes bindings to abstratexpressions.De�nition 6.11 The domain of pattern variable projetion expression environ-ments, MP, onsists of funtions binding pattern mathing variables to elements of P1E i.e.MP 4= M 7! P1EThe atual binding proess, for a ase expression, is de�ned as follows.De�nition 6.12 Let � bind pattern-mathing variables to sets of projetion expressions.Then, for a ase expression of the form, ase sof hp1; e1i : : : hpr; eri the environment ofpattern-mathing variables pertaining to eah ek is de�ned as, �k 4= Sl=jpkjl=1 B(pk;l; s; �),where B(pk;l; s; �) 4= �fpk;l := (h�k;li; fsgg).
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P2;d [[ (�;>E) ℄℄��;� 4= PdE (99)P2;d [[ (�; (fg; e)) ℄℄��;� 4= f(fg; e)g (100)P2;d [[ (�; x) ℄℄��;� 4= f(�; x)g (101)P2;d [[ (�; fk) ℄℄��;� 4= fg (102)P2;d [[ (�; Ct a1 : : : ar) ℄℄��;� 4= 8>><>>: f(fg; aj)g if � � h�i;jiP2;d [[ (�0; aj) ℄℄��;� if � � �0 ++ h�i;jifg otherwise (103)P2;d [[ (�; ase sof hpr; eri) ℄℄��;� 4= k=r[k=1[fP2;d [[ (�; fekg) ℄℄��;�k jH(pk) 2 S [[ s ℄℄��;�g (104)P2;d [[ (�; F a) ℄℄��;� 4= [ fb[a =E xk℄j b = fp2;df �0 �00 �;(ffkg;a; �0) 2 C1 [[F ℄℄��;� hai g (105)In (105), if, for some a; �0, C1 [[F ℄℄��;� hai = (fg;a; �0) then P2;d [[ (�; F a) ℄℄��;� 4=>E.Table 9: De�nition of P2;d [[ (�; E) ℄℄��;�



UKC Computing Laboratory TR 2-00 476.4 Approximating Projetion AppliationsSyntati desent an only our via a omposition of projetions that is of endomorphitype. Intermediate enlosing strutures (suh as the list of subtrees in the rosetree example)annot be added to if the reursion is to be well-founded. In the ase of rosetrees, if anarbitrary tree was added to the list of subtrees then desent ould not be guaranteed. Wethus require a method of approximating the expressions that may result from applying anon-endomorphi projetion. We need to be able to approximate the set of endomorphiprojetion expressions that orrespond to a (non-endomorphi) projetion expression. Toform our approximation, we map an element of P1E into }(PlE). This mapping will redue aprojetion expression to a set of projetion expressions in whih the projetion sequene iseither empty (hi) or the projetion expression is of the form, (�; v), where v is either fxg,where x is a variable, or v is >E.We shall all this mapping, projetion analysis whih approximates the set of expres-sions that may result from applying a projetion other than >P to an expression.Firstly, we need a method of adding a projetion to a projetion expression to deal withthe situation where we have ase onstruts applied to pattern mathing variables | wemay take the head of the tail of a list, for example. This leads to the following de�nition.De�nition 6.13 The addition of a projetion, �i;j, to a projetion expression, p 2 PlE isdenoted �i;j � p and is de�ned as follows:�i;j � (>P; e) 4= (>P; e)�i;j � (�; e) 4= � (�i;j : �; e) if j�j < l(>P; e) otherwiseHaving broadened the lass of types that may be permitted in the language we needto rede�ne the operator that gives the reursive sub-omponents of an expression. Thisoperator will then be used in our projetion analysis below when alulating the set ofterms that may be projeted from a data struture by a non-endomorphi projetion. Wewish, for example, for this to orrespond to all the elements of a list onstant.De�nition 6.14 The reursive sub-omponents abstration operator, ReAbs(2)E 7!E, is de�ned as follows:ReAbs(e) 4= f s 2 �! jTC(J(s); e;^)Unify(J(s)e; e)^:9s0 � s:Unify(J(s0)e; e) gHere, �! is the set of ordered sets of projetions and TC(J(s); e;) denotes a type-orretappliation of the omposition of the elements of s to e. The �nal restrition on theelements of S ensures that there is not any proper subsequene that represents a type-reursive projetion.Note that C is �nite and thus �! is �nite sine it is the ordered ounterpart of }(C ).



48 A Hierarhy of Languages with Strong Termination PropertiesWe now de�ne the abstrat interpretation used to approximate the set of projetionexpressions orresponding to the appliation of a non-endomorphi projetion. In this andthe subsequent analyses given (see x 6.6) we do not give the result for error expliitly: asin x 5.1.1 the result is in eah ase the > of the relevant abstrat domain.De�nition 6.15 The projetion analysis operator, P2;d 2 P1E�Env(E)�MP�Env(S) 7!}(PlE), is de�ned in Table 9 for projetion expressions where the projetion sequene is nei-ther endomorphi nor >P.� In the ase of the endomorphi projetion sequenes, P2;d orresponds to the injetion,p 7! fpg.� In the ase where the projetion sequene is >P, the result is PlE, the top of }(PlE).This mapping will be partiularly useful in the ase of losure analysis, where we previouslyfound all possible subomponents that ould be applied as funtions, even though thesubomponents would not be projeted from a struture and then applied.In the seond lause of the de�nition we have diret desent due to the projetionimpliit in the pattern math. In the third lause, the omposition of projetions whenapplied to an expression produes size desent | this thus takes are of the ase of nested-type data strutures. However, in the last lause, where the omposition of two projetionshas not produed desent, we approximate by using the >P projetion.We now show that the projetion analysis has the required behaviour in the followingrespets:1. It redues non-endomorphi projetion expressions to sets of projetion expressionsof the form (�; feg) (in the non-pathologial ase where the result is not >PE), whihare either endomorphi or non-endomorphi and the expression, e is a parameter,xi;j.2. If the expression, e, orresponds to the projetion expression (�; a), then if e reduesto e0 then there exists a p 2 P2;d(�; a), suh that p is equivalent to e00 whih isonvertible to e0.Lemma 6.1 The projetion analysis operator, P2;d, either redues p 2 P1E to >P1E or to aset S onsisting only of endomorphi projetion expressions or non-endomorphi projetionexpressions where the expression is a parameter, xi;j.Proof. By strutural indution over E. 2Theorem 6.1 Our projetion analysis operator is orret.Proof. By strutural indution over E. 2



