
On Time and Ation Lok Free Desription ofTimed SystemsHoward Bowman�Computing Laboratory, University of Kent at Canterbury,Canterbury, Kent, CT2 7NF, United KingdomEmail: H.Bowman�uk.a.ukWWW: http://www.s.uk.a.uk/people/sta�/hb5/AbstratTime and ation loks an arise freely in timed automata spei�a-tion. While both are error situations, time loks are by far the moreserious fault. This is beause their ourrene prevents any further evo-lution of the system. First we investigate tehniques for avoiding theourrene of timeloks. The entral aspet of our solution is a rede�-nition of automata parallel omposition based on the Timed Automatawith Deadlines Framework of Bornot and Sifakis. Then the seond resultwe present is a notion of parallel omposition whih preserves ation lokfreeness. In the sense that, if any omponent automaton is ation lokfree, then the omposition will also be ation lok free.1 IntrodutionDeadloks are the harateristi error situation arising in onurrent systems.In very general terms, they are states in whih the system is unable to progressfurther.Classially the term deadlok has been seen as synonymous with what we willall ation loks . These are situations in whih, how ever long time is allowed toprogress, the system will never be able to perform an ation1. Suh ation loksoften result from unmathable ation o�ers, e.g. when a omponent wishes toperform a synhronisation ation, but is unable to beause no other proess ano�er a mathing synhronisation. For example, if ? denotes an input ativityand ! an output ativity, the parallel omposition |<A,B> of the two automata�Howard Bowman is urrently on leave at VERIMAG, Centre Equation, 2 rue Vignate,38610 GIERES, Frane with the support of an EU Marie Curie Fellowship.1Note that even if real-time is not modelled expliitly, e.g. in (untimed) proess algebrasuh as CCS, in temporal terms, deadloks still oneptually have this interpretation.1

A

a?

b?

a0

a1

b0

a!

B

Figure 1: A simple ation lokshown in �gure 1 will be ation loked in state a1 b0. This is beause how everlong either party waits they will never be able to ful�l the synhronisation theyare requesting. Muh of onurreny theory researh has been dominated bythe issue of deadloks and their detetion.In the ontext of timed systems, new loking situations arise. In partiular,in this paper, we will be working in an environment with two main types ofloking situation. As a result of this, we have had to be areful with our hoieof terminology. Thus, in this paper the term deadlok is the most general. Itembraes ation loks and the form of loking behaviour that omes with timedsystems - timeloks2.Timeloks are situations in whih, informally speaking, time is preventedfrom passing beyond a ertain point. They are highly degenerate ourrenes[6℄ beause they yield a global blokage of the systems evolution. In partiular,if a ompletely independent omponent is omposed in parallel with a systemthat is timeloked, then the entire omposition will inherit the timelok. Thisis quite di�erent from an ation lok, whih annot a�et the evolution of anindependent proess. These harateristis of timeloks will be illustrated insetion 2.In fat, the issue of whether timeloks are desirable or undesirable features oftimed models remains a hotly debated topi. The standard argument in favour ofmodels ontaining timeloks is that they represent spei�ation inonsistenies(like logial ontraditions) and that by disovering and eliminating timeloksspei�ations an be orreted. However, we take the ontrary position for threemain reasons:-1. In fat, deteting timeloks is a diÆult and expensive analysis task. The2The reader should be aware that this terminology is not universally used, for example,[12℄ uses di�erent terminology and [6℄ uses the term loal deadlok instead of ation lok.2

lassi method for demonstrating timelok freeness is to show that a for-mula suh as (in fat, this is the formula that would be used with theKronos model heker),init) 23=1(true)holds over a timed automaton spei�ation. This is an unbounded livenessproperty whih is one of the most diÆult lasses of formulae to hek.Suh formulae an be heked with some symboli real-time model hek-ers, e.g. Kronos [8℄3. However, the analysis that is required is extremelystate spae intensive and is only feasible with small and moderate sizedspei�ations. Reent work by Tripakis [12℄ o�ers potential improvementsin suh analysis. However, his algorithm remains unimplemented and fur-thermore, suh improvements will always be thwarted by systems withfundamentally large state spaes.2. We are also strongly of the opinion that inonsistenies and ontraditions�t in the domain of logial desription, but are diÆult to reonile withbehavioural spei�ation tehniques, suh as timed automata. Contradi-tions arise when oniting properties are asserted / onjoined. However,although the mistake is frequently made, parallel omposition of proessesis not a property omposition operator, rather its meaning is operational- two (or more) physial omponents are run in parallel. This reets theharater of behavioural desription whih is fundamentally operationalin nature. Error situations in behavioural tehniques should have a be-havioural / operational intuition that is justi�able in terms of real worldbehaviour. This is the ase for ation loks and live loks. However, thereis no real world ounter-part for time stopping.3. The real-world should always be the yardstik for judging formal modelsand timeloks do not arise in the real-world!Broadly there are two approahes to responding to the existene of lokingerrors:1. Detetion: provide analysis tehniques whih an loate suh loking sit-uations. Then system developers an detet and retify the deadloks.2. Prevention: adapt / limit the spei�ation models used in order to ensurethat suh loking situations annot arise, e.g. [6℄ [3, 4℄.As already suggested, a problem that arises with the �rst of these approahesis that deadlok detetion analysis is typially expensive and when state spaesbeome large the tehniques are infeasible. Thus, in this paper we investigatethe seond option.It is also important to emphasize that the situation with ation loks andtimeloks is, in this respet, a little di�erent. In our opinion timeloks are3Although it annot urrently be heked with UPPAAL.3

highly ounter-intuitive and thus we believe that the seond option above ofonstrutively preventing the ourene of timeloks is essential. However, sineation loks are not in the same way ounter-intuitive, prevention is not in thesame sense essential. Nonetheless investigating tehniques whih ensure ationlok freeness is useful sine it highlights forms of parallel omposition that anbe employed when building systems that are \orret by onstrution".The model of timed systems that we employ is timed automata [1℄. Theseare an enhanement of automata whih enables onurreny, synhronisationand timing aspets to be expressed. Furthermore, beause of their amenabilityto veri�ation (via symboli model heking), timed automata are now perhapsthe most aepted real-time spei�ation notation. We will introdue timedautomata shortly.Although pleasingly simple, the timing model of timed automata has theweakness that timeloks an freely arise and in a number of di�erent ways.Perhaps most problemmatially they an arise through the interplay of urgenyand synhronous interation. We argue that urgeny is given too strong aninterpretation in timed automata. In the sense that an ation an be fored (i.e.it beomes urgent) even if it is not possible (i.e. is not enabled). We will returnto this issue a number of times during this paper and partiularly in subsetion3.3.The �rst of the two main ontributions of this paper is to present a re-interpretation of synhronisation that weakens the e�et of urgeny and thuslimits the ourrene of timeloks. The approah borrows heavily from theTimed Automata with Deadlines (TADs) framework of Bornot and Sifakis [3, 4℄.However, in the same way as we did in [6℄ we adapt the TADs de�nitions tomeet our needs.The timed prioritised hoie features o�ered by the TADs framework yieldthe possibility that the dynami enabling of \ompeting" transitions an bede�ned statially. Hene we an investigate notions of parallel ompositionthat preserve di�erent dynami properties. In this vein the seond of the mainontributions of this paper is to present a notion of parallel omposition whihpreserves ation lok freeness, in the sense that, if any of the omponent TADsis ation lok free then the parallel omposition will also be ation lok free.Struture of Paper. Setion 2 presents bakground material. We introduesome basi timed automata notation, we larify the di�erene between timeand ation loks and we introdue our running example - a simple timeoutbehaviour. Then we takle the issue of timeloks in setion 3. We �rst onsiderzeno timeloks. Then we illustrate the problem of time ation loks (whihare perhaps the most degenerate example of timeloks) through an attempt tospeify the running example.Then we onsider solutions based on TADs. However using the timeout as anexample, we argue that the TADs parallel omposition presented in [3, 4℄ yieldsan unsatisfatory solution. We thus onsider alternative solutions (Sparse TADsand TADs with minimal priority esape transitions) whih yield valid solutionsbased on the paper [6℄. 4

In setion 4 we onsider how to de�ne parallel omposition in suh a way thatif omponents are free of ation loks the omposition will also be free of ationloks. By way of bakground material we onsider independent parallelismin untimed and timed settings whih have this ation lok freeness property.However, sine it fails to support synhronisation, independent parallelism isof only limited value. Thus, we present a new notion of parallel ompositionthat builds from TADs with minimal priority esape transitions, whih preservesation lok freeness in the desired manner.2 BakgroundThis setion introdues bakground material. Firstly, we de�ne timed automataand some assoiated notation in subsetion 2.1, then (in subsetion 2.2) welarify the di�erene between time and ation loks and �nally, in subsetion2.3, we introdue our running example - the spei�ation of a bounded timeout.2.1 Timed Automata and Basi NotationNotation. We briey review some basi timed automata notation. We assumethe following items.� CA is a set of ompleted (or internal) ations, x, x0, x1, x2, ..., y, y0, y1,y2, ..., z, z0, z1, z2, ... range over CA.� HA= fx?; x! jx 2 CA g is a set of half (or unompleted) ations, a, a0,a1, a2, ... , b, b0, b1, b2 range over HA. These give a simple CCS style [9℄point-to-point ommuniation similar, for example, to the synhronisationprimitives found in UPPAAL [2℄. Thus, two ations, x? and x! ansynhronise and generate a ompleted ation x. For a half ation a we let# a denote the underlying ompleted ation, i.e. # (x?) =# (x!) = x.� A = HA [CA is the set of all ations, e, e0, e1, e2, ... range over A .� We use a omplementation notation over elements of A ,x = x if x 2 CA (1)x? = x! (2)x! = x? (3)� R+ denotes the positive reals without zero and R+0 = R+ [f0g.� C is the set of all lok variables, whih take values in R+0 . C is rangedover by , 0, 1, 2, et. CC is a set of lok onstraints4. Also if C � Cwe write CCC for the set of lok onstraints generated from loks in C.4The form that suh onstraints an take is typially limited, however sine we are notonsidering veri�ation this is not an issue for us.5

� V = C ! R+0 is the spae of possible lok valuations. V is ranged overby v, v0, v1, v2, et and VC = C ! R+0 is the spae of lok valuationsfor loks in C.� L is the set of all possible automata loations (these appear as irles inour timed automata diagrams, e.g. see �gure 2), ranged over by l, l0, l1,l2, et.Timed Automata. An arbitrary element of A, the set of all timed automata,has the form: (L; l0; T; I; C)where,� L � L is a �nite set of loations;� l0 2 L is a designated start loation;� T � L� A �CC C �P(C)�L is a transition relation (where P(S) denotesthe powerset of S). A typial element of T would be, (l1; e; g; r; l2), wherel1; l2 2 L are automaton loations; e 2 A labels the transition; g 2 CCC isa guard; and r 2 P(C) is a reset set. (l1; e; g; r; l2) 2 T is typially written,l1 e;g;r����! l2, stating that the automaton an evolve from loation l1 to l2 ifthe (lok) guard g holds and in the proess ation e will be performed andall the loks in r will be set to zero. When we depit timed automata,we write the ation label �rst, then the guard and then the reset set, seee.g. �gure 2. Guards that are true or resets that are empty are often leftblank.� I : L ! CCC is a funtion whih assoiates an invariant with ev-ery loation. Intuitively, an automaton an only stay in a state whileits invariant is satis�ed. Invariants are shown adjaent to states in ourdepitions, see e.g. �gure 2.� C is the set of loks of the timed automaton.It is important to understand the di�erene between the role of guards andof invariants. In this respet we an distinguish between may and must timing.If we onsider the TA in �gure 2, we an see that the guard, t>=5, expressesmay behaviour, i.e. it states that the transition is possible or in other wordsmay be taken whenever t>=5. However, guards annot \fore" transitions to betaken.In ontrast, the invariant, t<=10, de�nes must behaviour, i.e. if t reahes 10in state b0, xxx must be taken immediately. This must aspet orresponds tourgeny , sine an alternative expression of this situation is that at time t=10xxx beomes urgent - it must be taken straightaway.Semantis. Timed automata are semantially interpreted over transition sys-tems whih are triples, (S; s0;)), where,6

b0 (t<=10)

b1

xxx,
t>=5,
t:=0

Figure 2: May and must timing� S � L � V is a set of states (notie the terminologial distintion - timedautomata have loations while transition systems have states);� s0 2 S is a start state;�)� S � Lab � S is a transition relation, where Lab = A [R+ . Thus,transitions an be of one of two types: disrete transitions, e.g. (s1; e; s2),where e 2 A and time transitions, e.g. (s1; d ; s2), where d 2 R+ anddenotes the passage of d time units. Transitions are written:s1 e=) s2 respetively s1 d=) s2Also, we will use the standard notation, s e=) i� 9s0; e : s e=) s0 and s e=6) i� :(s e=)).For a lok valuation v 2 VC and a delay d, v+d is the lok valuation suhthat (v + d)() = v() + d for all 2 C. For a reset set r, we use r(v) to denotethe lok valuation v0 suh that v0() = 0 whenever 2 r and v0() = v()otherwise. v0 is the lok valuation that assigns all loks to the value zero.The semantis of a timed automaton A = (L; l0; T; I; C) is a transition sys-tem, (S; s0;)), where S = f s0 2 L�VC j 9s 2 S; y 2 Lab : s y=) s0 g [f [l0; v0℄ g,s0 = [l0; v0℄ and) is de�ned by the following inferene rules:-l e;g;r����! l0 g(v)[l; v℄ e=) [l0; r(v)℄ 8d0 � d : I(l)(v + d0)[l; v℄ d=) [l; v + d℄The semanti map whih generates transition systems from timed automata iswritten [[℄℄. Also, notie that our onstrution ensures that only reahable statesare in S.Parallel Composition. We assume our system is desribed as a networkof timed automata. These are modelled by a vetor of automata5 denoted,5Although our notation is slightly di�erent, our networks an be related, say, to the proessnetworks used in UPPAAL. 7

