
Restructuring the BLAS Level 1 Routine for Computing theModi�ed Givens TransformationTim Hopkins (trh@ukc.ac.uk)Computing LaboratoryUniversity of KentCanterbury, CT2 7NFKent, UK.November 19, 1997AbstractWe look at how both logical restructuring and improvements available from successiveversions of Fortran allow us to reduce the complexity (measured by a number of the com-monly used software metrics) of the Level 1 BLAS code used to compute the modi�ed Givenstransformation. With these reductions in complexity we claim that we have improved boththe maintainability and clarity of the code; in addition, we report a �x to a minor problemwith the original code. The performance of two commercial Fortran restructuring tools is alsoreported.1 IntroductionThe Level 1 BLAS [LHKK79], originally published in Fortran 66 [ANS66], implemented a numberof common vector operations and were designed to be used as building blocks for linear algebrasoftware. Hopkins [Hop96] used knot counts [WHH79] and path counts [Nej88] to identify routinesfrom the Level 1 BLAS which might bene�t from code restructuringTwo sets of routines, *NRM2, used to compute the Euclidean norm of a vector and *ROTMG, forcomputing the modi�ed Givens transformation, were identi�ed as having extremely high metricvalues given their relatively low number of executable statements. The restructuring of the *NRM2routines, along with a dramatic decrease in the metric values, was reported by Hopkins [Hop96];the *ROTMG routines are considered here.Following a brief description of the software metrics used to compare versions of the *ROTMGroutines, we present a
owgraph of the published code and look at how two Fortran code restruc-turing tools fared on this original source. We then compare the metric values obtained for theoriginal and automatically restructured code with hand-coded Fortran 66 and Fortran 77 versions.Section 5 looks at how the metric values may be reduced further by using Fortran 90 and weshow how the use of some of the new facilities available in Fortran 90 may be used to improvethese routines further.Finally we look brie
y at the testing of the new routine and report a �x to a minor problemin the original code.2 Modi�ed Givens Rotation MatrixThe input values to *ROTMG, d1, d2, x1 and y1, de�ne a two-vector [a1; a2]T in the partitioned formas � a1a2 � = " d 121 00 d 122 # � x1y1 �1

The routines then determine the Modi�ed Givens Rotation Matrix, H , that transforms y1 and thusa2 to zero. Details of the computation may be found in Appendix A of [LHKK79].The values of d1 and d2 are scaled to ensure that they are kept within the limits1
2 � jdij �
2; i = 1; 2;where the value of
 was originally chosen to be 4096 for portability reasons; see x5 for details ofhow this value may be computed using the new Fortran 90 environment enquiry functions. Onoutput, the values of d1, d2 and x1 are changed to represent the e�ect of the transformation whiley1, which would be zeroed by the transformation, is left unchanged.In the case where the input vector is already in the correct form, i.e., (c; 0)T , no scaling of thevalues of d1 and d2 takes place even if the input values are outside the limits given above.Lawson and Hanson [LH74] detail the use of a negative value of d2 to implement row removal inleast squares procedures. The original code thus allows the value of d2 to be negative as suggestedby equation (27.48) on page 230 of [LH74].3 Software MetricsWe use the following software metrics as indicators of how successful any restructuring we performhas been; a slightly more detailed description may be found in [Hop96].1. Knot count [WHH79]: a knot is de�ned to occur in a segment of code whenever the pathsassociated with transfers of control intersect. The higher the number of knots in a piece ofcode the more di�cult the code will be to read, understand and maintain. As an example,when coding in Fortran 66 the lack of a block IF construction meant that the equivalentcode to implement a simple IF-THEN-ELSE construction required two GOTO statements andone knot.2. Path count: this is based on the metric proposed by Nejmeh [Nej88] and provides a lowerbound on the number of distinct paths through a section of code. This measure gives anestimate of the amount of e�ort required to thoroughly test the code. Nejmeh suggests amaximum value of 200 for any routine.3. Cyclomatic Complexity [McC76]: this was one of the �rst software metrics to be proposedand is calculated as one more than the number of predicates in the code. It was originallyproposed as a measure of testing e�ort although this has been questioned recently (see [She88]and [SI94] for details). This metric has been found to be largely una�ected by code restruc-turing and appears to be more successful as a measure of the underlying complexity of thealgorithm. A routine with a high cyclomatic complexity value is thus generally consideredto be in need of modularization. Myers [Mye77] suggests the use of a complexity intervalwhose lower bound is the cyclomatic complexity and whose upper bound is one more thanthe total number of conditions.In addition to these three metrics we also consider the number of executable statements andthe number of explicit GOTO statements in the routine.All the software metric values stated in this paper were generated using QAFortran version6.0 [Pro92].4 Fortran 66 and Fortran 77For each of the 46 routines listed on the BLAS reference card [Uni92], Table 1 shows the numberof executable lines of code along with the values of the three metrics de�ned above. Although con-taining more executable statements than any of the other routines, the *ROTMG family of routines2