UKC Computing Laboratory TR 2-00 496.5 The Projetion-Size Abstrat DomainIn orrespondene to the spae of projetion expressions we now desribe a new abstratdomain of projetion sizes. The point of this new domain is that it allows the detetion ofsyntati desent even when this ours as the omposition of separate projetions appliedto the atual and formal parameters of a alled funtion.De�nition 6.16 The projetion-size abstrat domain, denoted RP is de�ned as the ar-dinal produt of the projetion domain and the relative size domain i.e. RP4=P�R. The topof this domain is denoted >RP (� (>P; !)) and the bottom is denoted ?RP (� (fg;�!)).The least upper bound operator on this omplete lattie is denoted maxRP, although it willnormally be written simply max as it will be lear upon whih domain we shall be operating.maxRP is de�ned (for non-> elements) via maxR as follows:maxRP(�1; s1)(�2; s2) 4= (�1; (maxR(s1; s2))) if �1 � �24= >RP otherwise (106)As for the relative size domain, we de�ne addition and multipliation operators as follows:(�1; s1) + (�2; s2) 4= (�1; (s1 +R s2)) if �1 � �24= >RP otherwise (107)(�1; s1) � (fg; s2) 4= (�1; (s1 �R s2))(fg; s1) � (�2; s2) 4= (�2; (s1 �R !))(�1; s1) � (�2; s2) 4= (fg; (s1 �R s2)� 1) j�3j � l ^ Red(�3)(�1; s1) � (�2; s2) 4= (�3; (s1 �R s2)) j�3j � l(�1; s1) � (�2; s2) 4= >RP otherwise (108)
In equation (108), �3 = �1 ++ �2.6.5.1 Conrete Semantis of RPWe now disuss the meaning of our projetion-size domain, RP, with respet to the onretesemantis of our basi ESFP language and to the domain of relative sizes disussed inSet. 4.2.Informal onretisation. For an expression e, if (fg; s) is its abstrat semantis in RP,relative to some parameter, xi;j then its onrete semantis orresponds to that of s in AR,again relative to xi;j. If, however, the abstrat semantis of e in RP is (�; s) (again relativeto some parameter xi;j), then e is onvertible toJ(�)e0 for some e0 and the size of e0 is s(relative to xi;j) and the relative size of e itself is unknown. Furthermore, (�; s) is only avalid projetion-size representation of e in the ase where � is an endomorphi projetionsequene and where e0 is a formal parameter. Our analysis whih we desribe below will



50 A Hierarhy of Languages with Strong Termination Propertiesenfore this latter requirement and we will thus also be able to show that s will thus beeither 0 or �!.Given the above informal desription, we have the following operator that maps pro-jetion sizes to their ounterparts in R.De�nition 6.17 The projetion-size norm, denoted N, is a mapping from RP to Rwhih is de�ned as follows:N(fg; s) 4= sN(�; s) 4= !The idea here is similar to that disussed in the original analysis in x 4.5 | despite knowingthat an expression e has size of s relative to xi;j, we annot determine the size of e0 wheree0 is equivalent to J(�)e and � is not the identity. Thus we must safely approximateusing !.6.6 Modifying the Analyses with Projetion ExpressionsWe now show how the analyses are modi�ed in the light of the foregoing disussion onprojetion analysis. We give de�nitions that are developed from those in x 5.6.6.1 Closure analysis with projetion sequenes.De�nition 6.18 The losure analysis semanti operator with d length proje-tion sequenes C2;d 2 E � Env(E)�MP � Env(S)� E� 7! C, is de�ned in Table 10.De�nition 6.19 The abstrat losure funtion using d length projetion se-quenes, of a funtion fi, denoted fm2;di , is de�ned as in Defn 5.13, exept that C2;dreplaes C1.6.6.2 Size analysis with projetion sequenes.De�nition 6.20 The relative size analysis operator with d length projetion se-quenes, A2;d 2 ISfi � E � Env(E) � MP � Env(S) 7! R, is the A operator extended withprojetion expressions and subtyping and de�ned over the struture of expressions in Ta-ble 11.As an auxiliary operation, we need to de�ne the size of a projetion expression that isprodued by projetion analysis.De�nition 6.21 The size of a projetion expression, e, denoted PES(e), relativeto the environments of pattern mathing variables (�), funtions (�) and subtypes (�), isde�ned as follows:PES((>P; e0)) 4= >RPPES((�; e0)) 4= ( A2;di;j [[ e0 ℄℄��;� � 1 if Red(�)A2;di;j [[ e0 ℄℄��;� otherwise



UKC Computing Laboratory TR 2-00 51C2;d [[E ℄℄��;� a 4= fg if E is of ground type (109)C2;d [[x ℄℄��;� a 4= 8>>>>>>>>><>>>>>>>>>:
>C if �(x) = >Ef(fg;a; �)g if �(x) = fgC2;d [[ e ℄℄��;� a if �(x) = fegS(fg;feg)2P2;d [[ (�; �(x)) ℄℄��;�g C2;d [[ e ℄℄��;� a if x 2 Dom(�) ^ P2;d [[ (�; �(x)) ℄℄��;� 6= >PE ^ (6 9(�; e) 62 P2;d [[ (�; �(x)) ℄℄��;�:Red(�))>C otherwise (110)

C2;d [[ fi ℄℄��;� a 4= ( f(ffig;a; �)g if Ar(fi) � jajf(f;e; �00) j (f;d; �0) 2 fmi �0 g otherwise (111)C2;d [[Ct a1 : : : ar ℄℄��;� a 4= i=r[i=1(f; b; �0) j (f; b; �0) 2 C2;d [[ ei ℄℄��;� a ^ TC(f; b)g (112)C2;d [[ ase sof hpr; eri ℄℄��;� a 4= k=r[k=1[fC2;d [[ ek ℄℄��k;�k a jH(pk) 2 S [[ s ℄℄��;�g (113)C2;d [[Gd ℄℄��;� a 4= C2;d [[G ℄℄��;� (hfdgi++ a) (114)
Table 10: De�nition of C2;d [[E ℄℄��;� a

A2;di;j [[x ℄℄��;� 4= 8>>>>>><>>>>>>: (fg; 0) if x � xi;j(fg;�!) if x � xi;kmaxp2P2;d [[ (�; �(x)) ℄℄��;�g PES(p) if x 2 Dom(�) ^ P2;d [[ (�; �(x)) ℄℄��;� 6= >PE>RP otherwise (115)A2;di;j [[ fk ℄℄��;� 4= 8<: fak;0 fg if Ar(fk) = 0(fg;�!) if Ar(fk) 6= 0 (116)A2;di;j [[Ct a1 : : : ar ℄℄��;� 4= s2;d(ReAbs(E); i; j; �; �; �) (117)A2;di;j [[ ase sof hpr; eri ℄℄��;� 4= max(k=r[k=1fA2;dak;�k [[ � ℄℄j;H(pk) 2 S [[ s ℄℄��;�g) (118)A2;di;j [[F a ℄℄��;� 4= max fapa2;d(f; i; j;a; �0; �0; �0) j (f;a; �0) 2 C2;d [[F ℄℄��;� hfagig (119)
Table 11: De�nition of A2;di;j [[E ℄℄��;�



