
Lauder, Anthony and Kent, Stuart (1998) Precise Visual Specification of
Design Patterms. In: ECOOP’98 — Object-Oriented Programming 12th
European Conference. Lecture Notes in Computer Science . Springer, Berlin,
Germany, pp. 114-134. ISBN 978-3-540-64737-9.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21636/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1007/BFb0054089

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21636/
https://doi.org/10.1007/BFb0054089
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Precise Visual Specification of Design Patterns

Anthony Lauder and Stuart Kent
Division of Computing

University of Brighton, Lewes Road, Brighton, UK
A.P.J.Lauder@brighton.ac.uk

fax: +44 (0) 1273 642405, tel: +44 (0) 1273 642032
Stuart.Kent@brighton.ac.uk

fax: +44 (0) 1273 642405, tel: +44 (0) 1273 642494

Abstract. There has been substantial recent interest in captured design
expertise expressed as design patterns. Prevalent descriptions of these design
patterns suffer from two demerits. Firstly, they capture specific instances of
pattern deployment, rather than the essential pattern itself, thus the spirit of
the pattern is often lost in the superfluous details of the specific instances
described. Secondly, existing pattern descriptions rely upon relatively
informal diagrammatic notations supplemented with natural language
annotations. This can result in imprecision and ambiguity. This paper
addresses these problems by separating the specification of patterns into three
models (role, type, and class). The most abstract (role-centric) model presents
patterns in their purest form, capturing their essential spirit without
deleterious detail. A role-model is refined by a type-model (adding usually-
domain-specific constraints), which is further refined by a class-model
(forming a concrete deployment). We utilise recent advances in visual
modelling notation to achieve greater precision without resorting to obtuse
mathematical symbols. A set-oriented view of state, operations, and instances
is adopted, permitting their abstract presentation in models via this visual
notation. This paper utilises these ideas in the unambiguous specification of a
selection of prominent design patterns. The expectation is that precise visual
pattern specification will firstly enable clear communication between domain
experts and pattern writers (and ultimately pattern users), and secondly enable
CASE tool support for design patterns, permitting the designer (pattern user)
to operate at a higher level of abstraction without ambiguity.

1 Introduction

1.1 Design Patterns

Design patterns capture the distilled experience of expert designers. Patterns are not
invented, rather they are “mined” from existing systems. The mining process
involves the extraction of designs from a number of systems, looking for “patterns”
in designs across those systems. The expectation is that expert designers will have
utilised similar proven designs to resolve similar problems in different application
domains. Patterns document these proven designs, removing domain-specific
features thus specifying only their essential aspects. A documented pattern, then, is

In Procs. ECOOP’98

deployable in a new domain via the addition of domain-specific features to the
pattern’s essential aspects.

There exists a rapidly expanding body of literature documenting important design
patterns [3], [5], [8], [14], [20]. The most influential of these is the “Gang of Four”
text [20] (hereafter referred to as GoF) which details twenty-three fundamental
patterns.

1.2 Impure Pattern Modelling

Current pattern literature (including GoF) tends to present each pattern in terms of a
specific implementation of that pattern. The intent is that the reader should be able
to glean from the specific implementation the essential elements (or “spirit”) of the
pattern, rejecting those aspects which are relevant only to the example presented. It
is our belief that, although examples of pattern deployment are valuable in their own
right, the essential spirit of a pattern is often lost in the superfluous details of a
specific implementation. It is our assertion that example-based revelation is
enhanced by the addition of precise visual specifications which retain that essential
spirit.

1.3 Pure Pattern Modelling

In this paper we propose a three-model presentation of patterns. The first model (the
role-model) is the most abstract and depicts only the essential spirit of the pattern,
excluding inessential application-domain-specific details. The second model (the
type-model) constrains the role-model with abstract state and operation interfaces
forming a (usually domain-specific) refinement of the pattern. The final model (the
class-model) realises the type-model, thus deploying the underlying pattern in terms
of concrete classes.