stands out as far as both knot and path counts are concerned. The high knot count of 104 in aroutine containing just 131 executable statements suggests that the code is likely to be extremelydi�cult to understand and maintain. This fact is reinforced by Hanson and Krogh [HK87] where,in a paper detailing the translation of the Level BLAS into assembler, they stateHere, the subprograms [SROTMG and DROTMG] are provided in Fortran only, due to thecomplexity of their speci�cation : : :and by the control graph of the original code which is shown in Figure 1.Exec Cyclomatic Knot PathRoutine Stat Interval Count Count*ROTG 22 5:6 2 16*ROTMG 121 18:18 92 98304*ROT 22 7:8 1 8*ROTM 84 13:15 17 144*SWAP 37 10:11 2 16*SCAL 22 8:9 2 8*COPY 31 10:11 2 16*AXPY 29 11:12 2 16*DOT 29 10:11 4 32*DOTU 22 7:8 1 8*DOTC 22 7:8 1 8*xDOT 23 7:8 3 16*NRM2 48 18:19 64 10240*ASUM 22 8:9 4 8I*AMAX 22 8:9 3 8Table 1: Metric Values for BLAS 1 RoutinesThe large number of possible paths through the routine, 196608, indicates that it will bedi�cult to be con�dent that the routine has been thoroughly tested. In addition the routinecontains 34 explicit GOTO statements and 27 target labels.Spag [Pol93], a software tool designed to improve the structure of Fortran 66 code by rearrang-ing (and if necessary duplicating) statements and using Fortran 77 (or Fortran 90), produced someimprovement in the metric values when applied to this original code. The knot count was reducedby more than a half and the path count was reduced by a factor of almost a hundred to 2304.Nag struct [Num92], one of NAG's suite of Fortran 77 software tools, was unable to restructurethe code due to multiple-entry loops being detected. However, it should be noted that, even withwhat appear to be big reductions in the metric values, the code produced by Spag is hardly anymore comprehensible that the original.Restructuring the code from scratch was far more successful. Even using Fortran 66 it waspossible to reduce the knot count to 35 and the path count to 4096. This version used 22 explicitGOTO statements and contained 12 target labels. The cyclomatic complexity came down from 19to 13 which is very unusual in any restructuring exercise; this would seem to imply that therewere unnecessarily repeated tests taking place in the original code.Both the commercial restructurers fared much better on this recoded Fortran 66 code, pro-ducing Fortran 77 versions with both knot and path counts reduced. The path count reported byQAFortran for the Spag restructuring is optimistically low. This is due to Spag restructuring asequence of four WHILE statements (constructed with pairs of IF and GOTO statements) into a setof nested labelled IF statements with GOTOs. Since the path count metric used by QAFortran isuna�ected by GOTO statements this has the e�ect of reducing the path count from 242 to 36.The large knot counts associated with the Spag and Nag struct versions are due mainly tolong jumps out of nested block IFs. This may be avoided with Fortran 77 by more carefulstructuring and, although the path count is somewhat higher, the knot count, the number of3