52 A Hierarhy of Languages with Strong Termination PropertiesDe�nition 6.22 The abstrat size funtion with d length projetion sequenesof a funtion, fi, relative to parameter j is denoted fa2;di;j and de�ned as in Defn 5.18,exept that the A2;d operator replaes A1.6.6.3 Calls analysis with projetion sequenes.G2;di[j;�j ℄ [[x ℄℄��;� 4= hi (120)G2;di[j;�j ℄ [[ fk ℄℄��;� 4= 8>><>>: fg2;dk[j;�j℄ fg fg if Ar(fk) = 0 ^ k 6= jh
i if Ar(fk) = 0 ^ k = jhi otherwise (121)G2;di[j;�j ℄ [[Ct a1 : : : ar ℄℄��;� 4= k=r℄k=1G2;di[j;�j ℄ [[ ak ℄℄��;� (122)G2;di[j;�j ℄ [[ ase sof hpr; eri ℄℄��;� 4= ℄(G2;di[j;�j ℄ [[ s ℄℄��;�; (k=r℄k=1Gk)) (123)G2;di[j;�j ℄ [[F a ℄℄��;� 4= ℄(f ;a; �0) 2C1 [[F ℄℄��;� hfagi (apg2;d(f ; i;a; �0; �; �; �j)℄(i=jaj℄i=1 G2;di[j;�j℄ [[ ai ℄℄��;�))(124)
In (123), Gk = � G2;di[j;�j ℄ [[ ek ℄℄�k�k ;� if H(pk) 2 S [[ s ℄℄�k�;�fg otherwise .Table 12: De�nition of G2;di[j;�j ℄ [[E ℄℄��;�De�nition 6.23 The abstrat alls operator with d length projetion sequenes,G2;d 2 ISf � ISf � Env(S) � E � Env(E) � MP � Env(S) 7! T�, is the G operator extendedwith projetion expressions and subtyping to loate alls of funtion fj with subtype envi-ronment �j within funtion fi whih has input subtype environment �i. It is de�ned overthe struture of expressions in Table 12.De�nition 6.24 For eah funtion, there is a family of abstrat alls funtions withd length projetion sequenes whih is denoted f g2;di[j;�j ℄ and de�ned as in Defn 5.25exept that the G2;d operator replaes G1.6.6.4 Other modi�ed de�nitions.The other de�nitions of the analysis and the abstrat termination riteria follow analo-gously to those of Defns 5.19{5.22 and Defns 5.29{5.31.



UKC Computing Laboratory TR 2-00 536.7 Extending ESFP | ESFP2;dOne again, we an now de�ne a more expressive ESFP language.De�nition 6.25 For some given natural number d, the language ESFP2;d onsists ofEFP+ together with a hek that all de�nitions within a sript have the abstrat desentproperty for some valid subtyping environment and analysing with projetion expressionsof length d. Formally, the de�nition follows that given in Defn 5.32, with the appropriatemodi�ations to the de�nitions of the abstrat desent property and the abstrat alls matrix.6.8 Example: MaptreeWe now proeed to show how the termination of reursive funtions over suh nestedindutive types an be shown in the ase where the length of the projetion sequenes is 2.Example 6.1 [Maptree℄ Suppose that we have the following de�nition of a rosetree type:data Rosetree a def= Leaf a jNode [Rosetree a℄We then de�ne a mapping funtion, maptree, over suh strutures as follows:maptree f t def=ase tof(Leaf a) ! (Leaf fa)(Node s) ! (Node map (maptree f)s)The de�nition of map is standard.map g l def=ase l of[℄ ! [℄(h : t) ! (gh) :map g tThe above an be shown to be an ESFP2;d program for d � 2 sine we get:[(h�hd i; 0)℄ � [(h�Node i; 0)℄ = [(hi;�1)℄ [As Endo(h�hd ; �Nodei)℄ (125)



54 A Hierarhy of Languages with Strong Termination Properties7 Arbitrary Preision SubtypingThe method of subtyping given in Set. 5 may be seen to be unsatisfatory for the followingreasons:1. Consider the general form of the ase expression:ase sofC1 v1;1 : : : v1;Ar(C1) ! e1... ... ...Cn vn;1 : : : vn;Ar(Cn) ! enWe know the subtype of the swith expression, s for the ith lause (i.e. fCig) butwhat we wish to infer is the subtype of eah variable, xk;j. Furthermore, it wouldbe useful if we ould disover preise subtyping information for pattern mathingvariables. For example, if another ase expression was nested within ei, then itwould be desirable to �nd, the subtype pertaining to vi;l. Consequently, we wouldbe able to dedue the subtype of the head or tail of a list, for example. This wouldgenerally appear to be impossible, given the evidene from stritness analysis5 [19℄,if we use the approah given previously.2. We annot use partial funtions as arguments to funtors suh as map, even if weknow, for example, that the funtion is de�ned on all elements of a given list. Thisis beause the subtyping mehanism is not strong enough to onvey the subtypes ofelements of data strutures.3. Dependenies in the subtyping information are lost when using the subtype environ-ments with the other analyses suh as the size analysis. This is beause the environ-ments only ontain subtype onstants and the relationship between the subtypes ofthe various parameters is lost. However, onsider an ESFP language expression suhas: take (length x div 2) xIn the above, subtype onstants will be bound to eah of the parameters of take butthe information that eah subtype depends on the subtype of x will be lost.4. We need to analyse every funtion with respet to every possible permutation ofsubtypes of the algebrai arguments. This proess is naturally akin to the satis�a-bility problem and thus is of exponential omplexity. This is despite the fat that5Stritness analysis, used to optimise lazy funtional languages by eliminating losure formation, de-termines whether for a funtion f that f ? = ?, where ? is the unde�ned value. In suh a ase, f is saidto be strit in its argument.



UKC Computing Laboratory TR 2-00 55subtyping information is not normally required for every algebrai argument. Thisomputational omplexity annot be improved without a onsdierable weaking of thepreision of the analysis, as shown in [13℄.7.1 Arbitrary Preision Subtype DomainsWe proeed to de�ne a domain, the arbitrary preision subtyping domain, that allows usto assign subtypes to elements whih may be projeted from an algebrai struture.De�nition 7.1 A projetion subtype, denoted �iS (where i indiates that projetionsubtypes are onstruted from Pi sequenes | see Defn 6.4), is a mapping from sequenesof projetions (from some type S to a type T ) to a basi subtype of type T as de�ned inx 5.2.The set of projetion subtypes, PiS;(S!T ), is thus de�ned, PiS;(S!T )4=((PiS!T ) 7! ST ).De�nition 7.2 The arbitrary preision subtyping domain for type T of order d,denoted SdT , is de�ned as, SdT 4=SV 2PiT PiS;(T!V ) The ordering on this set is given in Defn 7.7and ensures that the set forms a omplete lattie.We shall normally write this domain as Sd where T is either lear from the ontext orapplies universally to all algebrai types and the top is denoted >Sd . We shall also employthe onvention of writing elements of Sd as a union of a mapping between the empty (rep-resenting the identity) projetion sequene and ST and a partial mapping from non-emptyprojetion sequenes to SV for some type V . The projetion sequenes not inluded in thedomain of the resulting map will thus impliitly be mapped to >SV for the appropriate V .We need to be able to extrat the relevant omponents from an element of our arbitrarypreision subtyping domain.De�nition 7.3 Let S be an arbitrary preision subtype for the type T of order d. The partof S pre�xed by � (where � is a valid projetion sequene on T ), denoted pp(S;�) 2SW2PlV PlS;(V!W ) (where T(J(�)) = T ! V and l = d� j�j) and de�ned as follows:pp(S;�) 4= f(�0; s) j (�0 ++ �; s) 2 S ^ �0 6= fggDe�nition 7.4 The atomi part of an arbitrary preision subtype, S, denoted at(S) 2 Sis de�ned as follows:at(S) 4=[fa j (fg; a) 2 pp(S; fg)gThe subsidiary part of an arbitrary preision subtype, S, denoted sp(S) 2 SV 2PdT PdS;(T!V )is de�ned as follows:sp(S) 4= fr j r 2 S � pp(S; fg)g