jA = jhA[1℄; :::; A[n℄i where A[i℄ is a timed automaton. In addition, we letu, u0 et, range over the set U of vetors of loations, whih are written,hu[1℄; :::; u[n℄i, where eah u[i℄ is the urrent loation in the ith automaton, i.e.in A[i℄. In addition, juj and jAj denote the length of the orresponding vetor.We use a substitution notation as follows: hu[1℄; :::; u[j℄; :::; u[n℄i[u[j℄0=u[j℄℄ =hu[1℄; :::; u[j � 1℄; u[j℄0; u[j + 1℄; :::; u[n℄i and we write [u[j℄0=u[j℄℄ as [j0=j℄ andu[i01=i1℄:::[i0m=im℄ as u[i01=i1; :::; i0m=im℄.If 8i(1 � i � n) : A[i℄ = (Li; li;0; Ti; Ii; Ci) then the produt automaton,whih haraterises the behaviour of jhA[1℄; :::; A[n℄i is given by,(L; l0; T; I; C)where L = f ju ju 2 L1 � ::: � Ln g, l0 = jhl1;0; :::; l1;ni, T is as de�ned by thefollowing two inferene rules, I(jhu[1℄; :::; u[n℄i) = I1(u[1℄) ^ ::: ^ In(u[n℄) andC = C1 [::: [Cn.u[i℄ x?;gi;ri������!u[i℄0 u[j℄ x!;gj ;rj�����!u[j℄0ju x;gi ^ gj ;ri[rj����������!ju[i0=i; j0=j℄ u[i℄ x;g;r����!u[i℄0 x 2 CAju x;g;r����!ju[i0=i℄where 1 � i 6= j � juj. Note, we write x � k 6= r � y in plae of x � k �y ^ x � r � y ^ k 6= r.2.2 Time and Ation LoksTimeloks. We an formulate the notion of a timelok in terms of a test-ing proess. Consider, if we take our system whih we denote System andompose it ompletely independently in parallel with the timed automaton,Tester, shown in �gure 3, where, sine it is ompleted, the zzz ation is inde-pendent of all ations in the system. Then for any d2 R+ , if the omposition|<Tester(d),System> annot perform zzz then the system ontains a timelokat time d.
Tester(y)

s0

s1

zzz,
t==y

Figure 3: A tester proessThis illustration indiates why timeloks represent suh degenerate situa-tions - even though the Tester is in all respets independent of the system,8

e.g. it ould be that Tester is exeuted on the Moon and System is exeutedon Earth without any o-operation, the fat that the system annot pass timeprevents the tester from passing time as well. Thus, time really does stop andit stops everywhere beause of a degenerate piee of loal behaviour.We an also give a semanti de�nition of the notion6. However, we �rst needa little notation.A trae of a timed automaton A has the form,� = s0 y1 s1 y2 s2 ::: sn�1 yn snwhere,� 8i(0 � i � n) : si 2 [[A ℄℄ :1 (throughout the paper we use the notation t:ito aess the ith element of a tuple);� s0 = [l0; v0℄;� yi 2 A [R+ ;� 8i(0 � i � n� 1) : si yi==) si+1.and we let Tr(A) denote the set of all traes of A. Furthermore, we de�nethe funtion delay as,delay(�) = �f yi j 1 � i � n ^ yi 2 R+gNow we say that A an timelok at time d i�9� 2 Tr(A) : (delay(�) < d ^ 8� 2 Tr(A) : (� pref � =) delay(�) < d))where �1 pref �2 if and only if �1 is a pre�x of �2. Intuitively this expressesthat there is a state reahable before d time units has passed, from whih it isnot possible for time to elapse beyond d. Notie this de�nition does not preludethe system evolving \while timeloked" but it simply prevents time eventuallyreahing d. Indeed, as will beome lear shortly, this is neessary to embraezeno timeloks within the de�nition.Also notie that situations in whih time is able to, but does not have toevolve beyond a ertain point, are not ategorised as timeloks, e.g. a timedautomaton suh as that shown in �gure 4 ould perform an in�nite number ofxxx ations at time zero but sine it is not fored to behave in this way we donot view it as timeloked.There are two di�erent forms of timelok:-1. Zeno Timeloks. These arise when the system has an in�nite behaviourbut time annot pass beyond a ertain point. In other terms, an in�nitenumber of disrete transitions are performed in a �nite period of time. Anexample of suh a spei�ation is System1 (see �gure 5); this is a zeno6Similar de�nitions an be found in [12℄. 9

b0

xxx,
t<=2Figure 4: Zeno Behaviour without a Zeno Time Lokproess whih performs an in�nite number of xxx ations at time zero.This system is timeloked at time zero and if we ompose it independentlyin parallel with any other system, the omposite system will not be ableto pass time.2. Time Ation Loks. These are situations in whih a state is reahed fromwhih neither time or ation transitions an be performed. An exampleof suh a lok is the trivial timed automaton shown in �gure 6 whihtimeloks immediately sine the system an neither idle in state b0 orperform an ation transition to esape the state.However, more problemmatially, time ation loks an be generated throughmismathed synhronisations, e.g. the network |<System2,System3> (from�gure 5) ontains a timelok at time 2, whih arises beause System2must have performed (and thus, synhronised on) ation xxx by the timet reahes 2 while System3 does not start o�ering xxx until after t haspast 2. Tehnially the timelok is due to the fat that at time 2 System2only o�ers the ation transition xxx and importantly, it does not o�er atime passing transition. Sine the synhronisation annot be ful�lled thesystem annot evolve to a point at whih it an pass time.The interesting di�erene between these two varieties of timelok is that the�rst one loks time, but it is not ation loked, sine ations an always beperformed. However, the seond reahes a state in whih neither time passingor ation transitions are possible.A relevant property whih appears in the literature is that of time reativitywhih is de�ned as follows.De�nition 1 A system is said to be time reative if it an never reah a statein whih neither time or ation transitions an be performed.Clearly if a system is time reative it annot ontain time ation loks. Oneaspet we investigate in this paper is how to obtain time reativity in a timedautomata setting.Ation Loks. Timeloks are muh more serious faults than ation loks. Forexample, the ation loked automaton Stop, shown in �gure 7, generates a loaldeadlok , however, it annot prevent an independent proess from evolving.10

System2
a0

a1

System1

a0

(t==0)

(t<=2) a0

a1

System3

xxx,
t:=0

xxx!
xxx?,
t>=3

Figure 5: Timelok IllustrationsThe natural interpretation of ation lok in the setting of timed systems isas follows.De�nition 2 A state [l; v℄ of a TA A is an ation lok, denoted AL([l; v℄), ifand only if, 8t 2 R+0 ([l; v + t℄ 2 [[A ℄℄ :1 =) [l; v + t℄ e=6))where [l; v+ t℄ 2 [[A ℄℄ :1 implies [l; v+ t℄ is reahable from [l; v℄ by the de�nitionof [[℄℄.The timed automaton A ontains an ation lok if and only if 9s 2 [[A ℄℄ :1 : AL(s).
b0 (false)

Figure 6: A Trivial Time Ation Lok11

Stop

s0Figure 7: A Trivial Ation LokThus, a timed automaton is ation loked when it reahes a state from whih,however long time is allowed to pass, an ation will never be possible. Notiealso that if all guards are true and all invariants are true, we obtain the untimedase and ation loks redue to untimed \deadloks".2.3 A Bounded TimeoutAs an illustrative spei�ation example we will onsider the desription of abounded timeout. This has been hosen beause, �rstly, it is one of the mostommon real-time spei�ation senarios and seondly, during timed automataspei�ation and veri�ation of a lip-synhronisation algorithm [7℄ it was dis-overed that desribing suh bounded timeouts in a deadlok free manner wassurprisingly diÆult.The general senario is that a Timeout proess is monitoring a Componentand the timeout should expire and enter an error state if the Component doesnot o�er a partiular ation, whih we all good, within a ertain period of time.The preise funtionality that we want the timeout to exhibit is7:1. Basi behaviour. Assuming Timeout is started at time t, it should generatea timeout ation at a time t + D if and only if the ation good has notalready oured. Thus, if ation timeout ours, it must our exatlyat time t+D and if ation good ours, then it must our at some timefrom t up to, but not inluding, t + D. Using the terminology of [10℄this yields a strong timeout. A weak timeout would, in ontrast, allowa non-deterministi hoie between the good ation and the timeout attime t+D.2. Urgeny of good ation. We also require that if the good ation is enabledbefore time t+D then it is taken urgently , i.e. as soon as good is enabledit happens.3. Timelok Free. Finally we want our omposed system to be free of time-loks, for obvious reasons.7Our presentation here is similar to that in [7℄. However, although our work here wasinspired by that in [7℄, it is somewhat di�erent. In partiular, [7℄ presents a bounded timeoutin a disrete time setting, thus, the �nal time at whih the good ation an be performed andthe time of expiry of the Timeout are at di�erent disrete time points.12

4. Simple. We also require that the solution is not \prohibitively" omplex.Notie that in the �rst two of these requirements, urgeny arises in two ways.Firstly, we require that timeout is urgent at time t+D and seondly, we requirethat good is urgent as soon as it is enabled. Without the former requirementthe timeout might fail to �re even though it has expired and without the latter,even though the good ation might be able to happen it might nonetheless notour and thus, for example, the timeout may expire even though good waspossible.3 TimeloksThis setion onsiders the issue of timeloks. We begin in subsetion 3.1 by on-sidering how to ensure zeno lok freeness based on an approah of Tripakis [12℄.Then we move to the more diÆult issue of time ation loks. We further mo-tivate the problem with time ation loks, in subsetion 3.2, by onsidering thespei�ation of the bounded timeout example. Then we argue in subsetion 3.3that the timed automata interpretation of synhronisation should be adaptedand we onsider possible approahes to do this, inluding only allowing urgenyon internal ations. However, this fails to be a suitably expressive approahand thus, subsetion 3.4 onsiders a revised timed automata framework, due toBornot and Sifakis, alled Timed Automata with Deadlines (TADs). However,spei�ation of the bounded timeout reveals a problem with the TADs frame-work as it was presented in [3, 4℄. We revise the framework in subsetion 3.5 inorder to resolve this diÆulty.3.1 Zeno TimeloksAs highlighted earlier, zeno timeloks are situations in whih an in�nite numberof disrete transitions are performed in a �nite period of time. In ontrastto the approah we will present for takling time ation loks, to handle zenotimeloks we will not de�ne a new parallel omposition operator. In ontrast,we will onsider a stati onstrution whih ensures zeno timelok freeness.The standard approah to obtaining zeno timelok freeness in timed proessalgebra is to ensure that all reursions are time guarded, i.e. that all proessesan pass time by at least � 2 R+ between eah reursive invoations. Thisprovides a stati mehanism that spei�ers an use to ensure zeno timelokfreeness.The approah we advoate in the timed automata setting has a similaravour. The idea is to ensure that for eah loop in an automaton, time mustpass by at least � on every iteration.We follow losely the presentation in [12℄. Firstly two de�nitions.De�nition 3 For A 2 TA we de�ne a strutural loop to be a sequene of distinttransitions, l0 e1;g1;r1������! l1 e2;g2;r2������! :::: en;gn;rn������! ln13

suh that l0 = ln.De�nition 4 A 2 TA is alled strongly non-zeno if, for every strutural loop,l0 e1;g1;r1������! l1 e2;g2;r2������! :::: en;gn;rn������! lnthere exists a lok 2 A:5, � 2 R+ and 0 � i; j � n suh that,1. 2 ri; and2. is bounded from below in step j, i.e. (< �) \ gj = false.Clearly, System1 of �gure 5 fails to be strongly non-zeno sine a suitable� 2 R+ does not exist. However, the automaton in �gure 8 is stongly non-zeno.
a0

xxx,
t>=1,
t:=0Figure 8: A Strongly Non-Zeno Spei�ationThe following result was presented in [12℄.Proposition 1 If A 2 TA is strongly non-zeno then Tr(A) does not ontain apath that is both in�nite and yields a timelok.In addition, strong non-zenoness is well behaved through parallel omposi-tion. Spei�ally, the following result was also presented in [12℄. It ensures thatwe annot generate new zeno timeloks through parallel omposition.Proposition 2 If A1,...,An 2 TA are strongly non-zeno then jhA1; :::; Ani isalso strongly non-zeno.Also although we have no empirial evidene, in aordane with [12℄, webelieve that in pratie spei�ations will almost always be strongly non-zeno.3.2 Trying to Model the Bounded TimeoutNow we move onto the issue of time ation loks. As an illustration of theproblem we desribe the bounded timeout in timed automata.Basi Formulation. We begin by onsidering the Timeout shown in �gure 9.This proess realises the �rst requirement that we identi�ed for modelling thebounded timeout - good is o�ered at all times in whih t<D. Then timeout is14

performed when t==D, in whih ase the system passes into state a2 whih playsthe role of an error state. Importantly, the guard (t<=D) fores the requiredurgeny on the timeout ation. Thus, if good has not happened earlier, timeoutmust happen when t==D. Furthermore, it is easy to see that this is indeed astrong timeout - its behaviour is deterministi when t==D.
(t<=D)

good?
t<D

a0

a1

a2

Timeout1

timeout
t==D

Figure 9: An Automaton for Timeout1
b0

b1

b2

good!

Component1

tau
r<=C

b0

b1

b2

(r==0)

good!
r==0

Component2

tau
r<=C
r:=0

Figure 10: Automata for Component1 and Component2However on its own, this automaton is not suÆient sine nothing foresthe good ation to be taken if it an be. This was our seond requirement. Forexample, onsider Component1 shown in �gure 10 whih will perform an internalation tau at some time r<=C and then o�er the good ation. The internalation an be viewed as modelling some internal omputation by Component1.The ompletion of whih is signalled by o�ering good!. Now if we put Timeout1and Component1 in parallel then even if good ould our while t<D, it mightnot be taken. Thus, a possible evolution of the system:15

|<Timeout1,Component1>is, (tau; x1) (timeout; x2) where, x1 < C, x1 < D and x2 = D.Thus, we need some way to make good urgent. The standard approah isto enfore urgeny in the omponent. For example, we ould use Component2shown in �gure 10. This automaton will perform the internal ation as beforeand then it must immediately perform the good ation.Now the problem with the omposition:|<Timeout1,Component2>is the relative values of D and C. In partiular, if C is larger than D then thissystem an timelok in the following way:-1. the timeout ould �re when t==D;2. then if tau happens when r==C say, good! will beome urgent, howeverit annot be performed sine Timeout1 is no longer o�ering it, ausing atimelok. Component2 will not let time pass until good is performed, butgood annot be performed beause of a mis-mathed synhronisation.We would argue that this is a big problem. In partiular, it is not generallypossible to ensure that C is less than D sine our omponent behaviour wouldtypially be embedded in the omplex funtioning of a omplete system. Infat, writing C as we have done, abstrats from a likely multitude of omplexityand deriving suh a value from a system would typially require analysis ofmany omponents of the omplete system, some of whih might be time non-deterministi at the level of abstration being onsidered.Furthermore, in some situations we might atually be interested in analysingwhat happens if the good ation arrives after the timeout has �red. Consider,for example, that our timeout behaviour is being used to wait for an aknowl-edgement in a sender proess. The omponent performing good after timeouthas �red orresponds to the aknowledgement arriving after the timeout hasexpired, whih is of ourse a possible senario in pratial analysis of ommuni-ation protools.The problem with our |<Timeout1,Component2> solution is that it doesnot enable us to analysis this situation, rather the system timeloks whenComponent2 fores the good ation to happen. Unfortunately, as mere mor-tals, we are unable to analyse systems after the end of time!One way to avoid this timelok is to add \esape" transitions in the timeout.For example, onsider the timeout behaviour enapsulated by Timeout2. Nowthe omposition,|<Timeout2,Component2>annot blok time. However, this is not a satisfatory solution sine ratherthan Timeout2 just evolving to a single deadlok state, a2, after performingtimeout, it ould evolve to a omplex behaviour; of ourse in pratie it is16

(t<=D)

good?
t<D

a0

a1

a2
timeout
t==D

good?