1 2 3 4

5

6 7 8910

11

12

131415

1617

181920

21

22

23

24

25

26

27

28

29

30

31

32

33 34 35

36Figure 1: Flowgraph of originally published code
4

explicit GOTO statements and the number of labels are all reduced to four; all these are requiredfor the construction of the four WHILE loops.Figure 2 shows the
owgraph for the hand-coded Fortran 77 version of the routine and clearlyshows the improvement in structure over the original.5 Fortran90Moving to Fortran 90 allowed us to replace the last four labels, knots and GOTO statements byfour DO WHILE blocks. Another minor improvement to the code was the combination of a CASEstatement and structure constructors to simplify the setting of the output matrix before exit. Inaddition the new TYPE construction provided us with a cleaner version of the *PARAM argument.In the original Fortran 66 code this parameter is a real array of length �ve. The �rst elementis used as a
ag to indicate the type of 2� 2 Givens Rotation Matrix that is being returned in theother four elements. The rotation matrix is stored by columns. The original possibilities were*PARAM1 2 3 4 5unit matrix �2 1 0 0 1rescaled �1 h11 h21 h12 h22A6 0 1 h21 h12 1A7 1 h11 1 �1 h22where A6 and A7 refer to the equations given in the Appendix to [LHKK79] and only the elementsshown as hij are actually set by the routine. In the case of an error in the input data, the returnedmatrix is classi�ed as rescaled and all elements are set to zero.For the new Fortran 90 version of the code we de�ned the following typeTYPE:: SpGivensRotationINTEGER :: MatrixTypeREAL(sp) :: Rotation(2,2)END TYPE SpGivensRotationand the integer parameter valuesINTEGER, PARAMETER :: clts=1, sltc=0, rescaled=-1, &unit_matrix=-2, error=2which are the only names used to set the MatrixType component of SpGivensRotation. A newvalue of MatrixType, error, was used to di�erentiate between a normally rescaled matrix andan error condition. We also set all four values of the rotation matrix whatever type of rotationmatrix is generated. A similar de�nition is made for the double precision case.Since Fortran 77 users have been provided with generic intrinsic functions, Fortran 90 allowssuch functionality in user de�ned routines. Thus another improvement we made was to producea generic version of the routine, GROTMG. Basically this involves providing an interface to the tworoutines SROTMG and DROTMG with the system selecting the correct version based on the type ofthe actual arguments.The Fortran 90 version was also altered to provide a single point of exit from the routine. Thisallowed the CASE statement to set all the possible settings of the SpGivensRotation variable. Theextra cost here was an IF guard to the block of WHILE statements.Finally, we use the newly introduced environment enquiry functions to set the value of
 andhence the values used to determine the range of values for which scaling will take place. The valueused for
2 isMIN(HUGE(0.0_wp), 1.0_wp/TINY(0.0_wp))*0.255

1

23

4

5 6

7 8

9 10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28Figure 2: Flowgraph of recoded Fortran 66 code
6

Indy 4400 SC Sun Sparc LX Dec Alpha WS200n Nag f90 (2.2 260) Epc f90 (1.1.5.1) Digital f90 (2.0-1)S M Mf90 S M Mf90 S M Mf9050 0.1 0.1 0.1 3.0 2.7 2.0 0.1 0.2 0.2100 0.7 0.8 0.9 19.1 17.2 11.5 0.3 0.3 0.4200 10.0 9.9 10.7 157.4 130.8 75.9 5.8 5.9 6.0Table 2: Comparison of standard Givens (S), Modi�ed Givens (M) and the Fortran 90 genericversion of the Modi�ed Givens (Mf90) to triangularize a 2n�n matrix using double precision. Alltimes are in seconds.where wp is the working precision of the
oating point arithmetic. For IEEE standard
oating-point arithmetic we obtain an exact representation for
 of 262 (single precision) and 2510 (doubleprecision). These values mean that scaling occurs far less frequently than with the original codewhilst preserving numerical safety.A listing of part of the �nal Fortran 90 implementation is given in the appendix.6 TestingWhen restructuring any code it is imperative that the new version produces the same results asthe original, except, of course, where the original version was incorrect. We thus attempted togenerate an exhaustive set of test data in order to be as con�dent as possible that all of the newversions we produced performed exactly as the original code. Note that, with the new settings for
, the Fortran 90 version will generate results which di�er from those produced by the originalFortran 66 code.This exercise unearthed a minor error in the original code. For the input values x1, y1 6= 0,d1 = 0 and d2 > 0 the original code returned the `solution'H = � 0 1�1 x1y1 �This input data e�ectively generates an input vector of the form � 0r � whose correct transforma-tion matrix is H = � 0 1�1 0 � and rescaling may take place dependent upon the size of d2.Using the pro�ling tool from the NAG suite of tools [Num92] on the rewritten Fortran 77 codewe were able to check for statement coverage using our set of test data. It was found that allstatements were executed at least once with the exception of the GOTO 60 statement immediatelybefore the statement labelled 30. In order to execute this statement the following two conditionsneed to hold simultaneously j(d1 � x1)� x1j > j(d2 � y1)� y1j (1)and 1�� (d2 � y1)(d1 � x1)����y1x1 � � 0 (2)where the bracketing indicates the order in which the evaluations take place. It is obvious thatcondition (2) can be true only if d2 < 0, additionally it would appear that we require some peculiarcombination of rounding errors to allow both conditions to hold. Using IEEE arithmetic [IEE85]we have been unable to discover any set of input values which causes both conditions (1) and (2)to be true.Finally, we repeated the timing experiment, performed in [LHKK79], to compare the e�ciencyof the modi�ed plane rotation, both in its original and Fortran 90 forms, with the standard7