56 A Hierarhy of Languages with Strong Termination PropertiesAs a onsequene of the above de�nitions, we shall normally write our arbitrary preisionsubtypes as sets ontaining pairs of the atomi and subsidiary parts rather than as a setof pairs of projetion sequenes and basi subtypes. An example of this form of notationis given in the following paragraph.Eah element, (�; s) of the subsidiary part indiates that the subtype of the subom-ponent, , projeted by � from the enlosing struture, e, is s. However, s is, of ourse,an element of S and not an arbitrary preision subtype. However, other elements of thesubsidiary part may indiate the subtypes of . These will be those elements that have � asa suÆx in the projetion sequene. For example, onsider the following possible subtype,S, for a list of naturals:f(f:g; f(htaili; f:g); (hhdi; f0;Sug); (hhd ; taili; fSug)g)gThe above indiates that we have a non-empty list and, in fat, a list of at least twoelements sine the tail is non-empty. Elements of the list may be any natural number butelements of the tail must be non-zero. Consider now what the full, arbitrary preisionsubtype of the tail of this list should be, given the above subtype. The (htaili; f:g) elementof the subsidiary part of S indiates that the atomi part of the subtype of the tail shouldbe f:g. Now we examine the subsidiary part of the subtype of the tail of the list. In Swe have, (hhd ; taili; fSug). This means that (hhdi; fSug) should be inluded in thesubsidiary part of the subtype of the tail of the list. Thus, given S, the full subtype of thetail of the list should bef(f:g; f(hhdi; fSug); g)gConsequently, we have the following de�nition.De�nition 7.5 Let S be an arbitrary preision subtype for the type T of order d. Then thearbitrary preision subtype of type V and order d indexed by the projetion sequene� (where � 2 Pd(T!V ) for some V ) is denoted ist(S;�) and de�ned as follows:ist(S;�) 4= f(a; r) j (�; a) 2 sp(S) ^ r 2 pp(S;�)gIn the opposite diretion, we wish to add a projetion sequene to eah omponent ofan arbitrary preision subtype. This is required when we determine the subtype of asub-struture and then wish to integrate that subtype within the subtype for the entirestruture.De�nition 7.6 Let S be an arbitrary preision subtype of order d and let l be a natural� d. Then S lifted by � (where � is a valid projetion sequene) is an arbitrary preisionsubtype of order l, denoted by lst(S;�) is de�ned as follows:lst(S;�) 4= f(�0 ++l �; S 0) j (�0; S 0) 2 SgWe now proeed to de�ne the lattie operations over arbitrary preision subtypes.



UKC Computing Laboratory TR 2-00 57De�nition 7.7 The join (denoted t) andmeet (denoted u) over atomi parts of arbitrarypreision subtypes is as for S i.e. \ and [, respetively. Similarly, the ordering, v is justsubset inlusion.Over subsidiary parts the ordering v is de�ned as follows:r1 v r2 4= 8(�; s) 2 r1:(9(�; s0) 2 r2 ) s v s0)The join and meet over subsidiary parts are de�ned as follows:r1 t r2 4= f(p; t1 [ t2) j (p; t1) 2 r1 ^ (p; t2) 2 r2gr1 u r2 4= f(p; t1 \ t2) j (p; t1) 2 r1 ^ (p; t2) 2 r2g[f(p; t1) j (p; t1) 2 r1 ^ (6 9t2:(p; t2) 2 r2g[f(p; t2) j (p; t2) 2 r2 ^ (6 9t1:(p; t1) 2 r1gThe de�nitions of t and u given above may be seen to be almost dual to that whih mightbe expeted. This is beause if a projetion sequene, � does not our within a subsidiarypart it is impliit that (�;>) is inluded within the subsidiary part. Conomitant withthis, note that the de�nition of v is suh that (�; s) may be in r1 and not in r2 but thatr1 v r2. Indeed, for all S and d, the empty set is the top of PdS;(S!T ).De�nition 7.8 The join operation on arbitrary preision subtypes, s1 and s2, denoteds1 t s2, is de�ned as follows (using the representation of subtypes as pairs of the atomiand subsidiary parts):s1 t s2 4= f(a; r t r0) j (a; r1) 2 s1; (a; r2) 2 s2g[f(a1; r1) j (a1; r1) 2 s1 ^ (6 9r2:(a1:r2) 2 s2gf[(a2; r2) j (a2; r2) 2 s2 ^ (6 9r1:(a2:r1) 2 s1gThe meet operation on arbitrary preision subtypes, s1 and s2, denoted s1us2 is de�nedas follows:s1 u s2 4= f(a; r1 u r2) j (a; r1) 2 s1; (a; r2) 2 s2g7.2 Arbitrary Preision Subtype EnvironmentsSubtyping environments need to apture a riher set of program properties than before and,furthermore, need to both assign subtypes to variables and to give subtypes to expressions.The latter is neessary sine, for example, we still need to determine the subtypes withwhih eah funtion is alled.



58 A Hierarhy of Languages with Strong Termination Properties7.2.1 Environments used to determine the subtypes of expressions.Our subtyping environments thus ome in two forms. The �rst, whih is used to determinethe subtypes of expressions, is the analogue of Defn 5.5, whih assigns subtypes to theformal parameters. Thus we modify Defns 5.5{5.6.De�nition 7.9 A subtyping environment of order d for a funtion fi is an environ-ment in whih eah xi;j is bound to an element of SdT(xi;j) d is �xed for all elements of theenvironment.A valid subtyping environment of order d for a funtion fi is a subtyping envi-ronment of order d in whih eah xi;j is not bound to a subtype with atomi part fg. If �is a valid subtyping environment we write ValidSub(�).De�nition 7.10 Let �1 and �2 be two subtyping environments (of order d) of funtion fi.Then the join of �1 and �2, denoted �1 t �2, is de�ned thus:�1 t �2 4= fxi;j 7! �1(xi;j) t �2(xi;j) j xi;j 2 Dom(�1):gSimilarly the meet, denoted �1 u �2,�1 t �2 4= fxi;j 7! �1(xi;j) u �2(xi;j) j xi;j 2 Dom(�1):gAs before, in order to reognise when a subtyping environment we need to determinewhether a subtyping environment is inluded within another, as for the simple subtypingenvironment given in x 5.De�nition 7.11 A sub-subtyping environment of order d (often written simply assub-environment where there is no ambiguity) of a subtyping environment of order d of afuntion fi, �, is a subtyping environment, �0, for whih, 8j:�0(xi;j) � �(xi;j). We denotethe fat that � is a sub-subtyping environment by �0 v �.Analagously, we speak of sub-subtyping environments relative to xi;j and on-versely, we also speak of super-subtyping environments.De�nition 7.12 The di�erene between two (arbitrary preision) subtype envi-ronments �1 and �2, denoted �1 � �2, is de�ned thus:fxi;j := �1(xi;j)� �2(xi;j) j xi;j 2 Dom(�1)gHowever, as stated in 3 at the beginning to this setion, we also wish to inlude infor-mation about the dependenies of the subtypes of parameters to funtions. To do this, weuse the standard tehnique of lazy evaluation, using the formation of losures to enodesubtyping information that is used to give the subtypes of expressions. We will thus useenvironment losures rather than simple environments as parameters to our analyses.