Timeout2

Figure 11: An Automaton for Timeout2almost ertain to do this. However then, esape transitions would have to besattered throughout the omplex behaviour. This would generate signi�antspei�ation lutter, whih would be ompounded if the system ontained morethan one timeout.The onsequenes beome partiularly severe if the timeout is enlosed insome repetitive behaviour, e.g. see �gure 12. This is beause, sine no assump-tions an be made about the time at whih the omponent will want to performthe good ation, esape transitions on good will have to be added at a0, a2,b0, b1 (and atually a1 as well). Thus, �rstly, the behaviour prior to reahingthe timeout has been altered, i.e. esape transitions must be added at b0 andseondly, it is unlear how many esape transitions need to be added to eahnode in the loop, sine state a2 may be reahed many times before the �rstgood esape transition is performed.Other Solutions. In [5℄ and [7℄ we have also onsidered other approahes toobtaining a satisfatory bounded timeout solution. In partiular, we onsideredwhether a suitable solution ould be obtained using the UPPAAL notion ofurgent hannels. Aording to this model, the spei�er is allowed to denotea partiular hannel as urgent, whih means that as soon as synhronisationon that hannel an take plae, it does. However, UPPAAL restrits the useof suh urgent hannels. In partiular, an urgent transition an only have theguard true.Intuitively, urgent hannels seem to be what we require in order to avoid en-foring urgeny in the omponent proess. In partiular, they enfore urgenyin a \global" manner, rather than requiring it to be enfored in the omponentproess. However, it turns out that the restrition on guarding of urgent han-nels that UPPAAL imposes prevents derivation of a suitable solution, see [5℄whih investigates possible solutions with urgent hannels whih were inspiredby the solutions presented in [7℄.
17

(t<=D)

good?
t<D

a0

a1

a2
timeout
t==D

b0 b1

Figure 12: Timeout2 in a repetitive ontext3.3 The Nature of SynhronisationPerhaps the most ounter-intuitive aspet of the timelok story is the mannerin whih timeloks an arise from mis-mathed synhronisations, suh as theomposition |<System2,System3> in �gure 5 and the timeout / omponentomposition just highlighted. If we onsider how this problem arises we an seethat it is aused by the partiular interpretation of urgent interation employedin timed automata.It is without doubt true that failities to express urgeny are required. Inpartiular, if urgeny is not supported, ertain important forms of timing be-haviour annot be expressed. For example, as illustrated earlier, urgeny playsa pivotal role in the formulation of the bounded timeout and indeed without it,it is unlear how one ould desribe timeouts in any vaguely sensible way.Thus, it is neessary to inlude urgeny in the timed automata model. How-ever, it is our perspetive that while urgeny is needed, urrently it is givenan exessively strong formulation. We illustrate the issue with the followingexample.Example 1 Consider the spei�ation of the Dying Dining Philosophers prob-lem. The senario is basially the same as the Dining Philosophers exept herewe have extra onstraints whih state that philosophers die if they do not eatwithin ertain time periods.For example, if at a partiular state, Aristotle must eat within 10 time unitsto avoid death, in timed automata his situation ould be represented as state l018

of timed automata Aris in �gure 13. In addition, if say the fork he requires isbeing used by another philosopher, the environment might not be able to satisfythis requirement. For example, the relevant global behaviour of the rest of thesystem might orrespond to the behaviour of the automaton Rest in state m0(see �gure 13 again).
(t<=10)

pick?,
t<=10

l0

l1

Aris m0

m1

pick!,
t>=15

Rest

Figure 13: Dying Dining Philosophers SituationIn the present timed automata formulation the omposition |<Aris,Rest>will timelok when t reahes 10. But, this seems ounter-intuitive.Aristotle knows he must pik-up his fork by a ertain time otherwise drastionsequenes will result for him (this is why he \registers" his pik request asurgent). However, if he loally fails to have his requirement satis�ed, he annotglobally prevent the rest of the world from progressing, rather a loal deadlokshould result. As a onsequene Aristotle might be dead, but as we all know,\the world will go on!".Coneptually what is happening is that Aristotle is enforing that his pikation must be taken even if it is not possible, i.e. it is not enabled. However, wewould argue that urgeny an only be fored if an ation is possible / enabled.The situation is the same with our bounded timeout example - it is reason-able to state that good ours urgently if both parties are able to perform it,but it is not reasonable to give urgeny preedene over enabling. We wouldargue that it should only be possible to make an ation urgent if it is enabled,i.e. must requires may or, in other terms, you an only fore what ispossible.One way in whih suh an interpretation of urgeny has previously beenobtained is through only allowing urgeny to be applied to internal ations.This is the so alled as soon as possible (asap) priniple [11℄, muh disussedin the timed proess algebra ommunity. Aording to this priniple internal19

ations are sheduled to our as soon as they are possible, i.e. urgently, while,sine they are subjet to ontrol by the environment, external ations (whihlosely orrespond to our half ations) are not subjet to suh an interpretation- they an not be made urgent.This property indeed prevents the ourrene of timeloks due to synhro-nisation mismathes, but unfortunately, it is not a suitable solution for timedautomata. This is beause TA do not have a hiding operator. In timed pro-ess algebra with asap the hiding operator, whih turns observable into internalations, has an important role sine (impliitly) it makes ations urgent.The absene of hiding in TA means that we annot (seletively) take anobservable ation that results from synhronising half ations and turn it intoan (urgent) internal ation. This is for example what we would like to do withthe synhronisation on the good ation in our bounded timeout example.Consequently, in the next setion, we onsider a new framework for timedautomata spei�ation - Timed Automata with Deadlines (TADs) whih wasinitially devised by Bornot and Sifakis [3, 4℄ and with whih we an obtain thesynhronisation interpretation we desire.3.4 Timed Automata with DeadlinesComponents of the Framework. For a full introdution to TADs, we referthe interested reader to [3, 4℄; here we highlight the main priniples. The ma-terial and results inluded in this subsetion borrow heavily from the previouswork of Bornot and Sifakis. However, in our presentation we revise the Bornotand Sifakis de�nitions in order that they �t with the timed automata notationwe are using and furthermore we present some new results that will be used inthe sequel.� Deadlines on Transitions. Rather than plaing invariants on states, dead-lines are assoiated with transitions. Transitions are annotated with 4-tuples: (e; g; d; r)where e is the transition label, e.g. good; g is the guard, e.g. t<=D; d is thedeadline, e.g. t==D; and r is the reset set, e.g. t:=0. e, g and r are familiarfrom timed automata and the deadline is new. Coneptually, deadlinesstate when transitions must be taken and taken immediately. Sine wehave deadlines on transitions there is no need for invariants on states.Thus, they are not inluded in the framework.It is also assumed that the onstraint,d) gholds, whih ensures that if a transition is fored to happen it is also ableto happen. Clearly, if this onstraint did not hold then we ould obtaintimeloks beause a transition is fored to happen, but it is not enabled.20

(e1,g1’,d1’,r1) (e2,g2,d2,r2)

Figure 14: A Prioritised Choie� (Timewise) Priorities. By restriting guards and deadlines in hoie on-texts, prioritised hoie an be expressed. For example, if we have twotransitions: b1 = (e1; g1; d1; r1) and b2 = (e2; g2; d2; r2)then when plaing them in a hoie ontext we an give b2 priority overb1 by restriting the guards and deadlines of b1, see �gure 14. [3℄ onsid-ers a variety of priority operators, whih ensure that if the higher priorityation will eventually be enabled within a partiular period of time then ittakes preedene over ompeting ations. These di�erent priority meha-nisms are obtained by inluding timed temporal operators in the restritedguards and deadlines. The extreme example of whih is to enfore the fol-lowing restrited guard and deadline:g10 = g1 ^ 2:g2 and d10 = d1 ^ g10whih ensures that b1 is only enabled if g1 holds and there is no point inthe future at whih g2 will hold.� Parallel Composition with Esape Transitions. The TADs framework em-ploys a di�erent parallel omposition operator to that arising in standardtimed automata. The key idea is that of an esape transition. These arethe loal transitions of automaton omponents that are ombined whengenerating a synhronisation transition. Thus, not only are synhronisa-tions inluded, but omponent transitions of the synhronisation are aswell. The timewise priority mehanism is then used to give the synhro-nisation transition highest priority. Intuitively, the esape transitions anonly happen if the synhronisation transition will never be enabled. Wewill illustrate this aspet of TADs shortly.� Synhronisation Strategies. [3℄ also onsider a number of di�erent syn-hronisation strategies, but these are not relevant to our disussion. Interms of [3℄ we only onsider AND synhronisation.21

In fat, in addition to ensuring time reativity, the TADs framework lim-its the ourrene of ation loks. Spei�ally, the esape transitions allow theomponents of a parallel omposition to esape a potential ation lok by evolv-ing loally. Assoiated with suh avoidane of ation loks is the enforement ofmaximal progress8, whih exatly requires that if a synhronisation is possible,it is always taken in preferene to a orresponding esape transition.Basi De�nitions. We now briey review the de�nition of timed automatawith deadlines. In order to preserve some ontinuity through the paper, eventhough it is di�erent to that used in [3℄, we build our de�nitions out of the timedautomata notation and onstruts that we have already introdued.An arbitrary element of TAD, the set of timed automata with deadlines, hasthe form: (L; l0;!; C)where, L is a �nite set of loations; l0 is the start loation; C is the set of loksand� !� L�A �CCC �CCC�P(C)�L is a transition relation. A typial ele-ment of whih is, (l1; e; g ; d ; r ; l2), where l1; l2 2 L are automata loations;e 2 A labels the transition; g 2 CCC is a guard; d 2 CCC is a deadline;and r 2 P(C) is a reset set. (l1; e; g ; d ; r ; l2) 2! is typially written,l1 e;g;d;r�����! l2Also, as was the ase in [3, 4℄, for tehnial reasons, we will require that alldeadlines have losed lower bounds.As was the ase with TAs, TADs are semantially interpreted as transitionsystems. The following two inferene rules are used for this,(S1) l e;g;d;r�����! l0 g(v)[l; v℄ e=) [l0; r(v)℄ (S2) 8l0 : l e;g;d;r�����! l0 =) 8t0 < t ::d(v + t0)[l; v℄ t=) [l; v + t℄Now we de�ne the semanti map [[℄℄ from TADs to transition systems asfollows9: [[(L; l0;!; C) ℄℄ = (S; s0;))where,� s0 = [l0; v0℄;�) is the subset of (L � V) � Lab � (L � V) that satis�es the above tworules; and� S = f s0 2 L� VC j 9s 2 S; y 2 Lab : s y=) s0 g [f [l0; v0℄ g.8Note, the term is used in a related but somewhat di�erent way in the timed proessalgebra setting [11℄.9The overloading of [[℄℄, i.e. to interpret both TAs and TADs, will not ause any onfusion.22

Notie that, one again, S only ontains reahable states.In addition, we will use the funtion:�B(l) = f (e; g; d; r) j 9l0 : l e;g;d;r�����! l0 ^ e 2 B gProperties of TADs. Now we onsider a number of basi properties of TADs.The �rst two are well known from previous TA and TADs work.A standard property when onsidering dense time models is time ontinuity.We prove that TADs are time ontinuous in the following proposition.Proposition 3 (Time Continuity)8A 2 TAD :8s1; s2 2 [[A ℄℄ :1 :8t; t0 2 R+ :s1 t+t0===) s2 () 9s01 (s1 t=) s01 ^ s01 t0==) s2)ProofAssuming that s1 = [l; v℄ and s2 = [l; v + t+ t0℄,[l; v℄ t+t0===) [l; v + t+ t0℄, f Rule (S2) ; equivalene holds sine no other rules overlap g8l0 (l e;g;d;r�����! l0 =) 8y < t+ t0 ::d(v + y)), f Distributivity of _ over 8 ; y does not appear on left of =) g8l0 8y < t+ t0(l e;g;d;r�����! l0 =) :d(v + y)), f Reordering quanti�ers ; rewriting range g8y(y < t _ t � y < t+ t0) 8l0 (l e;g;d;r�����! l0 =) :d(v + y)), f Range split g8y < t 8l0 (l e;g;d;r�����! l0 =) :d(v + y)) ^8y(t � y < t+ t0) 8l0 (l e;g;d;r�����! l0 =) :d(v + y)), f Rearranging onjunts g8l0 (l e;g;d;r�����! l0 =) 8y < t ::d(v + y)) ^8l0 (l e;g;d;r�����! l0 =) 8y < t0 ::d(v + t+ y)), f Rule (S2) g[l; v℄ t=) [l; v + t℄ ^ [l; v + t℄ t0==) [l; v + t+ t0℄ Now we onsider formally why the property d) g is important. The fol-lowing proposition shows that it guarantees time reativity.Proposition 4 If d) g on all transitions, TADs are time reative.23

ProofIf a state [l; v℄ an be reahed suh that8t 2 R+ : [l; v℄ t=6)then the ondition of the inferene rule S2 fails, i.e.,8t 2 R+ :8l0 (l e;g;d;r�����! l0 =) 8t0 < t ::d(v + t0)), f Logi g8t 2 R+ 9l0 (l e;g;d;r�����! l0 ^ 9t0 < t : d(v + t0))) f Instantiating outer quanti�er with an arbitrarily small t g9l0 (l e;g;d;r�����! l0 ^ 9� : d(v + �))) f Deadlines have losed lower bounds, thus, 9� : d(v + �)) d(v) g9l0 (l e;g;d;r�����! l0 ^ d(v))) f d) g ; logi g9l0 (l e;g;d;r�����! l0 ^ g(v))) f Rule (S1) g[l; v℄ e=) [l0; r(v)℄Thus, if any state annot pass time, it an perform an ation transition. Theresult follows. We will use the following result later, it states that either time an passforever, it annot pass at all or there exists an upper bound beyond whih timeannot pass.Proposition 58A 2 TAD 8s 2 [[A ℄℄ :1 :8t 2 R+ : s t=) _8t 2 R+ : s t=6) _9t 2 R+ (s t=) ^ 8t0 2 R+ (s t0==) () t0 � t))ProofFirst we an reason as follows:-8t 2 R+ : s t=) _ 8t 2 R+ : s t=6) _9t 2 R+ (s t=) ^ 8t0 2 R+ (s t0==) () t0 � t)), f Logi g9t 2 R+ : s t=6) =) (9t 2 R+ : s t=) =)9t 2 R+ (s t=) ^ 8t0 2 R+ (s t0==) () t0 � t)))24

