
Stepney, Susan, Cooper, David and Woodcock, Jim (2000) An Electronic
Purse: Specification, Refinement and Proof. Technical report. Oxford University

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/22009/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information
Technical Monograph PRG-126��ISBN 0–902928–41–4��July 2000��Oxford University Computing Laboratory��Programming Research

Group��Wolfson Building��Parks Road��Oxford OX1 3QD��England

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/22009/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

AN ELECTRONIC PURSE

Specification, Refinement, and Proof

by

Susan Stepney
David Cooper
Jim Woodcock

Oxford University Computing Laboratory
Programming Research Group

AN ELECTRONIC PURSE

Specification, Refinement, and Proof

by

Susan Stepney
David Cooper
Jim Woodcock

Technical Monograph PRG-126
ISBN 0–902928–41–4

July 2000

Oxford University Computing Laboratory
Programming Research Group
Wolfson Building
Parks Road
Oxford OX1 3QD
England

v

Copyright © 2000 Logica UK Ltd

Oxford University Computing Laboratory
Software Engineering Centre
Wolfson Building
Parks Road
Oxford OX1 3QD
England

email: stepneys@logica.com

cooperd@praxis-cs.co.uk

Jim.Woodcock@comlab.ox.ac.uk

Contents

1 Introduction 1
1.1 The application 1
1.2 Overview of model and proof structure 3
1.3 Rationale for model structure 5
1.4 Rationale for proof structure 6
1.5 Status 7

I Models 9

2 SPs 11
2.1 Introduction 11
2.2 Abstract model SPs 11
2.3 Concrete model SPs 13
2.4 SPs and the models 13

3 A model 17
3.1 Introduction 17
3.2 The abstract state 17
3.3 Secure operations 18
3.4 Abstract initial state 21
3.5 Abstract finalisation 22

4 B model, purse 23
4.1 Overview 23
4.2 Status 23

ii

4.3 Message Details 23
4.4 Clear Exception Log Validation 25
4.5 Messages 26
4.6 A concrete purse 26
4.7 Single Purse operations 28
4.8 Invisible operations 28
4.9 Value transfer operations 30
4.10 Exception logging operations 35

5 B model, world 39
5.1 The world 39
5.2 Auxiliary definitions 40
5.3 Constraints on the ether 44
5.4 Framing schema 47
5.5 Ignore, Increase and Abort 49
5.6 Promoted operations 49
5.7 Operations at the world level only 50
5.8 Forging messages 52
5.9 The complete protocol 53

6 B initial, final 55
6.1 Initialisation 55
6.2 Finalisation 56

7 C model 59
7.1 Concrete World State 59
7.2 Framing Schema 59
7.3 Ignore, Increase and Abort 60
7.4 Promoted operations 60
7.5 Operations at the world level only 61
7.6 Initial state 62
7.7 Finalisation 63

8 Consistency 65
8.1 Introduction 65
8.2 Abstract model consistency proofs 65
8.3 Between model consistency proofs 67
8.4 Concrete model consistency proofs 68

iii

II First Refinement: A to B 69

9 A to B rules 71
9.1 Security of the implementation 71
9.2 Backwards rules proof obligations 72

10 Rab 75
10.1 Retrieve state 75
10.2 Retrieve inputs 84
10.3 Retrieve outputs 84

11 A to B initialisation 85
11.1 Proof obligations 85
11.2 Proof of initial state 85
11.3 Proof of initial inputs 85

12 A to B finalisation 87
12.1 Proof obligations 87
12.2 Output proof 88
12.3 State proof 88

13 A to B applicability 91
13.1 Proof obligation 91
13.2 Proof 91

14 A to B lemmas 93
14.1 Introduction 93
14.2 Lemma ‘multiple refinement’ 94
14.3 Lemma ‘ignore’: separating the branches 95
14.4 Lemma ‘deterministic’: simplifying the Okay branch 95
14.5 Lemma ‘lost unchanged’ 102
14.6 Lemma ‘AbIgnore’: Operations that refine AbIgnore 103
14.7 Ignore refines AbIgnore 106
14.8 Abort refines AbIgnore 107
14.9 Lemma ‘abort backward’: operations that first abort 115
14.10 Summary of lemmas 116

15 Increase 119
15.1 Proof obligation 119
15.2 Invoking lemma ‘lost unchanged’ 119
15.3 check-operation-ignore 120

iv

16 StartFrom 121
16.1 Proof obligation 121
16.2 Instantiating lemma ‘deterministic’ 122
16.3 Behaviour of maybeLost and definitelyLost 122
16.4 exists-pd 123
16.5 exists-chosenLost 123
16.6 check-operation 124

17 StartTo 125
17.1 Proof obligation 125
17.2 Instantiating lemma ‘deterministic’ 126
17.3 Behaviour of maybeLost and definitelyLost 126
17.4 exists-pd 127
17.5 exists-chosenLost 127
17.6 check-operation 128

18 Req 129
18.1 Proof obligation 129
18.2 Instantiating lemma ‘deterministic’ 129
18.3 Discussion 130
18.4 exists-pd 131
18.5 exists-chosenlost 131
18.6 check-operation 131
18.7 case 1: ReqOkay and RabOkayClPd′ 133
18.8 case 2: ReqOkay and RabWillBeLostPd′ 138
18.9 case 3: ReqOkay and RabHasBeenLostPd′ 142
18.10 case 4: ReqOkay and RabEndPd′ 146

19 Val 149
19.1 Proof obligation 149
19.2 Instantiating lemma ‘deterministic’ 149
19.3 exists-pd 150
19.4 exists-chosenlost 150
19.5 check-operation 150
19.6 Behaviour of maybeLost and definitelyLost 151
19.7 Clarifying the hypothesis 153

20 Ack 157
20.1 Proof obligation 157
20.2 Instantiating lemma ‘deterministic’ 157
20.3 exists-pd 158

v

20.4 exists-chosenlost 158
20.5 check-operation 159
20.6 Behaviour of maybeLost and definitelyLost 159
20.7 Finishing proof of check-operation 162

21 ReadExceptionLog 163
21.1 Proof obligation 163
21.2 Invoking lemma ‘lost unchanged’ 164
21.3 check-operation-ignore 164

22 ClearExceptionLog 165
22.1 Proof obligation 165
22.2 Invoking lemma ‘Lost unchanged’ 166
22.3 check-operation-ignore 166

23 AuthoriseExLogClear 167
23.1 Proof obligation 167
23.2 Proof 167

24 Archive 169
24.1 Proof obligation 169
24.2 Proof 169

III Second Refinement: B to C 171

25 B to C rules 173
25.1 Security of the implementation 173
25.2 Forwards rules proof obligations 174

26 Rbc 177
26.1 Retrieve state 177

27 Initialisation, Finalisation, and Applicability 179
27.1 Initialisation proof 179
27.2 Finalisation proof 179
27.3 Applicability proofs 180

28 B to C lemmas 181
28.1 Specialising the proof rules 181
28.2 Correctness of CIgnore 182

vi

28.3 Correctness of a branch of the operation 182
28.4 Correctness of CIncrease 185
28.5 Correctness of CAbort 185
28.6 Lemma ‘logs unchanged’ 187
28.7 Lemma ‘abort forward’: operations that first abort 188

29 Correctness proofs 191
29.1 Introduction 191
29.2 Correctness of CStartFrom 191
29.3 Correctness of CStartTo 193
29.4 Correctness of CReq 196
29.5 Correctness of CVal 197
29.6 Correctness of CAck 198
29.7 Correctness of CReadExceptionLog 200
29.8 Correctness of CClearExceptionLog 201
29.9 Correctness of CAuthoriseExLogClear 201
29.10 Correctness of CArchive 202

30 Summary 203

IV Appendices 209

A Proof Layout 211
A.1 Notation 211
A.2 Labelling proof steps 211

B Inference rules 213
B.1 Universal quantifier becomes hypothesis 213
B.2 Disjunction in the hypothesis 214
B.3 Disjunction in the consequent 214
B.4 Conjunction in the consequent 214
B.5 Cut for lemmas 215
B.6 Thin 215
B.7 Universal Quantification 215
B.8 Negation 215
B.9 Contradiction 216
B.10 One Point Rule 216
B.11 Derived Rules 216
B.12 Proof of the Derived Rules 217

vii

C Lemmas 219
C.1 Lemma ‘deterministic’ 219
C.2 Lemma ‘lost unchanged’ 220
C.3 Lemma ‘AbIgnore’ 220
C.4 Lemma ‘Abort refines AbIgnore’ 221
C.5 Lemma ‘abort backward’ 221
C.6 Lemma ‘constraint’ 222
C.7 Lemma ‘logs unchanged’ 222
C.8 Lemma ‘abort forward’ 223
C.9 Lemma ‘compose backward’ 224
C.10 Lemma ‘compose forward’ 225
C.11 Lemma ‘promoted composition’ 226
C.12 Lemma ‘notLoggedAndIn’ 229
C.13 Lemma ‘lost’ 230
C.14 Lemma ‘not lost before’ 231
C.15 Lemma ‘AbWorld unique’ 232

D Toolkit 235
D.1 Total abstract balance 235
D.2 Total lost value 235
D.3 Summing values 236

Acknowledgments

The work described in this monograph took place as part of a development
funded by the NatWest Development Team (now platform seven).

Part of the refinement work was carried out by Eoin MacDonnell.

Chapter 1

Introduction

1.1 The application

This case study is a reduced version of a real development by the NatWest
Development Team (now platform seven) of a Smartcard product for electronic
commerce. This development was deeply security critical: it was vital to ensure
that these cards would not contain any bugs in implementation or design that
would allow them to be subverted once in the field.

The system consists of a number of electronic purses that carry financial
value, each hosted on a Smartcard. The purses interact with each other via a
communications device to exchange value. Once released into the field, each
purse is on its own: it has to ensure the security of all its transactions without
recourse to a central controller. All security measures have to be implemented
on the card, with no real-time external audit logging or monitoring.

1.1.1 Models

We develop two key models in this case study. The first is an abstract model,
describing the world of purses and the exchange of value through atomic trans-
actions, expressing the security properties that the cards must preserve. The
second is a concrete model, reflecting the design of the purses which exchange
value using a message protocol. Both models are described in the Z notation
[Spivey 1992b] [Woodcock & Davies 1996] [Barden et al. 1994], and we prove
that the concrete model is a refinement of the abstract.

Abstract model

The abstract model is small, simple, and easy to understand. The key operation

2 CHAPTER 1. INTRODUCTION

paying purse -

atomic payment receiving purse

Figure 1.1: An atomic transaction in the abstract model

paying purse

	

(1) request

-

(2) payment

I

(3) acknowledgement

receiving purse

Figure 1.2: Part of the n-step protocol used to implement the atomic transaction
in the concrete model.

transfers a chosen amount of value from one purse to another; the operation is
modelled as an atomic action that simultaneously decrements the value in the
paying purse and increments the value in the receiving purse (figure 1.1). Two
key system security properties are maintained by this and other operations:

• no value may be created in the system; and
• all value is accounted in the system (no value is lost).

The simplicity of the abstract model allows these properties to be expressed in
a way that is easily understood by the client.

Concrete model

The concrete model is rather more complicated, reflecting the details of the real
system design. The key changes from the abstract are:

• transactions are no longer atomic, but instead follow an n-step protocol
(figure 1.2);

• the communications medium is insecure and unreliable;

• transaction logging is added to handle lost messages; and

1.2. OVERVIEW OF MODEL AND PROOF STRUCTURE 3

• there are no global properties—each purse has to be implemented in iso-
lation.

The basic protocol is:

1. the communications device ascertains the transaction to perform;

2. the receiving purse requests the transfer of an amount from the paying
purse;

3. the paying purse sends that amount to the receiving purse; and

4. the receiving purse sends an acknowledgement of receipt to the paying
purse.

The protocol, although simple in principle, is complicated by several facts: the
protocol can be stopped at any point by removing the power from a card; the
communications medium could lose a message; and a wire tapper could record
a message and play it back to the same or different card later. In the face of
all these possible actions, the protocol must implement the atomic transfer of
value correctly, as specified in the abstract model.

1.1.2 Proofs

All the security properties of the abstract model are functional, and so are
preserved by refinement.

The purpose of performing the proof is to give a very high assurance that
the chosen design (the protocol) does, indeed, behave just like the abstract,
atomic transfers. We choose to do rigorous proofs by hand: our experience is
that current proof tools are not yet appropriate for a task of this size. We did,
however, type-check the statements of the proof obligations and many of the
proof steps using a combination of fuzz [Spivey 1992a] and Formaliser [Flynn
et al. 1990] [Stepney]. As part of the development process, all proofs were also
independently checked by external evaluators.

1.2 Overview of model and proof structure

The specification and security proof have the following structure (summarised
in figure 1.3):

• Security Properties, SPs:
– The Security Properties are defined in terms of constraints on secure
operations; they are formalised in terms of the appropriate model
concepts (see later).

4 CHAPTER 1. INTRODUCTION

AAAAA
security properties

Chapter 3

SEFs
security enforcing

functions
Chapter 2

BBBBB
constrained world

Chapter 5BBBBB p
single purse
Chapter 4

CCCCC p
single purse
Chapter 7

CCCCC
unconstrained

world, Chapter 7

proof, using
backward rules
Part II

proof, using
forward rules
Part III

constrained
promotion

expressed
in terms

of:

unconstrained
promotion

Figure 1.3: Overview of document organisation, with model and proof structure

– In some cases, where it may not be evident that a model captures a
particular constraint, the desired property is recast as a theorem and
proved.

• Abstract model,A: We define an abstract model (Chapter 3), which forms
the Formal Security Policy Model ; it consists of a global model in terms of
a simple state and operations:

– the state is a world of (abstract) purses; and
– the operations are defined on this state.

• Betweenmodel, B: Next we build a ‘between’ levels model. This is the first
refinement towards the implementation of purses consisting of local state
information only. This model, B, is structured as a promoted state-and-
operations model:

– The state of a single (concrete) purse, and the corresponding single-
purse operations, are defined (Chapter 4).

– The purses and operations are promoted to a global state and oper-
ations (Chapter 5). Constraints are put on this promotion to enable
the correctness proofs to be performed.

1.3. RATIONALE FOR MODEL STRUCTURE 5

• Concrete model, C: Our final model is the concrete level model, which
forms the Formal Architectural Design. This model, C, is structured as a
promoted state-and-operations model, very similar to B, except it has no
constraints on the promotion:

– The state of a single (concrete) purse, and the corresponding single-
purse operations, are defined (Chapter 7).

– The purses and operations are promoted to a global state and opera-
tions, with no constraints (Chapter 7).

• Security proofA–B: The security policy is proved to hold forB by proving
that B is a refinement of A. This forms the first part of Explanation of
Consistency.

– The retrieve relation Rab, relating the B and A worlds, is defined
(Chapter 10).

– The security policy is shown to hold for B by proof that B refinesA,
using the ‘backward’ proof rules (Part II). This proof comprises the
bulk of the proof work.

• Security proof B–C: The security policy is proved to hold for C by proving
that C is a refinement of B (and hence ofA, by transitivity of refinement).
This forms the remaining part of Explanation of Consistency.

– The retrieve relation Rbc, relating the C and B worlds, is defined
(Chapter 26).

– The security policy is shown to hold for C by proof that C refines B,
using the ‘forward’ proof rules (Part III). These two levels are relatively
close, so this proof is relatively straightforward.

The mathematical operators and schemas defined in this document are in-
cluded in the index at the end of the document.

1.3 Rationale for model structure

As noted above, this case study has been adapted from a larger, real develop-
ment. In order to produce a case study of a size appropriate for public pre-
sentation, much of the real functionality has had to be removed. Some of the
structure of the larger specification has remained present in the smaller one,
although it might not have been used had the smaller specification been writ-
ten from scratch. This omitted functionality, whilst important from a business
perspective, is peripheral to the central security requirements.

6 CHAPTER 1. INTRODUCTION

1.4 Rationale for proof structure

Imagine two specificationsA andC, which describe executablemachines. Imag-
ine that, on every step, each machine consumes an input and produces an out-
put. Finally, imagine that every execution of C, viewed solely in terms of inputs
and outputs, could equally well have been an execution of A. In this sense,
A can simulate any behaviour of C. If this is the case, then we say that C is a
refinement ofA.

This is exactly what we want to prove in our case study: that the concrete
model is a refinement of the abstract one.

Refinement is an ordering between specifications that captures an intu-
itive notion of when a concrete specification implements an abstract one. This
allows us to postpone implementation detail in writing our top-level specifica-
tion, focussing only on essential properties. The cost of this abstraction is the
need to refine the specification, reifying data structures and algorithms; refine-
ment is a formal technique for ensuring that essential properties are present
in a more concrete specification.

Nondeterminism is used in an abstract specification to describe alterna-
tive acceptable behaviours; in choosing a concrete refinement of an abstract
specification, some of these nondeterministic choices may be resolved. Since
we view A and C only terms of inputs and outputs, nondeterminism present
inA may be resolved at a different point in C.

Our abstract model, chosen to represent the difference between secure
and insecure transactions very clearly, has nondeterminism in a different place
from the implementation. In fact, it has it in a place that precludes proof using
the forward rules of [Spivey 1992b, section 5.6]. For this reason we use the
backward rules to prove against the abstract model.

At the concrete level, we must describe the purse behaviour in a way that
closely mirrors the actual design. An important (and obvious) property of the
design is that the purses are independent, that is, each purse acts on the basis
of its own, local knowledge, and we have no control over the communications
medium between purses. This can be expressed cleanly in Z by building a
model of an individual purse in isolation, and then promoting [Barden et al.
1994, chapter 19] this model to a world with many purses. To express the fact
that we have no global control over the purses nor over the communications
medium, we must use an unconstrained promotion. This we do in the C model.

Why do we not, then, do a single backward proof step from theA model
to the C model?

For technical reasons, the backward proof rules need the more concrete
specification to be tightly constrained in its state space. The form of the proofs
forces the description of the state space to include explicit predicates excluding

1.5. STATUS 7

all but valid states. However, these predicates are not expressible locally to
purses, and hence cannot be included in specification derived by unconstrained
promotion. That is, we cannot express the predicates needed for the proof in
the C model.

We therefore introduce an intermediate model, the B model, which is a
constrained promotion, and hence can contain the predicates needed for the
backward proofs. We then prove a refinement fromA to B using the backward
rules. But now the constrained promotion B is very close to the unconstrained
promotion C, and in particular the nondeterminism is resolved in the same
place in both models, allowing the forward rules to be used. This we do in our
proof of refinement from B to C.

1.5 Status

The specification and theorems have been parsed and type-checked using fuzz
[Spivey 1992a]. There is no use of the %%unchecked parser directive in the
specification, in the statement of theorems, or in the statement of most of the
intermediate goals; however, some reasoning steps have hidden declarations
to make them type-check and some do not conform to fuzz’s syntax at all.

Part I

Models

9

Chapter 2

Security Properties

2.1 Introduction

This chapter gathers together the Security Properties (SPs) definitions, for ref-
erence. The SPs are formalised in terms of the abstract and concrete models,
making use of definitions in Chapters 3 and 4. (The index can be used to find
the definitions of these terms.) The full meaning and effect of a SP can be seen
only in the context of the model that includes it.

2.2 Abstract model SPs

The following SPs are expressed in terms of the abstract model A, defined in
chapter 3.

2.2.1 No value creation

Security Property 1. No value may be created in the system: the sum of all the
purses’ balances does not increase.1

NoValueCreation
∆AbWorld

totalAbBalanceabAuthPurse′ ≤ totalAbBalanceabAuthPurse

1Proved to hold for the model, section 2.4. NoValueCreation requires that the sum of the
before balances is greater or equal to the sum of the after balances. The abstract model enforces
a stronger condition: that transfers change only the purses involved in the transfer and only by
the amount stated in the transfer.

12 CHAPTER 2. SPS

2.2.2 All value accounted

Security Property 2.1. All value must be accounted for in the system: the sum
of all purses’ balances and lost components does not change.2

AllValueAccounted
∆AbWorld

totalAbBalanceabAuthPurse′ + totalLost abAuthPurse′ =
totalAbBalanceabAuthPurse+ totalLost abAuthPurse

2.2.3 Authentic purses

Security Property 3. A transfer can occur only between authentic purses.3

Authentic
AbWorld
name? : NAME

name? ∈ domabAuthPurse

2.2.4 Sufficient funds

Security Property 4. A transfer can occur only if there are sufficient funds in
the from-purse. 4

SufficientFundsProperty
AbWorld
TransferDetails?

value? ≤ (abAuthPurse from?).balance

2.3 Concrete model SPs

The following SPs are expressed in terms of the between (and concrete) model
B, defined in chapter 4.

2Proved to hold for the model, section 2.4. The concrete level SP 2.2 uses logging to support
this SP.

3Used in the definition of: AbTransferOkay and AbTransferLost , section 3.3.3.
4Used in the definition of: AbTransferOkay and AbTransferLost , section 3.3.3. Used in the

proof of: SP1, section 2.4.1, section 2.4.3; SP2, section 2.4.2, section 2.4.4. Note that the model
also ensures that the balance and value? are non-negative.

2.4. SPS AND THE MODELS 13

2.3.1 Exception logging

Security Property 2.2. If a purse aborts a transfer at a point where value could
be lost, then the purse logs the details.5

LogIfNecessary
∆ConPurse

exLog′ = exLog ∪ (if status ∈ {epv , epa}then{pdAuth}else∅)

The only times the log need be updated are if the purse is in epv (having sent
the req message) or in epa (having sent the val but not yet received the ack).
In all other cases the transfer has not yet got far enough for the purse to be
worried that the transfer has failed, or has got far enough that the purse is
happy that the transfer has succeeded.

2.4 SPs and the models

All the SPs hold in the appropriate models.
In most cases, this is obviously true, by construction: the SPs appear as

explicit predicates in the relevant definitions. However, NoValueCreation and
AllValueAccounted are not explicitly included in the operation that changes the
relevant components: AbTransfer . In this section, we demonstrate that the
abstract model indeed satisfies these SPs. That is:

AbTransferOkay � NoValueCreation ∧ AllValueAccounted

AbTransferLost � NoValueCreation ∧ AllValueAccounted

AbIgnore � NoValueCreation ∧ AllValueAccounted

In the proofs below, we use the TD form of the definitions, by [cut]ting in the
appropriate TransferDetails.

2.4.1 Transfer okay, no value creation

AbTransferOkayTD � NoValueCreation
5Used in the definition of: AbortPurse, section 4.8.2.

14 CHAPTER 2. SPS

Proof:

totalAbBalanceabAuthPurse′

= totalAbBalance({from?, to?} −� abAuthPurse′)
+ (abAuthPurse′ from?).balance
+ (abAuthPurse′ to?).balance [totalAbBalance]

= totalAbBalance({from?, to?} −� abAuthPurse)
+ ((abAuthPurse from?).balance− value?)
+ ((abAuthPurse to?).balance+ value?) [AbTransferOkay]

= totalAbBalanceabAuthPurse

≤ totalAbBalanceabAuthPurse

� 2.4.1

2.4.2 Transfer okay, all value accounted

AbTransferOkayTD � AllValueAccounted

Proof:

totalAbBalanceabAuthPurse′ + totalLost abAuthPurse′

= totalAbBalance({from?, to?} −� abAuthPurse′)
+ (abAuthPurse′ from?).balance
+ (abAuthPurse′ to?).balance [totalAbBalance]

+ totalLost({from?, to?} −� abAuthPurse′)
+ (abAuthPurse′ from?).lost
+ (abAuthPurse′ to?).lost [totalLost]

= totalAbBalance({from?, to?} −� abAuthPurse)
+ ((abAuthPurse from?).balance− value?)
+ ((abAuthPurse to?).balance+ value?)

+ totalLost({from?, to?} −� abAuthPurse)
+ (abAuthPurse from?).lost
+ (abAuthPurse to?).lost [AbTransferOkay]

= totalAbBalanceabAuthPurse+ totalLost abAuthPurse

� 2.4.2

2.4. SPS AND THE MODELS 15

2.4.3 Transfer lost, no value creation

AbTransferLostTD � NoValueCreation

Proof:

totalAbBalanceabAuthPurse′

= totalAbBalance({from?, to?} −� abAuthPurse′)
+ (abAuthPurse′ from?).balance
+ (abAuthPurse′ to?).balance [totalAbBalance]

= totalAbBalance({from?, to?} −� abAuthPurse)
+ ((abAuthPurse from?).balance− value?)
+ (abAuthPurse to?).balance [AbTransferLost]

= totalAbBalanceabAuthPurse− value? [totalAbBalance]

≤ totalAbBalanceabAuthPurse

� 2.4.3

2.4.4 Transfer lost, all value accounted

AbTransferLostTD � AllValueAccounted

Proof:

totalAbBalanceabAuthPurse′ + totalLost abAuthPurse′

= totalAbBalance({from?, to?} −� abAuthPurse′)
+ (abAuthPurse′ from?).balance
+ (abAuthPurse′ to?).balance [totalAbBalance]

+ totalLost({from?, to?} −� abAuthPurse′)
+ (abAuthPurse′ from?).lost
+ (abAuthPurse′ to?).lost [totalLost]

= totalAbBalance({from?, to?} −� abAuthPurse)
+ ((abAuthPurse from?).balance− value?)
+ (abAuthPurse to?).balance

+ totalLost({from?, to?} −� abAuthPurse)
+ ((abAuthPurse from?).lost + value?)
+ (abAuthPurse to?).lost [AbTransferLost]

= totalAbBalanceabAuthPurse+ totalLost abAuthPurse

16 CHAPTER 2. SPS

� 2.4.4

2.4.5 Transfer ignore

AbIgnore � NoValueCreation ∧ AllValueAccounted

Proof:
Follows directly from the definition of AbIgnore, which changes none of the
relevant values.

� 2.4.5
� 2.4
� 2

Chapter 3

Abstract model: security policy

3.1 Introduction

The abstract model specification has the following parts:

• State: the abstract world of purses
• Operations: secure changes from one abstract state to another

• Initialisation: the abstract world starts off secure
• Finalisation: a way of observing part of the abstract world to determine
that it is secure

3.2 The abstract state

3.2.1 A purse

An abstract AbPurse consists of a balance, the value stored in the purse; and a
lost component, the total value lost during unsuccessful transfers. (The unsuc-
cessful, but still secure, transfer is defined in section 3.3.3.)

AbPurse =̂ [balance, lost : N]

3.2.2 Transfer details

Each purse has a distinct, unique name.

[NAME]

18 CHAPTER 3. A MODEL

The details of a particular transfer include the names of the from and to purses
and the value to be transferred.

TransferDetails
from, to : NAME
value : N

Although it is not permitted to perform a transfer between a purse and itself,
the constraint from ≠ to is checked during AbTransfer , rather than put in
TransferDetails, since it is permitted to request a transfer with from = to.

Transactions involving zero value are allowed.

3.2.3 Abstract world

The abstract world model contains a mapping from purse names to abstract
purses. The domain of this function corresponds to authentic purses, those
that may engage in transfers1. We allow only a finite number of authentic
purses, to ensure a well-defined total value in the system.

AbWorld =̂ [abAuthPurse : NAME � �→AbPurse]

3.3 Secure operations

Having defined our abstract world, AbWorld , we now define operations on the
world that respect the relevant SPs. We call these secure operations. They
comprise:

• AbIgnore: securely do nothing

• AbTransfer : securely transfer balance between purses, or securely ‘lose’
the balance

3.3.1 Abstract inputs and outputs

We are to prove that the implementation is a refinement of the abstract security
policy specification. This is made simpler if every operation has an input and
an output, and if all operations’ inputs and outputs are of the same type.

So we define the inputs and outputs (some being ‘dummy’ values) using a
free type construct:

AIN ::= aNullIn
| transfer〈〈TransferDetails〉〉

1SP 3, ‘Authentic purses’, section 2.2.3.

3.3. SECURE OPERATIONS 19

AOUT ::= aNullOut

Every abstract operation has the following properties:

AbOp
∆AbWorld
a? : AIN ; a! : AOUT

a! = aNullOut

The output is always aNullOut (that is, we are not interested in the abstract
output).

3.3.2 Abstract ignore

Any operation has the option of securely doing nothing.

AbIgnore
AbOp

abAuthPurse′ = abAuthPurse

3.3.3 Transfer

The transfer operation changes only the balance and lost component of the
relevant purses.

AbPurseTransfer =̂ AbPurse \ (balance, lost)

The secure transfer operations change at most the from and to purse states: all
other purse states are unchanged.

AbWorldSecureOp
AbOp
TransferDetails?

a? ∈ ran transfer
θTransferDetails? = transfer∼a?

{from?, to?} −� abAuthPurse′ = {from?, to?} −� abAuthPurse

20 CHAPTER 3. A MODEL

A transfer can securely succeed between two purses if they are distinct, both
purses are authentic2, and the from purse has sufficient funds3.

AbTransferOkayTD
AbWorldSecureOp

Authentic[from?/name?]
Authentic[to?/name?]
SufficientFundsProperty

to? ≠ from?

abAuthPurse′ from? = (µ∆AbPurse |
θAbPurse = abAuthPurse from?
∧ balance′ = balance− value?
∧ lost ′ = lost
∧ ΞAbPurseTransfer

• θAbPurse′)
abAuthPurse′ to? = (µ∆AbPurse |

θAbPurse = abAuthPurse to?
∧ balance′ = balance+ value?
∧ lost ′ = lost
∧ ΞAbPurseTransfer

• θAbPurse′)

The operation transfers value? from the from purse to the to purse4. All the
other components of the from? and to? purses are unchanged, and all other
purses are unchanged.

The model is more constrained than required by the SPs, and hence it
represents a sufficient, but not necessary, behaviour to conform to the SPs.

Hiding the auxiliary inputs gives the Okay operation as:

AbTransferOkay =̂ AbTransferOkayTD \ (to?, from?, value?)

A transfer can securely lose value between two purses if they are distinct, both
purses are authentic5, and the from purse has sufficient funds6.

2SP 3, ‘Authentic purses’, section 2.2.3.
3SP 4, ‘Sufficient funds’, section 2.2.4.
4SP 1, ‘No value created’, section 2.2.1.
5SP 3, ‘Authentic purses’, section 2.2.3.
6SP 4, ‘Sufficient funds’, section 2.2.4.

3.4. ABSTRACT INITIAL STATE 21

AbTransferLostTD
AbWorldSecureOp

Authentic[from?/name?]
Authentic[to?/name?]
SufficientFundsProperty

to? ≠ from?

abAuthPurse′ from? ∈ {∆AbPurse |
θAbPurse = abAuthPurse from?
∧ balance′ = balance− value?
∧ lost ′ = lost + value?
∧ ΞAbPurseTransfer

• θAbPurse′ }
abAuthPurse′ to? = abAuthPurse to?

The operation removes value? from the from purse’s balance,7 and adds it to
the from purse’s lost component.8 All the other components of the from? purse
are unchanged, The to purse and all other purses are unchanged.

Hiding the auxiliary inputs gives the Okay operation as:

AbTransferLost =̂ AbTransferLostTD \ (to?, from?, value?)

The full transfer operation can also securely do nothing, AbIgnore. The full
transfer operation is

AbTransfer =̂ AbTransferOkay ∨ AbTransferLost ∨ AbIgnore

3.4 Abstract initial state

One conventional definition of the initial state of a system is as being empty; op-
erations are used to add elements to the state until the desired configuration is
reached. However, we do not wish to add new abstract purses to the domain of
abAuthPurse, so we cannot start with a system containing no authentic purses.
So we set up an arbitrary initial state, which satisfies the predicate of AbWorld′.

AbInitState =̂ AbWorld′

7SP 1, ‘No value created’, section 2.2.1.
8SP 2, ‘All value accounted’, section 2.2.2.

22 CHAPTER 3. A MODEL

So we say that AbInitState has some particular value, we just do not say what
that particular value is. The particular value chosen is irrelevant to the security
of the system; any starting state would be secure.

Initialisation also defines the mapping from global (that is, observable)
inputs to abstract (that is, modelled) inputs. This is just the identity relation in
theA model:

AbInitIn =̂ [a?,g? : AIN | a? = g?]

3.5 Abstract finalisation

We must ‘observe’ each security relevant component of the world, in order to
determine that the security properties do indeed hold. Observation is usually
performed by enquiry operations, and any part of the state not visible through
some enquiry operation is deemed unimportant. However, in our case there are
no abstract enquiry operations to observe state components, but there are secu-
rity properties related to them, and so they are important. We use finalisation
to observe them.

Finalisation takes an abstract state, and ‘projects out’ the portion of it
we wish to observe, into a global state. Here we choose to observe the entire
abstract state.

The global state is the same as the abstract state:

GlobalWorld =̂ [gAuthPurse : NAME � �→AbPurse]

Finalisation gives the global state corresponding to an abstract state. These are
mostly the identity relations in theA model:

AbFinState
AbWorld
GlobalWorld

gAuthPurse = abAuthPurse

Finalisation also defines the mapping from abstract outputs to global (that is,
observable) outputs.

AbFinOut =̂ [a!,g! : AOUT | a! = g!]

Chapter 4

Between model, single purse
operations

4.1 Overview

This chapter covers the purse-level operations, which are: abort, the start op-
erations, the transfer operations req, val and ack, read log, and clear log.

For the sake of simplicity, we assume that concrete and abstract NAMEs
are drawn from the same sets.

In this section we refer to ‘concrete’ rather than ‘between’ purse, because,
as we see later, there is no difference between the two structurally. The only
difference between the B and C worlds is fewer global constraints in the latter.

4.2 Status

A concrete purse has a status, which records its progress through a transaction.

STATUS ::= eaFrom | eaTo | epr | epv | epa

The statuses are: eaFrom ‘expecting any payer’, eaTo ‘expecting any payee’,
epr ‘expecting payment req’, epv ‘expecting payment val’, and epa ‘expecting
payment ack’.

4.3 Message Details

The abstract level describes the operations that transfer value. Purses are sent
instructions via messages, andwe present the structure of compoundmessages
in this section.

24 CHAPTER 4. B MODEL, PURSE

The abstract level describes a transfer of value from one purse to another.
We implement this at the concrete level by a protocol consisting of messages.

• A single transfer involves manymessages. So we need a way to distinguish
messages: we use a tag for req, val or ack.

• We have no control over the concrete messages, and cannot forbid the du-
plication of messages. So we need a way to distinguish separate transac-
tions: we use sequence numbers that are increased between transactions.
(The transaction sequence number is implemented as a sufficiently large
number. Provided that the initial sequence number is quite small, and each
increment is small, we need not worry about overflow, since the purse will
physically wear out first.

4.3.1 Start message counterparty details

The counterparty details of a payment, which are transmitted with a start mes-
sage, identify the other purse, the value to be transferred, and the other purse’s
transaction sequence number.

CounterPartyDetails
name : NAME
value : N
nextSeqNo : N

4.3.2 Payment log message details

Purses store current payment details, and exception log records that hold suf-
ficient information about failed or problematic transactions to reconstruct the
value lost in the transfer1. The payment log details identify the different from
and to purses and the value to be transferred (as in the abstract TransferDetails)
and also the purses’ transaction sequence numbers. The combination of purse
name and sequence number uniquely identifies the transaction.

PayDetails
TransferDetails

fromSeqNo, toSeqNo : N

from ≠ to

1Concrete SP 2.2, ‘Exception logging’, section 2.3.1.

4.4. CLEAR EXCEPTION LOG VALIDATION 25

We can put the constraint about distinct purses in the PayDetails, because this
check is made in ValidStartTo/From, before the details are set up.

4.4 Clear Exception Log Validation

CLEAR is the set of clear codes for purse exception logs.

[CLEAR]

A clear code is provided by an external source (section 5.7.1) in order to clear
a purse’s exception log (section 4.10.2).

image is a function to calculate the clear code for a given non-empty set
of exception records.

image : P1 PayDetails�CLEAR

image takes a set of exception logs, and produces another value used to validate
a log clear command. For each set of PayDetails, there is a unique clear code.

The BetweenWorld model is designed so that no logs are ever lost. Indeed,
we must prove that no logs are lost in the refinement of each operation — this
is an implicit part of the refinement correctness proofs. The BetweenWorld
mechanism to ensure that no logs are lost relies on two assumptions:

• clear codes are only ever generated from sets of PayDetails that are stored
in the archive (a secure store of log records introduced later)

• clear codes unambiguously identify sets of PayDetails

The second of these assumptions is captured formally by the injective function
image2.

2In practice, image is not injective on general sets of PayDetails, but it is injective when re-
stricted to the sets actually encountered.