UKC Computing Laboratory TR 2-00 59De�nition 7.13 An arbitrary preision subtype environment transformer (whihwe shorten to environment transformer) is a funtion from arbitrary preision subtype en-vironments (for the variables of some funtion fi) of order d to arbitrary preision subtypesof order d.We write suh environment transformers in the form, ��:E(�) and denote the set ofenvironment transformers for fi as �di 4= Envi(Sd) 7! Sd.We normally use the shorthand form, �d where i is lear from the ontext.De�nition 7.14 An arbitrary preision subtype losure environment (written sim-ply as subtype losure environments) onsists of a pair of an environment (binding to theparameters of a funtion fi) of environment transformers (where the environments bind theparameters to some funtion fj) and a subtyping environment (again binding to variables ofthe same fj). That is, the set of subtype losure environments for a funtion fi with respetto the variables of some fj is denoted as 	di and de�ned as 	di 4=�fj2F(Envi(�dj)�Envj(Sd))Again, we normally use the shorthand form, 	d where i is lear from the ontext.We an assign identity environment transformers to eah parameter to shadow a givensubtyping environment.De�nition 7.15 Let � be a subtyping environment of order d for some funtion fi. Thenthe simple subtype losure environment formed from � is denoted  � and de�ned, � 4= (T; �) where T 4= fxi;j := ��:�(xi;j) j xi;j 2 FP(fi)g.We shall need to evaluate suh subtype losure environments to produe a subtype envi-ronment.De�nition 7.16 Let  be a subtype losure environment. Then the subtype environ-ment evaluated from  , denoted E( ) 2 Envi(Sd), is de�ned thus:E( ) 4= fxi;j := (Fst )(xi;j) (Snd ) j xi;j 2 Dom(Fst )gAs with subtyping environments, we need to de�ne the ordering on subtype losure envi-ronments and the di�erene between two suh environments.De�nition 7.17 Let  1 and  2 be subtype losure environments.Then  1 v  2 if and only if, on the subtype environment ordering (Defn 7.11), E( 1) vE( 2).Analagously to subtyping environments, we refer to  1 as a sub-subtype environ-ment losure of  2.The ordering indues an equality, =, over subtype environment losures.De�nition 7.18 The di�erene between subtype losure environments  1 and  2,denoted  1 �  2 2 	d, is de�ned as  1 �  2 4=  3, whereFst( 3) = fxi;j := ��:�(xi;j) j xi;j 2 Dom(Fst 1)g and Snd( 3) = E( 1)� E( 2)



60 A Hierarhy of Languages with Strong Termination PropertiesWe an use the equality prediate over subtype losure environments to determine when areursive invoation of one of our abstrat operators has been reahed.De�nition 7.19 Two subtype losure environments,  1;  2,math, denotedMath( 1;  2)if and only if  1 =  2 where the equality prediate is that given in Defn 7.17.7.2.2 Environments used to determine the subtypes of variables.We now de�ne the environments used to ompute the subtype of a partiular parameter,xi;j. When analysing bakwards to determine the subtype of a partiular variable, weannot, naturally, start with an environment of subtypes but rather with an environmentontaining values whih will produe a new subtype given an input subtype.De�nition 7.20 A subtype transformer, t, is a funtion of type SdT 7! SdT (for sometype T and order d) with the additional property that t fg = fg. The set of subtype trans-formers (for arbitrary T and d is denoted Sd7!.Subtype transformer terms are written in the form, �s:E(s), where E(s) is an expressioninvolving s, elements of SdT , the t and u operators and appliations of subtype transformers.De�nition 7.21 A bakwards subtyping environment of order d relative to xi;j(where xi;j is a formal parameter of the funtion fi) is an environment, �xi;j , in whih eahformal parameter xi;l and xi;j itself is bound to an element of SdT(x) 7! SdT(x). d is �xed forall elements of the environment.An initial bakwards subtyping environment relative to xi;j is a subtypingenvironment, �Ixi;j , of order d relative to xi;j where xi;j is bound to �: and all formalparameters apart from xi;j are bound to �:>SdT(xi;j ) .7.2.3 Analyses to determine subtypes.We now present the abstrat interpretations whih give more preise subtypes as a result.In these and the subsequent analyses, the result for error is always the > of the relevantdomain.De�nition 7.22 Sdf 2 E � Env(PE) � Env(E) � 	d 7! Sd, the forwards subtypingabstrat semanti operator, is de�ned in Table 13.De�nition 7.23 Sdb 2 E � Env(PE) � Env(E) � Env(Sd7!) � Sd 7! Sd, the bakwardssubtyping abstrat semanti operator, is de�ned in Table 14.7.2.4 Subtyping environments indued by ase lauses.The above subtyping regime has been introdued purely so that we an infer a more preisesubtyping environment one we enounter a ase expression. In order to obtain a morepreise environment we need to:
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Sdf [[x ℄℄ �;� 4= 8>><>>: (E( ))(x) if x 2 Dom(E( ))pp(Sdf [[ e ℄℄ �;�;�) if �(x) � (�; feg)>Sd otherwise (126)Sdf [[ fi ℄℄ �;� 4= ( f sf ;3;di fg (fg; fg) if Ar(fi) = 0fg otherwise (127)Sdf [[Ct a1 : : : ar ℄℄ �;� 4= f(hi; Ct)g [ j=r[j=1 lst(Sd�1f [[ aj ℄℄ �;�; h�t;ji) (128)Sdf [[ ase sof hpr; eri ℄℄ �;� 4= GH(pi)2Sdf [[ s ℄℄ �;�(Sdf [[ ei ℄℄ �;�i) (129)Sdf [[F a ℄℄ �;� 4= [ff sf ;3;dk �0  00 j (fk;a; �0;  0) 2 C3;d [[F ℄℄ �;� haig (130)Table 13: De�nition of Sdf [[E ℄℄ �;�
Sdb [[x ℄℄��;� s 4= 8>><>>: �(x) s if x 2 Dom(�)pp(Sdb [[ e ℄℄��;� s;�) if �(x) � (�; feg)>Sd otherwise (131)Sdb [[ fi ℄℄��;� s 4= ( f sb;3;di fg fg if Ar(fi) = 0fg otherwise (132)Sdb [[Ct a1 : : : ar ℄℄��;� s 4= i=rGi=1Sdb [[ ai ℄℄��;� s (133)Sdb [[ ase sof hpr; eri ℄℄��;� s 4= (Sdb [[ s ℄℄��;� s) u i=nGi=1(Sdb [[ ei ℄℄��;�i s) (134)Sdb [[F a ℄℄��;� s 4= [ff sb;3;dk �0 �0 s j (fk;a; �0;  ) 2 C3;d [[F ℄℄ �;� haig (135)Table 14: De�nition of Sdb [[E ℄℄��;� s