, f Logi g9t1; t2 2 R+ (s t1==6) ^ s t2==)) =)9t 2 R+ (s t=) ^ 8t0 2 R+ (s t0==) () t0 � t))and this is what we prove. So, assume that,9t1; t2 2 R+ (s t1==6) ^ s t2==))and take s = [l; v℄ and t 2 R+ as the smallest value (hene t � t1) suh that,9l0 (l e;g;d;r�����! l0 ^ d(v + t))Suh a t must exist sine we have assumed that all deadlines have losed lowerbounds.Thus, we have,9l0 (l e;g;d;r�����! l0 ^ d(v + t)) ^ :(9t0 < t 9l0 (l e;g;d;r�����! l0 ^ d(v + t0))), f logi g9l0 (l e;g;d;r�����! l0 ^ d(v + t)) ^ 8l0 (l e;g;d;r�����! l0 =) 8t0 < t ::d(v + t0))Now the seond onjunt gives us [l; v℄ t=) and also beause of time ontinuitywe have, 8t0 (t0 � t =) [l; v℄ t0==))Furthermore, if we take t0 2 R+ suh that t0 > t then (sine t itself is a suitablevalue for t00) the �rst onjunt ensures that,8t0 > t 9t00 < t0 9l0 (l e;g;d;r�����! l0 ^ d(v + t00)), f Interhange of existentials ; distributivity of ^ over 9 g8t0 > t 9l0 (l e;g;d;r�����! l0 ^ 9t00 < t0 : d(v + t00)), f Logi g8t0 > t:(8l0 (l e;g;d;r�����! l0 =) 8t00 < t0 ::d(v + t00))), f Rule (S2) g8t0 > t : [l; v℄ t0=6)The ontrapositive of whih is, 8t0 2 R+ ([l; v℄ t0==) =) t0 � t).Now if we put everything together we obtain,9t 2 R+ (s t=) ^8t0 2 R+ (t0 � t =) s t0==)) ^8t0 2 R+ (s t0==) =) t0 � t)) 25

whih is as required. In addition, the following proposition gives an alternative haraterisationof time reativity.Proposition 68A 2 TAD : A is time reative if and only if,8[l; v℄ 2 [[A ℄℄ :19t ([l; v℄ t=6) =) 9e ([l; v℄ e=) _ 9t0 � t ([l; v℄ t0==) [l; v + t0℄ ^ [l; v + t0℄ e=))))Proof(=))Assume A is time reative and take [l; v℄ 2 [[A ℄℄ :1 suh that 9t : [l; v℄ t=6) . Nowproposition 5 implies that either,8t0 : [l; v℄ t0=6) or 9t0 ([l; v℄ t0==) ^ 8t00 ([l; v℄ t00==) () t00 � t0))Consider these in turn.8t0 : [l; v℄ t0=6)) f De�nition of time reativity g9e 2 A : [l; v℄ e=)whih is as required. In addition,9t0 ([l; v℄ t0==) ^ 8t00 ([l; v℄ t00==) () t00 � t0))) f Otherwise time ontinuity would give [l; v℄ t=) g9t0 � t ([l; v℄ t0==) ^ 8t00 ([l; v℄ t00==) () t00 � t0))) f Otherwise time ontinuity auses ontradition of seond onjuntg 9t0 � t ([l; v℄ t0==) [l; v + t0℄ ^ 8r 2 R+ ([l; v + t0℄ r=6)))) f De�nition of time reativity g9t0 � t ([l; v℄ t0==) [l; v + t0℄ ^ [l; v + t0℄ e=))whih is also as required.((=)Take [l; v℄ 2 [[A ℄℄ :1, now,8t : [l; v℄ t=6) 26

) f R+ 6= ; g9r 2 R+ : [l; v℄ r=6) ^ 8t : [l; v℄ t=6)) f From Assumptions g9e ([l; v℄ e=) _ 9t0 � r ([l; v℄ t0==) ^ [l; v + t0℄ e=))) ^ 8t : [l; v℄ t=6), f Distributivity of Existentials g(9e : [l; v℄ e=) _ 9e 9t0 � r ([l; v℄ t0==) ^ [l; v + t0℄ e=)))^ 8t : [l; v℄ t=6), f Distributivity of ^ over _ g(9e : [l; v℄ e=) ^ 8t : [l; v℄ t=6)) _(9e 9t0 � r ([l; v℄ t0==) ^ [l; v + t0℄ e=)) ^ 8t : [l; v℄ t=6)), f Seond disjunt is ontraditory g9e : [l; v℄ e=) ^ 8t : [l; v℄ t=6)) f Logi g9e : [l; v℄ e=)whih is as required.Standard TADs. We will introdue a number of di�erent TADs approahes inthis paper. These are distinguished by their rules of parallel omposition. Herewe onsider the basi approah, as introdued in [3, 4℄, whih we all standardTADs . A TADs expansion theorem for deriving the produt behaviour from aparallel omposition is given in [3℄. Here we give an equivalent inferene rulede�nition for our state vetor notation (we denote the standard TADs vetor asjjhu[1℄; :::u[n℄i):-(R1) u[i℄ x?;gi;di;ri�������!u[i℄0 u[j℄ x!;gj ;dj;rj�������!u[j℄0jju x;g0;d0;ri[rj���������!jju[i0=i; j0=j℄jju x?;g0i;d0i;ri�������!jju[i0=i℄jju x!;g0j;d0j ;rj�������!jju[j0=j℄where 1 � i 6= j � juj and,g0 = gi ^ gjd0 = g0 ^ (di _ dj)g0i = gi ^ 2:(gi ^ gj)d0i = g0i ^ dig0j = gj ^ 2:(gi ^ gj)d0j = g0j ^ dj27

(R2) u[i℄ e;g;d;r�����!u[i℄0 :(e 2 HA ^ 9k 6= i : u[k℄ e=))jju e;g;d;r�����!jju[i0=i℄where 1 � i � juj. (R1) generates synhronisation and esape transitions withthe onstrained guards and deadlines ensuring that synhronisation has priorityin the required manner. (R2) is the interleaving rule, whih is straightforwardapart from the seond ondition whih ensures that transitions on inompleteations are only generated by this rule if synhronisation, and hene rule (R1),is not possible.
A1 A2

s1

s2

t1

t2

a?,
t<=2,
t<=2

a!,
true,
false

Figure 15: TADs A1 and A2As an illustration of these inferene rules onsider ||<A1,A2> where A1 andA2 are shown in �gure 15. The unredued omposition arising from diretlyapplying the inferene rules is shown in �gure 16(a) (2 is denoted [℄ and : isdenoted �) and �gure 16(b) depits the resulting omposed TAD when guardsand deadlines have been redued by expanding out temporal operators andapplying propositional logi. In addition, transitions with unful�llable guards,e.g. false, have been removed.
s1 t1

s2 t1

s2 t2

s1 t2

a,
t<=2 /\ true,
t<=2 /\ true /\
 (t<=2 \/ false)

a?,
t<=2,
t<=2

a!,
true,
false

a?,
t<=2 /\ []~(t<=2 /\ true),
t<=2 /\ []~(t<=2 /\ true)
 /\ t<=2

a!,
 true /\ []~(t<=2 /\ true),
 true /\ []~(t<=2 /\ true)
 /\ false

(a)	

s1 t1

s1 t2a,
t<=2,
t<=2

a!,
 t>2,
 false

s2 t2
(b)Figure 16: Unredued and redued omposition of A1 and A228

We an observe the following:-1. In �gure 16(a) and (b) the transition oming from s1 t1 labelled a is thesynhronisation transition.2. In �gure 16(a) the two transitions oming from s1 t1 labelled a? and a!respetively, are the esape transitions. The �rst arises from automaton A1and the seond from automaton A2. The guards of these esape transitionsensure that they an only �re if the synhronisation will never be possiblein the future. Thus, synhronisation transitions have priority over esapetransitions.3. Figure 16(b) shows that sine the synhronisation transition inherits theguards of a? from A1, no esape transition on a? is possible. If s1 t1 isentered with t>2 then the esape transition on a! an be taken, enablingA2 to esape its ation lok.
a0

timeout,t==D,t==D

Timeout4

a1

a2

good?,t<D,false

b0

b1

b2

tau,
r<=C,
false,
r:=0

Component3

good!
r==0,
r==0

Figure 17: TADs for Timeout4 and Component3Bounded Timeout in Standard TADs. Now we reformulate our boundedtimeout in standard TADs. The omponent that we onsider is Component3and the timeout is Timeout4 both shown in �gure 17.In the terminology of [3℄, a transition suh as good? is lazy sine nothingever fores it to happen. In ontrast, the transition good!, say, is eager [3℄, sineits guard and deadline are the same. This implies that as soon as the transitionan happen it will happen.Now by applying the above inferene rules and removing impossible transi-tions, the omposite automaton shown in �gure 18 results.If we �rst fous on state a0 b1 then we an see that this omposite be-haviour gives priority to the synhronisation between good? and good! whihis indiated by the transition labelled good. Thus, while t<D this is the onlytransition that an �re (notie r==0 automatially when entering state a0 b1)and furthermore it is eager. 29

good,
t<D /\ r==0,
t<D /\ r==0

a0 b0

timeout,
t==D,
t==D

a0 b1

a2 b1

a2 b2

a0 b2

a1 b2

a1 b1

a2 b0

tau,
r<=C,
false,
r:=0

tau,
r<=C,
false,
r:=0

a1 b0

timeout,
t==D,
t==D

timeout,
t==D,
t==D

tau,
r<=C,
false,
r:=0

good?
t<D,
false

good!,
r==0,
r==0

good!,
r==0 /\ t>=D,
r==0 /\ t>=D

good!,
r==0,
r==0

Figure 18: ||<Timeout4,Component3> in standard TADsAlso, if state a0 b1 is entered with t==D then timeout is urgent. Further-more, from this state the ation good! happens. This is the esape transition,whih allows Component3 to move out of state b1. Remember the timelok thatwe obtained previously arose beause the omponent ould not exit the statewhere it wished to perform good!.This solution seems to ful�l our requirements - it is a strong timeout, urgenyis enfored as required on both timeout and good and the solution is timelokfree. However, there are some peuliarities with the resulting omposite be-haviour. Consider for example, the transition from a0 b0 labelled good?. Thisrepresents the timeout performing its good esape transition. However, onep-tually it is being performed too early - before the synhronisation on good iseven o�ered and if this transition is taken the good synhronisation does noteven have the hane to our. The problem is the rule (R2) whih adds esapetransitions too liberally. In response to this observation we onsider alternativeTADs formulations in the next setion.3.5 Alternative TAD FormulationsWe onsider two alternative TAD formulations10. [5℄ atually onsiders a thirdformulation, but this turns out to be unsatisfatory. Both satisfy the require-10We still all these timed automata with deadlines, beause the basi priniples, as on-ieved by Bornot et al [3, 4℄, still apply, i.e. plaing deadlines on transitions and using priori-tised hoie. 30

ments that we identi�ed for our bounded timeout. Thus, in partiular, theyare both time reative. However, the solutions vary in the extent to whih theylimit ation loks.3.5.1 Sparse Timed Automata with DeadlinesThis is a minimal TADs approah, in whih we do not generate any esapetransitions. Furthermore, sine esape transitions are not generated, we do nothave to enfore any priority between the synhronisation and esape transitions.With sparse TADs the following parallel omposition (denoted jjs) rules areused:u[i℄ x?;gi;di;ri�������!u[i℄0 u[j℄ x!;gj ;dj;rj�������!u[j℄0jjsu x;g0;d0;ri[rj���������!jjsu[i0=i; j0=j℄ u[i℄ x;g;d;r�����!u[i℄0 x 2 CAjjsu x;g;d;r�����!jjsu[i0=i℄where 1 � i 6= j � juj, g0 = gi ^ gj and d0 = g0 ^ (di _ dj).These rules prevent unompleted ations from arising in the omposite be-haviour; they only arise in the generation of ompleted ations, while (already)ompleted ations o�ered by omponents of the parallel omposition an beperformed independently. This de�nition has the same spirit as the normalUPPAAL rules of parallel omposition [2℄. The di�erene being that here wehave deadlines whih we onstrain during omposition to preserve the propertyd) g, and hene to preserve time-reativity.Let us onsider one again the behaviour,||s<Timeout4,Component3>whih is the network we were foussing on in the previous setion. Now withour new parallel omposition rules, we obtain the omposite behaviour shownin �gure 19. This is an interesting and very reasonable solution. Firstly, itmeets all the requirements identi�ed at the start of this paper for our boundedtimeout. Thus, in partiular, it is time-reative. However, it makes no e�ort tolimit ation loks, so ommuniation mis-mathes yield ation loks rather thantimeloks.Furthermore as a onsequene of these harateristis of sparse TADs wehave revised the interpretation of synhronisation in the manner we proposed insubsetion 3.3. For example, if we onsider again the Dying Dining Philosophersillustration from that subsetion, the obvious TADs formulation of the automataof �gure 13 are those shown in �gure 20. Now sparse TADs omposition of thetwo automata yields the behaviour shown in �gure 21, whih is ation loked.This is the outome that we were seeking - sine the pik synhronisationis not enabled, urgeny annot be enfored. This is reeted in both the guardand deadline in �gure 21 being false. This, in turn, is aused by the deadlineonstraint d0 = g0 ^ (di _ dj) in the Sparse TADs produt rule, whereby thegenerated deadline is \pruned" aording to the enabling of the guard.31