26 CHAPTER 4. B MODEL, PURSE

4.5 Messages

There are various kinds of messages:

MESSAGE ::= startFrom〈〈CounterPartyDetails〉〉
| startTo〈〈CounterPartyDetails〉〉
| readExceptionLog

| req〈〈PayDetails〉〉
| val〈〈PayDetails〉〉
| ack〈〈PayDetails〉〉
| exceptionLogResult〈〈NAME × PayDetails〉〉
| exceptionLogClear〈〈NAME × CLEAR〉〉
| ⊥

The first group of messagesmay be unprotected. Their forgeability is modelled
by having them all present in the initial message ether (see section 6.1).

The second group of messages are all that need to be cryptographically
protected. Their unforgeability is modelled by having them added to the mes-
sage ether only by specified operations.

⊥, ‘forged’, is a message emitted by operations that ignore the (irrelevant)
input message, or emitted by non-authentic purses. It is also the input mes-
sage to the Ignore, Increase and Abort operations. ⊥ is implemented as an
unprotected status message, as an error message, as a ‘forged’ message, or as
‘silence’. As far as the model is concerned, we choose not to distinguish these
messages from each other, only from the other distinguished ones. (See also
section 5.8.)

A complete payment transaction is made up of a startFrom, startTo, req,
val, and ack message.

4.6 A concrete purse

A concrete purse has a current balance, an exception log for recording failed
or problematic transfers, a name, a transaction sequence number to be used
for the next transaction, the payment details of the current transaction, and a
status indicating the purse’s position in the current transaction.

4.6. A CONCRETE PURSE 27

ConPurse
balance : N
exLog : PPayDetails
name : NAME
nextSeqNo : N
pdAuth : PayDetails
status : STATUS

∀pd : exLog • name ∈ {pd .from,pd .to}

status = epr ⇒ name = pdAuth.from
∧ pdAuth.value ≤ balance
∧ pdAuth.fromSeqNo < nextSeqNo

status = epv ⇒ pdAuth.toSeqNo < nextSeqNo

status = epa ⇒ pdAuth.fromSeqNo < nextSeqNo

The name is included in the purse’s state so that the purse itself can check it is
the correct purse for this transaction.

The predicate on the purse state records the following constraints:

P–1 ∀pd : exLog • name ∈ {pd .from,pd .to}
All log details in the exception log refer to this purse, as the from or the
to party3.

P–2 status = epr ⇒
name = pdAuth.from
∧ pdAuth.value ≤ balance
∧ pdAuth.fromSeqNo < nextSeqNo
If the purse is expecting a payment request, then:

(a) it is the from purse of the current transaction4.
(b) it has sufficient funds for the request 5 (this condition is required be-

cause there is no check for sufficient funds on receipt of the request)
(c) its next sequence number is greater than the current transaction’s

sequence number6

P–3 status = epv ⇒ pdAuth.toSeqNo < nextSeqNo
3Used in: AuxWorld does not add constraints, section 5.2.1.
4Used in: CReq, B–9, section 29.4.
5Used in: Req, case 1, SufficientFundsProperty , section 18.7.2; Req, case 2, SufficientFunds-

Property, section 18.8.2; Req, case 3, SufficientFundsProperty , section 18.9.2.
6Used in: CReq, B–3, section 29.4.

28 CHAPTER 4. B MODEL, PURSE

If the purse is expecting a payment value, then its next sequence number
is greater than the current transaction’s sequence number7

P–4 status = epa ⇒ pdAuth.fromSeqNo < nextSeqNo
If the purse is expecting a payment acknowledgement, then its next se-
quence number is greater than the current transaction’s sequence num-
ber8

4.7 Single Purse operations

4.7.1 Overview

The concrete purse specification is structured around the various purse-level
operations:

• invisible operations
– IncreasePurse
– AbortPurse

• value transfer operations
– StartFromPurse
– StartToPurse
– ReqPurse
– ValPurse
– AckPurse

• exception logging operations
– ReadExceptionLogPurse
– ClearExceptionLogPurse

4.8 Invisible operations

Several concrete operations have a common effect on the state visible in the
model (they affect only implementation state not visible in the model).

7Used in: CAbort , B–6, section 28.5.
8Used in: CAbort , B–5, section 28.5.

4.8. INVISIBLE OPERATIONS 29

4.8.1 Increase Purse

The IncreasePurseOkay operation is used tomodel actual purse operations that
do not have any effect on the state visible in this model, except for increasing
the sequence number.

In a simple increase transaction, only the purse’s sequence number may
change. All other components remain unchanged.

ConPurseIncrease =̂ ConPurse \ (nextSeqNo)

IncreasePurseOkay
∆ConPurse
m?,m! : MESSAGE

ΞConPurseIncrease

nextSeqNo′ ≥ nextSeqNo

m! = ⊥

4.8.2 Abort Purse

The AbortPurseOkay operation is used to model actual purse operations that
do not have any effect on the state visible in this model, but that abort and log
incomplete transactions.

In a simple abort transaction, only the purse’s sequence number, exception
log, pdAuth and status may change. All other components remain unchanged.

ConPurseAbort =̂ ConPurse \ (nextSeqNo, exLog,pdAuth, status)

AbortPurseOkay places the purse in status eaFrom (where the pdAuth compo-
nent is undefined), logging any incomplete transactions if necessary9. No other
component of the purse is altered, except for nextSeqNo, which may increase
arbitrarily.

9Concrete SP 2.2, ‘Exception logging’, section 2.3.1.

30 CHAPTER 4. B MODEL, PURSE

AbortPurseOkay
∆ConPurse
m?,m! : MESSAGE

ΞConPurseAbort
LogIfNecessary

status′ = eaFrom
nextSeqNo′ ≥ nextSeqNo

We do not, at this stage, put any restrictions on the output message m!. Later,
we either compose AbortPurseOkay with another operation, using the latter’s
m!, or we promote AbortPurseOkay to the world level, where we definem! = ⊥.

4.9 Value transfer operations

The StartTo and StartFrom operations, when starting from eaFrom, change only
the sequence number, the stored pdAuth, and the status of a purse.

ConPurseStart =̂ ConPurse \ (nextSeqNo,pdAuth, status)

The Req operation change only the balance and the status of a purse.

ConPurseReq =̂ ConPurse \ (balance, status)

The Val operation change only the balance and the status of a purse.

ConPurseVal =̂ ConPurse \ (balance, status)

The Ack operation changes only the status of a purse, and allows the pdAuth
to change arbitrarily.

ConPurseAck =̂ ConPurse \ (status,pdAuth)

4.9.1 StartFromPurse

A startFrom message is valid only if it refers to a different purse from the
receiver, and mentions a value for which the from purse has sufficient funds.

4.9. VALUE TRANSFER OPERATIONS 31

ValidStartFrom
ConPurse
m? : MESSAGE

cpd : CounterPartyDetails

m? ∈ ran startFrom
cpd = startFrom∼m?

cpd .name ≠ name
cpd .value ≤ balance

To perform the StartFromPurseEafromOkay operation, a purse must receive a
valid startFrom message, and be in eaFrom.

StartFromPurseEafromOkay
∆ConPurse
m?,m! : MESSAGE

cpd : CounterPartyDetails

ValidStartFrom
status = eaFrom

ΞConPurseStart

nextSeqNo′ > nextSeqNo

pdAuth′ = (µ PayDetails |
from = name
∧ to = cpd .name
∧ value = cpd .value
∧ fromSeqNo = nextSeqNo
∧ toSeqNo = cpd .nextSeqNo)

status′ = epr

m! = ⊥

The StartFromPurseEafromOkay operation stores the payment details consist-
ing of the counterparty details and its own name and sequence number (for
later validation), moves to the epr state, increases its sequence number, and
sends an unprotected status message.

The StartFromPurseOkay operation first aborts (logging the pending pay-
ment if necessary, and moving to eaFrom), then performs the StartFromPurse-

32 CHAPTER 4. B MODEL, PURSE

EafromOkay operation.

StartFromPurseOkay =̂
AbortPurseOkay o

9 StartFromPurseEafromOkay \ (cpd)

4.9.2 StartToPurse

A startTo message is valid only if it refers to a different purse from the receiver.

ValidStartTo
ConPurse
m? : MESSAGE

cpd : CounterPartyDetails

m? ∈ ran startTo
cpd = startTo∼m?

cpd .name ≠ name

To perform the StartToPurseEafromOkay operation, a purse must receive a
valid startTo message, and be in eaFrom.

StartToPurseEafromOkay
∆ConPurse
m?,m! : MESSAGE

cpd : CounterPartyDetails

ValidStartTo
status = eaFrom

ΞConPurseStart

nextSeqNo′ > nextSeqNo

pdAuth′ = (µ PayDetails |
to = name
∧ from = cpd .name
∧ value = cpd .value
∧ toSeqNo = nextSeqNo
∧ fromSeqNo = cpd .nextSeqNo)

status′ = epv

m! = req pdAuth′

4.9. VALUE TRANSFER OPERATIONS 33

The StartToPurseOkay operation logs the pending payment, if necessary; it
stores the payment details, consisting of the counterparty details and its own
name and sequence number, for later validation; it moves to the epr state;
it increases its sequence number; and it sends a req message containing the
stored payment details.

The StartToPurseOkay operation first aborts (logging the pending pay-
ment if necessary, and moving to eaFrom), then performs the StartToPurse-
EafromOkay operation.

StartToPurseOkay =̂
AbortPurseOkay o

9 StartToPurseEafromOkay \ (cpd)

4.9.3 ReqPurse

An authentic request message is a req message containing the correct stored
payment details (which were stored on receipt of the startFrom message).

AuthenticReqMessage
ConPurse
m? : MESSAGE

m? = req pdAuth

To perform the ReqPurseOkay operation, a purse must receive a req message
with the payment details, and be in the epr state,

ReqPurseOkay
∆ConPurse
m?,m! : MESSAGE

AuthenticReqMessage
status = epr

ΞConPurseReq

balance′ = balance− pdAuth.value
status′ = epa

m! = val pdAuth

The purse decrements its balance, moves to the epa state, and sends a val
message containing the stored payment details.

34 CHAPTER 4. B MODEL, PURSE

4.9.4 ValPurse

An authentic value message is a val message containing the correct stored pay-
ment details (which were stored on receipt of the startTo message).

AuthenticValMessage
ConPurse
m? : MESSAGE

m? = val pdAuth

To perform the ValPurseOkay operation, a purse must receive a val message
with the payment details, and be in the epv state,

ValPurseOkay
∆ConPurse
m?,m! : MESSAGE

AuthenticValMessage
status = epv

ΞConPurseVal

balance′ = balance+ pdAuth.value
status′ = eaTo

m! = ack pdAuth

The purse increments its balance, moves to the eaTo state, and sends an ack
message containing the stored payment details.

4.9.5 AckPurse

An authentic acknowledge message is an ack message containing the correct
stored payment details (whichwere stored on receipt of the startFrommessage).

AuthenticAckMessage
ConPurse
m? : MESSAGE

m? = ack pdAuth

To perform the AckPurseOkay operation, a purse must receive an ack message
with the payment details, and be in the epa state.

4.10. EXCEPTION LOGGING OPERATIONS 35

AckPurseOkay
∆ConPurse
m?,m! : MESSAGE

AuthenticAckMessage
status = epa

ΞConPurseAck

status′ = eaFrom

m! = ⊥

The pursemoves to the eaFrom state, and sends an unprotected statusmessage.

4.10 Exception logging operations

4.10.1 ReadExceptionLogPurse

To perform the ReadExceptionLogPurseEafromOkay operation, a purse must
receive a readExceptionLog message and be in the eaFrom state.

ReadExceptionLogPurseEafromOkay
ΞConPurse
m?,m! : MESSAGE

m? = readExceptionLog
status = eaFrom

m! ∈ {⊥} ∪ { ld : exLog′ • exceptionLogResult(name, ld) }

The operation sends an unprotected status message (modelling ‘record not
available’) or a protected exceptionLogResult message containing one of the
exception logs tagged with its name10.

The ReadExceptionLogPurseOkay operation first aborts (logging any pend-
ing payment, andmoving to eaFrom), and then performs theReadExceptionLogPurse-
EafromOkay operation.

ReadExceptionLogPurseOkay =̂
AbortPurseOkay o

9 ReadExceptionLogPurseEafromOkay

10This gives a non-deterministic response, because we do not model exception log record num-
bers.

36 CHAPTER 4. B MODEL, PURSE

4.10.2 ClearExceptionLogPurse

During a clear log transaction the purse’s exception log may change, but no
other component can change.

ConPurseClear =̂ ConPurse \ (exLog)

To perform the ClearExceptionLogPurseOkay operation, a purse must have a
non-empty exception log and receive a valid exceptionLogClear message. If
the purse receives a valid exceptionLogClear message, has no transaction in
progress and has an empty exception log, then the purse ignores the message.

First we define how the purse clears its log in eaFrom:

ClearExceptionLogPurseEafromOkay
∆ConPurse
m?,m! : MESSAGE

exLog ≠∅
m? = exceptionLogClear(name, image exLog)
status = eaFrom

ΞConPurseClear

exLog′ = ∅
m! = ⊥

The purse clears its exception log, and sends an unprotected status message.
The image ensures that log messages have at least been read and moved

to the archive (seeAuthoriseExLogClear , section 5.7.1). Procedural mechanisms
must ensure that archive information is not lost11.

There is a four stage protocol for reading and clearing exception logs:
reading a log to the ether, copying a log from the ether to the archive, autho-
rising a purse exception log clear based on what’s in the archive, and clearing a
purse’s exception log having received authorisation. We note that as a result of
this protocol, if ClearExceptionLogPurseOkay aborts and logs an uncompleted
transaction, then the purse’s exception log will not be cleared. The reason for
this is as follows. The purse gets to eaFrom by aborting any uncompleted trans-
action. If this would create a new exception record, the clear transaction could
not occur, because the (imaged) exception log in the message would not match
the actual exception log in the purse.
11Concrete SP 2.2, ‘Exception logging’, section 2.3.1.

4.10. EXCEPTION LOGGING OPERATIONS 37

The full clear exception log operation for a purse is thus defined to abort
an uncompleted transaction first, and then clear the log if appropriate.

ClearExceptionLogPurseOkay
=̂ AbortPurseOkay o

9 ClearExceptionLogPurseEafromOkay

Chapter 5

Between model, promoted world

5.1 The world

The individual purse operations are promoted to the ‘world of purses’. This
world contains the purses, a public ether containing all previousmessages sent,
and a private archive, which is a secure store of exception logs, each exception
log tagged with the purse that recorded it. Information cannot be deleted from
the archive, so that the store of exception logs is persistent. This is to be
implemented by mechanisms outside the target of evaluation.

Logbook : P(NAME↔ PayDetails)

Logbook = P({PayDetails • from � θPayDetails}
∪ {PayDetails • to � θPayDetails})

A Logbook is a set of log details, each tagged with a name, where that name is
either that of the to purse or that of the from purse in the log details.

In addition, the archive’s tagged log details

ConWorld
conAuthPurse : NAME � �� ConPurse
ether : PMESSAGE
archive : Logbook

∀n : dom conAuthPurse • (conAuthPursen).name = n

∀nld : archive • first nld ∈ dom conAuthPurse

The archive is a Logbook. In addition, the archive’s tagged log details are tagged
only with authentic purse names.

40 CHAPTER 5. B MODEL, WORLD

from epr epa

(
diff trans

incl eaFrom

)
to no log log

epv 0 ? 0 ?

eaTo × 0 0 0(
diff trans

incl eaFrom

)
no log

log

0

0

0

1

0

0

0

1

Figure 5.1: The amount lost on the current transaction for each possible state
of the purses. ‘0’ means the value has definitely not been lost; ‘1’ means the
value has definitely been lost; ‘?’ means the value may be lost; ‘×’ means that
this state is impossible.

5.2 Auxiliary definitions

We define some auxiliary components, for ease of proof later. These compo-
nents are described in detail after the schema. The set definitelyLost captures
those transactions that have proceeded far enough that we know they cannot
succeed. The set maybeLost captures those transactions that have proceeded
far enough that they will lose money if something goes wrong, but that could
equally well continue to successful completion. In the other transactions, ei-
ther the transaction has not proceeded far enough to lose anything, or has
proceeded so far that the value has definitely been received.

The way in which the concrete state of the purses relates to the amount
of value ‘lost’ in the transaction can be represented by the table shown in fig-
ure 5.1, where the amount lost on the current transaction is shown for each
possible state of the purses, including purses that have moved on to a different
transaction, with or without logging this one.

5.2. AUXILIARY DEFINITIONS 41

AuxWorld
ConWorld

allLogs : NAME↔ PayDetails
authenticFrom,authenticTo : PPayDetails
fromLogged , toLogged : PPayDetails
toInEpv , toInEapayee, fromInEpr , fromInEpa : FPayDetails
definitelyLost : PPayDetails
maybeLost : FPayDetails

allLogs = archive
∪ {n : dom conAuthPurse; pd : PayDetails |

pd ∈ (conAuthPursen).exLog }

authenticFrom
= {pd : PayDetails | pd .from ∈ dom conAuthPurse }

authenticTo
= {pd : PayDetails | pd .to ∈ dom conAuthPurse }

fromLogged = {pd : authenticFrom | pd .from � pd ∈ allLogs }
toLogged = {pd : authenticTo | pd .to � pd ∈ allLogs }

toInEpv = {pd : authenticTo |
(conAuthPurse pd .to).status = epv
∧ (conAuthPurse pd .to).pdAuth = pd }

toInEapayee = {pd : authenticTo |
(conAuthPurse pd .to).status = eaTo
∧ (conAuthPurse pd .to).pdAuth = pd }

fromInEpr = {pd : authenticFrom |
(conAuthPurse pd .from).status = epr
∧ (conAuthPurse pd .from).pdAuth = pd }

fromInEpa = {pd : authenticFrom |
(conAuthPurse pd .from).status = epa
∧ (conAuthPurse pd .from).pdAuth = pd }

definitelyLost = toLogged ∩ (fromLogged ∪ fromInEpa)

maybeLost = (fromInEpa ∪ fromLogged) ∩ toInEpv

These auxiliary definitions put no further constraints on the state, but simply

42 CHAPTER 5. B MODEL, WORLD

define the derived components. Hence they do not need to be implemented.
They are defined merely for ease of use later. We prove that this is so in sec-
tion 5.2.1 below.

The auxiliary components represent the following:

• allLogs: All the exception logs; all those logs in the archive, and those still
uncleared in purses.

• authenticFrom,authenticTo: All possible payment details referring to au-
thentic from purses, and authentic to purses.

• fromLogged : All those payment details logged by a from purse.

• toLogged : All those details logged by a to purse.

• toInEpv : All those details for which the to purse is authentic, and is cur-
rently in epv with those details stored. This is a finite set, because conAuthPurse
is a finite function.

• toInEapayee: All those details for which the to purse is authentic, and is
currently in eaTo with those details stored.

• fromInEpr : All those details for which the from purse is authentic, and is
currently in epr with those details stored.

• fromInEpa: All those details for which the from purse is authentic, and is
currently in epa with those details stored.

• definitelyLost : All those details for which we know now that the value has
been lost. The val message was definitely sent and definitely not received,
so ultimately both purses will log the transaction. The authentic to purse
has logged, which it would not have done had it sent the ack, and the
authentic from purse has sent the val and not received the ack, and so
never will. See figure 5.2

• maybeLost : All those details that refer to value that may yet be lost or may
yet be transferred successfully from this purse, but which have already
definitely left the purse. This occurs when the authentic from purse has
sent the val and not received the ack and the authentic to purse is in epv ,
waiting for the val that it may or may not get. See figure 5.2 It is a finite
set, because toInEpv is a finite set.

We have the identity

AuxWorld
�
definitelyLost ∪maybeLost =

(fromInEpa ∪ fromLogged)∩ (toInEpv ∪ toLogged)

5.2. AUXILIARY DEFINITIONS 43

fromLogged

fromInEpa

toLogged

toInEpv

Figure 5.2: The sets definitelyLost (vertical hatching) andmaybeLost (horizontal
hatching) as subsets of the other auxiliary definitions.

The later proofs of operations that change purse status (the two start, three
protocol and log enquiry operations) are based on how the relevant pd moves
in and out of the sets maybeLost and definitelyLost . (These sets are disjoint
in the BetweenWorld, because of the BetweenWorld constraints on log sequence
numbers; see lemma ‘lost’, section C.13.)

5.2.1 AuxWorld does not add constraints

AuxWorld introduces some new variables, but does not add any further con-
straints on ConWorld . We define the schema that represents just the new vari-
ables introduced by AuxWorld .

NewVariables =̂ ∃ConWorld • AuxWorld

We prove that no further constraints are added by proving the following state-
ment.

ConWorld � ∃1NewVariables • AuxWorld

Proof:
First we prove existence. We normalise the schemas, drawing out any predicates
hidden in the declarations for the new variables. Only one predicate appears,
limiting allLogs to be a valid Logbook.

ConWorld � ∃1NewVariables • AuxWorld ∧ allLogs ∈ Logbook

44 CHAPTER 5. B MODEL, WORLD

Rewrite all the equations for the new variables so that each new variable in
AuxWorld is defined only in terms of variables of ConWorld . We then use the
one point rule to remove the existential quantification. This leaves just the
normalised predicate in addition to ConWorld .

ConWorld
�
ConWorld
∧ archive∪ {n : dom conAuthPurse; pd : PayDetails |

pd ∈ (conAuthPursen).exLog }
∈ Logbook

From the definition of archive, archive is in Logbook. From constraint P–1 in
ConPurse, the set of named exception logs is also in Logbook. This discharges
the existence proof.

To prove uniqueness, we need only note that the equations defining the
new variables are all equality to an expression, and by the transitivity of equal-
ity, all possible values are equal.

� 5.2.1

5.3 Constraints on the ether

We put some further constraints on the state to forbid ‘future messages’ and
‘future logs’, and to record the progress of the protocol.

BetweenWorld
AuxWorld

∀pd : PayDetails | req pd ∈ ether • pd ∈ authenticTo

∀pd : PayDetails | req pd ∈ ether •
pd .toSeqNo < (conAuthPurse pd .to).nextSeqNo

∀pd : PayDetails | val pd ∈ ether •
pd .toSeqNo < (conAuthPurse pd .to).nextSeqNo
∧ pd .fromSeqNo < (conAuthPurse pd .from).nextSeqNo

∀pd : PayDetails | ack pd ∈ ether •
pd .toSeqNo < (conAuthPurse pd .to).nextSeqNo
∧ pd .fromSeqNo < (conAuthPurse pd .from).nextSeqNo

5.3. CONSTRAINTS ON THE ETHER 45

∀pd : fromLogged •
pd .fromSeqNo < (conAuthPurse pd .from).nextSeqNo

∀pd : toLogged • pd .toSeqNo < (conAuthPurse pd .to).nextSeqNo
∀pd : fromLogged |

(conAuthPurse pd .from).status ∈ {epr , epa} •
pd .fromSeqNo

< (conAuthPurse pd .from).pdAuth.fromSeqNo

∀pd : toLogged | (conAuthPurse pd .to).status ∈ {epv , eaTo} •
pd .toSeqNo < (conAuthPurse pd .to).pdAuth.toSeqNo

∀pd : fromInEpr • disjoint 〈{val pd ,ack pd}, ether〉
∀pd : PayDetails •

(req pd ∈ ether ∧ ack pd ∉ ether)
	 (pd ∈ toInEpv ∪ toLogged)

∀pd : PayDetails | val pd ∈ ether ∧ pd ∈ toInEpv •
pd ∈ fromInEpa ∪ fromLogged

∀pd : fromInEpa ∪ fromLogged • req pd ∈ ether

toLogged ∈ FPayDetails

∀pd : exceptionLogResult∼(| ether |) • pd ∈ allLogs

∀pds : P1 PayDetails; name : NAME |
exceptionLogClear(name, imagepds) ∈ ether •

{name} × pds ⊆ archive

∀pd : fromLogged ∪ toLogged • req pd ∈ ether

These constraints express the following conditions (numbered for future refer-
ence in the refinement proofs):

B–1 All req messages in the ether refer to authentic to purses 1.

B–2 There are no ‘future’ req messages 2: all req messages in the ether hold
a to purse sequence number less than that purse’s next sequence num-

1Used in Req, case 4, section 18.10.
2Used in: StartTo, location of pdThis, section 17.3; CStartTo, B–16, section 29.3; CReq, B–3,

section 29.4.

46 CHAPTER 5. B MODEL, WORLD

ber. (It puts no constraint on the from purse’s sequence number, because
the from purse mentioned in a req message need not have started the
transaction yet, and need not even be authentic.)

B–3 There are no ‘future’ val messages 3: all val messages in the ether hold a
to purse sequence number less than that purse’s next sequence number
and a from purse sequence number less than that purse’s next sequence
number.

B–4 There are no ‘future’ ack messages 4: all ack messages in the ether hold
a to purse sequence number less than that purse’s next sequence number
and a from purse sequence number less than that purse’s next sequence
number.

B–5 There are no ‘future’ from logs based on the nextSeqNo of the from purse
5.

B–6 There are no ‘future’ to logs based on the nextSeqNo of the to purse 6.

B–7 There are no ‘future’ from logs based on the pdAuth.fromSeqNo of a purse
in epr or epa 7: all from logs refer only to past from transactions. So all
from logs referring to a purse that is currently in a transaction as a from
purse (that is, in epr or epa), hold a from sequence number strictly less
than that purse’s stored current transaction sequence number.

B–8 There are no ‘future’ to logs based on the pdAuth.toSeqNo of a purse in
epv or eaTo 8: all to logs refer only to past to transactions. So all to logs
referring to a purse that is currently in a transaction as a to purse (in epv),
hold a to sequence number strictly less than that purse’s stored current
transaction sequence number.

B–9 If the from purse is in epr then there is no val message 9 or ack message10

in the ether .

B–10 There is a req message but no ack message in the ether precisely when
the to purse is in epv or has logged the transaction 11.

3Used in: CStartFrom, B–9, section 29.2; CStartTo, B–11, section 29.3. CVal , B–4, section 29.5.
4Used in: CStartFrom, B–9, section 29.2; CStartTo, B–10, section 29.3.
5Used in: CStartFrom, B–7, section 29.2.
6Used in: CStartTo, B–8, 29.3. 29.3
7Used in: StartFrom, location of pdThis, section 16.3; CReq, B–7, section 29.4; lemma ‘not-

LoggedAndIn’, section C.12.
8Used in: CVal , B–8, section 29.5; lemma ‘notLoggedAndIn’, section C.12.
9Used in: CVal , B–9, section 29.5.
10Used in Req, case 4, section 18.10.
11Used in: StartTo, location of pdThis, section 17.3; Req, case 4, section 18.10; Ack, behaviour

of definitelyLost , section 20.6.5; Ack, behaviour of maybeLost , section 20.6.6; CAbort , B–10, sec-
tion 28.5; CAbort , B–16, section 28.5; CAck, B–11, section 29.6.

5.4. FRAMING SCHEMA 47

B–11 If the to purse is in epv and there is a val message in the ether , then either
the from purse is in epa or has logged the transaction 12.

B–12 If the from purse is in epa or has logged the transaction, then there is a
req in the ether 13.

B–13 The set toLogged is finite. This is sufficient to ensure that definitelyLost is
finite 14.

B–14 Log result messages are logged. The log details of any exceptionLogResult
message in the ether is either archived or in a purse transaction exception
log 15.

B–15 Exception log clear messages refer only to archived logs 16.

B–16 For each PayDetails in the logs there is a corresponding PayDetails in a
req message in the ether 17.

That the actual implementation does indeed satisfy this predicate needs to be
proved, by a further, small, refinement, thatConWorld and the operations refine
BetweenWorld and the operations (see Part III).

5.4 Framing schema

A framing schema is used to promote the purse operations.
12Used in: Val , behaviour of maybeLost , section 19.6.7.
13Used in StartTo, location of pdThis, section 17.3; CAbort , B–12, section 28.5; CAbort , B–16,

section 28.5.
14Used in: various Rab schemas, section 10.1
15Used in: Archive, section 24.2; CArchive, section 29.10.
16Used in: ExceptionLogClear , invoking lemma ‘lost unchanged’ section 22.2; CExceptionLog-

Clear, section 29.8.
17Used in: CStartTo, alternative to lemma ‘logs unchanged’, section 29.3.

48 CHAPTER 5. B MODEL, WORLD

ΦBOp
∆BetweenWorld
∆ConPurse
m?,m! : MESSAGE
name? : NAME

m? ∈ ether

name? ∈ dom conAuthPurse
θConPurse = conAuthPursename?

conAuthPurse′ = conAuthPurse⊕ {name?� θConPurse′}
archive′ = archive

ether ′ = ether ∪ {m!}

The predicate ensures the following properties common to all promoted oper-
ations:

• m? ∈ ether
the input message is in the ether , which ensures it was either previously
sent by another purse (req, val, ack, etc.), in the ether since initialisation
(startFrom, startTo, etc.), or input by a special global operation (that is,
AuthoriseExLogClear).

• name? ∈ dom conAuthPurse
the purse is in the world of authentic purses.

• θConPurse = conAuthPursename?
The before state of ConPurse we are operating on is the state of the purse
identified by name?

• conAuthPurse′ = conAuthPurse⊕ {name?� θConPurse′}
The after state of the purse system has name? updated to the after state
of ConPurse (which particular state depends on the particular operation
details) and all other purses are unchanged 18.

• archive′ = archive
The archive remains unchanged.

• ether ′ = ether ∪ {m!}
the output message is recorded by the ether .

18Used in Req proof, section 18.7.2.

5.5. IGNORE, INCREASE AND ABORT 49

5.5 Ignore, Increase and Abort

There are various general behaviours that operations may engage in: ignore
the input and do nothing; ignore the input but increase the sequence number;
ignore the input but abort the current payment transaction.

Ignoring is modelled as an unchanging world:

Ignore =̂ [ΞBetweenWorld ; name? : NAME ; m?,m! : MESSAGE | m! = ⊥]

Increase has been modelled at the purse level, and is now promoted and to-
talised:

Increase =̂ Ignore
∨ (∃∆ConPurse • ΦBOp ∧ IncreasePurseOkay)

Abort has been modelled at the purse level, and is now promoted and totalised:

Abort =̂ Ignore
∨ (∃∆ConPurse • AbortPurseOkay ∧ [ΦBOp |m! = ⊥])

5.6 Promoted operations

We promote the individual purse operations, and make them total by disjoining
them with the operation defined above that does nothing.

5.6.1 Value transfer operations

The promoted start operations are:

StartFrom =̂ Ignore
∨ Abort
∨ (∃∆ConPurse • ΦBOp ∧ StartFromPurseOkay)

StartTo =̂ Ignore
∨ Abort
∨ (∃∆ConPurse • ΦBOp ∧ StartToPurseOkay)

50 CHAPTER 5. B MODEL, WORLD

For use in the proofs, we also promote the Eafrom part of the operations on
their own:

StartFromEafromOkay =̂ ∃∆ConPurse •
ΦBOp ∧ StartFromPurseEafromOkay

StartToEafromOkay =̂ ∃∆ConPurse •
ΦBOp ∧ StartToPurseEafromOkay

The promoted protocol operations are:

Req =̂ Ignore ∨ (∃∆ConPurse • ΦBOp ∧ ReqPurseOkay)

Val =̂ Ignore ∨ (∃∆ConPurse • ΦBOp ∧ ValPurseOkay)

Ack =̂ Ignore ∨ (∃∆ConPurse • ΦBOp ∧ AckPurseOkay)

5.6.2 Exception log operations

The promoted log enquiry operation is:

ReadExceptionLog =̂ Ignore
∨ (∃∆ConPurse • ΦBOp ∧ ReadExceptionLogPurseOkay)

The promoted exception log clear operation is:

ClearExceptionLog =̂ Ignore
∨ Abort
∨ (∃∆ConPurse • ΦBOp ∧ ClearExceptionLogPurseOkay)

For use in the proofs, we also promote the Eafrom part of the operations on
their own:

ReadExceptionLogEafromOkay =̂ ∃∆ConPurse •
ΦBOp ∧ ReadExceptionLogPurseEafromOkay

ClearExceptionLogEafromOkay =̂ ∃∆ConPurse •
ΦBOp ∧ ClearExceptionLogPurseEafromOkay

5.7 Operations at the world level only

There are some operations on the world that do not have equivalents on indi-
vidual purses. These are not implemented by the target of evaluation, but need
to be implemented by some manual means or external system.

To retain the simplicity of our proof rules, these operations take the same
input and outputs as all the purse operations.

5.7. OPERATIONS AT THE WORLD LEVEL ONLY 51

5.7.1 Exception Log clear authorisation

The message to clear an exception log can be created only for log details which
are already recorded in the archive. The clear code of the message is based
on the selected logs in the archive. The exception log clear message couples
this clear code with the name of a purse. This supports constraint B–15 which
requires that this operation not put a clearmessage into the ether if the relevant
logs have not been archived.

AuthoriseExLogClearOkay
∆BetweenWorld
m?,m! : MESSAGE
name? : NAME

conAuthPurse′ = conAuthPurse

∃pds : P1 PayDetails •
{name?} × pds ⊆ archive
∧m! = exceptionLogClear(name?, imagepds)

ether ′ = ether ∪ {m!}
archive = archive′

AuthoriseExLogClear =̂ Ignore ∨ AuthoriseExLogClearOkay

Exception logs must be kept for all time to ensure that all value remains ac-
counted for. The operation to clear purses of their exception logs must be
supported by a mechanism to store the cleared logs. This is what the archive
supplies.

The purse supports the ReadExceptionLog operation, which puts an ex-
ception log record into the ether as a message. As the system implementers
have no control over the ether , we have modelled it as lossy at the concrete
level, allowing for messages to be lost from the ether at any time. The archive
is a secure store for information, and to support the security of the purse there
must be a manual mechanism to move log messages from the ether into the
archive for safe keeping. This is modelled by the Archive operation, and is
implemented by some mechanism external to the target of evaluation.

52 CHAPTER 5. B MODEL, WORLD

Archive
∆BetweenWorld
m?,m! : MESSAGE
name? : NAME

conAuthPurse′ = conAuthPurse
ether ′ = ether

archive ⊆
archive′ ⊆

archive∪ { log : NAME × PayDetails |
exceptionLogResult log ∈ ether }

m! = ⊥

This operation non-deterministically copies some exception log information
from messages in the ether into the archive. It ignores its inputs. As one pos-
sible behaviour is to move no messages into the archive, it can behave exactly
like Ignore. The operation is therefore total, and we do not need to disjoin it
with Ignore.

5.8 Forging messages

If arbitrary messages can be sent, then obviously the security can be compro-
mised. We can build into the definition of the ether that it is possible to forge
only some kinds of messages. The only messages it is possible to forge are

• replays of earlier valid messages (added to the ether during an earlier
operation)

• unprotected messages (modelled by being in the initial ether , and hence
being replayable at any time)

• messages it is possible to detect are forged (modelled by the ⊥ message,
present in the initial ether)

This allows us to capture the encryption properties of messages: a message
encapsulating arbitrary details cannot be forged by a third party.

5.9. THE COMPLETE PROTOCOL 53

5.9 The complete protocol

The complete transfer at the between and concrete levels can be described,
informally, by the following sequence of operations:

StartFrom o
9 StartTo o

9 Req o
9 Val o

9 Ack

Other operations may be interleaved in an actual transfer.
The refinement proof in the following sections demonstrates that none of

the individual concrete operations violates the security policy.

Chapter 6

Between model, initialisation and
finalisation

6.1 Initialisation

As with the abstract case, we set up a particular initial between state. We do not
want to model adding new authentic purses to the system, since some of the
operations involved are outside the security boundary. So we allow the world to
be ‘switched off’ and a new world ‘switched on’, where the new world consists
of the old world as it was, plus the new purses. So our initial state must allow
purses to be part-way through transactions.

We set constraints on the initial state of the between system to say that
there are all the request messages in the ether , any current transactions must
be valid, and there are no future messages.

BetweenInitState
BetweenWorld ′

{readExceptionLog,⊥}
∪⋃{ cpd : CounterPartyDetails • {startFrom cpd , startTo cpd} }
⊆ ether ′

The initial ether contains (or may be considered to contain) the following mes-
sages:

• the log enquiry and ⊥ messages (hence a purse can always have a forged
message sent to it)

• all possible start messages, even those referring to a non-authentic purse

56 CHAPTER 6. B INITIAL, FINAL

• no future messages (ensured by the constraints in BetweenWorld′)

So any purse, at any time, can be sent a read log message, or an instruction
to start a transfer; this saves us having to model the IFD sending these mes-
sages. Since the IFD does not authenticate start messages, we cannot insist on
authentic purses at this point.