62 A Hierarhy of Languages with Strong Termination Properties1. Obtain the subtype inferred for eah formal parameter, xi;j of the enlosing funtion.We thus get a new subtype environment, �i for the ith lause of the ase expression.2. Note that we shall already have a subtyping environment, �0 (represented, in fat, bya subtype losure environment,  0) and that the subtyping environment, �i, inferredfrom the ith lause of the ase expression, should be a re�nement (in the sense ofbeing a sub-environment) of the original environment, �0. Consequently, we shalltake the meet of the two environments, �0 u �i to be the environment �0i inferred forthe ith lause of the ase expression.Consequently, we have the following series of de�nitions.De�nition 7.24 Let Ci be a onstrutor of some algebrai type T . Then the subtype oforder d indued by the onstrutor, Ci, denoted I(Ci; d), is the subtype of order dde�ned thus:I(Ci; d) 4= f(fg; fCigg [ f(p;>S) j p 2 Pd; p 6= fggDe�nition 7.25 Let fi be a funtion with formal parameters xi;1 : : : xi;Ar(fi). Considerthe ase expression, ase sof hpn; eni. Then the subtyping environment of orderd indued by the nth lause of the ase expression, denoted �n, is the followingsubtyping environment of order d:�n 4= fxi;j := Sdb [[ s ℄℄��;� (I(Cn; d)) j xi;j 2 FP(fi)gDe�nition 7.26 Suppose we have a funtion fi and a ase expression as in Defn 7.25,above. In addition, assume that we have a subtype losure environment,  . Then thesubtype losure environment re�nement of  with respet to the nth lause ofthe ase expression, denoted  n, is de�ned as a simple subtyping environment, thus: n 4=  �0 where �0 4= �n u E( )7.3 Modifying the AnalysesWe onsequently produe new versions of our analyses. The hanges are relatively minimalsine the subtyping mehanism is in general separated from our analyses. The hanges tobe made to the analyses are as follows:� We require a new subtyping environment to be alulated for eah lause of a aseexpression in the alls analysis. The ow of information is from the head onstrutorof the pattern to a parameter of the funtion fi that forms the urrent ontext. Thisidea is enapsulated in Defn 7.26 above.



UKC Computing Laboratory TR 2-00 63� However, the environment must not be re�ned during size analysis. The reason forthis is that otherwise eah argument to a reursive all ould then potentially begiven a di�erent subtyping environment, whih would be unsound. Nevertheless,we need to attempt to maintain dependeny information between the abstrat sub-types of various parameters. This is why we use subtype losure environments (seeDefn 7.15) rather than subtyping environments.� Calls analysis must now produe a sequene of pairs, eah onsisting of a CST and asubtyping environment.7.3.1 Closure analysis with arbitrary preision subtyping.C3;d [[E ℄℄ �;� a 4= fg if E is of ground type (136)C3;d [[x ℄℄ �;� a 4= 8>>>>>>>>><>>>>>>>>>:
>C if �(x) = >Ef(fg;a; �;  )g if �(x) = fgC3;d [[ e ℄℄ �;� a if �(x) = fegS(fg;feg)2P3;d [[ (�; �(x)) ℄℄ �;�g C3;d [[ e ℄℄ �;� a if x 2 Dom(�) ^ P3;d [[ (�; �(x)) ℄℄ �;� 6= >PE ^ (6 9(�; e) 62 P3;d [[ (�; �(x)) ℄℄ �;�:Red(�))>C otherwise (137)

C3;d [[ fi ℄℄ �;� a 4= 8>><>>: f(ffig;a; �;  )g if Ar(fi) � jajf(f;e; �00;  0)j (f;d; �0;  0) 2 fmi �0 g otherwise (138)C3;d [[Ct a1 : : : ar ℄℄ �;� a 4= i=r[i=1 f(f; b; �0;  0)j (f; b; �0;  0) 2 C3;d [[ ei ℄℄ �;� a ^ TC(f; b)g (139)C3;d [[ ase sof hpr; eri ℄℄ �;� a 4= k=r[k=1[fC3;d [[ ek ℄℄ k�k;�k a jH(pk) 2 S [[ s ℄℄��;�g (140)C3;d [[Gd ℄℄ �;� a 4= C3;d [[G ℄℄ �;� (hfdgi++ a) (141)
Table 15: De�nition of C3;d [[E ℄℄ �;� aDe�nition 7.27 The losure analysis operator with dth order subtyping, C3;d 2E � Env(E)�MP �	d � E� 7! C, is de�ned in Table 15.



64 A Hierarhy of Languages with Strong Termination PropertiesDe�nition 7.28 The abstrat losure funtion with subtype losure environ-ment,  of a funtion, fi def= �xi;1 : : : xi;n:ei, is de�ned for a given environment of non-ground expressions �, and a sequene of atual parameter expressions, a, as fm3;dfi  �a 4=S�02SP(()�) C3;d [[ ei ℄℄�0�;fg a7.3.2 Projetion analysis with arbitrary preision subtyping.P3;d [[ (�;>E) ℄℄ �;� 4= �le (142)P3;d [[ (�; (fg; e)) ℄℄ �;� 4= f(fg; e)g (143)P3;d [[ (�; x) ℄℄ �;� 4= f(�; x)g (144)P3;d [[ (�; fk) ℄℄ �;� 4= fg (145)P3;d [[ (�; Ct a1 : : : ar) ℄℄ �;� 4= 8>><>>: fajg if � � h�i;jiP3;d [[ (�0; aj) ℄℄ �;� if � � �0 ++ h�i;jifg otherwise (146)P3;d [[ (�; ase sof hpr; eri) ℄℄ �;� 4= k=r[k=1[fP3;d [[ (�; fekg) ℄℄ �;�k jH(pk) 2 S [[ s ℄℄��;�g (147)P3;d [[ (�; F a) ℄℄ �;� 4= [ fb[a =E xk℄j b = fp2;df �0  00 �;(ffkg;a; �0;  0) 2 C1 [[F ℄℄ �;� hai g (148)In (148), if, for some a; �0;  0, C1 [[F ℄℄ �;� hai = (fg;a; �0;  0) thenP3;d [[ (�; F a) ℄℄ �;� 4=>ETable 16: De�nition of P3;d [[ (�; E) ℄℄ �;�De�nition 7.29 The projetion analysis operator with dth order subtyping, P3;d 2P1E�Env(E)�M�	d 7! }(PlE), is de�ned in Table 16 for projetion expressions where theprojetion sequene is neither endomorphi nor >P.In the ase of the endomorphi projetion sequenes, P orresponds to the injetion,p 7! fpg.In the ase where the projetion sequene is >P, the result is PlE, the top of }(PlE).
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A3;di;j [[x ℄℄ �;� 4= 8>>>>>><>>>>>>: (fg; 0) if x � xi;j(fg;�!) if x � xi;kmaxp2P3;d [[ (�; �(x)) ℄℄ �;�g PES(p) if x 2 Dom(�) ^ P3;d [[ (�; �(x)) ℄℄ �;� 6= >PE>RP otherwise (149)A3;di;j [[ fk ℄℄ �;� 4= 8<: fak;0 fg if Ar(fk) = 0(fg;�!) if Ar(fk) 6= 0 (150)A3;di;j [[Ct a1 : : : ar ℄℄ �;� 4= s3;d(Re(E); i; j; �; �;  ) (151)A3;di;j [[ ase sof hpr; eri ℄℄ �;� 4= max(k=r[k=1fA3;di;j [[ ek ℄℄ �;�k jH(pk) 2 S [[ s ℄℄��;�g) (152)A3;di;j [[F a ℄℄ �;� 4= maxfapa3;d(f; i; j;a; �0; �;  ) j (f;a; �0;  0) 2 C1 [[F ℄℄ �;� hfagig (153)