good,
t<D /\ r==0,
t<D /\ r==0

a0 b0

a0 b1

a2 b2

a1 b1

tau,
r<=C,
false,
r:=0

a1 b0

timeout,
t==D,
t==D

timeout,
t==D,
t==D

tau,
r<=C,
false,
r:=0

Figure 19: ||s<Timeout4,Component3> in Sparse TADs3.5.2 TADs with Minimal Priority Esape TransitionsThe idea here is to ensure maximal progress as standard TADs do, but ratherthan just giving esape transitions lower priority than their orresponding syn-hronisation, we also give them lower priority than other ompleted transitions.Thus, a omponent an only perform an esape transition if the omponent willnever be able to perform a ompleted transition. This seems appropriate asour view of esape transitions is that they should only be performed as a verylast resort - when the hoie is between performing them or reahing an \error"state.The parallel omposition (denoted jjm) rules are:(R1) u[i℄ x?;gi;di;ri�������!u[i℄0 u[j℄ x!;gj ;dj;rj�������!u[j℄0jjmu x;g0;d0;ri[rj���������!jjmu[i0=i; j0=j℄where, 1 � i 6= j � juj, g0 = gi ^ gj , d0 = g0 ^ (di _ dj). and,(R2) u[i℄ x;g;d;r�����!u[i℄0 x 2 CAjjmu x;g;d;r�����!jjmu[i0=i℄ (R3) u[i℄ a;g;d;r�����!u[i℄0 a 2 HAjjmu a;g00;d00;r�������!jjmu[i0=i℄where, 1 � i � juj and,g00 = g ^ Vf2:q:2 j q 2 �CA(u[i℄) g ^Vf2:(q:2 ^ q0:2) j q 2 �HA(u[i℄) ^ q0 2 �fq:1g(u[j℄) ^ 1 � j 6= i � juj g32

l0

l1

Aris m0

m1

pick!,
t>=15

Rest

pick?,
t<=10,
t==10

Figure 20: Dying Dining Philosophers Situation in TADs
pick,
false,
false

l0 m0

l1 m1Figure 21: TADs Composition of Dying Dining Philosophersd00 = d ^ g00(R1) is the normal synhronisation rule; (R2) de�nes interleaving of om-pleted transitions; and (R3) de�nes interleaving of inomplete, i.e. esape, tran-sitions. In this �nal rule, g00 holds when,1. g holds; and2. it is not the ase that an already ompleted transition from u[i℄ ouldeventually beome enabled; and3. it is not the ase that an inomplete transition (inluding a itself) o�eredat state u[i℄ ould eventually be ompleted.Furthermore, the de�nition of d00 ensures that the rules preserve the propertyd) g and thus, the produt is time reative.Applying these rules to the omposition:||m<Timeout4,Component3>and removing impossible transitions yields the omposition shown in �gure 22.This solution removes the exessively early esape transition from a0 b0, but33

a0 b0

timeout,
t==D,
t==D

a0 b1

a2 b2

a0 b2

a1 b2

a1 b1

tau,
r<=C,
false,
r:=0

a1 b0

timeout,
t==D,
t==D

timeout,
t==D,
t==D

tau,
r<=C,
false,
r:=0

good,
t<D /\ r==0,
t<D /\ r==0

good!,
r==0 /\ t>=D,
r==0 /\ t>=D

good!,
r==0,
r==0

Figure 22: ||m<Timeout4,Component3> in TADs with minimum priority esapetransitionspreserves all other transitions. In addition, we again obtain the \weaker" han-dling of urgeny in synhronisation that subsetion 3.3 proposed.3.6 DisussionThis setion has presented a number of means to \onstrutively" ensure time-lok freeness in a timed automata setting. We an summarise our results asfollows:-� we highlighted a stati spei�ation devie whih an be used to ensurethat zeno timeloks annot arise;� we onsidered the standard TADs framework. However, this proved un-satisfatory as it generated too many esape transitions;� in response, we presented two new TADs formulations - Sparse TADs andTADs with minimal priority esape transitions, whih do not allow timeation loks to be generated and are thus, time reative; and seondly,resolve the problem of esape transitions being generated exessively early;� furthermore, the TADs parallel omposition that we present \weakens"the interpretation of urgeny in synhronisation. Spei�ally, we obtaina situation in whih urgeny an only be enfored if a synhronisation ispossible. 34

You should also note that all these approahes are ompositionally well be-haved, in the sense that, if omponent automata satisfy the partiular property,e.g. zeno timelok freeness or time ation lok freeness, then the produt willsatisfy the same property.4 Ation LoksOne of the main results of the last setion and of the TADs framework ingeneral is to provide a means to ompose automata together without generatingtimeloks. This then raises the issue of whether the same an be done foration loks, i.e. an a notion of parallel omposition be de�ned whih annotintrodue ation loks. It turns out that by manipulating guards and deadlinesappropriately suh a notion of ompositionality an be obtained. This is thesubjet matter of this setion.As an indiation of the bakground to the problem of ation loks we reviewthe issue of ation lok freeness in untimed systems in subsetion 4.1. Then weonsider a simple way to obtain ation lok ompositionality in subsetion 4.2.However, this approah is very limited. Finally, in subsetion 4.3 we onsider amore satisfatory approah.4.1 Independent Parallelism in Untimed SystemsWe onsider automata / transition systems, (L; l0;!) where L is a set of loa-tions, ! is a transition relation on ations in A and l0 2 L is a start loation.Now we an de�ne untimed ation lok freeness. It is a straightforwardextrapolation from (timed) ation lok freeness whih was de�nition 2.De�nition 5 An automaton, (L; l0;!) is ation lok free i�8l 2 L (l0) l =) 9e 2 A : l e�!)where) is the obvious reahability relation, i.e.l) l0 i� (l = l0) _ (9e1; :::; en 9l1; :::; ln+1 : li ei��! li+1 ^ l = l1 ^ l0 = ln+1)Now we an easily identify a notion of parallel omposition that preservesation lok freeness:-(L1; l1;0;!1) jjj (L2; l2;0;!2) = (L; l0;!)where,� L = L1 � L2;� ! is de�ned by, l1 e�! 1l01(l1; l2) e�! (l01; l2) l2 e�! 2l02(l1; l2) e�! (l1; l02)35

� l0 = (l1;0; l2;0)i.e. jjj gives the independent parallel omposition of two automata.jjj ensures the property,If either (L1; l1;0;!1) or (L2; l2;0;!2) are ation lok free then so is(L1; l1;0;!1) jjj (L2; l2;0;!2)To prove this property we need a small lemma.Lemma 1 Assuming (L; l0;!) = (L1; l1;0;!1) jjj (L2; l2;0;!2) then,(l1;0; l2;0)) (l1; l2) implies l1;0) l1 ^ l2;0) l2ProofWe prove just l1;0) l1, the other ase is symmetri. (l1;0; l2;0)) (l1; l2)implies 9e1; :::; en 9l1;1; :::; l1;n+1l2;1; :::; l2;n+1 : (l1;0; l2;0) = (l1;1; l2;1) ^ (l1; l2) =(l1;n+1; l2;n+1) ^ (l1;i; l2;i) ei��! (l1;i+1; l2;i+1). Now we work by indution.Base Case. Assume n = 1. Then (l1;0; l2;0) e1��! (l1; l2) and by the inferenerules of jjj either l1;0 = l1 or l1;0 e1��! 1l1, but in either ase we are done.Indutive Step. Assume the result holds for n � 1 and that (l1;0; l2;0))(l1;n+1; l2;n+1) whih implies (l1;0; l2;0)) (l1;n; l2;n) ^ (l1;n; l2;n) en��! (l1;n+1; l2;n+1)whih by indution gives l1;0) l1;n and by the inferene rules gives us eitherl1;n = l1;n+1 or l1;n en��! 1l1;n+1, either of whih gives us l1;0) l1;n+1 as re-quired.Proposition 7 If (L1; l1;0;!1) or (L2; l2;0;!2) are ation lok free then so is(L; l0;!) = (L1; l1;0;!1) jjj (L2; l2;0;!2).ProofWlog assume (L1; l1;0;!1) is ation lok free. Take (l1; l2) 2 L suh that(l1;0; l2;0)) (l1; l2) then by lemma 1 we know that l1;0) l1 and also sine(L1; l1;0; �! 1) is ation lok free we have l1 e�! 1. But then the inferene rulesimmediately give us that (l1; l2) e�! and we are done. However, independent parallelism is not very interesting beause it does notallow any synhronisation. Unfortunately synhronisation brings the possibilitythat new ation loks an be introdued in the produt. For example, the CCSparallel omposition operator would ensure ation lok freedom preservation ifyou ould ensure that only ations that suessfully synhronise are restrited.However, restrition is a stati operator and determining whether ations syn-hronise is a dynami property. This is why we need to use the TADs prioritymehanisms, beause they enable us to de�ne parallel omposition where thehoie between the transitions is tied to the dynami evolution of the system.This point will beome learer in subsetion 4.3. First though, in subsetion4.2, we show that the results for untimed independent parallelism that we havededued in this subsetion an be extrapolated to the timed setting.36

s0 A1

s1 s2

t0

t1 t2

A2

x,
r==1,
r==1 x,

r==o,
r==o,
t:=0

x,
r>=1,
false,
t:=0

x,
t==1,
t==1 x,

t==o,
t==o,
r:=0

x,
t>=1,
false,
r:=0Figure 23: Automata illustrating the need for disjoint lok sets4.2 Independent Parallelism in Timed SystemsWe an easily de�ne independent parallelism in the timed setting. Although itwould be easy to give a de�nition for TA, here we give a de�nition for TADs.The independent produt, denoted jji, of a vetor of TADs is de�ned,jjihA[1℄; :::; A[n℄i = (L; l0;�!; [1�i�nA[i℄:4)where,� l0 = jjihA[1℄:2; :::; A[n℄:2i;� L = f l0 g [f jjiu0 j jjiu e;g;d;r�����!jjiu0 ^ jjiu 2 L g;� �! is de�ned by, (RIP) u[i℄ e;g;d;r�����!u[i℄0jjiu e;g;d;r�����!jjiu[i0=i℄One again sine we assume d) g throughout eah omponent automaton,(RIP) ensures that d) g in the independent produt and thus we have timereativity.It turns out that in order to obtain ation lok freeness preservation we willhave to assume that the lok sets of our omponent automata are disjoint. Thetwo automata in �gure 23 indiate why we must make this assumption. Individ-ually, these are both ation lok free sine one entering state s1 (respetivelyt1) the lok r (respetively t) is already too high to allow the s2 (respetivelyt2) branh. However, the independent produt of the two will evolve to states2t2 (i.e. an ation lok) sine eah resets the other's lok to zero.37

Consequently, we will assume that the omponent automata in a vetor havedisjoint lok sets, i.e.hA[1℄; :::; A[n℄i is only de�ned if, 8i; j(1 � i; j � n) : A[i℄:4 \A[j℄:4 = ;Now we introdue some notation related to disjointness of lok sets.vdCis the restrition of the (larger) lok valuation v to the valuation on loks ofC, i.e. vdC = v \ (C � R+0)We an also build up larger lok valuations from smaller ones by taking theunion of the two funtions (note, disjointness of lok valuations prevents thisfrom being dangerous). Also, we will often write vd(A[i℄:4) as vdi, i.e. to restritthe valuation v to the loks of A[i℄.We have the following two straightforward lemmas onerning restrition oflok sets.Lemma 2C 0 � C =) C 0(vdC) = (C 0(v))dCProofC 0(vdC)= f De�nitions of d and lok reset g((v \ (C � R+0))n(C 0 � R+0)) [(C 0 � f0g)= f De�nition of n g((v \ (C � R+0)) \ (C nC 0 � R+0)) [(C 0 � f0g)= f Assoiativity and ommutativity of \ g((v \ (C nC 0 � R+0)) \ (C � R+0)) [(C 0 � f0g)= f Distributivity of [over \ ; de�nition of n g((vn(C 0 � R+0)) [(C 0 � f0g)) \ ((C � R+0) [(C 0 � f0g))= f C 0 � C g((vn(C 0 � R+0)) [(C 0 � f0g)) \ (C � R+0)= f De�nitions of d and lok reset g(C 0(v))dCLemma 3(vdC) + t = (v + t)dC 38

ProofTrivial.We will need the following lemma. It states that if the independent produt anreah a state then all omponents an reah a orresponding state. In partiu-lar, this orrespondene ensures that all lok valuations that the independentprodut an reah, an (with appropriate restrition) also be reahed by allomponent automata.Lemma 48i(1 � i � juj) : [jjiu; v℄ 2 [[jjiA ℄℄ :1 =) [u[i℄; vdi℄ 2 [[A[i℄ ℄℄ :1ProofWe prove this by indution over the rules for generating time/ation transitionsystems for TADs. Take i 2 N suh that 1 � i � n and n = juj.Base Case:[jjihA[1℄:2; :::; A[n℄:2i; v0℄ 2 [[jjiA ℄℄ :1 and [A[i℄:2; v0di℄ 2 [[A[i℄ ℄℄ :1 by onstru-tion.Indutive Step:Assume [jjiu; v℄ 2 [[jjiA ℄℄ :1 and [u[i℄; vdi℄ 2 [[A[i℄ ℄℄ :1 (this is the indutivehypothesis). We need to show that the next state reahable from [jjiu; v℄ alsoorresponds to a state in [[A[i℄ ℄℄ :1. We argue by ase analysis of the means bywhih [jjiu; v℄ an reah a new state.Case 1 [[jjiu; v℄ e=) [jjiu0; v0℄ ℄[jjiu; v ℄ e=) [jjiu0; v0 ℄, f Rule (S1) gjjiu e;g;d;r�����!jjiu0 ^ g(v) ^ v0 = r(v)Case 1.1 [u[i℄ = u[i℄0 ℄u[i℄ = u[i℄0, f Clok sets are disjoint, i.e. r \ (A[i℄:4) = ; g[u[i℄0; v0di℄ = [u[i℄; vdi℄) f By indutive hypothesis g[u[i℄0; v0di℄ 2 [[A[i℄ ℄℄ :1whih is as required.Case 1.2 [u[i℄ 6= u[i℄0 ℄u[i℄ 6= u[i℄0) f Rule (RIP) ; ase assumption gu[i℄ e;g;d;r�����!u[i℄0 ^ g(v) ^ v0 = r(v)39