The inability to forgemessagesmeans that a reqmessage alwaysmentions
an authentic to purse, and a val message an authentic from purse. So a val
message sent on receipt of a req will mention authentic to and from purses.

We must also initialise our concrete inputs, since they are different from
the global inputs. This defines how concrete inputs are interpreted.

BetwInitIn
g? : AIN

m? : MESSAGE
name? : NAME

m? ∈ ran req ⇒
g? = transfer(µ TransferDetails |

from = (req∼m?).from
∧ to = (req∼m?).to
∧ value = (req∼m?).value)

m? ∉ ran req ⇒ g? = aNullIn

6.2 Finalisation

Finalisation maps a BetweenWorld to a GlobalWorld , to specify how the various
concrete state components are observed abstractly.

We finalise by choosing to assume that all the transactions in maybeLost
actually are lost. (In some sense, finalisation treats incomplete transactions as
if they would ‘abort’.)

6.2. FINALISATION 57

BetwFinState
BetweenWorld
GlobalWorld

domgAuthPurse = dom conAuthPurse

∀name : dom conAuthPurse •
(gAuthPursename).balance = (conAuthPursename).balance

∧ (gAuthPursename).lost =
sumValue((definitelyLost ∪maybeLost)

∩ { ld : PayDetails | ld .from = name })

There is a simple relationship between concrete and global balance compo-
nents. The global lost component is related to the concrete maybeLost and
definitelyLost logs (the function sumValue is defined in section D.3).

We must also finalise our concrete outputs, since they are different from
the global outputs. This defines how concrete outputs are interpreted.

BetwFinOut
g! : AOUT
m! : MESSAGE

g! = aNullOut

All concrete outputs are interpreted as the single abstract output, aNullOut .

Chapter 7

Concrete model: implementation

7.1 Concrete World State

The C world state has the same components as the B state; we decorate with a
subscript zero to distinguish like-named B and C components.

Since ∆ConWorld0 has components dashed-then-subscripted, whereas we
require subscripted-then-dashed, we defined our own ∆ and Ξ schemas.

∆ConWorld0 =̂ ConWorld0 ∧ ConWorld ′0
ΞConWorld0 =̂ [∆ConWorld0 | θConWorld0 = θConWorld′0]

7.2 Framing Schema

The concrete world C has the same operations as the B model.
The world we promote to is ConWorld , not BetweenWorld . (Remember

ConWorld has the same structure as BetweenWorld , but none of the constraints
about future messages.) We are also allowed to ‘lose’ messages from the public
ether , which models the fact that the ether may be implemented as a lossy
medium.

So the C framing schema is used to promote the purse operations.

60 CHAPTER 7. C MODEL

ΦCOp
∆ConWorld0
∆ConPurse
m?,m! : MESSAGE
name? : NAME

m? ∈ ether0

name? ∈ dom conAuthPurse0
θConPurse = conAuthPurse0 name?

conAuthPurse′0 = conAuthPurse0 ⊕ {name?� θConPurse′}
archive′0 = archive0

ether ′0 ⊆ ether0 ∪ {m!}

7.3 Ignore, Increase and Abort

The B operations Ignore, Increase and Abort have C equivalents, working on
the C world instead of the B world. These operations are not named operations
of the purse, i.e. they are not visible at the purse interface. We define them so
that they can be used as components in C purse operations.

CIgnore =̂ [ΞConWorld0; name? : NAME ; m?,m! : MESSAGE | m! = ⊥]
CIncrease =̂ CIgnore

∨ (∃∆ConPurse • ΦCOp ∧ IncreasePurseOkay)

CAbort =̂ CIgnore
∨ (∃∆ConPurse • AbortPurseOkay ∧ [ΦCOp |m! = ⊥])

All subsequent operations defined in this chapter correspond to the actual op-
erations of the purse.

7.4 Promoted operations

As with the B promoted operations, the C promoted operations are made total
by disjoining with CIgnore.

7.5. OPERATIONS AT THE WORLD LEVEL ONLY 61

7.4.1 Value transfer operations

The promoted start operations are:

CStartFrom =̂ CIgnore
∨ CAbort
∨ (∃∆ConPurse • ΦCOp ∧ StartFromPurseOkay)

CStartTo =̂ CIgnore
∨ CAbort
∨ (∃∆ConPurse • ΦCOp ∧ StartToPurseOkay)

The promoted protocol operations are:

CReq =̂ CIgnore ∨ (∃∆ConPurse • ΦCOp ∧ ReqPurseOkay)

CVal =̂ CIgnore ∨ (∃∆ConPurse • ΦCOp ∧ ValPurseOkay)

CAck =̂ CIgnore ∨ (∃∆ConPurse • ΦCOp ∧ AckPurseOkay)

7.4.2 Exception log operations

The promoted log enquiry operation is:

CReadExceptionLog =̂ CIgnore
∨ (∃∆ConPurse • ΦCOp ∧ ReadExceptionLogPurseOkay)

The promoted clear operation is:

CClearExceptionLog =̂ CIgnore
∨ CAbort
∨ (∃∆ConPurse • ΦCOp ∧ ClearExceptionLogPurseOkay)

7.5 Operations at the world level only

As with the B model, there are some operations that act on the world, rather
than on individual purses. These operations are specified exactly as they are in
the B model, but acting on ConWorld instead of BetweenWorld .

62 CHAPTER 7. C MODEL

7.5.1 Exception Log clear authorisation

The message to clear an exception log is generated external to the model.

CAuthoriseExLogClear =̂ CIgnore

∨ (∃ΞConPurse • [ΦCOp | (∃ lds : P1 PayDetails |
{name?} × lds ⊆ archive0 •

m! = exceptionLogClear(name?, image lds))])

The operation to move exception log information from the ether to the archive
is

CArchive
∆ConWorld0
m?,m! : MESSAGE
name? : NAME

conAuthPurse′0 = conAuthPurse0
ether ′0 ⊆ ether0

archive0 ⊆
archive′0 ⊆

archive0 ∪ { log : NAME × PayDetails |
exceptionLogResult log ∈ ether0 }

m! = ⊥

7.6 Initial state

The initial state of the C world has an ether that is a subset of one that satisfies
the ‘no futuremessages’ constraints placed on theBworld (the subset is needed
because the C ether is lossy).

ConInitState
ConWorld ′0
∃BetweenWorld ′ | BetweenInitState •

conAuthPurse′0 = conAuthPurse′

∧ archive′0 = archive′

∧ {⊥} ⊆ ether ′0 ⊆ ether ′

7.7. FINALISATION 63

7.7 Finalisation

TheB finalisation is defined for any ConWorld ; we reuse it for the C finalisation.

ConFinState
AuxWorld0
GlobalWorld

domgAuthPurse = dom conAuthPurse0

∀name : dom conAuthPurse0 •
(gAuthPursename).balance
= (conAuthPurse0 name).balance

∧ (gAuthPursename).lost =
sumValue((definitelyLost0 ∪maybeLost0)

∩ { ld : PayDetails | ld .from = name })

Chapter 8

Model consistency proofs

8.1 Introduction

In order to increase confidence that the specifications written are not meaning-
less, it is wise to prove some properties of them.

The least that should be done is to demonstrate that the constraints on
the state and those defining each operation do not reduce to false. So for each
model, the consistency proof obligations are:

• Show it is possible for at least one state to exist (which demonstrates that
the state invariant is not contradictory). If we choose this state to be the
initial state, we also demonstrate that initialisation is not vacuous, too.

� ∃State′ • StateInit

• Show that each operation does not have an empty precondition (which
demonstrates that no operation definition is contradictory).

� ∃State; Input • pre Op

In fact, here we show that all our operations are total, which is the much
stronger condition

� ∀ State; Input • pre Op

We present these proofs for each of our three models below.

66 CHAPTER 8. CONSISTENCY

8.2 Abstract model consistency proofs

8.2.1 Existence of initial abstract state

� ∃AbWorld ′ • AbInitState

Proof:
It is sufficient to find an explicit abstract world that satisfies the constraints of
AbInitState. Consider the abstract world with the components:

abAuthPurse′ = ∅

This satisfies the constraints of AbWorld , so is clearly a suitable initial state.
� 8.2.1

8.2.2 Totality of abstract operations

AbIgnore is total.
Proof:

pre AbIgnore

= pre [∆AbWorld ; a? : AIN ; a! : AOUT |
abAuthPurse′ = abAuthPurse
∧ a! = aNullOut] [defn. AbIgnore]

= [AbWorld ; a? : AIN |
∃AbWorld ′; a! : AOUT |

abAuthPurse′ = abAuthPurse
∧ a! = aNullOut] [defn. pre]

= [AbWorld ; a? : AIN |
∃abAuthPurse′ : NAME � �→AbPurse; a! : AOUT |

abAuthPurse′ = abAuthPurse
∧ a! = aNullOut]

[one point rule]

= [AbWorld ; a? : AIN]

�
All the abstract operations are total.
Proof:

8.3. BETWEEN MODEL CONSISTENCY PROOFS 67

They are total by construction. They are all of the form AbOpOkay ∨
AbIgnore, so:

pre AbOp

= pre (AbOpOkay ∨ AbIgnore)

= pre AbOpOkay ∨ pre AbIgnore
= pre AbOpOkay ∨ [AbWorld ; a? : AIN]

= [AbWorld ; a? : AIN]

�
� 8.2.2
� 8.2

8.3 Between model consistency proofs

8.3.1 Existence of between initial state

� ∃BetweenWorld′ • BetweenInitState

Proof:
It is sufficient to find an explicit between world that satisfies the constraints of
BetweenWorldInit .

A world of no purses, an ether that consists of exactly the messages ex-
plicitly allowed of BetweenWorldInit , and an empty archive, is sufficient.

conAuthPurse′ = ∅
ether ′ = {readExceptionLog,⊥}

∪⋃{ cpd : CounterPartyDetails • {startFrom cpd , startTo cpd} }
archive′ = ∅

This satisfies the constraints in ConWorld . It also satisfies the extra constraints
of BetweenWorld : all the quantifiers are over empty sets (of purses or messages)
and hence are trivially true.

� 8.3.1

8.3.2 Totality of between operations

All between operations are total.
Proof:

68 CHAPTER 8. CONSISTENCY

They all offer the option of Ignore (explicitly by disjunction, except for Archive,
which offers it implicitly). Ignore is the total identity operation.

� 8.3.2
� 8.3

8.4 Concrete model consistency proofs

8.4.1 Existence of concrete initial state

� ∃ConWorld′0 • ConInitState

Proof:
The concrete state is identical to the between state, except for fewer constraints.
Therefore as a between state exists, so does a concrete one.

� 8.4.1

8.4.2 Totality of concrete operations

All concrete operations are total.
Proof:
The concrete operations are identical to the between ones. Therefore if the
between operations are total, so are the concrete ones.

� 8.4.2
� 8.4
� 8

Part II

First Refinement: A to B

69

Chapter 9

Refinement Proof Rules

9.1 Security of the implementation

We prove the concrete model C is secure with respect to the abstract modelA
in two stages. We first show (in this part) that B refines A then we show (in
part III) that C refines B.

To show that B refines A we show that every (promoted) B operation
correctly refines someA operation.

Much of what the B (and C) operations achieve is invisible at theA level,
so many B operations are refinements of AbIgnore (abstractly ‘do nothing’).
Some of the B operations that are refinements of AbIgnore do serve to resolve
abstract non-determinism.

The refinements are

AbTransfer # Req

AbIgnore # StartFrom
∨ StartTo
∨ Val
∨ Ack
∨ ReadExceptionLog
∨ ClearExceptionLog
∨ AuthoriseExLogClear
∨ Archive

∨ Ignore
∨ Increase
∨ Abort

72 CHAPTER 9. A TO B RULES

Correctness

R'
ROut

R
ROut

B'; BOut B; BOutB; BInB'; BIn BOp

A'; AOut A; AOutA; AInA'; AIn AOp

Initialisation

AInit

BInit

R
RIn

R'
RIn

Finalisation

AFin

BFin

Figure 9.1: A summary of the backward proof rules. The hypothesis is the
existence of the lower (solid) path. The proof obligation is to demonstrate the
existence of an upper (dashed) path.

Each of these refinements must be proved correct.
For theA to B refinement proofs, the following set of ‘upward’ or ‘back-

ward’ proof rules are sufficient to show the refinement [Woodcock & Davies
1996]. For the B to C refinement proofs, the ‘downward’ or ‘forward’ proof
rules are sufficient to show the refinement.

These rules are expressed in terms of a ‘concrete’ (lower) and ‘abstract’
(upper) model. In this first refinement the ‘abstract’ model is A and the ‘con-
crete’ model is B. In the second refinement the ‘abstract’ model is now B and
the ‘concrete’ model is C.

9.2 Backwards rules proof obligations

Appendix A describes the syntax for theorems, and how we lay out the proofs.
The backward proof rules are summarised in figure 9.1, and described below.

9.2.1 Initialisation

We start from some global state G, and initialise it to an abstract initial state
A′ and concrete initial state B′. These must be related by the retrieve.

� ∀G; GIn; B′; BIn; A′; AIn | BInitState ∧ BInitIn ∧ R′ ∧ RIn •
AInitState ∧ AInitIn

Given any global initial stateG, if we initialise it with BInit to B′, then retrieve B′

to A′, we must get the same abstract initial state as if we had initialised directly
to A′ using AInit .

9.2. BACKWARDS RULES PROOF OBLIGATIONS 73

This can be simplified to:

BInitState; R′ � AInitState

BInitIn; RIn � AInitIn

9.2.2 Finalisation

We start from some abstract final state A and concrete final state B, related by
the retrieve, and finalise them to the same global final state G′.

� ∀G′; GOut ; B; BOut | BFinState ∧ BFinOut •
∃A; AOut • R ∧ ROut ∧ AFinState ∧ AFinOut

Given any concrete final state B that finalises with BFin to G′, then it is possible
to find a corresponding abstract final state A, that both retrieves from B and
finalises with AFin to the same G′.

This can be simplified to:

BFinState � ∃A • R ∧ AFinState

BFinOut � ∃AOut • ROut ∧ AFinOut

9.2.3 Applicability

� ∀B; BIn | (∀A; AIn | R ∧ RIn • pre AOp) • pre BOp

For each operation: if we are in a concrete state, and if all the abstract states
to which it retrieves satisfy the precondition of the abstract operation, then we
must also satisfy the precondition of the corresponding concrete operation.

For our case, AOp is total (this needs to be proved for each of the abstract
operations — see section 8.2.2). So pre AOp = true. So

(∀A; AIn | R ∧ RIn • pre AOp)
⇒ (∀A; AIn • R ∧ RIn ⇒ pre AOp)
⇒ (∀A; AIn • R ∧ RIn ⇒ true)
⇒ (∀A; AIn • true)
⇒ true

So, for total abstract operations, the applicability proof obligation reduces to

B; BIn � pre BOp

That is, a proof that BOp is total, too. This is discharged in section 8.3.2.

74 CHAPTER 9. A TO B RULES

9.2.4 Correctness

� ∀B; BIn | (∀A; AIn | R ∧ RIn • pre AOp) •
(∀A′; AOut ; B′; BOut | BOp ∧ R′ ∧ ROut •

(∃A; AIn • R ∧ RIn ∧ AOp))

For each operation: if we start in a concrete state corresponding to the precon-
dition of the abstract operation (the applicability condition ensures we then
satisfy the concrete operation’s precondition), and do the concrete operation,
and then retrieve to the abstract state, then we end up in a state that we could
have reached doing the abstract operation.

Using pre AOp = true (proved during applicability), this reduces to

� ∀B; BIn • (∀A′; AOut ; B′; BOut | BOp ∧ R′ ∧ ROut •
(∃A; AIn • R ∧ RIn ∧ AOp))

Moving the quantifier into the hypothesis:

B; BIn; A′; AOut ; B′; BOut | BOp ∧ R′ ∧ ROut
� ∃A; AIn • R ∧ RIn ∧ AOp

Then rearranging the schema predicates from the predicate part to the decla-
ration part, and removing the redundant declarations, gives the final form we
use:

BOp; R′; ROut � ∃A; AIn • R ∧ RIn ∧ AOp

Chapter 10

A to B retrieve relation

The purpose of the retrieve relation is to capture the details of the various states
the concrete world can be in, and which abstract state(s) these correspond to,
and the relationships between the concrete and abstract inputs and outputs.

For the first refinement, we talk of Rab: the Retrieve fromA to B. Later,
for the second refinement, we talk of Rbc: the Retrieve from B to C.

10.1 Retrieve state

The domains of the B andA ‘world’ functions define the authentic purses.

AbstractBetween
AbWorld
BetweenWorld

domabAuthPurse = dom conAuthPurse

A balance and lost are related to B balance and exLogs. The relationship is re-
lational, not functional, and highly non-deterministic part-way through a trans-
action.

10.1.1 Exposing chosenLost

chosenLost is a non-deterministic choice of a subset of all themaybeLost values
that we ‘choose’ to say will be lost.

76 CHAPTER 10. RAB

RabCl
AbstractBetween
chosenLost : PPayDetails

chosenLost ⊆maybeLost

∀name : dom conAuthPurse •
(abAuthPursename).lost =

sumValue((definitelyLost ∪ chosenLost)
∩ {pd : PayDetails | pd .from = name })

∧ (abAuthPursename).balance =
(conAuthPursename).balance
+ sumValue((maybeLost \ chosenLost)

∩ {pd : PayDetails | pd .to = name })

The predicate links the B andA values1:

• For a purse name, its lost value is the sum of the values in all those trans-
actions that are definitely lost or that we have chosen to assume lost with
name as the from purse. (Note the deliberate similarity of this definition
and that in BetwFinState.)

• TheA balance of a purse is its B balance plus the value of all those trans-
actions we have chosen to assume will not be lost, with name as the to
purse. (For a give name, there is at most one such transaction.)

A consequence of this relationship is that the abstract lost and balance values
of a purse can depend on the corresponding values of more than one concrete
purse.

10.1.2 Hiding chosenLost

The retrieve relation is thenRabCl with the non-deterministic choice chosenLost
hidden2:

Rab =̂ ∃ chosenLost : PPayDetails • RabCl

We define the retrieve in this way because in the proof we need to have direct
access to chosenLost .

1It is valid to apply sumValue in this predicate, because both definitelyLost and maybeLost
are finite. definitelyLost is finite because of BetweenWorld constraint B–13. maybeLost is finite
because toInEpv is finite: each pd in the set comprehension for toInEpv comes from a distinct
purse in conAuthPurse, which itself is a finite function.

2We use this form to simplify the general correctness proofs, section 14.4.3.

10.1. RETRIEVE STATE 77

10.1.3 Exposing pdThis

In the proof, we find that we wish to focus on a single pd (any pd). We define
a new schema, RabClPd , identical to RabCl except for an extra declaration of a
pd .

RabClPd
RabCl
pdThis : PayDetails

We split the predicate part of RabClPd into two cases that partition the possi-
bilities:

• ∀name : dom conAuthPurse | name ∉ {pdThis.from,pdThis.to}
purses not involved in the pdThis transaction.

• ∀name : dom conAuthPurse | name ∈ {pdThis.from,pdThis.to}
purses involved in the pdThis transaction.

In all cases the purses other than the from and to purses retrieve their balance
and lost values in the same way, so we factor this part of the predicate out into
a separate schema, OtherPursesRab, which we include with the remaining part
of the predicate.

OtherPursesRab
AbstractBetween
chosenLost : PPayDetails
pdThis : PayDetails

∀name : dom conAuthPurse | name ∉ {pdThis.from,pdThis.to} •
(abAuthPursename).lost =

sumValue((definitelyLost ∪ chosenLost)
∩ {pd : PayDetails | pd .from = name })

∧ (abAuthPursename).balance =
(conAuthPursename).balance
+ sumValue((maybeLost \ chosenLost)

∩ {pd : PayDetails | pd .to = name })

We split RabClPd into four cases that partition the possibilities:

• RabOkayClPd : pdThis ∈maybeLost\chosenLost half way through a trans-
action that will succeed. SincemaybeLost refers only to authentic purses,

78 CHAPTER 10. RAB

we know that {pdThis.from,pdThis.to} ⊆ dom conAuthPurse, and so the
remaining quantifier is reduced to these two cases.

• RabWillBeLostClPd : pdThis ∈ chosenLost half way through a transaction
that will lose the value (the to purse has not yet aborted, but we choose
that it will, rather than receive the val). Since chosenLost ⊆ maybeLost
refers only to authentic purses, we know that {pdThis.from,pdThis.to} ⊆
dom conAuthPurse, and so the remaining quantifier is reduced to these
two cases.

• RabHasBeenLostClPd : pdThis ∈ definitelyLost half way through a trans-
action that has lost the value (the to purse has already moved on). Since
definitelyLost refers only to authentic purses, we know that {pdThis.from,
pdThis.to} ⊆ dom conAuthPurse, and so the remaining quantifier is re-
duced to these two cases.

• RabEndClPd : pdThis ∉ definitelyLost ∪ maybeLost At the beginning or
end of a transaction, so there is no non-determinism in the lost or balance
components. A general pdThis may refer to non-authentic purses, so the
quantifier is reduced no further.

In the later proofs of operations that change purse status (Abort , Req, Val and
Ack), we argue how the relevant pd moves in and out of the sets maybeLost
and definitelyLost , and thereby choose the appropriate one of the four cases of
the retrieve to use before and after the operation.

We perform this split by systematically subtracting out the chosen pd from
the lost and balance expressions. If the pd was in fact in the relevant set, we
then have to add the subtracted value back in, otherwise we do nothing, since
we have made no change to the expression.

10.1. RETRIEVE STATE 79

RabOkayClPd
AbstractBetween
chosenLost : PPayDetails
pdThis : PayDetails

chosenLost ⊆maybeLost

pdThis ∈maybeLost \ chosenLost
(abAuthPurse pdThis.from).balance =

(conAuthPurse pdThis.from).balance
+ sumValue(((maybeLost \ chosenLost)

∩ {pd : PayDetails | pd .to = pdThis.from })
\{pdThis})

(abAuthPurse pdThis.to).balance =
pdThis.value
+ (conAuthPurse pdThis.to).balance
+ sumValue(((maybeLost \ chosenLost)

∩ {pd : PayDetails | pd .to = pdThis.to })
\{pdThis})

∀name : {pdThis.from,pdThis.to} •
(abAuthPursename).lost =

sumValue(((definitelyLost ∪ chosenLost)
∩ {pd : PayDetails | pd .from = name })
\{pdThis})

OtherPursesRab

In the Okay case, pdThis is not lost, so its value has to be added back into the
to purse’s balance component.

80 CHAPTER 10. RAB

RabWillBeLostClPd
AbstractBetween
chosenLost : PPayDetails
pdThis : PayDetails

chosenLost ⊆maybeLost

pdThis ∈ chosenLost

(abAuthPurse pdThis.from).lost =
pdThis.value
+ sumValue(((definitelyLost ∪ chosenLost)

∩ {pd : PayDetails | pd .from = pdThis.from })
\{pdThis})

(abAuthPurse pdThis.to).lost =
sumValue(((definitelyLost ∪ chosenLost)

∩ {pd : PayDetails | pd .from = pdThis.to })
\{pdThis})

∀name : {pdThis.from,pdThis.to} •
(abAuthPursename).balance =

(conAuthPursename).balance
+ sumValue(((maybeLost \ chosenLost)
∩ {pd : PayDetails | pd .to = name })

\{pdThis})
OtherPursesRab

In the WillBeLost case, pdThis is chosen lost, so its value has to be added back
into the from purse’s lost component.

10.1. RETRIEVE STATE 81

RabHasBeenLostClPd
AbstractBetween
chosenLost : PPayDetails
pdThis : PayDetails

chosenLost ⊆maybeLost

pdThis ∈ definitelyLost

(abAuthPurse pdThis.from).lost =
pdThis.value
+ sumValue(((definitelyLost ∪ chosenLost)

∩ {pd : PayDetails | pd .from = pdThis.from })
\{pdThis})

(abAuthPurse pdThis.to).lost =
sumValue(((definitelyLost ∪ chosenLost)

∩ {pd : PayDetails | pd .from = pdThis.to })
\{pdThis})

∀name : {pdThis.from,pdThis.to} •
(abAuthPursename).balance =

(conAuthPursename).balance
+ sumValue(((maybeLost \ chosenLost)

∩ {pd : PayDetails | pd .to = name })
\{pdThis})

OtherPursesRab

In the HasBeenLost case, pdThis is definitely lost, so its value has to be added
back into the from purse’s lost component.

82 CHAPTER 10. RAB

RabEndClPd
AbstractBetween
chosenLost : PPayDetails
pdThis : PayDetails

chosenLost ⊆maybeLost

pdThis ∉ definitelyLost ∪maybeLost

∀name : dom conAuthPurse∩ {pdThis.from,pdThis.to} •
(abAuthPursename).lost =

sumValue(((definitelyLost ∪ chosenLost)
∩ {pd : PayDetails | pd .from = name })
\{pdThis})

∧ (abAuthPursename).balance =
(conAuthPursename).balance
+ sumValue(((maybeLost \ chosenLost)

∩ {pd : PayDetails | pd .to = name })
\{pdThis})

OtherPursesRab

In the End case, pdThis is in neither component, so its value does not have to
be added back in anywhere.

10.1.4 Partition

We have the identity3:

RabClPd
�
RabClPd 	

(RabOkayClPd
∨ RabWillBeLostClPd
∨ RabHasBeenLostClPd
∨ RabEndClPd)

Proof:
The four cases differ in the predicate on pdThis, which together partition the
possibilities. It is obvious that the four cases cover the possibilities. We use
Lemma ‘lost’, which says that definitelyLost andmaybeLost are disjoint, to show
that the four cases are non-overlapping.

3Used in: Req check-operation, splitting into four cases, section 18.6.

10.1. RETRIEVE STATE 83

� 10.1.4

10.1.5 Quantified forms

Because the introduction of the pd inRabClPd is arbitrary, we have the following
identities:

RabCl � RabCl 	 (∀pdThis : PayDetails • RabClPd)

and

RabCl � RabCl 	 (∃pdThis : PayDetails • RabClPd)

Proof:
That both these identities holdmay seem odd, but can be intuitively understood
by looking at a similar, smaller example. Consider a non-empty subset of N
called X . Then it is certainly true that

∃ x : X • X = X \ {x} ∪ {x}

and also

∀ x : X • X = X \ {x} ∪ {x}

� 10.1.5
We have just chosen to extract an arbitrary element from the set for special
naming. We do the same with RabCl, selecting an arbitrary pdThis for special
naming, but without changing the meaning of the schema. This means that we
can split up RabCl into a collection of four disjunctions on a pd in different
ways as the proof dictates4.

10.1.6 The full Retrieve state relation

We also define versions of these schemas with the pdThis and chosenLost hid-
den (so they have the same signature as Rab):

RabOkay =̂ RabOkayClPd \ (pdThis, chosenLost)
RabWillBeLost =̂ RabWillBeLostClPd \ (pdThis, chosenLost)
RabHasBeenLost =̂ RabHasBeenLostClPd \ (pdThis, chosenLost)
RabEnd =̂ RabEndClPd \ (pdThis, chosenLost)

4Used in: lemma ‘deterministic’, exposing pdThis (twice), section 14.4.3.

84 CHAPTER 10. RAB

10.2 Retrieve inputs

Each A operation has the same type of input, an AIN . Each B operation has
the same type of input, a NAME and a MESSAGE . The input part of the retrieve
captures the relationship between theseA and B inputs.

RabIn =̂ BetwInitIn[a?/g?]

The B inputs are related toA inputs in the following manner:

RI–1 Req: theA transfer details are in the req

RI–2 All other B inputs: theA input is aNullIn.

10.3 Retrieve outputs

The output retrieve is particularly simple: all B outputs retrieve to the single
A output.

RabOut =̂ BetwFinOut[a!/g!]

Chapter 11

A to B initialisation proof

11.1 Proof obligations

The requirement is to prove that the between initial state correctly refines the
abstract initial state, and the between inputs correctly refine the abstract inputs.
That is,

BetweenInitState; Rab′ � AbInitState

BetwInitIn; RabIn � AbInitIn

11.2 Proof of initial state

We successively thin the hypothesis to expose the consequent.

BetweenWorldInit ∧ Rab′ [hyp]

⇒ Rab′ [thin]

⇒ AbWorld ′ [thin]

⇒ AbInitState [defn AbInitState]

� 11.2

11.3 Proof of initial inputs

Expand RabIn and AbInitIn.

BetwInitIn; BetwInitIn[a?/g?] � a? = g?

86 CHAPTER 11. A TO B INITIALISATION

BetwInitIn defines g? as a total function of (m?,name?); call it f . Thin.

g?,a? : AIN | ∃ f : MESSAGE ×NAME→AIN •
∀m : MESSAGE ; n : NAME •

g? = f (m,n) ∧ a? = f (m,n)
� a? = g?

Simplify and thin.

g?,a? : AIN | g? = a? � a? = g?

� 11.3
� 11

Chapter 12

A to B finalisation proof

12.1 Proof obligations

The requirement is to prove that the between final state correctly refines the ab-
stract final state, and the between outputs correctly refine the abstract outputs.
That is,

BetwFinOut � ∃a! : AOUT • RabOut ∧ AbFinOut

BetwFinState � ∃AbWorld • Rab ∧ AbFinState

This proof obligation is summarised in figure 12.1.

B

A

AFin

chosenLost = maybeLost

chosenLost = Ø

BFin

Rab

Figure 12.1: Backwards rules finalisation proof obligation

88 CHAPTER 12. A TO B FINALISATION

12.2 Output proof

Expand RabOut and AbFinOut .

BetwFinOut � ∃a! : AOUT • BetwFinOut[a!/g!] ∧ a! = g!

[one point] away the a! in the consequent

BetwFinOut � BetwFinOut[g!/g!]

� 12.2

12.3 State proof

We [cut] in an AbWorld , and put it equal to the GlobalWorld .

BetwFinState; AbWorld | abAuthPurse = gAuthPurse
�
∃AbWorld • Rab ∧ AbFinState

Cutting in this new hypothesis requires us to discharge a side-lemma about the
existence of such an AbWorld . This is trivial to do, by the [one point] rule.

We use [consq exists] to remove the existential quantifier in the consequent,
by using the value just cut in:

BetwFinState; AbWorld | abAuthPurse = gAuthPurse
�
Rab ∧ AbFinState

We prove each of the conjuncts in the consequent separately [consq conj], drop-
ping unneeded hypotheses as appropriate [thin].

12.3.1 Case AbFinState

BetwFinState; AbWorld | abAuthPurse = gAuthPurse � AbFinState

The predicates in AbFinState occur in the hypothesis, so are satisfied trivially.
� 12.3.1

12.3.2 Case Rab

We expand out Rab into its conjuncts:

BetwFinState; AbWorld | abAuthPurse = gAuthPurse � Rab

12.3. STATE PROOF 89

Retrieve of equality

We have the equation

domabAuthPurse = dom conAuthPurse

which can be shown from the equality of gAuthPurse and conAuthPurse in BFin-
State, and between gAuthPurse and abAuthPurse in the hypothesis.

Similarly, in each case the part of the retrieve to be proven has an equality
between the abstract and concrete. We show this holds from an equality in
that component between global and concrete in BetwFinState, and and equality
between global and abstract in the hypothesis.

� 12.3.2

Case Rab

BetwFinState; AbWorld | abAuthPurse = gAuthPurse � Rab

Expanding BetwFinState, thinning unwanted predicates, substituting for global,
and expanding Rab, we get:

AuxWorld ; AbWorld |
∀name : dom conAuthPurse •

(abAuthPursename).lost =
sumValue((definitelyLost ∪maybeLost)

∩ {pd : PayDetails | pd .from = name })
∧ (abAuthPursename).balance = (conAuthPursename).balance

�
∃ chosenLost : PmaybeLost •

∀name : dom conAuthPurse •
(abAuthPursename).lost =

sumValue((definitelyLost ∪ chosenLost)
∩ {pd : PayDetails | pd .from = name })

∧ (abAuthPursename).balance =
(conAuthPursename).balance
+ sumValue((maybeLost \ chosenLost)

∩ {pd : PayDetails | pd .to = name })

We [one point] away the chosenLost in the consequent by putting it equal to
maybeLost (having [cut] in such a value and proved it exists). We also simplify

90 CHAPTER 12. A TO B FINALISATION

the equations, now that maybeLost \ chosenLost is empty:

AuxWorld ; AbWorld ; chosenLost : PPayDetails |
chosenLost =maybeLost
∧ (∀name : dom conAuthPurse •

(abAuthPursename).lost =
sumValue((definitelyLost ∪maybeLost)

∩ {pd : PayDetails | pd .from = name })
∧ (abAuthPursename).balance

= (conAuthPursename).balance)
�
∀name : dom conAuthPurse •

(abAuthPursename).lost =
sumValue((definitelyLost ∪maybeLost)

∩ {pd : PayDetails | pd .from = name })
∧ (abAuthPursename).balance = (conAuthPursename).balance

The consequent also appears as an hypothesis, so the proof is complete.
� 12.3.2
� 12.3.2
� 12.3
� 12

Chapter 13

A to B applicability proofs

13.1 Proof obligation

In section 9.2.3 we showed that it is sufficient to prove totality of the concrete
operations.

13.2 Proof

Totality for each between operation was shown in the specification consistency
proofs, section 8.3.2.

� 13

Chapter 14

Lemmas for theA to B correctness
proofs

14.1 Introduction

The correctness proof obligation, to be discharged for each abstract operation
AOp, where AOp # BOpFull = BOp1 ∨ BOp2 ∨ . . . is the corresponding refine-
ment, is:

BOpFull ; Rab′; RabOut � ∃AbWorld ; a? : AIN • Rab ∧ RabIn ∧ AOp

This proof obligation is summarised in figure 14.1. There are multiple lower
paths both because the concrete operation is non-deterministic, and because
the retrieve is non-deterministic. For each lower path triple of (B,B′,A′), we
have to find an A that ensures the existence of an upper path; it does not have
to be the same A in each case.

There are various classes of B operation depending on whichA operation
is being refined. There are commonalities in the proof structures for these
classes. This chapter develops general mechanisms and lemmas to facilitate
proving most operations. This fits into the following main areas

• lemma ‘multiple refinement’: When the B operation that refines an A
operation in a disjunction of several individual B operations, the proof
obligation can be split into one for each individual B operation.

• lemma ‘ignore’: The ignore branch, and any ‘abort’ branch, of each B op-
eration need be proved once only.

• lemma ‘deterministic’: A simplification of all correctness proofs, by ex-
posing the non-determinism in the retrieve, to the three cases exists-pd,
exists-chosenLost, and check-operation (with the introduction of two ar-

94 CHAPTER 14. A TO B LEMMAS

BOpIgnore

Rab'
ROut

B'; m!B; m?; name?

BOpOkay

A'; a!

A; a? AOp

Rab
RIn

...

Figure 14.1: The correctness proof. The hypothesis is the existence all of the
lower (solid) paths. The proof obligation is to demonstrate the existence of an
upper (dashed) path in each case.

bitrary predicates P and Q, instantiated differently depending on the par-
ticular operation).

• lemma ‘lost unchanged’: Where maybeLost and definitelyLost are uncha-
nged, the exists-pd and exists-chosenLost obligations can be automati-
cally discharged.

• lemma ‘AbIgnore’: A further simplification of the check-operation proof
obligation, for the operations that refine AbIgnore, to check-operation-
ignore.

• proof that concrete Ignore refines AbIgnore
• proof that concrete Abort refines AbIgnore
• lemma ‘abort backward’: For an operation expressed as Abort composed
with a simpler version of the operation, we need prove only that the sim-
pler operation is a refinement

The lemmas developed in this chapter are collected together in Appendix C for
ease of reference.

14.2 Lemma ‘multiple refinement’

In most cases of AOp, the corresponding BOpFull is a disjunction of many
individual B operations, BOp1 ∨ BOp2 ∨ . . . whose differences are invisible
abstractly. For example,AbIgnore is refined by a disjunction of several separate
operations.

We use the inference rule [hyp disj] to split these large disjunctions into
separate proof obligations for each of the B operations.

14.3. LEMMA ‘IGNORE’: SEPARATING THE BRANCHES 95

14.3 Lemma ‘ignore’: separating the branches

Each between operation BOp is promoted from BOpPurseOkay , disjoined with
Ignore, and sometimes with Abort . Call the first disjunction BOpOkay :

BOpOkay =̂ ∃∆ConPurse • ΦBOp ∧ BOpPurseOkay

We use the inference rule [hyp disj], to split the correctness proof into two (or
three) parts, one for each disjunct, each of which must be proved.