Table 17: De�nition of A3;di;j [[E ℄℄ �;�7.3.3 Size analysis with arbitrary preision subtyping.De�nition 7.30 The relative size analysis operator with dth order subtyping,A3;d 2 ISfi � E � Env(E) � MP � 	d 7! RP, is the extension of A with arbitrary preisionsubtyping of order d, and de�ned over the struture of expressions in Table 17. In thede�nition, � is an environment binding funtion type expressions to variables, � is anenvironment binding pattern-mathing variables of algebrai types to expressions, and  is a subtype losure environment binding subtypes and environment transformers to theformal parameters. i is a funtion index whilst 0 � j � Ar(fi).De�nition 7.31 The onstrutor abstrat size funtion with arbitrary preisionsubtyping, s3;d 2 }(E )�ISfi�Env(E)�	d�MP 7! RP, is de�ned analagously to Defn 5.15,with A3;d replaing A1.De�nition 7.32 The A1 operator is lifted to the E domain as follows:A3;di;j [[>E ℄℄ �;� 4= >RP (154)A3;di;j [[ feg ℄℄ �;� 4= A3;di;j [[ e ℄℄ �;� (155)De�nition 7.33 The abstrat appliator for size analysis with arbitrary prei-sion subtyping of order d, apa3;d , is de�ned as follows.apa3;d(>F; i; j;a; �; �;  ) 4= ! (156)apa3;d(fg; i; j;a; �; �;  ) 4= ! (157)



66 A Hierarhy of Languages with Strong Termination Propertiesapa3;d(ffkg; i; j;a; �; �;  ) 4= (fka3;d � aa3;d) + vj (158)In the above, �0 4=fxk;1:=S [[ a1 ℄℄��;� : : : xk;Ar(fk) :=S [[ aAr(fk) ℄℄��;�g. In addition, �0fxk;l:=>Sdg,if l > jasj.fa3;dk 4= [fa3;dk;1 �0 �0 : : : fa3;dk;Ar(fk) �0 �0℄ and aa3;d 4= [A3;di;j [[ a1 ℄℄ �;� : : :A3;di;j [[ ajaj ℄℄ �;�℄.vj 4=� fa3;dk;0 �0 �0 if j = 0(fg;�!) otherwiseDe�nition 7.34 The abstrat size funtion with arbitrary preision subtypingof order d of a funtion, fi def= �xi;1 : : : xi;n:ei, relative to parameter j is de�ned for agiven subtype losure environment,  and a given environment of funtion-type parameters,� as, fa3;di;j  � 4=max�02SP(()�i)A3;di;j [[ ei ℄℄�0�;fg7.3.4 Calls analysis with arbitrary preision subtyping.G3;di[j;�j ℄ [[x ℄℄ �;� 4= hi (159)G3;di[j;�j ℄ [[ fk ℄℄ �;� 4= 8>><>>: fg3;dk[j℄ fg fg if Ar(fk) = 0 ^ k 6= jh(
;E )i if Ar(fk) = 0 ^ k = jhi otherwise (160)G3;di[j;�j ℄ [[Ct a1 : : : ar ℄℄ �;� 4= k=r℄k=1 G3;di[j;�j ℄ [[ ak ℄℄ �;� (161)G3;di[j;�j ℄ [[ ase sof hpr; eri ℄℄ �;� 4= ℄(G3;di[j;�j ℄ [[ s ℄℄ �;�; (k=r℄k=1Gk)) (162)G3;di[j;�j ℄ [[F a ℄℄ �;� 4= ℄(f ;a; �0;  0) 2C1 [[F ℄℄ �;� hfagi (apg3;d(f ; i; j;a; �0; �0;  0)℄(i=jaj℄i=1 G3;di[j;�j℄ [[ ai ℄℄ �;�))(163)
In (162),Gk = � G3;di[j;�j℄ [[ ek ℄℄ k�k;� if H(pk) 2 S [[ s ℄℄ k�;�fg otherwiseTable 18: De�nition of G3;di[j;�j ℄ [[E ℄℄ �;�De�nition 7.35 The abstrat alls operator with dth order subtyping, G3;d 2 ISf�ISf � E � Env(E)�MP � 	d 7! (T� Env(S))�, (the extension of G with arbitrary preision



UKC Computing Laboratory TR 2-00 67subtyping of order d), loates alls of funtion fj within funtion fi (whih has input subtypelosure environment,  ), and is de�ned over the struture of expressions in Table 18.Note that, in ontrast to previous members of the hierahy of abstrat alls operatorswhih eah produed a sequene of CSTs, G3;d produes a sequene of CST, subtypingenvironment pairs.De�nition 7.36 The abstrat appliator for alls analysis with arbitrary prei-sion subtyping, apg3;d 2 F � ISf � ISf � E� �MP � Env(E) � Env(S) 7! (T � Env(S))�, isde�ned as followsapg3;d(>F; i; j;a; �; �; �) 4= h>Ti (164)apg3;d(fg; i; j;a; �; �; �) 4= hi (165)apg3;d(ffkg; i; j;a; �; �; �) 4= 8>>><>>>: hi if (jaj < Ar(fk))f(T(i;a; �; �; �); �)g [R if (fk � fj)h(>T; �)i if (fk 6� fj)^:ADP(fk; �0)U(T0;�0)2fg3;dk[j℄ �0  0(Map (?T(i;a; �; �; �); �0)T0) if fk 6� fj (166)In the above, if �00 = ���j is a valid subtyping environment then R � apg3;d(ffkg; i;a; �; �; �00).Otherwise, R � hiDe�nition 7.37 For eah funtion, there is a family of abstrat alls funtions whihgive the CSTs for the reursive alls of funtion fj within the de�nition of funtion fi withsubtype losure environment,  and environment of funtion-type arguments, �.f g3;di[j℄ �  4= [�02SP(()�i)G3;di[j;�j℄ [[ ei ℄℄�0�;fg7.4 Termination Criteria Using Arbitrary Preision SubtypingWe now proeed, in the light of our arbitrary preision subtyping onstrutions, to rede�neour abstrat semanti riteria that assure termination.Firstly, as the subtypes have beome more sophistiated, so their minimal size an beother than a binary value.De�nition 7.38 Assume we have s 2 S. Then the minimal subtype size of s, denotedmss 2 S 7! RP, is de�ned thus:mss(s) 4=minfms(Ct) jCt 2 sgDe�nition 7.39 The jth weighting vetor with respet to an arbitrary preisionenvironment � is a vetor with, in the jth position, mss3;d(�(xi;j) >RP is in all otherpositions, regardless of their types.