) f Indutive hypothesis; disjoint lok sets gives g(vdi); rule (S1) g[u[i℄; vdi℄ e=) [u[i℄0; r(vdi)℄ ^ v0 = r(v), f Disjointness of lok sets, so r � (A[i℄:4); Lemma 2 g[u[i℄; vdi℄ e=) [u[i℄0; r(v)di℄ ^ v0 = r(v)) f Substitution g[u[i℄; vdi℄ e=) [u[i℄0; v0di℄) f Transition system onstrution g[u[i℄0; v0di℄ 2 [[A[i℄ ℄℄ :1whih is as required.Case 2 [[jjiu; v℄ t=) [jjiu; v + t℄ ℄We seek to show that [u[i℄; vdi℄ t=) [u[i℄; (v + t)di℄whih will require us to show that,8u[i℄0 (u[i℄ e0;gi;di;ri�������!u[i℄0 =) 8t0 < t ::di(v + t0))Thus, we take u[i℄0 2 A[i℄:1 suh that u[i℄ e0;gi;di;ri�������!u[i℄0 and proeed as follows:-u[i℄ e0;gi;di;ri�������!u[i℄0 ^ [jjiu; v℄ t=) [jjiu; v + t℄, f Rule (S2) gu[i℄ e0;gi;di;ri�������!u[i℄0 ^ 8(jjiu0) (jjiu e;g;d;r�����!jjiu0 =) 8t0 < t ::d(v+ t0)), f Rule (RIP) gjjiu e0;gi;di;ri�������!jjiu[i0=i℄ ^8(jjiu0) (jjiu e;g;d;r�����!jjiu0 =) 8t0 < t ::d(v + t0))) f Instantiating universal g8t0 < t ::di(v + t0)whih gives us that,8u[i℄0 (u[i℄ e0;gi;di;ri�������!u[i℄0 =) 8t0 < t ::di(v + t0))but then by (S2) and our indutive hypothesis, we have,[u[i℄; vdi℄ t=) [u[i℄; (vdi) + t℄and by lemma 3 it follows that,[u[i℄; vdi℄ t=) [u[i℄; (v + t)di℄and hene, [u[i℄; (v + t)di℄ 2 [[A[i℄ ℄℄ :140

whih is as required and ompletes the indutive ase.Now we show that ation lok freeness is indeed preserved when taking theindependent produt.Proposition 89i (1 � i � jAj) : A[i℄ is ation lok free =) jjiA is ation lok free.ProofWe prove the ontrapositive,jjiA ontains an ation lok implies 8i (1 � i � jAj) : A[i℄ is ationloked.So, assume jjiA ontains an ation lok, i.e.,Property (*)9[jjiu; v℄ 2 [[jjiA ℄℄ :1 :8t 2 R+0 ([jjiu; v + t℄ 2 [[jjiA ℄℄ :1 =) [jjiu; v + t℄ e=6))Take i suh that 1 � i � jAj, we need to show that A[i℄ is ation loked. Nowby lemma 4 we know that, [u[i℄; vdi℄ 2 [[A[i℄ ℄℄ :1and we will show that this state is ation loked. We proeed by ontradition.Thus, assume the state is not ation loked. There are two possibilities:-1. [u[i℄; vdi℄ e=) or2. 9t ([u[i℄; vdi℄ t=) [u[i℄; vdi+t℄ ^ [u[i℄; vdi+t℄ e=)).We onsider these ases in turn.Case 1 [[u[i℄; vdi℄ e=) ℄[u[i℄; vdi℄ e=)) f Rule (S1) gu[i℄ e;g;d;r�����! ^ g(vdi)) f Rule (RIP); disjointness of lok sets gjjiu e;g;d;r�����! ^ g(v)) f Rule (S1) g[jjiu; v℄ e=)whih would ontradit property (*). Thus, this ase is not possible.Case 2[9t ([u[i℄; vdi℄ t=) [u[i℄; vdi+t℄ ^ [u[i℄; vdi+t℄ e=)) ℄Let us onsider the behaviour of the independent produt. Firstly, an it passtime by t? 41

Case 2.1 [[jjiu; v℄ t=6) ℄[jjiu; v℄ t=6)) f Sine jjiA will be time reative we an use proposition 6 g9e ([jjiu; v℄ e=) _ 9t0 � t ([jjiu; v℄ t0==) [jjiu; v + t0℄ ^ [jjiu; v + t0℄ e=)))whih would ontradit property (*). Thus, this ase is not possible.Case 2.2 [[jjiu; v℄ t=) [jjiu; v + t℄ ℄[jjiu; v℄ t=) [jjiu; v + t℄) f Introduing our ase 2 assumption g[jjiu; v℄ t=) [jjiu; v + t℄ ^ [u[i℄; vdi+t℄ e=), f Lemma 3 g[jjiu; v℄ t=) [jjiu; v + t℄ ^ [u[i℄; (v + t)di℄ e=)) f Rule (S1) g[jjiu; v℄ t=) [jjiu; v + t℄ ^ u[i℄ e;g;d;r�����!u[i℄0 ^ g((v + t)di)) f Rule (RIP); disjointness of lok sets g[jjiu; v℄ t=) [jjiu; v + t℄ ^ jjiu e;g;d;r�����!jjiu[i0=i℄ ^ g(v + t)) f Rule (S1) g[jjiu; v℄ t=) [jjiu; v + t℄ ^ [jjiu; v + t℄ e=)whih would also ontradit property (*). Thus, this ase is also not possible.This ompletes all the possibilities that would arise if,[u[i℄; vdi℄were not ation loked and all these possibilities generate ontraditions. Thus,it must be the ase that the state is ation loked and the result follows.4.3 Timed Case with Synhronisation4.3.1 Composition RulesAs stated earlier, independent parallelism is theoretially interesting, but suhinteration free parallel omposition is of limited value. Thus, here we onsiderhow the same ation lok ompositionality property an be obtained but whileallowing interation between proesses. Our de�nition builds upon the parallelomposition arising in TADs with Minimum Priority Esape Transitions, whihhas a number of the required harateristis. However, it does not go far enoughin its generation of esape transitions. Partiularly in respet of preservingomponent deadlines. These issues will beome lear shortly.42

Consider the following omposition rules where u is a vetor of TADs loa-tions. The produt that is generated is denoted jjaA.(RCA) u[i℄ x?;gi;di;ri�������!u[i℄0 u[j℄ x!;gj ;dj;rj�������!u[j℄0jjau x;g0;d0;ri[rj���������!jjau[i0=i; j0=j℄where, 1 � i 6= j � juj, g0 = gi ^ gj , d0 = g0 ^ (di _ dj) and,(RIA) u[i℄ x;g;d;r�����!u[i℄0 x 2 CAjjau x;g;d;r�����!jjau[i0=i℄ (RHA) u[i℄ a;g;d;r�����!u0[i℄ a 2 HAjjau a;g00;d00;r�������!jjau[i0=i℄where (1 � i � juj) and,g00 = (g ^ Vf2:q:2 j q 2 �CA(u[i℄) g ^Vf2:(q:2 ^ q0:2) j q 2 �HA(u[i℄) ^ q0 2 �fq:1g(u[j℄) ^ j 6= i g) _d00d00 = d ^ Vf:q:3 j q 2 �CA(u[i℄) g ^Vf:(q:2 ^ q0:2 ^ (q:3 _ q0:3)) j q 2 �HA(u[i℄) ^ q0 2 �fq:1g(u[j℄) ^ j 6= i gNow we give an explanation of the omponents of the de�nition.(RCA). This is the (now) familiar \onjuntive" synhronisation rule, with thedeadline onstraint ensuring that d) g and thus preserving time reativity.(RIA). This gives the also familiar interleaving modelling of independent par-allelism, i.e. non-synhronizing internal ations.(RHA). This generates esape transitions in order to avoid ation loks, withthe guard and deadline onstrutions ontrolling when the esape transitionsan our. We justify our guard and deadline de�nitions as follows:-1. The guard is onstruted as a disjuntion between the guard onstrution�rst proposed in [6℄ for esape transitions and re-iterated in subsetion3.5.2 and the deadline. We justify the guard based disjunt (i.e. the �rst)here. A later point justi�es disjoining with the deadline.The basi idea of this �rst disjunt,g ^ Vf2:q:2 j q 2 �CA(u[i℄) g ^Vf2:(q:2 ^ q0:2) j q 2 �HA(u[i℄) ^ q0 2 �fq:1g(u[j℄) ^ j 6= i gis to enable the produt to esape ation loks resulting from mismathedsynhronisations. As was motivated in subsetion 3.5 the onstrutionre�nes the esape transition onstrution presented by [3, 4℄. It doesthis by onstraining esape transitions to only our when the omponentautomaton from whih the esape transition originates an never performany other transition. 43

t0
A1

bbb!,
true,
false

s0
A0

aaa!,
true,
falseFigure 24: Ation lok free TADs

bbb!,
true,
false

aaa!,
true,
false

s0 t0

Figure 25: Composition of A0 and A1As a simple illustration of why this disjunt is required onsider the twoautomata in �gure 24. Both of these TADs are ation lok free sine intheir single state they an always perform their respetive transition andthen evolve bak into the same state.However, if just rules (RCA) and (RIA) are used the omposition of A0and A1 will ation lok immediately as neither synhronisation an beful�lled. Also notie, this is not an issue of deadlines as both automatahave unsatis�able deadlines.However, appliation of the rule (RHA) in onjuntion with (RCA) and(RIA) will allow the ation lok to be esaped as shown in the omposi-tion in �gure 25. Thus, as a onsequene of failing to synhronise, bothautomata evolve loally.2. Now we justify the deadline onstrution in (RHA). The onstrution,d ^ Vf:q:3 j q 2 �CA(u[i℄) g ^Vf:(q:2 ^ q0:2 ^ (q:3 _ q0:3)) j q 2 �HA(u[i℄) ^ q0 2 �fq:1g(u[j℄) ^ j 6= i ghas a similar shape to the guard onstrution we just onsidered, however,the temporal operators are not inluded. To explain the onstrution inwords, it states that,the deadline (d00) of the esape transition holds if and only if,(a) the deadline of the orresponding omponent transition (d)holds; 44

s0
A

aaa!,
t<=5,
false,
t:=0Figure 26: A strongly onneted TAD that an ation lok

s0
A’

aaa!,
t<=5,
t==5,
t:=0Figure 27: A strongly onneted TAD that is ation lok free(b) no internal transition of the omponent is at its deadline;and() no synhronisation whih inludes a half ation of the om-ponent is at its deadline.The intuition behind the rule is that any (non ompeting) deadline thatappears in the omponent but that does not arise in the produt (beauseof a failed synhronisation) has its deadline preserved in an esape tran-sition of the produt. A deadline of a transition is ompeting at a state ifthe deadline of an alternative transition also holds at that state.This deadline onstrution is motivated by the observation that in themajority of ases it is the deadline that ensures ation lok freeness ofan automaton. For example, although the automaton A in �gure 26 isstrongly onneted it is not ation lok free. In partiular, assuming s0 is�rst entered with t==0, if it stays in state s0 for longer than 5 time units,it will ation lok.Furthermore, there is nothing onstraining the length of time the automa-ton an idle in state s0 as the deadline of the aaa! transition is false.However, (assuming s0 is entered with t<=5) the automaton shown in�gure 27 is ation lok free, sine the deadline on the aaa! transitionprevents exessive idling in state s0.Now in order to obtain the ation lok freeness property that we desire weneed to guarantee that deadlines that ensure ation lok freeness of om-ponent automata are preserved in the produt (either through appearing45

t0s0
B B’

aaa!,
t<=5,
t==5,
t:=0

bbb!,
r<=8,
r==8,
r:=0Figure 28: Two ation lok free TADs

s0 t0

aaa!,
t<=5,
t==5,
t:=0

bbb!,
r<=8,
r==8,
r:=0Figure 29: Composition of B and B'as a result of rules (RCA) or (RIA) or by inluding relevant esape tran-sitions). Our rule does this. Firstly, onsider the two ation lok freeautomata B and B' shown in �gure 28. With just rules (RCA) and (RIA)the produt of B and B' would be ation loked. However, with (RHA) aswell, the produt automaton shown in �gure 29 would result.In fat, this produt would have resulted from appliation of the rulespresented in subsetion 3.5 where the deadline is simply d00 = d ^ g00.However, the example in �gure 30 of two more ation lok free TADs (C0and C1) shows that this is not suÆient in the general ase. This is beauseaording to the rules of subsetion 3.5, the parallel omposition of C0 andC1 would be as shown in �gure 31 whih will ation lok at state s1t1.

s0

aaa!,
t<=5,
t==5,
t:=0

s1

C0 C1

bbb!,
r<=8,
r==8,
r:=0

t0 t1
x,t==6,t==6 x,r==9,r==9

Figure 30: Two more ation lok free TADs46

s0 t0

s1 t0

s1 t1

x,
t==6,
t==6

x,
r==9,
r==9

Figure 31: Composition of C0 and C1 without preserving deadlinesThe problem is that the guards of the aaa! and bbb! esape transitionsthat the rules of subsetion 3.5 generate, are false. This is beause in bothautomata an internal ation an eventually be taken and this internalation will take priority.However, if we apply the rules (RCA), (RIA) and (RHA) of the produtjja then the left most produt in �gure 32 results whih is \behaviourallyequivalent" to the right most produt. This is beause the deadline pre-vents lok t passing 5 and lok r passing 8. Notie that the guardhas been pruned to math the deadline. This ensures that the enablingof aaa! and bbb! is minimised to only what is required to preserve thedesired ation lok freeness property.Also notie that this example illustrates why the priority enfored in thedeadline has to be immediate and inluding temporal operators is inappro-priate. Spei�ally, if a deadline d ensures ation lok freedom then evenif later transitions are possible the deadline must be preserved exatly inthe produt in order to prevent later transitions from being enabled whihallow an ation lok to be reahed, e.g. the internal transition above11.3. Finally, we need to disjoin the deadline in the guard in order to ensure thatd) g everywhere and thus to preserve time reativity. For example, with-out suh a disjunt, the produt of C0 and C1 would be the ompositionshown in �gure 33 whih timeloks when t reahes 5.Also notie that the standard approah, used e.g. by [3, 4℄, for obtainingd) g whih is to onjoin the guard with the deadline, will not work sineit ould remove some part of a deadline that is needed to ensure ation11This may not be the most re�ned solution sine we might add an esape transition eventhough a later transition may prevent the ation lok. But, suh a more re�ned solution isvery diÆult to analyse, sine you must be sure that the later deadline prevents an ationlok and this is very diÆult to analyse. 47

s1 t0

s1 t1

bbb!,
r==8,
r==8,
r:=0

x,
t==6,
t==6

s0 t0
aaa!,
t==5,
t==5,
t:=0

bbb!,
r==8,
r==8,
r:=0

s0 t1

x,
r==9,
r==9

x,
r==9,
r==9

x,
t==6,
t==6

aaa!,
t==5,
t==5,
t:=0

s0 t0
aaa!,
t==5,
t==5,
t:=0

bbb!,
r==8,
r==8,
r:=0

Figure 32: Composition of C0 and C1 with deadlines preserved

s1 t0

s1 t1

x,
t==6,
t==6

s0 t0

s0 t1

x,
r==9,
r==9

x,
r==9,
r==9

x,
t==6,
t==6

aaa!,
false,
t==5,
t:=0

bbb!,
false,
r==8,
r:=0

bbb!,
false,
r==8,
r:=0

aaa!,
false,
t==5,
t:=0

Figure 33: Non time reative omposition of C0 and C148

lok freeness. This an again be seen in the above example. In partiular,if we onjoined the guard,g00 = g ^ Vf2:q:2 j q 2 �CA(u[i℄) g ^Vf2:(q:2 ^ q0:2) j q 2 �HA(u[i℄) ^ q0 2 �fq:1g(u[j℄) ^ j 6= i gto the deadline,d00 = d ^ Vf:q:3 j q 2 �CA(u[i℄) g ^Vf:(q:2 ^ q0:2 ^ (q:3 _ q0:3)) j q 2 �HA(u[i℄) ^ q0 2 �fq:1g(u[j℄) ^ j 6= i gin order to ensure that d) g then the deadlines of aaa! and bbb! wouldbe false and the produt ould evolve to an ation lok at state s1t1.4.3.2 Veri�ation of RulesNow we give a formal veri�ation that the parallel omposition jja does indeedpreserve ation lok freeness. Before oming to our main theorem, we needtwo results. The �rst is a simple onsequene of a state being ation loked ina TADs setting. It states that time an pass arbitrarily in any ation lokedstate.Proposition 98A 2 TAD 8[l; v℄ 2 [[A ℄℄ :1([l; v℄ is ation loked =) 8t 2 R+ : [l; v + t℄ 2 [[A ℄℄ :1)ProofAssume [l; v℄ is ation loked, i.e. [l; v℄ e=6) ^8t0 2 R+ ([l; v℄ t0==) [l; v + t0℄ =) [l; v + t0℄ e=6))Now we know from proposition 5 that either,8t 2 R+ : [l; v℄ t=) _8t 2 R+ : [l; v℄ t=6) _9t 2 R+ ([l; v℄ t=) ^ 8t0 2 R+ ([l; v℄ t0==) () t0 � t))Now disjunt 2 is not possible sine if [l; v℄ annot pass time and annotperform an ation transition we have ontradited time reativity. So, onsiderdisjunt 3. We an reason as follows:- 49