1.4 Formal Modelling

A model may be viewed as a composition of constraints. Prevalent modelling
notations such as Booch [2], OML [7], OMT [16], and UML [17] are not sufficiently
expressive in the constraints they can represent graphically. Consequently, the
designer is forced to supplement modelling diagrams with constraints specified
textually. This supplementary text is typically expressed as natural language
narrative. The formal methods community has argued that this combination of
existing diagrammatic notations and natural language text often results in
specifications which are imprecise and, therefore, ambiguous. Consequently, formal-
methods mathematical notations such as Z [1] and VDM [11] have been developed
to add precision to specifications. A number of contemporary object-oriented
methodologies such as Syntropy [4] and Catalysis [6] replace natural language with
these mathematical notations to supplement diagrammatic models with precise
constraint specifications.

Formal methods research has clearly provided a strong theoretical foundation for
precise specification. Research in formal methods, though, has been lacking in the
area of approachability. In particular, there has been the underlying assumption that
obtuse mathematical notations are necessary to achieve precision, thus alienating all
but the most mathematically mature modellers. To address this problem, UML has
recently been supplemented with the Object Constraint Language (OCL), a textual
notation which has been developed “… to fill this gap. It is a formal language that
remains easy to read and write” [19].

1.5 Visual Pattern Modelling

OCL is an important advance towards approachability. The notation, however, is
founded upon the assumption that “a graphical model … is not enough for a precise
and unambiguous specification” [19]. That is, there is the underlying assumption
that constraints are necessarily specified textually. Recent work by Kent [12],
however, dispels this assumption by presenting an approachable diagrammatic
notation with which constraints are specifiable visually with no loss of precision.
Kent’s notation, termed Constraint Diagrams is compatible with, and thus may
supplement existing and less-expressive diagrammatic modelling notations: [2], [6],
[7], [16], [17]. Note that a separate research effort is providing the formal semantics
of the Constraint Diagram notation.

Current pattern literature supports diagrammatic pattern specifications with textual
supplements. These textual supplements serve two purposes. The first is to reinforce
diagrams with supporting information. Examples of this are descriptions of
motivation for, consequences of using and known uses of the pattern. This
supporting information forms a crucial and intrinsic part of any pattern description
and must be retained, since a description of patterns without this supporting
information would simply be an architecture without context. The second purpose of
textual supplements, though, is to disambiguate pattern diagrams. For example, GoF
presents participants and collaborations narrative to add precision and
expressiveness to their structure diagram. That is, these narrative sections recognise
that the diagrams presented are both ambiguous and inexpressive. We will
demonstrate throughout this paper that with constraint diagram notation we are able
to depict unambiguous and expressive pattern structure in a visual form,
supplemented with only supporting textual information (i.e. excluding the need for
narrative to disambiguate the diagrams).

In this paper we utilise constraint diagrams in combination with UML for the
unambiguous specification of selected design patterns.

1.6 Selected Patterns

GoF segregates patterns into three categories: Creational Patterns (which create
objects), Structural Patterns (which form composite classes and objects), and
Behavioural Patterns (which partition algorithms across collaborating objects). This
paper focuses upon the specification of one design pattern from each category. More

specifically: Abstract Factory (Creational), Composite (Structural), and Observer
(Behavioural). The first of these patterns (AbstractFactory) is the focus of the main
body of the paper. The remaining patterns (Composite and Observer) are presented
in the appendix.

2 Gang-of-Four Presentation of Abstract Factory Pattern
The intent of the abstract factory creational design pattern is to “Provide an interface
for creating families of related or dependent objects without specifying their concrete
classes” [9]

GoF presents the AbstractFactory as the single diagram, reproduced in figure 1.

2.1 GoF Impurity

The GoF presentation of Abstract Factory, as in figure 1, suffers from the major
demerit that it actually represents a single deployment of the abstract factory pattern
rather than the generalised pattern itself. More specifically, the pattern as presented
defines specific operation interfaces for the AbstractFactory class (CreateProductA
and CreateProductB) which are realised by fixed concrete classes (ConcreteFactory1
and ConcreteFactory2). In addition, two specific abstract product classes are depicted
(AbstractProductA and AbstractProductB), each further specialised by concrete
product classes. This significantly reduces the general applicability of the pattern as
specified. In practise, other deployments of the pattern would require different
numbers of and different properties for these types and operations. The general
pattern, then, is not expressed with purity in figure 1.