Abort ; Rab′; RabOut � ∃AbWorld ; a? : AIN • Rab ∧ RabIn ∧ AOp

Ignore; Rab′; RabOut � ∃AbWorld ; a? : AIN • Rab ∧ RabIn ∧ AOp

BOpOkay ; Rab′; RabOut � ∃AbWorld ; a? : AIN • Rab ∧ RabIn ∧ AOp

All the abstract operations include an option of failing (equivalent to the con-
crete Ignore), which results in no change to the abstract state. We can therefore
strengthen the conclusion of the Ignore and Abort theorems and prove

Ignore; Rab′; RabOut � ∃AbWorld ; a? : AIN • Rab ∧ RabIn ∧ AbIgnore

Abort ; Rab′; RabOut � ∃AbWorld ; a? : AIN • Rab ∧ RabIn ∧ AbIgnore

These are independent of the particular operation AOp. Thus we need prove
these theorems only once (which we do in sections 14.7 and 14.8). To prove
the correctness of BOp we need additionally to prove the remaining BOpOkay
theorem.

14.4 Lemma ‘deterministic’: simplifying the Okay branch

The Okay branch of the correctness proof is, in general,

BOpOkay ; Rab′; RabOut � ∃AbWorld ; a? : AIN • Rab ∧ RabIn ∧ AOp

In order to find an AbWorld that is appropriate, we expose the non-determinism
in the retrieve. The non-determinism occurs in the Rab branch of the retrieve
in terms of uncertainty about which transactions still in process will terminate
successfully, and which will terminate with a lost value.

We also expose the transaction that is currently in progress, to make it
available to the proof.

96 CHAPTER 14. A TO B LEMMAS

14.4.1 Choosing an input

We choose a value of a? that is consistent with RabIn. Since RabIn is functional
from m? and name? to a?, we know this choice of a? is uniquely determined.
We [cut] this value for a? into the hypothesis, and remove the quantifier on a?
by the [consq exists] rule.

We note that RabIn in the consequent is independent of the choice of
AbWorld , so can be pulled out of that quantifier.

BOpOkay ; RabOut ; Rab′; a? : AIN | RabIn
�
RabIn ∧ (∃AbWorld • Rab ∧ AOp)

We split the proof into two on the conjunction in the consequent [consq conj],
one for RabIn, one for ∃AbWorld • Rab ∧ AOp.

RabIn is trivially satisfied by this choice of a? in the hypothesis.
The declaration of a? in RabIn allows us to drop the explicit declaration

in the hypothesis, giving

BOpOkay ; RabOut ; Rab′; RabIn � ∃AbWorld • Rab ∧ AOp

14.4.2 Cutting in ∆ConPurse

It helps to work with the unpromoted form of the operation. We do this
by expanding BOpOkay , according to its promoted definition, And [cut]ting
∆ConPurse into the hypothesis such that BOpPurseOkay and ΦBOp hold. (The
side-lemma is satisfied from the expanded definition of BOpOkay in the hy-
pothesis; which states that such a ∆ConPurse exists.)

(∃∆ConPurse • ΦBOp ∧ BOpPurseOkay);
RabOut ; Rab′; RabIn; ∆ConPurse |

ΦBOp ∧ BOpPurseOkay
�
∃AbWorld • Rab ∧ AOp

We rearrange the hypothesis, moving ΦBOp and BOpPurseOkay from the pred-
icate part to the declaration part. Since ΦBOp declares ∆ConPurse, we remove
the latter. We [thin] the hypothesis of the expanded definition of BOpOkay.

ΦBOp; BOpPurseOkay ; RabOut ; Rab′; RabIn � ∃AbWorld • Rab ∧ AOp

14.4. LEMMA ‘DETERMINISTIC’: SIMPLIFYING THE OKAY BRANCH 97

14.4.3 Exposing chosenLost and pdThis

We need tomake some of the internal components visible to the proof to enable
us to break the proof into sections.

We replace Rab′ with the quantified form of RabCl′ (section 10.1.2), giving

ΦBOp; BOpPurseOkay ; RabOut ;
(∃ chosenLost ′ : PPayDetails • RabCl′); RabIn

�
∃AbWorld • Rab ∧ AOp

We now use [hyp exists] to remove the quantification, giving us

ΦBOp; BOpPurseOkay ; RabOut ; RabCl′; RabIn
�
∃AbWorld • Rab ∧ AOp

Next, we [cut] in a declaration of an arbitrary payment detail pdThis. In practice,
this is the pd for the payment being processed by BOpOkay , but in this general
manipulation we don’t have enough information to specify this. We therefore
constrain the pdThis with some arbitrary predicate P.

This generates a non-trivial lemma, exists-pd, to be proved in each specific
case, as

ΦBOp; BOpPurseOkay ; RabOut ; RabCl′; RabIn
�
∃pdThis : PayDetails • P

and leaves our proof obligation as

ΦBOp; BOpPurseOkay ; RabOut ; RabCl′; RabIn; pdThis : PayDetails |
P

�
∃AbWorld • Rab ∧ AOp

In the hypothesis we rewrite RabCl′ as the universally quantified form of Rab-
ClPd′ (section 10.1.5).

ΦBOp; BOpPurseOkay ; RabOut ;
(∀pdThis′ : PayDetails • RabClPd′);
RabIn; pdThis : PayDetails |

P
�
∃AbWorld • Rab ∧ AOp

98 CHAPTER 14. A TO B LEMMAS

Rather than hypothesising this is true for all pdThis′s, we choose a particular
value in the quantification. (This is valid, [hyp uni], because assuming it true
for only a particular value is weaker than assuming it is true for all values.) The
value we choose for pdThis′ is that of the value pdThis. This substitutes the
value pdThis for pdThis′ in the Rab′ schema. This gives

ΦBOp; BOpPurseOkay ; RabOut ; RabClPd′[pdThis/pdThis′]; RabIn;
pdThis : PayDetails |

P
�
∃AbWorld • Rab ∧ AOp

The declaration in RabClPd′ allows us to drop the explicit declaration of pdThis.
So we rewrite this more simply as

ΦBOp; BOpPurseOkay ; RabOut ; RabClPd′[pdThis/pdThis′]; RabIn |
P

�
∃AbWorld • Rab ∧ AOp

In the consequent we do a similar thing: expose chosenLost , and rewrite Rab
as the existentially quantified form of RabClPd (section 10.1.5)

ΦBOp; BOpPurseOkay ; RabOut ; RabClPd′[pdThis/pdThis′]; RabIn |
P

�
∃AbWorld •

(∃ chosenLost : PPayDetails; pd : PayDetails
• RabClPd[pd/pdThis])

∧ AOp

We strengthen the consequent by adding the requirement that the value of pd
claimed to exist on the right hand side is actually equal to the value pdThis
declared on the left hand side. Similarly, we constrain chosenLost sufficiently.
This we do by adding one requirement we always need (namely, that chosenLost
⊆maybeLost), and one arbitrary predicateQ, as we did with pdThis. This pred-
icate is instantiated to some specific predicate each time this general manipu-

14.4. LEMMA ‘DETERMINISTIC’: SIMPLIFYING THE OKAY BRANCH 99

lation is invoked.

ΦBOp; BOpPurseOkay ; RabOut ; RabClPd′[pdThis/pdThis′]; RabIn |
P

�
∃AbWorld •

(∃ chosenLost : PPayDetails; pd : PayDetails •
pd = pdThis ∧ Q
∧ chosenLost ⊆maybeLost
∧ RabClPd[pd/pdThis])

∧ AOp

We can remove the pd in the consequent with the [one point] rule, because we
have an explicit value for it (namely, pdThis).

ΦBOp; BOpPurseOkay ; RabOut ; RabClPd′[pdThis/pdThis′]; RabIn |
P

�
∃AbWorld •

(∃ chosenLost : PPayDetails •
Q ∧ chosenLost ⊆maybeLost
∧ RabClPd)

∧ AOp

We [cut] into the hypothesis a chosenLost with the same properties as it has
in the consequent (that is, the predicate Q ∧ chosenLost ⊆ maybeLost). This
generates a side lemma that such a value exists, exists-chosenLost, which must
be discharged in each specific case, as

ΦBOp; BOpPurseOkay ; RabOut ; RabClPd′[pdThis/pdThis′]; RabIn |
P

�
∃ chosenLost : PPayDetails • Q ∧ chosenLost ⊆maybeLost

100 CHAPTER 14. A TO B LEMMAS

This leaves:

ΦBOp; BOpPurseOkay ; RabOut ; RabClPd′[pdThis/pdThis′]; RabIn;
chosenLost : PPayDetails |

P ∧ Q ∧ chosenLost ⊆maybeLost
�
∃AbWorld •

(∃ chosenLost : PPayDetails •
Q ∧ chosenLost ⊆maybeLost
∧ RabClPd)

∧ AOp

We remove the existential quantification using the [consq exists] for chosenLost:

ΦBOp; BOpPurseOkay ; RabOut ; RabClPd′[pdThis/pdThis′]; RabIn;
chosenLost : PPayDetails |

P ∧ Q ∧ chosenLost ⊆maybeLost
�
∃AbWorld • RabClPd ∧ AOp

We break this into two parts, separating the two retrieves in the consequent
from AOp. We then prove each part.

Cut in AbWorld such that RabClPd holds. This creates a side lemma to
prove that such an AbWorld exists, consisting of just the retrieve. (This is
discharged in section 14.4.4.)

We are left with

ΦBOp; BOpPurseOkay ; RabOut ; RabClPd′[pdThis/pdThis′];
AbWorld ; RabClPd ; RabIn; chosenLost : PPayDetails |

P ∧ Q ∧ chosenLost ⊆maybeLost
�
RabClPd ∧ AOp

We discharge the retrieves in the consequent directly from the hypothesis, and
remove chosenLost and chosenLost ⊆maybeLost as these already occur in Rab-
ClPd, leaving

ΦBOp; BOpPurseOkay ; RabOut ; RabClPd′[pdThis/pdThis′];
AbWorld ; RabClPd ; RabIn |

P ∧ Q
�
AOp

� 14.4.3

14.4. LEMMA ‘DETERMINISTIC’: SIMPLIFYING THE OKAY BRANCH 101

14.4.4 The existence of AbWorld

We have to prove the side condition generated when we cut in an AbWorld
(above).

ΦBOp; BOpPurseOkay ; RabOut ; RabClPd′[pdThis/pdThis′]; RabIn;
chosenLost : PPayDetails |

P ∧ Q ∧ chosenLost ⊆maybeLost
�
∃AbWorld • RabClPd

We can prove this by invoking lemma ‘AbWorldUnique’ (section C.15), provided
we can show that the constraints of the hypothesis of that lemma hold.

Certainly we have BetweenWorld (from ΦBOp), a pdThis and a chosenLost
such that the constraint chosenLost ⊆ maybeLost holds. This is sufficient to
invoke the lemma.

� 14.4.4

14.4.5 Statement of lemma ‘deterministic’

We summarise the results that section 14.4 has developed as a lemma.

Lemma 14.1 (deterministic) The correctness proof for a general Okay branch
consists of the following three proof obligations:
exists-pd:

ΦBOp; BOpPurseOkay ; RabOut ; RabCl′; RabIn
�
∃pdThis : PayDetails • P

exists-chosenLost:

ΦBOp; BOpPurseOkay ; RabOut ; RabClPd′[pdThis/pdThis′]; RabIn |
P

�
∃ chosenLost : PPayDetails • Q ∧ chosenLost ⊆maybeLost

check-operation:

ΦBOp; BOpPurseOkay ; RabOut ; RabClPd′[pdThis/pdThis′];
AbWorld ; RabClPd ; RabIn |

P ∧ Q
�
AOp

102 CHAPTER 14. A TO B LEMMAS

�

� 14.4

14.5 Lemma ‘lost unchanged’

Many operations do not change maybeLost or definitelyLost . We call a general
such operation BOpΞLost .

Lemma 14.2 (lost unchanged) For BOpΞLost operations, where maybeLost =
maybeLost ′ and definitelyLost ′ = definitelyLost , the proof obligations exists-pd
and exists-chosenLost are satisfied automatically by the instantiation of the
predicates P and Q as:

P	 true

Q	 chosenLost = chosenLost ′

leaving the remaining check-operation proof obligation as

ΦBOp; BOpΞLostPurseOkay ; RabOut ; RabClPd′[pdThis/pdThis′];
AbWorld ; RabClPd ; RabIn |

chosenLost = chosenLost ′

∧maybeLost =maybeLost ′

∧ definitelyLost ′ = definitelyLost
�
AOp

�

14.5.1 Proof

We add the hypotheses maybeLost = maybeLost ′ and definitelyLost ′ = de-
finitelyLost to the proof obligations for these BOpΞLost operations.

exists-pd

ΦBOp; BOpΞLostPurseOkay ; RabOut ; RabCl′; RabIn |
maybeLost ′ =maybeLost
∧ definitelyLost ′ = definitelyLost

�
∃pdThis : PayDetails • true

14.6. LEMMA ‘ABIGNORE ’: OPERATIONS THAT REFINE ABIGNORE 103

This is trivially true.
� 14.5.1

exists-chosenLost

ΦBOp; BOpΞLostPurseOkay ; RabOut ; RabClPd′[pdThis/pdThis′];
RabIn |
maybeLost ′ =maybeLost
∧ definitelyLost ′ = definitelyLost

�
∃ chosenLost : PPayDetails •

chosenLost = chosenLost ′ ∧ chosenLost ⊆maybeLost

We apply the [one point] rule to remove the existential quantifier in the conse-
quent, substitute for maybeLost , and [thin].

RabClPd ′[pdThis/pdThis′] � chosenLost ′ ⊆maybeLost ′

The hypothesis RabClPd′[pdThis/pdThis′] has chosenLost ′ ⊆maybeLost ′.
� 14.5.1
� 14.5

14.5.2 Sufficient conditions for invoking lemma ‘lost unchanged’

Since ΦBOp gives us that archive is unchanged, sufficient conditions for invok-
ing lemma ‘lost unchanged’ are that the operation in question changes neither
the purse’s status (hence no movement into or out of epv or epa) nor its excep-
tion log (hence no change to from logs or to logs).

14.6 Lemma ‘AbIgnore’: Operations that refine AbIgnore

As shown in section 14.2, to prove the refinement of the abstract identity op-
eration AbIgnore, we can separately prove correctness for each of the between
operations StartFrom, StartTo, Val, Ack, ReadExceptionLog, ClearExceptionLog,
AuthoriseExLogClear , Archive, Ignore, Increase, and Abort .

For those which are structured as promoted operations (that is, all except
Archive and Ignore), consider a general such operation, call it BOpIg. We note
that all BOpIg operations have the properties:

• BOpIg is a promoted operation, and thus alters only one concrete purse.
It has the form

∃∆ConPurse • ΦBOp ∧ BOpIgPurse

104 CHAPTER 14. A TO B LEMMAS

• for any purse, the name is unchanged (by definition of the single purse
operations)

• the domain of conAuthPurse is unchanged (by construction of the promo-
tion)

• for any purse, either nextSeqNo is unchanged, or increased.

∀BOpIgPurse • nextSeqNo ≤ nextSeqNo′

We use these properties to simplify the proof obligation for the BOpIg opera-
tions.

We invoke lemma ‘deterministic’ (section 14.4) to reduce the BOpIg proof
obligation to exists-pd, exists-chosenLost and check-operation:

ΦBOp; BOpIgPurse; RabOut ; RabClPd′[pdThis/pdThis′];
AbWorld ; RabClPd ; RabIn |

P ∧ Q
�
AbIgnore

Lemma 14.3 (AbIgnore) For a BOpIg operation, the check-operation proof obli-
gation reduces to check-operation-ignore1:

ΦBOp; BOpIgPurse; RabClPd′[pdThis/pdThis′]; AbWorld ; RabClPd |
P ∧ Q

�
∀n : domabAuthPurse •

(abAuthPurse′ n).lost = (abAuthPursen).lost
∧ (abAuthPurse′ n).balance = (abAuthPursen).balance

�

Proof:
We take the check-operation proof obligation, and expand AbIgnore. The

BOpIgPurse operations have certain properties in common; we explicitly state
1Used in: Ignore, 14.7.2.

14.6. LEMMA ‘ABIGNORE ’: OPERATIONS THAT REFINE ABIGNORE 105

these in the hypothesis.

ΦBOp; BOpIgPurse; RabOut ; RabClPd′[pdThis/pdThis′];
AbWorld ; RabClPd ; RabIn |

P ∧ Q
∧ name′ = name
∧ nextSeqNo′ ≥ nextSeqNo

�
AbOp ∧ abAuthPurse′ = abAuthPurse

We use [consq conj] to split this proof into two parts. The AbOp part is trivial:
there are no constraints. This leaves the other conjunct to be proven, which is
rewritten as follows:

ΦBOp; BOpIgPurse; RabOut ; RabClPd′[pdThis/pdThis′];
AbWorld ; RabClPd ; RabIn |

P ∧ Q
∧ name′ = name
∧ nextSeqNo′ ≥ nextSeqNo

�
∀n : domabAuthPurse • abAuthPurse′ n = abAuthPursen

We prove this component by component. From ΦBOp in the hypothesis, all
concrete purses other than purse name? remain unchanged. For the purse
name?, we also have the equality of the pre and post states of name. This leaves
the components balanace and lost . We use this with [consq conj] to reduce our
proof requirement to the following:

ΦBOp; BOpIgPurse; RabOut ; RabClPd′[pdThis/pdThis′];
AbWorld ; RabClPd ; RabIn |

P ∧ Q
∧ name′ = name
∧ nextSeqNo′ ≥ nextSeqNo

�
∀n : domabAuthPurse •

(abAuthPurse′ n).balance = (abAuthPursen).balance
∧ (abAuthPurse′ n).lost = (abAuthPursen).lost

We then [thin] the hypothesis to get the following, which proves the AbIgnore

106 CHAPTER 14. A TO B LEMMAS

lemma.

ΦBOp; BOpIgPurse; RabClPd′[pdThis/pdThis′]; AbWorld ; RabClPd |
P ∧ Q

�
∀n : domabAuthPurse •

(abAuthPurse′ n).balance = (abAuthPursen).balance
∧ (abAuthPurse′ n).lost = (abAuthPursen).lost

� 14.6

14.7 Ignore refines AbIgnore

As we saw at the end of section 14.3, by splitting up promoted operations, we
have generated a requirement to prove the correctness of the Ignore branch
once only. We do that here.

14.7.1 Invoking lemma ‘deterministic’

Lemma ‘deterministic’ (section 14.4.5) cannot be applied as-is, because Ignore
is not written as a promotion (in order to ensure it is total). However, the argu-
ments to split the proof obligation into three parts follow in exactly the same
manner even if the unpromoted purse is not exposed. The proof obligations
simply have BOpOkay in the hypothesis, instead of ΦBOp; BOpPurseOkay . We
use that form to simplify the Ignore proof obligation to three parts, and then in-
voke lemma ‘lost unchanged’ to discharge the first two obligations. We similarly
use lemma ‘AbIgnore’ to simplify the third proof obligation to check-operation-
ignore.

14.7.2 check-operation-ignore

Ignore; RabClPd′[pdThis/pdThis′]; AbWorld ; RabClPd |
chosenLost = chosenLost ′

∧maybeLost =maybeLost ′

∧ definitelyLost = definitelyLost ′

�
∀n : domabAuthPurse •

(abAuthPurse′ n).balance = (abAuthPursen).balance
∧ (abAuthPurse′ n).lost = (abAuthPursen).lost

14.8. ABORT REFINES ABIGNORE 107

The proof of this is immediate: Ignore changes no values, definitelyLost ,maybe-
Lost and chosenLost do not change, from the hypothesis; so the abstract balance
and lost , which depend only on these unchanging values, are unchanged.

� 14.7.2
� 14.7

14.8 Abort refines AbIgnore

As we saw at the end of section 14.3, by splitting up promoted operations, we
have generated a requirement to prove the correctness of the Abort branch
once only. We do that here. We cast it as a lemma, because we also use it to
simplify the proofs of operations that first abort (lemma ‘abort backward’).

Lemma 14.4 (Abort refines AbIgnore) Concrete Abort refines abstract Ignore.2

Abort ; Rab′; RabOut � ∃AbWorld ; a? : AIN • Rab ∧ RabIn ∧ AbIgnore

�

Proof:
Abort is written as a disjunction between Ignore and a promoted Abort -

PurseOkay . We use lemma ‘ignore’ (section 14.3) to simplify the proof obliga-
tion to the correctness of Ignore (which we discharge in section 14.7), and the
Okay branch, which we prove here.

14.8.1 Invoking lemma ‘deterministic’

We use lemma ‘deterministic’ (section 14.4.5) to simplify the proof obligations
and then lemma ‘AbIgnore’ (section 14.6) to simplify the check-operation step.

We have to instantiate the predicates P and Q.
P is a predicate identifying the pdThis involved in the transaction. This is

the pdAuth stored in the aborting purse, unless the aborting purse is in eaFrom,
in which case we don’t have a defined transaction. We cater for the case of no
transaction in the Q predicate, so P can safely be defined as

P	 pdThis = pdAuth

Q is a predicate on chosenLost . The after set chosenLost ′ either has pdThis
removed (if the transaction moves it from chosenLost to definitelyLost), or is

2Used in proof of lemma abort, 14.9

108 CHAPTER 14. A TO B LEMMAS

unchanged (because pdThis was not in chosenLost to start with) or is unchanged
because there was no transaction to abort. Hence

Q	
(pdThis ∈maybeLost ∧ chosenLost = chosenLost ′ ∪ {pdThis})
∨ (pdThis ∉maybeLost ∧ status ≠ eaFrom ∧

chosenLost = chosenLost ′)
∨ (status = eaFrom ∧ chosenLost = chosenLost ′)

14.8.2 exists-pd

The unpromoted operation AbortPurseOkay is incomplete. The output,m! = ⊥,
is not provided until promotion.

ΦBOp; AbortPurseOkay ; RabOut ; RabCl′; RabIn | m! = ⊥
�
∃pdThis : PayDetails • pdThis = pdAuth

This is immediate by the one point rule.
� 14.8.2

14.8.3 Three cases

We split the remaining two proofs, of exists-chosenLost and check-operation,
into three cases each, for each of the three disjuncts of Q. We start by arguing
the behaviour of maybeLost and definitelyLost in the three cases.

• Case 1: aborted transaction in ‘limbo’: The aborting purse is the to purse
in epv ; the corresponding from purse is in epa or has logged. Hence abort-
ing the transaction will definitely lose the value.

pdThis ∈maybeLost

• Case 2: aborted transaction not in ‘limbo’: The aborting purse is not
the to purse in epv , or the corresponding from purse is not in epa and
has not logged. The transaction has either not got far enough to lose
anything, or has progressed sufficiently far that the value was already
either successfully transferred or definitely lost.

pdThis ∉maybeLost ∧ status ≠ eaFrom

14.8. ABORT REFINES ABIGNORE 109

• Case 3: no transaction to abort: The aborting purse is in eaFrom, so has
no defined transaction. Nothing is aborted, so no value is lost.

status = eaFrom

Case 1: old transaction in limbo

pdThis ∈ (fromInEpa ∪ fromLogged) ∩ toInEpv

We argue about the behaviour of maybeLost and definitelyLost using the fact
that the purse is the to purse initially in epv in the aborting transaction, and it
logs the old transaction and moves to eaFrom. We argue that the transaction
pdThis, initially in maybeLost by construction, is moved into definitelyLost ′ by
this case of the Abort operation. The transaction was far enough progressed
that value may be lost, and it is lost in this case.

Behaviour of fromInEpa and fromLogged pdThis is in toInEpv (by our case
assumption), so the only purse undergoing any change (name?) is the to purse;
hence there can be no change to the status or logs of any from purse. Hence

fromInEpa = fromInEpa′

fromLogged = fromLogged ′

Behaviour of toInEpv pdThis is in toInEpv (by our case assumption); pdThis
is not in toInEpv′ (Abort puts the purse into eaFrom); all other purses and
transactions remain unchanged. So

toInEpv = toInEpv′ ∪ {pdThis}

Behaviour of toLogged pdThis is not in toLogged (using lemma ‘notLogged-
AndIn’ with pdThis ∈ toInEpv); pdThis is in toLogged′ (the purse makes a to log
when it aborts from epv); all other purses and transactions remain unchanged.
So

toLogged = toLogged ′ \ {pdThis}

110 CHAPTER 14. A TO B LEMMAS

Behaviour of definitelyLost

definitelyLost

= toLogged ∩ (fromLogged ∪ fromInEpa) [defn definitelyLost]

= (toLogged ′ \ {pdThis})∩ (fromLogged ′ ∪ fromInEpa′) [above]

= (toLogged ′ ∩ (fromLogged ′ ∪ fromInEpa′)) \ {pdThis} [rearrange]

= definitelyLost ′ \ {pdThis} [defn definitelyLost ′]

Behaviour of maybeLost

maybeLost

= (fromInEpa ∪ fromLogged) ∩ toInEpv [defn maybeLost]

= (fromInEpa′ ∪ fromLogged ′)∩ (toInEpv′ ∪ {pdThis}) [above]

= ((fromInEpa′ ∪ fromLogged ′)∩ toInEpv′)
∪ ((fromInEpa′ ∪ fromLogged ′)∩ {pdThis}) [Spivey]

= ((fromInEpa′ ∪ fromLogged ′)∩ toInEpv′)
∪ {pdThis} [case assumption]

=maybeLost ′ ∪ {pdThis} [defn maybeLost ′]

Case 2: old transaction not in limbo

pdThis ∉ (fromInEpa ∪ fromLogged) ∩ toInEpv ∧ status ≠ eaFrom

We argue that the transaction pdThis is not moved into or out of maybeLost or
definitelyLost by this case of the Abort operation.

Behaviour of fromInEpa ∪ fromLogged If pdThis is in fromInEpa it is also in
fromLogged ′ (the purse is in epa, so it makes a from log when it aborts); if
pdThis is in fromLogged it is also in fromLogged ′ (logs cannot be removed); if
pdThis is not in fromInEpa ∪ fromLogged it is not in fromLogged′ (the purse
is not in epa, so does not make a from log when it aborts), and not in fromInEpa′

(because it ends in eaFrom); all other purses and transactions remain unchanged.
So

fromInEpa ∪ fromLogged = fromInEpa′ ∪ fromLogged ′

14.8. ABORT REFINES ABIGNORE 111

Behaviour of definitelyLost The cases allowed by our case assumption are:

• pdThis refers to the to purse in epv , hence is not in

fromInEpa ∪ fromLogged

and hence not in definitelyLost . Also it is not in fromInEpa′∪fromLogged ′,
and hence not in definitelyLost ′. So definitelyLost is unchanged.

• pdThis refers to the to purse, but not in epv , or pdThis refers to the
from purse. Hence toLogged is unchanged, since no to log is written,
and logs cannot be lost. Also fromInEpa ∪ fromLogged is unchanged. So
definitelyLost is unchanged.

So

definitelyLost ′ = definitelyLost

Behaviour of maybeLost The cases allowed by our case assumption are:

• pdThis refers to the to purse in epv , hence is not in

fromInEpa ∪ fromLogged

and hence not in maybeLost . Also it is not in fromInEpa′ ∪ fromLogged ′,
and hence not in maybeLost ′. So maybeLost is unchanged.

• pdThis refers to the to purse, but not in epv , or pdThis refers to the from
purse. Hence toInEpv is unchanged, since no purse moves out of or in
to epv . Also fromInEpa ∪ fromLogged is unchanged. So maybeLost is
unchanged.

So

maybeLost ′ =maybeLost

Case 3: no transaction to abort

status = eaFrom

From AbortPurseOkay , no purses change state and no logs are written. There-
fore, definitelyLost and maybeLost don’t change.

definitelyLost ′ = definitelyLost

maybeLost ′ =maybeLost

112 CHAPTER 14. A TO B LEMMAS

14.8.4 exists-chosenLost

We now use the behaviour of maybeLost and definitelyLost in the three cases
to prove exists-chosenLost.

ΦBOp; AbortPurseOkay ; RabOut ; RabClPd′[pdThis/pdThis′]; RabIn |
m! = ⊥
∧ pdThis = pdAuth

�
∃ chosenLost : PPayDetails •

(pdThis ∈maybeLost ∧ chosenLost = chosenLost ′ ∪ {pdThis}
∨ pdThis ∉maybeLost ∧ status ≠ eaFrom

∧ chosenLost = chosenLost ′

∨ status = eaFrom ∧ chosenLost = chosenLost ′)
∧ chosenLost ⊆maybeLost

We push the existential quantifier in the consequent into the predicates:

ΦBOp; AbortPurseOkay ; RabOut ; RabClPd′[pdThis/pdThis′]; RabIn |
m! = ⊥
∧ pdThis = pdAuth

�
pdThis ∈maybeLost

∧ (∃ chosenLost : PPayDetails •
chosenLost = chosenLost ′ ∪ {pdThis}
∧ chosenLost ⊆maybeLost)

∨ pdThis ∉maybeLost ∧ status ≠ eaFrom
∧ (∃ chosenLost : PPayDetails •

chosenLost = chosenLost ′

∧ chosenLost ⊆maybeLost)

∨ status = eaFrom
∧ (∃ chosenLost : PPayDetails •

chosenLost = chosenLost ′

∧ chosenLost ⊆maybeLost)

14.8. ABORT REFINES ABIGNORE 113

In each case, we [one point] away the chosenLost because the predicate includes
an explicit definition for it.

ΦBOp; AbortPurseOkay ; RabOut ; RabClPd′[pdThis/pdThis′]; RabIn |
m! = ⊥
∧ pdThis = pdAuth

�
pdThis ∈maybeLost

∧ chosenLost ′ ∪ {pdThis} ⊆maybeLost

∨ pdThis ∉maybeLost ∧ status ≠ eaFrom
∧ chosenLost ′ ⊆maybeLost

∨ status = eaFrom
∧ chosenLost ′ ⊆maybeLost

In each case, the predicate is of the form (a ∧ b), and we argue below that
a ⇒ b. This allows us to replace (a ∧ b) with a. If we do this, we obtain

ΦBOp; AbortPurseOkay ; RabOut ; RabClPd′[pdThis/pdThis′]; RabIn |
m! = ⊥
∧ pdThis = pdAuth

�
pdThis ∈maybeLost

∨ pdThis ∉maybeLost ∧ status ≠ eaFrom

∨ status = eaFrom

which is true. We now carry out the argument as described above for each of
the three disjuncts.

Case 1: old transaction in limbo

We must show that under the assumptions of this lemma and in this case

pdThis ∈maybeLost ⇒
chosenLost ′ ∪ {pdThis} ⊆maybeLost

This follows by:

chosenLost ′ ∪ {pdThis}
⊆maybeLost ′ ∪ {pdThis} [hypothesis]

⊆maybeLost [previous argument for case 1]

� 14.8.4

114 CHAPTER 14. A TO B LEMMAS

Case 2: old transaction not in limbo

We must show that under the assumptions of this lemma and in this case

pdThis ∉maybeLost ∧ status ≠ eaFrom ⇒
chosenLost ′ ⊆maybeLost

This follows by

chosenLost ′ ⊆maybeLost ′ [hypothesis]

⇒ chosenLost ′ ⊆maybeLost [previous argument for case 2]

� 14.8.4

Case 3: no transaction to abort

We must show that under the assumptions of this lemma and in this case

status = eaFrom ⇒
chosenLost ′ ⊆maybeLost

This follows by

chosenLost ′ ⊆maybeLost ′ [hypothesis]

⇒ chosenLost ′ ⊆maybeLost [previous argument for case 3]

� 14.8.4
� 14.8.4

14.9. LEMMA ‘ABORT BACKWARD’: OPERATIONS THAT FIRST ABORT 115

14.8.5 check-operation-ignore

We now use the behaviour of maybeLost and definitelyLost in the three cases
to prove check-operation-ignore.

ΦBOp; AbortPurseOkay ; RabClPd′[pdThis/pdThis′];
AbWorld ; RabClPd |
pdThis = pdAuth
∧ (pdThis ∈maybeLost ∧ chosenLost = chosenLost ′ ∪ {pdThis}

∨ pdThis ∉maybeLost ∧ status ≠ eaFrom
∧ chosenLost = chosenLost ′

∨ status = eaFrom ∧ chosenLost = chosenLost ′)
�
∀n : domabAuthPurse •

(abAuthPurse′ n).balance = (abAuthPursen).balance
∧ (abAuthPurse′ n).lost = (abAuthPursen).lost

We can prove this for each of the three disjuncts in the hypothesis by [hyp disj].

Case 1: old transaction in limbo

lost is a function of definitelyLost∪chosenLost . The pdThis moves from chosen-
Lost to definitelyLost ′, so the union is unchanged.

balance is a function of maybeLost \ chosenLost . The pdThis moves from
chosenLost , and hence from maybeLost , so the difference is unchanged.

� 14.8.5

Case 2+3: old transaction not in limbo or no transaction

From chosenLost = chosenLost ′ and the arguments above, all the relevant sets
are unchanging, so lost and balalnce are unchanging.

� 14.8.5
� 14.8.5
� 14.8

14.9 Lemma ‘abort backward’: operations that first abort

Some of the concrete operations are written as a composition of AbortPurse-
Okay with a simpler operation starting from eaFrom (StartFrom, StartTo, Read-
ExceptionLog, ExceptionLogClear).

116 CHAPTER 14. A TO B LEMMAS

Lemma 14.5 (abort backward) Where a concrete operation is written as a com-
position of AbortPurseOkay and a simpler operation starting from eaFrom, it
is sufficient to prove that the promotion of the simpler operation alone refines
the relevant abstract operation.

∃∆ConPurse • ΦBOp ∧ (AbortPurseOkay o
9 BOpPurseEafromOkay);

Rab′; RabOut ;
(∀BOpEafromOkay ; Rab′; RabOut •

∃AbWorld ; a? : AIN • Rab ∧ RabIn ∧ AOp)
�
∃AbWorld ; a? : AIN • Rab ∧ RabIn ∧ AOp

�

Proof

• Use lemma ‘promoted composition’ (section C.11) to rewrite the promo-
tion of the composition to a composition of promotions, yielding

(AbortOkay o
9 BOpEafromOkay);

Rab′; RabOut ;
(∀BOpEafromOkay ; Rab′; RabOut •

∃AbWorld ; a? : AIN • Rab ∧ RabIn ∧ AOp)
�
∃AbWorld ; a? : AIN • Rab ∧ RabIn ∧ AOp

• If BOp1 refines AOp1 and BOp2 refines AOp2, then BOp1 o
9 BOp2 refines

AOp1 o
9 AOp2 (invoke lemma ‘compose backward’, section C.9).

• Take BOp1 = AbortOkay , AOp1 = AbIgnore, and invoke lemma ‘Abort
refines AbIgnore’ (section 14.8), to discharge this proof.

• Take BOp2 = BOpEafromOkay , AOp2 = AOp, and note that we have that
BOp refines AOp in the hypothesis.

• Note that AbIgnore o
9 AOp = AOp, to reduce this expression in the conse-

quent.

� 14.9

14.10 Summary of lemmas

In section 9.2.4 we reduced the refinement correctness proof for an operation
to:

BOp; Rab′; RabOut � ∃AbWorld ; a? : AIN • Rab ∧ RabIn ∧ AOp

14.10. SUMMARY OF LEMMAS 117

We then built up a set of lemmas which may be used to simplify this proof
requirement.

AOp and BOp are often disjunctions of simpler operations, and lemmas
‘multiple refinement’ (section 14.2) and ‘ignore’ (section 14.3) are used to prove
that any Ignore or Abort branches of BOp need be proved once only for all
BOps. These two branches are proved in lemmas later on, after further sim-
plification for a general disjunct (Ignore, Abort or Okay) of BOp. This sim-
plification starts with lemma ‘deterministic’ (section 14.4) which removes the
∃AbWorld in the consequent of the correctness obligation. In doing so, it re-
quires us to prove three side-lemmas (exists-pd, exists-chosenLost, check-
operation). Lemma ‘lost unchanged’ (section 14.5) allows the side-lemmas
exists-pd and exists-chosenLost to be discharged immediately given certain
conditions. Lemma ‘AbIgnore’ (section 14.6) then provides a simplification of
the side-lemma check-operation when AOp is AbIgnore.

We can now prove that the Ignore and Abort branches of BOp are correct
with respect to AOp. Section 14.7 proves that Ignore refines AbIgnore, and
lemma ‘Abort refines AbIgnore’ (section 14.8) handles the Abort branch. With
lemmas ‘multiple refinement’ and ‘ignore’, this has now proved the correctness
of the Ignore and Abort branches of all BOp.

