Stepney, Susan, Cooper, David and Woodcock, Jim (2000) An Electronic Purse: Specification, Refinement and Proof. Technical report. Oxford University

Downloaded from
https://kar.kent.ac.uk/22009/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version UNSPECIFIED

DOI for this version

Licence for this version
 UNSPECIFIED

Additional information

Technical Monograph PRG-126ISBN 0-902928-41-4July 2000Oxford University Computing LaboratoryProgramming Research
GroupWolfson BuildingParks RoadOxford OX1 3QDEngland

Versions of research works

Versions of Record

If this version is the version of record, it is the same as the published version available on the publisher's web site. Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record in KAR. If you believe that your, or a third party's rights have been compromised through this document please see our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository\#policies).

AN ELECTRONIC PURSE

Specification, Refinement, and Proof
by
Susan Stepney
David Cooper Jim Woodcock

Oxford University Computing Laboratory Programming Research Group

AN ELECTRONIC PURSE
 Specification, Refinement, and Proof

by
Susan Stepney
David Cooper
Jim Woodcock

Technical Monograph PRG-126
ISBN 0-902928-41-4
July 2000
Oxford University Computing Laboratory
Programming Research Group
Wolfson Building
Parks Road
Oxford OX1 3QD
England

Contents

Copyright © 2000 Logica UK Ltd
Oxford University Computing Laboratory
Software Engineering Centre
Wolfson Building
Parks Road
Oxford OX1 3QD
England
email: stepneys@1ogica.com
cooperd@praxis-cs.co.uk
Jim.Woodcock@com7ab.ox.ac.uk
4.4 Message Details 23
25
4.4 Clear Exception Log Validation 26
4.6 A concrete purse 26
4.7 Single Purse operations 28
28
4.8 Invisible operations
30
$\begin{array}{ll}\text { 4.9 } & \text { Value transfer operations } \\ \text { 4.10 } & \text { Exception logging operations }\end{array}$ 35
$5 \mathcal{B}$ model, world 39
39
5.1 The world 39
40
5.2 Auxiliary definitions 44
5.4 Framing schema 47
5.5 Ignore, Increase and Abort 49
5.6 Promoted operations
5.7 Operations at the 49
50
5.8 Forging messages 50
52
5.9 The complete protocol 52
$6 \quad \mathcal{B}$ initial, final 55
6.1 Initialisation 55
56
7 C model 59
7.1 Concrete World State 59
7.2 Framing Schema59
60
7.3 Ignore, Increase and Abort
60
7.5 Operations at the world level only 61
7.6 Initial state62
638 Consistency65
8.1 Introduction65
65
8.2 Between model consistency proof 65
67
8.4 Concrete model consistency proofs 68

II First Refinement: \mathcal{A} to \mathcal{B}
$9 \mathcal{A}$ to \mathcal{B} rules 71
9.2 Backwards rules proof obligation 71
72
10 Rab 75
10.1 Retrieve state
10.1 Retrieve state 75
10.2 Retrieve inputs 84
84
$11 \mathcal{A}$ to \mathcal{B} initialisation 85
11.1 Proof obligations 85
85
11.3 Proof of initial inputs 85
$12 \mathcal{A}$ to \mathcal{B} finalisation 87
12.1 Proof obligations 87
12.3 State proof 88
$13 \mathcal{A}$ to \mathcal{B} applicability 91
13.1 Proof obligation 91
91
$14 \mathcal{A}$ to \mathcal{B} lemmas 93
14.1 Introduction 93
14.2 Lemma 'multiple refinement' 94
14.3 Lemma 'ignore': separating the branches 95
95
14.4 Lemma 'deterministic': simplifying the Okay branch 95
102
14.5 Lemma 'lost unchanged' 102
103
14.6 Lemma 'AbIgnore': Operations that refine AbIgnore
14.6 Lemma 'AbIgnore': Operations that refine AbIgnore 106
14.8 Abort refines AbIgnore
14.8 Abort refines AbIgnore 14.8 Abort refines AbIgnore 107
115
11614.10 Summary of lemmas11615 Increase
15.1 Proof obligation 119
15.2 Invoking lemma 'lost unchanged'120
16 StartFrom121
16.1 Proof obligation
16.2 Instantiating lemma 'deterministic' 122
16.3 Behaviour of maybeLost and definitelyLost
16.4 exists-pd 123
16.5 exists-chosenLost 123
16.6 check-operation
125
7 StartTo 125
17.1 Proof obligation
126
126
17.2 Instantiating lemma 'deterministic'
17.2 Instantiating lemma 'deterministic' 126
17.4 exists-pd
127
17.5 exists-chosenLost 128
8 Req 129
18.1 Proof obligation
18.2 Instantiating lemma 'deterministic' 129
18.3 Discussion 130
18.4 exists-pd 131
18.5 exists-chosenlost 131
18.6 check-operation
18.7 case 1: ReqOkay and RabOkayCIPd'18.8 case 2. ReqOkay and RabWillBeLost18.8 case 2: ReqOkay and RabWillBeLostPd'133
18.9 case 3: ReqOkay and RabHasBeenLostPd ${ }^{\prime}$142
18.10 case 4: ReqOkay and RabEndPd ${ }^{\prime}$ 146
19 Val
19.1 Proof obligation 149
19.2 Instantiating lemma 'deterministic' 149
19.3 exists-pd 150
19.4 exists-chosenlost
150
19.5 check-operation 151
19.7 Clarifying the hypothesis 153
20 Ack 157
20.1 Proof obligation
20.1 Proof obligation
157
20.2 Instantiating lemma 'deterministic' 158
20.4 exists-chosenlos 159
20.6 Behaviour of maybeLost and definitelyLost 159
20.7 Finishing proof of check-operation 162
21 ReadExceptionLog 163
21.1 Proof obligation 163
21.2 Invoking lemma 'lost unchanged' 164
22 ClearExceptionLog 165
22.1 Proof obligation 165
22.3 check-operation-ignore 166
23 AuthoriseExLogClear 167
23.1 Proof obligation 167
24 Archive 169
24.1 Proof obligation 169
III Second Refinement: \mathcal{B} to C 171
$25 \mathcal{B}$ to C rules 173
25.1 Security of the implementation 174
6 Rbc 177
27 Initialisation, Finalisation, and Applicability 179
27.1 Initialisation proof 179
27.2 Finalisation proof180
$28 \mathcal{B}$ to C lemmas 181
28.1 Specialising the proof rules
181
182
28.2 Correctness of CIgnore
28.3 Correctness of a branch of the operation 182
28.4 Correctness of CIncrease 185
28.5 Correctness of CAbort 185
28.6 Lemma 'logs unchanged’ 187
28.7 Lemma 'abort forward': operations that first abort 188
29.1 Introduction 191
29.2 Correctness of CStartFrom 191
29.3 Correctness of CStartTo 193
2.4 Correctness of CReq

196
29.5 Correctness of CVal 197
29.6 Correctness of CAck 198
29.7 Correctness of CReadExceptionLog 200
29.8 Correctness of CClearExceptionLog 201
29.9 Correctness of CAuthoriseExLogClear 201
29.10 Correctness of CArchive 202

30 Summary 203

IV Appendices 209
A Proof Layout 211
A. 1 Notation - 211
A. 2 Labelling proof steps 211

B Inference rules 213
B. 1 Universal quantifier becomes hypothesis 213
B. 2 Disjunction in the hypothesis 214
B. 3 Disjunction in the consequent 214
B. 4 Conjunction in the consequent 214
B. 5 Cut for lemmas consequent
B. 6 Thin
B. 7 Universal Quantification
B. 8 Negation
,
B. 10 Contradiction Point Rule 216
B. 10 One Point Rule
B. 12 Proof of the Derived Rules

C Lemmas 'deterministic' 219
$\begin{array}{lll}\text { C. } 1 & \text { Lemma 'deterministic' } & 219 \\ \text { C. } 2 & \text { Lemma 'lost unchanged' } & 220\end{array}$
C. 2 Lemma 'lost unchanged 220
C. 3 Lemma 'Ablgnore' 220
C. 4 Lemma 'Abort refines AbIgnore' 221
C. 5 Lemma 'abort backward' 221
C. 6 Lemma 'constraint'
C. 7 Lemma 'logs unchanged'
C. 8 Lemma 'abort forward’
C. 9 Lemma 'compose backward'
C. 10 Lemma 'compose forward'
a 'compose forward' 223
C. 11 Lema compose forward 225
C. 11 Lemma promoted composition 226
C. 12 Lemma notLoggedAndIn'
C. 13 Lemma 'lost
C. 15 Lemma 'AbWorld unique’ 232

D Toolkit 235
D. 1 Total abstract balance 235
D. 2 Total lost value 235
D. 3 Summing values 236

Acknowledgments

The work described in this monograph took place as part of a development funded by the NatWest Development Team (now platform seven). Part of the refinement work was carried out by Eoin MacDonnell.

Introduction

1.1 The application

This case study is a reduced version of a real development by the NatWest Development Team (now platform seven) of a Smartcard product for electronic commerce. This development was deeply security critical: it was vital to ensure hat these cards would not contain any bugs in implementation or design that would allow them to be subverted once in the field

The system consists of a number of electronic purses that carry financial The system consists of a number of electronic purses that carry financial communications device to exchange value. Once released into the field, each purse is on its own: it has to ensure the security of all its transactions without ecourse to a central controller. All securty measures have to be implemented on the card, with no real-time external audit logging or monitoring.
1.1.1 Models

We develop two key models in this case study. The first is an abstract model, describing the world of purses and the exchange of value through atomic transactions, expressing the security properties that the cards must preserve. The econd is a concrete model, reflecting the design of the purses which exchange second is a concrete model, reflecting the design of the purses which exchange alue using a message protocol. Both models are described in the Z notation [Spivey 1992b] [Woodcock \& Davies 1996] [Barden et al. 1994], and we prove that the concrete model is a refinement of the abstract.

Abstract model

The abstract model is small, simple, and easy to understand. The key operation

Figure 1.1: An atomic transaction in the abstract model

Figure 1.2: Part of the n-step protocol used to implement the atomic transaction in the concrete model.
transfers a chosen amount of value from one purse to another; the operation is modelled as an atomic action that simultaneously decrements the value in the paying purse and increments the value in the receiving purse (figure 1.1). Two key system security properties are maintained by this and other operations:

- no value may be created in the system; and
- all value is accounted in the system (no value is lost).

The simplicity of the abstract model allows these properties to be expressed in a way that is easily understood by the client.

Concrete model

The concrete model is rather more complicated, reflecting the details of the real system design. The key changes from the abstract are:

- transactions are no longer atomic, but instead follow an n-step protocol (figure 1.2);
- the communications medium is insecure and unreliable;
- transaction logging is added to handle lost messages; and
1.2. OVERVIEW OF MODEL AND PROOF STRUCTURE
- there are no global properties-each purse has to be implemented in isolation.

The basic protocol is:

1. the communications device ascertains the transaction to perform;
2. the receiving purse requests the transfer of an amount from the paying purse;
3. the paying purse sends that amount to the receiving purse; and
4. the receiving purse sends an acknowledgement of receipt to the paying purse.
The protocol, although simple in principle, is complicated by several facts: the protocol can be stopped at any point by removing the power from a card; the communications medium could lose a message; and a wire tapper could record a message and play it back to the same or different card later. In the face of all these possible actions, the protocol must implement the atomic transfer of value correctly, as specified in the abstract model.

1.1.2 Proofs

All the security properties of the abstract model are functional, and so are preserved by refinement.

The purpose of performing the proof is to give a very high assurance that the chosen design (the protocol) does, indeed, behave just like the abstract, atomic transfers. We choose to do rigorous proofs by hand: our experience is that current proof tools are not yet appropriate for a task of this size. We did, however, type-check the statements of the proof obligations and many of the proof steps using a combination of fuzz [Spivey 1992a] and Formaliser [Flynn et al. 1990] [Stepney]. As part of the development process, all proofs were also independently checked by external evaluators.

1.2 Overview of model and proof structure

The specification and security proof have the following structure (summarised in figure 1.3):

- Security Properties, SPs:
- The Security Properties are defined in terms of constraints on secure operations; they are formalised in terms of the appropriate model concepts (see later)

Figure 1.3: Overview of document organisation, with model and proof structure

- In some cases, where it may not be evident that a model captures a particular constraint, the desired property is recast as a theorem and proved.
- Abstract model, \mathcal{A} : We define an abstract model (Chapter 3), which forms the Formal Security Policy Model; it consists of a global model in terms of a simple state and operations:
- the state is a world of (abstract) purses; and
- the operations are defined on this state.
- Between model, \mathcal{B} : Next we build a 'between' levels model. This is the first refinement towards the implementation of purses consisting of local state information only. This model, \mathcal{B}, is structured as a promoted state-andoperations model:
- The state of a single (concrete) purse, and the corresponding singlepurse operations, are defined (Chapter 4).
- The purses and operations are promoted to a global state and operations (Chapter 5). Constraints are put on this promotion to enable the correctness proofs to be performed.
1.3. RATIONALE FOR MODEL STRUCTURE
- Concrete model, C: Our final model is the concrete level model, which forms the Formal Architectural Design. This model, C, is structured as a promoted state-and-operations model, very similar to \mathcal{B}, except it has no constraints on the promotion:
- The state of a single (concrete) purse, and the corresponding singlepurse operations, are defined (Chapter 7).
- The purses and operations are promoted to a global state and operations, with no constraints (Chapter 7).
- Security proof $\mathcal{A}-\mathcal{B}$: The security policy is proved to hold for \mathcal{B} by proving that \mathcal{B} is a refinement of \mathcal{A}. This forms the first part of Explanation of Consistency.
- The retrieve relation $R a b$, relating the \mathcal{B} and \mathcal{A} worlds, is defined (Chapter 10).
- The security policy is shown to hold for \mathcal{B} by proof that \mathcal{B} refines \mathcal{A}, using the 'backward' proof rules (Part II). This proof comprises the bulk of the proof work.
- Security proof $\mathcal{B}-C$: The security policy is proved to hold for C by proving that \mathcal{C} is a refinement of \mathcal{B} (and hence of \mathcal{A}, by transitivity of refinement). This forms the remaining part of Explanation of Consistency.
- The retrieve relation $R b c$, relating the C and \mathcal{B} worlds, is defined (Chapter 26).
- The security policy is shown to hold for C by proof that C refines \mathcal{B}, using the 'forward' proof rules (Part III). These two levels are relatively close, so this proof is relatively straightforward.
The mathematical operators and schemas defined in this document are included in the index at the end of the document.

1.3 Rationale for model structure

As noted above, this case study has been adapted from a larger, real development. In order to produce a case study of a size appropriate for public presentation, much of the real functionality has had to be removed. Some of the structure of the larger specification has remained present in the smaller one, although it might not have been used had the smaller specification been written from scratch. This omitted functionality, whilst important from a business perspective, is peripheral to the central security requirements.

1.4 Rationale for proof structure

Imagine two specifications \mathcal{A} and \mathcal{C}, which describe executable machines. Imagine that, on every step, each machine consumes an input and produces an output. Finally, imagine that every execution of C, viewed solely in terms of inputs nd outputs, could equally well have been an execution of \mathcal{A}. In this sense and outputs, could equally well have been an execution of \mathcal{A}. In this sense, \mathcal{A} can simulate any behaviour of \mathcal{C}. If this is the case, then we say that C is a
refinement of \mathcal{A}. This is
This is exactly what we want to prove in our case study: that the concrete model is a refinement of the abstract one.

Refinement is an ordering between specifications that captures an intuitive notion of when a concrete specification implements an abstract one. This allows us to postpone implementation detail in writing our top-level specification, focussing only on essential properties. The cost of this abstraction is the need to refine the specification, reifying data structures and algorithms; refinement is a formal technique for ensuring that essential properties are present in a more concrete specification.

Nondeterminism is used in an abstract specification to describe alternative acceptable behaviours; in choosing a concrete refinement of an abstract specification, some of these nondeterministic choices may be resolved. Since we view \mathcal{A} and C only terms of inputs and outputs, nondeterminism present in \mathcal{A} may be resolved at a different point in C.

Our abstract model, chosen to represent the difference between secure and insecure transactions very clearly, has nondeterminism in a different place from the implementation. In fact, it has it in a place that precludes proof using the forward rules of [Spivey 1992b, section 5.6]. For this reason we use the backward rules to prove against the abstract model.

At the concrete level, we must describe the purse behaviour in a way that closely mirrors the actual design. An important (and obvious) property of the design is that the purses are independent, that is, each purse acts on the basis of its own, local knowledge, and we have no control over the communications medium between purses. This can be expressed cleanly in Z by building a model of an individual purse in isolation, and then promoting [Barden et al. 1994, chapter 19] this model to a world with many purses. To express the fact that we have no global control over the purses nor over the communications medium, we must use an unconstrained promotion. This we do in the C model.

Why do we not, then, do a single backward proof step from the \mathcal{A} model to the C model?

For technical reasons, the backward proof rules need the more concrete specification to be tightly constrained in its state space. The form of the proofs forces the description of the state space to include explicit predicates excluding
all but valid states. However, these predicates are not expressible locally to purses, and hence cannot be included in specification derived by unconstrained romotion. That is, we cannot express the predicates needed for the proof in he C model.

We therefore introduce an intermediate model, the \mathcal{B} model, which is a constrained promotion, and hence can contain the predicates needed for the backward proofs. We then prove a refinement from \mathcal{A} to \mathcal{B} using the backward rules. But now the constrained promotion \mathcal{B} is very close to the unconstrained promotion C, and in particular the nondeterminism is resolved in the same place in both models, allowing the forward rules to be used. This we do in our proof of refinement from \mathcal{B} to C.

1.5 Status

The specification and theorems have been parsed and type-checked using f_{UZZ} [Spivey 1992a]. There is no use of the \%\%unchecked parser directive in the specification, in the statement of theorems, or in the statement of most of the intermediate goals; however, some reasoning steps have hidden declarations to make them type-check and some do not conform to fuzz's syntax at all.

Part I
Models

Security Properties

2.1 Introduction

This chapter gathers together the Security Properties (SPs) definitions, for reference. The SPs are formalised in terms of the abstract and concrete models, making use of definitions in Chapters 3 and 4 . (The index can be used to find the definitions of these terms.) The full meaning and effect of a SP can be seen only in the context of the model that includes it

2.2 Abstract model SPs

The following SPs are expressed in terms of the abstract model \mathcal{A}, defined in chapter 3.

2.2.1 No value creation

Security Property 1. No value may be created in the system: the sum of all the purses' balances does not increase. ${ }^{1}$

> | NoValueCreation_- |
| :--- |
| Δ AbWorld |
| totalAbBalance abAuthPurse ${ }^{\prime} \leq$ totalAbBalance abAuthPurse $^{\text {alal }}$ |

${ }^{1}$ Proved to hold for the model, section 2.4. NoValueCreation requires that the sum of the before balances is greater or equal to the sum of the after balances. The abstract model enforces a stronger condition: that transfers change only the purses involved in the transfer and only by he amount stated in the transfer

2.2.2 All value accounted

Security Property 2.1. All value must be accounted for in the system: the sum of all purses' balances and lost components does not change. ${ }^{2}$
_AllValueAccounted \qquad
Δ AbWorld
totalAbBalance abAuthPurse ${ }^{\prime}+$ totalLost abAuthPurse ${ }^{\prime}=$
totalAbBalance abAuthPurse + totalLost abAuthPurse

2.2.3 Authentic purses

Security Property 3. A transfer can occur only between authentic purses. ${ }^{3}$

$$
\begin{aligned}
& \text { Authentic } \\
& \text { AbWorld } \\
& \text { name? : NAME } \\
& \hline \text { name? } \in \text { dom abAuthPurse } \\
& \hline
\end{aligned}
$$

2.2.4 Sufficient funds

Security Property 4. A transfer can occur only if there are sufficient funds in the from-purse. ${ }^{4}$

SufficientFundsProperty
AbWorld
TransferDetails?
value? \leq (abAuthPurse from?).balance

2.3 Concrete model SPs

The following SPs are expressed in terms of the between (and concrete) model \mathcal{B}, defined in chapter 4.
${ }^{2}$ Proved to hold for the model, section 2.4. The concrete level SP 2.2 uses logging to support this SP.
Used in the definition of: AbTransferOkay and AbTransferLost, section 3.3.3.
${ }^{4}$ Used in the definition of: AbTransferOkay and AbTransferLost, section 3.3.3. Used in the proof of: SP1, section 2.4.1, section 2.4.3; SP2, section 2.4.2, section 2.4.4. Note that the model also ensures that the balance and value? are non-negative.

2.3.1 Exception logging

Security Property 2.2. If a purse aborts a transfer at a point where value could be lost, then the purse logs the details. ${ }^{5}$

$$
\begin{aligned}
& \text { LogIfNecessary } \\
& \Delta \text { ConPurse } \\
& \hline \text { exLog' }=\text { exLog } \cup(\text { if status } \in\{e p v, e p a\} \text { then }\{p d A u t h\} \text { else } \varnothing)
\end{aligned}
$$

The only times the log need be updated are if the purse is in epv (having sent the req message) or in epa (having sent the val but not yet received the ack). In all other cases the transfer has not yet got far enough for the purse to be worried that the transfer has failed, or has got far enough that the purse is happy that the transfer has succeeded.

2.4 SPs and the models

All the SPs hold in the appropriate models.
In most cases, this is obviously true, by construction: the SPs appear as explicit predicates in the relevant definitions. However, NoValueCreation and AllValueAccounted are not explicitly included in the operation that changes the relevant components: AbTransfer. In this section, we demonstrate that the abstract model indeed satisfies these SPs. That is:

$$
\text { AbTransferOkay } \vdash \text { NoValueCreation } \wedge \text { AllValueAccounted }
$$

AbTransferLost \vdash NoValueCreation \wedge AllValueAccounted
AbIgnore \vdash NoValueCreation \wedge AllValueAccounted
In the proofs below, we use the $T D$ form of the definitions, by [cut]ting in the appropriate TransferDetails.
2.4.1 Transfer okay, no value creation

AbTransferOkayTD \vdash NoValueCreation ${ }^{5}$ Used in the definition of: AbortPurse, section 4.8.2.

Proof:

totalAbBalance abAuthPurse
$=$ totalAbBalance $\left(\{\right.$ from $?$, to? $\} \triangleleft$ abAuthPurse $\left.e^{\prime}\right)$ + (abAuthPurse' from?).balance

+ (abAuthPurse' to?).balance
[totalAbBalance]
$=$ totalAbBalance $(\{$ from?, to? $\} \triangleleft$ abAuthPurse $)$
+ ((abAuthPurse from?).balance - value?)
+ ((abAuthPurse to?).balance + value?)
[AbTransferOkay]
= totalAbBalance abAuthPurse
\leq totalAbBalance abAuthPurse
- 2.4.1
2.4.2 Transfer okay, all value accounted

AbTransferOkayTD \vdash AllValueAccounted

Proof:

totalAbBalance abAuthPurse ${ }^{\prime}+$ totalLost abAuthPurse ${ }^{\prime}$
$=$ totalAbBalance (\{from?, to?\} $\&$ abAuthPurse')

+ (abAuthPurse' from?).balance
+ (abAuthPurse to?).balance
+ totalLost $\left(\{\right.$ from?, to? $\} \&$ abAuthPurse $\left.{ }^{\prime}\right)$
+ (abAuthPurse' from?).lost
+ (abAuthPurse' to?).lost
$=$ totalAbBalance ($\{$ from? , to? $\} \&$ abAuthPurse $)$
+ ((abAuthPurse from?).balance - value?)
+ (abAuthPurse to?).balance + value?)
+ totalLost (\{from?, to?\} \triangleleft abAuthPurse)
+ (abAuthPurse from?).lost
+ (abAuthPurse to?).lost
[AbTransferOkay]
$=$ totalAbBalance abAuthPurse + totalLost abAuthPurse
2.4.2
2.4. SPS AND THE MODELS

2.4.3 Transfer lost, no value creation

AbTransferLostTD \vdash NoValueCreation
Proof:
totalAbBalance abAuthPurse
$=$ totalAbBalance $\left(\{\right.$ from $?$, to? $\} \&$ abAuthPurse $\left.e^{\prime}\right)$

+ (abAuthPurse' from?).balance
+ (abAuthPurse' to?).balance
$=$ totalAbBalance $(\{$ from?, to $?\} \triangleleft$ abAuthPurse $)$
+ ((abAuthPurse from?).balance - value?)
+ (abAuthPurse to?).balance
$=$ totalAbBalance abAuthPurse - value?
\leq totalAbBalance abAuthPurse
- 2.4.3
2.4.4 Transfer lost, all value accounted

AbTransferLostTD \vdash AllValueAccounted

Proof:

totalAbBalance abAuthPurse ${ }^{\prime}+$ totalLost abAuthPurse
$=$ totalAbBalance $\left(\{\right.$ from?, to? $\left.\} \triangleleft a b A u t h P u r s e^{\prime}\right)$

+ (abAuthPurse' from?).balance
+ (abAuthPurse' to?).balance
+ totalLost $\left(\{\right.$ from?, to? $\} \&$ abAuthPurse $\left.e^{\prime}\right)$
+ (abAuthPurse' from?).lost
+ (abAuthPurse' to?).lost
$=$ totalAbBalance ($\{$ from?, to? $\} \triangleleft$ abAuthPurse $)$
+ ((abAuthPurse from?).balance - value?)
+ (abAuthPurse to?).balance
+ totalLost (\{from?, to?\} $\&$ abAuthPurse
((abAuthPurse from?).lost + value?)
+ (abAuthPurse to?).lost
[AbTransferLost]
$=$ totalAbBalance abAuthPurse + totalLost abAuthPurse

■ 2.4.4
2.4.5 Transfer ignore

AbIgnore \vdash NoValueCreation \wedge AllValueAccounted
Proof:
Follows directly from the definition of AbIgnore, which changes none of the relevant values.

- 2.4.5
-2.4
-2

Abstract model: security policy

3.1 Introduction

The abstract model specification has the following parts:

- State: the abstract world of purses
- Operations: secure changes from one abstract state to another
- Initialisation: the abstract world starts off secure
- Finalisation: a way of observing part of the abstract world to determine that it is secure
3.2 The abstract state
3.2.1 A purse

An abstract AbPurse consists of a balance, the value stored in the purse; and a lost component, the total value lost during unsuccessful transfers. (The unsuccessful, but still secure, transfer is defined in section 3.3.3.)

AbPurse $\hat{=}[$ balance, lost : $\mathbb{N}]$
3.2.2 Transfer details

Each purse has a distinct, unique name.
[NAME]

The details of a particular transfer include the names of the from and to purses and the value to be transferred.

```
TransferDetails
from, to : NAME
```

value: \mathbb{N}
Although it is not permitted to perform a transfer between a purse and itself, the constraint from \neq to is checked during AbTransfer, rather than put in TransferDetails, since it is permitted to request a transfer with from $=$ to.

Transactions involving zero value are allowed.

3.2.3 Abstract world

The abstract world model contains a mapping from purse names to abstract purses. The domain of this function corresponds to authentic purses, those that may engage in transfers ${ }^{1}$. We allow only a finite number of authentic purses, to ensure a well-defined total value in the system.

AbWorld $\hat{=}$ [abAuthPurse $:$ NAME \rightrightarrows AbPurse $]$

3.3 Secure operations

Having defined our abstract world, AbWorld, we now define operations on the world that respect the relevant SPs. We call these secure operations. They comprise:

- AbIgnore: securely do nothing
- AbTransfer: securely transfer balance between purses, or securely 'lose' the balance

3.3.1 Abstract inputs and outputs

We are to prove that the implementation is a refinement of the abstract security policy specification. This is made simpler if every operation has an input and an output, and if all operations' inputs and outputs are of the same type.

So we define the inputs and outputs (some being ‘dummy’ values) using a free type construct:

$$
\begin{gathered}
\text { AIN ::= aNullIn } \\
\quad \mid \text { transfer }\langle\text { TransferDetails }\rangle \\
\hline{ }^{1} \text { SP 3, 'Authentic purses', section 2.2.3. }
\end{gathered}
$$

$$
\text { AOUT }::=\text { aNullOut }
$$

Every abstract operation has the following properties:

$$
\left[\begin{array}{l}
\text { AbOp } \\
\Delta \text { AbWorld } \\
a ?: \text { AIN; a }: \text { : AOUT }
\end{array}\right.
$$

The output is always aNullOut (that is, we are not interested in the abstract output).

3.3.2 Abstract ignore

Any operation has the option of securely doing nothing.

AbIgnore
AbOp
abAuthPurse

3.3.3 Transfer

The transfer operation changes only the balance and lost component of the relevant purses.

AbPurseTransfer $\hat{=}$ AbPurse \backslash (balance, lost)

The secure transfer operations change at most the from and to purse states: all other purse states are unchanged.

$$
\begin{aligned}
& \text { AbWorldSecureOp } \\
& \text { AbOp }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ADOp } \\
& \text { TransferDetails? }
\end{aligned}
$$

$$
a ? \in \operatorname{ran} \text { transfer }
$$

θ TransferDetails? $=$ transfer \sim a
$\{$ from?, to?\} $\&$ abAuthPurse $=\{$ from?, to? $\} \nleftarrow$ abAuthPurse

A transfer can securely succeed between two purses if they are distinct, both purses are authentic ${ }^{2}$, and the from purse has sufficient funds ${ }^{3}$.

AbTransferOkayTD
AbWorldSecureOp
Authentic[from?/ name?]

Authentic[to?/ name?]

SufficientFundsProperty

to? \neq from?

abAuthPurse' from? $=(\mu \Delta$ AbPurse \mid
θ AbPurse $=$ abAuthPurse from?
\wedge balance' $=$ balance - value?
\wedge lost $^{\prime}=$ lost
^ EAbPurseTransfer

- $\left.\theta A b P u r s e^{\prime}\right)$
abAuthPurse ${ }^{\prime}$ to $?=(\mu \Delta$ AbPurse \mid
θ AbPurse $=$ abAuthPurse to?
\wedge balance $^{\prime}=$ balance + value?
\wedge lost $=$ lost
\wedge EAbPurseTransfer
- θ AbPurse ${ }^{\prime}$)

The operation transfers value? from the from purse to the to purse ${ }^{4}$. All the other components of the from? and to? purses are unchanged, and all other purses are unchanged.

The model is more constrained than required by the SPs, and hence it represents a sufficient, but not necessary, behaviour to conform to the SPs

Hiding the auxiliary inputs gives the Okay operation as:
AbTransferOkay $\hat{=}$ AbTransferOkayTD \backslash (to?, from?, value?)
A transfer can securely lose value between two purses if they are distinct, both purses are authentic ${ }^{5}$, and the from purse has sufficient funds ${ }^{6}$.

${ }^{2}$ SP 3, 'Authentic purses', section 2.2.3.

${ }^{3}$ SP 4, 'Sufficient funds', section 2.2.4.
${ }^{4}$ SP 1, 'No value created', section 2.2.1.
SP 3, 'Authentic purses', section 2.2.3
${ }^{6}$ SP 4, 'Sufficient funds', section 2.2.4.
3.4. ABSTRACT INITIAL STATE

AbTransferLostTD
Authentic [from?/name?]
Authentic[to?/name?]
SufficientFundsProperty
to ? \neq from?
abAuthPurse' from? $\in\{\Delta$ AbPurse \mid
θ AbPurse $=$ abAuthPurse from?
\wedge balance ${ }^{\prime}=$ balance - value ?
\wedge lost $=$ lost + value?
\wedge EAbPurseTransfer

- $\left.\theta A b P u r s e^{\prime}\right\}$
abAuthPurse to $?=$ abAuthPurse to ?

The operation removes value? from the from purse's balance, ${ }^{7}$ and adds it to the from purse's lost component. ${ }^{8}$ All the other components of the from? purse are unchanged, The to purse and all other purses are unchanged.

Hiding the auxiliary inputs gives the Okay operation as:
AbTransferLost $\hat{=}$ AbTransferLostTD \backslash (to?, from?, value?)
The full transfer operation can also securely do nothing, AbIgnore. The full transfer operation is

AbTransfer $\hat{=}$ AbTransferOkay \vee AbTransferLost \vee AbIgnore

3.4 Abstract initial state

One conventional definition of the initial state of a system is as being empty; oprations are used to add elements to the state until the desired configuration is reached. However, we do not wish to add new abstract purses to the domain of abAuthPurse, so we cannot start with a system containing no authentic purses. So we set up an arbitrary initial state, which satisfies the predicate of AbWorld'.

[^0]So we say that AbInitState has some particular value, we just do not say what that particular value is. The particular value chosen is irrelevant to the security of the system; any starting state would be secure.

Initialisation also defines the mapping from global (that is, observable) inputs to abstract (that is, modelled) inputs. This is just the identity relation in the \mathcal{A} model:

$$
\text { AbInitIn } \hat{=}[a ?, g ?: \operatorname{AIN} \mid a ?=g ?]
$$

3.5 Abstract finalisation

We must 'observe' each security relevant component of the world, in order to determine that the security properties do indeed hold. Observation is usually performed by enquiry operations, and any part of the state not visible through some enquiry operation is deemed unimportant. However, in our case there are no abstract enquiry operations to observe state components, but there are security properties related to them, and so they are important. We use finalisation to observe them.

Finalisation takes an abstract state, and 'projects out' the portion of it we wish to observe, into a global state. Here we choose to observe the entire abstract state.

The global state is the same as the abstract state:
GlobalWorld $\hat{=}$ [gAuthPurse : NAME \rightarrow AbPurse $]$
Finalisation gives the global state corresponding to an abstract state. These are mostly the identity relations in the \mathcal{A} model:

$$
\begin{aligned}
& \text { AbFinState } \\
& \text { AbWorld } \\
& \text { GlobalWorld } \\
& \text { gAuthPurse }=\text { abAuthPurse }
\end{aligned}
$$

Finalisation also defines the mapping from abstract outputs to global (that is, observable) outputs.

$$
\text { AbFinOut } \hat{=}[a!, g!: \text { AOUT | } a!=g!]
$$

Between model, single purse operations

4.1 Overview

This chapter covers the purse-level operations, which are: abort, the start operations, the transfer operations req, val and ack, read log, and clear log.

For the sake of simplicity, we assume that concrete and abstract NAMEs are drawn from the same sets.

In this section we refer to 'concrete' rather than 'between' purse, because, as we see later, there is no difference between the two structurally. The only difference between the \mathcal{B} and \mathcal{C} worlds is fewer global constraints in the latter.

4.2 Status

A concrete purse has a status, which records its progress through a transaction.
STATUS ::= eaFrom | eaTo | epr | epv | epa

The statuses are: eaFrom 'expecting any payer', eaTo 'expecting any payee', $e p r$ 'expecting payment req', epv 'expecting payment val', and epa 'expecting payment ack'.

4.3 Message Details

The abstract level describes the operations that transfer value. Purses are sent instructions via messages, and we present the structure of compound messages in this section.

The abstract level describes a transfer of value from one purse to another. We implement this at the concrete level by a protocol consisting of messages.

- A single transfer involves many messages. So we need a way to distinguish messages: we use a tag for req, val or ack.
- We have no control over the concrete messages, and cannot forbid the duplication of messages. So we need a way to distinguish separate transactions: we use sequence numbers that are increased between transactions. (The transaction sequence number is implemented as a sufficiently large number. Provided that the initial sequence number is quite small, and each increment is small, we need not worry about overflow, since the purse will physically wear out first.

4.3.1 Start message counterparty detail

The counterparty details of a payment, which are transmitted with a start message, identify the other purse, the value to be transferred, and the other purse's transaction sequence number.

```
CounterPartyDetails
name : NAME
value:N
value:N
```


4.3.2 Payment log message details

Purses store current payment details, and exception log records that hold sufficient information about failed or problematic transactions to reconstruct the value lost in the transfer ${ }^{1}$. The payment log details identify the different from and to purses and the value to be transferred (as in the abstract TransferDetails) and also the purses' transaction sequence numbers. The combination of purse name and sequence number uniquely identifies the transaction.

> PayDetails
> TransferDetails
> fromSeqNo, toSeqNo: \mathbb{N}
from \neq to

[^1]We can put the constraint about distinct purses in the PayDetails, because this check is made in ValidStartTo/From, before the details are set up.

4.4 Clear Exception Log Validation

CLEAR is the set of clear codes for purse exception logs
[CLEAR]
A clear code is provided by an external source (section 5.7.1) in order to clear a purse's exception \log (section 4.10.2).
image is a function to calculate the clear code for a given non-empty set of exception records.
\mid image $: \mathbb{P}_{1}$ PayDetails \rightarrow CLEAR
image takes a set of exception logs, and produces another value used to validate a log clear command. For each set of PayDetails, there is a unique clear code.

The BetweenWorld model is designed so that no logs are ever lost. Indeed, we must prove that no logs are lost in the refinement of each operation - this is an implicit part of the refinement correctness proofs. The BetweenWorld mechanism to ensure that no logs are lost relies on two assumptions:

- clear codes are only ever generated from sets of PayDetails that are stored in the archive (a secure store of log records introduced later)
- clear codes unambiguously identify sets of PayDetails

The second of these assumptions is captured formally by the injective function image ${ }^{2}$.
${ }^{2}$ In practice, image is not injective on general sets of PayDetails, but it is injective when restricted to the sets actually encountered.

4．5 Messages

There are various kinds of messages：
MESSAGE ：：＝startFrom《＜CounterPartyDetails〉》
startTo《《CounterPartyDetails〉》
｜readExceptionLog
｜req〈〈PayDetails〉〉
val〈〈PayDetails \rangle
ack $\langle\langle$ PayDetails \rangle
｜exceptionLogResult 《〈NAME \times PayDetails \rangle
exceptionLogClear $\langle\langle N A M E \times$ CLEAR \rangle
｜\perp
The first group of messages may be unprotected．Their forgeability is modelled by having them all present in the initial message ether（see section 6．1）．

The second group of messages are all that need to be cryptographically protected．Their unforgeability is modelled by having them added to the mes－ sage ether only by specified operations．
\perp ，＇forged＇，is a message emitted by operations that ignore the（irrelevant） nput message，or emitted by non－authentic purses．It is also the input mes－ sage to the Ignore，Increase and Abort operations．\perp is implemented as an unprotected status message，as an error message，as a＇forged＇message，or as silence．As far as the model is concerned，we choose not to distinguish these messages from each other，only from the other distinguished ones．（See also section 5．8．）

A complete payment transaction is made up of a startFrom，startTo，req， val，and ack message．

4．6 A concrete purse

A concrete purse has a current balance，an exception log for recording failed or problematic transfers，a name，a transaction sequence number to be used for the next transaction，the payment details of the current transaction，and a status indicating the purse＇s position in the current transaction．

4．6．A CONCRETE PURSE

balance： \mathbb{N}

exLog： \mathbb{P} PayDetails
name ：NAME
name：NAME
pdAuth ：PayDetails
pdAuth：PayDeta
status：STATUS
$\forall p d:$ exLog • name $\in\{p d$. from，$p d . t o\}$
status $=e p r \Rightarrow$ name $=$ pdAuth．from
$\wedge p d A u t h . v a l u e \leq$ balance
＾pdAuth．fromSeqNo＜nextSeqNo
status $=e p v \Rightarrow p d A u t h . t o S e q N o<n e x t S e q N o$
status $=e p a \Rightarrow$ pdAuth．fromSeqNo $<$ nextSeqNo

The name is included in the purse＇s state so that the purse itself can check it is he correct purse for this transaction．

The predicate on the purse state records the following constraints
P－1 $\forall p d:$ exLog • name $\in\{p d$. from，$p d . t o\}$
All log details in the exception log refer to this purse，as the from or the to party ${ }^{3}$ ．

P－2 status $=e p r \Rightarrow$
name $=$ pdAuth．from
＾pdAuth．value \leq balance
＾pdAuth．fromSeqNo＜nextSeqNo
If the purse is expecting a payment request，then：
（a）it is the from purse of the current transaction ${ }^{4}$ ．
（b）it has sufficient funds for the request ${ }^{5}$（this condition is required be－ b）it has sufficient funds for the request ${ }^{5}$（this condition is required be－
cause there is no check for sufficient funds on receipt of the request）
（c）its next sequence number is greater than the current transaction＇s sequence number ${ }^{6}$
P－3 status $=e p v \Rightarrow$ pdAuth．toSeqNo $<$ nextSeqNo
${ }^{3}$ Used in：AuxWorld does not add constraints，section 5．2．1．
${ }^{4}$ Used in：CRea B－9，section
Used in．CReq，B－9，section 29．4．
sufcientFundsProperty，section 18．7．2；Req，case 2，SufficientFunds－ Property，section 18．8．2；Req，case 3，SufficientFundsProperty，section 18．9．2．
${ }^{6}$ Used in：CReq，B－3，section 29．4．

If the purse is expecting a payment value, then its next sequence number is greater than the current transaction's sequence number
P-4 status $=$ epa \Rightarrow pdAuth.fromSeqNo $<$ nextSeqNo
If the purse is expecting a payment acknowledgement, then its next sequence number is greater than the current transaction's sequence number ${ }^{8}$

4.7 Single Purse operations

4.7.1 Overview

The concrete purse specification is structured around the various purse-level operations:

- invisible operations
- IncreasePurse
- AbortPurse
- value transfer operations
- StartFromPurse
- StartToPurse
- ReaPurse
- ValPurse
- AckPurse
- exception logging operations
- ReadExceptionLogPurse
- ClearExceptionLogPurse

4.8 Invisible operations

Several concrete operations have a common effect on the state visible in the model (they affect only implementation state not visible in the model).
${ }^{7}$ Used in: CAbort, B-6, section 28.5 .
Used in: CAbort, B-5, section 28.5

4.8.1 Increase Purse

The IncreasePurseOkay operation is used to model actual purse operations that do not have any effect on the state visible in this model, except for increasing the sequence number.