Code Version Language Exec Knots Paths Cyc. Int. GOTO's Labels1. original f66 131 104 196608 19:20 34 272. Spag on 1. f77 120 48 2304 17:18 20 113. nag struct on 1. f77 Not restructured due to multiple-entry loop4. hand coded 1. f66 103 35 4096 13:17 22 125. Spag on 4. f77 105 30 361 13:17 8 66. nag struct on 4. f77 114 22 241 13:17 8 67. hand coded 4. f77 113 4 336 13:17 4 48. Fortran 90 f90 94 0 336 18:23 0 0Table 3: Summary of code versions and associated metricsGivens transformation. Both techniques were used to triangularize 2n � n matrices A = faijgwhere aij = (i+ j � 1)�1.Table 2 gives a sample of the cpu times obtained for a number of compiler/platform combi-nations. Given the accuracy of the timing routines there is, for this particular problem, little ornothing to choose between the two methods for the majority of the compilers tested. This wasespecially the case when high optimization levels were selected. The Edinburgh Portable Com-pilers Fortran 90 compiler on the SUN Sparc LX did still show a gain from using the modi�edGivens method when full run time checking was switched on. The e�ciency gains in this case arecomparable to those reported in [LHKK79].The e�ect of using the Fortran 90 generic version of the ROTMG routines was generally to increasethe execution times very marginally.7 ConclusionWe have shown how the combination of the knot and path count software metrics along with theirnumber of executable statements in a subroutine allowed old Fortran code, that was di�cult tounderstand and test comprehensively, to be identi�ed. Table 3 provides a summary of the variousversions of the routine generated along with the associated metric values.The hand-coded Fortran 66 version (code 4 in Table 3) was better structured than the codeproduced by applying the Spag restructuring tool to the original code even though Spag's targetlanguage was Fortran 77. This is re
ected by the lower knot count although it should be notedthat the path count is actually larger for code 4.Applying both restructurers to the hand-crafted version did produce a dramatic reduction inboth the path count and the number of explicit GOTO statements used. The knot count remainedhigh due mainly to a small number of long jumps out of deeply nested IF statements. This suggeststhat code 4 was a logically clearer implementation of the algorithm than the original code.In addition we would assert that the reduction in the path count can be translated into asigni�cant saving in the e�ort required to produce adequate test data for the code.The cyclomatic complexity interval values are interesting; it is very rare that this value isreduced by code restructuring. Indeed Shepperd & Ince [SI94] state that cyclomatic complexityis insensitive to the structure of the software. This implies that some of the tests in the originalcode are either repeated or unnecessary. The higher interval associated with the Fortran 90 codeincludes the extra test needed to set the value of
 and a small number of repeated tests (withinthe CASE statement) required to generate a consistent return strategy.In the case of `dusty deck' Fortran 66 code, automatic restructurers may be able to reduce boththe knot and path counts although the extent to which they are successful is very dependent onthe way in which the original code was structured. It is worth noting here that the metrics do notalways, in themselves, completely re
ect improvements; applying Spag to the original code led toa signi�cant reduction in the metric values although the resultant code was still as impenetrable.1Optimistically low { see section 4 for details 8