Where the Okay branch of an operation is composed of Abort followed
by the ‘active’ operation, lemma ‘abort backward’ gives us that we only need to
prove the ‘active’ part.

Returning to the proof obligation written above, any of the Ignore or Abort
branches of a BOp operation are dealt with by the lemmas. This leaves the
Okay branch (if this contains an initial Abort , this can be ignored — from
lemma ‘abort backward’ we need only prove the non-aborting part). Usually, we
then apply lemma ‘deterministic’ yielding a number of side-lemmas. These may
sometimes be further simplified using lemmas ‘lost unchanged’ and ‘AbIgnore’.
The remaining proof is then particular to the BOp.

Chapter 15

Correctness of Increase

15.1 Proof obligation

We have to prove the correct refinement of each abstract operation. In section
9.2.4 we give a general simplification of the correctness proof. We use lemma
‘multiple refinement’ (section 14.2) to split the proof obligation for each A
operation into one for each individual B operation.

This chapter proves the B operation.

• We use lemma ‘ignore’ (see section 14.3) to simplify the proof obligation
by proving the correctness of Ignore (in section 14.7), leaving the Okay
branch to be proven here.

• We use lemma ‘deterministic’ (section C.1) to reduce the proof obligation
to the three cases exists-pd, exists-chosenLost, and check-operation.

• Since this operation leaves the sets maybeLost and definitelyLost uncha-
nged, we use lemma ‘lost unchanged’ (section C.2) to discharge the exists
pd-and exists chosenLost-obligations automatically.

• Since this operation refines AbIgnore, we use lemma ‘AbIgnore’ (from sec-
tion C.3) to simplify check-operation to check-operation-ignore.

15.2 Invoking lemma ‘lost unchanged’

Section 14.5.2 gives sufficient conditions to be able to invoke lemma ‘lost un-
changed’. These are that the unpromoted operation changes neither the status
nor the exception log of the purse. Increase includes ΞConPurseIncrease, which
says exactly that. We can therefore invoke lemma ‘Lost unchanged’.

120 CHAPTER 15. INCREASE

15.3 check-operation-ignore

ΦBOp; IncreasePurseOkay ; RabOut ; RabClPd′[pdThis/pdThis′];
AbWorld ; RabClPd ; RabIn |

chosenLost ′ = chosenLost
∧maybeLost ′ =maybeLost
∧ definitelyLost ′ = definitelyLost

�
∀n : domabAuthPurse •

(abAuthPurse′ n).balance = (abAuthPursen).balance
∧ (abAuthPurse′ n).lost = (abAuthPursen).lost

Proof: We have that maybeLost and definitelyLost are unchanged from the hy-
pothesis. This shows that the balance and lost components of all the abstract
purses remain unchanged.

� 15.3
� 15

Chapter 16

Correctness of StartFrom

16.1 Proof obligation

We have to prove the correct refinement of each abstract operation. In section
9.2.4 we give a general simplification of the correctness proof. We use lemma
‘multiple refinement’ (section 14.2) to split the proof obligation for each A
operation into one for each individual B operation.

This chapter proves the B operation.

• We use lemma ‘ignore’ (see section 14.3) to simplify the proof obligation
by proving the correctness of Ignore (in section 14.7), and Abort (in sec-
tion 14.8), leaving the Okay branch to be proven here.

• Since the Okay branch of this operation is expressed as a promotion of
AbortPurseOkay composed with a simpler EafromPurseOkay operation,
we use lemma ‘abort backward’ (section C.5), and prove only that the pro-
motion of the simpler operation is a refinement.

• We use lemma ‘deterministic’ (section C.1) to reduce the proof obligation
to the three cases exists-pd, exists-chosenLost, and check-operation.

• Since this operation refines AbIgnore, we use lemma ‘AbIgnore’ (from sec-
tion C.3) to simplify check-operation to check-operation-ignore.

122 CHAPTER 16. STARTFROM

16.2 Instantiating lemma ‘deterministic’

We take the pdThis to be the pdAuth created by the start operation, and chosen-
Lost to be unchanging.

P	 pdThis = (conAuthPurse′ name?).pdAuth

Q	 chosenLost = chosenLost ′

16.3 Behaviour of maybeLost and definitelyLost

We argue that pdThis is not in fromInEpa or fromLogged before or after the
operation, where pdThis = (conAuthPurse′ pdThis.from).pdAuth.

First, before the operation the purse is in eaFrom, and after it is in epr ,
and hence pdThis can never be in fromInEpa.

From BetweenWorld constraint B–7 if pdThis were in fromLogged′ then we
would have

(conAuthPursename?).pdAuth.fromSeqNo > pdThis.fromSeqNo

but we know these two pdAuths are equal, so pdThis cannot be in fromLogged′.
If the log isn’t there after the operation, it certainly isn’t there before, so pdThis
is not in toLogged either.

Only the from purse changes in this operation, so the sets toInEpv and
toLogged can’t change. Hence

toInEpv ′ = toInEpv

toLogged ′ = toLogged

fromInEpa′ = fromInEpa

fromLogged ′ = fromLogged

It follows that maybeLost is unchanged:

maybeLost ′

= toInEpv′ ∩ (fromInEpa′ ∪ fromLogged ′)

= toInEpv ∩ (fromInEpa ∪ fromLogged)

=maybeLost

16.4. EXISTS-PD 123

Also, definitelyLost is unchanged:

definitelyLost ′

= toLogged ′ ∩ (fromInEpa′ ∪ fromLogged ′)

= toLogged ∩ (fromInEpa ∪ fromLogged)

= definitelyLost

16.4 exists-pd

ΦBOp; StartFromPurseEafromOkay ; RabOut ; RabCl′; RabIn
�
∃pdThis : PayDetails • pdThis = (conAuthPurse′ name?).pdAuth

Proof
Use the [one point] rule with the expression for pdThis in the quantifier.
� 16.4

16.5 exists-chosenLost

ΦBOp; StartFromPurseEafromOkay ; RabOut ;
RabClPd ′[pdThis/pdThis′]; RabIn |
pdThis = (conAuthPurse′ name?).pdAuth

�
∃ chosenLost : PPayDetails •

chosenLost = chosenLost ′

∧ chosenLost ⊆maybeLost

Proof:
We use the [one point] rule on chosenLost to give

ΦBOp; StartFromPurseEafromOkay ; RabOut ;
RabClPd ′[pdThis/pdThis′]; RabIn |
pdThis = (conAuthPurse′ name?).pdAuth

�
chosenLost ′ ⊆maybeLost

We then have

chosenLost ′ ⊆maybeLost ′ [RabClPd ′]

⊆maybeLost [unchanging maybeLost]

124 CHAPTER 16. STARTFROM

� 16.5

16.6 check-operation

ΦBOp; StartFromPurseEafromOkay ; RabClPd′[pdThis/pdThis′];
AbWorld ; RabClPd |

pdThis = (conAuthPurse′ name?).pdAuth
∧ chosenLost = chosenLost ′

�
∀n : domabAuthPurse •

(abAuthPurse′ n).balance = (abAuthPursen).balance
∧ (abAuthPurse′ n).lost = (abAuthPursen).lost

Proof:
From Rab, we have that lost is a function of definitelyLost ∪ chosenLost , which
is unchanging, and that balance is a function ofmaybeLost \ chosenLost , which
is also unchanging.

� 16.6
� 16

Chapter 17

Correctness of StartTo

17.1 Proof obligation

We have to prove the correct refinement of each abstract operation. In section
9.2.4 we give a general simplification of the correctness proof. We use lemma
‘multiple refinement’ (section 14.2) to split the proof obligation for each A
operation into one for each individual B operation.

This chapter proves the B operation.

• We use lemma ‘ignore’ (see section 14.3) to simplify the proof obligation
by proving the correctness of Ignore (in section 14.7), and Abort (in sec-
tion 14.8), leaving the Okay branch to be proven here.

• Since the Okay branch of this operation is expressed as a promotion of
AbortPurseOkay composed with a simpler EafromPurseOkay operation,
we use lemma ‘abort backward’ (section C.5), and prove only that the pro-
motion of the simpler operation is a refinement.

• We use lemma ‘deterministic’ (section C.1) to reduce the proof obligation
to the three cases exists-pd, exists-chosenLost, and check-operation.

• Since this operation refines AbIgnore, we use lemma ‘AbIgnore’ (from sec-
tion C.3) to simplify check-operation to check-operation-ignore.

126 CHAPTER 17. STARTTO

17.2 Instantiating lemma ‘deterministic’

We take pdThis to be the pdAuth created by the start operation, and chosenLost
to be unchanging.

P	 pdThis = (conAuthPurse′ name?).pdAuth

Q	 chosenLost = chosenLost ′

17.3 Behaviour of maybeLost and definitelyLost

We argue that pdThis is not in any of the before sets fromInEpa, fromLogged ,
toInEpv , or toLogged , where we have

pdThis = (conAuthPurse′ name?).pdAuth.

(conAuthPursename?).nextSeqNo [defn. StartTo]
= (conAuthPurse′ name?).pdAuth.toSeqNo

⇒ (conAuthPursename?).nextSeqNo [defn. pdThis]
= pdThis.toSeqNo

⇒ req pdThis ∉ ether [BetweenWorld constraint B–2]

⇒ pdThis ∉ fromInEpa ∪ fromLogged[BetweenWorld constraint B–12]
∧ pdThis ∉ toInEpv ∪ toLogged [BetweenWorld constraint B–10]

The operation moves one purse from eaFrom into epv ; no logs are written.
Hence pdThis is in toInEpv′, but not newly added to any of the other after sets.
So

toInEpv ′ = toInEpv ∪ {pdThis}
toLogged ′ = toLogged
fromInEpa′ = fromInEpa
fromLogged ′ = fromLogged

It follows that maybeLost is unchanged:

maybeLost ′

= toInEpv′ ∩ (fromInEpa′ ∪ fromLogged ′)

= (toInEpv ∪ {pdThis} ∩ (fromInEpa ∪ fromLogged)

=maybeLost ∪ ({pdThis} ∩ (fromInEpa ∪ fromLogged))

=maybeLost

17.4. EXISTS-PD 127

Also, definitelyLost is unchanged:

definitelyLost ′

= toLogged ′ ∩ (fromInEpa′ ∪ fromLogged ′)

= toLogged ∩ (fromInEpa ∪ fromLogged)

= definitelyLost

17.4 exists-pd

ΦBOp; StartToPurseEafromOkay ; RabOut ; RabCl′; RabIn
�
∃pdThis : PayDetails • pdThis = (conAuthPurse′ name?).pdAuth

Proof:
Use the [one point] rule with the expression for pdThis in the quantifier.

� 17.4

17.5 exists-chosenLost

ΦBOp; StartToPurseEafromOkay ; RabOut ; RabClPd′[pdThis/pdThis′]
RabIn |
pdThis = (conAuthPurse′ name?).pdAuth

�
∃ chosenLost : PPayDetails •

chosenLost = chosenLost ′

∧ chosenLost ⊆maybeLost

Proof:
We apply the [one point] rule for chosenLost in the consequent to give

ΦBOp; StartToPurseEafromOkay ; RabOut ; RabClPd′[pdThis/pdThis′];
RabIn |
pdThis = (conAuthPurse′ name?).pdAuth

�
chosenLost ′ ⊆maybeLost

chosenLost ′ ⊆maybeLost ′ [RabClPd ′]

⊆maybeLost [unchanging maybeLost]

� 17.5

128 CHAPTER 17. STARTTO

17.6 check-operation

ΦBOp; StartToPurseEafromOkay ; RabClPd′[pdThis/pdThis′];
AbWorld ; RabClPd |

pdThis = (conAuthPurse′ name?).pdAuth
∧ chosenLost = chosenLost ′

�
∀n : domabAuthPurse •

(abAuthPurse′ n).balance = (abAuthPursen).balance
∧ (abAuthPurse′ n).lost = (abAuthPursen).lost

Proof:
From Rab, we have that lost is a function of definitelyLost ∪ chosenLost , which
is unchanging, and that balance is a function ofmaybeLost \ chosenLost , which
is also unchanging.

� 17.6
� 17

Chapter 18

Correctness of Req

18.1 Proof obligation

We have to prove the correct refinement of each abstract operation. In section
9.2.4 we give a general simplification of the correctness proof. We use lemma
‘multiple refinement’ (section 14.2) to split the proof obligation for each A
operation into one for each individual B operation.

This chapter proves the B operation.

• We use lemma ‘ignore’ (see section 14.3) to simplify the proof obligation
by proving the correctness of Ignore (in section 14.7), leaving the Okay
branch to be proven here.

• We use lemma ‘deterministic’ (section C.1) to reduce the proof obligation
to the three cases exists-pd, exists-chosenLost, and check-operation.

18.2 Instantiating lemma ‘deterministic’

We must instantiate two general predicates relating to pdThis and chosenLost .
The choices for these predicates are based on the fact that the important trans-
action is the one referred to by the reqmessage being consumedby theReqOkay
operation, and that before the operation, the set of transactions chosen to be
lost should be all those chosen to be lost after the operation, but specifically
excluding the transaction pdThis. Thus

P	 req∼m? = pdThis

Q	 chosenLost = chosenLost ′ \ {pdThis}

130 CHAPTER 18. REQ

RVOkay'

B'; m! = valB; m? = req;
 name?

ReqOkay

A'; a!
A; a?

AbTransferOkay

AbTransferLost

RVEnd RVWillBeLost'

RVHasBeenLost'

Figure 18.1: The correctness proof for Req.

18.3 Discussion

The correctness proof for Req is summarised in figure 18.1. There are three
cases:

• The to purse for the transaction is in epv , and we choose that the transfer
will succeed.
Before the operation, pdThis ∉ maybeLost ∪definitelyLost , and the appro-
priate retrieve is RabEnd.
After the operation, pdThis ∈maybeLost ′ \chosenLost ′, and the appropri-
ate retrieve is RabOkay′; the abstract operation is AbTransferOkay .

• The to purse is in epv , and we choose the transfer will fail (the to purse
will move out of epv before receiving the val).
Before, pdThis ∉ maybeLost ∪ definitelyLost , and the appropriate retrieve
is RabEnd′.
After, pdThis ∈ chosenLost ′, and the appropriate retrieve is RabWillBe-
Lost′; the abstract operation is AbTransferLost .

• The to purse has already moved out of epv , so will not receive the val: the
transfer has failed.
Before, pdThis ∉ maybeLost ∪ definitelyLost , and the appropriate retrieve
is RabEnd .
After, pdThis ∈ definitelyLost ′, and the appropriate retrieve is RabHas-
BeenLost′; the abstract operation is AbTransferLost .

The following proof establishes that these are indeed the only cases, and that
ReqOkay correctly refines AbTransfer in each case.

18.4. EXISTS-PD 131

18.4 exists-pd

ΦBOp; ReqPurseOkay ; RabOut ; RabCl′; RabIn
�
∃pdThis : PayDetails • req∼m? = pdThis

Proof:
We discharge this by removing the existential for pdThis because we have an
explicit equation for it, using the [one point] rule.

� 18.4

18.5 exists-chosenlost

ΦBOp; ReqPurseOkay ; RabOut ; RabClPd′[pdThis/pdThis′]; RabIn |
req∼m? = pdThis

�
∃ chosenLost : PPayDetails •

chosenLost = chosenLost ′ \ {pdThis}
∧ chosenLost ⊆maybeLost

Proof:
That we can construct a chosenLost as the set difference is true because set
difference is always defined. That the subset constraint holds follows as below:

chosenLost ′ ⊆maybeLost ′ [RabClPd ′]

chosenLost ′ \ {pdThis} ⊆maybeLost ′ \ {pdThis} [property of set minus]

chosenLost ⊆maybeLost ′ \ {pdThis} [eqn for chosenLost]

chosenLost ⊆maybeLost [lemma ‘not lost before’, section C.14]

� 18.5

18.6 check-operation

ΦBOp; ReqPurseOkay ; RabOut ; RabClPd′[pdThis/pdThis′];
AbWorld ; RabClPd ; RabIn |

req∼m? = pdThis
∧ chosenLost = chosenLost ′ \ {pdThis}

�
AbTransfer

132 CHAPTER 18. REQ

Proof:
We invoke lemma ‘not lost before’ to add constraints on maybeLost and de-
finitelyLost to the hypothesis. This allows us to further alter the hypothesis by
replacing RabClPd with RabEndClPd.

ΦBOp; ReqPurseOkay ; RabOut ; RabClPd′[pdThis/pdThis′];
AbWorld ; RabEndClPd ; RabIn |

req∼m? = pdThis
∧ chosenLost = chosenLost ′ \ {pdThis}
∧maybeLost =maybeLost ′ \ {pdThis}
∧ definitelyLost = definitelyLost ′ \ {pdThis}

�
AbTransfer

We use [hyp disj] to split RabClPd′[. . .] into four separate cases (section 10.1.4)
to prove (using identity in section 10.1.5). In each case, we strengthen the
consequent by choosing an appropriate disjunct of AbTransfer .

• case 1: We choose that the value is not lost, so the corresponding abstract
operation is AbTransferOkay

ΦBOp; ReqPurseOkay ; RabOut ; RabOkayClPd′[pdThis/pdThis′];
AbWorld ; RabEndClPd ; RabIn |

req∼m? = pdThis
∧ chosenLost = chosenLost ′ \ {pdThis}
∧maybeLost =maybeLost ′ \ {pdThis}
∧ definitelyLost = definitelyLost ′ \ {pdThis}

�
AbTransferOkay

• case 2: We choose that the value will be lost, so the corresponding abstract
operation is AbTransferLost

ΦBOp; ReqPurseOkay ; RabOut ;
RabWillBeLostClPd′[pdThis/pdThis′];

AbWorld ; RabEndClPd ; RabIn |
req∼m? = pdThis
∧ chosenLost = chosenLost ′ \ {pdThis}
∧maybeLost =maybeLost ′ \ {pdThis}
∧ definitelyLost = definitelyLost ′ \ {pdThis}

�
AbTransferLost

18.7. CASE 1: REQOKAY AND RABOKAYCLPD′ 133

• case 3: We say that the value has already been lost, so the corresponding
abstract operation is AbTransferLost

ΦBOp; ReqPurseOkay ; RabOut ;
RabHasBeenLostClPd′[pdThis/pdThis′];

AbWorld ; RabEndClPd ; RabIn |
req∼m? = pdThis
∧ chosenLost = chosenLost ′ \ {pdThis}
∧maybeLost =maybeLost ′ \ {pdThis}
∧ definitelyLost = definitelyLost ′ \ {pdThis}

�
AbTransferLost

• case 4: The fourth case is impossible. We choose RabEndClPd′, and prove
that the hypothesis is contradictory, so the choice of corresponding ab-
stract operation is unimportant.

ΦBOp; ReqPurseOkay ; RabOut ; RabEndClPd′[pdThis/pdThis′];
AbWorld ; RabEndClPd ; RabIn |

req∼m? = pdThis
∧ chosenLost = chosenLost ′ \ {pdThis}
∧maybeLost =maybeLost ′ \ {pdThis}
∧ definitelyLost = definitelyLost ′ \ {pdThis}

�
AbTransfer

We now have four independent cases to prove. The next four sections each
prove one case.

18.7 case 1: ReqOkay and RabOkayClPd′

ΦBOp; ReqPurseOkay ; RabOut ; RabOkayClPd′[pdThis/pdThis′];
AbWorld ; RabEndClPd ; RabIn |

req∼m? = pdThis
∧ chosenLost = chosenLost ′ \ {pdThis}
∧maybeLost =maybeLost ′ \ {pdThis}
∧ definitelyLost = definitelyLost ′ \ {pdThis}

�
AbTransferOkay

134 CHAPTER 18. REQ

18.7.1 The behaviour of maybeLost and definitelyLost

We argue that the transaction pdThis is initially not inmaybeLost or definitely-
Lost , and is moved into maybeLost ′ \ chosenLost ′ by this case of the ReqOkay
operation. The transaction initially was not far enough progressed to have the
potential of being lost; afterwards it has progressed far enough that it may be
lost, but we are actually on the branch that will succeed.

We have from RabOkayClPd′ that

pdThis ∈maybeLost ′ \ chosenLost ′

Therefore pdThis ∉ chosenLost ′ (by the definition of set minus) and pdThis ∉
definitelyLost ′ (by lemma ‘lost’). So we have

definitelyLost = definitelyLost ′

maybeLost =maybeLost ′ \ {pdThis}
chosenLost = chosenLost ′

18.7.2 AbTransferOkay

In this section we prove that an AbWorld that has the correct retrieve properties
also satisfies AbTransferOkay . Recall that our proof obligation is

ΦBOp; ReqPurseOkay ; RabOut ; RabOkayClPd′[pdThis/pdThis′];
AbWorld ; RabEndClPd ; RabIn |

req∼m? = pdThis
∧ chosenLost = chosenLost ′ \ {pdThis}
∧maybeLost =maybeLost ′ \ {pdThis}
∧ definitelyLost = definitelyLost ′ \ {pdThis}

�
AbTransferOkay

Each element of AbWorld is defined by an explicit equation in RabEndClPd, and
we show that this value satisfies AbTransferOkay by showing each predicate
holds.

A–1 AbOp: This trivial: AbOp imposes no constraints.

A–2 AbWorldSecureOp

• a? ∈ ran transfer
true by construction of a? from m? in RabIn.

18.7. CASE 1: REQOKAY AND RABOKAYCLPD′ 135

• no purses other than from? and to? change
For balance and lost we show that RabEndClPd and

RabOkayClPd ′[pdThis/pdThis′]

are essentially the same. This is immediate because in both cases the
relevant predicates are captured in the same schemaOtherPursesRab.

A–3 Authentic[from?/name?],Authentic[to?/name?]
We have pdThis ∈ maybeLost ′, hence it is in both authenticFrom′ and
in authenticTo′. Hence, by ΦBOp and AbstractBetween, it is also in both
authenticFrom and in authenticTo.

A–4 SufficientFundsProperty
true from ConPurse constraint P–2b

A–5 to? ≠ from?
true because pdThis is a PayDetails.

A–6 abAuthPurse′ from? = . . . ,abAuthPurse′ to? = . . .
Each of the four elements (from and to purses, each with balance and lost)
are handled below, followed by all the other elements in one section.

The from purse’s balance component

(abAuthPurse pdThis.from).balance

= (conAuthPurse pdThis.from).balance
+ sumValue(((maybeLost \ chosenLost)

∩ {pd : PayDetails | pd .to = pdThis.from })
\ {pdThis}) [RabEndClPd]

= (conAuthPurse pdThis.from).balance
+ sumValue((((maybeLost ′ \ {pdThis}) \ chosenLost ′)

∩ {pd : PayDetails | pd .to = pdThis.from })
\ {pdThis}) [section 18.7.1]

= (conAuthPurse pdThis.from).balance
+ sumValue(((maybeLost ′ \ chosenLost ′)

∩ {pd : PayDetails | pd .to = pdThis.from })
\ {pdThis}) [rearranging]

136 CHAPTER 18. REQ

= pdThis.value+ (conAuthPurse′ pdThis.from).balance
+ sumValue(((maybeLost ′ \ chosenLost ′)

∩ {pd : PayDetails | pd .to = pdThis.from })
\ {pdThis}) [ReqPurseOkay]

= pdThis.value+ (abAuthPurse′ pdThis.from).balance
[RabOkayClPd ′[. . .]]

So

(abAuthPurse′ from?).balance = (abAuthPurse from?).balance− value?

The from purse’s lost component

(abAuthPurse pdThis.from).lost

= sumValue(((definitelyLost ∪ chosenLost)
∩ {pd : PayDetails | pd .from = pdThis.from })

\ {pdThis}) [RabEndClPd]

= sumValue(((definitelyLost ′ ∪ chosenLost ′)
∩ {pd : PayDetails | pd .from = pdThis.from })

\ {pdThis}) [section 18.7.1]

= (abAuthPurse′ pdThis.from).lost [RabOkayClPd′[. . .]]

The to purse’s balance component

(abAuthPurse pdThis.to).balance

= (conAuthPurse pdThis.to).balance
+ sumValue(((maybeLost \ chosenLost)

∩ {pd : PayDetails | pd .to = pdThis.to })
\ {pdThis}) [RabEndClPd]

= (conAuthPurse pdThis.to).balance
+ sumValue((((maybeLost ′ \ {pdThis}) \ chosenLost ′)

∩ {pd : PayDetails | pd .to = pdThis.to })
\ {pdThis}) [section 18.7.1]

18.7. CASE 1: REQOKAY AND RABOKAYCLPD′ 137

= (conAuthPurse pdThis.to).balance
+ sumValue(((maybeLost ′ \ chosenLost ′)

∩ {pd : PayDetails | pd .to = pdThis.to })
\ {pdThis}) [rearranging]

= (conAuthPurse′ pdThis.to).balance
+ sumValue(((maybeLost ′ \ chosenLost ′)

∩ {pd : PayDetails | pd .to = pdThis.to })
\ {pdThis}) [ΦBOp]

= (abAuthPurse′ pdThis.to).balance+ pdThis.value
[RabOkayClPd ′[. . .]]

From the form of (abAuthPurse′ pdThis.to).balance = pdThis.value+ n in Ab-
TransferOkay, we see that this last subtraction gives a positive result. So

(abAuthPurse′ to?).balance = (abAuthPurse to?).balance+ value?

The to purse’s lost component

(abAuthPurse pdThis.to).lost

= sumValue(((definitelyLost ∪ chosenLost)
∩ {pd : PayDetails | pd .from = pdThis.to })

\ {pdThis}) [RabEndClPd]

= sumValue(((definitelyLost ′ ∪ chosenLost ′)
∩ {pd : PayDetails | pd .from = pdThis.to })

\ {pdThis}) [section 18.7.1]

= (abAuthPurse′ pdThis.to).lost [RabOkayClPd′[. . .]]

The remaining from and to purse components

These are unchanging, by ΞConPurseReq, and that the retrieves each define a
unique abstract world.

� 18.7.2
� 18.7

138 CHAPTER 18. REQ

18.8 case 2: ReqOkay and RabWillBeLostPd′

ΦBOp; ReqPurseOkay ; RabOut ; RabWillBeLostClPd ′[pdThis/pdThis′];
AbWorld ; RabEndClPd ; RabIn |

req∼m? = pdThis
∧ chosenLost = chosenLost ′ \ {pdThis}
∧maybeLost =maybeLost ′ \ {pdThis}
∧ definitelyLost = definitelyLost ′ \ {pdThis}

�
AbTransferLost

18.8.1 The behaviour of maybeLost and definitelyLost

We argue that the transaction pd is initially not in maybeLost or definitelyLost ,
and is moved into chosenLost ′ by this case of the ReqOkay operation. The
transaction initially was not far enough progressed to have the potential of
being lost; afterwards it has progressed far enough that it may be lost, and we
choose that it will be lost.

We have from RabWillBeLostClPd ′[. . .] that

pdThis ∈ chosenLost ′

Therefore

pdThis ∈maybeLost ′

because chosenLost ′ ⊆maybeLost ′. But we can say that pdThis ∉ definitelyLost ′

(by lemma ‘lost’). So we have

definitelyLost = definitelyLost ′

maybeLost =maybeLost ′ \ {pdThis}
chosenLost = chosenLost ′ \ {pdThis}

18.8. CASE 2: REQOKAY AND RABWILLBELOSTPD′ 139

18.8.2 AbTransferLost

In this section we prove that an AbWorld that has the correct retrieve properties
also satisfies AbTransferLost . Recall, our proof obligation is

ΦBOp; ReqPurseOkay ; RabOut ; RabWillBeLostClPd′[pdThis/pdThis′];
AbWorld ; RabEndClPd ; RabIn |

req∼m? = pdThis
∧ chosenLost = chosenLost ′ \ {pdThis}
∧maybeLost =maybeLost ′ \ {pdThis}
∧ definitelyLost = definitelyLost ′ \ {pdThis}

�
AbTransferLost

Each element of AbWorld is defined by an explicit equation in RabEndClPd, and
we show that this value satisfies AbTransferLost by showing each predicate
holds.

A–1 AbOp: This trivial: AbOp imposes no constraints.

A–2 AbWorldSecureOp

• a? ∈ ran transfer
true by construction of a?

• no purses other than from? and to? change
For balance and lost we show that RabEndClPd and RabWillBeLost-
ClPd′[pdThis/pdThis′] are essentially the same. This is immediate
because in both cases the relevant predicates are captured in the same
schema OtherPursesRab.

A–3 Authentic[from?/name?],Authentic[to?/name?]
We have pdThis ∈ maybeLost ′, hence it is in both authenticFrom′ and
in authenticTo′. Hence, by ΦBOp and AbstractBetween, it is also in both
authenticFrom and in authenticTo.

A–4 SufficientFundsProperty
true from ConPurse constraint P–2b

A–5 to? ≠ from?
true because pdThis is a PayDetails.

A–6 abAuthPurse′ from? = . . . ,abAuthPurse′ to? = . . .
Each of the four elements (from and to purses, each with balance and lost)
are handled below, followed by all the other elements in one section.

140 CHAPTER 18. REQ

The from purse’s balance component

(abAuthPurse pdThis.from).balance

= (conAuthPurse pdThis.from).balance
+ sumValue(((maybeLost \ chosenLost)

∩ {pd : PayDetails | pd .to = pdThis.from })
\ {pdThis}) [RabEndClPd]

= (conAuthPurse pdThis.from).balance
+ sumValue((((maybeLost ′ \ {pdThis}) \ chosenLost ′ \ {pdThis})

∩ {pd : PayDetails | pd .to = pdThis.from })
\ {pdThis}) [section 18.8.1]

= (conAuthPurse pdThis.from).balance
+ sumValue(((maybeLost ′ \ chosenLost ′)

∩ {pd : PayDetails | pd .to = pdThis.from })
\ {pdThis}) [rearranging]

= pdThis.value+ (conAuthPurse′ pdThis.from).balance
+ sumValue(((maybeLost ′ \ chosenLost ′)

∩ {pd : PayDetails | pd .to = pdThis.from })
\ {pdThis}) [ReqPurseOkay]

= pdThis.value+ (abAuthPurse′ pdThis.from).balance
[RabWillBeLostClPd′[. . .]]

So

(abAuthPurse′ from?).balance = (abAuthPurse from?).balance− value?

The from purse’s lost component

(abAuthPurse pdThis.from).lost

= sumValue(((definitelyLost ∪ chosenLost)
∩ {pd : PayDetails | pd .from = pdThis.from })

\ {pdThis}) [RabEndClPd]

= sumValue(((definitelyLost ′ ∪ chosenLost ′ \ {pdThis})
∩ {pd : PayDetails | pd .from = pdThis.from })

\ {pdThis}) [section 18.8.1]

18.8. CASE 2: REQOKAY AND RABWILLBELOSTPD′ 141

= sumValue(((definitelyLost ′ ∪ chosenLost ′)
∩ {pd : PayDetails | pd .from = pdThis.from })

\ {pdThis}) [rearrange]

= (abAuthPurse′ pdThis.from).lost − pdThis.value
[RabWillBeLostClPd′[. . .]]

The to purse’s balance component

(abAuthPurse pdThis.to).balance

= (conAuthPurse pdThis.to).balance
+ sumValue(((maybeLost \ chosenLost)

∩ {pd : PayDetails | pd .to = pdThis.to })
\ {pdThis}) [RabEndClPd]

= (conAuthPurse pdThis.to).balance
+ sumValue((((maybeLost ′ \ {pdThis}) \ chosenLost ′ \ {pdThis})

∩ {pd : PayDetails | pd .to = pdThis.to })
\ {pdThis}) [section 18.8.1]

= (conAuthPurse pdThis.to).balance
+ sumValue(((maybeLost ′ \ chosenLost ′)

∩ {pd : PayDetails | pd .to = pdThis.to })
\ {pdThis}) [rearranging]

= (conAuthPurse′ pdThis.to).balance
+ sumValue(((maybeLost ′ \ chosenLost ′)

∩ {pd : PayDetails | pd .to = pdThis.to })
\ {pdThis}) [ΦBOp]

= (abAuthPurse′ pdThis.to).balance [RabWillBeLostClPd ′[. . .]]

The to purse’s lost component

(abAuthPurse pdThis.to).lost

= sumValue(((definitelyLost ∪ chosenLost)
∩ {pd : PayDetails | pd .from = pdThis.to })

\ {pdThis}) [RabEndClPd]

142 CHAPTER 18. REQ

= sumValue(((definitelyLost ′ ∪ chosenLost ′ \ {pdThis})
∩ {pd : PayDetails | pd .from = pdThis.to })

\ {pdThis}) [section 18.8.1]

= sumValue(((definitelyLost ′ ∪ chosenLost ′)
∩ {pd : PayDetails | pd .from = pdThis.to })

\ {pdThis}) [rearrange]

= (abAuthPurse′ pdThis.to).lost [RabWillBeLostClPd′[. . .]]

The remaining from and to purse components

These are unchanging, by ΞConPurseReq, and that the retrieves each define a
unique abstract world.

� 18.8.2
� 18.8

18.9 case 3: ReqOkay and RabHasBeenLostPd′

ΦBOp; ReqPurseOkay ; RabOut ; RabHasBeenLostClPd′[pdThis/pdThis′];
AbWorld ; RabEndClPd ; RabIn |

req∼m? = pdThis
∧ chosenLost = chosenLost ′ \ {pdThis}
∧maybeLost =maybeLost ′ \ {pdThis}
∧ definitelyLost = definitelyLost ′ \ {pdThis}

�
AbTransferLost

18.9.1 The behaviour of maybeLost and definitelyLost

We argue that the transaction pd is initially not in maybeLost or definitelyLost ,
and is moved into definitelyLost ′ by this case of the ReqOkay operation. The
transaction initially was not far enough progressed to have the potential of
being lost; afterwards it has progressed far enough that it has in fact been lost.

We have from RabHasBeenLostClPd′ that

pdThis ∈ definitelyLost ′

ThereforepdThis ∉maybeLost ′ (by lemma ‘lost’), and also pdThis ∉ chosenLost ′

18.9. CASE 3: REQOKAY AND RABHASBEENLOSTPD′ 143

(because this is a subset of maybeLost ′). So we have

definitelyLost = definitelyLost ′ \ {pdThis}
maybeLost =maybeLost ′

chosenLost = chosenLost ′

18.9.2 AbTransferLost

In this section we prove that an AbWorld that has the correct retrieve properties
also satisfies AbTransferLost . Recall, our proof obligation is

ΦBOp; ReqPurseOkay ; RabOut ; RabHasBeenLostClPd′[pdThis/pdThis′];
AbWorld ; RabEndClPd ; RabIn |

req∼m? = pdThis
∧ chosenLost = chosenLost ′ \ {pdThis}
∧maybeLost =maybeLost ′ \ {pdThis}
∧ definitelyLost = definitelyLost ′ \ {pdThis}

�
AbTransferLost

Each element of AbWorld is defined by an explicit equation in RabEndClPd, and
we show that this value satisfies AbTransferLost by showing each predicate
holds.

A–1 AbOp: This trivial: AbOp imposes no constraints.

A–2 AbWorldSecureOp

• a? ∈ ran transfer
true by construction of a?

• no purses other than from? and to? change
For balance and lost we show that RabEndClPd and RabHasBeenLost-
ClPd′[pdThis/pdThis] are essentially the same. This is immediate be-
cause in both cases the relevant predicates are captured in the same
schema OtherPursesRab.

A–3 Authentic[from?/name?],Authentic[to?/name?]
We have pdThis ∈ maybeLost ′, hence it is in both authenticFrom′ and
in authenticTo′. Hence, by ΦBOp and AbstractBetween, it is also in both
authenticFrom and in authenticTo.

A–4 SufficientFundsProperty
true from ConPurse constraint P–2b

144 CHAPTER 18. REQ

A–5 to? ≠ from?
true because pdThis is a PayDetails.

A–6 abAuthPurse′ from? = . . . ,abAuthPurse′ to? = . . .
Each of the four elements (from and to purses, each with balance and lost)
are handled below, followed by all the other elements in one section.

The from purse’s balance component

(abAuthPurse pdThis.from).balance

= (conAuthPurse pdThis.from).balance
+ sumValue(((maybeLost \ chosenLost)

∩ {pd : PayDetails | pd .to = pdThis.from })
\ {pdThis}) [RabEndClPd]

= (conAuthPurse pdThis.from).balance
+ sumValue(((maybeLost ′ \ chosenLost ′)

∩ {pd : PayDetails | pd .to = pdThis.from })
\ {pdThis}) [section 18.9.1]

= pdThis.value+ (conAuthPurse′ pdThis.from).balance
+ sumValue(((maybeLost ′ \ chosenLost ′)

∩ {pd : PayDetails | pd .to = pdThis.from })
\ {pdThis}) [ReqPurseOkay]

= pdThis.value+ (abAuthPurse′ pdThis.from).balance
[RabHasBeenLostClPd′[. . .]]