9t ([l; v℄ t=) [l; v + t℄ ^ 8t0 ([l; v℄ t0==) () t0 � t))) f Logi g9t ([l; v℄ t=) [l; v + t℄ ^ 8t0 > t ([l; v℄ t0=6))), f Otherwise time ontinuity would ontradit 2nd onjunt g9t ([l; v℄ t=) [l; v + t℄ ^ 8t0 : [l; v + t℄ t0=6))But this yields a ontradition sine [l; v + t℄ annot let time pass and (as[l; v℄ is ation loked) it annot perform an ation transition, whih invalidatestime reativity.Thus, our third disjunt is also impossible. This implies that the �rst dis-junt must hold, i.e. 8t : [l; v℄ t=) [l; v + t℄whih is as required. Now we onsider the orresponding lemma to lemma 4 whih we used toprove that the independent produt preserved ation lok freeness. The lemmastates that if the produt an reah a state then all omponents an reah aorresponding state. In partiular, this orrespondene ensures that all lokvaluations that the produt an reah, an (with appropriate restrition) alsobe reahed by all omponent automata.Lemma 58i(1 � i � juj) : [jjau; v℄ 2 [[jjaA ℄℄ :1 =) [u[i℄; vdi℄ 2 [[A[i℄ ℄℄ :1ProofWe prove this by indution on the rules for generating transition systems fromTADs. So, onsider an arbitrary omponent automaton, say automaton i 2 Nsuh that 1 � i � n,Base Case:If [hA[1℄:2; :::; A[n℄:2i; v0℄ 2 [[jjaA ℄℄ :1 then, by onstrution, we know that,[A[i℄:2; v0di℄ 2 [[A[i℄ ℄℄ :1.Indutive Step:Assume [jjau; v℄ 2 [[jjaA ℄℄ :1 and [u[i℄; vdi℄ 2 [[A[i℄ ℄℄ :1 (this is the indutivehypothesis). We need to show that the next state reahable from [jjau; v℄ alsoorresponds to a state in [[A[i℄ ℄℄ :1. We argue via a ase analysis of how a newstate an be reahed.Case 1 [[jjau; v℄ e=) [jjau0; v0℄ ℄[jjau; v℄ e=) [jjau0; v0℄, f Rule (S1) gjjau e;g;d;r�����!jjau0 ^ g(v) ^ v0 = r(v)50

Case 1.1 [u[i℄ = u[i℄0 ℄u[i℄ = u[i℄0) f Disjointness of lok sets, i.e. r \ (A[i℄:4) = ; g[u[i℄0; v0di℄ = [u[i℄; vdi℄) f Indutive hypothesis g[u[i℄0; v0di℄ 2 [[A[i℄ ℄℄ :1whih is as required.Case 1.2 [u[i℄ 6= u[i℄0 ℄Case 1.2.1 [e 2 CA by an appliation of rule (RIA) ℄u[i℄ 6= u[i℄0 ^ e 2 CA) f Rule (RIA) ; ase assumption gu[i℄ e;g;d;r�����!u[i℄0 ^ g(v) ^ v0 = r(v)) f Indutive hypothesis ; rule (S1) ; disjoint lok sets ensure g(vdi) g[u[i℄; vdi℄ e=) [u[i℄0; r(vdi)℄ ^ v0 = r(v), f Disjointness of lok sets, i.e. r � A[i℄:4 ; lemma 2 g[u[i℄; vdi℄ e=) [u[i℄0; r(v)di℄ ^ v0 = r(v)) f Substitution g[u[i℄; vdi℄ e=) [u[i℄0; v0di℄) f Transition system onstrution g[u[i℄0; v0di℄ 2 [[A[i℄ ℄℄ :1whih is as required.Case 1.2.2 [e 2 CA by an appliation of rule (RCA) ℄u[i℄ 6= u[i℄0 ^ e 2 CA) f Rule (RCA) ; wlog use e! rather than e? gu[i℄ e!;gi;di;ri�������!u[i℄0 ^ (gi ^ gj)(v) ^ v0 = (ri [rj)(v)) f De�nition of guards gu[i℄ e!;gi;di;ri�������!u[i℄0 ^ gi(v) ^ v0 = (ri [rj)(v)) f Indutive hypothesis ; disjoint lok sets ; rule (S1) g[u[i℄; vdi℄ e!==) [u[i℄0; ri(vdi)℄ ^ v0 = (ri [rj)(v), f Lemma 2 ; rj \ A[i℄:4 = ; ; substitution g[u[i℄; vdi℄ e!==) [u[i℄0; v0di℄) f Transition system onstrution g[u[i℄0; v0di℄ 2 [[A[i℄ ℄℄ :1whih is as required. 51

Case 1.2.3 [e 2 HA ℄u[i℄ 6= u[i℄0 ^ e 2 HA) f Rule (RHA) ; with X and Y s.t. g = (gi ^ X) _ (di ^ Y) gu[i℄ e;gi;di;ri������!u[i℄0 ^ ((gi ^ X) _ (di ^ Y))(v) ^ v0 = ri(v)) f di) gi by time reativity gu[i℄ e;gi;di;ri������!u[i℄0 ^ gi(v) ^ v0 = ri(v)) f Indutive hypothesis ; disjoint lok sets ; rule (S1) g[u[i℄; vdi℄ e=) [u[i℄0; ri(vdi)℄ ^ v0 = ri(v), f Lemma 2 ; substitution g[u[i℄; vdi℄ e=) [u[i℄0; v0di℄) f Transition system onstrution g[u[i℄0; v0di℄ 2 [[A[i℄ ℄℄ :1whih is as required.Case 2 [[jjau; v℄ t=) [jjau; v + t℄ ℄[jjau; v℄ t=) [jjau; v + t℄, f Rule (S2) g8jjau0 (jjau e;g;d;r�����!jjau0 =) 8t0 < t ::d(v + t0)) � (�)We seek to show that,8u[i℄0 (u[i℄ e0i;g0i;d0i;r0i�������!u[i℄0 =) 8t0 < t ::d0i(v + t0))Thus, we take u[i℄0 2 A[i℄:1 and assume,u[i℄ e0i;g0i;d0i;r0i�������!u[i℄0Then we have two ases dependent upon the nature of e0i.Case 2.1 [e0i 2 CA ℄e0i 2 CA) f Case assumption gu[i℄ e0i;g0i;d0i;r0i�������!u[i℄0 ^ e0i 2 CA) f Rule (RIA) ; assumption (�) gjjau e0i;g0i;d0i;r0i�������!jjau0 ^ e0i 2 CA ^ (�)) f Instantiating universal in (�) g8t0 < t ::d0i(v + t0)whih is as required. 52

Case 2.2 [e0i 2 HA ℄e0i 2 HA) f Case assumption gu[i℄ e0i;g0i;d0i;r0i�������!u[i℄0 ^ e0i 2 HA) f Rule (RHA) (X as in (RHA)) ; assumption (�) gjjau e0i;g00;d00;ri��������!jjau0 ^ e0i 2 HA ^ (�) ^ g00 = X ^d00 = d0i ^ Vf:q:3 j q 2 �CA(u[i℄) g ^Vf:(q:2 ^ q0:2 ^ (q:3 _ q0:3)) j q 2 �HA(u[i℄) ^q0 2 �fq:1g(u[j℄) ^ j 6= i g) f Instantiating universal in (�) ; def. of timing onstraints ; logi g8t0 < t:(d0i(v + t0) ^ Vf:q:3(v + t0) j q 2 �CA(u[i℄) g ^Vf:(q:2 ^ q0:2 ^ (q:3 _ q0:3))(v + t0) j q 2 �HA(u[i℄) ^q0 2 �fq:1g(u[j℄) ^ j 6= i g) f De Morgan's g8t0 < t (:d0i(v + t0) _ W f q:3(v + t0) j q 2 �CA(u[i℄) g _W f (q:2 ^ q0:2 ^ (q:3 _ q0:3))(v + t0) j q 2 �HA(u[i℄) ^q0 2 �fq:1g(u[j℄) ^ j 6= i g � (�)Our strategy from here is to show that the seond two disjunts annot holdfor any t0 < t.Case 2.2.1 [9t0 < t W f q:3(v + t0) j q 2 �CA(u[i℄) g ℄9t0 < t W f q:3(v + t0) j q 2 �CA(u[i℄) g) f De�nition of � ; evaluating disjunt g9t0 < t 9u[i℄00 (u[i℄ x;g00i ;d00i ;r00i��������!u[i℄00 ^ d00i (v + t0))) f Rule (RIA) ; assumption (�) g9t0 < t 9u[i℄00 (jjau x;g00i ;d00i ;r00i��������!jjau[i00=i℄ ^ d00i (v + t0)) ^ (�)) f Instantiating universal in (�) ; logi g9t0 < t 9u[i℄00 (8t00 < t ::d00i (v + t00) ^ d00i (v + t0))) f Reduing ontradition to false gfalseSo, this subase is ontraditory and hene impossible.Case 2.2.2[9t0 < t W f (q:2 ^ q0:2 ^ (q:3 _ q0:3))(v + t0) jq 2 �HA(u[i℄) ^ q0 2 �fq:1g(u[j℄) ^ j 6= i g ℄9t0 < t W f (q:2 ^ q0:2 ^ (q:3 _ q0:3))(v + t0) jq 2 �HA(u[i℄) ^ q0 2 �fq:1g(u[j℄) ^ j 6= i g) f De�nition of � ; evaluating disjunts g53

9t0 < t 9u[i℄00; u[j℄00 (u[i℄ a;g00i ;d00i ;r00i��������!u[i℄00 ^ u[j℄ a;g00j ;d00j ;r00j��������!u[j℄00 ^g00i (v + t0) ^ g00j (v + t0) ^ (d00i (v + t0) _ d00j (v + t0)))) f Rule (RCA) ; assumption (�) g9t0 < t 9jjau00 (jjau "a;g0;d0;r0�������!jjau00 ^ g0 = (g00i ^ g00j) ^d0 = (g0 ^ (d00i _ d00j)) ^ g00i (v + t0) ^ g00j (v + t0) ^(d00i (v + t0) _ d00j (v + t0))) ^ (�)) f Instantiating universal in (�) ; logi ; substitution g9t0 < t (8t00 < t ::d0(v + t00) ^ d0 = (g00i ^ g00j ^ (d00i _ d00j)) ^g00i (v + t0) ^ g00j (v + t0) ^ (d00i (v + t0) _ d00j (v + t0)))) f Substitution g9t0 < t (8t00 < t ::d0(v + t00) ^ d0(v + t0))) f Reduing ontradition to false gfalseSo, this subase is also ontraditory and hene impossible.Thus, the last two disjunts of (*) annot hold for any t0 < t and hene we knowthat for all t0 < t the �rst disjunt must be true. Thus,(*)) f Above ases 2.2.1 and 2.2.2 g8t0 < t (:d0i(v + t0))as required to omplete ase 2.2.Now bringing ases 2.1 and 2.2 together, we have,8u[i℄0 (u[i℄ e0i;g0i;d0i;r0i�������!u[i℄0 =) 8t0 < t ::d0i(v + t0))However, due to disjointness of lok sets we an dedue that,8u[i℄0 (u[i℄ e0i;g0i;d0i;r0i�������!u[i℄0 =) 8t0 < t ::d0i(vdi+t0))and by our indutive hypothesis we know that,[u[i℄; vdi℄ 2 [[A[i℄ ℄℄ :1from whih (by S2) it follows that,[u[i℄; vdi℄ t=) [u[i℄; vdi+t℄and thus, [u[i℄; vdi+t℄ 2 [[A[i℄ ℄℄ :1whih is as required to omplete our proof of the indutive ase.Now we turn to the entral result of this setion. It states that jja preservesation lok freeness. 54

Theorem 19i(1 � i � jAj) : A[i℄ is ation lok free =) jjaA is ation lok free.ProofWe an express the desired property as follows,9i :8[u[i℄; vdi℄ 2 [[A[i℄ ℄℄ :1 9t 2 R+0 ([u[i℄; vdi+t℄ 2 [[A[i℄ ℄℄ :1 ^ [u[i℄; vdi+t℄ e=))implies8[jjau; v℄ 2 [[jjaA ℄℄ :1 9t 2 R+0 ([jjau; v + t℄ 2 [[jjaA ℄℄ :1 ^ [jjau; v + t℄ e=))Thus, we assume,9i :8[u[i℄; vdi℄ 2 [[A[i℄ ℄℄ :1 9t 2 R+0 ([u[i℄; vdi+t℄ 2 [[A[i℄ ℄℄ :1 ^ [u[i℄; vdi+t℄ e=))and then we take, [jjau; v℄ 2 [[jjaA ℄℄ :1, However,[jjau; v℄ 2 [[jjaA ℄℄ :1) f Lemma 5 g[u[i℄; vdi℄ 2 [[A[i℄ ℄℄ :1Now we will show that :AL([u[i℄; vdi℄) implies that :AL([jjau; v℄). We onsidertwo ases (t = 0 and t > 0) depending upon whether [u[i℄; vdi℄ an immediatelyperform an ation or only after passing time.Case 1 [t = 0 ℄t = 0, f Case assumption g[u[i℄; vdi℄ ei==), f Rule (S1) ; gi only uses loks in A[i℄:4 gu[i℄ ei;gi;di;ri�������! ^ gi(v) � (+)whih yields subases dependent upon the nature of ei.Case 1.1 [ei 2 CA ℄ei 2 CA) f Rule (RIA) ; ase assumption (+) gjjau ei;gi;di;ri�������!jjau0 ^ gi(v) ^ ei 2 CA, f Rule (S1) g[jjau; v℄ ei==)whih is as required.Case 1.2 [ei 2 HA ℄Case 1.2.1 [9u[i℄0 (u[i℄ x;gx;dx;rx�������!u[i℄0 ^ x 2 CA ^ 9t : gx((v + t)di)) ℄55