In a simple increase transaction, only the purse's sequence number may change. All other components remain unchanged.

ConPurseIncrease $\hat{=}$ ConPurse \backslash (nextSeqNo)

$$
\begin{aligned}
& \text { IncreasePurseOkay } \\
& \Delta \text { ConPurse } \\
& m ?, m!: \text { MESSAGE } \\
& \text { EConPurseIncrease } \\
& \text { nextSeqNo' } \geq \text { nextSeqNo } \\
& m!=\perp
\end{aligned}
$$

4.8.2 Abort Purs

The AbortPurseOkay operation is used to model actual purse operations that do not have any effect on the state visible in this model, but that abort and log incomplete transactions.

In a simple abort transaction, only the purse's sequence number, exception log, p dAuth and status may change. All other components remain unchanged.

ConPurseAbort $\hat{=}$ ConPurse \backslash (nextSeqNo, exLog, pdAuth, status)
AbortPurseOkay places the purse in status eaFrom (where the pdAuth component is undefined), logging any incomplete transactions if necessary ${ }^{9}$. No other component of the purse is altered, except for nextSeqNo, which may increase arbitrarily.
${ }^{9}$ Concrete SP 2.2, 'Exception logging', section 2.3.1.
-AbortPurseOkay
m ?, $m!$: MESSAGE
EConPurseAbort
LogIfNecessary
status $^{\prime}=$ eaFrom
nextSeqNo \geq nextSeqNo

We do not, at this stage, put any restrictions on the output message m!. Later, we either compose AbortPurseOkay with another operation, using the latter's $m!$, or we promote AbortPurseOkay to the world level, where we define $m!=\perp$.

4.9 Value transfer operations

The StartTo and StartFrom operations, when starting from eaFrom, change only the sequence number, the stored pdAuth, and the status of a purse.

$$
\text { ConPurseStart } \hat{=} \text { ConPurse } \backslash(\text { nextSeqNo, pdAuth, status })
$$

The Req operation change only the balance and the status of a purse.

$$
\text { ConPurseReq } \hat{=} \text { ConPurse } \backslash \text { (balance, status) }
$$

The Val operation change only the balance and the status of a purse.

$$
\text { ConPurseVal } \widehat{=} \text { ConPurse } \backslash(\text { balance, status })
$$

The Ack operation changes only the status of a purse, and allows the pdAuth to change arbitrarily.

ConPurseAck $\hat{=}$ ConPurse \backslash (status, p dAuth)

4.9.1 StartFromPurse

A startFrom message is valid only if it refers to a different purse from the receiver, and mentions a value for which the from purse has sufficient funds.
4.9. VALUE TRANSFER OPERATIONS

ValidStartFrom
 ConPurse

m ? : MESSAGE
cpd: CounterPartyDetails
m ? \in ran startFrom
cpd $=$ startFrom $\sim m$?
cpd.name = name
cpd.value \leq balance
To perform the StartFromPurseEafromOkay operation, a purse must receive a valid startFrom message, and be in eaFrom.

The StartFromPurseEafromOkay operation stores the payment details consisting of the counterparty details and its own name and sequence number (for later validation), moves to the epr state, increases its sequence number, and sends an unprotected status message.

The StartFromPurseOkay operation first aborts (logging the pending payment if necessary, and moving to eaFrom), then performs the StartFromPurse-

EafromOkay operation.
StartFromPurseOkay $\hat{=}$
AbortPurseOkay o StartFromPurseEafromOkay
(cpd)

4.9.2 StartToPurse

A startTo message is valid only if it refers to a different purse from the receiver.

ValidStartTo
ConPurse
$m ?:$ MESSAGE
cpd $:$ CounterPartyDetails
$m ? \in \operatorname{ran}$ startTo
cpd $=$ startTo \sim ?
cpd.name \neq name

ConPurse
m ? : MESSAGE
Details
-
cpd.name $=$ name
To perform the StartToPurseEafromOkay operation, a purse must receive a valid startTo message, and be in eaFrom.

4.9. VALUE TRANSFER OPERATIONS

The StartToPurseOkay operation logs the pending payment, if necessary; it stores the payment details, consisting of the counterparty details and its own name and sequence number, for later validation; it moves to the epr state; it ine and sequence number, for late the to it increases its sequence number; and it sends a rea message containing the tored payment details.

The StartToPurseOkay operation first aborts (logging the pending payment if necessary, and moving to eaFrom), then performs the StartToPurseEafromOkay operation.

StartToPurseOkay $\hat{=}$

AbortPurseOkay ${ }_{9}$ StartToPurseEafromOkay
(cpd)

4.9.3 ReqPurse

An authentic request message is a req message containing the correct stored payment details (which were stored on receipt of the startFrom message).

$$
\begin{aligned}
& \text { AuthenticReqMessage } \\
& \text { ConPurse } \\
& m ?: \text { MESSAGE } \\
& m ?=\text { req pdAuth }
\end{aligned}
$$

To perform the ReqPurseOkay operation, a purse must receive a rea message with the payment details, and be in the epr state,
$\left[\begin{array}{l}\text { ReqPurseOkay } \\ \Delta \text { ConPurse } \\ m ?, m!: \text { MESSAGE } \\ \hline \text { AuthenticReqMessage } \\ \text { status }=\text { epr } \\ \text { EConPurseReq } \\ \text { balance }=\text { balance - pdAuth.value } \\ \text { status }=\text { epa } \\ m!=\text { val pdAuth }\end{array}\right.$

The purse decrements its balance, moves to the epa state, and sends a val message containing the stored payment details.

CHAPTER 4. \mathcal{B} MODEL, PURSE

4.9.4 ValPurse

An authentic value message is a val message containing the correct stored payment details (which were stored on receipt of the startTo message).

$$
\begin{aligned}
& \text { AuthenticValMessage. } \\
& \text { ConPurse } \\
& m \text { ? : MESSAGE }
\end{aligned}
$$

$$
m ?=\operatorname{val} p d A u t h
$$

To perform the ValPurseOkay operation, a purse must receive a val message with the payment details, and be in the epv state,
$\left[\begin{array}{l}\text { ValPurseOkay } \\ \Delta \text { ConPurse } \\ m ?, m!: \text { MESSAGE } \\ \text { AuthenticValMessage } \\ \text { status }=\text { epv } \\ \text { EConPurseVal } \\ \text { balance }=\text { balance }+ \text { pdAuth.value } \\ \text { status }=\text { eaTo } \\ m!=\text { ack pdAuth } \\ \hline\end{array}\right.$

The purse increments its balance, moves to the eaTo state, and sends an ack message containing the stored payment details.

4.9.5 AckPurse

An authentic acknowledge message is an ack message containing the correct stored payment details (which were stored on receipt of the startFrom message).

$$
\begin{aligned}
& \text { AuthenticAckMessage } \\
& \text { ConPurse } \\
& m ?: \text { MESSAGE } \\
& m ?=\text { ack pdAuth }
\end{aligned}
$$

To perform the AckPurseOkay operation, a purse must receive an ack message with the payment details, and be in the epa state.
4.10. EXCEPTION LOGGING OPERATIONS
Δ ConPurse
m ?, m! : MESSAGE
AuthenticAckMessage
status = epa
EConPurseAck
status $^{\prime}=$ eaFrom
$m!=\perp$

The purse moves to the eaFrom state, and sends an unprotected status message.

4.10 Exception logging operations

4.10.1 ReadExceptionLogPurse

To perform the ReadExceptionLogPurseEafromOkay operation, a purse must receive a readExceptionLog message and be in the eaFrom state.

$$
\begin{aligned}
& \text { ReadExceptionLogPurseEafromOkay } \\
& \text { EConPurse } \\
& m ?, m!: \text { MESSAGE } \\
& m ?=\text { readExceptionLog } \\
& \text { status }=\text { eaFrom } \\
& m!\in\{\perp\} \cup\{\text { ld }: \text { exLog' } \bullet \text { exceptionLogResult (name, ld })\}
\end{aligned}
$$

The operation sends an unprotected status message (modelling 'record not available') or a protected exceptionLogResult message containing one of the exception logs tagged with its name ${ }^{10}$.

The ReadExceptionLogPurseOkay operation first aborts (logging any pending payment, and moving to eaFrom), and then performs the ReadExceptionLogPurseEafromOkay operation.

ReadExceptionLogPurseOkay $\hat{=}$
AbortPurseOkay ${ }_{9}^{\circ}$ ReadExceptionLogPurseEafromOkay
${ }^{10}$ This gives a non-deterministic response, because we do not model exception log record numbers.

4.10.2 ClearExceptionLogPurse

During a clear log transaction the purse's exception log may change, but no other component can change.

ConPurseClear $\hat{=}$ ConPurse \backslash (exLog)
To perform the ClearExceptionLogPurseOkay operation, a purse must have a non-empty exception log and receive a valid exceptionLogClear message. If the purse receives a valid exceptionLogClear message, has no transaction in progress and has an empty exception log, then the purse ignores the message.

First we define how the purse clears its log in eaFrom:
ClearExceptionLogPurseEafromOkay
Δ ConPurse
$m ?, m!:$ MESSAGE
exLog $\neq \varnothing$
$m ?=$ exceptionLogClear (name, image exLog)
status $=$ eaFrom
EConPurseClear
exLog' $=\varnothing$
$m!=\perp$

The purse clears its exception log, and sends an unprotected status message.
The image ensures that log messages have at least been read and moved to the archive (see AuthoriseExLogClear, section 5.7.1). Procedural mechanisms must ensure that archive information is not lost ${ }^{11}$

There is a four stage protocol for reading and clearing exception logs: reading a log to the ether, copying a log from the ether to the archive, authorising a purse exception log clear based on what's in the archive, and clearing a purse's exception log having received authorisation. We note that as a result of this protocol, if ClearExceptionLogPurseOkay aborts and logs an uncompleted ransaction, then the purse's exception log will not be cleared. The reason for ransaction, then the purse's exception log will not be cleared. The reason for action. If this would create a new exception record, the clear transaction could action. If this would create a new exception record, the clear transaction could not occur, because the (imaged) excep
the actual exception log in the purse.
${ }^{11}$ Concrete SP 2.2, 'Exception logging', section 2.3.1.

The full clear exception log operation for a purse is thus defined to abort an uncompleted transaction first, and then clear the log if appropriate.

ClearExceptionLogPurseOkay
$\hat{=}$ AbortPurseOkay ${ }_{9}$ ClearExceptionLogPurseEafromOkay

Between model, promoted world

5.1 The world

The individual purse operations are promoted to the 'world of purses'. This world contains the purses, a public ether containing all previous messages sent, and a private archive, which is a secure store of exception logs, each exception log tagged with the purse that recorded it. Information cannot be deleted from the archive, so that the store of exception logs is persistent. This is to be implemented by mechanisms outside the target of evaluation.

Logbook: $\mathbb{P}($ NAME \leftrightarrow PayDetails $)$
Logbook $=\mathbb{P}(\{$ PayDetails \bullet from $\mapsto \theta$ PayDetails $\}$ \cup \{PayDetails • to $\mapsto \theta$ PayDetails $\}$)

A Logbook is a set of log details, each tagged with a name, where that name is either that of the to purse or that of the from purse in the log details.

In addition, the archive's tagged log detail
-ConWorld
conAuthPurse : NAME ConPurse ether : \mathbb{P} MESSAGE
archive: Logbook
$\forall n:$ dom conAuthPurse $\bullet($ conAuthPursen $)$. name $=n$
\forall nld : archive \bullet first nld \in dom conAuthPurse
The archive is a Logbook. In addition, the archive's tagged log details are tagged only with authentic purse names.

40
CHAPTER 5. B MODEL, WORLD

	from	epr	epa	$\left.\begin{array}{c}\text { diff trans } \\ \text { incl eaFrom }\end{array}\right)$	
to				no log	log
$e p v$		0	$?$	0	$?$
eaTo		\times	0	0	0
$\binom{$ diff trans }{ incl eaFrom }	nolog	0	0	0	0
	log	0	1	0	1

Figure 5.1: The amount lost on the current transaction for each possible state of the purses. ' 0 ' means the value has definitely not been lost; ' 1 ' means the value has definitely been lost; '?’ means the value may be lost; ' x ' means that this state is impossible.

5.2 Auxiliary definitions

We define some auxiliary components, for ease of proof later. These components are described in detail after the schema. The set definitelyLost captures hose transactions that have proceeded far enough that we know they cannot succeed. The set maybeLost captures those transactions that have proceeded far enough that they will lose money if something goes wrong, but that could equally well continue to successful completion. In the other transactions, eiher the transaction has not proceeded far enough to lose anything, or has proceeded so far that the value has definitely been received.

The way in which the concrete state of the purses relates to the amount of value 'lost' in the transaction can be represented by the table shown in figure 5.1, where the amount lost on the current transaction is shown for each possible state of the purses, including purses that have moved on to a different transaction, with or without logging this one.
5.2. AUXILIARY DEFINITIONS

ConWorld
allLogs : NAME \leftrightarrow PayDetails
authenticFrom, authenticTo : \mathbb{P} PayDetails
fromLogged, toLogged : \mathbb{P} PayDetails
toInEpv, toInEapayee, fromInEpr, fromInEpa : \mathbb{F} PayDetails definitelyLost : \mathbb{P} PayDetails
maybeLost: \mathbb{F} PayDetails
allLogs = archive
$\cup\{n$: dom conAuthPurse; pd : PayDetails \mid
$p d \in($ conAuthPursen $)$.exLog $\}$

uthenticFrom

$=\{p d:$ PayDetails $\mid p d . f r o m \in$ dom conAuthPurse $\}$
authenticTo
$=\{p d:$ PayDetails $\mid p d . t o \in$ dom conAuthPurse $\}$
fromLogged $=\{p d:$ authenticFrom $\mid p d$.from $\mapsto p d \in$ allLogs $\}$
toLogged $=\{p d:$ authenticTo \mid pd.to $\mapsto p d \in$ allLogs $\}$
oInEpv $=\{p d:$ authenticTo
(conAuthPurse pd.to).status $=e p v$
\wedge (conAuthPurse pd.to).pdAuth $=p d\}$
toInEapayee $=\{p d$: authenticTo \mid
(conAuthPurse pd.to).status = eaTo
$\wedge($ conAuthPurse pd.to).pdAuth $=p d$
fromInEpr $=\{p d:$ authenticFrom
(conAuthPurse pd.from).status =epr \wedge (conAuthPurse pd.from).pdAuth $=p d$
fromInEpa $=\{p d:$ authenticFrom \mid
(conAuthPurse pd.from).status $=$ epa
\wedge (conAuthPurse pd.from).pdAuth $=p d\}$
definitelyLost $=$ toLogged $\cap($ fromLogged \cup fromInEpa $)$
maybeLost $=($ fromInEpa \cup fromLogged $) \cap$ toInEp v

These auxiliary definitions put no further constraints on the state, but simply
define the derived components. Hence they do not need to be implemented. They are defined merely for ease of use later. We prove that this is so in section 5.2.1 below.

The auxiliary components represent the following:

- allLogs: All the exception logs; all those logs in the archive, and those still uncleared in purses.
- authenticFrom, authenticTo: All possible payment details referring to authentic from purses, and authentic to purses.
- fromLogged: All those payment details logged by a from purse.
- toLogged: All those details logged by a to purse.
- toInEpv: All those details for which the to purse is authentic, and is currently in $e p v$ with those details stored. This is a finite set, because conAuthPurse is a finite function.
- toInEapayee: All those details for which the to purse is authentic, and is currently in eaTo with those details stored.
- fromInEpr: All those details for which the from purse is authentic, and is currently in epr with those details stored.
- frominEpa: All those details for which the from purse is authentic, and is currently in epa with those details stored.
- definitelyLost: All those details for which we know now that the value has been lost. The val message was definitely sent and definitely not received, so ultimately both purses will log the transaction. The authentic to purse has logged, which it would not have done had it sent the ack, and the authentic from purse has sent the val and not received the ack, and so never will. See figure 5.2
- maybeLost: All those details that refer to value that may yet be lost or may yet be transferred successfully from this purse, but which have already definitely left the purse. This occurs when the authentic from purse has sent the val and not received the ack and the authentic to purse is in epv, waiting for the val that it may or may not get. See figure 5.2 It is a finite set, because toInEpv is a finite set.
We have the identity

AuxWorld

\vdash
definitelyLost \cup maybeLost $=$
$($ fromInEpa \cup fromLogged $) \cap($ toInEpv \cup toLogged $)$

Figure 5.2: The sets definitelyLost (vertical hatching) and maybeLost (horizontal hatching) as subsets of the other auxiliary definitions.

The later proofs of operations that change purse status (the two start, three protocol and log enquiry operations) are based on how the relevant pd moves in and out of the sets maybeLost and definitelyLost. (These sets are disjoint in the BetweenWorld, because of the BetweenWorld constraints on log sequence numbers; see lemma 'lost', section C.13.)

5.2.1 AuxWorld does not add constraints

AuxWorld introduces some new variables, but does not add any further constraints on ConWorld. We define the schema that represents just the new variables introduced by AuxWorld.

$$
\text { NewVariables } \hat{=} \exists \text { ConWorld } \bullet \text { AuxWorld }
$$

We prove that no further constraints are added by proving the following statement.

ConWorld $\vdash \exists_{1}$ NewVariables •AuxWorld
Proof:
First we prove existence. We normalise the schemas, drawing out any predicates hidden in the declarations for the new variables. Only one predicate appears, limiting allLogs to be a valid Logbook.

ConWorld $\vdash \exists_{1}$ NewVariables •AuxWorld \wedge allLogs \in Logbook

Rewrite all the equations for the new variables so that each new variable in AuxWorld is defined only in terms of variables of ConWorld. We then use the ne point rule to remove the existential quantification. This leaves just the normalised predicate in addition to ConWorld.

$$
\begin{aligned}
& \text { ConWorld } \\
& \stackrel{\vdash}{ } \\
& \text { ConWorld } \\
& \wedge \text { archive } \cup\{n: \text { dom conAuthPurse; pd : PayDetails } \mid \\
& \quad p d \in(\text { conAuthPurse }) . \text { exLog }\} \\
& \quad \in \text { Logbook }
\end{aligned}
$$

From the definition of archive, archive is in Logbook. From constraint P-1 in ConPurse, the set of named exception logs is also in Logbook. This discharges the existence proof.

To prove uniqueness, we need only note that the equations defining the new variables are all equality to an expression, and by the transitivity of equality, all possible values are equal.

■ 5.2.1

5.3 Constraints on the ether

We put some further constraints on the state to forbid 'future messages' and 'future logs', and to record the progress of the protocol.

$$
\begin{aligned}
& \text { BetweenWorld } \\
& \text { AuxWorld } \\
& \forall p d: \text { PayDetails } \mid \text { rea } p d \in \text { ether } \bullet p d \in \text { authenticTo }
\end{aligned}
$$

$\forall p d:$ PayDetails \mid reapd \in ether \bullet pd.toSeqNo < (conAuthPurse pd.to).nextSeqNo
$\forall p d:$ PayDetails \mid val $p d \in$ ether
pd.toSeqNo < (conAuthPurse pd.to).nextSeqNo \wedge pd.fromSeqNo < (conAuthPurse pd.from).nextSeqNo
$\forall p d$: PayDetails \mid ack $p d \in$ ether
pd.toSeqNo < (conAuthPurse pd.to).nextSeqNo $\wedge p d$.fromSeqNo < (conAuthPurse pd.from).nextSeqNo
$\forall p d$: fromLogged \bullet
$p d$.fromSeqNo $<$ (conAuthPurse $p d$.from).nextSeqNo
$\forall p d$: toLogged \bullet pd.toSeqNo < (conAuthPurse pd.to).nextSeqNo
$\forall p d$: fromLogged |
(conAuthPurse pd.from).status $\in\{$ epr, epa $\}$ • pd.fromSeqNo
< (conAuthPurse pd.from).pdAuth.fromSeqNo
$\forall p d:$ toLogged | (conAuthPurse pd.to).status $\in\{$ epv, eaTo $\}$ • pd.toSeqNo < (conAuthPurse pd.to).pdAuth.toSeqNo
$\forall p d$: fromInEpr • disjoint 〈\{val pd, ack $p d\}$,ether \rangle
\forall pd : PayDetails •
(reapd \in ether \wedge ack $p d \notin$ ether)

$$
\begin{aligned}
& q p d \in \text { ether } \wedge \text { ack pd } \ddagger \text { ether } \\
& \Leftrightarrow(p d \in \text { toInEpv } \cup \text { toLogged }
\end{aligned}
$$

$\forall p d:$ PayDetails \mid val $p d \in$ ether $\wedge p d \in$ toInEpv $p d \in$ fromInEpa \cup fromLogged
$\forall p d:$ fromInEpa \cup fromLogged \bullet rea $p d \in$ ether
toLogged $\in \mathbb{F}$ PayDetails
$\forall p d$: exceptionLogResult \sim ether $) \bullet p d \in$ allLogs
$\forall p d s: \mathbb{P}_{1}$ PayDetails; name : NAME \mid
exceptionLogClear (name, image $p d s$) \in ether •
$\{$ name $\} \times p d s \subseteq$ archive
$\forall p d:$ fromLogged \cup toLogged \bullet rea $p d \in$ ether

These constraints express the following conditions (numbered for future reference in the refinement proofs):

B-1 All req messages in the ether refer to authentic to purses ${ }^{1}$.
B-2 There are no 'future' req messages ${ }^{2}$: all req messages in the ether hold a to purse sequence number less than that purse's next sequence num${ }^{1}$ Used in Req, case 4, section 18.10.
${ }^{2}$ Used in: StartTo, location of pdThis, section 17.3; CStartTo, B-16, section 29.3; CReq, B-3, section 29.4.
ber. (It puts no constraint on the from purse's sequence number, because the from purse mentioned in a rea message need not have started the transaction yet, and need not even be authentic.)
B-3 There are no 'future' val messages ${ }^{3}$: all val messages in the ether hold a to purse sequence number less than that purse's next sequence number and a from purse sequence number less than that purse's next sequence number.
B-4 There are no 'future' ack messages ${ }^{4}$: all ack messages in the ether hold a to purse sequence number less than that purse's next sequence number and a from purse sequence number less than that purse's next sequence number.

B-5 There are no 'future' from logs based on the nextSeqNo of the from purse ${ }^{5}$.
B-6 There are no 'future' to logs based on the nextSeqNo of the to purse ${ }^{6}$.
B-7 There are no 'future' from logs based on the pdAuth.fromSeqNo of a purse in epr or epa ${ }^{7}$: all from logs refer only to past from transactions. So all from logs referring to a purse that is currently in a transaction as a from purse (that is, in epr or epa), hold a from sequence number strictly less than that purse's stored current transaction sequence number.
B-8 There are no 'future' to logs based on the pdAuth.toSeqNo of a purse in epv or eaTo ${ }^{8}$: all to logs refer only to past to transactions. So all to logs referring to a purse that is currently in a transaction as a to purse (in epv), hold a to sequence number strictly less than that purse's stored current transaction sequence number.
B-9 If the from purse is in epr then there is no val message ${ }^{9}$ or ack message ${ }^{10}$ in the ether.
B-10 There is a rea message but no ack message in the ether precisely when the to purse is in epv or has logged the transaction ${ }^{11}$.
used in: CStartFrom, B-9, section 29.2; CStartTo, B-11, section 29.3. CVal, B-4, section 29.5. Used in: CStartFrom, B-9, section 29.2; CStartTo, B-10, section 29.3.
${ }^{5}$ Used in: CStartFrom, B-7, section 29.2
Used in: CStartTo, B-8, 29.3. 29.3
${ }^{7}$ Used in: StartFrom, location of pdThis, section 16.3; CReq, B-7, section 29.4; lemma 'notLoggedAndIn', section C.12.
, section 29.5; lemma 'notLoggedAndin', section C. 12
${ }^{10}$ Used in Rea, case 4 , section 18.5 .
${ }^{11}$ Used in: StartTo, location of pdThis, section 17.3; Req, case 4, section 18.10; Ack, behaviour of definitelyLost, section 20.6.5; Ack, behaviour of maybeLost, section 20.6.6; CAbort, B-10, section 28.5; CAbort, B-16, section 28.5; CAck, B-11, section 29.6

B-11 If the to purse is in epv and there is a val message in the ether, then either he from purse is in epa or has logged the transaction ${ }^{12}$.
B-12 If the from purse is in epa or has logged the transaction, then there is a req in the ether ${ }^{13}$.
B-13 The set toLogged is finite. This is sufficient to ensure that definitelyLost is finite ${ }^{14}$.
B-14 Log result messages are logged. The log details of any exceptionLogResult message in the ether is either archived or in a purse transaction exception $\log { }^{15}$

B-15 Exception log clear messages refer only to archived logs ${ }^{16}$
B-16 For each PayDetails in the logs there is a corresponding PayDetails in a rea message in the ether ${ }^{17}$.
That the actual implementation does indeed satisfy this predicate needs to be proved, by a further, small, refinement, that ConWorld and the operations refine BetweenWorld and the operations (see Part III).

5.4 Framing schema

A framing schema is used to promote the purse operations.
${ }^{12}$ Used in: Val, behaviour of maybeLost, section 19.6.7.
${ }^{13}$ Used in Starto, location of pdThis, section 17.3; CAbort, B-12, section 28.5; CAbort, B-16, section 28.5 .
14 Used in:
${ }^{15}$ Used in: Archive, section 24.2; CArchive, section 29.10.
${ }^{16}$ Used in: ExceptionLogClear, invoking lemma 'lost unchanged’ section 22.2; CExceptionLogClear, section 29.8.
17Used in: CStart
${ }^{17}$ Used in: CStartTo, alternative to lemma 'logs unchanged', section 29.3

Δ BetweenWorld
 Δ ConPurse
 m ?, m ! : MESSAGE
 name? : NAME

$m ? \in$ ether
name? \in dom conAuthPurse
θ ConPurse $=$ conAuthPurse name?
conAuthPurse ${ }^{\prime}=$ conAuthPurse $\oplus\left\{\right.$ name? $\mapsto \theta$ ConPurse $\left.{ }^{\prime}\right\}$
archive $=$ archive
ether ${ }^{\prime}=$ ether $\cup\{m!\}$
The predicate ensures the following properties common to all promoted operations:

- m ? \in ether
the input message is in the ether, which ensures it was either previously sent by another purse (req, val, ack, etc.), in the ether since initialisation (startFrom, startTo, etc.), or input by a special global operation (that is, AuthoriseExLogClear)
- name? \in dom conAuthPurse
the purse is in the world of authentic purses.
- θ ConPurse $=$ conAuthPurse name?

The before state of ConPurse we are operating on is the state of the purse identified by name?

- conAuthPursé $=$ conAuthPurse \oplus \{name? $\mapsto \theta$ ConPurse $\}$

The after state of the purse system has name? updated to the after state of ConPurse (which particular state depends on the particular operation details) and all other purses are unchanged ${ }^{18}$

- archive' $^{\prime}=$ archive

The archive remains unchanged

- ether ${ }^{\prime}=$ ether $\cup\{m!\}$
the output message is recorded by the ether
${ }^{18}$ Used in Req proof, section 18.7.2.
5.5. IGNORE, INCREASE AND ABORT

5.5 Ignore, Increase and Abort

There are various general behaviours that operations may engage in: ignore the input and do nothing; ignore the input but increase the sequence number; ignore the input but abort the current payment transaction.

Ignoring is modelled as an unchanging world:
Ignore $\hat{=}[\Xi$ BetweenWorld; name? : NAME; $m ?, m!:$ MESSAGE $\mid m!=\perp]$
ncrease has been modelled at the purse level, and is now promoted and totalised:

Increase $\hat{=}$ Ignore
$\vee(\exists \Delta$ ConPurse • Φ BOp \wedge IncreasePurseOkay $)$
Abort has been modelled at the purse level, and is now promoted and totalised:

Abort $\hat{=}$ Ignore
$\vee(\exists \Delta$ ConPurse • AbortPurseOkay $\wedge[\Phi В О p \mid m!=\perp])$

5.6 Promoted operations

We promote the individual purse operations, and make them total by disjoining hem with the operation defined above that does nothing.

5.6.1 Value transfer operations

The promoted start operations are:
StartFrom = Ignore
\checkmark Abort
$\checkmark(\exists \Delta$ ConPurse • Φ BOp \wedge StartFromPurseOkay $)$
StartTo $\hat{=}$ Ignore
\checkmark Abort
$\vee(\exists \Delta$ ConPurse • $\Phi B O p \wedge$ StartToPurseOkay $)$

For use in the proofs, we also promote the Eafrom part of the operations on their own:

StartFromEafromOkay $\hat{=} \exists \Delta$ ConPurse \bullet
$\Phi B O p \wedge$ StartFromPurseEafromOkay
StartToEafromOkay $\hat{=} \exists \Delta$ ConPurse •
$\Phi B O p \wedge$ StartToPurseEafromOkay
The promoted protocol operations are:
Req $\hat{=}$ Ignore $\vee(\exists \Delta$ ConPurse $\bullet \Phi B O p \wedge$ ReqPurseOkay $)$
Val $\hat{=}$ Ignore $\vee(\exists \Delta$ ConPurse $\bullet \Phi В О p \wedge$ ValPurseOkay $)$
Ack $\hat{=}$ Ignore $\vee(\exists \Delta$ ConPurse •ФBOp \wedge AckPurseOkay $)$

5.6.2 Exception log operations

The promoted \log enquiry operation is:
ReadExceptionLog $\hat{=}$ Ignore
$\vee(\exists \Delta$ ConPurse •ФВОp \wedge ReadExceptionLogPurseOkay)
The promoted exception log clear operation is:

For use in the proofs, we also promote the Eafrom part of the operations on their own:

ReadExceptionLogEafromOkay $\hat{=} \exists \Delta$ ConPurse •
 $\Phi B O p \wedge$ ReadExceptionLogPurseEafromOkay
 ClearExceptionLogEafromOkay $\hat{=} \exists \Delta$ ConPurse

$\Phi B O p \wedge$ ClearExceptionLogPurseEafromOkay

5.7 Operations at the world level only

There are some operations on the world that do not have equivalents on individual purses. These are not implemented by the target of evaluation, but need to be implemented by some manual means or external system.

To retain the simplicity of our proof rules, these operations take the same input and outputs as all the purse operations.

5.7.1 Exception Log clear authorisation

The message to clear an exception \log can be created only for log details which are already recorded in the archive. The clear code of the message is based on the selected logs in the archive. The exception log clear message couples this clear code with the name of a purse. This supports constraint B-15 which requires that this operation not put a clear message into the ether if the relevant logs have not been archived.

$$
\begin{aligned}
& \text { AuthoriseExLogClearOkay } \\
& \Delta \text { BetweenWorld } \\
& m \text { ?, } m \text { ! : MESSAGE } \\
& \text { name? : NAME } \\
& \text { conAuthPurse }{ }^{\prime}=\text { conAuthPurse } \\
& \exists \text { ds : } \mathbb{P}_{1} \text { PayDetails } \bullet \\
& \{\text { name } ?\} \times p d s \subseteq \text { archive } \\
& \wedge m!=\text { exceptionLogClear (name?, image pds) } \\
& \text { ether }{ }^{\prime}=\text { ether } \cup\{m!\} \\
& \text { archive }=\text { archive }{ }^{\prime}
\end{aligned}
$$

AuthoriseExLogClear $\hat{=}$ Ignore \vee AuthoriseExLogClearOkay

Exception logs must be kept for all time to ensure that all value remains accounted for. The operation to clear purses of their exception logs must be supported by a mechanism to store the cleared logs. This is what the archive supplies.

The purse supports the ReadExceptionLog operation, which puts an exception \log record into the ether as a message. As the system implementers have no control over the ether, we have modelled it as lossy at the concrete level, allowing for messages to be lost from the ether at any time. The archive is a secure store for information, and to support the security of the purse there must be a manual mechanism to move log messages from the ether into the must be a manual mechanism to move log messages from the ether into the archive for safe keeping. This is modelled by the Archive operation, and is implemented by some mechanism external to the target of evaluation.

```
Archive
\DeltaBetweenWorld
m?,m!:MESSAGE
name? : NAME
conAuthPurse' = conAuthPurse
ether' = ether
archive}
    archive' \subseteq
        archive \cup{log: NAME }\times\mathrm{ PayDetails |
        exceptionLogResult log e ether}
```

$m!=\perp$

This operation non-deterministically copies some exception log information from messages in the ether into the archive. It ignores its inputs. As one possible behaviour is to move no messages into the archive, it can behave exactly like Ignore. The operation is therefore total, and we do not need to disjoin it with Ignore.

5.8 Forging messages

If arbitrary messages can be sent, then obviously the security can be compromised. We can build into the definition of the ether that it is possible to forge only some kinds of messages. The only messages it is possible to forge are

- replays of earlier valid messages (added to the ether during an earlier operation)
- unprotected messages (modelled by being in the initial ether, and hence being replayable at any time)
- messages it is possible to detect are forged (modelled by the \perp message, present in the initial ether)

This allows us to capture the encryption properties of messages: a message encapsulating arbitrary details cannot be forged by a third party.
5.9. THE COMPLETE PROTOCOL

5.9 The complete protocol

The complete transfer at the between and concrete levels can be described, informally, by the following sequence of operations:

$$
\text { StartFrom ̊ StartTo }{ }_{9} \text { Req }{ }_{9}^{\circ} \text { Val }{ }_{9}^{\circ} \text { Ack }
$$

ther operations may be interleaved in an actual transfer
The refinement proof in the following sections demonstrates that none of the individual concrete operations violates the security policy.

Between model, initialisation and finalisation

6.1 Initialisation

As with the abstract case, we set up a particular initial between state. We do not want to model adding new authentic purses to the system, since some of the operations involved are outside the security boundary. So we allow the world to be 'switched off' and a new world 'switched on', where the new world consists of the old world as it was, plus the new purses. So our initial state must allow purses to be part-way through transactions.

We set constraints on the initial state of the between system to say that there are all the request messages in the ether, any current transactions must be valid, and there are no future messages

BetweenInitState
BetweenWorld'
$\{$ readExceptionLog, $\perp\}$
\cup
$\bigcup\{c p d:$ CounterPartyDetails $\bullet\{$ startFrom $c p d$, startTo $c p d\}\}$
\subseteq ether $^{\prime}$

The initial ether contains (or may be considered to contain) the following messages:

- the log enquiry and \perp messages (hence a purse can always have a forged message sent to it)
- all possible start messages, even those referring to a non-authentic purse
- no future messages (ensured by the constraints in BetweenWorld')

So any purse, at any time, can be sent a read log message, or an instruction to start a transfer; this saves us having to model the IFD sending these messages. Since the IFD does not authenticate start messages, we cannot insist on authentic purses at this point.

The inability to forge messages means that a req message always mentions an authentic to purse, and a val message an authentic from purse. So a val message sent on receipt of a req will mention authentic to and from purses.

We must also initialise our concrete inputs, since they are different from the global inputs. This defines how concrete inputs are interpreted.

BetwInitIn

q ? : AIN
m ? : MESSAGE
name? : NAME
$m ? \in \operatorname{ran} r e q \Rightarrow$
$g ?=\operatorname{transfer}(\mu$ TransferDetails
from $=($ req $\sim m$?).from
$\wedge t o=(r e q \sim m ?) . t o$
\wedge value $=($ req \sim m? $)$. value $)$
$m ? \notin \operatorname{ran} r e q \Rightarrow g ?=a$ NullIn

6.2 Finalisation

Finalisation maps a BetweenWorld to a GlobalWorld, to specify how the various concrete state components are observed abstractly.

We finalise by choosing to assume that all the transactions in maybeLost actually are lost. (In some sense, finalisation treats incomplete transactions as if they would 'abort'.)
6.2. FINALISATION

BetweenWorld

GlobalWorld

dom gAuthPurse $=$ dom conAuthPurs

\forall name : dom conAuthPurse •
(gAuthPurse name).balance $=($ conAuthPurse name $) \cdot$ balance
\wedge (gAuthPurse name).lost =
sumValue ((definitelyLost \cup maybeLost)
\bigcirc \{ Id : PayDetails | Id.from = name \})

There is a simple relationship between concrete and global balance components. The global lost component is related to the concrete maybeLost and definitelyLost logs (the function sumValue is defined in section D.3).

We must also finalise our concrete outputs, since they are different from the global outputs. This defines how concrete outputs are interpreted.

$$
\begin{aligned}
& \begin{array}{l}
\text { g! : AOUT } \\
m!~: ~ M E S S A G E ~
\end{array} \\
& \hline g!=\text { aNullOut } \\
& \hline
\end{aligned}
$$

All concrete outputs are interpreted as the single abstract output, aNullOut.

Concrete model: implementation

7.1 Concrete World State

The C world state has the same components as the \mathcal{B} state; we decorate with a subscript zero to distinguish like-named \mathcal{B} and C components.

Since Δ ConWorld $_{0}$ has components dashed-then-subscripted, whereas we require subscripted-then-dashed, we defined our own Δ and Ξ schemas.
Δ ConWorld 0^{\wedge} ConWorld $_{0} \wedge$ ConWorld $_{0}^{\prime}$
EConWorld $0 \hat{=}\left[\Delta\right.$ ConWorld $\mid \theta$ ConWorld $_{0}=\theta$ ConWorld $\left._{0}\right]$

7.2 Framing Schema

The concrete world C has the same operations as the \mathcal{B} model.
The world we promote to is ConWorld, not BetweenWorld. (Remember ConWorld has the same structure as BetweenWorld, but none of the constraints about future messages.) We are also allowed to 'lose' messages from the public ether, which models the fact that the ether may be implemented as a lossy medium

So the C framing schema is used to promote the purse operations

```
ФCOp
\DeltaConWorld0
\DeltaConPurse
m?, m! :MESSAGE
m?, m! : MESSA
name?: NAM
m? \inether }\mp@subsup{0}{0}{
name? \in dom conAuthPurse }\mp@subsup{0}{0}{
0ConPurse = conAuthPurse n name?
conAuthPurse}\mp@subsup{0}{0}{\prime}=\mp@subsup{conAuthPurse }{0}{}\oplus{\mp@subsup{\mathrm{ name? }}{}{~}\mapsto0\mathrm{ ConPurse' }
\mp@subsup{archive}{0}{\prime}=\mp@subsup{\mathrm{ archive }}{0}{}
ether=
```


7.3 Ignore, Increase and Abort

The \mathcal{B} operations Ignore, Increase and Abort have C equivalents, working on the C world instead of the \mathcal{B} world. These operations are not named operations of the purse, i.e. they are not visible at the purse interface. We define them so that they can be used as components in C purse operations.