So

(abAuthPurse′ from?).balance = (abAuthPurse from?).balance− value?

The from purse’s lost component

(abAuthPurse pdThis.from).lost

= sumValue(((definitelyLost ∪ chosenLost)
∩ {pd : PayDetails | pd .from = pdThis.from })

\ {pdThis}) [RabEndClPd]

= sumValue(((definitelyLost ′ \ {pdThis} ∪ chosenLost ′)
∩ {pd : PayDetails | pd .from = pdThis.from })

\ {pdThis}) [section 18.9.1]

18.9. CASE 3: REQOKAY AND RABHASBEENLOSTPD′ 145

= sumValue(((definitelyLost ′ ∪ chosenLost ′)
∩ {pd : PayDetails | pd .from = pdThis.from })

\ {pdThis}) [rearrange]

= (abAuthPurse′ pdThis.from).lost − pdThis.value
[RabHasBeenLostClPd′[. . .]]

The to purse’s balance component

(abAuthPurse pdThis.to).balance

= (conAuthPurse pdThis.to).balance
+ sumValue(((maybeLost \ chosenLost)

∩ {pd : PayDetails | pd .to = pdThis.to })
\ {pdThis}) [RabEndClPd]

= (conAuthPurse pdThis.to).balance
+ sumValue(((maybeLost ′ \ chosenLost ′)

∩ {pd : PayDetails | pd .to = pdThis.to })
\ {pdThis}) [section 18.9.1]

= (conAuthPurse′ pdThis.to).balance
+ sumValue(((maybeLost ′ \ chosenLost ′)

∩ {pd : PayDetails | pd .to = pdThis.to })
\ {pdThis}) [ΦBOp]

= (abAuthPurse′ pdThis.to).balance [RabHasBeenLostClPd′[. . .]]

The to purse’s lost component

(abAuthPurse pdThis.to).lost

= sumValue(((definitelyLost ∪ chosenLost)
∩ {pd : PayDetails | pd .from = pdThis.to })

\ {pdThis}) [RabEndClPd]

= sumValue(((definitelyLost ′ \ {pdThis} ∪ chosenLost ′)
∩ {pd : PayDetails | pd .from = pdThis.to })

\ {pdThis}) [section 18.9.1]

146 CHAPTER 18. REQ

= sumValue(((definitelyLost ′ ∪ chosenLost ′)
∩ {pd : PayDetails | pd .from = pdThis.to })

\ {pdThis}) [rearrange]

= (abAuthPurse′ pdThis.to).lost [RabHasBeenLostClPd′[. . .]]

The remaining from and to purse components

These are unchanging, by ΞConPurseReq, and that the retrieves each define a
unique abstract world.

� 18.9.2
� 18.9

18.10 case 4: ReqOkay and RabEndPd′

ΦBOp; ReqPurseOkay ; RabOut ; RabEndClPd′[pdThis/pdThis′];
AbWorld ; RabEndClPd ; RabIn |

req∼m? = pdThis
∧ chosenLost = chosenLost ′ \ {pdThis}
∧maybeLost =maybeLost ′ \ {pdThis}
∧ definitelyLost = definitelyLost ′ \ {pdThis}

�
AbTransfer

We show that RabEndClPd′[. . .] is false under ReqOkay , and then proceed by
[contradiction], because this shows the antecedent of the theorem is false, and
hence the theorem is true.

ΦBOp; ReqPurseOkay ; RabOut ; AbWorld′;
pdThis : PayDetails; chosenLost ′ : PPayDetails |

req∼m? = pdThis
�
¬ RabEndClPd ′[pdThis/pdThis′]

It suffices to show that pdThis ∈ definitelyLost ′ ∪maybeLost ′. We have

definitelyLost ′ ∪maybeLost ′

= (fromInEpa′ ∪ fromLogged ′)∩ (toInEpv′ ∪ toLogged ′)

ReqPurseOkay gives us that the after state of the purse is epa; pdThis is in

18.10. CASE 4: REQOKAY AND RABENDPD′ 147

authenticFrom, from ΦBOp; hence pdThis is in fromInEpa′. So it is sufficient to
show either pdThis is in toInEpv′ or in toLogged ′.

We know from the existence of the req, with BetweenWorld constraint B–1,
that pdThis ∈ authenticTo. There is no ack in the ether ′:

pdThis ∈ fromInEpr [precondition ReqPurseOkay]

⇒ ack pdThis ∉ ether [BetweenWorld constraint B–9]

⇒ ack pdThis ∉ ether ′ [defn. ReqPurseOkay and ΦBOp]

Hence

req pdThis ∈ ether ′ [precondition ReqPurseOkay]
∧ ack pdThis ∉ ether ′ [above]

⇒ pdThis ∈ toInEpv′ ∪ toLogged ′ [BetweenWorld constraint B–10]

as required.
� 18.10
� 18.6
� 18

Chapter 19

Correctness of Val

19.1 Proof obligation

We have to prove the correct refinement of each abstract operation. In section
9.2.4 we give a general simplification of the correctness proof. We use lemma
‘multiple refinement’ (section 14.2) to split the proof obligation for each A
operation into one for each individual B operation.

This chapter proves the B operation.

• We use lemma ‘ignore’ (see section 14.3) to simplify the proof obligation
by proving the correctness of Ignore (in section 14.7), leaving the Okay
branch to be proven here.

• We use lemma ‘deterministic’ (section C.1) to reduce the proof obligation
to the three cases exists-pd, exists-chosenLost, and check-operation.

• Since this operation refines AbIgnore, we use lemma ‘AbIgnore’ (from sec-
tion C.3) to simplify check-operation to check-operation-ignore.

19.2 Instantiating lemma ‘deterministic’

The choices for the predicates relating to pdThis and chosenLost are based on
the fact that the important transaction is the one stored in the purse performing
the ValOkay operation, and that before the operation, the set of transactions
chosen to be lost should be all those chosen to be lost after the operation. Thus

P	 pdThis = (conAuthPursename?).pdAuth

Q	 chosenLost = chosenLost ′

150 CHAPTER 19. VAL

19.3 exists-pd

ΦBOp; ValPurseOkay ; RabOut ; RabCl′; RabIn
�
∃pdThis : PayDetails • pdThis = (conAuthPursename?).pdAuth

Proof:
This is immediate by the [one point] rule, as we have an explicit definition of
pdThis.

� 19.3

19.4 exists-chosenlost

ΦBOp; ValPurseOkay ; RabOut ; RabClPd′[pdThis/pdThis′]; RabIn |
pdThis = (conAuthPursename?).pdAuth

�
∃ chosenLost : PPayDetails •

chosenLost = chosenLost ′

∧ chosenLost ⊆maybeLost

Proof:
We can [one point] away the quantification becausewe have an explicit definition
of chosenLost (as chosenLost ′). We show that the constraint holds by

chosenLost = chosenLost ′ [defn.]

⊆maybeLost ′ [RabClPd ′[. . .]]

⊆maybeLost \ {pdThis} [see 19.6.7]

⊆maybeLost [defn. \]

� 19.4

19.5 check-operation

ΦBOp; ValPurseOkay ; RabClPd′[pdThis/pdThis′]; AbWorld ; RabClPd |
pdThis = (conAuthPursename?).pdAuth
∧ chosenLost = chosenLost ′

�
∀n : domabAuthPurse •

(abAuthPurse′ n).balance = (abAuthPursen).balance
∧ (abAuthPurse′ n).lost = (abAuthPursen).lost

19.6. BEHAVIOUR OF MAYBELOST AND DEFINITELYLOST 151

We prove this first by investigating the way in which the key sets definitelyLost
and maybeLost are modified by the operation. Having got equations for these
changes, we then look at the equations for the components balance and lost
for two types of purses: the to purse in the transaction pdThis, and all other
purses.

19.6 Behaviour of maybeLost and definitelyLost

We argue that the transaction pdThis is initially in maybeLost , and is moved
out of it, but not into definitelyLost ′, by the ValOkay operation. This operation
determines that the transaction is successful.

19.6.1 fromLogged

No logs change, so

fromLogged ′ = fromLogged

19.6.2 toLogged

No logs change, so

toLogged ′ = toLogged

After the operation the purse is in eaTo, and pdThis is in authenticTo, from
ΦBOp, hence pdThis ∈ toInEapayee′. Lemma ‘notLoggedAndIn’ (section C.12)
gives us:

pdThis ∉ toLogged ′

19.6.3 toInEpv

From the precondition of ValPurseOkay we know the purse is in epv , and we
know that the name of this purse is equal to pdThis.to. After the operation,
this purse is in eaTo (that is, not in epv). No other purses change.

toInEpv′ = toInEpv \ {pdThis}
toInEpv = toInEpv′ ∪ {pdThis}

152 CHAPTER 19. VAL

19.6.4 fromInEpa

Only the to purse changes.

fromInEpa′ = fromInEpa

19.6.5 definitelyLost

definitelyLost ′

= toLogged ′ ∩ (fromLogged ′ ∪ fromInEpa′) [defn]

= toLogged ∩ (fromLogged ∪ fromInEpa) [above]

= definitelyLost [defn]

19.6.6 chosenLost

chosenLost ′ = chosenLost

by choice. So

definitelyLost ∪ chosenLost = definitelyLost ′ ∪ chosenLost ′

19.6.7 maybeLost

maybeLost ′

= (fromInEpa′ ∪ fromLogged ′)∩ toInEpv′ [defn]

= (fromInEpa ∪ fromLogged) ∩ (toInEpv \ {pdThis}) [above]

= ((fromInEpa ∪ fromLogged) ∩ toInEpv) \ {pdThis} [Spivey]

=maybeLost \ {pdThis} [defn]

val ∈ ether ∧ to.status = epv [precondition ValPurseOkay]

⇒ pdThis ∈ fromInEpa ∪ fromLogged [B–11]

⇒ pdThis ∈maybeLost [toInEpv , defn maybeLost]

pdThis ∈maybeLost [above]
∧ pdThis ∉ chosenLost ′ [because pdThis ∉ maybeLost ′]

⇒ pdThis ∈maybeLost ∧ pdThis ∉ chosenLost

⇒ pdThis ∈maybeLost \ chosenLost

19.7. CLARIFYING THE HYPOTHESIS 153

Also

maybeLost \ chosenLost = (maybeLost ′ \ chosenLost ′)∪ {pdThis}

19.7 Clarifying the hypothesis

We can show that the hypothesis is actually stronger than it looks, in that we can
replace RabClPd with RabOkayClPd and replace RabClPd′ with RabEndClPd ′.
This is because pdThis ∈ maybeLost \ chosenLost , implying that RabOkayClPd
holds.

pdThis ∉ maybeLost ′ (see construction of maybeLost ′) and so it cannot
be in chosenLost ′. pdThis ∉ maybeLost ′ and so it cannot be in maybeLost ′ \
chosenLost ′. pdThis ∉ definitelyLost ′ because it is not in toLogged ′.

This implies that RabEndClPd′[. . .] holds. So we have to prove

ΦBOp; ValPurseOkay ; RabEndClPd′[pdThis/pdThis′];
AbWorld ; RabOkayClPd |

pdThis = (conAuthPursename?).pdAuth
∧ chosenLost = chosenLost ′

�
∀n : domabAuthPurse •

(abAuthPurse′ n).balance = (abAuthPursen).balance
∧ (abAuthPurse′ n).lost = (abAuthPursen).lost

We do this for each of the three components, for all the purses other than
the to purse engaged in this transaction, and for exactly the to purse in this
transaction.

19.7.1 Case balance component for non-pdThis.to purse

∀n : domabAuthPurse | n ≠ pdThis.to •
(abAuthPurse′ n).balance

= (conAuthPurse′ n).balance
+ sumValue(((maybeLost ′ \ chosenLost ′)
∩ {pd : PayDetails | pd .to = n}) \ {pdThis})

[RabEndClPd ′[pdThis/pdThis′]]

= (conAuthPurse′ n).balance
+ sumValue((((maybeLost ′ \ chosenLost ′)∪ {pdThis})
∩ {pd : PayDetails | pd .to = n}) \ {pdThis})

[union and subtraction cancel]

154 CHAPTER 19. VAL

= (conAuthPurse′ n).balance
+ sumValue(((maybeLost \ chosenLost)
∩ {pd : PayDetails | pd .to = n}) \ {pdThis})

[equation earlier]

= (conAuthPursen).balance
+ sumValue(((maybeLost \ chosenLost)
∩ {pd : PayDetails | pd .to = n}) \ {pdThis})

[ΦBOp]

= (abAuthPursen).balance [RabOkayClPd]

� 19.7.1

19.7.2 Case lost component for non-pdThis.to purse

In this case the defining equations in the retrieve depend upon definitelyLost ∪
chosenLost , which we derived as unchanging earlier. ΦBOp does not change the
concrete values, so the abstract values do not change either.

� 19.7.2

19.7.3 Case balance component for pdThis.to purse

(abAuthPurse′ pdThis.to).balance

= (conAuthPurse′ pdThis.to).balance
+ sumValue(((maybeLost ′ \ chosenLost ′)

∩ {pd : PayDetails | pd .to = pdThis.to}) \ {pdThis})
[RabEndClPd ′[. . .]]

= (conAuthPurse′ pdThis.to).balance
+ sumValue((((maybeLost ′ \ chosenLost ′)∪ {pdThis})

∩ {pd : PayDetails | pd .to = pdThis.to}) \ {pdThis})
[union and subtraction cancel]

= (conAuthPurse′ pdThis.to).balance
+ sumValue(((maybeLost \ chosenLost)

∩ {pd : PayDetails | pd .to = pdThis.to}) \ {pdThis})
[equation earlier]

19.7. CLARIFYING THE HYPOTHESIS 155

= (conAuthPurse pdThis.to).balance+ pdThis.value
+ sumValue(((maybeLost \ chosenLost)

∩ {pd : PayDetails | pd .to = pdThis.to}) \ {pdThis})
[ValPurseOkay]

= (abAuthPurse pdThis.to).balance [RabOkayClPd]

� 19.7.3

19.7.4 Case lost component for pdThis.to purse

In this case the defining equations in the retrieve depend upon definitelyLost ∪
chosenLost , which we derived as unchanging earlier. ValOkay does not change
the concrete values, so the abstract values do not change either.

� 19.7.4
� 19.7
� 19

Chapter 20

Correctness of Ack

20.1 Proof obligation

We have to prove the correct refinement of each abstract operation. In section
9.2.4 we give a general simplification of the correctness proof. We use lemma
‘multiple refinement’ (section 14.2) to split the proof obligation for each A
operation into one for each individual B operation.

This chapter proves the B operation.

• We use lemma ‘ignore’ (see section 14.3) to simplify the proof obligation
by proving the correctness of Ignore (in section 14.7), leaving the Okay
branch to be proven here.

• We use lemma ‘deterministic’ (section C.1) to reduce the proof obligation
to the three cases exists-pd, exists-chosenLost, and check-operation.

• Since this operation refines AbIgnore, we use lemma ‘AbIgnore’ (from sec-
tion C.3) to simplify check-operation to check-operation-ignore.

20.2 Instantiating lemma ‘deterministic’

We must instantiate two general predicates relating to pdThis and chosenLost .
The choices for these predicates are based on the fact that the important trans-
action is the one stored in the purse performing the AckOkay operation, and
that before the operation, the set of transactions chosen to be lost should be
all those chosen to be lost after the operation, because this operation plays no

158 CHAPTER 20. ACK

part in deciding which transactions succeed and which ones lose. Thus

P	 pdThis = (conAuthPursename?).pdAuth

Q	 chosenLost = chosenLost ′

20.3 exists-pd

ΦBOp; AckPurseOkay ; RabOut ; RabCl′; RabIn
�
∃pdThis : PayDetails • pdThis = (conAuthPursename?).pdAuth

Proof:
This is immediate by [one point] rule, as we have an explicit definition of pdThis.

� 20.3

20.4 exists-chosenlost

ΦBOp; AckPurseOkay ; RabOut ; RabClPd′[pdThis/pdThis′]; RabIn |
pdThis = (conAuthPursename?).pdAuth

�
∃ chosenLost : PPayDetails •

chosenLost = chosenLost ′

∧ chosenLost ⊆maybeLost

Proof:
We can [one point] away the quantification becausewe have an explicit definition
of chosenLost (as chosenLost ′). We show that the constraint holds by

chosenLost = chosenLost ′ [def]

⊆maybeLost ′ [RabClPd ′[. . .]]

⊆maybeLost [see 20.6.6]

� 20.4

20.5. CHECK-OPERATION 159

20.5 check-operation

ΦBOp; AckPurseOkay ; RabClPd′[pdThis/pdThis′]; AbWorld ; RabClPd |
pdThis = (conAuthPursename?).pdAuth
∧ chosenLost = chosenLost ′

�
∀n : domabAuthPurse •

(abAuthPurse′ n).balance = (abAuthPursen).balance
∧ (abAuthPurse′ n).lost = (abAuthPursen).lost

Proof:
We prove this by investigating the way in which the key sets definitelyLost and
maybeLost are modified by the operation.

20.6 Behaviour of maybeLost and definitelyLost

We argue that the transaction pd is initially in neithermaybeLost nor definitely-
Lost , and is not moved into either of them by the AckOkay operation. The
transaction was initially far enough along to have already succeeded.

20.6.1 Behaviour of fromLogged

From ΦBOp, which says that only the purse name? changes, and then only
according to AckPurseOkay , and from the definition of AckPurseOkay , in which
exLog′ = exLog, we can see that

fromLogged ′ = fromLogged

20.6.2 Behaviour of toLogged

Exactly as we argued for fromLogged ,

toLogged ′ = toLogged

20.6.3 Behaviour of toInEpv

If toInEpv′ ≠ toInEpv , there must be some pd in one and not in the other. From
the definition of toInEpv , this means that for some purse that changes, either
before or after the operation its status must equal epv . That is,

(conAuthPurse pd .to).status = epv
∨
(conAuthPurse′ pd .to).status = epv

160 CHAPTER 20. ACK

From ΦBOp we have that the only purse that changes is name?. From AckPurse-
Okay we have that

(conAuthPursename?).status = epa

(conAuthPurse′ name?).status = eaFrom

(neither equal to epv). Therefore, no such pd exists, and we have

toInEpv ′ = toInEpv

20.6.4 Behaviour of fromInEpa

If fromInEpa′ ≠ fromInEpa, there must be some pd in one and not in the other.
From the definition of fromInEpa, this means that for some purse that changes,
either before or after the operation its status must equal epa. That is,

(conAuthPurse pd .from).status = epa
∨
(conAuthPurse′ pd .from).status = epa

The only name that changes is name?, and from AckPurseOkay we have that

(conAuthPursename?).status = epa

(conAuthPurse′ name?).status = eaFrom

Therefore, we have

fromInEpa′ = fromInEpa \ {pd : PayDetails | pd .from = name?
∧ (conAuthPursename?).status = epa
∧ (conAuthPursename?).pdAuth = pd }

In fact, the last predicate in this set limits the pd to a single value, equal to
pdThis, so we have

fromInEpa′ = fromInEpa \ {pdThis}

We now build up the two sets definitelyLost and maybeLost .

20.6. BEHAVIOUR OF MAYBELOST AND DEFINITELYLOST 161

20.6.5 Behaviour of definitelyLost

definitelyLost ′ = toLogged ′ ∩ (fromLogged ′ ∪ fromInEpa′) [defn]

= toLogged [above identities]
∩ (fromLogged ∪ (fromInEpa \ {pdThis}))

= toLogged [pdThis ∉ fromLogged , see below]
∩ ((fromLogged ∪ fromInEpa) \ {pdThis})

= (fromLogged ∪ fromInEpa) [algebra]
∩ (toLogged \ {pdThis})

= (fromLogged ∪ fromInEpa)∩ toLogged[pdThis ∉ toLogged , see below]

= definitelyLost [defn]

We have pdThis ∉ fromLogged , from the fact that pdThis ∈ fromInEpa (because
the before purse state is epa, and ΦBOp gives pdThis ∈ authenticFrom), and
using lemma ‘notLoggedAndIn’.

We have pd ∉ toLogged :

ack pd ∈ ether [precondition AckPurseOkay]

⇒ pd ∉ toInEpv ∪ toLogged [BetweenWorld constraint B–10]

⇒ pd ∉ toLogged [law]

Thus we have

definitelyLost ′ = definitelyLost

20.6.6 Behaviour of maybeLost

maybeLost ′ = (fromInEpa′ ∪ fromLogged ′)∩ toInEpv′ [defn.]

= (fromInEpa ∪ (fromLogged \ {pdThis}))∩ toInEpv
[above identities]

= ((fromInEpa ∪ fromLogged) \ {pdThis})∩ toInEpv
[pdThis ∉ fromLogged , as above]

= (fromInEpa ∪ fromLogged) ∩ (toInEpv \ {pdThis}) [algebra]

= (fromInEpa ∪ fromLogged) ∩ toInEpv[pdThis ∉ toInEpv , see below]

=maybeLost [defn.]

162 CHAPTER 20. ACK

We have pdThis ∉ toInEpv :

ack pd ∈ ether [precondition AckOkay]

⇒ pdThis ∉ toInEpv ∪ toLogged [BetweenWorld constraint B–10]

⇒ pdThis ∉ toInEpv [law]

Thus we have

maybeLost ′ =maybeLost

20.7 Finishing proof of check-operation

The above shows that none of the three setsdefinitelyLost ,maybeLost or chosen-
Lost changes. As AckOkay does not alter any concrete balance or lost , and
given that the abstract values are defined solely in terms of these (unchanging)
values, it follows that the abstract values don’t change, thus discharging the
check-operation proof obligation.

� 20.5
� 20

Chapter 21

Correctness of ReadExceptionLog

21.1 Proof obligation

We have to prove the correct refinement of each abstract operation. In section
9.2.4 we give a general simplification of the correctness proof. We use lemma
‘multiple refinement’ (section 14.2) to split the proof obligation for each A
operation into one for each individual B operation.

This chapter proves the B operation.

• We use lemma ‘ignore’ (see section 14.3) to simplify the proof obligation
by proving the correctness of Ignore (in section 14.7), and Abort (in sec-
tion 14.8), leaving the Okay branch to be proven here.

• Since the Okay branch of this operation is expressed as a promotion of
AbortPurseOkay composed with a simpler EafromPurseOkay operation,
we use lemma ‘abort backward’ (section C.5), and prove only that the pro-
motion of the simpler operation is a refinement.

• We use lemma ‘deterministic’ (section C.1) to reduce the proof obligation
to the three cases exists-pd, exists-chosenLost, and check-operation.

• Since this operation leaves the sets maybeLost and definitelyLost uncha-
nged, we use lemma ‘lost unchanged’ (section C.2) to discharge the exists
pd-and exists chosenLost-obligations automatically.

• Since this operation refines AbIgnore, we use lemma ‘AbIgnore’ (from sec-
tion C.3) to simplify check-operation to check-operation-ignore.

164 CHAPTER 21. READEXCEPTIONLOG

21.2 Invoking lemma ‘lost unchanged’

We have the constraint ΞConPurse in the definition of ReadExceptionLogPurse-
EafromOkay. From ΦBOp and ΞConPurse, we know that archive and conAuth-
Purse remain unchanged, as do definitelyLost and maybeLost . Hence we can
invoke lemma ‘Lost unchanged’.

21.3 check-operation-ignore

ΦBOp; ReadExceptionLogPurseEafromOkay ;
RabOut ; RabClPd′[pdThis/pdThis′];
AbWorld ; RabClPd ; RabIn |

chosenLost ′ = chosenLost
∧maybeLost ′ =maybeLost
∧ definitelyLost ′ = definitelyLost

�
∀n : domabAuthPurse •

(abAuthPurse′ n).balance = (abAuthPursen).balance
∧ (abAuthPurse′ n).lost = (abAuthPursen).lost

Proof:
We have that maybeLost and definitelyLost are unchanged from the hypothe-
sis. Hence the balance and lost components of all the abstract purses remain
unchanged, satisfying our proof requirement.

� 21.3
� 21

Chapter 22

Correctness of ClearExceptionLog

22.1 Proof obligation

We have to prove the correct refinement of each abstract operation. In section
9.2.4 we give a general simplification of the correctness proof. We use lemma
‘multiple refinement’ (section 14.2) to split the proof obligation for each A
operation into one for each individual B operation.

This chapter proves the B operation.

• We use lemma ‘ignore’ (see section 14.3) to simplify the proof obligation
by proving the correctness of Ignore (in section 14.7), and Abort (in sec-
tion 14.8), leaving the Okay branch to be proven here.

• Since the Okay branch of this operation is expressed as a promotion of
AbortPurseOkay composed with a simpler EafromPurseOkay operation,
we use lemma ‘abort backward’ (section C.5), and prove only that the pro-
motion of the simpler operation is a refinement.

• We use lemma ‘deterministic’ (section C.1) to reduce the proof obligation
to the three cases exists-pd, exists-chosenLost, and check-operation.

• Since this operation leaves the sets maybeLost and definitelyLost uncha-
nged, we use lemma ‘lost unchanged’ (section C.2) to discharge the exists
pd-and exists chosenLost-obligations automatically.

• Since this operation refines AbIgnore, we use lemma ‘AbIgnore’ (from sec-
tion C.3) to simplify check-operation to check-operation-ignore.

166 CHAPTER 22. CLEAREXCEPTIONLOG

22.2 Invoking lemma ‘Lost unchanged’

The purse’s exception log is cleared, so we cannot use the ‘sufficient conditions’
to invoke lemma ‘lost unchanged’: we need first to show that fromLogged and
toLogged are unchanged.

We have from the operation definition that the exception log details in the
purse that are to be cleared match the ones in the exceptionLogClear message.
We have, from constraint B–15 that the log details in the message are already
in the archive. So deleting them from the purse will not change allLogs. But
fromLogged and toLogged partition allLogs, so these do not change either.

Hence we can invoke lemma ‘Lost unchanged’.

22.3 check-operation-ignore

ΦBOp; ClearExceptionLogPurseEafromOkay ;
RabOut ; RabClPd′[pdThis/pdThis′];
AbWorld ; RabClPd ; RabIn |

chosenLost ′ = chosenLost
∧maybeLost ′ =maybeLost
∧ definitelyLost ′ = definitelyLost

�
∀n : domabAuthPurse •

(abAuthPurse′ n).balance = (abAuthPursen).balance
∧ (abAuthPurse′ n).lost = (abAuthPursen).lost

Proof:
We have that maybeLost and definitelyLost are unchanged from the hypothe-
sis. Hence the balance and lost components of all the abstract purses remain
unchanged.

� 22.3
� 22

Chapter 23

Correctness of AuthoriseExLogClear

23.1 Proof obligation

We have to prove the correct refinement of each abstract operation. In section
9.2.4 we give a general simplification of the correctness proof. We use lemma
‘multiple refinement’ to split the proof obligation for each A operation into
one for each individual B operation.

This chapter proves the B operation.

• We use lemma ‘ignore’ to simplify the proof obligation further to proving
the correctness of Ignore (section 14.7), leaving the Okay branch to be
proven.

We cannot use any of the other simplifications directly forAuthoriseExLogClear ,
since it cannot be written as a promotion. So the correctness proof obligation
for AuthoriseExLogClear is

AuthoriseExLogClearOkay ; Rab′; RabOut
�
∃AbWorld ; a? : AIN • Rab ∧ RabIn ∧ AbIgnore

23.2 Proof

First we choose an input. We argue exactly as in section 14.4.1 to reduce the
obligation to:

AuthoriseExLogClearOkay ; Rab′; RabOut ; RabIn
�
∃AbWorld • Rab ∧ AbIgnore

168 CHAPTER 23. AUTHORISEEXLOGCLEAR

We [cut] in a beforeAbWorld equal to the afterAbWorld′ in Rab′ (the side lemma
is trivial), and use [consq exists] to remove the quantifier from the consequent.

AuthoriseExLogClearOkay ; Rab′; RabOut ; RabIn; AbWorld |
θAbWorld = θAbWorld′

�
Rab ∧ AbIgnore

AbIgnore is certainly satisfied by the equal abstract before and after worlds.
It remains to show that Rab is satisfied. The only difference between

the concrete before and after worlds, as given by AuthoriseExLogClearOkay , is
the addition of an exceptionLogClear message in the ether . But Rab does not
depend on exceptionLogClear messages, and so we can deduce Rab directly
from Rab′

� 23.2
� 23

Chapter 24

Correctness of Archive

24.1 Proof obligation

We have to prove the correct refinement of each abstract operation. In section
9.2.4 we give a general simplification of the correctness proof. We use lemma
‘multiple refinement’ to split the proof obligation for each A operation into
one for each individual B operation.

This chapter proves the B operation.
We cannot use any more of the usual simplifications directly for Archive,

since it cannot be written as a promotion. So the correctness proof obligation
for Archive is

Archive; Rab′; RabOut � ∃AbWorld ; a? : AIN • Rab ∧ RabIn ∧ AbIgnore

24.2 Proof

First we choose an input. We argue exactly as in section 14.4.1 to reduce the
obligation to:

Archive; Rab′; RabOut ; RabIn � ∃AbWorld • Rab ∧ AbIgnore

We [cut] in a beforeAbWorld equal to the afterAbWorld′ in Rab′ (the side lemma
is trivial), and use [consq exists] to remove the quantifier from the consequent.

Archive; Rab′; RabOut ; RabIn; AbWorld |
θAbWorld = θAbWorld′

�
Rab ∧ AbIgnore

170 CHAPTER 24. ARCHIVE

AbIgnore is certainly satisfied by the equal abstract before and after worlds.
It remains to show that Rab is satisfied. The only difference between the

concrete before and after worlds, as given by Archive, is the inclusion of some
log details in the archive. We have, from BetweenWorld constraint B–14, that
the log details added to the archive from the exceptionLogResult message are
already in allLogs. So, although the archive grows, the operation does not add
any new logs to theworld. Thus fromLogged and toLogged don’t change. Hence
maybeLost and definitelyLost don’t change. Therefore, nothing that Rab relies
upon changes in the concrete world, and so we can deduce Rab directly from
Rab′.

� 24.2
� 24

Part III

Second Refinement: B to C

171

Chapter 25

Refinement Proof Rules

25.1 Security of the implementation

We prove the concrete model C is secure with respect to the between model B
by showing that every concrete operation correctly refines a between operation.
The concrete and between operations are similarly-named.

The full list of refinements is:

StartTo # CStartTo

StartFrom # CStartFrom

Req # CReq

Val # CVal

Ack # CAck

ReadExceptionLog # CReadExceptionLog

ClearExceptionLog # CClearExceptionLog

AuthoriseExLogClear # CAuthoriseExLogClear

Archive # CArchive

Abort # CAbort

Increase # CIncrease

Ignore # CIgnore

174 CHAPTER 25. B TO C RULES

R' R

Correctness

R'

C'C COp

B'B BOp

Initialisation

B'

C'

BInit

CInit

R

Finalisation

C

B

BFin

CFin

Figure 25.1: A summary of the forward proof rules. The hypothesis is the
existence of the lower (solid) path. The proof obligation is to demonstrate the
existence of an upper (dashed) path.

25.2 Forwards rules proof obligations

Each of these refinements must be proved correct. [Spivey 1992b, Chapter 5]
presents the theorems that need to be proved for themost commonly-occurring
case of non-determinism, sometimes called ‘downward’ or ‘forward’ conditions,
where the abstract and concrete inputs and outputs are identical. These, aug-
mented with a finalisation proof, are appropriate for the B to C refinement
proofs.

The forward rules are summarised in figure 25.1. Note how the paths are
different from the backward case (figure 9.1) because of the direction of the R
arrows.

25.2.1 Retrieve

The retrieve relation has one part that links the abstract and concrete states.

25.2.2 Initialisation

CInit � ∃B′ • BInit ∧ R′

25.2.3 Finalisation

R; CFin � BFin

25.2. FORWARDS RULES PROOF OBLIGATIONS 175

25.2.4 Applicability

R; BIn | pre BOp � pre COp

25.2.5 Correctness

R; COp | pre BOp � ∃B′ • R′ ∧ BOp

We can simplify the correctness condition because we know that all the between
operations are total, i.e.

pre BOp = true

This was proved earlier, in section 8.3.2.
We can therefore simplify the correctness condition to

R; COp � ∃B′ • R′ ∧ BOp

Chapter 26

B to C retrieve relation

26.1 Retrieve state

The B and C worlds are identical, except that the C world can ‘lose’ ether mes-
sages.

Rbc
BetweenWorld
ConWorld0

conAuthPurse0 = conAuthPurse

ether0 ⊆ ether

archive0 = archive

The subscript zero on the concrete world serves to distinguish like-named be-
tween and concrete components.

Chapter 27

Initialisation, Finalisation, and
Applicability

27.1 Initialisation proof

ConInitState � ∃BetweenWorld ′ • BetweenInitState ∧ Rbc′

Proof:
We expand ConInitState in the hypothesis according to its definition.

ConWorld ′0 |
(∃BetweenWorld ′ | BetweenInitState •

conAuthPurse′0 = conAuthPurse′

∧ archive′ = archive′

∧ {⊥} ⊆ ether ′0 ⊆ ether ′)
�
∃BetweenWorld ′ • BetweenInitState ∧ Rbc′

From the definition of Rbc′, we can see that the consequent follows directly
from the hypothesis.

� 27.1

27.2 Finalisation proof

Rbc; ConFinState � BetwFinState

Proof:
We have defined ConFinState and BetwFinState to have the same mathematical
form.

180 CHAPTER 27. INITIALISATION, FINALISATION, AND APPLICABILITY

Rbc in the hypothesis requires the concrete and between purse states and
archives to be identical, and allows the between ether to be bigger than the
concrete ether .

Finalisation of the purses depends only on the purse states (identical by
hypothesis) and on the sets definitelyLost and maybeLost . These sets them-
selves depend only on purse states and on the archive (also identical for con-
crete and between worlds by the retrieve in the hypothesis). As result, gAuth-
Purse for between finalisation is identical to that for concrete finalisation.

� 27.2

27.3 Applicability proofs

Applicability follows automatically from the totality of the concrete operations
as shown in section 8.4.

� 27.3

Chapter 28

Lemmas for the B to C correctness
proofs

28.1 Specialising the proof rules

For each concrete operation COp and corresponding between operation BOp
we have to show

Rbc; COp � ∃BetweenWorld ′ • Rbc′ ∧ BOp

Many operations are defined as the disjunction of other operations. A COp
will have the same branches as a corresponding BOp: a CIgnore branch, and
either a CAbort or COpOkay branch, or both. We split the proof obligation into
CIgnore, CAbort and COpOkay branches, as we did in section 14.3. This gives
some or all of the following proof requirements, depending on which branches
are in COp:

Rbc; CIgnore � ∃BetweenWorld ′ • Rbc′ ∧ Ignore

Rbc; CAbort � ∃BetweenWorld ′ • Rbc′ ∧ Abort

Rbc; COpOkay � ∃BetweenWorld ′ • Rbc′ ∧ BOpOkay

The correctness of the CIgnore branch is dealt with below in section 28.2. We
then develop the correctness proof for the CAbort and COpOkay branches, and
introduce a lemma applicable to certain operations. Following this, we present
the proof of correctness of two common branches — CIncrease and CAbort .

182 CHAPTER 28. B TO C LEMMAS

28.2 Correctness of CIgnore

The correctness of the CIgnore branch follows trivially by choosing

θBetweenWorld ′ = θBetweenWorld

� 28.2

28.3 Correctness of a branch of the operation

28.3.1 Choosing BetweenWorld ′

In choosing BetweenWorld′, we base our choice of the conAuthPurse′ and ar -
chive′ components on Rbc′, and our choice of the ether ′ component on BOp-
Okay′.

We have conAuthPurse′0 and archive′0 in the hypothesis, and we use this
to provide the value for conAuthPurse′ and archive′, respectively (this satisfies
the constraint on conAuthPurse′ and archive′ in Rbc′).

conAuthPurse′ = conAuthPurse′0
archive′ = archive′0

m! and ether are declared in the hypothesis, and ether ′ can be constructed
deterministically from these (note that the following construction satisfies the
relevant constraint in BOpOkay — either in ΦBOp or explicitly as in Archive).

ether ′ = ether ∪ {m!}
We need to show that the chosen BetweenWorld′ and m! satisfy each of the
conjuncts in the consequent (retrieve Rbc′ and operation BOpOkay).