Case 1.2.1.1 [[jjau; v℄ t=6) ℄[jjau; v℄ t=6)) f Proposition 6 g9e ([jjau; v℄ e=) _ 9t0 � t ([jjau; v℄ t0==) [jjau; v+ t0℄ ^ [jjau; v+ t0℄ e=)))whih is as required.Case 1.2.1.2 [[jjau; v℄ t=) [jjau; v + t℄ ℄[jjau; v℄ t=) [jjau; v + t℄) f Rule (RIA) ; assumptions ; disjoint lok sets g[jjau; v℄ t=) [jjau; v + t℄ ^ jjau x;gx;dx;rx�������! ^ gx(v + t)) f Rule (S1) g[jjau; v℄ t=) [jjau; v + t℄ ^ [jjau; v + t℄ x=)whih is as required.Case 1.2.2 [:9u[i℄0 (u[i℄ x;gx;dx;rx�������!u[i℄0 ^ x 2 CA ^ 9t : gx((v + t)di)) ℄Case 1.2.2.1 [9u[i℄0; u[k℄; u[k℄0(k 6= i) (u[i℄ a;gy ;dy;ry�������!u[i℄0 ^ u[k℄ a;gz;dz;rz�������!u[k℄0 ^9t : (gy ^ gz)(v + t)) ℄Case 1.2.2.1.1 [[jjau; v℄ t=6) ℄Similar to ase 1.2.1.1.Case 1.2.2.1.2 [[jjau; v℄ t=) [jjau; v + t℄ ℄[jjau; v℄ t=) [jjau; v + t℄) f Rule (RCA) ; assumptions ; disjointness of lok sets g[jjau; v℄ t=) [jjau; v + t℄ ^ jjau #a;g0;d0;r0�������! ^ g0 = (gy ^ gz) ^d0 = (g0 ^ (dy _ dz)) ^ (gy ^ gz)(v + t)) f Rule (S1) g[jjau; v℄ t=) [jjau; v + t℄ ^ [jjau; v + t℄ #a==)whih is as required.Case 1.2.2.2 [:(9u[i℄0; u[k℄; u[k℄0(k 6= i) (u[i℄ a;gy ;dy;ry�������!u[i℄0 ^ u[k℄ a;gz;dz;rz�������!u[k℄0 ^9t : (gy ^ gz)(v + t))) ℄:(9u[i℄0; u[k℄; u[k℄0(k 6= i) (u[i℄ a;gy;dy;ry�������!u[i℄0 ^ u[k℄ a;gz;dz;rz�������!u[k℄0 ^9t : (gy ^ gz)(v + t)))) f Aumulating assumptions ; disjointness of lok sets g:(9u[i℄0 (u[i℄ x;gx;dx;rx�������!u[i℄0 ^ 9t : gx(v + t))) ^:(9u[i℄0; u[k℄; u[k℄0(k 6= i) (u[i℄ a;gy;dy;ry�������!u[i℄0 ^ u[k℄ a;gz;dz;rz�������!u[k℄0 ^56

9t : (gy ^ gz)(v + t)))) f De�nition of temporal operators g:(9u[i℄0 (u[i℄ x;gx;dx;rx�������!u[i℄0 ^ 3gx(v))) ^:(9u[i℄0; u[k℄; u[k℄0(k 6= i) (u[i℄ a;gy;dy;ry�������!u[i℄0 ^ u[k℄ a;gz;dz;rz�������!u[k℄0 ^3(gy ^ gz)(v))), f Logi g8u[i℄0 (u[i℄ x;gx;dx;rx�������!u[i℄0 =) 2:gx(v)) ^8u[i℄0; u[k℄; u[k℄0(k 6= i) ((u[i℄ a;gy;dy;ry�������!u[i℄0 ^ u[k℄ a;gz;dz;rz�������!u[k℄0) =)2:(gy ^ gz)(v))) f De�nition of ^ and � gVf2:q:2(v) j q 2 �CA(u[i℄) g ^Vf2:(q:2 ^ q0:2)(v) j q 2 �HA(u[i℄) ^ q0 2 �fq:1g(u[k℄) ^ k 6= i g � (#)However, in addition, we are in ase 1 (with assumption (+)) and 1.2 whihgives us,u[i℄ ei;gi;di;ri�������!u[i℄0 ^ gi(v) ^ ei 2 HA) f Rule (RHA) gjjau ei;g;d;ri������!jjau0 ^ g = ((gi ^ Vf2:q:2 j q 2 �CA(u[i℄) g ^Vf2:(q:2 ^ q0:2) j q 2 �HA(u[i℄) ^ q0 2 �fq:1g(u[j℄) ^ j 6= i g) _ di) ^gi(v) ^ ei 2 HA) f Assumption (#) ; logi gjjau ei;g;d;ri������!jjau0 ^ g(v)) f Rule (S1) g[jjau; v℄ ei==)whih is as required and ompletes ase 1.Case 2 [t > 0 ℄t > 0, f Case assumption g9t ([u[i℄; vdi℄ t=) [u[i℄; (vdi) + t℄ ^ [u[i℄; (vdi) + t℄ ei==))) f Lemma 3 g9t ([u[i℄; vdi℄ t=) [u[i℄; (v + t)di℄ ^ [u[i℄; (v + t)di℄ ei==)), f Rule (S1) ; gi only uses loks in A[i℄:4 gu[i℄ ei;gi;di;ri�������! ^ gi(v + t) � (++)Case 2.1 [[jjau; v℄ t=6) ℄ 57

Similar to ase 1.2.1.1.Case 2.2 [[jjau; v℄ t=) [jjau; v + t℄ ℄Now we have subases dependent upon the nature of ei.Case 2.2.1 [ei 2 CA ℄ei 2 CA) f Rule (RIA) ; ase assumption (++) gjjau ei;gi;di;ri�������!jjau0 ^ gi(v + t) ^ ei 2 CA, f Case 2.2 assumption ; rule (S1) g[jjau; v℄ t=) [jjau; v + t℄ ^ [jjau; v + t℄ ei==)whih is as required.Case 2.2.2 [ei 2 HA ℄Case 2.2.2.1 [9u[i℄0 (u[i℄ x;gx;dx;rx�������!u[i℄0 ^ x 2 CA ^ 9t0 : gx((v+ t+ t0)di)) ℄Case 2.2.2.1.1 [[jjau; v + t℄ t0=6) ℄Similar to ase 1.2.1.1.Case 2.2.2.1.2 [[jjau; v + t℄ t0==) [jjau; v + t+ t0℄ ℄[jjau; v + t℄ t0==) [jjau; v + t+ t0℄) f Time ont. ; rule (RIA) ; ase 2.2.2.1 assumption ; disjoint loks g[jjau; v℄ t+t0===) [jjau; v + t+ t0℄ ^ jjau x;gx;dx;rx�������! ^ gx(v + t+ t0)) f Rule (S1) g[jjau; v℄ t+t0===) [jjau; v + t+ t0℄ ^ [jjau; v + t+ t0℄ x=)whih is as required.Case 2.2.2.2 [:9u[i℄0 (u[i℄ x;gx;dx;rx�������!u[i℄0 ^ x 2 CA ^ 9t0 : gx((v+ t+ t0)di)) ℄Case 2.2.2.2.1 [9u[i℄0; u[k℄; u[k℄0(k 6= i) (u[i℄ a;gy;dy;ry�������!u[i℄0 ^ u[k℄ a;gz;dz;rz�������!u[k℄0 ^9t0 : (gy ^ gz)(v + t+ t0)) ℄Case 2.2.2.2.1.1 [[jjau; v + t℄ t0=6) ℄Similar to ase 1.2.1.1.Case 2.2.2.2.1.2 [[jjau; v + t℄ t0==) [jjau; v + t+ t0℄ ℄[jjau; v + t℄ t0==) [jjau; v + t+ t0℄) f Time ontinuity; rule (RCA) ; assumptions g[jjau; v℄ t+t0===) [jjau; v + t+ t0℄ ^ jjau #a;g0;d0;r0�������! ^ g0 = (gy ^ gz) ^d0 = (g0 ^ (dy _ dz)) ^ (gy ^ gz)(v + t+ t0)) f Rule (S2) g 58

[jjau; v℄ t+t0===) [jjau; v + t+ t0℄ ^ [jjau; v + t+ t0℄ #a==)whih is as required.Case 2.2.2.2.2 [:(9u[i℄0; u[k℄; u[k℄0(k 6= i) (u[i℄ a;gy;dy;ry�������!u[i℄0 ^ u[k℄ a;gz;dz;rz�������!u[k℄0 ^9t0 : (gy ^ gz)(v + t+ t0))) ℄:(9u[i℄0; u[k℄; u[k℄0(k 6= i) (u[i℄ a;gy;dy;ry�������!u[i℄0 ^ u[k℄ a;gz;dz;rz�������!u[k℄0 ^9t0 : (gy ^ gz)(v + t+ t0)))) f Aumulating assumptions ; disjointness of lok sets g:(9u[i℄0 (u[i℄ x;gx;dx;rx�������!u[i℄0 ^ 9t0 : gx(v + t+ t0))) ^:(9u[i℄0; u[k℄; u[k℄0(k 6= i) (u[i℄ a;gy;dy;ry�������!u[i℄0 ^ u[k℄ a;gz;dz;rz�������!u[k℄0 ^9t0 : (gy ^ gz)(v + t+ t0)))) f De�nition of temporal operators g:(9u[i℄0 (u[i℄ x;gx;dx;rx�������!u[i℄0 ^ 3gx(v + t))) ^:(9u[i℄0; u[k℄; u[k℄0(k 6= i) (u[i℄ a;gy;dy;ry�������!u[i℄0 ^ u[k℄ a;gz;dz;rz�������!u[k℄0 ^3(gy ^ gz)(v + t))), f Logi g8u[i℄0 (u[i℄ x;gx;dx;rx�������!u[i℄0 =) 2:gx(v + t)) ^8u[i℄0; u[k℄; u[k℄0(k 6= i) ((u[i℄ a;gy;dy;ry�������!u[i℄0 ^ u[k℄ a;gz;dz;rz�������!u[k℄)0 =)2:(gy ^ gz)(v + t))) f De�nition of ^ and � gVf2:q:2(v + t) j q 2 �CA(u[i℄) g ^Vf2:(q:2 ^ q0:2)(v + t) j q 2 �HA(u[i℄) ^ q0 2 �fq:1g(u[k℄) ^k 6= i g � (##)However, in addition, we are in ase 2 and 2.2.2 whih gives us,u[i℄ ei;gi;di;ri�������!u[i℄0 ^ gi(v + t) ^ ei 2 HA) f Rule (RHA) gjjau ei;g;d;ri������!jjau0 ^ g = ((gi ^ Vf2:q:2 j q 2 �CA(u[i℄) g ^Vf2:(q:2 ^ q0:2) j q 2 �HA(u[i℄) ^ q0 2 �fq:1g(u[j℄) ^ j 6= i g) _ di) ^gi(v + t) ^ ei 2 HA) f Assumption (##) ; logi gjjau ei;g;d;ri������!jjau0 ^ g(v + t)) f Case 2.2 assumption ; Rule (S1) g[jjau; v℄ t=) [jjau; v + t℄ ^ [jjau; v + t℄ ei==)whih is as required and ompletes ase 2 and thus, the whole proof. 59

AknowledgementsThe author has bene�ted greatly from disussions with Sebastian Bornot, JosephSifakis and Stavros Tripakis and would also like to reognise the ontributionof Giorgio Faonti, Joost-Pieter Katoen, Diego Latella and Meike Massink whowere involved in preliminary disussions from whih this paper has grown.Referenes[1℄ R. Alur and D. Dill. A theory of timed automata. Theoretial ComputerSiene, pages 183{235, 1994.[2℄ Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, and Paul Petterssonamd Wang Yi. Uppaal - a tool suite for automati veri�ation of real-timesystem. In Proeedings of the 4th DIMACS Workshop on Veri�ation andControl of Hybrid Systems, 1995.[3℄ S. Bornot and J. Sifakis. On the omposition of hybrid systems. In HybridSystems: Computation and Control, LNCS 1386, pages 49{63, 1998.[4℄ S. Bornot, J. Sifakis, and S. Tripakis. Modeling urgeny in timed systems.In Compositionality, COMPOS'97, LNCS 1536, 1997.[5℄ H. Bowman. Disussion doument - modelling timeout behaviour in timedautomata. Tehnial report, Available from author, 1998.[6℄ H. Bowman. Modelling timeouts without timeloks. In ARTS'99, For-mal Methods for Real-Time and Probabilisti Systems, 5th InternationalAMAST Workshop, LNCS 1601, pages 335{353. Springer-Verlag, 1999.[7℄ H. Bowman, G. Faonti, J-P. Katoen, D. Latella, and M. Massink. Au-tomati veri�ation of a lip synhronisation algorithm using UPPAAL. InProeedings of the 3rd International Workshop on Formal Methods for In-dustrial Critial Systems, 1998. To Appear in Speial Issue of Formal As-pets of Computing.[8℄ C.Daws, A.Olivero, S.Tripakis, and S.Yovine. The tool KRONOS. In Hy-brid Systems III, Veri�ation and Control, LNCS 1066. Springer-Verlag,1996.[9℄ R. Milner. Communiation and Conurreny. Prentie-Hall, 1989.[10℄ X. Niollin and J. Sifakis. An overview and synthesis on timed proess alge-bra. In Real-time Theory in Pratie, LNCS 600, pages 549{572. Springer-Verlag, June 1991.[11℄ T. Regan. Multimedia in temporal LOTOS: A lip synhronisation algo-rithm. In PSTV XIII, 13th Protool Spei�ation, Testing and Veri�ation.North-Holland, 1993. 60

[12℄ S. Tripakis. Verifying progress in timed systems. In ARTS'99, For-mal Methods for Real-Time and Probabilisti Systems, 5th InternationalAMAST Workshop, LNCS 1601. Springer-Verlag, 1999.

61