CIgnore $\hat{=}[\Xi$ ConWorldo; name? : NAME; $m ?, m!:$ MESSAGE $\mid m!=\perp]$
CIncrease $\hat{=}$ CIgnore
$\vee(\exists \Delta$ ConPurse $\bullet \Phi C O p \wedge$ IncreasePurseOkay $)$
CAbort $\hat{=}$ CIgnore
$\vee(\exists \Delta$ ConPurse \bullet AbortPurseOkay $\wedge[\Phi C O p \mid m!=\perp])$
All subsequent operations defined in this chapter correspond to the actual operations of the purse.

7.4 Promoted operations

As with the \mathcal{B} promoted operations, the \mathcal{C} promoted operations are made total by disjoining with CIgnore.
7.5. OPERATIONS AT THE WORLD LEVEL ONLY

7.4.1 Value transfer operations

The promoted start operations are:
CStartFrom $\hat{=}$ CIgnore
\checkmark CAbort
$\vee(\exists \Delta$ ConPurse $\bullet \Phi C O p \wedge$ StartFromPurseOkay $)$
CStartTo $\hat{=}$ CIgnore
\checkmark CAbort
$\vee(\exists \Delta$ ConPurse • $\Phi C O p \wedge$ StartToPurseOkay $)$
The promoted protocol operations are:
CReq $\hat{=}$ CIgnore $\vee(\exists \Delta$ ConPurse $\bullet \Phi C O p \wedge$ ReqPurseOkay $)$
CVal $\hat{=}$ CIgnore $\vee(\exists \Delta$ ConPurse $\bullet \Phi C O p \wedge$ ValPurseOkay $)$
CAck $\hat{=}$ CIgnore $\vee(\exists \Delta$ ConPurse $\bullet \Phi C O p \wedge$ AckPurseOkay $)$

7.4.2 Exception log operations

The promoted \log enquiry operation is:
CReadExceptionLog $\hat{=}$ CIgnore
$\vee(\exists \Delta$ ConPurse $\bullet \Phi C O p \wedge$ ReadExceptionLogPurseOkay $)$
The promoted clear operation is:
CClearExceptionLog $\hat{=}$ CIgnore
\checkmark CAbort
$\vee(\exists \Delta$ ConPurse • $\Phi C O p \wedge$ ClearExceptionLogPurseOkay $)$

7.5 Operations at the world level only

As with the \mathcal{B} model, there are some operations that act on the world, rather than on individual purses. These operations are specified exactly as they are in the \mathcal{B} model, but acting on ConWorld instead of BetweenWorld

7.5.1 Exception Log clear authorisation

The message to clear an exception \log is generated external to the model.
CAuthoriseExLogClear $=$ Clgnore
$\vee\left(\exists \Xi\right.$ ConPurse $\bullet\left[\Phi C O p \mid\left(\exists l d s: \mathbb{P}_{1}\right.\right.$ PayDetails \mid
$\{$ name $?\} \times l d s \subseteq$ archive $_{0}$ •
$m!=$ exceptionLogClear (name?, image lds))])
The operation to move exception log information from the ether to the archive is

```
_CArchive
    \(\Delta\) ConWorld 0
    \(m\) ?, \(m\) ! : MESSAGE
    name? : NAME
    conAuthPurse \(_{0}^{\prime}=\) conAuthPurse \(_{0}\)
    ether \({ }_{0}^{\prime} \subseteq\) ether \(_{0}\)
    archive \(_{0} \subseteq\)
        archivé \(\subseteq\)
            archive \(_{0} \cup\{\) log : NAME \(\times\) PayDetails \(\mid\)
                exceptionLogResult \(\log \in\) ether \({ }_{0}\)
\(m!=\perp\)
```


7.6 Initial state

The initial state of the C world has an ether that is a subset of one that satisfies the 'no future messages' constraints placed on the \mathcal{B} world (the subset is needed because the C ether is lossy)

```
ConInitState
ConWorld
\(\exists\) BetweenWorld \(\mid\) BetweenInitState •
    conAuthPurse \({ }_{0}^{\prime}=\) conAuthPurse \({ }^{\prime}\)
    \(\wedge\) archive \(_{0}^{\prime}=\) archive \(^{\prime}\)
    \(\wedge\{\perp\} \subseteq\) ether \(_{0}^{\prime} \subseteq\) ether \(^{\prime}\)
```


Model consistency proofs

8.1 Introduction

In order to increase confidence that the specifications written are not meaningless, it is wise to prove some properties of them

The least that should be done is to demonstrate that the constraints on the state and those defining each operation do not reduce to false. So for each model, the consistency proof obligations are:

- Show it is possible for at least one state to exist (which demonstrates that the state invariant is not contradictory). If we choose this state to be the initial state, we also demonstrate that initialisation is not vacuous, too.
$\vdash \exists$ State $^{\prime} \bullet$ StateInit
Show that each operation does not have an empty precondition (which demonstrates that no operation definition is contradictory).
$\vdash \exists$ State; Input • pre $O p$
In fact, here we show that all our operations are total, which is the much stronger condition
$\checkmark \forall$ State; Input • pre $O p$
We present these proofs for each of our three models below.

8.2 Abstract model consistency proofs

8.2.1 Existence of initial abstract state

$\vdash \exists$ AbWorld' • AbInitState

Proof:

It is sufficient to find an explicit abstract world that satisfies the constraints of AbInitState. Consider the abstract world with the components:

$$
\text { abAuthPurse }=\varnothing
$$

This satisfies the constraints of $A b W$ orld, so is clearly a suitable initial state. - 8.2.1
8.2.2 Totality of abstract operations

```
AbIgnore is total.
Proof:
    pre AbIgnore
        = pre [\DeltaAbWorld; a?:AIN; a! : AOUT ]
        abAuthPurse' = abAuthPurse
            \wedge a! = aNullOut ]
                [defn. AbIgnore]
    = [AbWorld; a? : AIN |
        \exists AbWorld'; a!:AOUT
        abAuthPurse' = abAuthPurse
                \wedge a! = aNullOut ]
        [defn. pre ]
    = [ AbWorld; a?: AIN ]
        \exists abAuthPurse' : NAME # AbPurse; a!: AOUT
                abAuthPurse' = abAuthPurse
                \wedge a! = aNullOut ]
```

[one point rule]
$=[$ AbWorld; a? : AIN $]$

All the abstract operations are total.
Proof:
8.3. BETWEEN MODEL CONSISTENCY PROOFS

They are total by construction. They are all of the form AbOpOkay \vee AbIgnore, so:
pre $A b O p$
$=$ pre (AbOpOkay \vee AbIgnore)
$=$ pre AbOpOkay \vee pre AbIgnore
$=$ pre AbOpOkay $\vee[$ AbWorld; a? : AIN]
= [AbWorld; a? : AIN]

\square

- 8.2

8.3 Between model consistency proofs

8.3.1 Existence of between initial state

$\vdash \exists$ BetweenWorld' • BetweenInitState
Proof:
It is sufficient to find an explicit between world that satisfies the constraints of BetweenWorldInit.

A world of no purses, an ether that consists of exactly the messages explicitly allowed of BetweenWorldInit, and an empty archive, is sufficient.
conAuthPurse ${ }^{\prime}=\varnothing$
ether ${ }^{\prime}=\{$ readExceptionLog, $\perp\}$
$\cup \cup\{$ cpd : CounterPartyDetails • \{startFrom cpd, startTo cpd $\}\}$
archive $=\varnothing$
This satisfies the constraints in ConWorld. It also satisfies the extra constraints of BetweenWorld: all the quantifiers are over empty sets (of purses or messages) and hence are trivially true.

- 8.3.1
8.3.2 Totality of between operations

All between operations are total.
Proof:

They all offer the option of Ignore (explicitly by disjunction, except for Archive, which offers it implicitly). Ignore is the total identity operation.

- 8.3.2

■ 8.3
8.4 Concrete model consistency proofs
8.4.1 Existence of concrete initial state
$\vdash \exists$ ConWorld $_{0}^{\prime} \cdot$ ConInitState
Proof:
The concrete state is identical to the between state, except for fewer constraints.
Therefore as a between state exists, so does a concrete one.
■ 8.4.1
8.4.2 Totality of concrete operations

All concrete operations are total.
Proof:
The concrete operations are identical to the between ones. Therefore if the between operations are total, so are the concrete ones.
-8.4 .2
-8.4
■ 8.4

Part II

First Refinement: \mathcal{A} to \mathcal{B}

Refinement Proof Rules

9.1 Security of the implementation

We prove the concrete model \mathcal{C} is secure with respect to the abstract model \mathcal{A} in two stages. We first show (in this part) that \mathcal{B} refines \mathcal{A} then we show (in part III) that \mathcal{C} refines \mathcal{B}.

To show that \mathcal{B} refines \mathcal{A} we show that every (promoted) \mathcal{B} operation correctly refines some \mathcal{A} operation.

Much of what the \mathcal{B} (and \mathcal{C}) operations achieve is invisible at the \mathcal{A} level, so many \mathcal{B} operations are refinements of AbIgnore (abstractly 'do nothing'). Some of the \mathcal{B} operations that are refinements of AbIgnore do serve to resolve abstract non-determinism.

The refinements are
AbTransfer \sqsubseteq Rea

AbIgnore \subseteq StartFrom
\checkmark StartTo
\checkmark Val
\checkmark Ack
\checkmark ReadExceptionLog
\checkmark ClearExceptionLog
\checkmark AuthoriseExLogClear
\checkmark Archive
\checkmark Ignore
\checkmark Increas
\checkmark Abort

Figure 9.1: A summary of the backward proof rules. The hypothesis is the existence of the lower (solid) path. The proof obligation is to demonstrate the existence of an upper (dashed) path.

Each of these refinements must be proved correct.
For the \mathcal{A} to \mathcal{B} refinement proofs, the following set of 'upward' or 'backward' proof rules are sufficient to show the refinement [Woodcock \& Davies 1996]. For the \mathcal{B} to C refinement proofs, the 'downward' or 'forward' proof rules are sufficient to show the refinement.

These rules are expressed in terms of a 'concrete' (lower) and 'abstract' (upper) model. In this first refinement the 'abstract' model is \mathcal{A} and the 'concrete' model is \mathcal{B}. In the second refinement the 'abstract' model is now \mathcal{B} and crete' model is \mathcal{B}. In the
the 'concrete' model is C.

9.2 Backwards rules proof obligations

Appendix A describes the syntax for theorems, and how we lay out the proofs. The backward proof rules are summarised in figure 9.1, and described below.

2.1 Initialisation

We start from some global state G, and initialise it to an abstract initial state A^{\prime} and concrete initial state B^{\prime}. These must be related by the retrieve.
$\vdash \forall G ; G I n ; B^{\prime} ;$ BIn; $A^{\prime} ;$ AIn \mid BInitState \wedge BInitIn $\wedge R^{\prime} \wedge R I n \bullet$ AInitState \wedge AInitIn

Given any global initial state G, if we initialise it with BInit to B^{\prime}, then retrieve B^{\prime} to A^{\prime}, we must get the same abstract initial state as if we had initialised directly to A^{\prime} using AInit.
9.2. BACKWARDS RULES PROOF OBLIGATIONS

This can be simplified to:
BInitState; $R^{\prime} \vdash$ AInitState
BInitIn; RIn \vdash AInitIn

9.2.2 Finalisation

We start from some abstract final state A and concrete final state B, related by the retrieve, and finalise them to the same global final state G^{\prime}.
$\vdash \forall G^{\prime}$; GOut; B; BOut \mid BFinState \wedge BFinOut •
\exists A; AOut $\bullet R \wedge$ ROut \wedge AFinState \wedge AFinOut
Given any concrete final state B that finalises with BFin to G^{\prime}, then it is possible to find a corresponding abstract final state A, that both retrieves from B and finalises with AFin to the same G^{\prime}.

This can be simplified to:

$$
\begin{aligned}
& \text { BFinState } \vdash \exists A \bullet R \wedge \text { AFinState } \\
& \text { BFinOut } \vdash \exists \text { AOut } \bullet \text { ROut } \wedge \text { AFinOut }
\end{aligned}
$$

9.2.3 Applicability

$\vdash \forall B ; B I n \mid(\forall A ; A I n \mid R \wedge R I n \bullet$ pre $A O p) \bullet$ pre $B O p$
For each operation: if we are in a concrete state, and if all the abstract states to which it retrieves satisfy the precondition of the abstract operation, then we must also satisfy the precondition of the corresponding concrete operation.

For our case, $A O p$ is total (this needs to be proved for each of the abstract operations - see section 8.2.2). So pre $A O p=$ true. So

```
( }\forall\mathrm{ A; AIn | R^RIn • pre AOp )
    =>(\forallA;AIn \bulletR\wedgeRIn => pre AOp)
    =(\forallA; AIn \bulletR\wedgeRIn = true)
    #(\forallA, AIn \bullet true
    => true
```

So, for total abstract operations, the applicability proof obligation reduces to

$$
B ; B I n \vdash \text { pre } B O p
$$

That is, a proof that $B O p$ is total, too. This is discharged in section 8.3.2.

9.2.4 Correctness

$\vdash \forall B ; B I n \mid(\forall A ; A I n \mid R \wedge R I n \bullet$ pre $A O p) \bullet$
($\forall A^{\prime} ;$ AOut; $B^{\prime} ;$ BOut $\mid B O p \wedge R^{\prime} \wedge$ ROut
$(\exists A ; A I n \bullet R \wedge R I n \wedge A O p))$
For each operation: if we start in a concrete state corresponding to the precondition of the abstract operation (the applicability condition ensures we then satisfy the concrete operation's precondition), and do the concrete operation, and then retrieve to the abstract state, then we end up in a state that we could have reached doing the abstract operation.

Using pre $A O p=$ true (proved during applicability), this reduces to

$$
\vdash \forall B ; \text { BIn • }\left(\forall A^{\prime} ; \text { AOut } ; B^{\prime} ; \text { BOut } \mid B O p \wedge R^{\prime} \wedge\right. \text { ROut • }
$$

$$
(\exists A ; A I n \bullet R \wedge R I n \wedge A O p))
$$

Moving the quantifier into the hypothesis:

$$
\text { B; BIn; } A^{\prime} ; \text { AOut } ; B^{\prime} ; \text { BOut } \mid B O p \wedge R^{\prime} \wedge R O u t
$$

$$
\vdash \exists A ; A I n \bullet R \wedge R I n \wedge A O p
$$

Then rearranging the schema predicates from the predicate part to the declaration part, and removing the redundant declarations, gives the final form we use:

$$
\text { BOp; } R^{\prime} ; \text { ROut } \vdash \exists A ; A I n \bullet R \wedge R I n \wedge A O p
$$

\mathcal{A} to \mathcal{B} retrieve relation

The purpose of the retrieve relation is to capture the details of the various states the concrete world can be in, and which abstract state(s) these correspond to, and the relationships between the concrete and abstract inputs and outputs.

For the first refinement, we talk of Rab: the Retrieve from \mathcal{A} to \mathcal{B}. Later, for the second refinement, we talk of $R b c$: the Retrieve from \mathcal{B} to \mathcal{C}.

10.1 Retrieve state

The domains of the \mathcal{B} and \mathcal{A} 'world' functions define the authentic purses.
AbstractBetween
AbWorld
BetweenWorld
dom abAuthPurse $=$ dom conAuthPurse
\mathcal{A} balance and lost are related to \mathcal{B} balance and exLogs. The relationship is relational, not functional, and highly non-deterministic part-way through a transaction.

10.1.1 Exposing chosenLost

chosenLost is a non-deterministic choice of a subset of all the maybeLost values that we 'choose' to say will be lost.

RabCl
AbstractBetween
chosenLost : P PayDetails
chosenLost \subseteq maybeLost
\forall name : dom conAuthPurse •
(abAuthPurse name).lost =
sumValue ((definitelyLost \cup chosenLost $)$
$\cap\{p d:$ PayDetails $\mid p d$. from $=$ name $\}$)
\wedge (abAuthPurse name).balance $=$
(conAuthPurse name).balance

+ sumValue((maybeLost \backslash chosenLost)
$\cap\{p d:$ PayDetails $\mid p d . t o=$ name $\})$

The predicate links the \mathcal{B} and \mathcal{A} values ${ }^{1}$:

- For a purse name, its lost value is the sum of the values in all those transactions that are definitely lost or that we have chosen to assume lost with actions that are definitely lost or that we have chosen to assume lost with
name. (Note the deliberate similarity of this definition and that in BetwFinState.)
- The \mathcal{A} balance of a purse is its \mathcal{B} balance plus the value of all those transactions we have chosen to assume will not be lost, with name as the to purse. (For a give name, there is at most one such transaction.)

A consequence of this relationship is that the abstract lost and balance values of a purse can depend on the corresponding values of more than one concrete purse.

10.1.2 Hiding chosenLost

The retrieve relation is then RabCl with the non-deterministic choice chosenLost hidden ${ }^{2}$:

Rab $\widehat{=}$ chosenLost $: \mathbb{P}$ PayDetails \cdot RabCl
We define the retrieve in this way because in the proof we need to have direct access to chosenLost.
${ }^{1}$ It is valid to apply sumValue in this predicate, because both definitelyLost and maybeLost are finite. definitelyLost is finite because of BetweenWorld constraint $\mathrm{B}-13$. maybeLost is finite because toInEpv is finite: each $p d$ in the set comprehension for toInEpv comes from a distinct purse in conAuthPurse, which itself is a finite function.
We use this form to simplify the general correctness proofs, section 14.4.3

10.1.3 Exposing pdThis

In the proof, we find that we wish to focus on a single $p d$ (any $p d$). We define a new schema, RabClPd, identical to RabCl except for an extra declaration of a $p d$.
\qquad
RabCl
pdThis : PayDetails
We split the predicate part of RabCIPd into two cases that partition the possibilities:

- \forall name : dom conAuthPurse | name $\notin\{p d$ This.from, pdThis.to $\}$ purses not involved in the pdThis transaction
- \forall name : dom conAuthPurse | name $\in\{p d T h i s . f r o m, p d T h i s . t o\}$ purses involved in the pdThis transaction.

In all cases the purses other than the from and to purses retrieve their balance and lost values in the same way, so we factor this part of the predicate out into a separate schema, OtherPursesRab, which we include with the remaining part of the predicate.
-OtherPursesRab
chosenLost : \mathbb{P} PayDetails
pdThis: PayDetails
\forall name: dom conAuthPurse | name $\notin\{p d T h i s . f r o m, p d T h i s . t o\} \bullet$
(abAuthPurse name).lost =
sumValue ((definitelyLost \cup chosenLost)
$\cap\{p d:$ PayDetails $\mid p d$. from $=$ name $\}$)
\wedge (abAuthPurse name).balance $=$
(conAuthPurse name).balance

+ sumValue (maybeLost \backslash chosenLost)
$\cap\{p d:$ PayDetails \mid pd.to $=$ name $\})$

We split RabCIPd into four cases that partition the possibilities:

- RabOkayCIPd : pdThis \in maybeLost \backslash chosenLost half way through a transaction that will succeed. Since maybeLost refers only to authentic purses,
we know that $\{p d T h i s . f r o m, p d T h i s . t o\} \subseteq$ dom conAuthPurse, and so the remaining quantifier is reduced to these two cases.
- RabWillBeLostClPd : pdThis \in chosenLost half way through a transaction that will lose the value (the to purse has not yet aborted, but we choose that it will, rather than receive the val). Since chosenLost \subseteq maybeLost refers only to authentic purses, we know that $\{p d$ This.from, $p d$ This.to $\} \subseteq$ dom conAuthPurse, and so the remaining quantifier is reduced to these two cases.
- RabHasBeenLostCIPd : pdThis \in definitelyLost half way through a transaction that has lost the value (the to purse has already moved on). Since definitelyLost refers only to authentic purses, we know that \{pdThis. from, pdThis.to $\} \subseteq \operatorname{dom}$ conAuthPurse, and so the remaining quantifier is reduced to these two cases.
- RabEndCIPd : pdThis \notin definitelyLost \cup maybeLost At the beginning or end of a transaction, so there is no non-determinism in the lost or balance components. A general pdThis may refer to non-authentic purses, so the quantifier is reduced no further.

In the later proofs of operations that change purse status (Abort, Req, Val and $A c k$), we argue how the relevant $p d$ moves in and out of the sets maybeLost and definitelyLost, and thereby choose the appropriate one of the four cases of he retrieve to use before and after the operation.

We perform this split by systematically subtracting out the chosen $p d$ from the lost and balance expressions. If the $p d$ was in fact in the relevant set, we then have to add the subtracted value back in, otherwise we do nothing, since we have made no change to the expression.

RabOKayCIPd
chosenLost : \mathbb{P} PayDetails
pdThis: PayDetails
chosenLost \subseteq maybeLost
pdThis \in maybeLost \backslash chosenLost
(abAuthPurse pdThis.from).balance $=$
(conAuthPurse pdThis.from).balance

+ sumValue((maybeLost \backslash chosenLost)
$\cap\{p d:$ PayDetails $\mid p d . t o=p d$ This.from $\})$

{pdThis\}) }
(abAuthPurse p dThis.to).balance $=$
pdThis.value
+ (conAuthPurse pdThis.to).balance
+ sumValue ((maybeLost \backslash chosenLost $)$
$\cap\{p d:$ PayDetails $\mid p$ d.to $=p d$ This.to $\})$ $\backslash\{p d T h i s\})$

\forall name : \{pdThis.from, pdThis.to\} •

(abAuthPurse name).lost =
sumValue(((definitelyLost \cup chosenLost)
$\cap\{p d:$ PayDetails $\mid p d$. from = name $\})$

{pdThis\}) }
OtherPursesRab

In the Okay case, $p d$ This is not lost, so its value has to be added back into the to purse's balance component.

RabWillBeLostCIPd
AbstractBetween
chosenLost : \mathbb{P} PayDetails
pdThis: PayDetails
chosenLost \subseteq maybeLost
pdThis \in chosenLost
(abAuthPurse pdThis.from).lost = pdThis.value

+ sumValue $((($ definitelyLost \cup chosenLost $)$
$\cap\{p d:$ PayDetails $\mid p d$. from $=p d$ This.from $\})$

{pdThis\}) }
(abAuthPurse pdThis.to).lost =
sumValue ((definitelyLost \cup chosenLost)
$\cap\{p d:$ PayDetails $\mid p d$.from $=p d$ This.to $\})$

{pdThis\}) }
\forall name : \{pdThis.from, pdThis.to\} •
(abAuthPurse name).balance $=$
(conAuthPurse name).balance
+ sumValue(((maybeLost \backslash chosenLost)
$\cap\{p d:$ PayDetails $\mid p d . t o=$ name $\})$
$\backslash\{p d T h i s\})$
OtherPursesRab

In the WillBeLost case, pdThis is chosen lost, so its value has to be added back into the from purse's lost component.
10.1. RETRIEVE STATE

RabHasBeenLostCIPd
AbstractBetween
chosenLost : \mathbb{P} PayDetails
pdThis: PayDetails
chosenLost \subseteq maybeLost
pdThis \in definitelyLost
(abAuthPurse pdThis.from).lost =

pdThis.value

+ sumValue ((definitelyLost \cup chosenLost $)$
$\cap\{p d:$ PayDetails $\mid p d$. from $=p d$ This.from $\})$

{pdThis\}) }
(abAuthPurse pdThis.to).lost =
sumValue ((definitelyLost \cup chosenLost)
$\cap\{p d:$ PayDetails $\mid p d$.from $=p$ dThis.to $\})$
$1\{p d T h i s\})$
\forall name: \{pdThis.from, pdThis.to\} •
(abAuthPurse name).balance $=$
(conAuthPurse name).balance
+ sumValue(((maybeLost \backslash chosenLost $)$
$\cap\{p d:$ PayDetails $\mid p d . t o=$ name $\})$

{pdThis\}) }
OtherPursesRab

In the HasBeenLost case, pdThis is definitely lost, so its value has to be added back into the from purse's lost component.
_RabEndClPd
AbstractBetween
chosenLost : P PayDetails
pdThis : PayDetails
chosenLost \subseteq maybeLost
pdThis $\#$ definitelyLost \cup maybeLost
\forall name : dom conAuthPurse $\cap\{p d$ This.from, pdThis.to $\}$ •
(abAuthPurse name).lost =
sumValue ((definitelyLost \cup chosenLost)
$\cap\{p d:$ PayDetails $\mid p d$. from $=$ name $\}$)
{pdThis\}) }
\wedge (abAuthPurse name).balance $=$
(conAuthPurse name).balance

+ sumValue((maybeLost \backslash chosenLost $)$
$\cap\{p d$: PayDetails \mid pd.to $=$ name $\}$
$\\{p d T h i s\})$
OtherPursesRab

In the End case, $p d$ This is in neither component, so its value does not have to be added back in anywhere.

10.1.4 Partition

We have the identity ${ }^{3}$:

RabCIPd

RabCIPd \Leftrightarrow
(RabOkayCIPd
\checkmark RabWillBeLostCIPd
\checkmark RabHasBeenLostClPa
\checkmark RabEndClPd)
Proof:
The four cases differ in the predicate on $p d T h i s$, which together partition the possibilities. It is obvious that the four cases cover the possibilities. We use Lemma 'lost', which says that definitelyLost and maybeLost are disjoint, to show that the four cases are non-overlapping.
${ }^{3}$ Used in: Req check-operation, splitting into four cases, section 18.6
10.1. RETRIEVE STATE

■ 10.1.

10.1.5 Ouantified forms

Because the introduction of the $p d$ in RabCIPd is arbitrary, we have the following dentities:

$$
\text { RabCl } \vdash \mathrm{RabCl} \Leftrightarrow(\forall \text { pdThis : PayDetails } \bullet \text { RabClPd })
$$

and

$$
\text { RabCl } \vdash \mathrm{RabCl} \Leftrightarrow(\exists p d \text { This : PayDetails •RabClPd })
$$

Proof:

That both these identities hold may seem odd, but can be intuitively understood by looking at a similar, smaller example. Consider a non-empty subset of \mathbb{N} called X. Then it is certainly true that

$$
\exists x: X \bullet X=X \backslash\{x\} \cup\{x\}
$$

and also

$$
\forall x: X \bullet X=X \backslash\{x\} \cup\{x\}
$$

- 10.1.5

We have just chosen to extract an arbitrary element from the set for special naming. We do the same with RabCl, selecting an arbitrary $p d T h i s$ for special naming, but without changing the meaning of the schema. This means that we can split up RabCl into a collection of four disjunctions on a $p d$ in different ways as the proof dictates ${ }^{4}$.

10.1.6 The full Retrieve state relation

We also define versions of these schemas with the pdThis and chosenLost hidden (so they have the same signature as Rab):

RabOkay $\hat{=}$ RabOkayCIPd \backslash (pdThis, chosenLost)

RabWillBeLost $\hat{=}$ RabWillBeLostClPd \backslash (pdThis, chosenLost)
RabHasBeenLost $\hat{=}$ RabHasBeenLostCIPd $\backslash(p d T h i s$, chosenLost $)$
RabEnd $\hat{=}$ RabEndCIPd \backslash (pdThis, chosenLost)

10.2 Retrieve inputs

Each \mathcal{A} operation has the same type of input, an AIN. Each \mathcal{B} operation has the same type of input, a NAME and a MESSAGE. The input part of the retrieve captures the relationship between these \mathcal{A} and \mathcal{B} inputs.

RabIn $=$ BetwInitIn[a?/g?]

The \mathcal{B} inputs are related to \mathcal{A} inputs in the following manner:
RI-1 Req: the \mathcal{A} transfer details are in the rea
RI-2 All other \mathcal{B} inputs: the \mathcal{A} input is aNullIn.

10.3 Retrieve outputs

The output retrieve is particularly simple: all \mathcal{B} outputs retrieve to the single \mathcal{A} output.

RabOut $\hat{=}$ BetwFinOut[a!/g!]
\mathcal{A} to \mathcal{B} initialisation proof

11.1 Proof obligations

The requirement is to prove that the between initial state correctly refines the abstract initial state, and the between inputs correctly refine the abstract inputs. That is,

BetweenInitState; Rab' \vdash AbInitState
BetwInitIn; RabIn \vdash AbInitIn

11.2 Proof of initial state

We successively thin the hypothesis to expose the consequent.

BetweenWorldInit $\wedge \mathrm{Rab}^{\prime}$	[hyp]
\Rightarrow Rab'	[thin]
\Rightarrow AbWorld'	[thin]
\Rightarrow AbInitState	[defn AbInitState]

■ 11.2
11.3 Proof of initial inputs

Expand RabIn and AbInitIn.
BetwInitIn; BetwInitIn[a?/g?] $\vdash a$? $=q$?

BetwInitIn defines g ? as a total function of (m ?, name?); call it f. Thin.
g ?, a ? : AIN $\mid \exists f:$ MESSAGE \times NAME \rightarrow AIN •
$\forall m: M E S S A G E ; n: N A M E \bullet$
$g ?=f(m, n) \wedge a ?=f(m, n)$
$\vdash a ?=g$?
Simplify and thin.
$g ?, a ?: A I N \mid g ?=a ? \vdash a ?=g$?
■ 11.3
-11

12.1 Proof obligations

The requirement is to prove that the between final state correctly refines the abstract final state, and the between outputs correctly refine the abstract outputs. That is,

BetwFinOut $\vdash \exists$ a! : AOUT • RabOut \wedge AbFinOut
BetwFinState $\vdash \exists$ AbWorld •Rab \wedge AbFinState
This proof obligation is summarised in figure 12.1

Figure 12.1: Backwards rules finalisation proof obligation

12.2 Output proof

Expand RabOut and AbFinOut.

BetwFinOut $\vdash \exists a!:$ AOUT • BetwFinOut $[a!/ g!] \wedge a!=g!$
[one point] away the a ! in the consequent
BetwFinOut \vdash BetwFinOut[g!/g!]
■ 12.2

12.3 State proof

We [cut] in an AbWorld, and put it equal to the GlobalWorld.
BetwFinState; AbWorld \mid abAuthPurse $=$ gAuthPurse
\vdash
\exists AbWorld • Rab \wedge AbFinState
Cutting in this new hypothesis requires us to discharge a side-lemma about the existence of such an AbWorld. This is trivial to do, by the [one point] rule.

We use [consq exists] to remove the existential quantifier in the consequent, by using the value just cut in:

> BetwFinState; AbWorld \mid abAuthPurse $=$ gAuthPurse \vdash
> Rab \wedge AbFinState

We prove each of the conjuncts in the consequent separately [consa conj], dropping unneeded hypotheses as appropriate [thin].

12.3.1 Case AbFinState

BetwFinState; AbWorld \mid abAuthPurse $=$ gAuthPurse \vdash AbFinState
The predicates in AbFinState occur in the hypothesis, so are satisfied trivially.
■ 12.3.1
12.3.2 Case Rab

We expand out $R a b$ into its conjuncts:

Retrieve of equality

We have the equation
dom abAuthPurse $=$ dom conAuthPurse
which can be shown from the equality of gAuthPurse and conAuthPurse in BFinState, and between gAuthPurse and abAuthPurse in the hypothesis.

Similarly, in each case the part of the retrieve to be proven has an equality between the abstract and concrete. We show this holds from an equality in hat component between global and concrete in BetwFinState, and and equality between global and abstract in the hypothesis.

■ 12.3.2

Case Rab

BetwFinState; AbWorld \mid abAuthPurse $=$ gAuthPurse \vdash Rab
Expanding BetwFinState, thinning unwanted predicates, substituting for global, and expanding Rab, we get:

AuxWorld; AbWorld
\forall name : dom conAuthPurse •
abAuthPurse name).lost
sumValue ((definitelyLost \cup maybeLost)
$\cap\{p d:$ PayDetails $\mid p d . f r o m=$ name $\}$
\wedge (abAuthPurse name $)$.balance $=($ conAuthPurse name $)$.balance -
\exists chosenLost $: \mathbb{P}$ maybeLost \cdot
\forall name : dom conAuthPurse -
(abAuthPurse name).lost =
sumValue ((definitelyLost \cup chosenLost)
$\cap\{p d:$ PayDetails $\mid p d$. from = name $\}$
\wedge (abAuthPurse name).balance $=$
(conAuthPurse name).balance

+ sumValue((maybeLost \backslash chosenLost)
$\cap\{p d:$ PayDetails $\mid p d . t o=$ name $\}$
We [one point] away the chosenLost in the consequent by putting it equal to maybeLost (having [cut] in such a value and proved it exists). We also simplify
the equations, now that maybeLost \backslash chosenLost is empty:
AuxWorld; AbWorld; chosenLost : \mathbb{P} PayDetails
chosenLost $=$ maybeLost
\wedge (\forall name : dom conAuthPurse
(abAuthPurse name).lost =
sumValue ((definitelyLost \cup maybeLost)
$\cap\{p d:$ PayDetails $\mid p d$. from = name $\}$
^ (abAuthPurse name).balance
$=($ conAuthPurse name $)$.balance $)$
\vdash
\forall name : dom conAuthPurse •
(abAuthPurse name).lost =
sumValue ((definitelyLost \cup maybeLost $)$
$\cap\{p d:$ PayDetails $\mid p d$. from = name $\})$
\wedge (abAuthPurse name).balance $=($ conAuthPurse name $) \cdot$ balance
The consequent also appears as an hypothesis, so the proof is complete.
- 12.3.2
12.3.2
- 12.3

Chapter 13
\mathcal{A} to \mathcal{B} applicability proofs

13.1 Proof obligation

In section 9.2.3 we showed that it is sufficient to prove totality of the concrete operations.

3.2 Proof

Totality for each between operation was shown in the specification consistency proofs, section 8.3.2.

- 13

Lemmas for the \mathcal{A} to \mathcal{B} correctness proofs

14.1 Introduction

The correctness proof obligation, to be discharged for each abstract operation $A O p$, where $A O p \sqsubseteq B O p F u l l=B O p_{1} \vee B O p_{2} \vee \ldots$ is the corresponding refinement, is:

BOpFull; Rab'; RabOut $\vdash \exists$ AbWorld; a? : AIN •Rab \wedge RabIn $\wedge A O p$
This proof obligation is summarised in figure 14.1. There are multiple lower paths both because the concrete operation is non-deterministic, and because the retrieve is non-deterministic. For each lower path triple of $\left(B, B^{\prime}, A^{\prime}\right)$, we have to find an A that ensures the existence of an upper path; it does not have to be the same A in each case

There are various classes of \mathcal{B} operation depending on which \mathcal{A} operation is being refined. There are commonalities in the proof structures for these classes. This chapter develops general mechanisms and lemmas to facilitate proving most operations. This fits into the following main area

- lemma 'multiple refinement': When the \mathcal{B} operation that refines an \mathcal{A} operation in a disjunction of several individual \mathcal{B} operations, the proof obligation can be split into one for each individual \mathcal{B} operation.
- lemma 'ignore': The ignore branch, and any 'abort' branch, of each \mathcal{B} operation need be proved once only.
- lemma 'deterministic': A simplification of all correctness proofs, by exposing the non-determinism in the retrieve, to the three cases exists-pd, exists-chosenLost, and check-operation (with the introduction of two ar-

Figure 14.1: The correctness proof. The hypothesis is the existence all of the lower (solid) paths. The proof obligation is to demonstrate the existence of an upper (dashed) path in each case.
bitrary predicates \mathcal{P} and \mathcal{Q}, instantiated differently depending on the particular operation).

- lemma 'lost unchanged': Where maybeLost and definitelyLost are unchanged, the exists-pd and exists-chosenLost obligations can be automatically discharged.
- lemma 'AbIgnore': A further simplification of the check-operation proof obligation, for the operations that refine AbIgnore, to check-operationignore.
- proof that concrete Ignore refines AbIgnore
- proof that concrete Abort refines AbIgnore
- lemma 'abort backward': For an operation expressed as Abort composed with a simpler version of the operation, we need prove only that the simpler operation is a refinement
The lemmas developed in this chapter are collected together in Appendix C for ease of reference.

14.2 Lemma 'multiple refinement'

In most cases of $A O p$, the corresponding BOpFull is a disjunction of many individual \mathcal{B} operations, $B O p_{1} \vee B O p_{2} \vee \ldots$ whose differences are invisible abstractly. For example, AbIgnore is refined by a disjunction of several separate operations.

We use the inference rule [hyp disj] to split these large disjunctions into separate proof obligations for each of the \mathcal{B} operations.
14.3. LEMMA 'IGNORE': SEPARATING THE BRANCHES

14.3 Lemma 'ignore': separating the branches

Each between operation BOp is promoted from BOpPurseOkay, disjoined with Ignore, and sometimes with Abort. Call the first disjunction BOpOkay:

$$
\text { BOpOkay } \hat{=} \exists \Delta \text { ConPurse • ФВOp } \wedge \text { BOpPurseOkay }
$$

We use the inference rule [hyp disj], to split the correctness proof into two (or three) parts, one for each disjunct, each of which must be proved

$$
\begin{aligned}
& \text { Abort; Rab'; RabOut } \vdash \exists \text { AbWorld; a? : AIN •Rab } \wedge \text { RabIn } \wedge A O p \\
& \text { Ignore; Rab'; RabOut } \vdash \exists \text { AbWorld; a? : AIN } \bullet \text { Rab } \wedge \text { RabIn } \wedge A O p \\
& \text { BOpOkay; Rab'; RabOut } \vdash \exists \text { AbWorld; a? : AIN } \bullet \text { Rab } \wedge \text { RabIn } \wedge \text { AOp }
\end{aligned}
$$

All the abstract operations include an option of failing (equivalent to the concrete Ignore), which results in no change to the abstract state. We can therefore strengthen the conclusion of the Ignore and Abort theorems and prove

$$
\begin{aligned}
& \text { Ignore; Rab'; RabOut } \vdash \exists \text { AbWorld; a? : AIN •Rab } \wedge \text { RabIn } \wedge \text { AbIgnore } \\
& \text { Abort; Rab'; RabOut } \vdash \exists \text { AbWorld; a? : AIN } \bullet \text { Rab } \wedge \text { RabIn } \wedge \text { AbIgnore }
\end{aligned}
$$

These are independent of the particular operation $A O p$. Thus we need prove these theorems only once (which we do in sections 14.7 and 14.8). To prove the correctness of $B O p$ we need additionally to prove the remaining BOpOkay theorem.
14.4 Lemma 'deterministic': simplifying the Okay branch

The Okay branch of the correctness proof is, in general,
BOpOkay; Rab'; RabOut $\vdash \exists$ AbWorld; a? : AIN \bullet Rab \wedge RabIn \wedge AOp
In order to find an AbWorld that is appropriate, we expose the non-determinism in the retrieve. The non-determinism occurs in the Rab branch of the retrieve in terms of uncertainty about which transactions still in process will terminate successfully, and which will terminate with a lost value.

We also expose the transaction that is currently in progress, to make it available to the proof

14.4.1 Choosing an input

We choose a value of a ? that is consistent with RabIn. Since RabIn is functional from m ? and name? to a ?, we know this choice of a ? is uniquely determined. We [cut] this value for a ? into the hypothesis, and remove the quantifier on a ? by the [consa exists] rule.

We note that RabIn in the consequent is independent of the choice of AbWorld, so can be pulled out of that quantifier.

```
BOpOkay; RabOut; Rab'; a?: AIN | RabIn
```

RabIn $\wedge(\exists$ AbWorld \bullet Rab \wedge AOp $)$

We split the proof into two on the conjunction in the consequent [consq conj], one for RabIn, one for $\exists \mathrm{AbWorld} \bullet \operatorname{Rab} \wedge A O p$.