We also need to show that this choice is indeed an after BetweenWorld′

(that it satisfies the constraints on BetweenWorld specified in section 5.3).

28.3.2 Case BOpOkay

From the choice of ether ′ above, the relevant constraint on ether ′ in BOpOkay
is satisfied by construction.

At most one purse changes in COpOkay . Let us call this new purse value
p. This gives

conAuthPurse′0 = conAuthPurse0 ⊕ {p}
conAuthPurse′0 = conAuthPurse⊕ {p} [Rbc]

conAuthPurse′ = conAuthPurse⊕ {p} [choice of conAuthPurse′]

28.3. CORRECTNESS OF A BRANCH OF THE OPERATION 183

This satisfies the constraint on conAuthPurse′ in BOpOkay (where at most one
purse changes in an identical manner to COpOkay).

archive′ is a function of archive and m!, defined in BOpOkay . Call this
function f :

f : Logbook ×MESSAGE→ Logbook

Because COpOkay is defined in an analogous way, f also relates archive′0 to
archive0 and m!.

From the hypothesis we have COpOkay and Rbc, and with our choice of
archive′ we have, respectively

archive′0 = f (archive0,m!)
∧ archive = archive0
∧ archive′ = archive′0

Substituting the latter two equations into the first gives the predicate in BOp-
Okay .

Thus, the BOpOkay constraints on all the components of our chosen Between-
World′ are satisfied under the correctness hypothesis and choice of Between-
World′.

� 28.3.2

28.3.3 Case Rbc′

Both the conAuthPurse′ and archive′ components of BetweenWorld′ satisfyRbc′

from the choice of BetweenWorld ′.
All COpOkay operations constrain ether ′ as

ether ′0 ⊆ ether0 ∪ {m!}

either through ΦCOp, or explicitly in CArchive. Hence for ether ′ we have

ether ′

= ether ∪ {m!} [choice of ether ′]

⊇ ether0 ∪ {m!} [Rbc]

⊇ ether ′0 [COpOkay]

This satisfies the constraint on ether ′ in Rbc′.

184 CHAPTER 28. B TO C LEMMAS

28.3.4 Case ‘obey constraints’

We know from the hypothesis that the before BetweenWorld satisfies the con-
straints, so we need check only that the chosen messagem!, and any change of
purse state during the operation, maintains this constraint.

Lemma 28.1 (constraint) If an operation obeys the following properties, then
it preserves the BetweenWorld constraints:

• it does not change purse status or current transaction details (pdAuth)
• it does not change allLogs
• it does not change the payment detail messages, exception log read mes-
sages or exception log clear messages in the ether (either by not emitting
such a message, or by emitting an already existing message)

• no sequence number decreases (all concrete operations have the property,
so it is automatically satisfied)

�

Proof:
The BetweenWorld constraints refer only to certain ether messages (req, val,
ack, exceptionLogResult and exceptionLogClear), and relate their presence or
absence to purse status (status, pdAuth and nextSeqNo) and allLogs. From the
hypothesis we can invoke lemma ‘logs unchanged’ (section C.7) to say that, as
allLogs does not change, not does alLogs. So operations that do not change the
purse status, do not change allLogs, and do not emit any relevant newmessages,
will automatically preserve the constraints.

� 28.3.4
Even when lemma ‘constraint’ does not apply, we know from the form of the
operation that at most one purse changes, and one message is emitted. As
at most one purse changes, the proof that the BetweenWorld constraints are
preserved need refer only to this purse; the constraints hold on the other purses
before the operation by hypothesis, and so they hold afterward, too.

28.3.5 Summary of ConOkay proof obligation

For each operation, we have to show that either lemma ‘constraint’ holds or
that the choice of BetweenWorld ′ obeys the constraints (see section 5.3).

28.4. CORRECTNESS OF CINCREASE 185

28.4 Correctness of CIncrease

CIncrease does not change status or pdAuth, does not log, and no relevant
message is emitted to the ether , so lemma ‘constraint’ (section C.6) is applicable.

� 28.4

28.5 Correctness of CAbort

Lemma ‘constraint’ is not applicable, because CAbort moves one purse into
eaFrom, and it may not have been in this state before, and it may log a pending
transaction. Therefore we have to show that our chosen BetweenWorld′ obeys
the constraints.

One ⊥ message is emitted, and (possibly) one log is recorded.

B–1 req ⇒ authentic to purse. No new req messages.

B–2 No future reqs. No new req messages.

B–3 No future vals. No new val messages.

B–4 No future acks. No new ack messages.

B–5 No future from logs. The purse moves into eaFrom, possibly logging a
transaction, and possibly increasing nextSeqNo. This does not invalidate
this constraint for any previous logs. To create a new from log, the purse
would have had to have been in epa (from LogIfNecessary). Hence, using
ConPurse constraint P–??, we have

pdAuth.fromSeqNo < nextSeqNo

From AbortPurse, we also have

nextSeqNo ≤ nextSeqNo′

This gives

pdAuth.fromSeqNo < nextSeqNo′

The pdAuth is logged when the pre-state purse is in epa, and thus the new
log obeys the constraint.

B–6 No future to logs. The purse moves into eaFrom, possibly logging a trans-
action, and possibly increasing nextSeqNo. This does not invalidate this
constraint for any previous logs. To create a new to log, the purse would

186 CHAPTER 28. B TO C LEMMAS

have had to have been in epv (from LogIfNecessary). Hence, usingConPurse
constraint P–??, we have

pdAuth.toSeqNo < nextSeqNo

From AbortPurse, we also have

nextSeqNo ≤ nextSeqNo′

This gives

pdAuth.toSeqNo < nextSeqNo′

The pdAuth is logged when the pre-state purse is in epv , and thus the new
log obeys the constraint.

B–7 from in {epr , epa}, so no future from logs. The purse moves into eaFrom,
so no new purses in epr or epa.

B–8 to in {epv , eaTo}, so no future to logs. The purse moves into eaFrom, so
no new purses in epv or eaTo.

B–9 epr ⇒ ¬ val ∧ ¬ ack. The purse moves into eaFrom, and so does not
move into epr .

B–10 req ∧ ¬ ack	 toInEpv ∨ toLogged .

• case ⇒:
No new req messages; no ack messages removed from the ether .
The purse may have moved out of epv , but in such a case LogIf Ne-
cessary says that it logs, hence re-establishing the condition.

• case ⇐:
No purses newly in epv .
There might be a new to log, in which case we must show there was
a req, but no ack before. A to log can be made only by a purse mov-
ing out of epv . Then the BetweenWorld constraint B–10, on toInEpv ,
before the operation gives us the required req and lack of ack.

B–11 epv ∧ val ⇒ fromInEpa ∨ fromLogged . No purses newly in epv ; no new
val messages.
The purse may have moved out of epa. But in such a case LogIfNecessary
says that it logs, hence re-establishing the condition.

B–12 fromInEpa ∨ fromLogged ⇒ req. No purses newly in epa.
There might be a new from log, in which case we must show there was
a req before. A from log can be made only by a purse moving out of

28.6. LEMMA ‘LOGS UNCHANGED’ 187

epa. Then the BetweenWorld constraint B–12, on fromInEpa, before the
operation gives us the required req.

B–13 toLogged finite. At most one to log written, so finite before gives finite
after.

B–14 exceptionLogResults in allLogs. No new exception log result messages.

B–15 Cleared logs archived. No exceptionLogClear messages are added, and the
archive is unchanged.

B–16 req for each log. If there are no new logs, then the constraint holds from
the pre-state.
If a transaction exception is logged, then the purse status must have been
either epv or epa. From constraints B–10 and B–12, there was a req in the
pre-state ether for the transaction which was logged. This req will also be
in the post-state ether .

� 28.5

28.6 Lemma ‘logs unchanged’

Lemma 28.2 (logs unchanged) When the archive and the individual purse logs
do not change, and when no new req messages are added to the ether , the set
of PayDetails representing all the logs does not change either.

BOpOkay | archive′ = archive
∧ req ether ′ = req ether
∧ ∀n : dom conAuthPurse •

(conAuthPurse′ n).exLog = (conAuthPursen).exLog
�
allLogs′ = allLogs
∧ toLogged ′ = toLogged
∧ fromLogged ′ = fromLogged

�

188 CHAPTER 28. B TO C LEMMAS

Proof:

allLogs = archive
∪ {n : dom conAuthPurse; ld : PayDetails |

ld ∈ (conAuthPursen).exLog }
[defn]

= archive′

∪ {n : dom conAuthPurse′; ld : PayDetails |
ld ∈ (conAuthPurse′ n).exLog }

[assumption and ΦBOp]

= allLogs′ [defn]

allLogs = {n : dom conAuthPurse; pd : PayDetails |
n � pd ∈ allLogs ∧ req pd ∈ ether }

[defn]

= {n : dom conAuthPurse′; pd : PayDetails |
n � pd ∈ allLogs′ ∧ req pd ∈ ether ′ }

[assumption and above]

= allLogs′

[defn]

The arguments for toLogged and fromLogged follow in exactly the same way.
� 28.6

28.7 Lemma ‘abort forward’: operations that first abort

Some concrete operations are written as a composition of Abort and a simpler
operation starting from eaFrom (StartFrom, StartTo, ReadExceptionLog, Clear-
ExceptionLog, etc.).

Lemma 28.3 (abort forward) Where a C operation is written as a composition
ofCAbort and a simpler operation starting from eaFrom, and the corresponding
B operation is structured analogously, it is sufficient to prove that the simpler
C operation refines the corresponding B operation.

(CAbort o
9 COpEafrom); Rbc;
(∀COpEafrom; Rbc • ∃BetweenWorld′ • Rbc′ ∧ BOpEafrom)

�
∃BetweenWorld ′ • Rbc′ ∧ (Abort o

9 BOpEafrom)

�

28.7. LEMMA ‘ABORT FORWARD’: OPERATIONS THAT FIRST ABORT 189

ProofWe have already proved in section 28.5 thatCAbort refinesAbort . Adding
this to our hypothesis, we get

(CAbort o
9 COpEafrom); Rbc;
(∀CAbort ; Rbc • ∃BetweenWorld ′ • Rbc′ ∧ Abort);
(∀COpEafrom; Rbc • ∃BetweenWorld′ • Rbc′ ∧ BOpEafrom)

�
∃BetweenWorld ′ • Rbc′ ∧ (Abort o

9 BOpEafrom)

The hypothesis is now in precisely the form required to use lemma ‘compose
forward’, (section C.10) and we do so to prove the consequent.

� 28.7

Chapter 29

Correctness proofs

29.1 Introduction

Many of the following arguments are about constraints of the form

antecedent ⇒ consequent

The correctness arguments are of three kinds:

B–1 Argue that the operation leaves the truth values of both antecedent and
consequent unaltered, so that the truth before the operation establishes
the truth afterwards.

B–2 The operation might make the antecedent true after when it was false
before, by adding a new message to a set, or moving a purse into a set. In
this case it is necessary to show that the consequent is true after.

B–3 The operation might make the consequent false after when it was true
before, by moving a purse out of a set. In this case it is necessary to show
that the antecedent is false after.

Note that we do not need to argue that a constraint cannot be changed by
removing a message: messages stay in the ether once there.

29.2 Correctness of CStartFrom

StartFromOkay comprises AbortPurse followed by StartFromEafromPurseOk-
ay at the unpromoted level. As a result, we can apply lemma ‘abort forward’
(section C.8), leaving us to prove the correctness of StartFromEafromPurseOkay.

192 CHAPTER 29. CORRECTNESS PROOFS

Lemma ‘constraint’ is not applicable, because StartFromEafromPurseOk-
ay changes status: it moves the purse from eaFrom into epr . Therefore we
have to show that our chosen BetweenWorld′ obeys the constraints.

One ⊥ message is emitted, and no logs are recorded.
We can invoke lemma ‘logs unchanged’, section C.7, because no new req

messages are produced, no new purse logs are produced, and the archive does
not change. Therefore, the sets allLogs, fromLogged and toLogged remain un-
changed.

B–1 req ⇒ authentic to purse. No new req messages.

B–2 No future reqs. No new req messages.

B–3 No future vals. No new val messages.

B–4 No future acks. No new ack messages.

B–5 No future from logs. No new logs.

B–6 No future to logs. No new logs.

B–7 from in {epr , epa} ⇒ no future from logs. There are no new logs, but the
purse moves into epr , so we must prove that the constraint for this purse
holds (for all other purses in epr , the constraint holds beforehand, and
so holds afterwards). In StartFrom, the post-state pdAuth′.fromSeqNo is
equal to pre-state nextSeqNo. Coupling this with constraint B–5 we have

∀pd : fromLogged | pd .from = name? •
pd .fromSeqNo < (conAuthPurse′ pd .from).pdAuth.fromSeqNo

Since the logs don’t change we have

∀pd : fromLogged ′ | pd .from = name? •
pd .fromSeqNo < (conAuthPurse′ pd .from).pdAuth.fromSeqNo

which proves the constraint for purse name?.

B–8 to in {epv , eaTo} ⇒ no future to logs. No new logs, and the purse moves
into epr .

B–9 epr ⇒ ¬ val ∧ ¬ ack. The purse moves into epr , so it is necessary to show
there was no val or ack before.
The pd we are considering is given by

pd == (conAuthPurse′ name?).pdAuth

29.3. CORRECTNESS OF CSTARTTO 193

Noting that pd .from = name?, the definition of StartFrom then gives us
that

(conAuthPursename?).nextSeqNo
= (conAuthPurse′ name?).pdAuth.fromSeqNo

⇒ (conAuthPurse pd .from).nextSeqNo = pd .fromSeqNo

⇒ val pd ∉ ether [BetweenWorld constraint B–3]
∧ ack pd ∉ ether [BetweenWorld constraint B–4]

B–10 req ∧ ¬ ack	 toInEpv ∨ toLogged .

• case ⇒:
No new req messages. The purse moved from eaFrom to epr without
generating new logs. Hence, true before implies true after.

• case ⇐:
No purses newly in epv and no new logs. No acks added to the ether .

B–11 epv ∧ val ⇒ fromInEpa ∨ fromLogged . No purses newly in epv ; no new
val messages. The purse did not move out of epa.

B–12 fromInEpa ∨ fromLogged ⇒ req. No purses newly in epa; no new logs.

B–13 toLogged finite. No new logs.

B–14 exceptionLogResults in allLogs. No new log result messages.

B–15 Cleared logs archived. No new exceptionLogClear messages.

B–16 req for each log. No new elements added to fromLogged or toLogged .

� 29.2

29.3 Correctness of CStartTo

StartToOkay is composed of AbortPurse followed by StartToEafromPurseOkay
at the unpromoted level. As a result, we can apply lemma ‘abort forward’ (sec-
tion C.8), leaving us to prove the correctness of StartToEafromPurseOkay.

Lemma ‘constraint’ is not applicable, because StartToEafromPurseOkay
moves one purse into epv , and it was not in this state before. Therefore we
have to show that our chosen BetweenWorld′ obeys the constraints.

One req message is emitted, and no new logs are recorded. We cannot
invoke lemma ‘logs unchanged’ because we do have a new req message, but
constraint B–16 gives us the same result. This is not a circular argument.

194 CHAPTER 29. CORRECTNESS PROOFS

B–1 req ⇒ authentic to purse. One new req, which refers to the name? purse
as the to purse. ΦBOp states that this purse is authentic.

B–2 No future reqs. StartToPurseEafromOkay emits one req message, which
has its nextSeqNo in it by construction. It also increases nextSeqNo. The
req message meets the constraints because the referenced to purse (itself)
has a larger nextSeqNo after the operation.

B–3 No future vals. No new val messages.

B–4 No future acks. No new ack messages.

B–5 No future from logs. No new logs.

B–6 No future to logs. No new logs.

B–7 from in {epr , epa} ⇒ no future from logs. There are no new logs and the
purse moves into epv , so this constraint does not apply to this purse.

B–8 to in {epv , eaTo} ⇒ no future to logs. There are no new logs, but the
purse moves into epv , so we must prove that the constraint for this purse
holds (for all other purses in epv , the constraint holds beforehand, and so
holds afterwards). In StartTo, the post-state pdAuth′.toSeqNo is equal to
pre-state nextSeqNo. Coupling this with constraint B–6 we have

∀pd : toLogged | pd .to = name? •
pd .toSeqNo < (conAuthPurse′ pd .to).pdAuth.toSeqNo

Since the logs don’t change, we have

∀pd : toLogged ′ | pd .to = name? •
pd .toSeqNo < (conAuthPurse′ pd .to).pdAuth.toSeqNo

which proves the constraint for purse name?.

B–9 epr ⇒ ¬ val ∧ ¬ ack. No purses newly in epr ; no new vals or acks.

B–10 req ∧ ¬ ack 	 toInEpv ∨ toLogged . We claim that there is a new req for
which there is no ack in the ether, and the purse moves into epv . As a
result, we prove the consequent for each implication direction.

• case ⇒:
We must prove toInEpv ∨ toLogged . The purse moves into epv , thus
establishing the consequent.

• case ⇐:
The purse moves into epv , so we must show that there is a req, but no
ack, for the purse’spdAuth′. From StartTo, we havem! = req pdAuth′,

29.3. CORRECTNESS OF CSTARTTO 195

so the req is in the ether. It is then necessary to show there is no ack
before. The pd we are considering is given by

pd == (conAuthPurse′ name?).pdAuth

Noting that pd .to = name?, the definition of StartTo gives us that

(conAuthPursename?).nextSeqNo
= (conAuthPurse′ name?).pdAuth.toSeqNo

⇒ (conAuthPurse pd .to).nextSeqNo = pd .toSeqNo

⇒ ack pd ∉ ether [BetweenWorld constraint B–4]

Hence, we have the corresponding req but no ack.

B–11 epv ∧ val ⇒ fromInEpa ∨ fromLogged . To prove this constraint, we
demonstrate that the antecedent is false: the purse moves into epv , so we
must show that there is no val before. The pd we are considering is given
by

pd == (conAuthPurse′ name?).pdAuth

Noting that pd .to = name?, the definition of StartTo gives us that

(conAuthPursename?).nextSeqNo
= (conAuthPurse′ name?).pdAuth.toSeqNo

⇒ (conAuthPurse pd .to).nextSeqNo = pd .toSeqNo

⇒ val pd ∉ ether [BetweenWorld constraint B–3]

Hence, there is no val before, and no val is emitted by this operation.

B–12 fromInEpa ∨ fromLogged ⇒ req. No purses newly in epa; no new logs.

B–13 toLogged finite. No new logs.

B–14 Read exception record messages are logged. No new log result messages.

B–15 Cleared logs archived. No new exceptionLogClear messages.

B–16 req for each log. No new elements added to fromLogged or toLogged .

� 29.3

196 CHAPTER 29. CORRECTNESS PROOFS

29.4 Correctness of CReq

Lemma ‘constraint’ is not applicable, because a purse moves from epr to epa
and emits a val message. Therefore we have to show that our chosen Between-
World′ obeys the constraints.

We can invoke lemma ‘logs unchanged’, section C.7, because no new req
messages are produced, no new purse logs are produced, and the archive does
not change. Therefore, the sets allLogs, fromLogged and toLogged remain un-
changed.

B–1 req ⇒ authentic to purse. No new req messages.

B–2 No future reqs. No new req messages.

B–3 No future vals. Req puts a val in the ether ′. Let pd be the pay details of
the val. Hence,

pd == (conAuthPursename?).pdAuth
m? = req pd
m! = val pd

To show that the new val message upholds this constraint, we have to
demonstrate that this is not a futuremessagewith respect to purse name?:

pd .toSeqNo < (conAuthPurse′ pd .to).nextSeqNo
pd .fromSeqNo < (conAuthPurse′ pd .from).nextSeqNo

Since req pd is in the ether, from B–2 we can then satisfy the requirement
for the to sequence number. Since the pre-state status was epr , using
purse constraint P–2c we know that

pd .fromSeqNo < nextSeqNo

Since Req does not alter nextSeqNo, we thus have

pd .fromSeqNo < (conAuthPurse′ pd .from).nextSeqNo

B–4 No future acks. No new ack messages.

B–5 No future from logs. No new logs.

B–6 No future to logs. No new logs.

B–7 from in {epr , epa} ⇒ no future from logs. No new logs.
The from purse moves from epr into epa. BetweenWorld constraint B–7
held on epr .

29.5. CORRECTNESS OF CVAL 197

B–8 to in {epv , eaTo} ⇒ no future to logs. No new logs; no purses newly in epv
or eaTo.

B–9 epr ⇒ ¬ val ∧ ¬ ack. No purses newly in epr ; no new acks.
We need to show the emitted val does not have the same pd as the stored
pdAuth of any purse currently in epr . It has the same pd as the pdAuth
stored in the purse from which it was emitted, which moved from epr
and is now in epa. No other purse can also have this pdAuth, because
pdAuth includes the name of the purse (ConPurse constraint P–2a), and
purse names are unique.

B–10 req ∧ ¬ ack	 toInEpv ∨ toLogged .

• case ⇒: No new req or ack messages.
• case ⇐: No purses newly in epv ; no new logs.

B–11 epv ∧ val ⇒ fromInEpa ∨ fromLogged . The from purse emits a val. It
also moves into epa, thereby establishing the constraint.

B–12 fromInEpa ∨ fromLogged ⇒ req. The purse moves into epa. The opera-
tion precondition gives the presence of the required req.

B–13 toLogged finite. No new logs.

B–14 Read exception record messages are logged. No new log result messages.

B–15 Cleared logs archived. No new exceptionLogClear messages.

B–16 req for each log. No new elements added to fromLogged or toLogged .

� 29.4

29.5 Correctness of CVal

Lemma ‘constraint’ is not applicable, because a purse moves from epv to ea-
Payee and emits an ack message. Therefore we have to show that our chosen
BetweenWorld′ obeys the constraints.

We can invoke lemma ‘logs unchanged’, section C.7, because no new req
messages are produced, no new purse logs are produced, and the archive does
not change. Therefore, the sets allLogs, fromLogged and toLogged remain un-
changed.

B–1 req ⇒ authentic to purse. No new req messages.

B–2 No future reqs. Val emits no new req messages.

B–3 No future vals. Val emits no new val messages.

198 CHAPTER 29. CORRECTNESS PROOFS

B–4 No future acks. ValOkay puts an ack in the ether ′, but it has the same pd
as the val read from the ether , which obeys BetweenWorld constraint B–3.
So the ack’s pd obeys the constraint.

B–5 No future from logs. No new logs.

B–6 No future to logs. No new logs.

B–7 from in {epr , epa} ⇒ no future from logs. No new logs; no purses newly
in epr or epa.

B–8 to in {epv , eaTo} ⇒ no future to logs. No new logs.
The to purse moves from epv into eaTo. BetweenWorld constraint B–8
held on epv .

B–9 epr ⇒ ¬ val ∧ ¬ ack. No purses newly in epr .
We need to show the emitted ack does not have the same pd as any
purse currently in epr . It has the same pd as the val message, and so
BetweenWorld constraint B–9 on val gives us the required condition.

B–10 req ∧ ¬ ack	 toInEpv ∨ toLogged .

• case ⇒: ValOkay emits an ack, making the antecedent false.
• case ⇐: From lemma ‘notLoggedAndIn’, section C.12, the purse can-
not be in toLogged . ValOkay moves the purse out of epv without
logging, making the antecedent false.

B–11 epv ∧ val ⇒ fromInEpa ∨ fromLogged . No purses newly in epv ; no new
val messages; no purses leaving epa, no changing logs.

B–12 fromInEpa ∨ fromLogged ⇒ req. No purses newly in epa; no new logs.

B–13 toLogged finite. No new logs.

B–14 Read exception record messages are logged. No new log result messages.

B–15 Cleared logs archived. No new exceptionLogClear messages.

B–16 req for each log. No new elements added to fromLogged or toLogged .

� 29.5

29.6 Correctness of CAck

Lemma ‘constraint’ is not applicable, because a purse moves from epa to ea-
Payer . Therefore we have to show that our chosen BetweenWorld′ obeys the
constraints.

It emits a ⊥message. We can invoke lemma ‘logs unchanged’, section C.7,
because no new req messages are produced, no new purse logs are produced,

29.6. CORRECTNESS OF CACK 199

and the archive does not change. Therefore, the sets allLogs, fromLogged and
toLogged remain unchanged.

B–1 req ⇒ authentic to purse. No new req messages.

B–2 No future reqs. No new req messages.

B–3 No future vals. No new val messages.

B–4 No future acks. No new ack messages.

B–5 No future from logs. No new logs.

B–6 No future to logs. No new logs.

B–7 from in {epr , epa} ⇒ no future from logs. No purses newly in epr or epa.

B–8 to in {epv , eaTo} ⇒ no future to logs. No purses newly in epv or eaTo.

B–9 epr ⇒ ¬ val ∧ ¬ ack. No purses newly in epr ; no new vals or acks.

B–10 req ∧ ¬ ack	 toInEpv ∨ toLogged .

• case ⇒: No new reqs; no new acks; no purses moving out of epv , no
logs lost.

• case ⇐: No purses newly in epv ; no new logs.

B–11 epv ∧ val ⇒ fromInEpa ∨ fromLogged . No purses newly in epv ; no new
vals.
The purse moves out of epa without logging, so we need to show that the
antecedent is false for this purse. It is sufficient to show the antecedent is
false before the operation (since the operation does not change it). There is
an ack message, AckOkay ’s input, so BetweenWorld constraint B–10 gives
us pd ∉ toInEpv .

B–12 fromInEpa ∨ fromLogged ⇒ req. No purses newly in epa; no new logs.

B–13 toLogged finite. No new logs.

B–14 Read exception record messages are logged. No new log result messages.

B–15 Cleared logs archived. No new exceptionLogClear messages.

B–16 req for each log. No new elements added to fromLogged or toLogged .

� 29.6

200 CHAPTER 29. CORRECTNESS PROOFS

29.7 Correctness of CReadExceptionLog

ReadExceptionLogOkay is composed of AbortPurse followed by ReadException-
LogEafromPurseOkay at the unpromoted level. As a result, we can apply lemma
‘abort forward’ (section C.8), leaving us to prove the correctness ofReadException-
LogEafromPurseOkay.

This operation does not change any purse, but it does emit an exception-
LogResult message. As a result, lemma ‘constraint’ is not applicable.

We can invoke lemma ‘logs unchanged’, section C.7, because no new req
messages are produced, no new purse logs are produced, and the archive does
not change. Therefore, the sets allLogs, fromLogged and toLogged remain un-
changed.

B–1 req ⇒ authentic to purse. No new req messages.

B–2 No future reqs. No new req messages.

B–3 No future vals. No new val messages.

B–4 No future acks. No new ack messages.

B–5 No future from logs. No new logs.

B–6 No future to logs. No new logs.

B–7 from in {epr , epa} ⇒ no future from logs. No purses newly in epr or epa.

B–8 to in {epv , eaTo} ⇒ no future to logs. No purses newly in epv or eaTo.

B–9 epr ⇒ ¬ val ∧ ¬ ack. No purses newly in epr ; no new vals or acks.

B–10 req ∧ ¬ ack	 toInEpv ∨ toLogged .

• case ⇒: No new reqs; no new acks; no purses moving out of epv , no
logs lost.

• case ⇐: No purses newly in epv ; no new logs.

B–11 epv ∧ val ⇒ fromInEpa ∨ fromLogged . No purses newly in epv ; no new
vals; no purse moves out of epa; no logs lost.

B–12 fromInEpa ∨ fromLogged ⇒ req. No purses newly in epa; no new logs.

B–13 toLogged finite. No new logs.

B–14 Read exception record messages are logged. There may be a new ex-
ceptionLogResult message. If this is so, then wemust show that this refers
to a stored exception log record. From ReadExceptionLogPurseEafrom-
Okay, we have

m! ∈ {⊥} ∪ {ld : exLog′ • exceptionLogResult(name, ld)}

29.8. CORRECTNESS OF CCLEAREXCEPTIONLOG 201

Hence, if there is an exceptionLogResult message, it refers to an exception
record which is in the log of purse name?, and so is in allLogs′. This
upholds the constraint.

B–15 Cleared logs archived. No new exceptionLogClear messages.

B–16 req for each log. No new elements added to fromLogged or toLogged .

� 29.7

29.8 Correctness of CClearExceptionLog

ClearExceptionLogOkay is composed of AbortPurse followed by ClearException-
LogEafromPurseOkay at the unpromoted level. As a result, we can apply lemma
‘abort forward’ (section C.8), leaving us to prove the correctness ofClearException-
LogEafromPurseOkay.

The operation changes only one purse, and emits a ⊥ message. The only
change to the purse is that its exception log is cleared. However, we have the
pre-condition that the input message matches the the exception log (exLog).
The input message comes from the ether, and hence from constraint B–15 we
know that the purse’s exception log must have already been recorded in the
archive. In this way, clearing the purse’s log does not affect allLogs. So lemma
‘constraint’ (section C.6) is applicable.

� 29.8

29.9 Correctness of CAuthoriseExLogClear

Lemma ‘constraint’ is not applicable, because an exceptionLogClear message is
emitted to the ether. So, we must show that the constraints hold afterwards.

No purses are changed.
We can invoke lemma ‘logs unchanged’, section C.7, because no new req

messages are produced, no new purse logs are produced, and the archive does
not change. Therefore, the sets allLogs, fromLogged and toLogged remain un-
changed.

B–1 req ⇒ authentic to purse. No new req messages.

B–2 No future reqs. No new req messages.

B–3 No future vals. No new val messages.

B–4 No future acks. No new ack messages.

B–5 No future from logs. No new logs.

202 CHAPTER 29. CORRECTNESS PROOFS

B–6 No future to logs. No new logs.

B–7 from in {epr , epa} ⇒ no future from logs. No purses newly in epr or epa.

B–8 to in {epv , eaTo} ⇒ no future to logs. No purses newly in epv or eaTo.

B–9 epr ⇒ ¬ val ∧ ¬ ack. No purses newly in epr ; no new vals or acks.

B–10 req ∧ ¬ ack	 toInEpv ∨ toLogged .

• case ⇒: No new reqs; no new acks; no purses moving out of epv ; no
logs lost.

• case ⇐: No purses newly in epv ; no new logs.

B–11 epv ∧ val ⇒ fromInEpa ∨ fromLogged . No purses newly in epv ; no new
vals; no purse moves out of epa; no logs lost.

B–12 fromInEpa ∨ fromLogged ⇒ req. No purses newly in epa; no new logs.

B–13 toLogged finite. No new logs.

B–14 Read exception record messages are logged. No new exception log read
messages.

B–15 Cleared logs archived. There is a new exceptionLogClear message. How-
ever, the operation contains the pre-condition that the log records for
which the message is generated must be in the archive. Hence, the con-
straint is upheld.

B–16 req for each log. No new elements added to fromLogged or toLogged .

29.10 Correctness of CArchive

This operation archives the contents of some of the exceptionLogResult mes-
sages in the ether. It does not change any purse, or change the ether.

From B–14, we know that those exception records referred to by the ex-
ceptionLogResult messages are already in allLogs. As a result, adding them to
archive does not change allLogs. This operation does not change any purse, and
does not emit a payment details message. So lemma ‘constraint’ is applicable.

� 29.10
� 29

Chapter 30

Summary

The proofs presented in this report constitute a proof that the architectural
design given by the C model is secure with respect to the security properties as
described in the Formal Security Policy Model (the A model) and the Security
Properties.

We have presented the proofs in a logical sequence, but even so, it can
be hard to be sure that no steps have been missed. The following table gives a
hierarchical view of the proof, showing at each level how a proof goal is satisfied
by a number of subgoals. Each line in the table is one proof goal, together with
a section reference for where that proof goal is addressed.

If the proof goal has child goals (goals one level of indent deeper) then the
section reference explains how it is that the goal can be satisfied by its collection
of subgoals. For example, goal 1.4 (AbTransfer upholds properties) is proved
by proving three subgoals: 1.4.1 (SP 1), 1.4.2 (SP 2.1) and 1.4.3 (SP 6.2). The
reference for goal 1.4 is to section 2.4, where it is argued that we have only to
prove the three SPs 1, 2.1 and 6.2 because all other SPs can be proved trivially.

If a goal has no further subgoals, its section reference is the proof of this
goal directly.

It can be seen that all proof goals have section references, and all steps
have been addressed.

204 CHAPTER 30. SUMMARY

System secure by definition

1. Abstract preserves security properties by definition

1.1. AbIgnore upholds properties 2.4

1.2. AbTransfer upholds properties 2.4

1.2.1. SP 1 2.4

1.2.1.1. Okay 2.4.1

1.2.1.2. Lost 2.4.3

1.2.2. SP 2.1 2.4

1.2.2.1. Okay 2.4.2

1.2.2.2. Lost 2.4.4

2. Concrete preserves security properties by definition

2.1. Each concrete operation upholds proper-
ties

2.4

3. Abstract operations are total 8.2.2

4. A is refined by B by definition

4.1. Init by definition

4.1.1. state initialisation 11.2

4.1.2. input initialisation 11.3

4.2. Applicability 9.2.3

4.2.1. pre AOp = true 8.2.2

4.2.2. simpler applicability by definition

4.2.2.1. pre BOp = true 8.3.2

4.3. Correctness 9.2.4

4.3.1. pre AOp = true 8.2.2

4.3.2. simpler correctness by definition

4.3.2.1. AbTransfer 9 and 14.3

4.3.2.1.1. Ignore 14.7

4.3.2.1.2. Okay and Lost C.1

4.3.2.1.2.1. exists-pd 18.4

4.3.2.1.2.2. exists-chosenLost 18.5

4.3.2.1.2.3. check-operation 18.6

4.3.2.2. AbIgnore 9 and 14.2

4.3.2.2.1. StartFrom 14.3

4.3.2.2.1.1. Ignore 14.7

4.3.2.2.1.2. Abort 14.8

4.3.2.2.1.3. Okay C.5

4.3.2.2.1.3.1. Abort 14.8

205

4.3.2.2.1.3.2. EaPayer operation C.1

4.3.2.2.1.3.2.1. exists-pd 16.4

4.3.2.2.1.3.2.2. exists-chosenLost 16.5

4.3.2.2.1.3.2.3. check-operation C.3

4.3.2.2.1.3.2.3.1. check-operation-ignore 16.6

4.3.2.2.2. StartTo 14.3

4.3.2.2.2.1. Ignore 14.7

4.3.2.2.2.2. Abort 14.8

4.3.2.2.2.3. Okay C.5

4.3.2.2.2.3.1. Abort 14.8

4.3.2.2.2.3.2. EaPayer operation C.1

4.3.2.2.2.3.2.1. exists-pd 17.4

4.3.2.2.2.3.2.2. exists-chosenLost 17.5

4.3.2.2.2.3.2.3. check-operation C.3

4.3.2.2.2.3.2.3.1. check-operation-ignore 17.6

4.3.2.2.3. Val 14.3

4.3.2.2.3.1. Ignore 14.7

4.3.2.2.3.2. Okay C.1 and 19.2

4.3.2.2.3.2.1. exists-pd 19.3

4.3.2.2.3.2.2 exists-chosenLost 19.4

4.3.2.2.3.2.3. check-operation C.3

4.3.2.2.3.2.3.1. check-operation-ignore 19.5 and on

4.3.2.2.4. Ack 14.3

4.3.2.2.4.1. Ignore 14.7

4.3.2.2.4.2. Okay C.1 and 20.2

4.3.2.2.4.2.1. exists-pd 20.3

4.3.2.2.4.2.2 exists-chosenLost 20.4

4.3.2.2.4.2.3. check-operation C.3

4.3.2.2.4.2.3.1. check-operation-ignore 20.5 and on

206 CHAPTER 30. SUMMARY

4.3.2.2.5. ReadExceptionLog 14.3

4.3.2.2.5.1. Ignore 14.7

4.3.2.2.5.2. Okay C.5

4.3.2.2.5.2.1. Abort 14.8

4.3.2.2.5.2.2. EaPayer operation C.1 and 21

4.3.2.2.5.2.2.1. lemma lost unchanged C.2

4.3.2.2.5.2.2.2. check-operation C.3

4.3.2.2.5.2.2.2.1. check-operation-ignore 21.3

4.3.2.2.6. ClearExceptionLog 14.3

4.3.2.2.6.1. Ignore 14.7

4.3.2.2.6.2. Abort 14.8

4.3.2.2.6.3. Okay C.5

4.3.2.2.6.3.1. Abort 14.8

4.3.2.2.6.3.2. EaPayer operation C.1 and 22

4.3.2.2.6.3.2.1. lemma lost unchanged C.2

4.3.2.2.6.3.2.2. check-operation C.3

4.3.2.2.6.3.2.2.1. check-operation-ignore 22.3

4.3.2.2.7. AuthoriseExLogClear 14.3

4.3.2.2.7.1. Ignore 14.7

4.3.2.2.7.2. Okay 23.2

4.3.2.2.8. Archive 24.2

4.3.2.2.9. Ignore 14.7

4.3.2.2.10. Increase 15.3

4.3.2.2.11. Abort 14.8

4.4. Finalisation by definition

4.4.1. output finalisation 12.2

4.4.2. state finalisation 12.3

5. B is refined by C established rules 25.2

5.1. Init 27.1

5.2. Applicability 27.3

5.2.1. pre COp = true 8.4.2

5.3. Correctness 25.2.5

5.3.1. Simpler correctness 25

5.3.1.1. StartTo is refined 28.1

5.3.1.1.1. Okay branch 29.3 and C.10

5.3.1.1.1.1. Eafrom branch 29.3

5.3.1.1.1.2. Abort branch 28.5

207

5.3.1.1.2. CIgnore branch 28.2

5.3.1.1.3. CAbort branch 28.5

5.3.1.2. StartFrom is refined 28.1

5.3.1.2.1. Okay branch 29.2 and C.10

5.3.1.2.1.1. Eafrom branch 29.2

5.3.1.2.1.2. Abort branch 28.5

5.3.1.2.2. CIgnore branch 28.2

5.3.1.2.3. CAbort branch 28.5

5.3.1.3. Req is refined 28.1

5.3.1.3.1. Okay branch 29.4

5.3.1.3.2. CIgnore branch 28.2

5.3.1.4. Val is refined 28.1

5.3.1.4.1. Okay branch 29.5

5.3.1.4.2. CIgnore branch 28.2

5.3.1.5. Ack is refined 28.1

5.3.1.5.1. Okay branch 29.6

5.3.1.5.2. CIgnore branch 28.2

5.3.1.6. ReadExceptionLog is refined 28.1

5.3.1.6.1. Okay branch 29.7 and C.10

5.3.1.6.1.1. Eafrom branch 29.7

5.3.1.6.1.2. Abort branch 28.5

5.3.1.6.2. CIgnore branch 28.2

5.3.1.7. ClearExceptionLog is refined 28.1

5.3.1.7.1. Okay branch 29.8 and C.10

5.3.1.7.1.1. Eafrom branch 29.8

5.3.1.7.1.2. Abort branch 28.5

5.3.1.7.2. CIgnore branch 28.2

5.3.1.7.3. CAbort branch 28.5

5.3.1.8. AuthoriseExLogClear is refined 28.1

5.3.1.8.1. Okay branch 29.9

5.3.1.8.2. CIgnore branch 28.2

5.3.1.9. Archive is refined 29.10

5.3.2. Totality of BOp 8.3.2

5.4. Finalisation 27.2

Part IV

Appendices

209

Appendix A

Proof Layout

A.1 Notation

The notation

Abs # Conc

says the the Abs operation is refined by the Conc operation.
In order to prove that Abs is indeed validly refined by Conc, we need to

prove various ‘correctness conditions’, expressed as theorems (section 9).
That the predicate

∀D | P • Q

is always true is expressed as the theorem

� ∀D | P • Q

which is equivalent to

D | P � Q

This can be read as a theorem that states that, under hypothesis D | P (dec-
larations D constrained by predicates P), consequent Q (a predicate) has been
proved to hold. D | P is usually written as a schema text, and Q may be written
using a schema as predicate.