68 A Hierarhy of Languages with Strong Termination PropertiesDe�nition 7.40 The abstrat subtyped alls set of a funtion fi, is denoted, for theorder d, ASC(i; d) 2 T� Env(Sd) and is de�ned as, ASC(i; d) 4= f g3;di[i℄ fg.De�nition 7.41 The abstrat all matrix of reursive alls of funtion fi is de�nedwith respet to a dth-order subtyping environment, �, thus:ACM(i; d; �) 4= fr j ((v; ); �0) 2 ASC(i; d);�0 v �gwhere, if xi;j is an algebrai argument, rj 4= N(wjvj + j � mss3;d(�(xi;j))), wj is the jthweighting vetor with respet to the subtyping environment � and vj is the jth olumn ofv. If xi;j is non-algebrai then rj 4= !.De�nition 7.42 The jth argument to fi (i.e. xi;j) with subtyping environment � is saidto be an abstratly monotoni desending argument, written AMD(xi;j; d; �) (orsimply AMD(j; �) where the funtion and subtyping ontexts are lear), if8rl 2 ACM(i; d; �):(rl;j � 0) ^ (9d:rd;j < 0)The jth argument is said to be abstratly stritly desending, written ASD(xi;j; d; �)if 8rl 2 ACM(i; d; �):(rl;j < 0)De�nition 7.43 A funtion fi has the abstrat desent property for the subtypingenvironment �, denoted ADP(A), where A � ACM(i; �), if and only if9j:AMD(j; �) ^ ADP(A0)where A0 = fre j (re 2 A) ^ (re;j = 0)gTheorem 7.1 If a funtion has the abstrat desent property for a subtyping environment,�, then it has the monotoni desent property on the same set of subtyping assumptions,where the subtypes are of order d for some �xed d.Proof. The proof follows the same struture as previously. 27.5 ESFP3;dThe modi�ed analysis above produes the �nal version of our ESFP language.De�nition 7.44 For some given natural number d, the language ESFP3;d onsists ofEFP+ together with a hek that all de�nitions within a sript have the abstrat desentproperty for some valid subtyping environment with arbitrary preision subtypes of order dand analysing with projetion expressions of length d.



UKC Computing Laboratory TR 2-00 697.6 Example Using Arbitrary Preision SubtypingWe now give, as an example of the bakwards subtyping termination analysis, an aountof the analysis of mergeSort .Example 7.1 [Mergesort℄ The de�nition of the funtion, whih is that used in [34℄, is asfollows:mergeSort merge xj length x < 2 def= xjotherwise def= merge (mergeSort merge �rst)(mergeSort merge seond )where�rst def= take half xseond def= drop half xhalf def= (length x) div 2The analysis an show that mergeSort is in ESFP3;d for d � 2 sine the information that thesize of the list x is at least 2 is propagated throughout the part of the analysis orresponding tothe seond lause. Thus the analysis is apable of deteting that both take half x and drop half xprodue a redution in the length of their arguments.8 Strong Normalisation and Analysis FrameworksWe an generalise our analysis further to allow di�erent notions of redution and to developa generalised framework for our analysis. As disussed in x 2, our operational semantis onlyredues to weak normal form. Consequently, our analysis only assures termination underthe given redution order. This is suÆient with respet to languages suh as Haskell orML, sine both do not have a stronger notion of normal form. Conversely, Miranda, Haskelland other so-alled lazy languages only redue to weak head normal form (WHNF). Bothfor pedagogial reasons and the desire to have sound program transformations, we believethat strong normalisation is worth pursuing. With regard to the former, the assuranethat a program is strongly normalising will, we believe, help students to onstrut betterprograms. With regard to the latter, program transformations may fail in the ase wherewe expand the expressions bound by lambda abstrations.8.1 Analyses Parameterised By The Operational SemantisIt has been proposed by Cousot that stritness analyses an be parameterised by theirsemantis [9℄. We take a similar approah here in skething out how our analyses an begeneralised to take aount of weaker (�a la Haskell) or stronger notions of normal form.For eah operational semantis (and onsequent de�nition of normal form) the mainpoint of departure is for funtion appliations. In that ase we an use the operational



70 A Hierarhy of Languages with Strong Termination Propertiessemantis to determine whether parameters or, indeed, funtion bodies should be reahedby the analysis. This an be ahieved by adding a reahability prediate (whih woulddepend on the operational semantis) to the apa and A2;d operators. With WHNF, forinstane, we would not san an atual parameter of a funtion for reursive alls if thefuntion did not use that argument.9 Related WorkThe general area of term rewriting has overed many aspets of general termination prob-lems with work by Zantema of partiular note (e.g. [39℄). Most of this work does not addressthe issue of fully automated termination heks for programs, with [14℄ being an exeption.In more spei� programming areas, Giesl has worked on automated termination proofs fornested, mutually reursive and partial funtional programs [16, 4℄. Closely related to this,Brauburger has produed an automated termination analysis for partial funtions [3℄ usingGiesl's synthesising tehniques for polynomial orderings [15℄. Closely related is the work ofSlind on TFL [30℄, and like the previous work is based on automatially generating termorderings and termination prediates within a theorem-proving environment. A deidabletest for a broader lass of de�nitions than primitive reursion has also been established forWalther reursion [38, 21℄. However, whilst ours is higher-order and polymorphi, theirs is�rst-order and monomorphi. Moreover, the disipline requires a programmer to providedi�erent versions of funtions for eah algebrai subtype: our subtyping mehanism doesthis automatially. The TEA system [27℄ has used N�oker's abstrat redution tehnique(whereby the standard evaluation of a program is repliated with abstrat values; [25℄) as atermination analyser. Their method detets whether a program terminates under a normalorder evaluation sheme | it would have to be adapted for strit evaluation so as to detetstrong normalisation. TEA does not deal with error expressions as we have done in ourstrongly normalising disipline in that it \usually treats errors as termination". Abel hasalso reently produed a termination heker, the Foetus system based on analysing allgraphs [1℄. This system only deals with simple syntati desent at present.10 Conlusions and Future WorkWe have demonstrated that abstrat interpretation an be used as an e�etive methodfor determining whether reursive funtions terminate. The analysis is derived from thesemantis of the language and, for the basi ase uses the same domain of values employedto analyse the dual, oreursive ase. We have then developed the abstrat interpretationso that partial funtions may be admitted due to a subtyping mehanism. Furthermore,by using representations of projetions we have been able to add funtions that reurseover nested data strutures. This methodology was then used to develop a more sophis-tiated subtyping mehanism whih meant that more omplex desent mehanisms ouldbe reognised.



UKC Computing Laboratory TR 2-00 71The methods that we have developed ould be inorporated within a ompiler for anelementary strong funtional programming language. Indeed, we are urrently working onthe implementation of our basi methodology for the EFP language. We suggest also thatthis method ould be used to extend the urrent algorithm within systems suh as Coq [5℄.An advantage of our abstrat interpretation approah is that it may be possible tointegrate our algorithm with Cousot's abstrat interpretation rendering of Hindley-Milnertype inferene [10℄. Thus we would have a single system whih would ensure that typeorretness meant that the program would have to be strongly normalising. Furthermore,analyses used for optimisation, suh as binding-time analysis [18℄, may be integrated intothis mehanism. In onlusion, we believe that this work gives an extensible and modularframework for broadening the lass of algorithms that an be admitted by a syntatianalysis.
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