RabIn is trivially satisfied by this choice of a ? in the hypothesis.
The declaration of a ? in RabIn allows us to drop the explicit declaration in the hypothesis, giving

BOpOkay; RabOut; Rab'; RabIn $\vdash \exists$ AbWorld \bullet Rab $\wedge A O p$

14.4.2 Cutting in Δ ConPurse

It helps to work with the unpromoted form of the operation. We do this by expanding BOpOkay, according to its promoted definition, And [cut]ting Δ ConPurse into the hypothesis such that BOpPurseOkay and $\Phi B O p$ hold. (The side-lemma is satisfied from the expanded definition of BOpOkay in the hypothesis; which states that such a Δ ConPurse exists.)

```
( \exists\DeltaConPurse \bullet ФBOp ^ BOpPurseOkay);
    RabOut; Rab'; RabIn; \DeltaConPurse
    ФВOp ^ BOpPurseOkay
\vdash
\exists AbWorld • Rab ^ AOp
```

We rearrange the hypothesis, moving $\Phi B O p$ and BOpPurseOkay from the predicate part to the declaration part. Since $\Phi B O p$ declares \triangle ConPurse, we remove the latter. We [thin] the hypothesis of the expanded definition of BOpOkay.

[^2]14.4. LEMMA 'DETERMINISTIC': SIMPLIFYING THE OKAY BRANCH

14.4.3 Exposing chosenLost and pdThis

We need to make some of the internal components visible to the proof to enable us to break the proof into sections.

We replace Rab' with the quantified form of RabCl' (section 10.1.2), giving
ФBOp; BOpPurseOkay; RabOut;
(\exists chosenLost' $: \mathbb{P}$ PayDetails •RabCl'); RabIn
\vdash
\exists AbWorld • Rab \wedge AOp
We now use [hyp exists] to remove the quantification, giving us

```
ФBOp; BOpPurseOkay; RabOut; RabCl'; RabIn
\vdash
\exists AbWorld • Rab ^ AOp
```

Next, we [cut] in a declaration of an arbitrary payment detail $p d$ This. In practice, this is the pd for the payment being processed by BOpOKay, but in this general this is the $p d$ for the payment being processed by BOPOKay, but in this general
manipulation we don't have enough information to specify this. We therefore constrain the $p d T h i s$ with some arbitrary predicate \mathcal{P}.

This generates a non-trivial lemma, exists-pd, to be proved in each specific case, as

ФBOp; BOpPurseOkay; RabOut; RabCl'; RabIn \vdash
pdThis : PayDetails • \mathcal{P}
and leaves our proof obligation as
ФВОр; BOpPurseOkay; RabOut; RabCl'; RabIn; pdThis : PayDetails |
\mathcal{P}
$\stackrel{\rightharpoonup}{ }$
\exists AbWorld •Rab $\wedge A O p$
In the hypothesis we rewrite RabCl^{\prime} as the universally quantified form of RabClPd' (section 10.1.5)

ФBOp; BOpPurseOkay; RabOut;
(\forall pdThis' : PayDetails •RabClPd');
RabIn; pdThis : PayDetails |
\mathcal{P}
\vdash
\exists AbWorld •Rab $\wedge A O p$

Rather than hypothesising this is true for all $p d$ This's, we choose a particular value in the quantification. (This is valid, [hyp uni], because assuming it true for only a particular value is weaker than assuming it is true for all values.) The value we choose for pdThis' is that of the value pdThis. This substitutes the value $p d T h i s$ for $p d T h i s^{\prime}$ in the Rab' schema. This gives

ФВОр; BOpPurseOkay; RabOut; RabClPd'[pdThis/pdThis']; RabIn; pdThis: PayDetails |
P
\vdash
\exists AbWorld • Rab $\wedge A O p$
The declaration in RabClPd' allows us to drop the explicit declaration of $p d$ This. So we rewrite this more simply as

ФВОр; BOpPurseOkay; RabOut; RabCIPd'[pdThis/pdThis']; RabIn | \mathcal{P}
$\stackrel{\rightharpoonup}{\vdash}$
\exists AbWorld \bullet Rab $\wedge A O p$
In the consequent we do a similar thing: expose chosenLost, and rewrite Rab as the existentially quantified form of RabCIPd (section 10.1.5)

ФВОр; BOpPurseOkay; RabOut; RabCIPd'[pdThis/pdThis']; RabIn | \mathcal{P}
\vdash
\exists AbWorld •
(ヨ chosenLost : \mathbb{P} PayDetails; pd : PayDetails - RabCIPd[pd/pdThis]
$\wedge A O p$
We strengthen the consequent by adding the requirement that the value of $p d$ claimed to exist on the right hand side is actually equal to the value $p d T h i s$ declared on the left hand side. Similarly, we constrain chosenLost sufficiently. This we do by adding one requirement we always need (namely, that chosenLost \subseteq maybeLost), and one arbitrary predicate \mathcal{Q}, as we did with pdThis. This predicate is instantiated to some specific predicate each time this general manipu-
lation is invoked.
ФВОр; BOpPurseOkay; RabOut; RabClPd'[pdThis/pdThis']; RabIn | \mathcal{P}
\exists AbWorld •
(\exists chosenLost : \mathbb{P} PayDetails; pd : PayDetails •
$p d=p d T h i s \wedge Q$
\wedge chosenLost \subseteq maybeLost
$\wedge \operatorname{RabClPd}[p d / p d T h i s])$
$\wedge A O p$
We can remove the $p d$ in the consequent with the [one point] rule, because we have an explicit value for it (namely, pdThis)

ФВОр; BOpPurseOkay; RabOut; RabCIPd'[pdThis/pdThis']; RabIn | \mathcal{P}
\vdash
${ }^{\exists}$ AbWorld •
(\exists chosenLost : \mathbb{P} PayDetails •
$Q \wedge$ chosenLost \subseteq maybeLost

\wedge RabClPd)

$\wedge A O p$
We [cut] into the hypothesis a chosenLost with the same properties as it has in the consequent (that is, the predicate $\mathcal{Q} \wedge$ chosenLost \subseteq maybeLost). This enerates a side lemma that such a value exists, exists-chosenLost, which must be discharged in each specific case, as

ФВОр; BOpPurseOkay; RabOut; RabClPd'[pdThis/pdThis']; RabIn
\exists chosenLost $: \mathbb{P}$ PayDetails $\bullet Q \wedge$ chosenLost \subseteq maybeLost

This leaves:

```
ФВОр; BOpPurseOkay; RabOut; RabClPd'[pdThis/pdThis']; RabIn;
        chosenLost:\mathbb{P PayDetails}
        P}\wedgeQ\wedge chosenLost \subseteq maybeLos
\vdash
AbWorld •
    ( \exists chosenLost : PP PayDetails •
        Q ^ chosenLost \subseteq maybeLost
        \wedge RabClPd)
        \wedge AOp
```

We remove the existential quantification using the [consq exists] for chosenLost.

```
\PhiВОр; BOpPurseOkay; RabOut; RabClPd'[pdThis/pdThis']; RabIn;
```

 chosenLost : \(\mathbb{P}\) PayDetails
 \(\mathcal{P} \wedge Q \wedge\) chosenLost \(\subseteq\) maybeLost
 \vdash
\exists AbWorld • RabClPd \wedge AOp

We break this into two parts, separating the two retrieves in the consequent from $A O p$. We then prove each part.

Cut in AbWorld such that RabCIPd holds. This creates a side lemma to prove that such an AbWorld exists, consisting of just the retrieve. (This is discharged in section 14.4.4.)

We are left with
ФBOp; BOpPurseOkay; RabOut; RabClPd'[pdThis/pdThis']; AbWorld; RabClPd; RabIn; chosenLost : \mathbb{P} PayDetails
$\mathcal{P} \wedge \mathcal{Q} \wedge$ chosenLost \subseteq maybeLost
RabClPd $\wedge A O p$
We discharge the retrieves in the consequent directly from the hypothesis, and remove chosenLost and chosenLost \subseteq maybeLost as these already occur in RabCIPd, leaving

```
ФВОр; BOpPurseOKay; RabOut; RabCIPd' \(\left.{ }^{[p d T h i s / p d T h i s '}{ }^{\prime}\right]\);
    AbWorld; RabCIPd; RabIn |
        \(\mathcal{P} \wedge Q\)
\(\stackrel{\vdash}{ }{ }^{\circ}\)
AOp
```

14.4. LEMMA ‘DETERMINISTIC’: SIMPLIFYING THE OKAY BRANCH

14.4.4 The existence of AbWorld

We have to prove the side condition generated when we cut in an AbWorld (above).

ФВОр; BOpPurseOkay; RabOut; RabClPd' $\left[p d T h i s / p d T h i s^{\prime}\right]$; RabIn; chosenLost : \mathbb{P} PayDetails \mid
$\mathcal{P} \wedge Q \wedge$ chosenLost \subseteq maybeLost
\vdash
\exists AbWorld • RabClPd
We can prove this by invoking lemma 'AbWorldUnique’ (section C.15), provided we can show that the constraints of the hypothesis of that lemma hold.

Certainly we have BetweenWorld (from $\Phi B O p$), a pdThis and a chosenLost such that the constraint chosenLost \subseteq maybeLost holds. This is sufficient to invoke the lemma

■ 14.4.4
14.4.5 Statement of lemma 'deterministic'

We summarise the results that section 14.4 has developed as a lemma.
Lemma 14.1 (deterministic) The correctness proof for a general Okay branch consists of the following three proof obligations:
exists-pd:
ФВОр; BOpPurseOkay; RabOut; RabCl'; RabIn $\stackrel{\vdash}{\vdash}$
\exists pdThis : PayDetails • \mathcal{P}

exists-chosenLost

ФВОр; BOpPurseOkay; RabOut; RabClPd'[pdThis/pdThis']; RabIn | \mathcal{P}
$\stackrel{\rightharpoonup}{\vdash}$
\exists chosenLost $: \mathbb{P}$ PayDetails $\bullet Q \wedge$ chosenLost \subseteq maybeLost

check-operation:

ФВОр; BOpPurseOkay; RabOut; RabClPd' $[$ pdThis/pdThis']; AbWorld; RabClPd; RabIn
$\mathcal{P} \wedge \mathcal{Q}$
$\stackrel{ }{ } \stackrel{-}{ }$
$A O p$

■
■ 14.4

14.5 Lemma 'lost unchanged'

Many operations do not change maybeLost or definitelyLost. We call a general such operation BOp Ξ Lost.

Lemma 14.2 (lost unchanged) For BOp Lost operations, where maybeLost = maybeLost' and definitelyLost' = definitelyLost, the proof obligations exists-pd and exists-chosenLost are satisfied automatically by the instantiation of the predicates \mathcal{P} and \mathcal{Q} as:

$$
\begin{aligned}
& \mathcal{P} \Leftrightarrow \text { true } \\
& \mathcal{Q} \Leftrightarrow \text { chosenLost }=\text { chosenLost }^{\prime}
\end{aligned}
$$

leaving the remaining check-operation proof obligation as
ФВОр; BOpЕLostPurseOkay; RabOut; RabCIPd'[pdThis/pdThis'];
AbWorld; RabCIPd; RabIn
chosenLost $=$ chosenLost'
\wedge maybeLost $=$ maybeLost ${ }^{\prime}$
\wedge definitelyLost ${ }^{\prime}=$ definitelyLost
$\stackrel{\vdash}{A O p}$
-

14.5.1 Proof

We add the hypotheses maybeLost $=$ maybeLost ${ }^{\prime}$ and definitelyLost ${ }^{\prime}=d e-$ finitelyLost to the proof obligations for these BOp Ξ Lost operations.

exists-pd

ФВОр; BOp Ξ LostPurseOkay; RabOut; RabCl'; RabIn | maybeLost' $=$ maybeLost
\wedge definitelyLost' $=$ definitelyLost
\vdash
g pdThis : PayDetails•true

This is trivially true.
■ 14.5.1

exists-chosenLost

ФВОр; BOpЕLostPurseOkay; RabOut; RabCIPd'[pdThis/pdThis']; RabIn |
maybeLost ${ }^{\prime}=$ maybeLost
\wedge definitelyLost' $=$ definitelyLost
\vdash
chosenLost $: \mathbb{P}$ PayDetails \bullet chosenLost $=$ chosenLost \wedge chosenLost \subseteq maybeLost

We apply the [one point] rule to remove the existential quantifier in the consequent, substitute for maybeLost, and [thin].

$$
\text { RabClPd' }\left[p d T h i s / p d T h i s^{\prime}\right] \vdash \text { chosenLost }^{\prime} \subseteq \text { maybeLost }^{\prime}
$$

The hypothesis RabCIPd' $\left[p d T h i s / p d T h i s^{\prime}\right]$ has chosenLost' \subseteq maybeLost ${ }^{\prime}$.
■ 14.5.1

- 14.5
14.5.2 Sufficient conditions for invoking lemma 'lost unchanged'

Since $\Phi B O p$ gives us that archive is unchanged, sufficient conditions for invoking lemma 'lost unchanged' are that the operation in question changes neither he purse's status (hence no movement into or out of epv or epa) nor its exception log (hence no change to from logs or to logs).

14.6 Lemma 'AbIgnore': Operations that refine AbIgnore

As shown in section 14.2, to prove the refinement of the abstract identity operation Ablgnore, we can separately prove correctness for each of the between perations StartFrom, StartTo, Val, Ack, ReadExceptionLog, ClearExceptionLog, AuthoriseExLogClear, Archive, Ignore, Increase, and Abort.

For those which are structured as promoted operations (that is, all except Archive and Ignore), consider a general such operation, call it BOpIg. We note that all BOpIg operations have the properties:

- BOpIg is a promoted operation, and thus alters only one concrete purse. It has the form
Δ ConPurse • $\Phi B O p \wedge$ BOpIgPurs
- for any purse, the name is unchanged (by definition of the single purse operations)
- the domain of conAuthPurse is unchanged (by construction of the promotion)
- for any purse, either nextSeqNo is unchanged, or increased.

$$
\forall \text { BOpIgPurse • nextSeqNo } \leq \text { nextSeqNo' }
$$

We use these properties to simplify the proof obligation for the BOpIg operations.

We invoke lemma 'deterministic' (section 14.4) to reduce the BOpIg proof obligation to exists-pd, exists-chosenLost and check-operation:

```
ФВOp; BOpIgPurse; RabOut; RabClPd'[pdThis/pdThis'];
```

 AbWorld; RabClPd; RabIn
 \(\mathcal{P} \wedge Q\)
 \(\vdash\)
 AbIgnore

Lemma 14.3 (AbIgnore) For a BOpIg operation, the check-operation proof obligation reduces to check-operation-ignore ${ }^{1}$:

ФBOp; BOpIgPurse; RabClPd'[pdThis/pdThis']; AbWorld; RabClPd | $\mathcal{P} \wedge \mathcal{Q}$
$\stackrel{\vdash}{\forall}$
$\forall n$: dom abAuthPurse •
(abAuthPurse' n).lost $=($ abAuthPurse $n) \cdot$ lost
$\wedge($ abAuthPurse' $n)$.balance $=($ abAuthPurse $n)$.balance
-
Proof:
We take the check-operation proof obligation, and expand AbIgnore. The BOpIgPurse operations have certain properties in common; we explicitly state ${ }^{1}$ Used in: Ignore, 14.7.2.
these in the hypothesis.
ФВОр; BOpIgPurse; RabOut; RabCIPd'[pdThis/pdThis']; AbWorld; RabCIPd; RabIn |
$\mathcal{P} \wedge \mathcal{Q}$
\wedge name $^{\prime}=$ name
\wedge nextSeqNo' \geq nextSeqNo
\vdash
AbOp \wedge abAuthPurse ${ }^{\prime}=$ abAuthPurse
We use [consq conj] to split this proof into two parts. The $A b O p$ part is trivial: there are no constraints. This leaves the other conjunct to be proven, which is rewritten as follows:

ФВОр; BOpIgPurse; RabOut; RabClPd'[pdThis/pdThis'];
AbWorld; RabClPd; RabIn |
$\mathcal{P} \wedge \mathcal{Q}$
\wedge name $^{\prime}=$ name
\wedge nextSeqNo' \geq nextSeqNo
$\stackrel{\vdash}{\forall}$.
$\forall n$: dom abAuthPurse \bullet abAuthPurse $n=$ abAuthPursen
We prove this component by component. From $\Phi B O p$ in the hypothesis, all concrete purses other than purse name? remain unchanged. For the purse name?, we also have the equality of the pre and post states of name. This leaves the components balanace and lost. We use this with [consq conj] to reduce our proof requirement to the following:

> ФВОр; BOpIgPurse; RabOut; RabCIPd'[pdThis/pdThis'];
> AbWorld; RabCIPd; RabIn |
> $\mathcal{P} \wedge \mathcal{Q}$
> \wedge name $^{\prime}=$ name
> \wedge nextSeqNo' \geq nextSeqNo
> \vdash
> n : dom abAuthPurse .
> $($ abAuthPurse' $n) \cdot$ balance $=($ abAuthPurse $n)$.balance
> $\wedge($ abAuthPurse' $n) \cdot$ lost $=($ abAuthPurse $n) \cdot$ lost

We then [thin] the hypothesis to get the following, which proves the AbIgnore
lemma.
ФВОр; BOpIgPurse; RabClPd'[pdThis/pdThis']; AbWorld; RabClPd |

$$
\mathcal{P} \wedge \mathcal{Q}
$$

n : dom abAuthPurse •
(abAuthPurse' n).balance $=($ abAuthPurse $n)$.balance
\wedge (abAuthPurse' n).lost $=($ abAuthPurse $n) \cdot l o s t$
■ 14.6

14.7 Ignore refines AbIgnore

As we saw at the end of section 14.3, by splitting up promoted operations, we have generated a requirement to prove the correctness of the Ignore branch once only. We do that here.

14.7.1 Invoking lemma 'deterministic’

Lemma ‘deterministic’ (section 14.4.5) cannot be applied as-is, because Ignore is not written as a promotion (in order to ensure it is total). However, the arguments to split the proof obligation into three parts follow in exactly the same manner even if the unpromoted purse is not exposed. The proof obligations simply have BOpOkay in the hypothesis, instead of Φ BOp; BOpPurseOkay. We use that form to simplify the Ignore proof obligation to three parts, and then invoke lemma 'lost unchanged' to discharge the first two obligations. We similarly use lemma 'AbIgnore' to simplify the third proof obligation to check-operationignore.
14.7.2 check-operation-ignore

Ignore; RabCIPd'[pdThis/pdThis']; AbWorld; RabCIPd chosenLost $=$ chosenLost ${ }^{\prime}$
\wedge maybeLost $=$ maybeLost ${ }^{\prime}$
\wedge definitelyLost $=$ definitelyLost ${ }^{\prime}$
\vdash
$\forall n$: dom abAuthPurse •
(abAuthPurse' n).balance $=($ abAuthPurse $n)$.balance
$\wedge($ abAuthPurse' $n) \cdot$ lost $=($ abAuthPurse $n)$.lost

The proof of this is immediate: Ignore changes no values, definitelyLost, maybeLost and chosenLost do not change, from the hypothesis; so the abstract balance and lost, which depend only on these unchanging values, are unchanged.

- 14.7.2

■ 14.7

14.8 Abort refines AbIgnore

As we saw at the end of section 14.3, by splitting up promoted operations, we have generated a requirement to prove the correctness of the Abort branch once only. We do that here. We cast it as a lemma, because we also use it to simplify the proofs of operations that first abort (lemma 'abort backward').

Lemma 14.4 (Abort refines AbIgnore) Concrete Abort refines abstract Ignore. ${ }^{2}$
Abort; Rab'; RabOut $\vdash \exists$ AbWorld; a? : AIN •Rab \wedge RabIn \wedge AbIgnore \square

Proof:
Abort is written as a disjunction between Ignore and a promoted AbortPurseOkay. We use lemma 'ignore' (section 14.3) to simplify the proof obligation to the correctness of Ignore (which we discharge in section 14.7), and the Okay branch, which we prove here.

4.8.1 Invoking lemma 'deterministic'

We use lemma 'deterministic' (section 14.4.5) to simplify the proof obligations and then lemma 'AbIgnore' (section 14.6) to simplify the check-operation step.

We have to instantiate the predicates \mathcal{P} and \mathcal{Q}.
\mathcal{P} is a predicate identifying the $p d T h i s$ involved in the transaction. This is the $p d A u t h$ stored in the aborting purse, unless the aborting purse is in eaFrom, in which case we don't have a defined transaction. We cater for the case of no transaction in the \mathcal{Q} predicate, so \mathcal{P} can safely be defined as

$$
\mathcal{P} \Leftrightarrow p d T h i s=p d A u t h
$$

Q is a predicate on chosenLost. The after set chosenLost' either has pdThis removed (if the transaction moves it from chosenLost to definitelyLost), or is ${ }^{2}$ Used in proof of lemma abort, 14.9
unchanged (because $p d T h i s$ was not in chosenLost to start with) or is unchanged because there was no transaction to abort. Hence

```
2\Leftrightarrow
(pdThis \in maybeLost ^ chosenLost = chosenLost' \cup {pdThis})
    \vee (pdThis # maybeLost ^ status # eaFrom ^
    chosenLost = chosenLost')
\vee ( \text { status =eaFrom ^ chosenLost = chosenLost')}
```


14.8.2 exists-pd

The unpromoted operation AbortPurseOkay is incomplete. The output, $m!=\perp$, is not provided until promotion.

ФBOp; AbortPurseOkay; RabOut; RabCl'; RabIn $\mid m!=\perp$ ФВO
$\stackrel{+}{2}$
$\exists p d$ This : PayDetails $\bullet p d T h i s=p d A u t h$
This is immediate by the one point rule

- 14.8.2

14.8.3 Three cases

We split the remaining two proofs, of exists-chosenLost and check-operation, into three cases each, for each of the three disjuncts of Q. We start by arguing the behaviour of maybeLost and definitelyLost in the three cases.

- Case 1: aborted transaction in 'limbo': The aborting purse is the to purse in epv; the corresponding from purse is in epa or has logged. Hence aborting the transaction will definitely lose the value.

$$
\text { pdThis } \in \text { maybeLost }
$$

- Case 2: aborted transaction not in 'limbo': The aborting purse is not the to purse in epv, or the corresponding from purse is not in epa and has not logged. The transaction has either not got far enough to lose anything, or has progressed sufficiently far that the value was already either successfully transferred or definitely lost
pdThis \notin maybeLost \wedge status \neq eaFrom
- Case 3: no transaction to abort: The aborting purse is in eaFrom, so has no defined transaction. Nothing is aborted, so no value is lost.

$$
\text { status }=\text { eaFrom }
$$

Case 1: old transaction in limbo

pdThis $\in($ fromInEpa \cup fromLogged $) \cap$ toInEp v
We argue about the behaviour of maybeLost and definitelyLost using the fact that the purse is the to purse initially in epv in the aborting transaction, and it ogs the old transaction and moves to eaFrom. We argue that the transaction $p d T h i s$, initially in maybeLost by construction, is moved into definitelyLost ${ }^{\prime}$ by this case of the Abort operation. The transaction was far enough progressed that value may be lost, and it is lost in this case.

Behaviour of fromInEpa and fromLogged pdThis is in toInEpv (by our case assumption), so the only purse undergoing any change (name?) is the to purse; hence there can be no change to the status or logs of any from purse. Hence

```
romInEpa \(=\) fromInEpa
fromLogged \(=\) fromLogged \(^{\prime}\)
```

Behaviour of toInEpv pdThis is in toInEpv (by our case assumption); pdThis s not in toInEpv (Abort puts the purse into eaFrom); all other purses and transactions remain unchanged. So

$$
\text { toInEpv }=\text { toInEpv } \cup\{p d T h i s\}
$$

Behaviour of toLogged pdThis is not in toLogged (using lemma 'notLoggedAndIn' with pdThis \in toInEpv); pdThis is in toLogged' (the purse makes a to log when it aborts from epv); all other purses and transactions remain unchanged. whe

Behaviour of definitelyLost

definitelyLost

$=$ toLogged $\cap($ fromLogged \cup fromInEpa $) \quad[$ defn definitelyLost $]$
$=($ toLogged $\backslash\{p d T h i s\}) \cap($ fromLogged \cup fromInEpa' $) \quad$ [above]
$=\left(\right.$ toLogged $^{\prime} \cap\left(\right.$ fromLogged $^{\prime} \cup$ fromInEpa' $\left.\left.^{\prime}\right)\right) \backslash\{p d T h i s\} \quad$ [rearrange]
$=$ definitelyLost' $\backslash\{p d T h i s\}$
[defn definitelyLost']

ehaviour of maybeLost

maybeLost

$=($ frominEpa \cup fromLogged $) \cap$ toInEpv \quad [defn maybeLost $]$
$\left.=(\text { fromInEpa' } \cup \text { fromLogged })^{\prime}\right) \cap($ toInEpv $\cup\{p d T h i s\}) \quad$ [above]
$=\left(\left(\right.\right.$ frominEpa $^{\prime} \cup$ fromLogged $\left.^{\prime}\right) \cap$ toInEpv $\left.{ }^{\prime}\right)$
$\cup\left(\left(\right.\right.$ fromInEpa' \cup fromLogged $\left.\left.{ }^{\prime}\right) \cap\{p d T h i s\}\right)$
$=\left(\left(\right.\right.$ fromInEpa' $^{\prime} \cup$ fromLogged $\left.^{\prime}\right) \cap$ toInEp $\left.^{\prime}\right)$ $\cup\{p d T h i s\}$
$=$ maybeLost' $\cup\{p d T h i s\}$
[case assumption]
[defn maybeLost']

Case 2: old transaction not in limbo

pdThis $\notin($ fromInEpa \cup fromLogged $) \cap$ toInEpv \wedge status \neq eaFrom
We argue that the transaction pdThis is not moved into or out of maybeLost or definitelyLost by this case of the Abort operation.

Behaviour of fromInEpa \cup fromLogged If pdThis is in fromInEpa it is also in fromLogged' (the purse is in epa, so it makes a from log when it aborts); if
 $p d T h i s$ is not in fromInEpa \cup fromLogged it is not in fromLogged' (the purse is not in epa, so does not make a from log when it aborts), and not in fromInEpa' (because it ends in eaFrom); all other purses and transactions remain unchanged So
fromInEpa \cup fromLogged $=$ fromInEpa' \cup fromLogged $^{\prime}$

Behaviour of definitelyLost The cases allowed by our case assumption are:

- pdThis refers to the to purse in epv, hence is not in

$$
\text { fromInEpa } \cup \text { fromLogged }
$$

and hence not in definitelyLost. Also it is not in fromInEpa' \cup fromLogged ${ }^{\prime}$, and hence not in definitelyLost t^{\prime}. So definitelyLost is unchanged.

- pdThis refers to the to purse, but not in epv, or pdThis refers to the from purse. Hence toLogged is unchanged, since no to log is written, and logs cannot be lost. Also fromInEpa \cup fromLogged is unchanged. So definitelyLost is unchanged.

So
definitelyLost ${ }^{\prime}=$ definitelyLost
Behaviour of maybeLost The cases allowed by our case assumption are:

- pdThis refers to the to purse in epv, hence is not in

fromInEpa \cup fromLogged

and hence not in maybeLost. Also it is not in frominEpa' \cup fromLogged $^{\prime}$, and hence not in maybeLost'. So maybeLost is unchanged.

- pdThis refers to the to purse, but not in epv, or pdThis refers to the from purse. Hence toInEpv is unchanged, since no purse moves out of or in to epv. Also fromInEpa \cup fromLogged is unchanged. So maybeLost is unchanged.

So

$$
\text { maybeLost }{ }^{\prime}=\text { maybeLost }
$$

Case 3: no transaction to abort

$$
\text { status }=\text { eaFrom }
$$

From AbortPurseOkay, no purses change state and no logs are written. Therefore, definitelyLost and maybeLost don't change.
definitelyLost' $=$ definitelyLost
maybeLost' $=$ maybeLost

4.8.4 exists-chosenLost

We now use the behaviour of maybeLost and definitelyLost in the three cases to prove exists-chosenLost.

ФВОр; AbortPurseOkay; RabOut; RabCIPd'[pdThis/pdThis']; RabIn | $m!=\perp$

$$
\wedge p d T h i s=p d A u t h
$$

\vdash
\exists chosenLost $: \mathbb{P}$ PayDetails \bullet
$(p d T h i s \in$ maybeLost \wedge chosenLost $=$ chosenLost $\cup\{p d T h i s\}$
\vee pdThis \notin maybeLost \wedge status \neq eaFrom
\wedge chosenLost $=$ chosenLost ${ }^{\prime}$
\vee status $=$ eaFrom \wedge chosenLost $=$ chosenLost $\left.{ }^{\prime}\right)$ \wedge chosenLost \subseteq maybeLost

We push the existential quantifier in the consequent into the predicates:
ФВОр; AbortPurseOkay; RabOut; RabClPd'[pdThis/pdThis']; RabIn | $m!=\perp$
\wedge pdThis $=p d A u t h$
\vdash
pdThis \in maybeLost
\wedge (ヨ chosenLost : \mathbb{P} PayDetails •
chosenLost $=$ chosenLost' $\cup\{$ pdThis
\wedge chosenLost \subseteq maybeLost)
\vee pdThis \notin maybeLost \wedge status \neq eaFrom
$\wedge(\exists$ chosenLost : \mathbb{P} PayDetails •
chosenLost $=$ chosenLost'
\wedge chosenLost \subseteq maybeLost)
\checkmark status = eaFrom
$\wedge(\exists$ chosenLost : PP PayDetails •
chosenLost $=$ chosenLost
\wedge chosenLost \subseteq maybeLost)

In each case, we [one point] away the chosenLost because the predicate includes an explicit definition for it.

ФВОр; AbortPurseOkay; RabOut; RabCIPd'[pdThis/pdThis']; RabIn m. $\wedge p d$ This $=p d$ Auth
-
\wedge chosenLost' $\cup\{$ pdThis $\} \subseteq$ maybeLos
\checkmark pdThis \notin maybeLost \wedge status \neq eaFrom \wedge chosenLost' \subseteq maybeLost
\checkmark status $=$ eaFrom \wedge chosenLost' \subseteq maybeLost

In each case, the predicate is of the form ($a \wedge b$), and we argue below that $a \Rightarrow b$. This allows us to replace ($a \wedge b$) with a. If we do this, we obtain

ФВОр; AbortPurseOkay; RabOut; RabClPd'[pdThis/pdThis']; RabIn $m!=\perp$
\vdash
pdThis \in maybeLost
\vee pdThis \notin maybeLost \wedge status \neq eaFrom
\checkmark status $=$ eaFrom
which is true. We now carry out the argument as described above for each of the three disjuncts

Case 1: old transaction in limbo

We must show that under the assumptions of this lemma and in this case
pdThis \in maybeLost \Rightarrow
chosenLost $\cup\{p d T h i s\} \subseteq$ maybeLost
This follows by:

chosenLost' $\cup\{p d T h i s\}$

\subseteq maybeLost' $\cup\{p d T h i s\}$
[hypothesis]
\subseteq maybeLost
[previous argument for case 1]
14.8.4

Case 2: old transaction not in limbo

We must show that under the assumptions of this lemma and in this case

```
pdThis & maybeLost ^ status }\ddagger=\mathrm{ eaFrom }
    chosenLost' \subseteqmaybeLost
```

This follows by

```
chosenLost' \subseteqmaybeLost'
[hypothesis]
\(\Rightarrow\) chosenLost' \(\subseteq\) maybeLost
previous argument for case 2]
```

■ 14.8.4

Case 3: no transaction to abort

We must show that under the assumptions of this lemma and in this case

```
status = eaFrom =
```

 chosenLost' \(\subseteq\) maybeLost
 This follows by

chosenLost' \subseteq maybeLost	[hypothesis]
\Rightarrow chosenLost	maybeLost

14.8.4

- 14.8.4
14.9. LEMMA 'ABORT BACKWARD': OPERATIONS THAT FIRST ABORT

14.8.5 check-operation-ignore

We now use the behaviour of maybeLost and definitelyLost in the three cases to prove check-operation-ignore.

```
ФВОр; AbortPurseOkay; RabCIPd'[pdThis/pdThis'];
    AbWorld; RabCIPd
        pdThis = pdAuth
        \(\wedge\left(p d T h i s \in\right.\) maybeLost \(\wedge\) chosenLost \(=\) chosenLost \({ }^{\prime} \cup\{p d\) This \(\}\)
            \(\vee\) pdThis \(\notin\) maybeLost \(\wedge\) status \(=\) eaFrom
            \(\wedge\) chosenLost \(=\) chosenLost \({ }^{\prime}\)
        \(\vee\) status \(=\) eaFrom \(\wedge\) chosenLost \(=\) chosenLost \(\left.{ }^{\prime}\right)\)
    \(\forall n\) : dom abAuthPurse
        (abAuthPurse' \(n\) ).balance \(=(\) abAuthPurse \(n)\).balance
        ^ (abAuthPurse' \(n\) ).lost \(=(\) abAuthPurse \(n) \cdot l o s t\)
```

We can prove this for each of the three disjuncts in the hypothesis by [hyp disj].

Case 1: old transaction in limbo

lost is a function of definitelyLost \cup chosenLost. The pdThis moves from chosenLost to definitelyLost', so the union is unchanged.
balance is a function of maybeLost \backslash chosenLost. The pdThis moves from hosenLost, and hence from maybeLost, so the difference is unchanged.

- 14.8.5

Case 2+3: old transaction not in limbo or no transaction

From chosenLost $=$ chosenLost' and the arguments above, all the relevant sets are unchanging, so lost and balalnce are unchanging.

- 14.8.5
14.8.5
- 14.8

14.9 Lemma 'abort backward': operations that first abort

Some of the concrete operations are written as a composition of AbortPurseOkay with a simpler operation starting from eaFrom (StartFrom, StartTo, ReadExceptionLog, ExceptionLogClear).

Lemma 14.5 (abort backward) Where a concrete operation is written as a composition of AbortPurseOkay and a simpler operation starting from eaFrom, it is sufficient to prove that the promotion of the simpler operation alone refines the relevant abstract operation

ヨ Δ ConPurse • ФВОр \wedge (AbortPurseOkay ${ }_{9}$ BOpPurseEafromOkay)
Rab'; RabOut;
\forall BOpEafromOkay; Rab'; RabOut
\exists AbWorld; a ? : AIN \bullet Rab \wedge RabIn $\wedge A O p$
$\stackrel{-}{\square}$
AbWorld; a? : AIN •Rab \wedge RabIn $\wedge A O p$
-
Proof

- Use lemma 'promoted composition' (section C.11) to rewrite the promotion of the composition to a composition of promotions, yielding

```
(AbortOkay % BOpEafromOkay)
```

 Rab'; RabOut;
 \forall BOpEafromOkay; Rab'; RabOut ${ }^{\circ}$
\exists AbWorld; a ? : AIN \bullet Rab \wedge RabIn $\wedge A O p)$
\vdash
\exists AbWorld; a? : AIN •Rab \wedge RabIn $\wedge A O p$

- If BOp1 refines $A O p 1$ and $B O p 2$ refines $A O p 2$, then $B O p 1{ }_{9}^{\circ} B O p 2$ refines $A O p 1{ }_{9}^{\circ} A O p 2$ (invoke lemma 'compose backward', section C.9).
- Take BOp $1=$ AbortOkay, AOp $1=$ AbIgnore, and invoke lemma 'Abort refines AbIgnore' (section 14.8), to discharge this proof.
- Take BOp2 $=$ BOpEafromOkay, $A O p 2=A O p$, and note that we have that $B O p$ refines $A O p$ in the hypothesis.
- Note that AbIgnore ${ }_{9} A O p=A O p$, to reduce this expression in the consequent.
■ 14.9

14.10 Summary of lemmas

In section 9.2.4 we reduced the refinement correctness proof for an operation to:

We then built up a set of lemmas which may be used to simplify this proof requirement
$A O p$ and $B O p$ are often disjunctions of simpler operations, and lemmas 'multiple refinement' (section 14.2) and 'ignore' (section 14.3) are used to prove that any Ignore or Abort branches of BOp need be proved once only for all $B O p s$. These two branches are proved in lemmas later on, after further simplification for a general disjunct (Ignore, Abort or Okay) of BOp. This simplification starts with lemma 'deterministic' (section 14.4) which removes the $\exists A b W o r l d$ in the consequent of the correctness obligation. In doing so, it requires us to prove three side-lemmas (exists-pd, exists-chosenLost, checkoperation). Lemma 'lost unchanged' (section 14.5) allows the side-lemmas exists-pd and exists-chosenLost to be discharged immediately given certain conditions. Lemma 'AbIgnore' (section 14.6) then provides a simplification of the side-lemma check-operation when $A O p$ is AbIgnore

We can now prove that the Ignore and Abort branches of BOp are correct with respect to $A O p$. Section 14.7 proves that Ignore refines AbIgnore, and lemma 'Abort refines AbIgnore' (section 14.8) handles the Abort branch. With emmas 'multiple refinement' and 'ignore', this has now proved the correctness of the Ignore and Abort branches of all $B O p$.

Where the Okay branch of an operation is composed of Abort followed by the 'active' operation, lemma 'abort backward' gives us that we only need to prove the 'active' part.

Returning to the proof obligation written above, any of the Ignore or Abort branches of a BOp operation are dealt with by the lemmas. This leaves the Okay branch (if this contains an initial Abort, this can be ignored - from lemma ‘abort backward' we need only prove the non-aborting part). Usually, we then apply lemma 'deterministic' yielding a number of side-lemmas. These may sometimes be further simplified using lemmas 'lost unchanged' and 'AbIgnore'. The remaining proof is then particular to the $B O p$.

Correctness of Increase

15.1 Proof obligation

We have to prove the correct refinement of each abstract operation. In section 9.2.4 we give a general simplification of the correctness proof. We use lemma multiple refinement' (section 14.2) to split the proof obligation for each \mathcal{A} peration into one for each individual \mathcal{B} operation

This chapter proves the \mathcal{B} operation.

- We use lemma 'ignore' (see section 14.3) to simplify the proof obligation by proving the correctness of Ignore (in section 14.7), leaving the Okay branch to be proven here.
- We use lemma 'deterministic' (section C.1) to reduce the proof obligation to the three cases exists-pd, exists-chosenLost, and check-operation
- Since this operation leaves the sets maybeLost and definitelyLost unchanged, we use lemma 'lost unchanged' (section C.2) to discharge the exists pd-and exists chosenLost-obligations automatically.
- Since this operation refines AbIgnore, we use lemma 'AbIgnore' (from section C.3) to simplify check-operation to check-operation-ignore.

15.2 Invoking lemma 'lost unchanged'

Section 14.5.2 gives sufficient conditions to be able to invoke lemma 'lost unchanged'. These are that the unpromoted operation changes neither the status nor the exception log of the purse. Increase includes Ξ ConPurseIncrease, which says exactly that. We can therefore invoke lemma 'Lost unchanged'.
15.3 check-operation-ignore

ФВОр; IncreasePurseOkay; RabOut; RabClPd'[pdThis/pdThis'];
AbWorld; RabCIPd; RabIn
chosenLost' $=$ chosenLost
\wedge maybeLost' $=$ maybeLost
\wedge definitelyLost ${ }^{\prime}=$ definitelyLost
\vdash
$\forall n$: dom abAuthPurse •
(abAuthPurse' n).balance $=($ abAuthPurse $n)$.balance
$\wedge($ abAuthPurse' $n) \cdot$ lost $=($ abAuthPurse $n) \cdot$ lost
Proof: We have that maybeLost and definitelyLost are unchanged from the hypothesis. This shows that the balance and lost components of all the abstract purses remain unchanged.

- 15.3
- 15

Correctness of StartFrom

16.1 Proof obligation

We have to prove the correct refinement of each abstract operation. In section 9.2.4 we give a general simplification of the correctness proof. We use lemma 'multiple refinement' (section 14.2) to split the proof obligation for each \mathcal{A} operation into one for each individual \mathcal{B} operation This chapter proves the \mathcal{B} operation.

- We use lemma 'ignore' (see section 14.3) to simplify the proof obligation by proving the correctness of Ignore (in section 14.7), and Abort (in section 14.8), leaving the Okay branch to be proven here.
- Since the Okay branch of this operation is expressed as a promotion of AbortPurseOkay composed with a simpler EafromPurseOkay operation, we use lemma 'abort backward' (section C.5), and prove only that the promotion of the simpler operation is a refinement.
- We use lemma 'deterministic' (section C.1) to reduce the proof obligation to the three cases exists-pd, exists-chosenLost, and check-operation.
- Since this operation refines AbIgnore, we use lemma 'AbIgnore' (from section C.3) to simplify check-operation to check-operation-ignore.