A.2 Labelling proof steps

In labelling various steps of the proofs below, we use the following notation.

212 APPENDIX A. PROOF LAYOUT

• [defn P]: from the definition of the schema predicate P

• [hyp]: from the hypothesis of the theorem

• [prop x]: from a property of the Z operator x

• [name]: use of inference rule name

Appendix B

Inference rules

The proofs presented are rigorous, but informal, in that they have not been
checked by a machine proof-checker.

We present below the sort of inference rules we have used. Such explicit
use of inference rules improves the readability of the proofs by showing exactly
what steps of mathematical reasoning are being made. These inference rules
are not intended as a definition of the logic being used, but as guidance about
the reasoning steps.

The inference rule

P1 P2 . . . Pn
[rulename]

C

says that conclusion C can be inferred if every premiss Pi can be proved. (The
rule name is used for labelling proof steps.)

The inference rule

P1,P2, . . . ,Pn
[rulename]

C

says that conclusion C can be inferred if any premiss Pi can be proved.

B.1 Universal quantifier becomes hypothesis

S � P
[uni hyp]

� ∀ S • P

214 APPENDIX B. INFERENCE RULES

B.2 Disjunction in the hypothesis

Given an hypothesis containing a disjunct, it is sufficient to prove the theorem
for each case.

R � P S � P
[hyp disj]

R ∨ S � P

B.3 Disjunction in the consequent

Given a consequent containing a disjunct, it is sufficient to prove the theorem
for only one case (since this is a harder thing to prove).

R � P ,R � Q
[consq disj]

R � P ∨ Q

B.4 Conjunction in the consequent

Given a consequent containing a conjunct, it is sufficient to prove the theorem
for each case separately.

R � P R � Q
[consq conj]

R � P ∧ Q

We can add conjuncts to the consequent (since this is a harder thing to prove).

R � P ∧ Q
[strengthen consq]

R � P

B.5 Cut for lemmas

Cut is a way to introduce new hypotheses, and discharge them as lemmas.

R; D | Q � P R � ∃D • Q
[cut]

R � P

B.6. THIN 215

B.6 Thin

We can remove assumptions.

� R
[thin]

P � R

B.7 Universal Quantification

Universals can be replaced by a particular choice in the hypothesis

x1 ∈ X ⇒ P(x1) � R
[hyp uni]

∀ x : X • P(x) � R

B.8 Negation

In order to prove something, you can assume its negation.

¬ P �
[negation]

� P

B.9 Contradiction

If R can be proved, assuming its negation allows you to prove anything (because
false⇒ anything).

� R
[contradiction]

¬ R � anything

B.10 One Point Rule

In order to prove there exists a value with a property, it is enough to exhibit
such a value.

� P[t/x]
[one point]

� ∃ x • P ∧ x = t

provided x is not free in t .

216 APPENDIX B. INFERENCE RULES

B.11 Derived Rules

We find it useful to derive some compound rules. These make the proofs in the
body of the document easier to follow, and can themselves be proved from the
inference rules above.

B.11.1 One point cut

P � Q
[consq exists]

P � ∃P • Q

and very similarly

P � Q
[consq exists]

P � (∃P) ∧ Q

B.11.2 Existential in the hypothesis

x : X ; D | P �
[hyp exists]

D | ∃ x : X • P �

B.12 Proof of the Derived Rules

We derive each of the derived rules above from the main inference rules.

B.12.1 Derivation of One point cut

We can derive the first one-point cut rule ([consq exists]) as follows. First, we
expand P into a declaration D and a predicate p.

D | p � ∃D • p ∧ q [starting point]

D | p � ∃D′ • p[D′/D] ∧ q[D′/D] [rename bound declaration]

D | p � ∃D′ • p[D′/D] ∧ q[D′/D] ∧ D′ = D [strengthen consequent]

D | p � p[D′/D][D/D′] ∧ q[D′/D][D/D′] [one point rule]

D | p � p ∧ q [simplify renaming]

D | p � q [discharge p from hyp]

The second onepoint-cut rule follows exactly the same way, except that q is not
bound by the existential, and so none of the renamings alters it.

B.12. PROOF OF THE DERIVED RULES 217

B.12.2 Derivation of existential in the hypothesis

D | (∃ x : X • P) � [starting point]

D; x : X | P ∧ (∃ x : X • P) � D | (∃ x : X • P) � ∃ x : X • P
[cut in x : X | P]

D; x : X | P ∧ (∃ x : X • P) � [discharge side lemma from hyp]

D; x : X | P � [thin]

as required.

Appendix C

Lemmas and their proofs

C.1 Lemma ‘deterministic’

Lemma 1 (deterministic) The correctness proof for a generalOkay branch con-
sists of the following three proof obligations: 1

exists-pd:

ΦBOp; BOpPurseOkay ; RabOut ; RabCl′; RabIn
�
∃pdThis : PayDetails • P

exists-chosenLost:

ΦBOp; BOpPurseOkay ; RabOut ; RabClPd′[pdThis/pdThis′]; RabIn |
P

�
∃ chosenLost : PPayDetails • Q ∧ chosenLost ⊆maybeLost

check-operation:

ΦBOp; BOpPurseOkay ; RabOut ; RabClPd′[pdThis/pdThis′];
AbWorld ; RabClPd ; RabIn |

P ∧ Q
�
AOp

�
1Used in: lemma ‘AbIgnore’, section 14.6; lemma ‘Ignore’, section 14.7; lemma ‘Abort refines

AbIgnore’, section 14.8; used to simplify everyA-B operation proof.

220 APPENDIX C. LEMMAS

Proof:
See section 14.4.5.

� C.1

C.2 Lemma ‘lost unchanged’

Lemma 2 (lost unchanged) For BOpΞLost operations, where we have thatmay-
beLost ′ = maybeLost and definitelyLost ′ = definitelyLost , the proof obligations
exists-pd and exists-chosenLost are satisfied automatically by the instantiation
of the predicates P and Q as: 2

P	 true

Q	 chosenLost = chosenLost ′

�

Proof:
See section 14.5

� C.2

C.3 Lemma ‘AbIgnore’

Consider an operation BOpIg which refines AbIgnore. The operation should
have the following properties.

• BOpIg is a promoted operation, and thus alters only one concrete purse.

• for any purse, the name is unchanged.

• the domain of conAuthPurse is unchanged (by construction of the promo-
tion)

• for any purse, either nextSeqNo is unchanged, or increased.

Where these properties hold for BOpIg, we can apply lemma AbIgnore.

Lemma 3 (AbIgnore) For a BOpIg operation, the check-operation proof obliga-
2Used in ExceptionLogEnquiry , chapter 21; ExceptionLogClear , chapter 22.

C.4. LEMMA ‘ABORT REFINES ABIGNORE ’ 221

tion reduces to 3

ΦBOp; BOpIgPurse; RabClPd′[pdThis/pdThis′]; AbWorld ; RabClPd |
P ∧ Q

�
∀n : domabAuthPurse •

(abAuthPurse′ n).lost = (abAuthPursen).lost
∧ (abAuthPurse′ n).balance = (abAuthPursen).balance

�

Proof:
See section 14.6.

� C.3

C.4 Lemma ‘Abort refines AbIgnore’

Lemma 4 (Abort refines AbIgnore) Concrete Abort refines abstract AbIgnore.4

Abort ; Rab′; RabOut � ∃AbWorld ; a? : AIN • Rab ∧ RabIn ∧ AbIgnore

�

Proof:
See section 14.8.

� C.4

C.5 Lemma ‘abort backward’

Lemma 5 (abort backward) Where a concrete operation is written as a compo-
sition of AbortPurseOkay and a simpler operation starting from eaFrom, it is
sufficient to prove that the promotion of the simpler operation alone refines

3Used in: ‘Ignore’, section 14.7; lemma ‘Abort refines AbIgnore’, section 14.8; used to simplify
everyA-B operation proof that refines AbIgnore.

4Used in: lemma ‘abort backward’, section C.5

222 APPENDIX C. LEMMAS

the relevant abstract operation. 5

(∃∆ConPurse • ΦBOp ∧ (AbortPurseOkay o
9 BOpPurseEafromOkay));

Rab′; RabOut ;
(∀BOpEafromOkay ; Rab′; RabOut •

∃AbWorld ; a? : AIN • Rab ∧ RabIn ∧ AOp)
�
∃AbWorld ; a? : AIN • Rab ∧ RabIn ∧ AOp

�

Proof:
See section 14.9.

� C.5

C.6 Lemma ‘constraint’

Lemma 6 (constraint) If an operation does not change purse status and does
not change the presence of payment detail messages in the ether (either by not
emitting such a message, or by emitting an already existing message), then it
preserves the BetweenWorld constraints. 6 �

Proof:
See section 28.3.4.

� C.6

C.7 Lemma ‘logs unchanged’

Lemma 7 (logs unchanged) When the archive and the individual purse logs do
not change, and when no new req messages are added to the ether , the set of

5Used in: StartFrom, section 16; StartTo, section 17; ClearExceptionLog, section 22; ReadEx-
ceptionLog, section 21

6Used in: Increase, section 28.4; CClearExceptionLog, section 29.8; CArchive, section 29.10.

C.8. LEMMA ‘ABORT FORWARD’ 223

PayDetails representing all the logs does not change either. 7

BOpOkay | archive′ = archive
∧ (ran req)∩ ether ′ = (ran req)∩ ether •
∧ ∀n : dom conAuthPurse •

(conAuthPurse′ n).exLog = (conAuthPursen).exLog
�
allLogs′ = allLogs
∧ toLogged ′ = toLogged
∧ fromLogged ′ = fromLogged

�

Proof:
See section 28.6.

� C.7

C.8 Lemma ‘abort forward’

Lemma 8 (abort forward) Where a C operation is written as a composition of
CAbort and a simpler operation starting from eaFrom, and the corresponding
B operation is structured similarly, it is sufficient to prove that the simpler C
operation refines corresponding B operation 8.

(CAbort o
9 COpEafrom); Rbc;
(∀COpEafrom; Rbc • ∃BetweenWorld′ • Rbc′ ∧ BOpEafrom)

�
∃BetweenWorld ′ • Rbc′ ∧ (Abort o

9 BOpEafrom)

�

Proof:
See section 28.7.

� C.8
7Used in: lemma ‘constraint’, section 28.3.4; CStartFrom, section 29.2; CReq, section 29.4;

CVal, section 29.5; CAck, section 29.6; CReadExceptionLog, section 29.7; CAuthoriseExLogClear,
section 29.9.

8Used in: CStartFrom, section 29.2; CStartTo, section 29.3; CReadExceptionLog, section 29.7;
CClearExceptionLog, section 29.8.

224 APPENDIX C. LEMMAS

C.9 Lemma ‘compose backward’

Lemma C.1 (compose backward) If, under the backwards refinement rules, a
concrete operation COp1 is a refinement of abstract operation AOp1, and COp2
is a refinement of AOp2, then their composition is a refinement of the abstract
composition 9.

(COp1 o
9 COp2); R′; ROut ;
(∀COp1; R′; ROut • (∃A; AIn • R ∧ RIn ∧ AOp1));
(∀COp2; R′; ROut • (∃A; AIn • R ∧ RIn ∧ AOp2))

�
∃A; AIn • R ∧ RIn ∧ (AOp1 o

9 AOp2)

�

Proof:
This result is reasonably self-evident, from the definition of refinement in terms
of complete programs. We show that the particular form of the theorem holds
here.

Without loss of generality, assume that the concrete and abstract state
schemas have a single component, c and a respectively. (A multi-component
state is isomorphic to a single component state consisting of all the multi-
components bundled into a single schema or Cartesian product.)

Expand the compositions, and rename the quantified variables in the hy-
pothesis.

(∃C0 • COp1[c0/c′] ∧ COp2[c0/c]); R′; ROut ;
(∀COp1[c0/c′]; R0; ROut • (∃A; AIn • R ∧ RIn ∧ AOp1[a0/a′]));
(∀COp2[c0/c]; R′; ROut • (∃A0; AIn • R0 ∧ RIn ∧ AOp2[a0/a]))

�
∃A; AIn • R ∧ RIn ∧ (∃A0 • AOp1[a0/a′] ∧ AOp2[a0/a])

Use [hyp exists] to drop the ∃ in the hypothesis, then simplify.

COp1[c0/c′]; COp2[c0/c]; R′; ROut ;
(∀COp1[c0/c′]; R0; ROut •

(∃A; AIn • R ∧ RIn ∧ AOp1[a0/a′]));
(∀COp2[c0/c]; R′; ROut •

(∃A0; AIn • R0 ∧ RIn ∧ AOp2[a0/a]))
�
∃A; AIn • R ∧ RIn ∧ (∃A0 • AOp1[a0/a′] ∧ AOp2[a0/a])

9Used in: lemma ‘abort backward’, section C.5.

C.10. LEMMA ‘COMPOSE FORWARD’ 225

Use D ∧ (∀D • P) ⇒ P to simplify the second universal quantifier in the
hypothesis.

COp1[c0/c′]; COp2[c0/c]; R′; ROut ;
(∀COp1[c0/c′]; R0; ROut •
(∃A; AIn • R ∧ RIn ∧ AOp1[a0/a′])) |
∃A0; AIn • R0 ∧ RIn ∧ AOp2[a0/a]

�
∃A; AIn • R ∧ RIn ∧ (∃A0 • AOp1[a0/a′] ∧ AOp2[a0/a])

Use [hyp exists] to drop the ∃ in the hypothesis, then simplify.

COp1[c0/c′]; COp2[c0/c]; R0; R′; ROut ; RIn; AOp2[a0/a];
(∀COp1[c0/c′]; R0; ROut •

(∃A; AIn • R ∧ RIn ∧ AOp1[a0/a′]))
�
∃A; AIn • R ∧ RIn ∧ (∃A0 • AOp1[a0/a′] ∧ AOp2[a0/a])

Repeat the previous three steps to simplify the remaining quantifier in the hy-
pothesis.

COp1[c0/c′]; COp2[c0/c]; R; R0; R′; ROut ; RIn;
AOp1[a0/a′]; AOp2[a0/a]
�
∃A; AIn • R ∧ RIn ∧ (∃A0 • AOp1[a0/a′] ∧ AOp2[a0/a])

Move the inner ∃ in the consequent outwards.

COp1[c0/c′]; COp2[c0/c]; R; R0; R′; ROut ; RIn;
AOp1[a0/a′]; AOp2[a0/a]
�
∃A; A0; AIn • R ∧ RIn ∧ AOp1[a0/a′] ∧ AOp2[a0/a]

All the terms are in the hypothesis.
� C.9

C.10 Lemma ‘compose forward’

Lemma C.2 (compose forward) If, under the forwards refinement rules, con-
crete operation COp1 is a refinement of abstract operation AOp1, and COp2 is
a refinement of AOp2, then their composition is a refinement of the abstract

226 APPENDIX C. LEMMAS

composition 10.

(COp1 o
9 COp2); R;
(∀COp1; R • (∃A′ • R′ ∧ AOp1));
(∀COp2; R • (∃A′ • R′ ∧ AOp2))

�
∃A′ • R′ ∧ (AOp1 o

9 AOp2)

�

Proof:
Follows as for lemma ‘compose backward’, above.
� C.10

C.11 Lemma ‘promoted composition’

Lemma C.3 (promoted composition) The promotion of the composition of two
operations is equal to the composition of the promotions of the two operations
11.

Assume the existence of a local state Local, which, without loss of gener-
ality we assume has a single variable x; a global state Global , with a standard
promotion framing schema, Φ

Local
x : X

Global
locals : NAME �→ Local

Φ
∆Global
∆Local
n? : NAME

n? ∈ dom locals
locals n? = θLocal
locals′ = locals ⊕ {n?� θLocal′}

10Used in: lemma ‘abort forward’, section 28.7.
11Used in: lemma ‘abort backward’, section C.5

C.11. LEMMA ‘PROMOTED COMPOSITION’ 227

Φ; Op1; Op2
�
∃∆Local • Φ ∧ (Op1 o

9 Op2)
= (∃∆Local • Φ ∧ Op1) o

9 (∃∆Local • Φ ∧ Op2)

�

Proof:
Weprove this by expanding the definition of composition as an existential quan-
tification, and then showing that this quantification and the quantification used
in the promotion commute.

Expand the composition on the right hand side, and then expand the def-
inition of Φ.

(∃∆Local • Φ ∧ Op1) o
9 (∃∆Local • Φ ∧ Op2)

= ∃Global0 • (∃∆Local • Φ[locals0/locals′] ∧ Op1)
∧ (∃∆Local • Φ[locals0/locals] ∧ Op2)

= ∃Global0 •
(∃∆Local •

[locals; locals0 : NAME �→ Local |
n? ∈ dom locals
∧ locals n? = θLocal
∧ locals0 = locals ⊕ {n?� θLocal′}]

∧ Op1)

∧ (∃∆Local •
[locals0; locals′ : NAME �→ Local |

n? ∈ dom locals0
∧ locals0 n? = θLocal
∧ locals′ = locals0 ⊕ {n?� θLocal′}]

∧ Op2)

Rename the after state in the first operation to Locala and the before state in
the second operation to Localb . Choosing different names makes it easier to

228 APPENDIX C. LEMMAS

combine the schemas across the quantifiers.

= ∃Global0 •
(∃Local; Locala •

[locals; locals0 : NAME �→ Local |
n? ∈ dom locals
∧ locals n? = θLocal
∧ locals0 = locals ⊕ {n?� θLocala}]

∧ Op1[xa/x′])

∧ (∃ Localb ; Local′ •
[locals0; locals′ : NAME �→ Local |

n? ∈ dom locals0
∧ locals0 n? = θLocalb
∧ locals′ = locals0 ⊕ {n?� θLocal′}]

∧ Op2[xb/x])

Combine all these as a single schema, putting the quantifications into the pred-
icate.

= [locals; locals′ : NAME �→ Local |
∃ local0; Local; Local′; Locala ; Localb •

n? ∈ dom locals
∧ locals n? = θLocal
∧ locals0 = locals ⊕ {n?� θLocala}
∧ n? ∈ dom locals0
∧ locals0 n? = θLocalb
∧ locals′ = locals0 ⊕ {n?� θLocal′}
∧ Op1[xa/x′]
∧ Op2[xb/x]]

We can remove the quantification of local0 because we have a full definition of
it in terms of other variables. This leaves the following equations relating the
remaining variables.

= [locals; locals′ : NAME �→ Local |
∃Local; Local′; Locala ; Localb •

n? ∈ dom locals
∧ locals n? = θLocal
∧ θLocalb = θLocala
∧ locals′ = locals ⊕ {n?� θLocal′}
∧ Op1[xa/x′]
∧ Op2[xb/x]]

C.12. LEMMA ‘NOTLOGGEDANDIN’ 229

Using the equation that θLocalb = θLocala , rename Locala and Localb both to
Local0.

= [locals; locals′ : NAME �→ Local |
∃Local; Local′; Local0 •

n? ∈ dom locals
∧ locals n? = θLocal
∧ locals′ = locals ⊕ {n?� θLocal′}
∧ Op1[x0/x′]
∧ Op2[x0/x]]

Redistribute the quantifications

= ∃ Local; Local′ •
[locals; locals′ : NAME �→ Local |

n? ∈ dom locals
∧ locals n? = θLocal
∧ locals′ = locals ⊕ {n?� θLocal′}
∧ (∃ Local0 • Op1[x0/x′] ∧ Op2[x0/x])]

and rewrite in terms of composition

= ∃ Local; Local′ • Φ ∧ (Op1 o
9 Op2)

= ∃∆Local • Φ ∧ (Op1 o
9 Op2)

This is the left hand side of the equation, and hence the proof is complete.
� C.11

C.12 Lemma ‘notLoggedAndIn’

Lemma C.4 (notLoggedAndIn) If a purse is engaged in a transaction, it does not
have a log for that transaction 12.

BetweenWorld
�
(fromInEpr ∪ fromInEpa)∩ fromLogged = ∅
∧ (toInEpv ∪ toInEapayee)∩ toLogged = ∅

�
12Used in: Val , behaviour of toLogged, section 19.6.2; Ack, behaviour of definitelyLost , sec-

tion 20.6.5; CVal , B–10, section 29.5; lemma ‘lost’, section C.13; lemma ‘not lost before’, sec-
tion C.14.

230 APPENDIX C. LEMMAS

Proof:
Consider the to purse case. We consider the pd stored in the to purse, so

pd ∈ (toInEpv ∪ toInEapayee)⇒
pd .toSeqNo = (conAuthPurse pd .to).pdAuth.toSeqNo

We have, from BetweenWorld constraint B–8, that

pd ∈ toLogged ⇒ pd .toSeqNo < (conAuthPurse pd .to).pdAuth.toSeqNo

Hence there can be no pd in both sets.
The arguments for the from cases follow similarly, from BetweenWorld

constraint B–7.
� C.12

C.13 Lemma ‘lost’

Lemma C.5 (lost) The sets definitelyLost and maybeLost are disjoint: a pd can
never be in both. 13

BetweenWorld � definitelyLost ∩maybeLost = ∅

�

Proof:

definitelyLost ∩maybeLost

= toLogged ∩ (fromLogged ∪ fromInEpa)
∩ (fromInEpa ∪ fromLogged) ∩ toInEpv [defn.]

= toLogged ∩ toInEpv ∩ (fromLogged ∪ fromInEpa) [rearranging]

= ∅ [Lemma ‘notLoggedAndIn’ (section C.12)]

� C.13
13Used in: Req, case 1, section 18.7.1; Req, case 2, section 18.8.1; Req, case 3, section 18.9.1.

C.14. LEMMA ‘NOT LOST BEFORE’ 231

C.14 Lemma ‘not lost before’

Lemma C.6 (not lost before) pdThis is not lost before the Req operation, al-
though it maybe lost after. 14

ΦBOp; ReqPurseOkay ; pdThis : PayDetails | (req∼m?) = pdThis
�
definitelyLost = definitelyLost ′ \ {pdThis}
∧maybeLost =maybeLost ′ \ {pdThis}

�

Proof:
From the definition of the way the state changes in ReqOkay we can say that
the following sets are the same before and afterward:

fromLogged = fromLogged ′

∧ toLogged = toLogged ′

∧ toInEpv = toInEpv′

For the set fromInEpa, we know from ReqOkay that beforehand this pdThis was
not in the set and afterward it was. So

pdThis ∈ fromInEpa′

∧ fromInEpa = fromInEpa′ \ {pdThis}

From Lemma ‘notLoggedAndIn’ (section C.12), we have:

pdThis ∈ fromInEpa′ ⇒ pdThis ∉ fromLogged ′

Reminding ourselves of the definitions of definitelyLost and using the identities
above, we have

definitelyLost
= toLogged ∩ (fromLogged ∪ fromInEpa) [defn]
= toLogged ′ ∩ (fromLogged ′ ∪ fromInEpa′ \ {pdThis}) [above]
= toLogged ′ ∩ (fromLogged ′ ∪ fromInEpa′) \ {pdThis}

[pdThis ∉ fromLogged ′]
= (toLogged ′ ∩ (fromLogged ′ ∪ fromInEpa′)) \ {pdThis} [Spivey]
= definitelyLost ′ \ {pdThis} [defn]

14Used in: Req, exists-chosenLost, section 18.5; Req, check-operation, section 18.6.

232 APPENDIX C. LEMMAS

Similarly for maybeLost :

maybeLost
= (fromInEpa ∪ fromLogged) ∩ toInEpv [defn]
= ((fromInEpa′ \ {pdThis})∪ fromLogged ′)∩ toInEpv′ [above]
= ((fromInEpa′ ∪ fromLogged ′) \ {pdThis})∩ toInEpv′

[pdThis ∉ fromLogged ′]
= ((fromInEpa′ ∪ fromLogged ′)∩ toInEpv′) \ {pdThis} [prop \]
=maybeLost ′ \ {pdThis} [def]

� C.14

C.15 Lemma ‘AbWorld unique’

Lemma C.7 (AbWorld unique) Given BetweenWorld and a choice of which trans-
actions will be lost, there is always exactly one AbWorld that retrieves.15

BetweenWorld ; chosenLost : PPayDetails; pdThis : PayDetails |
chosenLost ⊆maybeLost

�
∃1 AbWorld • RabClPd

�

Proof:
Each element of AbWorld has an explicit equation in Rab defining it uniquely
in terms of BeweenWorld components. The components are entirely indepen-
dent, and the only constraint that ties any together is that on chosenLost and
maybeLost , which we have directly in the hypothesis.

The constraints required of any AbWorld can be shown to hold as follows:

• abAuthPurse : NAME � �→AbPurse
conAuthPurse is a finite function. From the retrieve AbstractBetween the
domain of abAuthPurse equals the domain of conAuthPurse, and so is
finite, too.

� C.15
� C

15Used in: lemma ‘deterministic’, section 14.4.4.

Appendix D

Auxiliary toolkit definitions

D.1 Total abstract balance

The function totalAbBalance returns the total value held in a finite collection
of purses.

totalAbBalance : (NAME � �→AbPurse)→N

totalAbBalance∅ = 0
∀w : NAME � �→AbPurse; n : NAME ; AbPurse | n ∉ domw •

totalAbBalance({n � θAbPurse} ∪w) =
balance+ totalAbBalancew

This recursive definition is valid, because it is finite, and hence bounded.

D.2 Total lost value

The function totalLost returns the total value lost by a finite collection of purses.

totalLost : (NAME � �→AbPurse)→N

totalLost∅ = 0
∀w : NAME � �→AbPurse; n : NAME ; AbPurse | n ∉ domw •

totalLost({n � θAbPurse} ∪w) = lost + totalLost w

This recursive definition is valid, because it is finite, and hence bounded.

234 APPENDIX D. TOOLKIT

D.3 Summing values

We define the sum of the values in a set of exception logs, or a set of pay-
ment details. This recursive definition is valid, because it is finite, and hence
bounded.

sumValue : FPayDetails→N

sumValue∅ = 0
∀pds : FPayDetails; PayDetails | θPayDetails ∉ pds •

sumValue({θPayDetails}∪ pds) = value+ sumValuepds

Bibliography

[Barden et al. 1994]
Rosalind Barden, Susan Stepney, and David Cooper. Z in Practice. BCS
Practitioners Series. Prentice Hall, 1994.

[Flynn et al. 1990]
Mike Flynn, Tim Hoverd, and David Brazier. Formaliser—an interactive
support tool for Z. In John E. Nicholls, editor, ZUserWorkshop: Proceedings
of the 4th Annual Z User Meeting, Oxford 1989, Workshops in Computing,
pages 128–141. Springer Verlag, 1990.

[Spivey 1992a]
J. Michael Spivey. The fuzz Manual. Computer Science Consultancy, 2nd
edition, 1992. ftp://ftp.comlab.ox.ac.uk/pub/Zforum/fuzz.

[Spivey 1992b]
J. Michael Spivey. The Z Notation: a Reference Manual. Prentice Hall, 2nd
edition, 1992.

[Stepney]
Susan Stepney. Formaliser Home Page.
http://public.logica.com/˜formaliser/.

[Woodcock & Davies 1996]
Jim Woodcock and Jim Davies. Using Z: Specification, Refinement, and
Proof. Prentice Hall, 1996.

236 APPENDIX D. TOOLKIT

Index

ΦBOp, 31
ΦCOp, 37
⊥, 20

abAuthPurse; AbWorld , 16
AbFinOut , 18
AbFinState, 18
AbIgnore, 16
AbInitIn, 18
AbInitState, 17
AbOp, 16
Abort , 32
AbortPurseOkay , 22
AbPurse, 15
AbPurseTransfer , 16
AbstractBetween, 45
AbTransfer , 17
AbTransferLost , 17
AbTransferLostTD, 17
AbTransferOkay , 17
AbTransferOkayTD, 17
AbWorld , 16
AbWorldSecureOp, 16
Ack, 33
ack, 20
AckPurseOkay , 24
AIN , 16

allLogs; AuxWorld , 28
AllValueAccounted , 13
aNullIn, 16
aNullOut , 16
AOUT , 16
Archive, 34
archive, 27
Authentic, 13
AuthenticAckMessage, 24
authenticFrom; AuxWorld , 28
AuthenticReqMessage, 24
authenticTo; AuxWorld , 28
AuthenticValMessage, 24
AuthoriseExLogClearOkay , 33
AuxWorld , 28

balance; AbPurse, 15
balance; ConPurse, 20
BetweenInitState, 35
BetweenWorld , 30
BetwFinOut , 36
BetwFinState, 36
BetwInitIn, 36

CAbort , 38
CAck, 38
CArchive, 39

D.3. SUMMING VALUES 237

CAuthoriseExLogClear , 39
CClearExceptionLog, 38
check-operation, 58
CIgnore, 38
CIncrease, 38
CLEAR, 19
ClearExceptionLog, 33
ClearExceptionLogEapayerOkay , 33
ClearExceptionLogPurseEapayerOkay ,

26
ClearExceptionLogPurseOkay , 26
ConFinState, 39
ConInitState, 39
ConPurse, 20
ConPurseAbort , 22
ConPurseAck, 22
ConPurseClear , 26
ConPurseIncrease, 21
ConPurseReq, 22
ConPurseStart , 22
ConPurseVal, 22
consequent, 114
consqconj , 116
consqdisj , 116
consqexists, 117
contradiction, 117
ConWorld , 27
CounterPartyDetails, 19
cpd ; StartFromPurseEapayerOkay , 22
cpd ; StartToPurseEapayerOkay , 23
cpd ; ValidStartFrom, 22
cpd ; ValidStartTo, 23
CReadExceptionLog, 38
CReq, 38
CStartFrom, 38
CStartTo, 38
cut , 116
CVal, 38

definitelyLost ; AuxWorld , 28

eaPayee, 18
eaPayer , 18
epa, 18
epr , 18
epv , 18
ether ; ConWorld , 27
exceptionLogClear , 20
exceptionLogResult , 20
exists-chosenLost, 58
exists-pd, 58
exLog; ConPurse, 20

from; TransferDetails, 16
fromInEpa; AuxWorld , 28
fromInEpr ; AuxWorld , 28
fromLogged ; AuxWorld , 28
fromSeqNo; PayDetails, 19

GlobalWorld , 18

hypdisj , 116
hypexists, 117
hypuni , 116
hypothesis, 114

Ignore, 32, 55
image, 19
Increase, 32
IncreasePurseOkay , 21

lemma ‘Abort refines AbIgnore’, 61
lemma ‘AbIgnore’, 119
lemma ‘abort backward’, 65, 119
lemma ‘abort forward’, 120
lemma ‘Abort refinesAbIgnore’, 119
lemma ‘AbWorld unique’, 125
lemma ‘compose backward’, 121
lemma ‘compose forward’, 121
lemma ‘constraint’, 100, 120
lemma ‘deterministic’, 58, 118
lemma ‘ignore’, 55
lemma ‘logs unchanged’, 120

238 APPENDIX D. TOOLKIT

lemma ‘lost unchanged’, 59, 119
lemma ‘lost’, 124
lemma ‘not lost before’, 124
lemma ‘notLoggedAndIn’, 124
lemma ‘promoted composition’, 122
Logbook, 27
LogIfNecessary , 13
lost ; AbPurse, 15

maybeLost ; AuxWorld , 28
MESSAGE , 20

NAME , 15
name; ConPurse, 20
name; CounterPartyDetails, 19
negation, 116
nextSeqNo; ConPurse, 20
nextSeqNo; CounterPartyDetails, 19
NoValueCreation, 12

onepoint , 117
OtherPursesRab, 46

PayDetails, 19
pdAuth; ConPurse, 20
purse; ConWorld , 27

Rab, 46
RabCl, 45
RabClPd , 46
RabEnd , 49
RabEndClPd , 48
RabHasBeenLost , 49
RabHasBeenLostClPd , 48
RabIn, 50
RabOkay , 49
RabOkayClPd , 47
RabOut , 50
RabWillBeLost , 49
RabWillBeLostClPd , 47
Rbc, 96
ReadExceptionLog, 33

readExceptionLog, 20
ReadExceptionLogEapayerOkay , 33
ReadExceptionLogPurseEapayerOkay ,

25
ReadExceptionLogPurseOkay , 25
Req, 33
req, 20
ReqPurseOkay , 24
RetryAck, 25
RetryReq, 25
RetryVal, 25

StartFrom, 32
startFrom, 20
StartFromEapayerOkay , 33
StartFromPurseEapayerOkay , 22
StartFromPurseOkay , 23
StartTo, 32
startTo, 20
StartToEapayerOkay , 33
StartToPurseEapayerOkay , 23
StartToPurseOkay , 24
STATUS , 18
status; ConPurse, 20
strengthenconsq, 116
SufficientFundsProperty , 13
sumValue, 127

thin, 116
to; TransferDetails, 16
toInEapayee; AuxWorld , 28
toInEpv ; AuxWorld , 28
toLogged ; AuxWorld , 28
toSeqNo; PayDetails, 19
totalAbBalance, 126
totalLost , 126
transfer , 16
TransferDetails, 16

unihyp, 115

Val, 33

D.3. SUMMING VALUES 239

val, 20
ValidStartFrom, 22
ValidStartTo, 23
ValPurseOkay , 24
value; CounterPartyDetails, 19
value; TransferDetails, 16