An analysis of the knot and path counts for the 96 Level 2 and Level 3 BLAS ([DDHH88]and [DDDH90]) both developed in Fortran 77, reveals no knots and a maximum path count of6912 for a 140 line routine. These routines generally contain more executable statements thanthe Level 1 routines. However the path and knot counts indicate that they are likely to be easierto understand and test than several of the shorter BLAS Level 1 routines. This would suggestthat using a combination of number of executable statements with path and knot counts may behelpful in identifying code that is likely to be di�cult to understand and maintain.8 AcknowledgementsThanks to Richard Hanson who kindly read a draft of this paper in super quick time and madesome very useful comments. In particular, the use of the machine enquiry functions to set GAMSQwas his idea.References[ANS66] ANSI. Programming Language Fortran X3.9-1966. American National StandardsInstitute, New York, 1966.[DDDH90] J. J. Dongarra, J. Du Croz, I. S. Du�, and S. Hammarling. Algorithm 679: A setof level 3 basic linear algebra subprograms. ACM Trans. Math. Softw., 16(1):18{28,March 1990.[DDHH88] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. Algorithm 656: Anextended set of basic linear algebra subprograms: Model implementation and testprograms. ACM Trans. Math. Softw., 14(1):18{32, March 1988.[HK87] R. J. Hanson and F. T. Krogh. Translation of Algorithm 539: PC-BLAS basic lin-ear algebra subprograms for Fortran usage with the INTEL8087 80287 numeric dataprocessor. ACM Transactions on Mathematical Software, 13(3):311{317, September1987.[Hop96] T.R. Hopkins. Restructuring software: A case study. Software{Practice and Experi-ence, 26(8):967{982, August 1996.[IEE85] IEEE. IEEE standard for binary
oating-point arithmetic. Institute of Electrical andElectronic Engineers, New York, ANSI/IEEE standard 754-1985 edition, 1985.[LH74] C. L. Lawson and R. J. Hanson. Solving least squares problems. Series in automaticcomputation. Prentice-Hall, Englewood Cli�s, N.J., 1974.[LHKK79] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic linear algebrasubprograms for Fortran usage. ACM Trans. Math. Softw., 5:308{323, 1979.[McC76] T. J. McCabe. A complexity measure. IEEE Transactions on Software Engineering,SE-2(4):308{320, 1976.[Mye77] G. J. Myers. An extension to the cyclomatic measure of program complexity. SigplanNotices, 12(10):61{64, 1977.[Nej88] B. A. Nejmeh. NPATH: A measure of execution path complexity and its applications.Commun. ACM, 31(2):188{200, 1988.[Num92] Numerical Algorithms Group Ltd., Oxford, UK. NAGWare f77 Tools, second edition,September 1992.[Pol93] Polyhedron Software, Oxford, UK. plusFORT, Revision B edition, 1993.9

[Pro92] Programming Research Ltd, Hersham, Surrey. QA Fortran 6.0, 1992.[She88] M. Shepperd. A critique of cyclomatic complexity as a software metric. SoftwareEngineering Journal, 3:30{36, March 1988.[SI94] M. Shepperd and D. C. Ince. A critique of three metrics. J. Systems Software, 26:197{210, 1994.[Uni92] University of Tennessee, Tennessee, US. Basic Linear Algebra Subroutines: A QuickReference Guide, June 1992.[WHH79] M. R. Woodward, M. A. Hennell, and D. Hedley. A measure to control
ow complexityin program text. IEEE Transactions on Software Engineering, SE-5(1):45{50, 1979.A Fortran 90 Version of the Restructured CodeMODULE modified_givens_rotation! .. Generic Interface Blocks ..INTERFACE grotmgMODULE PROCEDURE srotmgMODULE PROCEDURE drotmgEND INTERFACE! ..! .. Intrinsic Functions ..INTRINSIC kind! ..! .. Parameters ..INTEGER, PARAMETER :: clts = 1INTEGER, PARAMETER :: dp = kind(1.0D0)INTEGER, PARAMETER :: error = 2, rescaled = -1, sltc = 0INTEGER, PARAMETER :: sp = kind(1.0E0)INTEGER, PARAMETER :: unit_matrix = -2! ..! .. Derived Type Declarations ..TYPE :: spgivensrotationINTEGER :: matrixtypeREAL (sp) :: rotation(2,2)END TYPE spgivensrotationTYPE :: dpgivensrotationINTEGER :: matrixtypeREAL (dp) :: rotation(2,2)END TYPE dpgivensrotation! ..CONTAINSSUBROUTINE srotmg(sd1,sd2,sx1,sy1,sparam)! .. Structure Arguments ..TYPE (spgivensrotation), INTENT (OUT) :: sparam! ..! .. Scalar Arguments ..REAL (sp), INTENT (INOUT) :: sd1, sd2, sx1REAL (sp), INTENT (IN) :: sy1! ..! .. Local Scalars ..REAL (sp), SAVE :: gamsq, rgamsqREAL (sp) :: sh11, sh12, sh21, sh22, sp1, sp2, sq1, sq2, stemp, suINTEGER :: sflag! .. 10