16.2 Instantiating lemma 'deterministic

We take the $p d T h i s$ to be the $p d A u t h$ created by the start operation, and chosenLost to be unchanging.

$$
\begin{aligned}
& \mathcal{P} \Leftrightarrow \text { pdThis }=\left(\text { conAuthPurse }{ }^{\prime} \text { name } ?\right) . p d A u t h \\
& \mathcal{Q} \Leftrightarrow \text { chosenLost }=\text { chosenLost }^{\prime}
\end{aligned}
$$

16.3 Behaviour of maybeLost and definitelyLost

e argue that pdThis is not in fromInEpa or fromLogaed before or after the operation, where pdThis $=\left(\right.$ conAuthPurse ${ }^{\prime}$ pdThis.from $) . p d A u t h$

First, before the operation the purse is in eaFrom, and after it is in epr, and hence pdThis can never be in fromInEpa.

From BetweenWorld constraint B-7 if pdThis were in fromLogged' then we would have
(conAuthPurse name?).pdAuth.fromSeqNo $>$ pdThis.fromSeqNo
but we know these two $p d A u t h s$ are equal, so $p d T h i s$ cannot be in fromLogged'. If the log isn't there after the operation, it certainly isn't there before, so pdThis is not in toLogged either.

Only the from purse changes in this operation, so the sets toInEpv and toLogged can't change. Hence

$$
\begin{aligned}
& \text { toInEpv } v^{\prime}=\text { toInEpv } \\
& \text { toLogged' }=\text { toLogged } \\
& \text { fromInEpa' }=\text { fromInEpa }
\end{aligned}
$$

fromLogged' = fromLogged

It follows that maybeLost is unchanged:
maybeLost ${ }^{\prime}$
$=$ toInEpv $v^{\prime} \cap\left(\right.$ fromInEpa' \cup fromLogged $\left.^{\prime}\right)$
$=$ toInEpv $\cap($ fromInEpa \cup fromLogged $)$
= maybeLost

Also, definitelyLost is unchanged:

```
definitelyLost'
    = toLogged' }\cap(\mathrm{ fromInEpa' }\cup\mathrm{ fromLogged' 
    = toLogged \cap (fromInEpa }\cup\mathrm{ fromLogged }
    = definitelyLost
```


16.4 exists-pd

ФBOp; StartFromPurseEafromOkay; RabOut; RabCl'; RabIn
\exists pdThis : PayDetails •pdThis = (conAuthPurse' name? $).$.pdAuth
Proof
Use the [one point] rule with the expression for $p d$ This in the quantifier. - 16.4

6.5 exists-chosenLos

ФBOp; StartFromPurseEafromOkay; RabOut RabClPd'[pdThis/pdThis']; RabIn | pdThis = (conAuthPurse' name?).pdAuth
chosenLost : PP PayDetails • chosenLost $=$ chosenLost \wedge chosenLost \subseteq maybeLost

Proof:
We use the [one point] rule on chosenLost to give
ФВОр; StartFromPurseEafromOkay; RabOut; RabCIPd'[pdThis/pdThis']; RabIn | $p d$ This $=($ conAuthPurse' name? $) . p d A u t h$
\vdash
chosenLost' \subseteq maybeLost
We then have

■ 16.5

16.6 check-operation

ФBOp; StartFromPurseEafromOkay; RabClPd' $[$ pdThis/pdThis']; AbWorld; RabCIPd |
pdThis $=\left(\right.$ conAuthPurse ${ }^{\prime}$ name? $)$. pdAuth
\wedge chosenLost $=$ chosenLost
\vdash
$\forall n$: dom abAuthPurse •
(abAuthPurse' n).balance $=($ abAuthPurse n).balance \wedge (abAuthPurse' n).lost $=($ abAuthPurse $n)$.lost

Proof:

From Rab, we have that lost is a function of definitelyLost \cup chosenLost, which is unchanging, and that balance is a function of maybeLost \backslash chosenLost, which is also unchanging

- 16.6
- 16

Correctness of StartTo

17.1 Proof obligation

We have to prove the correct refinement of each abstract operation. In section 9.2.4 we give a general simplification of the correctness proof. We use lemma 'multiple refinement' (section 14.2) to split the proof obligation for each \mathcal{A} peration into one for each individual \mathcal{B} operation

This chapter proves the \mathcal{B} operation.

- We use lemma 'ignore' (see section 14.3) to simplify the proof obligation by proving the correctness of Ignore (in section 14.7), and Abort (in section 14.8), leaving the Okay branch to be proven here.
- Since the Okay branch of this operation is expressed as a promotion of AbortPurseOkay composed with a simpler EafromPurseOkay operation, we use lemma 'abort backward' (section C.5), and prove only that the promotion of the simpler operation is a refinement.
- We use lemma 'deterministic' (section C.1) to reduce the proof obligation to the three cases exists-pd, exists-chosenLost, and check-operation.
- Since this operation refines AbIgnore, we use lemma 'AbIgnore' (from section C.3) to simplify check-operation to check-operation-ignore.

17.2 Instantiating lemma 'deterministic'

We take $p d$ This to be the $p d A u t h$ created by the start operation, and chosenLost to be unchanging.

$$
\begin{aligned}
& \mathcal{P} \Leftrightarrow \text { pdThis }=(\text { conAuthPurse' name } ?) . p d A u t h \\
& \mathcal{Q} \Leftrightarrow \text { chosenLost }^{2} \text { chosenLost }^{\prime}
\end{aligned}
$$

17.3 Behaviour of maybeLost and definitelyLost

We argue that pdThis is not in any of the before sets fromInEpa, fromLogged, toInEpv, or toLogged, where we have
pdThis $=($ conAuthPurse' name? $) . p d A u t h$.
(conAuthPurse name?).nextSeqNo
[defn. StartTo]
$=$ (conAuthPurse' name?).pdAuth.toSeqNo
\Rightarrow (conAuthPurse name?).nextSeqNo
[defn. pdThis]
$=p d T h i s . t o S e q N o$
\Rightarrow req pdThis \notin ether \quad [BetweenWorld constraint B-2]
\Rightarrow pdThis \ddagger fromInEpa \cup fromLogged[BetweenWorld constraint B-12] $\wedge p d T h i s \notin$ toInEpv \cup toLogged [BetweenWorld constraint B-10]

The operation moves one purse from eaFrom into epv; no logs are written. Hence pdThis is in tolnEpv v^{\prime}, but not newly added to any of the other after sets. So
toInEpv $v^{\prime}=$ toInEpv $\cup\{p d$ This $\}$
toLogged ${ }^{\prime}=$ toLogged
fromInEpa' = fromInEpa
fromLogged' $=$ fromLogged
It follows that maybeLost is unchanged:

$$
\begin{aligned}
& \text { maybeLost' }^{\prime} \\
&=\text { toInEpv }^{\prime} \cap(\text { fromInEpa' } \cup \text { fromLogged }) \\
&=(\text { toInEpv } \cup\{p d T h i s\} \cap(\text { fromInEpa } \cup \text { fromLogged }) \\
&=\text { maybeLost } \cup(\{p d T h i s\} \cap(\text { fromInEpa } \cup \text { fromLogged })) \\
&=\text { maybeLost }
\end{aligned}
$$

17.4. EXISTS-PD

Also, definitelyLost is unchanged:

definitelyLost'

$=$ toLogged $^{\prime} \cap\left(\right.$ fromInEpa' \cup fromLogged $\left.{ }^{\prime}\right)$
$=$ toLogged $\cap($ fromInEpa \cup fromLogged $)$
= definitelyLost

17.4 exists-pd

ФBOp; StartToPurseEafromOkay; RabOut; RabCl'; RabIn
\vdash
\exists pdThis : PayDetails • pdThis = (conAuthPurse' name?).pdAuth

Proof:

Use the [one point] rule with the expression for $p d T h i s$ in the quantifier - 17.4

17.5 exists-chosenLos

ФBOp; StartToPurseEafromOkay; RabOut; RabClPd'[pdThis/pdThis'] RabIn | pdThis $=($ conAuthPurse' name? $) . p d A u t h$
\vdash
chosenLost : P PayDetails • chosenLost $=$ chosenLost ${ }^{\prime}$ \wedge chosenLost \subseteq maybeLost

Proof:
We apply the [one point] rule for chosenLost in the consequent to give
ФВОр; StartToPurseEafromOkay; RabOut; RabCIPd'[pdThis/pdThis']; RabIn |
$p d$ This $=($ conAuthPurse' name? $) . p d A u t h$
$\stackrel{+}{+}$
chosenLost' \subseteq maybeLost
chosenLost' \subseteq maybeLost ${ }^{\prime}$

17.6 check-operation

ФВОр; StartToPurseEafromOkay; RabClPd'[pdThis/pdThis'] AbWorld; RabClPd
pdThis $=($ conAuthPurse' name? $)$. .pdAuth
\wedge chosenLost $=$ chosenLost
\vdash
$\forall n$: dom abAuthPurse •
(abAuthPurse' n).balance $=($ abAuthPurse $n)$.balance
$\wedge\left(\right.$ abAuthPurse ${ }^{\prime}$) $) . l o s t=($ abAuthPurse $n) . l o s t$
Proof:
From Rab, we have that lost is a function of definitelyLost \cup chosenLost, which is unchanging, and that balance is a function of maybeLost \chosenLost, which is also unchanging.

- 17.6
- 17

Correctness of Req

18.1 Proof obligation

We have to prove the correct refinement of each abstract operation. In section 9.2.4 we give a general simplification of the correctness proof. We use lemma multiple refinement' (section 14.2) to split the proof obligation for each \mathcal{A} peration into one for each individual \mathcal{B} operation

This chapter proves the \mathcal{B} operation.

- We use lemma 'ignore' (see section 14.3) to simplify the proof obligation by proving the correctness of Ignore (in section 14.7), leaving the Okay branch to be proven here.
- We use lemma 'deterministic’ (section C.1) to reduce the proof obligation to the three cases exists-pd, exists-chosenLost, and check-operation.

18.2 Instantiating lemma 'deterministic'

We must instantiate two general predicates relating to pdThis and chosenLost. The choices for these predicates are based on the fact that the important transaction is the one referred to by the req message being consumed by the ReqOkay operation, and that before the operation, the set of transactions chosen to be lost should be all those chosen to be lost after the operation, but specifically excluding the transaction $p d T h i s$. Thus

$$
\begin{aligned}
& \mathcal{P} \Leftrightarrow \text { req } m ?=p d \text { This } \\
& \mathcal{Q} \Leftrightarrow \text { chosenLost }=\text { chosenLost } \backslash\{\text { pdThis }\}
\end{aligned}
$$

Figure 18.1: The correctness proof for Req.

18.3 Discussion

The correctness proof for Req is summarised in figure 18.1. There are three cases:

- The to purse for the transaction is in epv, and we choose that the transfer will succeed.
Before the operation, $p d$ This \notin maybeLost \cup definitelyLost, and the appropriate retrieve is RabEnd.
After the operation, $p d$ This \in maybeLost \backslash chosenLost ${ }^{\prime}$, and the appropriate retrieve is RabOkay'; the abstract operation is AbTransferOkay.
- The to purse is in epv, and we choose the transfer will fail (the to purse will move out of epv before receiving the val),
Before, pdThis \notin maybeLost \cup definitelyLost, and the appropriate retrieve is RabEnd'.
After, pdThis \in chosenLost', and the appropriate retrieve is RabWillBeLost'; the abstract operation is AbTransferLost.
- The to purse has already moved out of epv, so will not receive the val: the transfer has failed
Before, pdThis \ddagger maybeLost \cup definitelyLost, and the appropriate retrieve is RabEnd.
After, pdThis \in definitelyLost ${ }^{\prime}$, and the appropriate retrieve is RabHasBeenLost'; the abstract operation is AbTransferLost.
The following proof establishes that these are indeed the only cases, and that ReqOkay correctly refines AbTransfer in each case.
18.4. EXISTS-PD

18.4 exists-pd

ФВOp; ReqPurseOkay; RabOut; RabCl'; RabIn
\exists pdThis: PayDetails \bullet req \sim ? $=p d$ This

Proof:

We discharge this by removing the existential for pdThis because we have an explicit equation for it, using the [one point] rule.

- 18.4

18.5 exists-chosenlost

ФВОр; ReqPurseOkay; RabOut; RabCIPd'[pdThis/pdThis']; RabIn | req~ m ? $=p d$ This
\vdash
\exists chosenLost : \mathbb{P} PayDetails • chosenLost $=$ chosenLost $\backslash\{p d T h i s\}$ \wedge chosenLost \subseteq maybeLost

Proof:
That we can construct a chosenLost as the set difference is true because set difference is always defined. That the subset constraint holds follows as below:
chosenLost' \subseteq maybeLost ${ }^{\prime}$
[RabCIPd']
chosenLost $\backslash\{p d T h i s\} \subseteq$ maybeLost $\backslash\{p d T h i s\} \quad$ [property of set minus]
chosenLost \subseteq maybeLost $\backslash\{p d T h i s\}$ [eqn for chosenLost]
chosenLost \subseteq maybeLost
[lemma 'not lost before', section C. 14]

- 18.5

18.6 check-operation

ФBOp; ReqPurseOkay; RabOut; RabCIPd'[pdThis/pdThis']; AbWorld; RabCIPd; RabIn
req~ $m ?=p d$ This
\wedge chosenLost $=$ chosenLost $\backslash\{p d T h i s\}$
\vdash
AbTransfer

Proof:

We invoke lemma 'not lost before' to add constraints on maybeLost and definitelyLost to the hypothesis. This allows us to further alter the hypothesis by replacing RabCIPd with RabEndCIPd.

```
\PhiBOp; ReqPurseOkay; RabOut; RabCIPd'[pdThis/pdThis'];
            AbWorld; RabEndClPd; RabIn
            req~ m? = pdThis
            ^chosenLost = chosenLost' \{pdThis
            \wedge ~ m a y b e L o s t ~ = ~ m a y b e L o s t ' ~ \ \{ p d T h i s \}
            ^definitelyLost = definitelyLost'}\{pdThis
\vdash
AbTransfer
```

We use [hyp disj] to split RabCIPd'[...] into four separate cases (section 10.1.4) to prove (using identity in section 10.1.5). In each case, we strengthen the consequent by choosing an appropriate disjunct of AbTransfer.

- case 1: We choose that the value is not lost, so the corresponding abstract operation is AbTransferOkay

ФВОр; ReqPurseOkay; RabOut; RabOkayClPd'[pdThis/pdThis']; AbWorld; RabEndClPd; RabIn |

$$
\text { req } \sim ?=p d T h i s
$$

\wedge chosenLost $=$ chosenLost $\backslash\{p d T h i s$
\wedge maybeLost $=$ maybeLost ${ }^{\prime} \backslash\{$ pdThis $\}$
\wedge definitelyLost $=$ definitelyLost $\backslash\{p d T h i s\}$
\vdash
AbTransferOkay

- case 2: We choose that the value will be lost, so the corresponding abstract operation is AbTransferLost

ФBOp; ReqPurseOkay; RabOut
RabWillBeLostCIPd'[pdThis/pdThis'];
AbWorld; RabEndCIPd; RabIn
req $\sim m$? $=p d$ This
\wedge chosenLost $=$ chosenLost $^{\prime} \backslash\{p d T h i s\}$
\wedge maybeLost $=$ maybeLost' $\backslash\{p d T h i s\}$
\wedge definitelyLost $=$ definitelyLost ${ }^{\prime} \backslash\{p d T h i s\}$
\vdash
AbTransferLost
18.7. CASE 1: REQOKAY AND RABOKAYCLPD

- case 3: We say that the value has already been lost, so the corresponding abstract operation is AbTransferLost

```
ФВOp; ReqPurseOkay; RabOut
    RabHasBeenLostCIPd'[pdThis/pdThis'];
                AbWorld; RabEndCIPd; RabIn
            req~m? = pdThis
            ^chosenLost = chosenLost'}\{pdThis
            ^maybeLost = maybeLost'}\{pdThis
            ^definitelyLost = definitelyLost'}\{pdThis
\vdash
AbTransferLost
```

- case 4: The fourth case is impossible. We choose RabEndCIPd', and prove that the hypothesis is contradictory, so the choice of corresponding abstract operation is unimportant

ФBOp; ReqPurseOkay; RabOut; RabEndClPd' $\left[p d T h i s / p d T h i s^{\prime}\right]$; AbWorld; RabEndClPd; RabIn |
req~ m ? $=p d$ This
\wedge chosenLost $=$ chosenLost $\backslash\{p d T h i s$
\wedge maybeLost $=$ maybeLost' $\backslash\{p d T h i s\}$
\wedge definitelyLost $=$ definitelyLost $\backslash\{p d$ This $\}$
AbTransfer
We now have four independent cases to prove. The next four sections each prove one case.

18.7 case 1: ReqOkay and RabOkayCIPd'

ФВОр; ReqPurseOkay; RabOut; RabOkayCIPd' [pdThis/pdThis']; AbWorld; RabEndCIPd; RabIn
req~m? = pdThis
\wedge chosenLost $=$ chosenLost $^{\prime} \backslash\{p d T h i s$
\wedge maybeLost $=$ maybeLost $\backslash\{p d T h i s\}$
\wedge definitelyLost $=$ definitelyLost $\backslash\{p d T h i s\}$
\vdash
AbTransferOkay

8.7.1 The behaviour of maybeLost and definitelyLost

We argue that the transaction pdThis is initially not in maybeLost or definitelyLost, and is moved into maybeLost \backslash chosenLost' by this case of the ReqOkay operation. The transaction initially was not far enough progressed to have the potential of being lost; afterwards it has progressed far enough that it may be
lost, but we are actually on the branch that will succeed
We have from RabOkayCIPd' that
pdThis \in maybeLost \backslash chosenLost ${ }^{\prime}$
Therefore pdThis \not chosenLost $^{\prime}$ (by the definition of set minus) and pdThis \notin definitelyLost' (by lemma 'lost'). So we have

$$
\begin{aligned}
& \text { definitelyLost }=\text { definitelyLost' }^{\prime} \\
& \text { maybeLost }=\text { maybeLost } \backslash\{p d T h i s\} \\
& \text { chosenLost }=\text { chosenLost }^{\prime}
\end{aligned}
$$

18.7.2 AbTransferOkay

In this section we prove that an AbWorld that has the correct retrieve properties also satisfies AbTransferOkay. Recall that our proof obligation is

```
\PhiBOp; ReqPurseOkay; RabOut; RabOkayCIPd'[pdThis/pdThis'];
            AbWorld; RabEndCIPd; RabIn
        req~ m? = pdThis
        req m? = paIhis
    ^ chosenLost = chosenLost \{pdThis
    ^ maybeLost = maybeLost' \{pdThis
    | definitelyLost = definitelyLost'}\{pdThis
\vdash
AbTransferOkay
```

Each element of AbWorld is defined by an explicit equation in RabEndCIPd, and we show that this value satisfies AbTransferOkay by showing each predicate holds.
A-1 $A b O p$: This trivial: $A b O p$ imposes no constraints.
A-2 AbWorldSecureOp

- a ? \in ran transfer
true by construction of a ? from m ? in RabIn.
18.7. CASE 1: REQOKAY AND RABOKAYCLPD'
- no purses other than from? and to? change

For balance and lost we show that RabEndCIPd and
RabOKayCIPd'[pdThis/pdThis']
are essentially the same. This is immediate because in both cases the relevant predicates are captured in the same schema OtherPursesRab.
A-3 Authentic[from?/name?], Authentic[to?/name?]
We have pdThis \in maybeLost', hence it is in both authenticFrom' and in authenticTo'. Hence, by $\Phi B O p$ and AbstractBetween, it is also in both authenticFrom and in authenticTo.
A-4 SufficientFundsProperty
true from ConPurse constraint $\mathrm{P}-2 \mathrm{~b}$
A-5 to? \neq from?
true because pdThis is a PayDetails.
A-6 abAuthPurse' from? $=\ldots$, abAuthPurse' to $?=\ldots$ Each of the four elements (from and to purses, each with balance and lost) are handled below, followed by all the other elements in one section.

The from purse's balance component

(abAuthPurse pdThis.from).balance

= (conAuthPurse pdThis.from).balance

+ sumValue(((maybeLost \backslash chosenLost)
$\cap\{p d:$ PayDetails $\mid p d . t o=p d$ This.from $\})$
\ \{pdThis\})
[RabEndClPd]
$=$ (conAuthPurse pdThis.from).balance
+ sumValue((((maybeLost $\backslash\{p d T h i s\}) \backslash$ chosenLost $\left.^{\prime}\right)$
$\cap\{p d:$ PayDetails $\mid p d$. to $=p d$ This.from $\})$
($\{p d T h i s\}$)
[section 18.7.1]
$=$ (conAuthPurse pdThis.from).balance
+ sumValue(((maybeLost' \chosenLost')
$\cap\{p d:$ PayDetails $\mid p d . t o=p d$ This.from $\})$
\ \{pdThis\})
[rearranging]
$=p d$ This.value $+($ conAuthPurse' pdThis.from).balance + sumValue((maybeLost \backslash chosenLost')
$\cap\{p d$: PayDetails \mid pd.to $=$ pdThis.from $\})$
$\backslash\{p d T h i s\})$
[RabOKayClPd' [...]]
So
(abAuthPurse' from?).balance $=$ (abAuthPurse from?).balance - value?

The from purse's lost component

(abAuthPurse pdThis.from).lost
$=$ sumValue $((($ definitelyLost \cup chosenLost $)$
$\cap\{p d:$ PayDetails $\mid p d$.from $=p d$ This.from $\})$

$$
\\{p d T h i s\})
$$

[RabEndCIPd]
$=$ sumValue ((definitelyLost' \cup chosenLost')
$\cap\{p d:$ PayDetails $\mid p d$. from $=p d$ This.from $\})$
\ \{pdThis\})
$=$ (abAuthPurse' pdThis.from).lost
[section 18.7.1]
[RabOKayClPd'[...]]

The to purse's balance component

(abAuthPurse pdThis.to).balance
$=$ (conAuthPurse pdThis.to).balance

+ sumValue((maybeLost \backslash chosenLost)
$\cap\{p d:$ PayDetails $\mid p d . t o=p d$ This.to $\})$

{pdThis\}) }
[RabEndCIPd]
$=($ conAuthPurse pdThis.to).balance
+ sumValue(((maybeLost $\backslash\{p d T h i s\}) \backslash$ chosenLost') $\cap\{p d:$ PayDetails \mid pd.to $=p d$ This.to $\})$
\ \{pdThis\}) [section 18.7.1]
 [RabOkayCIPd' [...]]

From the form of (abAuthPurse' $p d$ This.to).balance $=p d$ This.value $+n$ in $A b$ TransferOkay, we see that this last subtraction gives a positive result. So
$\left(\right.$ abAuthPurse ${ }^{\prime}$ to? $)$. balance $=($ abAuthPurse to? $)$. balance + value ?

The to purse's lost component

(abAuthPurse pdThis.to).lost

$=$ sumValue ((definitelyLost \cup chosenLost $)$
$\cap\{p d:$ PayDetails $\mid p d$.from $=p d$ This.to $\})$
\ \{pdThis\})

$=$ sumValue $\left(\left(\left(\right.\right.\right.$ definitelyLost \cup chosenLost $\left.t^{\prime}\right)$
 $\cap\{p d:$ PayDetails $\mid p d$. from $=p d$ This.to $\})$

$$
\backslash\{p d T h i s\})
$$

[section 18.7.1]
$=($ abAuthPurse' pdThis.to).lost
[RabOKayClPd'[...]]

The remaining from and to purse components

These are unchanging, by EConPurseReq, and that the retrieves each define a unique abstract world.
18.7.2

- 18.7

18.8 case 2: ReqOkay and RabWillBeLostPd

ФВОр; ReqPurseOkay; RabOut; RabWillBeLostClPd'[pdThis/pdThis']; AbWorld; RabEndCIPd; RabIn req $\sim m$? $=p d$ This
\wedge chosenLost $=$ chosenLost ${ }^{\prime} \backslash\{p d T h i s\}$
\wedge maybeLost $=$ maybeLost ${ }^{\prime} \backslash\{p d T h i s\}$
\wedge definitelyLost $=$ definitelyLost $\backslash\{p d T h i s\}$
\vdash
AbTransferLost

18.8.1 The behaviour of maybeLost and definitelyLost

We argue that the transaction $p d$ is initially not in maybeLost or definitelyLost, and is moved into chosenLost' by this case of the ReqOkay operation. The transaction initially was not far enough progressed to have the potential of being lost; afterwards it has progressed far enough that it may be lost, and we choose that it will be lost.

We have from RabWillBeLostCIPd' $[.$.] that
pdThis \in chosenLost ${ }^{\prime}$
Therefore
$p d T h i s \in$ maybeLost ${ }^{\prime}$
because chosenLost' \subseteq maybeLost ${ }^{\prime}$. But we can say that pdThis \ddagger definitelyLost ${ }^{\prime}$ (by lemma 'lost'). So we have

$$
\begin{aligned}
& \text { definitelyLost }=\text { definitelyLost' } \\
& \text { maybeLost }=\text { maybeLost } \backslash\{p d T h i s\} \\
& \text { chosenLost }=\text { chosenLost } \backslash\{p d T h i s\}
\end{aligned}
$$

18.8.2 AbTransferLos

In this section we prove that an AbWorld that has the correct retrieve properties also satisfies AbTransferLost. Recall, our proof obligation is

```
ФВOp; ReqPurseOkay; RabOut; RabWillBeLostClPd'[pdThis/pdThis']
            AbWorld; RabEndCIPd; RabIn
        req \({ }^{\sim} m\) ? \(=p d\) This
        \(\wedge\) chosenLost \(=\) chosenLost \(^{\prime} \backslash\{p d T h i s\}\)
        \(\wedge\) maybeLost \(=\) maybeLost \(\backslash\{p d T h i s\}\)
        \(\wedge\) definitelyLost \(=\) definitelyLost \(\backslash\{p d T h i s\}\)
\(\vdash\)
AbTransferLost
```

Each element of AbWorld is defined by an explicit equation in RabEndCIPd, and we show that this value satisfies AbTransferLost by showing each predicate holds.

A-1 AbOp: This trivial: $A b O p$ imposes no constraints.
A-2 AbWorldSecureOp

- a? \in ran transfer
true by construction of a ?
- no purses other than from? and to? change

For balance and lost we show that RabEndCIPd and RabWillBeLostCIPd'[pdThis/pdThis'] are essentially the same. This is immediate because in both cases the relevant predicates are captured in the same schema OtherPursesRab

A-3 Authentic[from?/name?],Authentic[to?/name?]
We have pdThis \in maybeLost', hence it is in both authenticFrom' and in authenticTo'. Hence, by $\Phi B O p$ and AbstractBetween, it is also in both authenticFrom and in authenticTo.
A-4 SufficientFundsProperty true from ConPurse constraint P-2b
A-5 to? = from? true because $p d$ This is a PayDetails.

A-6 abAuthPurse' from? = . . . abAuthPurse' to $?=\ldots$
Each of the four elements (from and to purses, each with balance and lost) are handled below, followed by all the other elements in one section.

The from purse's balance component

(abAuthPurse pdThis.from).balance

$=$ (conAuthPurse pdThis.from).balance

+ sumValue((maybeLost \backslash chosenLost $)$
$\cap\{p d:$ PayDetails $\mid p d . t o=p d T h i s$. from $\})$
(\{pdThis\})
$=$ (conAuthPurse pdThis.from).balance
+ sumValue (((maybeLost' $\backslash\{p d T h i s\}) \backslash$ chosenLost $\left.^{\prime} \backslash\{p d T h i s\}\right)$ $\cap\{p d:$ PayDetails $\mid p d . t o=p d$ This.from $\})$
1 \{pdThis\})
[section 18.8.1]
$=$ (conAuthPurse pdThis.from).balance
+ sumValue(((maybeLost' \backslash chosenLost $\left.{ }^{\prime}\right)$
$\cap\{p d:$ PayDetails $\mid p d . t o=p d$ This.from $\})$
\ \{pdThis\})
$=p d T h i s . v a l u e+\left(\right.$ conAuthPurse e^{\prime} pdThis.from $)$.balance
+ sumValue ((maybeLost' \backslash chosenLost $\left.{ }^{\prime}\right)$
$\cap\{p d:$ PayDetails $\mid p d . t o=p d$ This.from $\})$
(\{pdThis\}) [ReqPurseOkay]
$=p d T h i s . v a l u e+($ abAuthPurse' $p d$ This.from $)$.balance
[RabWillBeLostCIPd'[..]]
So
(abAuthPurse' from?).balance $=($ abAuthPurse from? $)$. balance - value ?

The from purse's lost component

(abAuthPurse pdThis.from).lost
$=$ sumValue $((($ definitelyLost \cup chosenLost $)$
$\cap\{p d:$ PayDetails $\mid p d$. from $=p d$ This.from $\})$
1 \{pdThis\})
[RabEndCIPd]
$=$ sumValue $\left(\left(\left(\right.\right.\right.$ definitelyLost \cup chosenLost $\left.^{\prime} \backslash\{p d T h i s\}\right)$
$\cap\{p d:$ PayDetails $\mid p d$. from $=p d$ This.from $\})$
\ \{pdThis\})
[section 18.8.1]
$=$ sumValue $((($ definitelyLost \cup chosenLost' $)$
$\cap\{p d:$ PayDetails $\mid p d$. from $=p d$ This.from $\})$
\ \{pdThis\})
[rearrange]
$=$ (abAuthPurse' pdThis.from).lost $-p d T h i s . v a l u e$
[RabWillBeLostCIPd'[...]]

The to purse's balance componen

(abAuthPurse pdThis.to).balance
$=$ (conAuthPurse pdThis.to).balance

+ sumValue((maybeLost \backslash chosenLost $)$
$\cap\{p d:$ PayDetails $\mid p d . t o=p d$ This.to $\})$
1 \{pdThis\})
[RabEndClPd]
$=$ (conAuthPurse pdThis.to).balance
+ sumValue(((maybeLost $\backslash\{p d$ This $\}) \backslash$ chosenLost $\backslash\{p d T h i s\})$
$\cap\{p d:$ PayDetails $\mid p d . t o=p d$ This.to $\})$
\ \{pdThis\})
[section 18.8.1]
$=$ (conAuthPurse pdThis.to).balance
+ sumValue ((maybeLost' \backslash chosenLost $\left.{ }^{\prime}\right)$
$\cap\{p d:$ PayDetails $\mid p d . t o=p d$ This.to $\})$

{pdThis\}) }
[rearranging]
$=$ (conAuthPurse' pdThis.to).balance
+ sumValue((maybeLost \backslash chosenLost $\left.t^{\prime}\right)$
$\cap\{p d:$ PayDetails $\mid p d . t o=p d$ This.to $\})$

{pdThis\}) }
$=$ (abAuthPurse' pdThis.to).balance $\quad[$ RabWillBeLostClPd'[...]]
The to purse's lost component
(abAuthPurse pdThis.to).lost
$=$ sumValue $((($ definitelyLost \cup chosenLost $)$
$\cap\{p d:$ PayDetails $\mid p d$.from $=p d$ This.to $\})$
\ \{pdThis\})
[RabEndCIPd]

$$
\begin{aligned}
& =\text { sumValue }\left(\left(\left(\text { definitelyLost } \cup \text { chosenLost }^{\prime} \backslash\{p d \text { This }\}\right)\right.\right. \\
& \\
& \quad \cap\{p d: \text { PayDetails } \mid \text { pd.from }=p d \text { This.to }\}) \\
& \\
& \quad \backslash\{p d T h i s\})
\end{aligned}
$$

$=$ sumValue $\left(\left(\left(\right.\right.\right.$ definitelyLost \cup chosenLost $\left.^{\prime}\right)$ $\cap\{p d:$ PayDetails $\mid p d$. from $=p d$ This.to $\})$

$$
\\{p d T h i s\})
$$

[rearrange]
$=$ (abAuthPurse ${ }^{\prime}$ pdThis.to).lost
[RabWillBeLostCIPd'[...]]

The remaining from and to purse components

These are unchanging, by EConPurseReq, and that the retrieves each define a unique abstract world.

- 18.8.2
- 18.8
18.9 case 3: ReqOkay and RabHasBeenLostPd'

ФВОр; ReqPurseOkay; RabOut; RabHasBeenLostCIPd'[pdThis/pdThis']; AbWorld; RabEndCIPd; RabIn |
req~ m ? = pdThis
\wedge chosenLost $=$ chosenLost $^{\prime} \backslash\{p d$ This $\}$
\wedge maybeLost $=$ maybeLost $\backslash\{p d T h i s\}$
\wedge definitelyLost $=$ definitelyLost $\backslash\{p d T h i s\}$
$\stackrel{\vdash}{ } \stackrel{-}{A b T}$
AbTransferLost
18.9.1 The behaviour of maybeLost and definitelyLost

We argue that the transaction $p d$ is initially not in maybeLost or definitelyLost, and is moved into definitelyLost' by this case of the ReqOkay operation. The transaction initially was not far enough progressed to have the potential of being lost; afterwards it has progressed far enough that it has in fact been lost.

We have from RabHasBeenLostCIPd' that

$p d T h i s \in$ definitelyLost'

Therefore pdThis \ddagger maybeLost' (by lemma 'lost’), and also pdThis \notin chosenLost'
(because this is a subset of maybeLost'). So we have

$$
\begin{aligned}
& \text { definitelyLost }=\text { definitelyLost } \backslash\{p d T h i s\} \\
& \text { maybeLost }=\text { maybeLost }
\end{aligned}
$$

chosenLost $=$ chosenLost ${ }^{\prime}$

18.9.2 AbTransferLost

In this section we prove that an AbWorld that has the correct retrieve properties also satisfies AbTransferLost. Recall, our proof obligation is

$$
\begin{aligned}
& \text { ФBOp; ReqPurseOkay; RabOut; RabHasBeenLostClPd' }[\text { pdThis/pdThis' }] ; \\
& \quad \text { AbWorld; RabEndClPd; RabIn } \mid \\
& \quad \text { req } \sim \text { ? }=\text { pdThis } \\
& \wedge \text { chosenLost }=\text { chosenLost } \backslash\{\text { pdThis }\} \\
& \wedge \text { maybeLost }=\text { maybeLost } \backslash\{p d T h i s\} \\
& \\
& \wedge \text { definitelyLost }=\text { definitelyLost' } \backslash \text { \{pdThis }\} \\
& \vdash \\
& \text { AbTransferLost }
\end{aligned}
$$

Each element of AbWorld is defined by an explicit equation in RabEndCIPd, and we show that this value satisfies AbTransferLost by showing each predicate holds.

A-1 $A b O p$: This trivial: $A b O p$ imposes no constraints.
A-2 AbWorldSecureOp

- a ? \in ran transfer
true by construction of a ?
- no purses other than from? and to? change

For balance and lost we show that RabEndClPd and RabHasBeenLostCIPd' $[p d T h i s / p d T h i s]$ are essentially the same. This is immediate because in both cases the relevant predicates are captured in the same schema OtherPursesRab.
A-3 Authentic[from?/name?], Authentic[to?/name?]
We have pdThis \in maybeLost', hence it is in both authenticFrom ${ }^{\prime}$ and in authenticTo'. Hence, by $\Phi B O P$ and AbstractBetween, it is also in both authenticFrom and in authenticTo

A-4 SufficientFundsProperty
true from ConPurse constraint $\mathrm{P}-2 \mathrm{~b}$

A-5 to? $=$ from?
true because $p d$ This is a PayDetails.
A-6 abAuthPurse' from? $=\ldots$, abAuthPurse' to? $=\ldots$
Each of the four elements (from and to purses, each with balance and lost) are handled below, followed by all the other elements in one section.

The from purse's balance component

(abAuthPurse pdThis.from).balance
$=$ (conAuthPurse $p d$ This.from).balance

+ sumValue((maybeLost \backslash chosenLost)
$\cap\{p d:$ PayDetails $\mid p d . t o=p d$ This.from $\})$
\ \{pdThis\})
$=$ (conAuthPurse pdThis.from).balance
+ sumValue(((maybeLost' \backslash chosenLost $\left.{ }^{\prime}\right)$
$\cap\{p d:$ PayDetails $\mid p d . t o=p d$ This.from $\})$
(\{pdThis\}) [section 18.9.1]
$=p d T h i s . v a l u e+($ conAuthPurse' p dThis.from).balance
+ sumValue(((maybeLost' \backslash chosenLost $\left.{ }^{\prime}\right)$
$\cap\{p d:$ PayDetails $\mid p d . t o=p d$ This.from $\})$
\{pdThis\}) [Reap
$=p d$ This.value + (abAuthPurse ${ }^{\prime}$ pdThis.from).balance
[RabHasBeenLostClPd'[...]]
So
(abAuthPurse' from?).balance $=($ abAuthPurse from? $)$.balance - value ?
The from purse's lost component
(abAuthPurse pdThis.from).lost
$=$ sumValue($($ definitelyLost \cup chosenLost $)$
$\cap\{p d:$ PayDetails $\mid p d$. from $=p d$ This.from $\})$

{pdThis\}) }
[RabEndCIPd]
$=$ sumValue $\left(\left(\left(\right.\right.\right.$ definitelyLost ${ }^{\prime} \backslash\{p d T h i s\} \cup$ chosenLost $\left.^{\prime}\right)$
$\cap\{p d:$ PayDetails $\mid p d$. from $=p d$ This.from $\})$
1 \{pdThis\})
[section 18.9.1]

```
= sumValue(((definitelyLost' \cup chosenLost')
            \cap{pd:PayDetails | pd.from = pdThis.from })
        \ {pdThis})
        [rearrange]
    = (abAuthPurse' pdThis.from).lost - pdThis.value
                            [RabHasBeenLostCIPd'[...]]
```


The to purse's balance component

(abAuthPurse pdThis.to).balance
$=$ (conAuthPurse pdThis.to).balance

+ sumValue((maybeLost \backslash chosenLost $)$

$$
\cap\{p d: \text { PayDetails } \mid \text { pd.to }=\text { pdThis.to }\})
$$

$$
\backslash\{p d T h i s\})
$$

[RabEndClPd]
$=$ (conAuthPurse pdThis.to).balance

+ sumValue ((maybeLost \backslash chosenLost $\left.{ }^{\prime}\right)$
$\cap\{p d:$ PayDetails $\mid p d . t o=p d$ This.to $\})$

{pdThis\}) }
[section 18.9.1]
$=$ (conAuthPurse' pdThis.to).balance
+ sumValue (((maybeLost' \backslash chosenLost $\left.{ }^{\prime}\right)$

$$
\cap\{p d: \text { PayDetails } \mid p d . t o=p d \text { This.to }\})
$$

$$
\backslash\{p d T h i s\})
$$

$=$ (abAuthPurse $p d$ This.to).balance \quad [RabHasBeenLostClPd $\left.{ }^{\prime}[\ldots]\right]$

The to purse's lost component

(abAuthPurse pdThis.to).lost
$=$ sumValue $(($ definitelyLost \cup chosenLost $)$
$\cap\{p d:$ PayDetails $\mid p d$. from $=p d T h i s . t o\})$
\ \{pdThis\})
[RabEndClPd]
$=$ sumValue(((definitelyLost ${ }^{\prime} \backslash\{p d T h i s\} \cup$ chosenLost $\left.^{\prime}\right)$
$\cap\{p d:$ PayDetails $\mid p d$. from $=p d$ This.to $\})$
1 \{pdThis\})
[section 18.9.1]
$=$ sumValue(((definitelyLost' \cup chosenLost $\left.^{\prime}\right)$
$\cap\{p d:$ PayDetails $\mid p d$. from $=p d$ This.to $\})$
\ \{pdThis\})
[rearrange]
$=$ (abAuthPurse' pdThis.to).lost [RabHasBeenLostCIPd'[...]]

The remaining from and to purse components

These are unchanging, by EConPurseReq, and that the retrieves each define a unique abstract world.

- 18.9.2
- 18.9

18.10 case 4: ReqOkay and RabEndPd'

ФBOp; ReqPurseOkay; RabOut; RabEndCIPd'[pdThis/pdThis']; AbWorld; RabEndCIPd; RabIn
req~ m ? $=p d$ This
\wedge chosenLost $=$ chosenLost $\backslash\{p d T h i s\}$
\wedge maybeLost $=$ maybeLost $\backslash\{p d T h i s\}$
\wedge definitelyLost $=$ definitelyLost $\backslash\{p d$ This $\}$
\vdash
AbTransfer
We show that RabEndCIPd ${ }^{\prime}[\ldots]$ is false under ReqOkay, and then proceed by [contradiction], because this shows the antecedent of the theorem is false, and hence the theorem is true
Φ BOp; ReaPurseOkay; RabOut; AbWorld'
pdThis : PayDetails; chosenLost' : \mathbb{P} PayDetails
req $\sim m ?=p d T h i s$
\vdash
\neg RabEndClPd'[pdThis/pdThis']
It suffices to show that $p d T h i s \in$ definitelyLost' \cup maybeLost'. We have

definitelyLost' \cup maybeLost ${ }^{\prime}$

$=\left(\right.$ fromInEpa $^{\prime} \cup$ fromLogged $\left.^{\prime}\right) \cap\left(\right.$ toInEpv $^{\prime} \cup$ toLogged $\left.^{\prime}\right)$
ReqPurseOkay gives us that the after state of the purse is epa; pdThis is in
authenticFrom, from ФВОp; hence pdThis is in fromInEpa'. So it is sufficient to show either pdThis is in toInEpv' or in toLogged'.

We know from the existence of the req, with BetweenWorld constraint B-1, that $p d$ This \in authenticTo. There is no ack in the ether':

pdThis \in fromInEpr	[precondition ReqPurseOkay]
\Rightarrow ack pdThis \notin ether	$[$ BetweenWorld constraint B-9]
\Rightarrow ack pdThis \notin ether $^{\prime}$	[defn. ReqPurseOkay and $\Phi B O$]

Hence
req pdThis \in ether'
[precondition ReqPurseOkay]
\wedge ack pdThis \notin ether ${ }^{\prime}$ [above]
\Rightarrow pdThis \in toInEpv $v^{\prime} \cup$ toLogged ${ }^{\prime} \quad$ [BetweenWorld constraint B-10] as required.

- 18.10
18.6
- 18

Correctness of Val

19.1 Proof obligation

We have to prove the correct refinement of each abstract operation. In section 9.2.4 we give a general simplification of the correctness proof. We use lemma multiple refinement' (section 14.2) to split the proof obligation for each \mathcal{A} peration into one for each individual \mathcal{B} operation

This chapter proves the \mathcal{B} operation.

- We use lemma 'ignore' (see section 14.3) to simplify the proof obligation by proving the correctness of Ignore (in section 14.7), leaving the Okay branch to be proven here.
- We use lemma 'deterministic' (section C.1) to reduce the proof obligation to the three cases exists-pd, exists-chosenLost, and check-operation.
- Since this operation refines AbIgnore, we use lemma 'AbIgnore' (from section C.3) to simplify check-operation to check-operation-ignore.

19.2 Instantiating lemma 'deterministic'

The choices for the predicates relating to pdThis and chosenLost are based on the fact that the important transaction is the one stored in the purse performing the ValOkay operation, and that before the operation, the set of transactions chosen to be lost should be all those chosen to be lost after the operation. Thus

$$
\mathcal{P} \Leftrightarrow p d \text { This }=(\text { conAuthPurse name? }) \cdot p d A u t h
$$

$Q \Leftrightarrow$ chosenLost $=$ chosenLost ${ }^{\prime}$

19.3 exists-pd

ФBOp; ValPurseOkay; RabOut; RabCl'; RabIn
\exists pdThis : PayDetails \bullet pdThis $=($ conAuthPurse name? $) . p d A u t h$
Proof:
This is immediate by the [one point] rule, as we have an explicit definition of pdThis.

- 19.3

19.4 exists-chosenlost

ФBOp; ValPurseOkay; RabOut; RabCIPd' [pdThis/pdThis']; RabIn pdThis $=($ conAuthPurse name?).pdAuth
\exists chosenLost $: \mathbb{P}$ PayDetails •
chosenLost $=$ chosenLost
\wedge chosenLost \subseteq maybeLost

Proof:

We can [one point] away the quantification because we have an explicit definition of chosenLost (as chosenLost'). We show that the constraint holds by

chosenLost $=$ chosenLost $^{\prime}$	[defn.]
\subseteq maybeLost	$[$ RabCIPd' $[\ldots]]$
\subseteq maybeLost $\backslash\{p d T h i s\}$	$[$ see 19.6.7]
\subseteq maybeLost	$[$ defn. $\backslash]$

19.4

19.5 check-operation

ФВОр; ValPurseOkay; RabClPd' [pdThis/pdThis']; AbWorld; RabClPd pdThis $=($ conAuthPurse name?).pdAuth
\wedge chosenLost $=$ chosenLost ${ }^{\prime}$
\vdash
$\forall n$: dom abAuthPurse
(abAuthPurse' n).balance $=($ abAuthPurse $n)$.balance
$\wedge($ abAuthPurse' n).lost $=($ abAuthPurse $n) . l o s t$
19.6. BEHAVIOUR OF MAYBELOST AND DEFINITELYLOST

151
We prove this first by investigating the way in which the key sets definitelyLost and maybeLost are modified by the operation. Having got equations for these changes, we then look at the equations for the components balance and lost or two types of purses: the to purse in the transaction pdThis, and ather purses.

19.6 Behaviour of maybeLost and definitelyLos

We argue that the transaction pdThis is initially in maybeLost, and is moved out of it, but not into definitelyLost', by the ValOkay operation. This operation determines that the transaction is successful

19.6.1 fromLogged

No logs change, so
fromLogged' $=$ fromLogged

19.6.2 toLogged

No logs change, so

$$
\text { toLogged' }=\text { toLogged }
$$

After the operation the purse is in eaTo, and pdThis is in authenticTo, from $\Phi B O p$, hence $p d T h i s \in$ toInEapayee'. Lemma 'notLoggedAndIn' (section C.12) gives us:

$$
\text { pdThis } \notin \text { toLogged' }
$$

19.6.3 toInEpv

From the precondition of ValPurseOkay we know the purse is in epv, and we know that the name of this purse is equal to pdThis.to. After the operation, this purse is in eaTo (that is, not in epv). No other purses change

$$
\begin{aligned}
& \text { toInEpv} v^{\prime}=\text { toInEpv } \backslash\{p d \text { This }\} \\
& \text { toInEpv }=\text { toInEpv } v^{\prime} \cup\{p d T h i s\}
\end{aligned}
$$

19.6.4 fromInEpa

Only the to purse changes
fromInEpa' = fromInEpa

19.6.5 definitelyLost

definitelyLost ${ }^{\prime}$
$=$ toLogged $^{\prime} \cap($ fromLogged' \cup fromInEpa' $)$
$=$ toLogged $\cap($ fromLogged \cup fromInEpa $)$
= definitelyLost

19.6.6 chosenLost

chosenLost ${ }^{\prime}=$ chosenLost
by choice. So
definitelyLost \cup chosenLost $=$ definitelyLost' \cup chosenLost ${ }^{\prime}$

19.6.7 maybeLost

maybeLost'

$=\left(\right.$ fromInEpa' \cup fromLogged $\left.{ }^{\prime}\right) \cap$ toInEpv v^{\prime}	[defn]
$=($ fromInEpa \cup fromLogged $) \cap($ toInEp $v \backslash\{p d T h i s\})$	[above]
$=(($ fromInEpa \cup fromLogged $) \cap$ toInEpv $) \backslash\{p d T h i s\}$	$[$ Spivey]
$=$ maybeLost $\backslash\{p d T h i s\}$	[defn]

val \in ether \wedge to.status $=e p v$
[precondition ValPurseOkay]
\Rightarrow pdThis \in fromInEpa \cup fromLogged
\Rightarrow pdThis \in maybeLost
[toInEpv, defn maybeLost]
pdThis \in maybeLost
[above]
$\wedge p d T h i s \notin$ chosenLost $^{\prime}$
\Rightarrow pdThis \in maybeLost \wedge pdThis \notin chosenLost
\Rightarrow pdThis \in maybeLost \backslash chosenLost

Also
maybeLost \backslash chosenLost $=($ maybeLost \backslash chosenLost $) \cup\{p d T h i s\}$

19.7 Clarifying the hypothesis

We can show that the hypothesis is actually stronger than it looks, in that we can replace RabClPd with RabOkayCIPd and replace RabClPd' with RabEndCIPd'. This is because pdThis \in maybeLost \backslash chosenLost, implying that RabOkayCIPd holds.
pdThis \notin maybeLost' (see construction of maybeLost') and so it cannot be in chosenLost' . pdThis \notin maybeLost' and so it cannot be in maybeLost' \backslash chosenLost'. pdThis \notin definitelyLost' because it is not in toLogged ${ }^{\prime}$.

This implies that RabEndCIPd'[...] holds. So we have to prove
ФBOp; ValPurseOkay; RabEndClPd'[pdThis/pdThis'
AbWorld; RabOkayCIPd |
pdThis $=($ conAuthPurse name? $) . p d A u t h$
\wedge chosenLost $=$ chosenLost
\vdash
$\forall n$: dom abAuthPurse •
(abAuthPurse' n).balance $=($ abAuthPurse $n)$.balance
\wedge (abAuthPurse' n).lost $=($ abAuthPurse $n)$.lost
We do this for each of the three components, for all the purses other than the to purse engaged in this transaction, and for exactly the to purse in this transaction.
19.7.1 Case balance component for non-pdThis.to purse
$\forall n$: dom abAuthPurse $\mid n \neq p$ dThis.to \bullet
(abAuthPurse' n).balance
$=($ conAuthPurse' n).balance

+ sumValue((maybeLost' \backslash chosenLost')
$\cap\{p d:$ PayDetails $\mid p d . t o=n\}) \backslash\{p d T h i s\})$
[RabEndCIPd'[pdThis/pdThis']]
$=\left(\right.$ conAuthPurse ${ }^{\prime}$ n).balance
+ sumValue((((maybeLost \backslash chosenLost' $) \cup\{p d T h i s\})$
$\cap\{p d:$ PayDetails $\mid p d . t o=n\}) \backslash\{p d$ This $\})$
union and subtraction cancel]
$=($ conAuthPursé n).balance
$\quad+$ sumValue $(($ maybeLost \backslash chosenLost $)$
+ sumValue $((($ maybeLost \backslash chosenLost $)$
$\cap\{p d:$ PayDetails \mid pd.to $=n\}) \backslash\{$ pdThis $\})$
[equation earlier]
$=$ (conAuthPursen).balance
+ sumValue(((maybeLost \chosenLost)
$\cap\{p d:$ PayDetails $\mid p d . t o=n\}) \backslash\{p d T h i s\})$
$=($ abAuthPurse $n)$.balance
[ФBOр]
[RabOkayCIPd]
19.7.2 Case lost component for non-pdThis.to purse

In this case the defining equations in the retrieve depend upon definitelyLost \cup chosenLost, which we derived as unchanging earlier. $\Phi B O p$ does not change the concrete values, so the abstract values do not change either.

■ 19.7.2
19.7.3 Case balance component for pdThis.to purse
(abAuthPurse' pdThis.to).balance
$=$ (conAuthPurse' pdThis.to).balance

+ sumValue(((maybeLost \backslash chosenLost $\left.{ }^{\prime}\right)$
$\cap\{p d:$ PayDetails \mid pd.to $=p d$ This.to $\}) \backslash\{p d T h i s\})$
[RabEndCIPd'[...]]
$=$ (conAuthPurse' pdThis.to).balance
+ sumValue((((maybeLost' \chosenLost') $\cup\{p d T h i s\})$ $\cap\{p d:$ PayDetails \mid pd.to $=p d T h i s . t o\}) \backslash\{p d T h i s\}$
[union and subtraction cancel]
$=$ (conAuthPurse' pdThis.to).balance
+ sumValue(((maybeLost \backslash chosenLost $)$ $\cap\{p d:$ PayDetails \mid pd.to $=p d T h i s . t o\}) \backslash\{p d T h i s\})$
$=($ conAuthPurse pdThis.to).balance + pdThis.value
+ sumValue((maybeLost \backslash chosenLost $)$
$\cap\{p d:$ PayDetails $\mid p d . t o=p d$ This.to $\}) \backslash\{p d T h i s\}$
$=$ (abAuthPurse pdThis.to).balance

9.7.4 Case lost component for pdThis.to purse

In this case the defining equations in the retrieve depend upon definitelyLost \cup chosenLost, which we derived as unchanging earlier. ValOkay does not change the concrete values, so the abstract values do not change either.

■ 19.7.4

- 19.7
- 19

Correctness of $A c k$

20.1 Proof obligation

We have to prove the correct refinement of each abstract operation. In section 9.2.4 we give a general simplification of the correctness proof. We use lemma 'multiple refinement' (section 14.2) to split the proof obligation for each \mathcal{A} peration into one for each individual \mathcal{B} operation

This chapter proves the \mathcal{B} operation.

- We use lemma 'ignore' (see section 14.3) to simplify the proof obligation by proving the correctness of Ignore (in section 14.7), leaving the Okay branch to be proven here.
- We use lemma 'deterministic' (section C.1) to reduce the proof obligation to the three cases exists-pd, exists-chosenLost, and check-operation.
- Since this operation refines AbIgnore, we use lemma 'AbIgnore' (from section C.3) to simplify check-operation to check-operation-ignore.

20.2 Instantiating lemma 'deterministic'

We must instantiate two general predicates relating to pdThis and chosenLost. The choices for these predicates are based on the fact that the important transaction is the one stored in the purse performing the AckOkay operation, and that before the operation, the set of transactions chosen to be lost should be all those chosen to be lost after the operation, because this operation plays no
part in deciding which transactions succeed and which ones lose. Thus
$\mathcal{P} \Leftrightarrow p d$ This $=($ conAuthPurse name? $) . p d A u t h$
$Q \Leftrightarrow$ chosenLost $=$ chosenLost ${ }^{\prime}$

20.3 exists-pd

ФВOp; AckPurseOkay; RabOut; RabCl'; RabIn
\exists dThis : PayDetails • pdThis $=($ conAuthPurse name? $)$. pdAuth

Proof:

This is immediate by [one point] rule, as we have an explicit definition of $p d$ This.

- 20.3

20.4 exists-chosenlost

ФВОр; AckPurseOkay; RabOut; RabCIPd'[pdThis/pdThis']; RabIn | pdThis = (conAuthPurse name?).pdAuth
\exists chosenLost: \mathbb{P} PayDetails •
chosenLost $=$ chosenLost \wedge chosenLost \subseteq maybeLost

Proof:

We can [one point] away the quantification because we have an explicit definition of chosenLost (as chosenLost'). We show that the constraint holds by

chosenLost $=$ chosenLost ${ }^{\prime}$	[def]
\subseteq maybeLost	$[$ RabClPd' $[\ldots]]$
\subseteq maybeLost	$[$ see 20.6.6]

■ 20.4
20.5. CHECK-OPERATION

20.5 check-operation

ФВОр; AckPurseOkay; RabClPd'[pdThis/pdThis']; AbWorld; RabClPd pdThis = (conAuthPurse name?).pdAuth \wedge chosenLost $=$ chosenLost
\vdash
n : dom abAuthPurse (abAuthPurse' n).balance $=($ abAuthPurse $n)$.balance $\wedge($ abAuthPurse' $n) \cdot$ lost $=($ abAuthPurse $n) \cdot$ lost

Proof:

We prove this by investigating the way in which the key sets definitelyLost and maybeLost are modified by the operation.

20.6 Behaviour of maybeLost and definitelyLost

We argue that the transaction $p d$ is initially in neither maybeLost nor definitelyLost, and is not moved into either of them by the AckOkay operation. The transaction was initially far enough along to have already succeeded.
20.6.1 Behaviour of fromLogged

From $\Phi B O p$, which says that only the purse name? changes, and then only according to AckPurseOkay, and from the definition of AckPurseOkay, in which exLog' $=$ exLog, we can see that
fromLogged' $=$ fromLogged
20.6.2 Behaviour of toLogged

Exactly as we argued for fromLogged,

$$
\text { toLogged }{ }^{\prime}=\text { toLogged }
$$

20.6.3 Behaviour of toInEpv

If $\operatorname{toInEpv} v^{\prime} \neq$ toInEpv, there must be some $p d$ in one and not in the other. From the definition of toInEpv, this means that for some purse that changes, either before or after the operation its status must equal epv. That is,
(conAuthPurse pd.to).status $=e p v$
\vee
$($ conAuthPurse' pd.to).status $=e p v$
rom $\varnothing В О р$ we have that the only purse that changes is name?. From AckPurseOkay we have that
(conAuthPurse name?).status =epa
(conAuthPurse' name?).status $=$ eaFrom
(neither equal to $e p v$). Therefore, no such $p d$ exists, and we have

$$
\text { toInEp } v^{\prime}=\text { toInEpv }
$$

20.6.4 Behaviour of fromInEpa

If fromInEpa' $=$ fromInEpa, there must be some $p d$ in one and not in the other. From the definition of fromInEpa, this means that for some purse that changes, either before or after the operation its status must equal epa. That is,

(conAuthPurse pd.from).status $=$ epa
 \vee

(conAuthPurse' p d.from).status $=$ epa
The only name that changes is name?, and from AckPurseOkay we have that
(conAuthPurse name?).status =epa
(conAuthPurse' name?).status = eaFrom
Therefore, we have

$$
\begin{aligned}
\text { frominEpa }^{\prime}= & \text { fromInEpa } \backslash\{p d: \text { PayDetails } \mid \text { pd.from }=\text { name? } \\
& \wedge(\text { conAuthPurse name?).status }=\text { epa } \\
& \wedge(\text { conAuthPurse name? }) . \text {.pdAuth }=p d\}
\end{aligned}
$$

In fact, the last predicate in this set limits the $p d$ to a single value, equal to $p d T h i s$, so we have

fromInEpa' $=$ fromInEpa $\backslash\{p d T h i s\}$

We now build up the two sets definitelyLost and maybeLost.
20.6. BEHAVIOUR OF MAYBELOST AND DEFINITELYLOST

20.6.5 Behaviour of definitelyLost

definitelyLost ${ }^{\prime}=$ toLogged ${ }^{\prime} \cap\left(\right.$ fromLogged $^{\prime} \cup$ fromInEpa' $\left.^{\prime}\right) \quad$ [defn] $\cap($ fromLogged $\cup($ fromInEpa $\backslash\{p d T h i s\}))$
$\begin{array}{cc}=\text { toLogged } & {[\text { pdThis } \notin f} \\ \cap((\text { fromLogged } \cup \text { fromInEpa }) \backslash\{\text { pdThis }\}\end{array}$
$($ fromLogged \cup fromInEpa) \cap (toLogged $\backslash\{p d$ This $\}$)
$=($ fromLogged \cup fromInEpa $) \cap$ toLogdedThis $\#$ toLogged, see below]
$=$ definitelyLost
[defn]
We have $p d T h i s \notin$ fromLogged, from the fact that $p d T h i s \in$ fromInEpa (because the before purse state is epa, and $\Phi B O p$ gives pdThis \in authenticFrom), and using lemma 'notLoggedAndIn'.

We have $p d \notin$ toLogged:
ack $p d \in$ ether
[precondition AckPurseOkay]
$\Rightarrow p d \notin$ toInEp $v \cup$ toLogged
[BetweenWorld constraint B-10]
$\Rightarrow p d \notin$ toLogged

Thus we have
definitelyLost' $=$ definitelyLost
20.6.6 Behaviour of maybeLost
maybeLost ${ }^{\prime}=\left(\right.$ fromInEpa $^{\prime} \cup$ fromLogged $\left.^{\prime}\right) \cap$ toInEp $^{\prime}$
$=($ fromInEpa $\cup($ fromLogged $\backslash\{p d T h i s\})) \cap$ toInEp v
[above identities]
$=(($ fromInEpa \cup fromLogged $) \backslash\{p d T h i s\}) \cap$ toInEp v
[$p d$ This \notin fromLogged, as above]
$=($ fromInEpa \cup fromLogged $) \cap($ toInEp $v \backslash\{p d T h i s\})$
[algebra]
$=($ fromInEpa \cup fromLogged $) \cap$ toInEpv[pdThis \notin toInEpv, see below]
= maybeLost
[defn.]

We have pdThis \notin toInEpv:
ack $p d \in$ ether
[precondition AckOkay] \Rightarrow pdThis \notin toInEpv \cup toLogged [BetweenWorld constraint B-10] \Rightarrow pdThis \notin toInEpv

Thus we have
maybeLost ${ }^{\prime}=$ maybeLost

20.7 Finishing proof of check-operation

The above shows that none of the three sets definitelyLost, maybeLost or chosenLost changes. As AckOkay does not alter any concrete balance or lost, and given that the abstract values are defined solely in terms of these (unchanging) values, it follows that the abstract values don't change, thus discharging the check-operation proof obligation.

- 20.5
- 20

Correctness of ReadExceptionLog

21.1 Proof obligation

We have to prove the correct refinement of each abstract operation. In section 9.2.4 we give a general simplification of the correctness proof. We use lemma 'multiple refinement' (section 14.2) to split the proof obligation for each \mathcal{A} peration into one for each individual \mathcal{B} operation

This chapter proves the \mathcal{B} operation.

- We use lemma 'ignore' (see section 14.3) to simplify the proof obligation by proving the correctness of Ignore (in section 14.7), and Abort (in section 14.8), leaving the Okay branch to be proven here.
- Since the Okay branch of this operation is expressed as a promotion of AbortPurseOkay composed with a simpler EafromPurseOkay operation, we use lemma 'abort backward' (section C.5), and prove only that the promotion of the simpler operation is a refinement.
- We use lemma 'deterministic' (section C.1) to reduce the proof obligation to the three cases exists-pd, exists-chosenLost, and check-operation.
- Since this operation leaves the sets maybeLost and definitelyLost unchanged, we use lemma 'lost unchanged' (section C.2) to discharge the exists pd-and exists chosenLost-obligations automatically.
- Since this operation refines AbIgnore, we use lemma ‘AbIgnore’ (from section C.3) to simplify check-operation to check-operation-ignore.
21.2 Invoking lemma 'lost unchanged

We have the constraint EConPurse in the definition of ReadExceptionLogPurseEafromOkay. From $\Phi B O p$ and Ξ ConPurse, we know that archive and conAuthPurse remain unchanged, as do definitelyLost and maybeLost. Hence we can invoke lemma 'Lost unchanged'

21.3 check-operation-ignore

ФBOp; ReadExceptionLogPurseEafromOkay;
RabOut; RabCIPd'[pdThis/pdThis'];
AbWorld; RabCIPd; RabIn
chosenLost ${ }^{\prime}=$ chosenLost
\wedge definitelyLost' $=$ definitelyLost
\vdash
n: dom abAuthPurse •
(abAuthPurse' n).balance $=($ abAuthPurse $n)$.balance
\wedge (abAuthPurse' n).lost $=($ abAuthPurse $n) \cdot l o s t$
Proof:
We have that maybeLost and definitelyLost are unchanged from the hypothesis. Hence the balance and lost components of all the abstract purses remain unchanged, satisfying our proof requirement.

- 21.

Correctness of ClearExceptionLog

22.1 Proof obligation

We have to prove the correct refinement of each abstract operation. In section 9.2.4 we give a general simplification of the correctness proof. We use lemma 'multiple refinement' (section 14.2) to split the proof obligation for each \mathcal{A} operation into one for each individual \mathcal{B} operation.

This chapter proves the \mathcal{B} operation.

- We use lemma 'ignore' (see section 14.3) to simplify the proof obligation by proving the correctness of Ignore (in section 14.7), and Abort (in section 14.8), leaving the Okay branch to be proven here.
- Since the Okay branch of this operation is expressed as a promotion of AbortPurseOkay composed with a simpler EafromPurseOkay operation, we use lemma 'abort backward' (section C.5), and prove only that the promotion of the simpler operation is a refinement.
- We use lemma 'deterministic' (section C.1) to reduce the proof obligation to the three cases exists-pd, exists-chosenLost, and check-operation.
- Since this operation leaves the sets maybeLost and definitelyLost unchanged, we use lemma 'lost unchanged' (section C.2) to discharge the exists pd-and exists chosenLost-obligations automatically.
- Since this operation refines AbIgnore, we use lemma ‘AbIgnore’ (from section C.3) to simplify check-operation to check-operation-ignore.

2.2 Invoking lemma 'Lost unchanged

The purse's exception log is cleared, so we cannot use the 'sufficient conditions' to invoke lemma 'lost unchanged': we need first to show that fromLogged and toLogged are unchanged.

We have from the operation definition that the exception log details in the purse that are to be cleared match the ones in the exceptionLogClear message. We have, from constraint B-15 that the log details in the message are already in the archive. So deleting them from the purse will not change allLogs. But fromLogged and toLogged partition allLogs, so these do not change either.

Hence we can invoke lemma 'Lost unchanged'.

22.3 check-operation-ignore

ФВОр; ClearExceptionLogPurseEafromOkay;
RabOut; RabCIPd' [pdThis/pdThis'];
AbWorld; RabCIPd; RabIn
chosenLost ${ }^{\prime}=$ chosenLost
\wedge maybeLost $=$ maybeLost
\wedge definitelyLost' $=$ definitelyLost
$\stackrel{\vdash}{\forall}$
$\forall n$: dom abAuthPurse
(abAuthPurse' n).balance $=($ abAuthPurse $n)$.balance
$\wedge($ abAuthPurse' $n) \cdot$ lost $=($ abAuthPurse $n) \cdot$ lost

Proof:

We have that maybeLost and definitelyLost are unchanged from the hypothesis. Hence the balance and lost components of all the abstract purses remain unchanged.
-12.
-22

Correctness of AuthoriseExLogClear

23.1 Proof obligation

We have to prove the correct refinement of each abstract operation. In section 9.2.4 we give a general simplification of the correctness proof. We use lemma 'multiple refinement' to split the proof obligation for each \mathcal{A} operation into one for each individual \mathcal{B} operation.

This chapter proves the \mathcal{B} operation.

- We use lemma 'ignore' to simplify the proof obligation further to proving the correctness of Ignore (section 14.7), leaving the Okay branch to be proven.

We cannot use any of the other simplifications directly for AuthoriseExLogClear, since it cannot be written as a promotion. So the correctness proof obligation for AuthoriseExLogClear is

AuthoriseExLogClearOkay; Rab'; RabOut
\exists AbWorld; a? : AIN •Rab \wedge RabIn \wedge AbIgnore

23.2 Proof

First we choose an input. We argue exactly as in section 14.4.1 to reduce the obligation to:

```
AuthoriseExLogClearOkay; Rab'; RabOut; RabIn
\(\stackrel{\text { Aut }}{\vdash}\)
```

\exists AbWorld \bullet Rab \wedge AbIgnore

We [cut] in a before $A b W o r l d$ equal to the after $A b W o r l d '$ in Rab' $^{\prime}$ (the side lemma is trivial), and use [consq exists] to remove the quantifier from the consequent.
AuthoriseExLogClearOkay; Rab'; RabOut; RabIn; AbWorld \mid
$\quad \theta$ AbWorld $=\theta$ AbWorld'
$\stackrel{\text { Rab }}{ } \wedge$ AbIgnore
$\stackrel{\vdash}{R a b}$
AbIgnore is certainly satisfied by the equal abstract before and after worlds. It remains to show that Rab is satisfied. The only difference between the concrete before and after worlds, as given by AuthoriseExLogClearOkay, is the addition of an exceptionLogClear message in the ether. But Rab does not depend on exceptionLogClear messages, and so we can deduce Rab directly from Rab'

- 23.

Correctness of Archive

24.1 Proof obligation

We have to prove the correct refinement of each abstract operation. In section 9.2.4 we give a general simplification of the correctness proof. We use lemma multiple refinement' to split the proof obligation for each \mathcal{A} operation into one for each individual \mathcal{B} operation.

This chapter proves the \mathcal{B} operation.
We cannot use any more of the usual simplifications directly for Archive, since it cannot be written as a promotion. So the correctness proof obligation for Archive is

Archive; Rab'; RabOut $\vdash \exists$ AbWorld; a? : AIN \bullet Rab \wedge RabIn \wedge AbIgnore

24.2 Proof

First we choose an input. We argue exactly as in section 14.4.1 to reduce the obligation to:

Archive; Rab'; RabOut; RabIn $\vdash \exists$ AbWorld \bullet Rab \wedge AbIgnore
We [cut] in a before $A b W o r l d$ equal to the after $A b W o r l d^{\prime}$ in Rab^{\prime} (the side lemma is trivial), and use [consq exists] to remove the quantifier from the consequent.

Archive; Rab'; RabOut; RabIn; AbWorld
θ AbWorld $=\theta$ AbWorld'
\vdash
Rab \wedge AbIgnore

AbIgnore is certainly satisfied by the equal abstract before and after worlds It remains to show that $R a b$ is satisfied. The only difference between the concrete before and after worlds, as given by Archive, is the inclusion of some og details in the archive. We have, from BetweenWorld constraint B-14, that the log details added to the archive from the exceptionLogResult message are already in allLogs. So, although the archive grows, the operation does not add any new logs to the world. Thus fromLogged and toLogged don't change. Hence maybeLost and definitelyLost don't change. Therefore, nothing that Rab relies upon changes in the concrete world, and so we can deduce Rab directly from Rab'

Part III
Second Refinement: \mathcal{B} to C

Refinement Proof Rules

25.1 Security of the implementation

We prove the concrete model C is secure with respect to the between model \mathcal{B} by showing that every concrete operation correctly refines a between operation. The concrete and between operations are similarly-named. The full list of refinements is:

StartTo \sqsubseteq CStartTo
StartFrom \subseteq CStartFrom
Req $\subseteq C R e q$
Val \subseteq CVal
Ack \sqsubseteq CAck
ReadExceptionLog \subseteq CReadExceptionLog
ClearExceptionLog \subseteq CClearExceptionLog AuthoriseExLogClear \subseteq CAuthoriseExLogClear
Archive \subseteq CArchive
Abort \subseteq CAbort
Increase \subseteq CIncrease
Ignore \sqsubseteq CIgnore

Figure 25.1: A summary of the forward proof rules. The hypothesis is the existence of the lower (solid) path. The proof obligation is to demonstrate the existence of an upper (dashed) path.

25.2 Forwards rules proof obligations

Each of these refinements must be proved correct. [Spivey 1992b, Chapter 5] presents the theorems that need to be proved for the most commonly-occurring case of non-determinism, sometimes called 'downward' or 'forward' conditions, where the abstract and concrete inputs and outputs are identical. These, augmented with a finalisation proof, are appropriate for the \mathcal{B} to C refinement proofs.

The forward rules are summarised in figure 25.1. Note how the paths are different from the backward case (figure 9.1) because of the direction of the R arrows.

25.2.1 Retrieve

The retrieve relation has one part that links the abstract and concrete states

25.2.2 Initialisation

CInit $\vdash \exists B^{\prime} \bullet$ BInit $\wedge R^{\prime}$
25.2.3 Finalisation

R; CFin \vdash BFin
25.2. FORWARDS RULES PROOF OBLIGATIONS

25.2.4 Applicability

R; BIn \mid pre $B O p \vdash$ pre $C O p$

25.2.5 Correctness

$$
R ; C O p \mid \text { pre } B O p \vdash \exists B^{\prime} \bullet R^{\prime} \wedge B O p
$$

We can simplify the correctness condition because we know that all the between operations are total, i.e.

$$
\text { pre } B O p=\text { true }
$$

This was proved earlier, in section 8.3.2. We can therefore simplify the correctness condition to

$$
R ; C O p \vdash \exists B^{\prime} \bullet R^{\prime} \wedge B O p
$$

\mathcal{B} to C retrieve relation
26.1 Retrieve state

The \mathcal{B} and C worlds are identical, except that the C world can 'lose' ether messages.

```
Rbc
BetweenWorld
ConWorld
conAuthPurse }\mp@subsup{=}{0}{}=\mathrm{ conAuthPurse
ether }\mp@subsup{0}{0}{}\subseteq\mathrm{ ether
\mp@subsup{archive}{0}{}=\mathrm{ archive}
```

The subscript zero on the concrete world serves to distinguish like-named beween and concrete components.

Initialisation, Finalisation, and

 Applicability27.1 Initialisation proof

ConInitState $\vdash \exists$ BetweenWorld' \bullet BetweenInitState \wedge Rbc c^{\prime}

Proof:

We expand ConInitState in the hypothesis according to its definition
ConWorld ${ }^{\prime}$
(\exists BetweenWorld' \mid BetweenInitState •
conAuthPurse ${ }_{0}^{\prime}=$ conAuthPurse ${ }^{\prime}$
\wedge archive $^{\prime}=$ archive
$\wedge\{\perp\} \subseteq$ ether $_{0}^{\prime} \subseteq$ ether $\left.{ }^{\prime}\right)$
\vdash
\exists BetweenWorld' • BetweenInitState \wedge Rbc ${ }^{\prime}$
From the definition of $R b c^{\prime}$, we can see that the consequent follows directly from the hypothesis.

- 27.1
27.2 Finalisation proof

Rbc; ConFinState \vdash BetwFinState
Proof:
We have defined ConFinState and BetwFinState to have the same mathematical form.
$R b c$ in the hypothesis requires the concrete and between purse states and archives to be identical, and allows the between ether to be bigger than the concrete ether.

Finalisation of the purses depends only on the purse states (identical by hypothesis) and on the sets definitelyLost and maybeLost. These sets themselves depend only on purse states and on the archive (also identical for concrete and between worlds by the retrieve in the hypothesis). As result, gAuthPurse for between finalisation is identical to that for concrete finalisation.

- 27.2

27.3 Applicability proofs

Applicability follows automatically from the totality of the concrete operations as shown in section 8.4

- 27.3

Lemmas for the \mathcal{B} to C correctness proofs

28.1 Specialising the proof rules

For each concrete operation $C O p$ and corresponding between operation $B O p$ we have to show

Rbc; COp $\vdash \exists$ BetweenWorld \bullet Rbc $^{\prime} \wedge B O p$
Many operations are defined as the disjunction of other operations. A COp will have the same branches as a corresponding BOp: a CIgnore branch, and either a CAbort or COpOkay branch, or both. We split the proof obligation into CIgnore, CAbort and COpOkay branches, as we did in section 14.3. This gives some or all of the following proof requirements, depending on which branches are in COp:

$$
\begin{aligned}
& \text { Rbc; CIgnore } \vdash \exists \text { BetweenWorld' } \bullet \text { Rbc }^{\prime} \wedge \text { Ignore } \\
& \text { Rbc; CAbort } \vdash \exists \text { BetweenWorld' } \bullet \text { Rbc }^{\prime} \wedge \text { Abort } \\
& \text { Rbc; COpOkay } \vdash \exists \text { BetweenWorld } \bullet \text { Rbc }^{\prime} \wedge \text { BOpOkay }
\end{aligned}
$$

The correctness of the CIgnore branch is dealt with below in section 28.2. We then develop the correctness proof for the CAbort and COpOkay branches, and introduce a lemma applicable to certain operations. Following this, we present the proof of correctness of two common branches - CIncrease and CAbort.

28.2 Correctness of CIgnore

The correctness of the CIgnore branch follows trivially by choosing
θ BetweenWorld' $=\theta$ BetweenWorld

- 28.2

8.3 Correctness of a branch of the operation

28.3.1 Choosing BetweenWorld'

In choosing BetweenWorld', we base our choice of the conAuthPurse ${ }^{\prime}$ and archive' components on Rbc', and our choice of the ether' component on BOpOkay'.

We have conAuthPurse ${ }_{0}$ and archive $_{0}$ in the hypothesis, and we use this to provide the value for conAuthPurse' and archive', respectively (this satisfies the constraint on conAuthPurse and archive' in Rbc').

```
conAuthPurse' = conAuthPurse
archive' = archive
```

m ! and ether are declared in the hypothesis, and ether' can be constructed deterministically from these (note that the following construction satisfies the relevant constraint in BOрОкау - either in ФВОр or explicitly as in Archive).

$$
\text { ether }{ }^{\prime}=\text { ether } \cup\{m!\}
$$

We need to show that the chosen BetweenWorld' and m ! satisfy each of the conjuncts in the consequent (retrieve $R b c^{\prime}$ and operation BOpOkay).

We also need to show that this choice is indeed an after BetweenWorld ${ }^{\prime}$
(that it satisfies the constraints on BetweenWorld specified in section 5.3).

28.3.2 Case BOpOkay

From the choice of ether ${ }^{\prime}$ above, the relevant constraint on ether ${ }^{\prime}$ in BOpOkay is satisfied by construction.

At most one purse changes in COpOkay. Let us call this new purse value p. This gives
conAuthPurse $e_{0}^{\prime}=$ conAuthPurse $_{0} \oplus\{p\}$
conAuthPurse $e_{0}^{\prime}=$ conAuthPurse $\oplus\{p\}$
[$R b c$]
conAuthPurse ${ }^{\prime}=$ conAuthPurse $\oplus\{p\}$
28.3. CORRECTNESS OF A BRANCH OF THE OPERATION

This satisfies the constraint on conAuthPurse' in BOpOkay (where at most one purse changes in an identical manner to COpOkay).
archive' is a function of archive and m!, defined in BOpOkay. Call this function f :

$$
f: \text { Logbook } \times \text { MESSAGE } \rightarrow \text { Logbook }
$$

Because COpOkay is defined in an analogous way, f also relates archive ${ }_{0}^{\prime}$ to archive $_{0}$ and $m!$.

From the hypothesis we have COpOkay and $R b c$, and with our choice of archive' we have, respectively

$$
\begin{aligned}
& \text { archive }_{0}^{\prime}=f\left(\text { archive }_{0}, m!\right) \\
& \wedge \text { archive } \text { archive }_{0}
\end{aligned}
$$

$$
\wedge \text { archivé }^{\prime}=\text { archive }_{0}^{\prime}
$$

Substituting the latter two equations into the first gives the predicate in BOpOkay.

Thus, the BOpOkay constraints on all the components of our chosen BetweenWorld' are satisfied under the correctness hypothesis and choice of Between-
World'.

- 28.3.2
28.3.3 Case Rbc'

Both the conAuthPurse' and archive' components of BetweenWorld' satisfy Rbc' from the choice of BetweenWorld'

All COpOkay operations constrain ether' as
ether ${ }_{0}^{\prime} \subseteq$ ether $_{0} \cup\{m!\}$
either through $\Phi C O p$, or explicitly in CArchive. Hence for ether' we have

ether'

$=$ ether $\cup\{m!\}$
[choice of ether']
\supseteq ether $_{0} \cup\{m!\}$
\supseteq ether ${ }_{0}^{\prime}$
$[R b c]$
[COpOkay]

This satisfies the constraint on ether' in $R b c^{\prime}$

28.3.4 Case 'obey constraints'

We know from the hypothesis that the before BetweenWorld satisfies the constraints, so we need check only that the chosen message m !, and any change of purse state during the operation, maintains this constraint.

Lemma 28.1 (constraint) If an operation obeys the following properties, then preserves the BetweenWorld constraints

- it does not change purse status or current transaction details (pdAuth)
- it does not change allLogs
- it does not change the payment detail messages, exception log read messages or exception log clear messages in the ether (either by not emitting such a message, or by emitting an already existing message)
- no sequence number decreases (all concrete operations have the property, so it is automatically satisfied)

■
Proof:
The BetweenWorld constraints refer only to certain ether messages (rea, val, ack, exceptionLogResult and exceptionLogClear), and relate their presence or absence to purse status (status, pdAuth and nextSeqNo) and allLogs. From the hypothesis we can invoke lemma 'logs unchanged' (section C.7) to say that, as allLogs does not change, not does alLogs. So operations that do not change the purse status, do not change allLogs, and do not emit any relevant new messages, will automatically preserve the constraints.