! .. Intrinsic Functions ..INTRINSIC abs, huge, min, reshape, sqrt, tiny! ..! .. Parameters ..REAL (sp), PARAMETER :: one = 1.0_spREAL (sp), PARAMETER :: quarter = 0.25_spREAL (sp), PARAMETER :: zero = 0.0_sp! ..! .. Dependents ..REAL (sp), SAVE :: gam = zero! ..! Set the value of gam, gamsq, rgamsq on first call to the! routine. These values are dependent on the underlying! floating-point arithmetic and should only be computed! once. IF (gam==zero) THENgamsq = min(huge(one),one/tiny(one))*quartergam = sqrt(gamsq)rgamsq = one/gamsqEND IF! NOTE: sd2 is allowed to be negative to allow for row removal! in least squares problems! Test for illegal input sd1<0 -- return H as zero matrix with sflag=-1! Set matrix to zero for error exitIF (sd1<zero) THENsd1 = zerosd2 = zerosx1 = zerosflag = error! Special cases! Input vector is of the required form (c,0) where c can be zero! Set H = IELSE IF (sd2==zero .OR. sy1==zero) THENsflag = unit_matrix! Input vector is of the form (0,c) -- just need to reverse elements! May need to scale d2 dependent valuesELSE IF ((sd1==zero .OR. sx1==zero).AND. sd2>zero) THENsflag = cltssh12 = onesh21 = -onesh11 = zerosh22 = zero! set new x value to old y valuesx1 = sy1! swap d valuessu = sd1sd1 = sd2sd2 = su! Compute required bits and piecesELSEsp2 = sd2*sy1sp1 = sd1*sx1sq2 = sp2*sy1 11

sq1 = sp1*sx1! |c| > |s|; type zero matrix (diagonal elements one)IF (abs(sq1)>abs(sq2)) THENsflag = sltcsh11 = onesh22 = onesh21 = -sy1/sx1sh12 = sp2/sp1su = one - sh12*sh21! If su has underflowed -- sparam has already been set -- exitIF (su<=zero) THENsd1 = zerosd2 = zerosx1 = zerosflag = errorELSEsd1 = sd1/susd2 = sd2/susx1 = sx1*suEND IFELSE! |s| >= |c|; type 1 matrix (antidiagonal case)IF (sq2<zero) THENsd1 = zerosd2 = zerosx1 = zerosflag = errorELSEsflag = cltssh21 = -onesh12 = onesh11 = sp1/sp2sh22 = sx1/sy1! No possibility of underflow since sd2>0 if heresu = one + sh11*sh22stemp = sd1/susd1 = sd2/susd2 = stempsx1 = sy1*suEND IFEND IFEND IF! Scaling may be necessary -- matrices now become type -1! Scale -- sd1IF (sflag/=error .AND. sflag/=unit_matrix) THENDO WHILE (sd1<=rgamsq .AND. sd1/=zero)sflag = rescaledsd1 = (sd1*gam)*gamsx1 = sx1/gamsh11 = sh11/gamsh12 = sh12/gam 12

END DODO WHILE (sd1>gamsq)sflag = rescaledsd1 = (sd1/gam)/gamsx1 = sx1*gamsh11 = sh11*gamsh12 = sh12*gamEND DO! Scale -- sd2DO WHILE (abs(sd2)<=rgamsq .AND. sd2/=zero)sflag = rescaledsd2 = (sd2*gam)*gamsh21 = sh21/gamsh22 = sh22/gamEND DODO WHILE (abs(sd2)>gamsq)sflag = -onesd2 = (sd2/gam)/gamsh21 = sh21*gamsh22 = sh22*gamEND DOEND IF! set sparam array and exitSELECT CASE (sflag)CASE (clts)sparam = spgivensrotation(clts,reshape((/sh11,-one,one,sh22/),(/2,2 &/)))CASE (sltc)sparam = spgivensrotation(sltc,reshape((/one,sh21,sh12,one/),(/2,2/) &))CASE (rescaled)sparam = spgivensrotation(rescaled,reshape((/sh11,sh21,sh12,sh22/), &(/2,2/)))CASE (unit_matrix)sparam = spgivensrotation(unit_matrix,reshape((/one,zero,one,zero/), &(/2,2/)))CASE (error)sparam = spgivensrotation(error,reshape((/zero,zero,zero,zero/),(/2, &2/)))END SELECTEND SUBROUTINE srotmg!! Double precision subroutine code omitted! END MODULE modified_givens_rotation
13