- 28.3.4

Even when lemma 'constraint' does not apply, we know from the form of the operation that at most one purse changes, and one message is emitted. As at most one purse changes, the proof that the BetweenWorld constraints are preserved need refer only to this purse; the constraints hold on the other purses before the operation by hypothesis, and so they hold afterward, too.
28.3.5 Summary of ConOkay proof obligation

For each operation, we have to show that either lemma 'constraint' holds or that the choice of BetweenWorld' obeys the constraints (see section 5.3).

28.4 Correctness of CIncrease

CIncrease does not change status or pdAuth, does not log, and no relevant message is emitted to the ether, so lemma 'constraint' (section C.6) is applicable. ■ 28.4

28.5 Correctness of CAbort

Lemma 'constraint' is not applicable, because CAbort moves one purse into eaFrom, and it may not have been in this state before, and it may log a pending transaction. Therefore we have to show that our chosen BetweenWorld' obeys the constraints.

One \perp message is emitted, and (possibly) one log is recorded.
B-1 req \Rightarrow authentic to purse. No new req messages
B-2 No future reqs. No new req messages.
B-3 No future vals. No new val messages.
B-4 No future acks. No new ack messages.
B-5 No future from logs. The purse moves into eaFrom, possibly logging a transaction, and possibly increasing nextSeqNo. This does not invalidate this constraint for any previous logs. To create a new from log, the purse would have had to have been in epa (from LogIfNecessary). Hence, using ConPurse constraint P-??, we have
pdAuth.fromSeqNo < nextSeqNo
From AbortPurse, we also have
nextSeqNo \leq nextSeqNo
This gives
pdAuth.fromSeqNo < nextSeqNo ${ }^{\prime}$
The pdAuth is logged when the pre-state purse is in epa, and thus the new log obeys the constraint.
B-6 No future to logs. The purse moves into eaFrom, possibly logging a transaction, and possibly increasing nextSeqNo. This does not invalidate this constraint for any previous logs. To create a new to log, the purse would
have had to have been in epv (from LogIfNecessary). Hence, using ConPurse constraint P-??, we have
pdAuth.toSeqNo < nextSeqNo

From AbortPurse, we also have
nextSeqNo \leq nextSeqNo'
This gives
pdAuth.toSeqNo < nextSeqNo ${ }^{\prime}$
The pdAuth is logged when the pre-state purse is in $e p v$, and thus the new log obeys the constraint.
B-7 from in $\{e p r, e p a\}$, so no future from logs. The purse moves into eaFrom, so no new purses in epr or epa.
B-8 to in $\{e p v, e a T o\}$, so no future to logs. The purse moves into eaFrom, so no new purses in epv or eaTo.
B-9 epr $\Rightarrow \neg$ val $\wedge \neg$ ack. The purse moves into eaFrom, and so does not move into epr.

B-10 req $\wedge \neg$ ack \Leftrightarrow toInEpv \vee toLogged.

- case \Rightarrow :

No new req messages; no ack messages removed from the ether.
The purse may have moved out of epv, but in such a case LogIf Necessary says that it logs, hence re-establishing the condition.

- case \Leftarrow :

No purses newly in epv.
There might be a new to log, in which case we must show there was
a rea, but no ack before. A to \log can be made only by a purse moving out of epv. Then the BetweenWorld constraint B-10, on toInEpv, before the operation gives us the required rea and lack of ack.
B-11 epv \wedge val \Rightarrow frominEpa \vee fromLogged. No purses newly in epv; no new val messages.
The purse may have moved out of epa. But in such a case LogIfNecessary says that it logs, hence re-establishing the condition.
B-12 fromInEpa \vee fromLogged \Rightarrow req. No purses newly in epa.
There might be a new from log, in which case we must show there was a rea before. A from log can be made only by a purse moving out of
epa. Then the BetweenWorld constraint B-12, on fromInEpa, before the operation gives us the required req.
B-13 toLogged finite. At most one to log written, so finite before gives finite after.
B-14 exceptionLogResults in allLogs. No new exception log result messages.
B-15 Cleared logs archived. No exceptionLogClear messages are added, and the archive is unchanged.
B-16 req for each log. If there are no new logs, then the constraint holds from the pre-state.
If a transaction exception is logged, then the purse status must have been either epv or epa. From constraints B-10 and B-12, there was a req in the pre-state ether for the transaction which was logged. This req will also be in the post-state ether.

■ 28.5

28.6 Lemma 'logs unchanged'

Lemma 28.2 (logs unchanged) When the archive and the individual purse logs do not change, and when no new rea messages are added to the ether, the set of PayDetails representing all the logs does not change either.

BOpOkay \mid archive $=$ archive
\wedge req \triangleright ether' $=$ req \triangleright ether
$\wedge \forall n$: dom conAuthPurse -
(conAuthPurse' $n) . e x L o g=($ conAuthPursen $) . e x L o g$
\vdash
allLogs' $=$ allLogs
\wedge toLogaed ${ }^{\prime}=$ toLogged
\wedge fromLogged' $=$ fromLogged

Proof:
allLogs $=$ archive
$\cup\{n$: dom conAuthPurse; ld : PayDetails
ld \in (conAuthPursen).exLog
$=$ archive $^{\prime}$
$\cup\{n$: dom conAuthPurse'; ld : PayDetails \mid
ld \in (conAuthPursé n).exLog
[assumption and Φ BOp]
$=$ allLogs ${ }^{\prime}$
[defn]
allLogs $=\{n:$ dom conAuthPurse; pd: PayDetails \mid
$n \mapsto p d \in$ allLogs \wedge rea $p d \in$ ether $\}$
[defn]
$=\{n$: dom conAuthPurse'; pd: PayDetails \mid $n \mapsto p d \in$ allLogs' $^{\prime} \wedge$ rea $p d \in$ ether $\left.^{\prime}\right\}$
[assumption and above]
$=$ allLogs ${ }^{\prime}$
[defn]
The arguments for toLogged and fromLogged follow in exactly the same way - 28.6

28.7 Lemma 'abort forward': operations that first abort

Some concrete operations are written as a composition of Abort and a simpler operation starting from eaFrom (StartFrom, StartTo, ReadExceptionLog, ClearExceptionLog, etc.).
Lemma 28.3 (abort forward) Where a C operation is written as a composition f CAbort and a simpler operation starting from eaFrom, and the corresponding \mathcal{B} operation is structured analogously, it is sufficient to prove that the simpler \mathcal{C} operation refines the corresponding \mathcal{B} operation.
(CAbort ${ }_{9}$ COpEafrom); Rbc;
(\forall COpEafrom; Rbc • \exists BetweenWorld ${ }^{\prime} \bullet$ Rbc $^{\prime} \wedge$ BOpEafrom
$\stackrel{\vdash}{\exists}$
\exists BetweenWorld' • Rbc ${ }^{\prime} \wedge$ (Abort ${ }_{9}$ BOpEafrom)
28.7. LEMMA 'ABORT FORWARD’: OPERATIONS THAT FIRST ABORT

Proof We have already proved in section 28.5 that CAbort refines Abort. Adding this to our hypothesis, we get
(CAbort 9 COpEafrom); Rbc;
(\forall CAbort; Rbc • \exists BetweenWorld' • Rbc ${ }^{\prime} \wedge$ Abort);
(\forall COpEafrom; Rbc • \exists BetweenWorld $\bullet R^{\prime} c^{\prime} \wedge$ BOpEafrom)
\vdash
\exists BetweenWorld' \bullet Rbc $c^{\prime} \wedge($ Abort 9 BOpEafrom $)$
The hypothesis is now in precisely the form required to use lemma 'compose forward', (section C.10) and we do so to prove the consequent.

- 28.7

Correctness proofs

29.1 Introduction

Many of the following arguments are about constraints of the form antecedent \Rightarrow consequent

The correctness arguments are of three kinds:
B-1 Argue that the operation leaves the truth values of both antecedent and consequent unaltered, so that the truth before the operation establishes the truth afterwards.
B-2 The operation might make the antecedent true after when it was false before, by adding a new message to a set, or moving a purse into a set. In this case it is necessary to show that the consequent is true after.
B-3 The operation might make the consequent false after when it was true before, by moving a purse out of a set. In this case it is necessary to show that the antecedent is false after.

Note that we do not need to argue that a constraint cannot be changed by removing a message: messages stay in the ether once there.

29.2 Correctness of CStartFrom

StartFromOkay comprises AbortPurse followed by StartFromEafromPurseOkay at the unpromoted level. As a result, we can apply lemma 'abort forward' section C.8), leaving us to prove the correctness of StartFromEafromPurseOkay.

Lemma 'constraint' is not applicable, because StartFromEafromPurseOkay changes status: it moves the purse from eaFrom into epr. Therefore we have to show that our chosen BetweenWorld' obeys the constraints.

One \perp message is emitted, and no logs are recorded.
We can invoke lemma 'logs unchanged', section C.7, because no new rea messages are produced, no new purse logs are produced, and the archive does not change. Therefore, the sets allLogs, fromLogged and toLogged remain unchanged.

B-1 rea \Rightarrow authentic to purse. No new rea messages.
B-2 No future reqs. No new req messages.
B-3 No future vals. No new val messages.
B-4 No future acks. No new ack messages.
B-5 No future from logs. No new logs.
B-6 No future to logs. No new logs.
B-7 from in $\{$ epr, epa $\} \Rightarrow$ no future from logs. There are no new logs, but the purse moves into epr, so we must prove that the constraint for this purse holds (for all other purses in epr, the constraint holds beforehand, and so holds afterwards). In StartFrom, the post-state pdAuth'.fromSeqNo is equal to pre-state nextSeaNo. Coupling this with constraint B-5 we have
$\forall p d$: fromLogged \mid pd.from = name? \bullet
pd.fromSeqNo < (conAuthPurse' pd.from).pdAuth.fromSeqNo
Since the logs don't change we have
$\forall p d$: fromLogged ${ }^{\prime} \mid p d . f r o m=n a m e ? ~ \cdot$
pd.fromSeqNo $<$ (conAuthPurse' pd.from).pdAuth.fromSeqNo

which proves the constraint for purse name?

B-8 to in $\{e p v, e a T o\} \Rightarrow$ no future to logs. No new logs, and the purse moves into epr.
B-9 epr $\Rightarrow \neg$ val $\wedge \neg a c k$. The purse moves into epr, so it is necessary to show there was no val or ack before
The $p d$ we are considering is given by

$$
p d==(\text { conAuthPurse' name? }) . p d A u t h
$$

Noting that p d.from $=$ name?, the definition of StartFrom then gives us that
(conAuthPurse name?).nextSeqNo
$=$ (conAuthPurse' name?).pdAuth.fromSeqNo
\Rightarrow (conAuthPurse pd.from).nextSeqNo $=p d$.fromSeqNo

$$
\begin{aligned}
& \Rightarrow \text { val } p d \notin \text { ether } \\
& \quad \wedge \text { ack pd } \notin \text { ether }
\end{aligned}
$$

[BetweenWorld constraint B-3]
[BetweenWorld constraint B-4]
B-10 req $\wedge \neg$ ack \Leftrightarrow toInEp $v \vee$ toLogged

- case \Rightarrow :

No new req messages. The purse moved from eaFrom to epr without generating new logs. Hence, true before implies true after.
case \Leftrightarrow :
No purses newly in epv and no new logs. No acks added to the ether.
B-11 epv $\wedge v a l \Rightarrow$ fromInEpa \vee fromLogged. No purses newly in epv; no new val messages. The purse did not move out of epa.

B-12 fromInEpa \vee fromLogged \Rightarrow req. No purses newly in epa; no new logs.
B-13 toLogged finite. No new logs.
B-14 exceptionLogResults in allLogs. No new log result messages.
B-15 Cleared logs archived. No new exceptionLogClear messages.
B-16 req for each log. No new elements added to fromLogged or toLogged.

- 29.2

29.3 Correctness of CStartTo

StartToOkay is composed of AbortPurse followed by StartToEafromPurseOkay at the unpromoted level. As a result, we can apply lemma 'abort forward' (section C.8), leaving us to prove the correctness of StartToEafromPurseOkay.

Lemma 'constraint' is not applicable, because StartToEafromPurseOkay moves one purse into epv, and it was not in this state before. Therefore we have to show that our chosen BetweenWorld' obeys the constraints.

One rea message is emitted, and no new logs are recorded. We cannot nvoke lemma 'logs unchanged' because we do have a new req message, but constraint B-16 gives us the same result. This is not a circular argument.

B-1 rea \Rightarrow authentic to purse. One new req, which refers to the name? purse as the to purse. $\Phi B O p$ states that this purse is authentic.
B-2 No future reqs. StartToPurseEafromOkay emits one req message, which has its nextSeqNo in it by construction. It also increases nextSeqNo. The req message meets the constraints because the referenced to purse (itself) has a larger nextSeqNo after the operation.
B-3 No future vals. No new val messages.
B-4 No future acks. No new ack messages.
B-5 No future from logs. No new logs.
B-6 No future to logs. No new logs.
B-7 from in $\{$ epr, epa $\} \Rightarrow$ no future from logs. There are no new logs and the purse moves into epv , so this constraint does not apply to this purse.
B-8 to in $\{e p v, e a T o\} \Rightarrow$ no future to logs. There are no new logs, but the purse moves into epv, so we must prove that the constraint for this purse holds (for all other purses in epv, the constraint holds beforehand, and so holds afterwards). In StartTo, the post-state pdAuth'.toSeqNo is equal to pre-state nextSeqNo. Coupling this with constraint B-6 we have
$\forall p d:$ toLogged \mid pd.to $=$ name? \bullet
\quad pd.toSeqNo $<($ conAuthPurse' pd.to $)$.pdAuth.toSeqNo

Since the logs don't change, we have

$\forall p d:$ toLogged' $^{\prime} \mid p d . t o=$ name?

pd.toSeqNo < (conAuthPurse' pd.to).pdAuth.toSeqNo
which proves the constraint for purse name?
B-9 epr $\Rightarrow \neg$ val $\wedge \neg$ ack. No purses newly in epr; no new vals or acks.
B-10 req $\wedge \neg$ ack \Leftrightarrow toInEp $v \vee$ toLogged. We claim that there is a new req for which there is no ack in the ether, and the purse moves into epv. As a result, we prove the consequent for each implication direction.

- case \Rightarrow :

We must prove toInEp $v \vee$ toLogged. The purse moves into epv, thus establishing the consequent.

- case \Leftarrow :

The purse moves into epv, so we must show that there is a req, but no ack, for the purse's $p d A u t h^{\prime}$. From StartTo, we have $m!=$ rea $p d A u t h^{\prime}$,
so the req is in the ether. It is then necessary to show there is no ack before. The $p d$ we are considering is given by

$$
p d==(\text { conAuthPurse' name?). } p d A u t h
$$

Noting that p d.to $=$ name?, the definition of StartTo gives us that

> (conAuthPurse name?).nextSeqNo
> $\quad=$ (conAuthPurse' name?).pdAuth.toSeqNo
\Rightarrow (conAuthPurse pd.to).nextSeqNo $=p$ d.toSeqNo
\Rightarrow ack $p d \notin$ ether
[BetweenWorld constraint B-4]
Hence, we have the corresponding req but no ack.
B-11 epv ^ val \Rightarrow fromInEpa \vee fromLogged. To prove this constraint, we demonstrate that the antecedent is false: the purse moves into epv, so we must show that there is no val before. The $p d$ we are considering is given by
$p d==($ conAuthPurse' name? $)$. pdAuth
Noting that pd.to $=$ name?, the definition of StartTo gives us that

$$
\begin{aligned}
& \text { (conAuthPurse name?).nextSeqNo } \\
& \quad=\text { (conAuthPurse' name?).pdAuth.toSeqNo } \\
& \Rightarrow \text { (conAuthPurse pd.to).nextSeqNo }=\text { pd.toSeqNo } \\
& \Rightarrow \text { val pd } \notin \text { ether } \quad[\text { BetweenWorld constraint B-3] }
\end{aligned}
$$

Hence, there is no val before, and no val is emitted by this operation.
B-12 fromInEpa \vee fromLogged \Rightarrow req. No purses newly in epa; no new logs.
B-13 toLogged finite. No new logs.
B-14 Read exception record messages are logged. No new log result messages.
B-15 Cleared logs archived. No new exceptionLogClear messages.
B-16 req for each log. No new elements added to fromLogged or toLogged.

- 29.3

29.4 Correctness of CReq

Lemma 'constraint' is not applicable, because a purse moves from epr to epa and emits a val message. Therefore we have to show that our chosen BetweenWorld' obeys the constraints.

We can invoke lemma 'logs unchanged', section C.7, because no new rea messages are produced, no new purse logs are produced, and the archive does not change. Therefore, the sets allLogs, fromLogged and toLogged remain unchanged.

B-1 rea \Rightarrow authentic to purse. No new rea messages
B-2 No future reqs. No new req messages.
B-3 No future vals. Req puts a val in the ether'. Let $p d$ be the pay details of the val. Hence,

$$
\begin{aligned}
& p d==(\text { conAuthPurse name } ?) \cdot p d A u t h \\
& m ?=\text { req } p d \\
& m!=\text { val } p d
\end{aligned}
$$

To show that the new val message upholds this constraint, we have to demonstrate that this is not a future message with respect to purse name?:
pd.toSeqNo < (conAuthPurse' pd.to).nextSeqNo
pd.fromSeaNo $<$ (conAuthPurse' pd.from).nextSeqNo
Since rea pd is in the ether, from B-2 we can then satisfy the requirement for the to sequence number. Since the pre-state status was epr, using purse constraint $\mathrm{P}-2 \mathrm{c}$ we know that
pd.fromSeqNo < nextSeqNo
Since Req does not alter nextSeqNo, we thus have
pd.fromSeqNo < (conAuthPurse' pd.from).nextSeqNo

B-4 No future acks. No new ack messages.
B-5 No future from logs. No new logs.
B-6 No future to logs. No new logs.
B-7 from in $\{$ epr, epa $\} \Rightarrow$ no future from logs. No new logs.
The from purse moves from epr into epa. BetweenWorld constraint B-7 held on epr.
29.5. CORRECTNESS OF CVAL

B-8 to in $\{e p v, e a T o\} \Rightarrow$ no future to logs. No new logs; no purses newly in epv or eaTo.
B-9 epr $\Rightarrow \neg$ val $\wedge \neg$ ack. No purses newly in epr; no new acks.
We need to show the emitted val does not have the same $p d$ as the stored $p d A u t h$ of any purse currently in epr. It has the same $p d$ as the $p d A u t h$ stored in the purse from which it was emitted, which moved from epr and is now in epa. No other purse can also have this pdAuth, because pdAuth includes the name of the purse (ConPurse constraint P-2a), and purse names are unique
B-10 rea $\wedge \neg$ ack \Leftrightarrow toInEp $v \vee$ toLogged.

- case \Rightarrow : No new req or ack messages.
- case \Leftarrow : No purses newly in epv; no new logs.

B-11 epv \wedge val \Rightarrow fromInEpa \vee fromLogged. The from purse emits a val. It also moves into epa, thereby establishing the constraint.

B-12 fromInEpa \vee fromLogged \Rightarrow req. The purse moves into epa. The operation precondition gives the presence of the required rea.
B-13 toLogged finite. No new logs.
B-14 Read exception record messages are logged. No new log result messages.
B-15 Cleared logs archived. No new exceptionLogClear messages.
B-16 req for each log. No new elements added to fromLogged or toLogged.

■ 29.4

29.5 Correctness of CVal

Lemma 'constraint' is not applicable, because a purse moves from epv to eaPayee and emits an ack message. Therefore we have to show that our chosen BetweenWorld' obeys the constraints

We can invoke lemma 'logs unchanged', section C.7, because no new rea messages are produced, no new purse logs are produced, and the archive does not change. Therefore, the sets allLogs, fromLogged and toLogged remain unchanged

B-1 rea \Rightarrow authentic to purse. No new rea messages
B-2 No future reqs. Val emits no new req messages
B-3 No future vals. Val emits no new val messages.

B-4 No future acks. ValOkay puts an ack in the ether' ${ }^{\prime}$, but it has the same $p d$ as the val read from the ether, which obeys BetweenWorld constraint B-3. So the ack's pd obeys the constraint.
B-5 No future from logs. No new logs.
B-6 No future to logs. No new logs.
B-7 from in $\{$ epr, epa $\} \Rightarrow$ no future from logs. No new logs; no purses newly in epr or epa.
B-8 to in $\{e p v, e a T o\} \Rightarrow$ no future to logs. No new logs.
The to purse moves from epv into eaTo. BetweenWorld constraint B-8 held on epv.
B-9 epr $\Rightarrow \neg$ val $\wedge \neg a c k$. No purses newly in epr
We need to show the emitted ack does not have the same $p d$ as any purse currently in epr. It has the same $p d$ as the val message, and so BetweenWorld constraint B-9 on val gives us the required condition.
B-10 req $\wedge \neg$ ack \Leftrightarrow toInEpv \vee toLogged.

- case \Rightarrow : ValOkay emits an ack, making the antecedent false.
- case ϵ : From lemma 'notLoggedAndIn', section C.12, the purse cannot be in toLogged. ValOkay moves the purse out of epv without logging, making the antecedent false.
B-11 epv \wedge val \Rightarrow fromInEpa \vee fromLogged. No purses newly in epv; no new val messages; no purses leaving epa, no changing logs.
B-12 fromInEpa \vee fromLogged \Rightarrow req. No purses newly in epa; no new logs.
B-13 toLogged finite. No new logs.
B-14 Read exception record messages are logged. No new log result messages.
B-15 Cleared logs archived. No new exceptionLogClear messages.
B-16 req for each log. No new elements added to fromLogged or toLogged.
- 29.5

29.6 Correctness of $C A C k$

Lemma 'constraint' is not applicable, because a purse moves from epa to eaPayer. Therefore we have to show that our chosen BetweenWorld' obeys the constraints.

It emits a \perp message. We can invoke lemma 'logs unchanged', section C.7, because no new req messages are produced, no new purse logs are produced,
and the archive does not change. Therefore, the sets allLogs, fromLogged and toLogged remain unchanged.

B-1 rea \Rightarrow authentic to purse. No new req messages
B-2 No future reqs. No new rea messages.
B-3 No future vals. No new val messages.
B-4 No future acks. No new ack messages.
B-5 No future from logs. No new logs.
B-6 No future to logs. No new logs.
B-7 from in $\{$ epr, epa $\} \Rightarrow$ no future from logs. No purses newly in epr or epa.
B-8 to in $\{e p v, e a T o\} \Rightarrow$ no future to logs. No purses newly in epv or eaTo.
B-9 epr $\Rightarrow \neg$ val $\wedge \neg$ ack. No purses newly in epr; no new vals or acks.
B-10 req $\wedge \neg$ ack \Leftrightarrow toInEp $v \vee$ toLogged.

- case \Rightarrow : No new reqs; no new acks; no purses moving out of epv, no logs lost.
- case ϵ : No purses newly in epv; no new logs.

B-11 epv \wedge val \Rightarrow fromInEpa \vee fromLogged. No purses newly in epv; no new vals.
The purse moves out of epa without logging, so we need to show that the antecedent is false for this purse. It is sufficient to show the antecedent is false before the operation (since the operation does not change it). There is an ack message, AckOkay's input, so BetweenWorld constraint B-10 gives us $p d \notin$ toInEpv.
B-12 fromInEpa \vee fromLogged \Rightarrow req. No purses newly in epa; no new logs.
B-13 toLogged finite. No new logs.
B-14 Read exception record messages are logged. No new log result messages.
B-15 Cleared logs archived. No new exceptionLogClear messages.
B-16 req for each log. No new elements added to fromLogged or toLogged.

29.7 Correctness of CReadExceptionLog

ReadExceptionLogOkay is composed of AbortPurse followed by ReadExceptionLogEafromPurseOkay at the unpromoted level. As a result, we can apply lemma 'abort forward' (section C.8), leaving us to prove the correctness of ReadExceptionLogEafromPurseOkay.

This operation does not change any purse, but it does emit an exceptionLogResult message. As a result, lemma 'constraint' is not applicable.

We can invoke lemma 'logs unchanged', section C.7, because no new rea messages are produced, no new purse logs are produced, and the archive does not change. Therefore, the sets allLogs, fromLogged and toLogged remain unchanged.
B-1 rea \Rightarrow authentic to purse. No new rea messages.
B-2 No future reqs. No new req messages.
B-3 No future vals. No new val messages.
B-4 No future acks. No new ack messages.
B-5 No future from logs. No new logs.
B-6 No future to logs. No new logs.
B-7 from in $\{$ epr, epa $\} \Rightarrow$ no future from logs. No purses newly in epr or epa.
B-8 to in $\{e p v, e a T o\} \Rightarrow$ no future to logs. No purses newly in epv or eaTo.
B-9 epr $\Rightarrow \neg$ val $\wedge \neg$ ack. No purses newly in epr; no new vals or acks.
B-10 req $\wedge \neg$ ack \Leftrightarrow toInEp $v \vee$ toLogged.

- case \Rightarrow : No new reqs; no new acks; no purses moving out of epv, no logs lost.
- case ϵ : No purses newly in epv; no new logs.

B-11 epv $\wedge v a l \Rightarrow$ fromInEpa \vee fromLogged. No purses newly in epv; no new vals; no purse moves out of epa; no logs lost.
B-12 fromInEpa \vee fromLogged \Rightarrow req. No purses newly in epa; no new logs.
B-13 toLogged finite. No new logs.
B-14 Read exception record messages are logged. There may be a new exceptionLogResult message. If this is so, then we must show that this refers to a stored exception log record. From ReadExceptionLogPurseEafromOkay, we have
$m!\in\{\perp\} \cup\{l d:$ exLog' \cdot exceptionLogResult (name, ld $)\}$

Hence, if there is an exceptionLogResult message, it refers to an exception record which is in the log of purse name?, and so is in allLogs'. This upholds the constraint.
B-15 Cleared logs archived. No new exceptionLogClear messages.
B-16 rea for each log. No new elements added to fromLogged or toLogged.

■ 29.7

29.8 Correctness of CClearExceptionLog

ClearExceptionLogOkay is composed of AbortPurse followed by ClearExceptionLogEafromPurseOkay at the unpromoted level. As a result, we can apply lemma 'abort forward' (section C.8), leaving us to prove the correctness of ClearException LogEafromPurseOkay.

The operation changes only one purse, and emits a \perp message. The only change to the purse is that its exception log is cleared. However, we have the pre-condition that the input message matches the the exception \log (exLog). The input message comes from the ether, and hence from constraint $\mathrm{B}-15$ we know that the purse's exception log must have already been recorded in the archive. In this way, clearing the purse's log does not affect allLogs. So lemma 'constraint' (section C.6) is applicable.

- 29.8

29.9 Correctness of CAuthoriseExLogClear

Lemma 'constraint' is not applicable, because an exceptionLogClear message is emitted to the ether. So, we must show that the constraints hold afterwards No purses are changed.
We can invoke lemma 'logs unchanged', section C.7, because no new req messages are produced, no new purse logs are produced, and the archive does not change. Therefore, the sets allLogs, fromLogged and toLogged remain unchanged.

B-1 rea \Rightarrow authentic to purse. No new req messages.
B-2 No future reqs. No new rea messages.
B-3 No future vals. No new val messages.
B-4 No future acks. No new ack messages.
B-5 No future from logs. No new logs.

B-6 No future to logs. No new logs.
B-7 from in $\{$ epr, epa $\} \Rightarrow$ no future from logs. No purses newly in epr or epa.
B-8 to in $\{e p v, e a T o\} \Rightarrow$ no future to logs. No purses newly in epv or eaTo.
B-9 epr $\Rightarrow \neg$ val $\wedge \neg$ ack. No purses newly in epr; no new vals or acks.
B-10 req $\wedge \neg$ ack \Leftrightarrow toInEpv \vee toLogged.

- case \Rightarrow : No new reas; no new acks; no purses moving out of epv; no logs lost.
- case ϵ : No purses newly in $e p v$; no new logs.

B-11 epv $\wedge v a l \Rightarrow$ fromInEpa \vee fromLogged. No purses newly in epv; no new vals; no purse moves out of epa; no logs lost
B-12 fromInEpa \vee fromLogged \Rightarrow req. No purses newly in epa; no new logs.
B-13 toLogged finite. No new logs
B-14 Read exception record messages are logged. No new exception log read messages.
B-15 Cleared logs archived. There is a new exceptionLogClear message. However, the operation contains the pre-condition that the log records for which the message is generated must be in the archive. Hence, the constraint is upheld.
B-16 req for each log. No new elements added to fromLogged or toLogged.

29.10 Correctness of CArchive

This operation archives the contents of some of the exceptionLogResult messages in the ether. It does not change any purse, or change the ether.

From B-14, we know that those exception records referred to by the exceptionLogResult messages are already in allLogs. As a result, adding them to archive does not change allLogs. This operation does not change any purse, and does not emit a payment details message. So lemma 'constraint' is applicable.

- 29.10
- 29

Summary

The proofs presented in this report constitute a proof that the architectural design given by the C model is secure with respect to the security properties as described in the Formal Security Policy Model (the \mathcal{A} model) and the Security Properties.

We have presented the proofs in a logical sequence, but even so, it can be hard to be sure that no steps have been missed. The following table gives a hierarchical view of the proof, showing at each level how a proof goal is satisfied by a number of subgoals. Each line in the table is one proof goal, together with a section reference for where that proof goal is addressed

If the proof goal has child goals (goals one level of indent deeper) then the section reference explains how it is that the goal can be satisfied by its collection of subgoals. For example, goal 1.4 (AbTransfer upholds properties) is proved by proving three subgoals: 1.4.1 (SP 1), 1.4.2 (SP 2.1) and 1.4.3 (SP 6.2). The reference for goal 1.4 is to section 2.4, where it is argued that we have only to prove the three SPs 1, 2.1 and 6.2 because all other SPs can be proved trivially.

If a goal has no further subgoals, its section reference is the proof of this goal directly.

It can be seen that all proof goals have section references, and all steps have been addressed.

System secure	by definition
1. Abstract preserves security properties	by definition
1.1. AbIgnore upholds properties	2.4
1.2. AbTransfer upholds properties	2.4
1.2.1. SP 1	2.4
1.2.1.1. Okay	2.4.1
1.2.1.2. Lost	2.4.3
1.2.2. SP 2.1	2.4
1.2.2.1. Okay	2.4.2
1.2.2.2. Lost	2.4.4
2. Concrete preserves security properties	by definition
2.1. Each concrete operation upholds properties	2.4
3. Abstract operations are total	8.2.2
4. A is refined by B	by definition
4.1. Init	by definition
4.1.1. state initialisation	11.2
4.1.2. input initialisation	11.3
4.2. Applicability	9.2.3
4.2.1. \quad pre $\mathrm{AOp}=$ true	8.2.2
4.2.2. simpler applicability	by definition
4.2.2.1. pre BOp = true	8.3.2
4.3. Correctness	9.2.4
4.3.1. pre $\mathrm{AOp}=$ true	8.2.2
4.3.2. simpler correctness	by definition
4.3.2.1. AbTransfer	9 and 14.3
4.3.2.1.1. Ignore	14.7
4.3.2.1.2. Okay and Lost	C. 1
4.3.2.1.2.1. exists-pd	18.4
4.3.2.1.2.2. exists-chosenLost	18.5
4.3.2.1.2.3. check-operation	18.6
4.3.2.2. AbIgnore	9 and 14.2
4.3.2.2.1. StartFrom	14.3
4.3.2.2.1.1. Ignore	14.7
4.3.2.2.1.2. Abort	14.8
4.3.2.2.1.3. Okay	C. 5
4.3.2.2.1.3.1. Abort	14.8

4.3.2.2.1.3.2. EaPayer operation	C. 1
4.3.2.2.1.3.2.1. exists-pd	16.4
4.3.2.2.1.3.2.2. exists-chosenLost	16.5
4.3.2.2.1.3.2.3. check-operation	C. 3
4.3.2.2.1.3.2.3.1. check-operation-ignore	16.6
4.3.2.2.2. StartTo	14.3
4.3.2.2.2.1. Ignore	14.7
4.3.2.2.2.2. Abort	14.8
4.3.2.2.2.3. Okay	C. 5
4.3.2.2.2.3.1. Abort	14.8
4.3.2.2.2.3.2. EaPayer operation	C. 1
4.3.2.2.2.3.2.1. exists-pd	17.4
4.3.2.2.2.3.2.2. exists-chosenLost	17.5
4.3.2.2.2.3.2.3. check-operation	C. 3
4.3.2.2.2.3.2.3.1. check-operation-ignore	17.6
4.3.2.2.3. Val	14.3
4.3.2.2.3.1. Ignore	14.7
4.3.2.2.3.2. Okay	C. 1 and 19.2
4.3.2.2.3.2.1. exists-pd	19.3
4.3.2.2.3.2.2 exists-chosenLost	19.4
4.3.2.2.3.2.3. check-operation	C. 3
4.3.2.2.3.2.3.1. check-operation-ignore	19.5 and on
4.3.2.2.4. Ack	14.3
4.3.2.2.4.1. Ignore	14.7
4.3.2.2.4.2. Okay	C. 1 and 20.2
4.3.2.2.4.2.1. exists-pd	20.3
4.3.2.2.4.2.2 exists-chosenLost	20.4
4.3.2.2.4.2.3. check-operation	C. 3
4.3.2.2.4.2.3.1. check-operation-ignore	20.5 and on

4.3.2.2.5. ReadExceptionLog	14.3
4.3.2.2.5.1. Ignore	14.7
4.3.2.2.5.2. Okay	C. 5
4.3.2.2.5.2.1. Abort	14.8
4.3.2.2.5.2.2. EaPayer operation	C. 1 and 21
4.3.2.2.5.2.2.1. lemma lost unchanged	C. 2
4.3.2.2.5.2.2.2. check-operation	C. 3
4.3.2.2.5.2.2.2.1. check-operation-ignore	21.3
4.3.2.2.6. ClearExceptionLog	14.3
4.3.2.2.6.1. Ignore	14.7
4.3.2.2.6.2. Abort	14.8
4.3.2.2.6.3. Okay	C. 5
4.3.2.2.6.3.1. Abort	14.8
4.3.2.2.6.3.2. EaPayer operation	C. 1 and 22
4.3.2.2.6.3.2.1. lemma lost unchanged	C. 2
4.3.2.2.6.3.2.2. check-operation	C. 3
4.3.2.2.6.3.2.2.1. check-operation-ignore	22.3
4.3.2.2.7. AuthoriseExLogClear	14.3
4.3.2.2.7.1. Ignore	14.7
4.3.2.2.7.2. Okay	23.2
4.3.2.2.8. Archive	24.2
4.3.2.2.9. Ignore	14.7
4.3.2.2.10. Increase	15.3
4.3.2.2.11. Abort	14.8
4.4. Finalisation	by definition
4.4.1. output finalisation	12.2
4.4.2. state finalisation	12.3
5. B is refined by C	established rules 25.2
5.1. Init	27.1
5.2. Applicability	27.3
5.2.1. pre $\mathrm{COp}=$ true	8.4.2
5.3. Correctness	25.2.5
5.3.1. Simpler correctness	25
5.3.1.1. StartTo is refined	28.1
5.3.1.1.1. Okay branch	29.3 and C. 10
5.3.1.1.1.1. Eafrom branch	29.3
5.3.1.1.1.2. Abort branch	28.5

5.3.1.1.2. CIgnore branch	28.2
5.3.1.1.3. CAbort branch	28.5
5.3.1.2. StartFrom is refined	28.1
5.3.1.2.1. Okay branch	29.2 and C. 10
5.3.1.2.1.1. Eafrom branch	29.2
5.3.1.2.1.2. Abort branch	28.5
5.3.1.2.2. CIgnore branch	28.2
5.3.1.2.3. CAbort branch	28.5
5.3.1.3. Req is refined	28.1
5.3.1.3.1. Okay branch	29.4
5.3.1.3.2. CIgnore branch	28.2
5.3.1.4. Val is refined	28.1
5.3.1.4.1. Okay branch	29.5
5.3.1.4.2. CIgnore branch	28.2
5.3.1.5. Ack is refined	28.1
5.3.1.5.1. Okay branch	29.6
5.3.1.5.2. CIgnore branch	28.2
5.3.1.6. ReadExceptionLog is refined	28.1
5.3.1.6.1. Okay branch	29.7 and C. 10
5.3.1.6.1.1. Eafrom branch	29.7
5.3.1.6.1.2. Abort branch	28.5
5.3.1.6.2. CIgnore branch	28.2
5.3.1.7. ClearExceptionLog is refined	28.1
5.3.1.7.1. Okay branch	29.8 and C. 10
5.3.1.7.1.1. Eafrom branch	29.8
5.3.1.7.1.2. Abort branch	28.5
5.3.1.7.2. CIgnore branch	28.2
5.3.1.7.3. CAbort branch	28.5
5.3.1.8. AuthoriseExLogClear is refined	28.1
5.3.1.8.1. Okay branch	29.9
5.3.1.8.2. CIgnore branch	28.2
5.3.1.9. Archive is refined	29.10
5.3.2. Totality of BOp	8.3.2
5.4. Finalisation	27.2

Appendices

Proof Layout

A. 1 Notation

The notation
Abs $\sqsubseteq C o n c$
says the the Abs operation is refined by the Conc operation.
In order to prove that $A b s$ is indeed validly refined by Conc, we need to
prove various 'correctness conditions', expressed as theorems (section 9). That the predicate
$\forall D \mid P \bullet Q$
is always true is expressed as the theorem
$\vdash \forall D \mid P \bullet Q$
which is equivalent to
$D \mid P \vdash Q$
This can be read as a theorem that states that, under hypothesis $D \mid P$ (declarations D constrained by predicates P), consequent Q (a predicate) has been proved to hold. $D \mid P$ is usually written as a schema text, and Q may be written using a schema as predicate.

A. 2 Labelling proof steps

In labelling various steps of the proofs below, we use the following notation.

- [defn P]: from the definition of the schema predicate P
- [hyp]: from the hypothesis of the theorem
- [prop x]: from a property of the Z operator x
- [name]: use of inference rule name

Appendix B

Inference rules

The proofs presented are rigorous, but informal, in that they have not been checked by a machine proof-checker.

We present below the sort of inference rules we have used. Such explicit use of inference rules improves the readability of the proofs by showing exactly what steps of mathematical reasoning are being made. These inference rules are not intended as a definition of the logic being used, but as guidance about the reasoning steps.

The inference rule

says that conclusion C can be inferred if every premiss Pi can be proved. (The rule name is used for labelling proof steps.)

The inference rule

$$
\frac{P 1, P 2, \ldots, P n}{C} \quad[\text { rulename }]
$$

says that conclusion C can be inferred if any premiss $P i$ can be proved
B. 1 Universal quantifier becomes hypothesis

$$
\frac{S \vdash P}{\vdash \forall S \bullet P} \quad[\text { uni hyp }]
$$

B.6. THIN

B. 2 Disjunction in the hypothesis

Given an hypothesis containing a disjunct, it is sufficient to prove the theorem for each case.

$$
\frac{R \vdash P \quad S \vdash P}{R \vee S \vdash P} \quad[\text { hyp disj }]
$$

B. 3 Disjunction in the consequen

Given a consequent containing a disjunct, it is sufficient to prove the theorem for only one case (since this is a harder thing to prove)

$$
\frac{R \vdash P, R \vdash Q}{R \vdash P \vee Q} \quad[\text { consq disj }]
$$

B. 4 Conjunction in the consequent

Given a consequent containing a conjunct, it is sufficient to prove the theorem for each case separately

$$
\frac{R \vdash P \quad R \vdash Q}{R \vdash P \wedge Q} \quad[\text { consq conj }]
$$

We can add conjuncts to the consequent (since this is a harder thing to prove).

$$
\frac{R \vdash P \wedge Q}{R \vdash P} \quad[\text { strengthen consa }]
$$

B. 5 Cut for lemmas

Cut is a way to introduce new hypotheses, and discharge them as lemmas

$$
\frac{R ; D \mid Q \vdash P \quad R \vdash \exists D \bullet Q}{R \vdash P} \quad[\text { cut }
$$

B. 6 Thin

We can remove assumptions.

$$
\left.\frac{\vdash R}{P \vdash R} \text { [thin }\right]
$$

B. 7 Universal Quantification

Universals can be replaced by a particular choice in the hypothesis

$$
\frac{x_{1} \in X \Rightarrow P\left(x_{1}\right) \vdash R}{\forall x: X \bullet P(x) \vdash R} \quad[\text { hyp uni }]
$$

B. 8 Negation

In order to prove something, you can assume its negation

$$
\frac{\neg P \vdash}{\vdash P} \quad[\text { negation }]
$$

B. 9 Contradiction

If R can be proved, assuming its negation allows you to prove anything (because false \Rightarrow anything).

$$
\frac{\vdash R}{\neg R \vdash \text { anything }} \quad[\text { contradiction }]
$$

B. 10 One Point Rule

In order to prove there exists a value with a property, it is enough to exhibit such a value.

$$
\frac{\vdash P[t / x]}{\vdash \exists x \bullet P \wedge x=t} \quad \text { [one point] }
$$

provided x is not free in t.

B. 11 Derived Rules

We find it useful to derive some compound rules. These make the proofs in the body of the document easier to follow, and can themselves be proved from the inference rules above.

3.11.1 One point cut

$$
\frac{P \vdash Q}{P \vdash \exists P \cdot Q} \quad[\text { consq exists }]
$$

and very similarly

$$
\frac{P \vdash Q}{P \vdash(\exists P) \wedge Q} \quad[\text { consq exists }]
$$

B.11.2 Existential in the hypothesis

$$
\frac{x: X ; D \mid P \vdash}{D \mid \exists x: X \bullet P \vdash} \quad[\text { hyp exists }]
$$

3.12 Proof of the Derived Rules

We derive each of the derived rules above from the main inference rules.

B.12.1 Derivation of One point cut

We can derive the first one-point cut rule ([consq exists]) as follows. First, we expand P into a declaration D and a predicate p.

$D \mid p \vdash \exists D \bullet p \wedge q$	[starting point]
$D \mid p \vdash \exists D^{\prime} \bullet p\left[D^{\prime} / D\right] \wedge q\left[D^{\prime} / D\right]$	[rename bound declaration]
$D \mid p \vdash \exists D^{\prime} \bullet p\left[D^{\prime} / D\right] \wedge q\left[D^{\prime} / D\right] \wedge D^{\prime}=D$	[strengthen consequent]
$D \mid p \vdash p\left[D^{\prime} / D\right]\left[D / D^{\prime}\right] \wedge q\left[D^{\prime} / D\right]\left[D / D^{\prime}\right]$	[one point rule]
$D \mid p \vdash p \wedge q$	[simplify renaming]
$D \mid p \vdash q$	[discharge p from hyp]

The second onepoint-cut rule follows exactly the same way, except that q is not bound by the existential, and so none of the renamings alters it.
B.12. PROOF OF THE DERIVED RULES

B.12.2 Derivation of existential in the hypothesis

D $\mid(\exists x: X \bullet P) \vdash$
[starting point]
$D ; x: X \mid P \wedge(\exists x: X \bullet P) \vdash$
$D \mid(\exists x: X \bullet P) \vdash \exists x: X \bullet P$
$D ; x: X \mid P \wedge(\exists x: X \bullet P) \vdash \quad$ [discharge side lemma from hyp]
$D ; x: X \mid P \vdash$
[thin]
as required.

Lemmas and their proofs

C. 1 Lemma 'deterministic’

Lemma 1 (deterministic) The correctness proof for a general Okay branch consists of the following three proof obligations: ${ }^{1}$
exists-pd:
ФВОр; BOpPurseOkay; RabOut; RabCl'; RabIn
$\stackrel{+}{\vdash}$
\exists
\exists
ヨ pdThis : PayDetails $\bullet \mathcal{P}$
exists-chosenLost:
ФВОр; BOpPurseOkay; RabOut; RabClPd'[pdThis/pdThis']; RabIn | \mathcal{P}
\vdash
\exists chosenLost $: \mathbb{P}$ PayDetails $\bullet Q \wedge$ chosenLost \subseteq maybeLost

check-operation:

ФВОр; BOpPurseOkay; RabOut; RabClPd' $[$ pdThis/pdThis']; AbWorld; RabClPd; RabIn |
$\mathcal{P} \wedge \mathcal{Q}$
$\stackrel{\vdash}{A O p}$
-
${ }^{1}$ Used in: lemma ‘AbIgnore', section 14.6; lemma 'Ignore', section 14.7; lemma 'Abort refines AbIgnore', section 14.8 ; used to simplify every $\mathcal{A}-\mathcal{B}$ operation proof

See section 14.4.5
■ C. 1

C. 2 Lemma 'lost unchanged'

Lemma 2 (lost unchanged) For $B O p \Xi$ Lost operations, where we have that maybeLost $=$ maybeLost and definitelyLost $=$ definitelyLost, the proof obligations exists-pd and exists-chosenLost are satisfied automatically by the instantiation of the predicates \mathcal{P} and Q as: ${ }^{2}$

$$
\begin{aligned}
& \mathcal{P} \Leftrightarrow \text { true } \\
& \mathcal{Q} \Leftrightarrow \text { chosenLost }=\text { chosenLost }^{\prime}
\end{aligned}
$$

-

Proof:
See section 14.5

- C. 2
C. 3 Lemma 'AbIgnore'

Consider an operation BOpIg which refines AbIgnore. The operation should have the following properties.

- BOpIg is a promoted operation, and thus alters only one concrete purse.
- for any purse, the name is unchanged.
- the domain of conAuthPurse is unchanged (by construction of the promotion)
- for any purse, either nextSeqNo is unchanged, or increased

Where these properties hold for BOpIg, we can apply lemma AbIgnore.
Lemma 3 (AbIgnore) For a BOpIg operation, the check-operation proof obliga${ }^{2}$ Used in ExceptionLogEnquiry, chapter 21; ExceptionLogClear, chapter 22.
C.4. LEMMA 'ABORT REFINES ABIGNORE'
tion reduces to ${ }^{3}$
ФВОр; BOpIgPurse; RabClPd'[pdThis/pdThis']; AbWorld; RabClPd | $\mathcal{P} \wedge \mathcal{Q}$
\vdash
$\forall n$: dom abAuthPurse •
(abAuthPurse' n).lost $=($ abAuthPurse $n) . l o s t$
\wedge (abAuthPurse' n).balance $=($ abAuthPurse $n)$.balance
■
Proof:
See section 14.6.
■ C. 3
C. 4 Lemma 'Abort refines AbIgnore'

Lemma 4 (Abort refines AbIgnore) Concrete Abort refines abstract AbIgnore. ${ }^{4}$
Abort; Rab'; RabOut $\vdash \exists$ AbWorld; a? : AIN •Rab \wedge RabIn \wedge AbIgnore
-
Proof:
See section 14.8

- C. 4

C. 5 Lemma 'abort backward'

Lemma 5 (abort backward) Where a concrete operation is written as a composition of AbortPurseOkay and a simpler operation starting from eaFrom, it is sufficient to prove that the promotion of the simpler operation alone refines ${ }^{3}$ Used in: 'Ignore', section 14.7; lemma 'Abort refines AbIgnore', section 14.8; used to simplify ${ }_{4}$ every $\mathcal{A}-\mathcal{B}$ operation proof that refines Ablgnore
Used in: lemma 'abort backward', section C.
the relevant abstract operation. ${ }^{5}$
$\left(\exists \Delta\right.$ ConPurse • Φ BOp $\wedge\left(\right.$ AbortPurseOkay ${ }_{9}$ BOpPurseEafromOkay)); Rab'; RabOut;
(\forall BOpEafromOkay; Rab' $^{\prime}$; RabOut • \exists AbWorld; a ? : AIN \bullet Rab $\wedge \operatorname{RabIn} \wedge A O p)$
\vdash
\exists AbWorld; a ? : AIN \bullet Rab \wedge RabIn $\wedge A O p$
■
Proof:
See section 14.9

- C. 5

C. 6 Lemma 'constraint'

Lemma 6 (constraint) If an operation does not change purse status and does not change the presence of payment detail messages in the ether (either by not emitting such a message, or by emitting an already existing message), then it preserves the BetweenWorld constraints. ${ }^{6}$

Proof:

See section 28.3.4.
■ C. 6

C. 7 Lemma 'logs unchanged'

Lemma 7 (logs unchanged) When the archive and the individual purse logs do not change, and when no new req messages are added to the ether, the set of ${ }^{5}$ Used in: StartFrom, section 16; StartTo, section 17; ClearExceptionLog, section 22; ReadExceptionLog, section 21
${ }^{6}$ Used in: Increase, section 28.4; CClearExceptionLog, section 29.8; CArchive, section 29.10.
C.8. LEMMA 'ABORT FORWARD'

PayDetails representing all the logs does not change either. ${ }^{7}$
BOpOKay \mid archive $=$ archive
$\wedge($ ran req $) \cap$ ether ${ }^{\prime}=($ ran req $) \cap$ ether \cdot
$\wedge \forall n$: dom conAuthPurse •
(conAuthPurse' n).exLog $=($ conAuthPurse $n) . e x L o g$
\vdash
allLogs' $=$ allLogs
\wedge toLogged ${ }^{\prime}=$ toLogged
\wedge fromLogged' $=$ fromLogged
\square
Proof:
See section 28.6 .

- C. 7

C. 8 Lemma 'abort forward’

Lemma 8 (abort forward) Where a C operation is written as a composition of CAbort and a simpler operation starting from eaFrom, and the corresponding \mathcal{B} operation is structured similarly, it is sufficient to prove that the simpler C operation refines corresponding \mathcal{B} operation ${ }^{8}$.

(CAbort ${ }_{9}$ COpEafrom); Rbc;

(\forall COpEafrom; Rbc • \exists BetweenWorld \cdot Rbc $^{\prime} \wedge$ BOpEafrom $)$
\vdash
\exists BetweenWorld' • Rbc $^{\prime} \wedge$ (Abort 9 BOpEafrom)
■
Proof:
See section 28.7
${ }^{7}$ Used in: lemma 'constraint', section 28.3.4; CStartFrom, section 29.2; CReq, section 29.4; CVal, section 29.5; CAck, section 29.6; CReadExceptionLog, section 29.7; CAuthoriseExLogClear, section 29.9.
${ }^{8}$ Used in: CStartFrom, section 29.2; CStartTo, section 29.3; CReadExceptionLoa, section 29.7; ClearExceptionLog, section 29.8

C. 9 Lemma 'compose backward'

Lemma C. 1 (compose backward) If, under the backwards refinement rules, a concrete operation $C O p_{1}$ is a refinement of abstract operation $A O p_{1}$, and $C O p_{2}$ is a refinement of $A O p_{2}$, then their composition is a refinement of the abstract composition ${ }^{9}$.

```
COp1 g COp2); R'; ROut;
    \forallCOp; R'; ROut \bullet (\existsA;AIn \bullet R^RIn ^AOp l ) )
    ( }\forallCO\mp@subsup{p}{2}{};\mp@subsup{R}{}{\prime};ROut \bullet(\existsA;AIn \bullet R\wedgeRIn ^AOp 2 ) )
\vdash
```

$\exists A ; A I n \bullet R \wedge R I n \wedge\left(A O p_{1} \stackrel{\circ}{\circ} A O p_{2}\right)$

■
Proof:
This result is reasonably self-evident, from the definition of refinement in terms of complete programs. We show that the particular form of the theorem holds here.

Without loss of generality, assume that the concrete and abstract state schemas have a single component, c and a respectively. (A multi-component state is isomorphic to a single component state consisting of all the multicomponents bundled into a single schema or Cartesian product.)
expand the compositions, and rename the quantified variables in the hypothesis.
$\left(\exists C_{0} \bullet \operatorname{COp}_{1}\left[c_{0} / c^{\prime}\right] \wedge \operatorname{COp}_{2}\left[c_{0} / c\right]\right) ; R^{\prime} ; R O u t ;$
$\quad\left(\forall \operatorname{COp_{1}}\left[c_{0} / c^{\prime}\right] ; R_{0} ; \operatorname{ROut} \bullet\left(\exists A ; A \operatorname{AIn} \bullet R \wedge R I n \wedge A O p_{1}\left[a_{0} / a^{\prime}\right]\right)\right) ;$
$\quad\left(\forall \operatorname{COp} p_{2}\left[c_{0} / c\right] ; R^{\prime} ; \operatorname{ROut} \bullet\left(\exists A_{0} ; A I n \bullet R_{0} \wedge R I n \wedge A O p_{2}\left[a_{0} / a\right]\right)\right)$
\vdash
$\exists A ; A I n \bullet R \wedge R I n \wedge\left(\exists A_{0} \bullet A O p_{1}\left[a_{0} / a^{\prime}\right] \wedge A O p_{2}\left[a_{0} / a\right]\right)$

Use [hyp exists] to drop the \exists in the hypothesis, then simplify.
$\operatorname{COp}_{1}\left[c_{0} / c^{\prime}\right] ; \operatorname{COp}_{2}\left[c_{0} / c\right] ; R^{\prime} ;$ ROut;
($\forall \operatorname{COp}_{1}\left[\mathcal{c}_{0} / c^{\prime}\right] ; R_{0} ;$ ROut
(\exists A; AIn • R $\left.\wedge R I n \wedge A O p_{1}\left[a_{0} / a^{\prime}\right]\right)$);
(\forall COp $_{2}\left[c_{0} / c\right] ; R^{\prime} ;$ ROut •
$\left.\left(\exists A_{0} ; A I n \bullet R_{0} \wedge R I n \wedge A O p_{2}\left[a_{0} / a\right]\right)\right)$
$\exists A ; A I n \bullet R \wedge R I n \wedge\left(\exists A_{0} \bullet A O p_{1}\left[a_{0} / a^{\prime}\right] \wedge A O p_{2}\left[a_{0} / a\right]\right)$ ${ }^{9}$ Used in: lemma 'abort backward', section C. 5
C.10. LEMMA 'COMPOSE FORWARD

Use $D \wedge(\forall D \bullet P) \Rightarrow P$ to simplify the second universal quantifier in the hypothesis.

$$
\begin{aligned}
& C O p_{1}\left[c_{0} / c^{\prime}\right] ; C O p_{2}\left[c_{0} / c\right] ; R^{\prime} ; \text { ROut; } \\
& \quad\left(\forall C O p_{1}\left[c_{0} / c^{\prime}\right] ; R_{0} ; R O u t \bullet\right. \\
& \left.\quad\left(\exists A ; A I n \bullet R \wedge R I n \wedge A O p_{1}\left[a_{0} / a^{\prime}\right]\right)\right) \mid \\
& \quad \exists A_{0} ; A I n \bullet R_{0} \wedge R I n \wedge A O p_{2}\left[a_{0} / a\right] \\
& \vdash \\
& \exists A ; A I n \bullet R \wedge R I n \wedge\left(\exists A_{0} \bullet A O p_{1}\left[a_{0} / a^{\prime}\right] \wedge A O p_{2}\left[a_{0} / a\right]\right)
\end{aligned}
$$

Use [hyp exists] to drop the \exists in the hypothesis, then simplify.
$\operatorname{COp}_{1}\left[c_{0} / c^{\prime}\right] ; \operatorname{COp}_{2}\left[c_{0} / c\right] ; R_{0} ; R^{\prime} ;$ ROut; RIn; AOp $2\left[a_{0} / a\right] ;$
($\forall C O p_{1}\left[c_{0} / \mathrm{c}^{\prime}\right] ; R_{0} ;$ ROut
$\left.\left(\exists A ; A I n \bullet R \wedge R I n \wedge A O p_{1}\left[a_{0} / a^{\prime}\right]\right)\right)$
\vdash
$\exists A ; A I n \bullet R \wedge R I n \wedge\left(\exists A_{0} \bullet A O p_{1}\left[a_{0} / a^{\prime}\right] \wedge A O p_{2}\left[a_{0} / a\right]\right)$
Repeat the previous three steps to simplify the remaining quantifier in the hypothesis.

$$
\begin{aligned}
& \operatorname{COp}_{1}\left[c_{0} / c^{\prime}\right] ; \operatorname{COp}_{2}\left[c_{0} / c\right] ; R ; R_{0} ; R^{\prime} ; \text { ROut } ; \text { RIn; } \\
& A O p_{1}\left[a_{0} / a^{\prime}\right] ; A O p_{2}\left[a_{0} / a\right] \\
& \vdash \\
& \exists A ; A I n \bullet R \wedge \operatorname{RIn} \wedge\left(\exists A_{0} \bullet A O p_{1}\left[a_{0} / a^{\prime}\right] \wedge A O p_{2}\left[a_{0} / a\right]\right)
\end{aligned}
$$

Move the inner \exists in the consequent outwards
$C O p_{1}\left[c_{0} / c^{\prime}\right] ; \operatorname{COp} p_{2}\left[c_{0} / c\right] ; R ; R_{0} ; R^{\prime} ; R O u t ; R I n ;$
$A O p_{1}\left[a_{0} / a^{\prime}\right] ; A O p_{2}\left[a_{0} / a\right]$
\vdash
$\exists A ; A_{0} ; A I n \bullet R \wedge R I n \wedge A O p_{1}\left[a_{0} / a^{\prime}\right] \wedge A O p_{2}\left[a_{0} / a\right]$

All the terms are in the hypothesis.

■. 9

C. 10 Lemma 'compose forward

Lemma C. 2 (compose forward) If, under the forwards refinement rules, concrete operation $C O p_{1}$ is a refinement of abstract operation $A O p_{1}$, and $C O p_{2}$ is a refinement of $A O p_{2}$, then their composition is a refinement of the abstract
composition ${ }^{10}$.

```
(COp 1 % COp 2); R;
            ( }\forallCO\mp@subsup{p}{1}{\prime};R\bullet(\exists\mp@subsup{A}{}{\prime}\bullet\mp@subsup{R}{}{\prime}\wedgeAO\mp@subsup{p}{1}{}))
            (\forallCOp2;R\bullet(\exists\mp@subsup{A}{}{\prime}\bullet\mp@subsup{R}{}{\prime}\wedgeAO\mp@subsup{p}{2}{}))
    \exists}\mp@subsup{A}{}{\prime}\bullet\mp@subsup{R}{}{\prime}\wedge(AO\mp@subsup{p}{1}{}\mp@subsup{}{9}{\circ}AO\mp@subsup{p}{2}{}
```

-

Proof:
Follows as for lemma 'compose backward', above.

- C. 10
C. 11 Lemma 'promoted composition'

Lemma C. 3 (promoted composition) The promotion of the composition of two ${ }_{11}$ operations is equal to the composition of the promotions of the two operations
Assume the existence of a local state Local, which, without loss of generality we assume has a single variable x; a global state Global, with a standard promotion framing schema, Φ
\qquad

- Global \quad locals $:$ NAME \rightarrow Local
$\left[\begin{array}{c}\Phi \\ \Delta \text { Global }\end{array}\right.$
Δ Local
n ? : NAME
$n ? \in \operatorname{dom}$ locals
locals n ? $=\theta$ Local
locals' $=$ locals $\oplus\left\{n ? \mapsto \theta\right.$ Local $\left.^{\prime}\right\}$
${ }^{10}$ Used in: lemma 'abort forward', section 28.7 .
${ }^{11}$ Used in: lemma 'abort backward', section C. 5

```
\Phi; Op ; Op 
\vdash
Local • \Phi^(O\mp@subsup{p}{1}{\prime}gO\mp@subsup{p}{2}{})
    =(\exists\DeltaLocal \bullet Ф^Op ) % (\exists\DeltaLocal \bullet }\Phi\wedgeO\mp@subsup{p}{2}{}
```

\cdot

Proof:
We prove this by expanding the definition of composition as an existential quantification, and then showing that this quantification and the quantification used in the promotion commute.

Expand the composition on the right hand side, and then expand the definition of Φ.
$\left(\exists \Delta\right.$ Local $\left.\bullet \Phi \wedge O p_{1}\right) \stackrel{\circ}{ }\left(\exists \Delta\right.$ Local $\left.\bullet \Phi \wedge O p_{2}\right)$
$=\exists$ Global $_{0} \bullet\left(\exists \Delta\right.$ Local $\bullet \Phi\left[\right.$ locals $_{0} /$ locals $\left.\left.^{\prime}\right] \wedge O p_{1}\right)$
$\wedge\left(\exists \Delta\right.$ Local • $\Phi\left[\right.$ locals $_{0} /$ locals $\left.] \wedge O p_{2}\right)$
$=\exists$ Global $_{0}$ -
($\exists \Delta$ Local •
[locals; locals ${ }_{0}:$ NAME \rightarrow Local
n ? $\in \operatorname{dom}$ locals
\wedge locals $n ?=\theta$ Local
\wedge local $_{0}=$ locals $\oplus\left\{n ? \mapsto \theta\right.$ Local $\left.\left.^{\prime}\right\}\right]$
$\left.\wedge O p_{1}\right)$
$\wedge(\exists \Delta$ Local •
[locals ${ }_{0}$; locals' $: ~ N A M E \rightarrow$ Local $]$
$n ? \in \operatorname{dom}$ locals $_{0}$
\wedge locals $_{0} n ?=\theta$ Local
\wedge locals $^{\prime}=$ local $_{0} \oplus\left\{n ? \mapsto \theta\right.$ Local $\left.\left.^{\prime}\right\}\right]$

$$
\left.\wedge O p_{2}\right)
$$

Rename the after state in the first operation to Local_{a} and the before state in the second operation to Local $_{b}$. Choosing different names makes it easier to
combine the schemas across the quantifiers.
$=\exists$ Global $_{0}$ •
(\exists Local; Local $_{a} \bullet$
[locals; locals ${ }_{0}$: NAME \rightarrow Local
n ? $\in \operatorname{dom}$ locals
\wedge locals n ? $=\theta$ Local
\wedge locals $_{0}=$ locals $\oplus\left\{n ? \mapsto\right.$ Local $\left.\left._{a}\right\}\right]$
$\left.\wedge O p_{1}\left[x_{a} / x^{\prime}\right]\right)$
$\wedge\left(\exists\right.$ Local $_{b} ;$ Local $^{\prime} \cdot$
[locals $;$; locals' $:$ NAME \rightarrow Local |
n ? $\in \operatorname{dom}$ locals 0
\wedge locals $_{0} n ?=$ Local $_{b}$
\wedge locals $^{\prime}=$ locals $_{0} \oplus\{n$? \mapsto OLocal' $\}$
$\left.\wedge O p_{2}\left[x_{b} / x\right]\right)$
Combine all these as a single schema, putting the quantifications into the predicate.
$=[$ locals; locals' $:$ NAME \rightarrow Local
$\exists_{\text {local }}^{0}$; Local; Local'; Locala; Local $_{b} \bullet$ $n ? \in \operatorname{dom}$ locals
\wedge locals n ? $=\theta$ Local
\wedge local $_{0}=$ locals $\oplus\left\{n\right.$? \mapsto Local $\left._{a}\right\}$
$\wedge n ? \in \operatorname{dom}$ locals $_{0}$
\wedge locals $_{0} n ?=$ Local $_{b}$
$\wedge O p_{1}\left[x_{a} / x^{\prime}\right]$
$\left.\wedge O p_{2}\left[x_{b} / x\right]\right]$
We can remove the quantification of local ${ }_{0}$ because we have a full definition of it in terms of other variables. This leaves the following equations relating the remaining variables.
$=[$ locals; locals' $:$ NAME \rightarrow Local \mid
\exists Local; Local'; $^{\text {Local }}$ a Local $_{b}$ n ? \in dom locals

- locals $n ?=\theta$ Local
\wedge Local $_{b}=\theta$ Local $_{a}$
\triangle locals $^{\prime}=$ locals $\oplus\left\{n\right.$? $\mapsto \theta$ Local $\left.{ }^{\prime}\right\}$
$\wedge O p_{1}\left[x_{a} / x^{\prime}\right]$
$\left.\wedge O p_{2}\left[x_{b} / x\right]\right]$
C.12. LEMMA 'NOTLOGGEDANDIN'

Using the equation that $\theta \operatorname{Local}_{b}=\operatorname{LLocal}_{a}$, rename Local_{a} and Local $_{b}$ both to Local $_{0}$.
$=[$ locals; locals' $:$ NAME \rightarrow Local \mid
${ }^{\text {a }}$ Local; Local'; Local $_{0}$
n ? \in dom locals
\wedge locals n ? $=$ blocal
\wedge locals $^{\prime}=$ locals $\oplus\left\{n\right.$? $-\theta$ Local $\left.{ }^{\prime}\right\}$
$\wedge O p_{1}\left[x_{0} / x^{\prime}\right]$
$\left.\wedge O p_{2}\left[x_{0} / x\right]\right]$
Redistribute the quantifications
$=\exists$ Local; Local ${ }^{-}$
[locals; locals' $:$ NAME \rightarrow Local |
$n ? \in \operatorname{dom}$ locals
\wedge locals $n ?=\theta$ Local
\wedge locals $=$ locals $\oplus\{n$? \mapsto OLocal' $\}$
$\left.\wedge\left(\exists \operatorname{Local}_{0} \bullet O p_{1}\left[x_{0} / x^{\prime}\right] \wedge O p_{2}\left[x_{0} / x\right]\right)\right]$
and rewrite in terms of composition

$$
\begin{aligned}
& =\exists \text { Local } ; \text { Local } \bullet \Phi \wedge\left(O p_{1} \circ O p_{2}\right) \\
& =\exists \Delta \text { Local } \bullet \Phi \wedge\left(O p_{1} \stackrel{\circ}{g} O p_{2}\right)
\end{aligned}
$$

This is the left hand side of the equation, and hence the proof is complete. - C. 11

C. 12 Lemma 'notLoggedAndIn’

Lemma C. 4 (notLoggedAndIn) If a purse is engaged in a transaction, it does not have a log for that transaction 12

```
BetweenWorld
& Bet
(fromInEpr }\cup\mathrm{ fromInEpa) }\cap\mathrm{ fromLogged }=
\wedge ( \text { toInEpv } \cup \text { toInEapayee) } \cap \text { toLogged } = \varnothing
```

-

${ }^{12}$ Used in: Val, behaviour of toLogged, section 19.6.2; Ack, behaviour of definitelyLost, secion C. 14

Proof:

Consider the to purse case. We consider the $p d$ stored in the to purse, so
$p d \in(t o I n E p v \cup$ toInEapayee $) \Rightarrow$
pd.toSeqNo $=($ conAuthPurse pd.to $)$. pdAuth.toSeqNo
We have, from BetweenWorld constraint B-8, that
$p d \in$ toLogged \Rightarrow pd.toSeqNo $<($ conAuthPurse pd.to).pdAuth.toSeqNo
Hence there can be no $p d$ in both sets.
The arguments for the from cases follow similarly, from BetweenWorld constraint B-7.

■ C. 12
C. 13 Lemma 'lost'

Lemma C. 5 (lost) The sets definitelyLost and maybeLost are disjoint: a pd can never be in both. ${ }^{13}$

BetweenWorld \vdash definitelyLost \cap maybeLost $=\varnothing$
-
Proof:
definitelyLost \cap maybeLost
$=$ toLogged $\cap($ fromLogged \cup fromInEpa $)$ $\cap($ fromInEpa \cup fromLogged $) \cap$ toInEpv
$=$ toLogged \cap toInEp $v \cap($ fromLogged \cup fromInEpa $) \quad$ [rearranging] $=\varnothing$
[Lemma 'notLoggedAndIn' (section C.12)]
■ C. 13
${ }^{13}$ Used in: Req, case 1, section 18.7.1; Req, case 2, section 18.8.1; Req, case 3, section 18.9.1.
C.14. LEMMA 'NOT LOST BEFORE'

C. 14 Lemma 'not lost before’

Lemma C. 6 (not lost before) pdThis is not lost before the Req operation, although it maybe lost after. ${ }^{14}$

ФВОр; ReqPurseOkay; pdThis: PayDetails \mid (req \sim ? $)=p d$ This
definitelyLost $=$ definitelyLost $\backslash\{p d$ This $\}$
\wedge maybeLost $=$ maybeLost ${ }^{\prime} \backslash\{p d T h i s\}$
-
Proof:
From the definition of the way the state changes in ReqORay we can say that the following sets are the same before and afterward:

> fromLogged $=$ fromLogged
> \wedge toLogged $=$ toLogged
> \wedge toInEp $v=$ toInEpv v^{\prime}

For the set frominEpa, we know from ReqOkay that beforehand this pdThis was not in the set and afterward it was. So

$$
\begin{aligned}
& \text { pdThis } \in \text { fromInEpa } \\
& \wedge \text { fromInEpa }=\text { fromInEpa } \backslash\{p d T h i s\}
\end{aligned}
$$

From Lemma 'notLoggedAndIn' (section C.12), we have:

$$
\text { pdThis } \in \text { fromInEpa }^{\prime} \Rightarrow \text { pdThis } \notin \text { fromLogged' }
$$

Reminding ourselves of the definitions of definitelyLost and using the identities above, we have

definitelyLost	
$=$ toLogged $\cap($ fromLogged \cup fromInEpa $)$	[defn]
$=$ toLogged' $\cap\left(\right.$ fromLogged ${ }^{\prime} \cup$ fromInEpa' $\left.\backslash\{p d T h i s\}\right)$	[above]
$=$ toLogged $^{\prime} \cap\left(\right.$ fromLogged $^{\prime} \cup$ fromInEpa $\left.{ }^{\prime}\right) \backslash\{p d T h i s\}$	
[pdThis \& fromLogged']	
$=($ toLogged' $\cap($ fromLogged' \cup fromInEpa' $)$) $\backslash\{p d T h i s\}$	[Spivey]
$=$ definitelyLost' $\backslash\{p d T h i s\}$	[defn]

${ }^{14}$ Used in: Req, exists-chosenLost, section 18.5; Req, check-operation, section 18.6 .

Similarly for maybeLost

```
maybeLost
    =(fromInEpa }\cup\mathrm{ fromLogged })\cap\mathrm{ toInEpv
    d') \cap toInEpv
        [defn]
    =((fromInEpa'\{pdThis})\cup fromLogged') \cap toInEpv
    =((fromInEpa' \cupfromLogged')\{pdThis})\cap toInEpv'
    =((fromInEpa' fromLoged') \cap [pdThis & fromLogged']
    =((fromInEpa'\cupfromLogged') \cap toInEpv}\mp@subsup{}{}{\prime})\{pdThis} [prop \]
    = maybeLost'}\{pdThis
        [def]
```

- C. 14
C. 15 Lemma 'AbWorld unique'

Lemma C. 7 (AbWorld unique) Given BetweenWorld and a choice of which transactions will be lost, there is always exactly one AbWorld that retrieves. ${ }^{15}$

```
BetweenWorld; chosenLost : PP PayDetails; pdThis : PayDetails
    chosenLost \subseteq maybeLost
\exists1 AbWorld • RabClPd
```

Proof:
Each element of AbWorld has an explicit equation in Rab defining it uniquely in terms of BeweenWorld components. The components are entirely independent, and the only constraint that ties any together is that on chosenLost and maybeLost, which we have directly in the hypothesis.

The constraints required of any AbWorld can be shown to hold as follows:

- abAuthPurse: NAME \rightarrow AbPurse
conAuthPurse is a finite function. From the retrieve AbstractBetween the domain of abAuthPurse equals the domain of conAuthPurse, and so is finite, too.

■. 15

- C

[^3]
Auxiliary toolkit definitions

D. 1 Total abstract balance

The function totalAbBalance returns the total value held in a finite collection of purses.

```
totalAbBalance: (NAME }->\mathrm{ AbPurse) }->\mathbb{N
```

totalAbBalance $\varnothing=0$
$\forall w:$ NAME \rightarrow AbPurse; n : NAME; AbPurse $\mid n \notin \operatorname{dom} w \bullet$
totalAbBalance $(\{n \mapsto \theta$ AbPurse $\} \cup w)=$
balance + totalAbBalance w

This recursive definition is valid, because it is finite, and hence bounded.
D. 2 Total lost value

The function totalLost returns the total value lost by a finite collection of purses.

```
totalLost: (NAME m AbPurse) }->\mathbb{N
totalLost }\varnothing=
\forallw:NAME # AbPurse; n:NAME; AbPurse | n # dom w -
    totalLost ({n\mapsto0AbPurse} \cup w) = lost + totalLost w
```

This recursive definition is valid, because it is finite, and hence bounded.

D. 3 Summing values

We define the sum of the values in a set of exception logs, or a set of payment details. This recursive definition is valid, because it is finite, and hence bounded.

Bibliography

sumValue: \mathbb{F} PayDetails $\rightarrow \mathbb{N}$
sumValue $\varnothing=0$
$\forall p d s: \mathbb{F}$ PayDetails; PayDetails | θ PayDetails $\notin p d s$.
sumValue $(\{\theta$ PayDetails $\} \cup p d s)=$ value + sumValue $p d s$
[Barden et al. 1994]
Rosalind Barden, Susan Stepney, and David Cooper. Z in Practice. BCS Practitioners Series. Prentice Hall, 1994
[Flynn et al. 1990]
Mike Flynn, Tim Hoverd, and David Brazier. Formaliser-an interactive support tool for Z. In John E. Nicholls, editor, Z User Workshop: Proceedings of the 4th Annual Z User Meeting, Oxford 1989, Workshops in Computing, pages 128-141. Springer Verlag, 1990
[Spivey 1992a]
J. Michael Spivey. The fuzz Manual. Computer Science Consultancy, 2nd edition, 1992. ftp://ftp.comlab.ox.ac.uk/pub/Zforum/fuzz.
[Spivey 1992b]
J. Michael Spivey. The Z Notation: a Reference Manual. Prentice Hall, 2nd edition, 1992.
[Stepney]
Susan Stepney. Formaliser Home Page. http://public.logica.com/~~formaliser/.
[Woodcock \& Davies 1996]
Jim Woodcock and Jim Davies. Using Z: Specification, Refinement, and Proof. Prentice Hall, 1996.

Index

ФBOp, 31	allLogs; AuxWorld, 28
ФСОр, 37	AllValueAccounted, 13
」, 20	aNullIn, 16
	aNullOut, 16
abAuthPurse; AbWorld, 16	AOUT, 16
AbFinOut, 18	Archive, 34
AbFinState, 18	archive, 27
AbIgnore, 16	Authentic, 13
AbInitIn, 18	AuthenticAckMessage, 24
AbInitState, 17	authenticFrom; AuxWorld, 28
AbOp, 16	AuthenticReqMessage, 24
Abort, 32	authenticTo; AuxWorld, 28
AbortPurseOkay, 22	AuthenticValMessage, 24
AbPurse, 15	AuthoriseExLogClearOkay, 33
AbPurseTransfer, 16	AuxWorld, 28
AbstractBetween, 45	
AbTransfer, 17	balance; AbPurse, 15
AbTransferLost, 17	balance; ConPurse, 20
AbTransferLostTD, 17	BetweenInitState, 35
AbTransferOkay, 17	BetweenWorld, 30
AbTransferOkayTD, 17	BetwFinOut, 36
AbWorld, 16	BetwFinState, 36
AbWorldSecureOp, 16	BetwInitIn, 36
Ack, 33	
ack, 20	CAbort, 38
AckPurseOkay, 24	CAck, 38
AIN, 16	CArchive, 39

AuthoriseExLogClear, 39
ClearExceptionLog, 38
check-operation, 58
CIgnore, 38
CIncrease, 38
CLEAR, 19
ClearExceptionLog, 33
ClearExceptionLogEapayerOkay, 33
ClearExceptionLogPurseEapayerOkay, 26
ClearExceptionLogPurseOkay, 26
ConFinState, 39
ConInitState, 39
ConPurse, 20
ConPurseAbort, 22
ConPurseAck, 22
ConPurseClear, 26
ConPurseIncrease, 21
ConPurseReq, 22
ConPurseStart, 22
ConPurseVal, 22
consequent, 114
consaconj, 116
consadisj, 116
consqexists, 117
contradiction, 117
ConWorld, 27
CounterPartyDetails, 19
cpd; StartFromPurseEapayerOkay, 22
cpd; StartToPurseEapayerOkay, 23
cpd; ValidStartFrom, 22
cpd; ValidStartTo, 23
CReadExceptionLog, 38
CReq, 38
CStartFrom, 38
CStartTo, 38
ut, 116
CVal, 38
definitelyLost; AuxWorld, 28
eaPayee, 18
eaPayer, 18
epa, 18
epa, 18
epr, 18
epv, 18
epv, 18
ether; ConWorld, 27 exceptionLogClear, 20 exceptionLogResult, 20 exists-chosenLost, 58 exists-pd, 58
exLog; ConPurse, 20
from; TransferDetails, 16 fromInEpa; AuxWorld, 28 fromInEpr; AuxWorld, 28 fromLogged; AuxWorld, 28 fromSeqNo; PayDetails, 19

GlobalWorld, 18
hypdisj, 116
hypexists, 117
hypuni, 116
hypothesis, 114
Ignore, 32, 55
image, 19
Increase, 32
IncreasePurseOkay, 21
lemma 'Abort refines AbIgnore', 61 lemma 'AbIgnore', 119
lemma 'abort backward’, 65, 119 lemma 'abort forward', 120
lemma 'Abort refines AbIgnore', 119
lemma 'AbWorld unique', 125
lemma 'compose backward', 121
lemma 'compose forward', 121
lemma 'constraint', 100, 120
lemma 'deterministic', 58, 118 lemma 'ignore', 55
lemma ‘logs unchanged’, 120
emma 'lost unchanged', 59, 119
lemma 'lost’, 124
emma 'not lost before', 124
emma 'notLoggedAndIn', 12
emma 'promoted composition', 122
Logbook, 27
LogIfNecessary, 13
lost; AbPurse, 15
maybeLost; AuxWorld, 28
MESSAGE, 20
NAME, 15
name; ConPurse, 20
name; CounterPartyDetails, 19
egation, 116
nextSeqNo; ConPurse, 20
nextSeqNo; CounterPartyDetails, 19 NoValueCreation, 12
onepoint, 117
OtherPursesRab, 46
PayDetails, 19
pdAuth; ConPurse, 20
purse; ConWorld, 27
Rab, 46
RabCl, 45
RabCIPd, 46
RabEnd, 49
RabEndCIPd, 48
RabHasBeenLost, 49
RabHasBeenLostClPd, 48
RabIn, 50
RabOkay, 49
RabOkayCIPd, 47
RabOut, 50
RabWillBeLost, 49
RabWillBeLostCIPd, 47
Rbc, 96
ReadExceptionLog, 33

readexceptionLog, 20

ReadExceptionLogEapayerOkay, 33
ReadExceptionLogPurseEapayerOkay,
25
ReadExceptionLogPurseOkay, 25
Req, 33
rea, 20
ReqPurseOkay, 24
RetryAck, 25
RetryReq, 25
RetryVal, 25
StartFrom, 32
startFrom, 20
StartFromEapayerOkay, 33
StartFromPurseEapayerOkay, 22
StartFromPurseOkay, 23
StartTo, 32
startTo, 20
StartToEapayerOkay, 33
StartToPurseEapayerOkay, 23
StartToPurseOkay, 24
STATUS, 18
status; ConPurse, 20
strengthenconsa, 116 SufficientFundsProperty, 13 sumValue, 127
thin, 116
to; TransferDetails, 16
toInEapayee; AuxWorld, 28
toInEpv; AuxWorld, 28
toLogged; AuxWorld, 28
toSeqNo; PayDetails, 19
totalAbBalance, 126
totalLost, 126
transfer, 16
TransferDetails, 16
unihyp, 115
Val, 33
val, 20
ValidStartFrom, 22
ValidStartTo, 23
ValPurseOkay, 24
value; CounterPartyDetails, 19
value; TransferDetails, 16

[^0]: AbInitState $\hat{=}$ AbWorld
 ${ }^{7}$ SP 1, 'No value created', section 2.2.1.
 ${ }^{8}$ SP 2, 'All value accounted', section 2.2.2.

[^1]: ${ }^{1}$ Concrete SP 2.2, 'Exception logging', section 2.3.1.

[^2]: ФВОр; BOpPurseOkay; RabOut; Rab'; RabIn $\vdash \exists$ AbWorld •Rab \wedge AOp

[^3]: ${ }^{15}$ Used in: lemma 'deterministic', section 14.4.4