Client

ConcreteProductA1ConcreteProductA2

AbstractProductA

ConcreteProductB1ConcreteProductB2

AbstractProductB

AbstractFactory

CreateProductA()

CreateProductB()

ConcreteFactory2

CreateProductA()

CreateProductB()

ConcreteFactory1

CreateProductA()

CreateProductB()

Fig. 1. Gang-of-Four Presentation of Abstract Factory Pattern

2.2 Collections As Named Pairs

We believe that a major cause of the lack of purity in GoF pattern diagrams is the
tendancy to imply collections via the expression of fixed numbers of named instances
or classes. For example, turning to figure 1 there are two concrete factory classes,
and two abstract product classes each implemented by two concrete product classes.
This is unsatisfactory since it forces the diagram to misrepresent quantities in the
pattern (by premature commitment to a cardinality of two), and forces premature
commitment to names for each of those collection elements (ProductA1, ProductA2
etc).

Similar premature commitments to named specific quantities proliferate in the GoF
pattern descriptions. The behaviour of the Observer pattern, for example, is depicted
via a sequence diagram depicting two concrete observer instances, whereas in reality
the pattern permits any arbitrary number of observers.

Neither the commitment to fixed quantities, nor the commitment to element names
such as ProductA1 and ProductA2, adds any semantic value to the pattern
whatsoever. Indeed, the presence of these commitments actually detracts from the
semantics of the essential spirit of the pattern, since they inaccurately depict
constrained generality. Consequently, it would be almost impossible to take the
pattern as presented in figure 1 and specify differentially a divergent deployment of
that pattern.

2.3 Anonymous Arbitrary Collections

What we actually require, to express a pattern in its full generality (i.e. purity), is a
way to express and reason about collections without premature commitment to either
cardinality (i.e. quantity) or naming of collection members. This, we assert, would
permit direct differential specification (refinement) of the pattern into ad-hoc
deployments.

2.4 Constraint Diagrams

We choose to represent collections in terms of sets, upon which we may specify
constraints applying to set members. Sets enable us to talk about collections
generally (without premature commitment to cardinality or naming), and constraints
enable us to talk about collections precisely. Since constraint diagrams focus upon
the specification of constrained sets and set members, they constitute the ideal
notation with which to depict anonymous arbitrary collections.

Constraint diagram notation is detailed initially in [12] and [13], and in an
upcoming series of papers which explore both the syntax and the semantics of the
notation. In the current paper we utilise a number of recent enhancements to the
notation documented in the early papers. Below, we provide a brief introduction to
the notation, including the recent enhancements we have utilised.

Constraint diagrams depict sets as Venn diagrams. An arbitrary member of a set is
depicted via a dot within or on the edge of the set (see figure 2). Two unconnected
dots are definitely distinct. Two dots connected via a spring indicates that the dots do
not necessarily represent distinct set elements (i.e. they may be the same element).
Two dots connected via a strut represent alternative positions for a single element
(i.e. an element may reside in only one of the positions represented by the connected
dots at any time).

A directed arc represents a traversable relationship between sets and set members
(see figure 3).

2.5 UML

In this paper we utilise constraint diagrams in conjunction with UML notation. In
UML “a class is drawn as a solid-outline rectangle with 3 compartments separated by
horizontal lines. The top compartment holds the class name and other general
properties of the class (including stereotype; the middle list compartment holds a list
of attributes; the bottom list compartment holds a list of operations” [17]. Figure 4
gives an example, depicting a publication from the perspective of a publisher:

‘a’, 'b', and ‘c’ are distinct arbitrary set members.
‘d’ and ‘e’ are not-necessarily-distinct arbitrary set members
'f', 'g', and 'h' represent a single element which may exist in
one, and only one, of three positions at a given time.

paperback

a c

Fig. 2. Set Membership

d e

f g

out of print

h

b

publication title
title

Each publication has a title

Fig. 3. Navigable Relationships

Normally, concrete instances of this class are drawn as object diagrams (which are
themselves instances of their class diagram). When we wish to talk about instances
in abstract terms, though, we need to represent them abstractly. Thus, we add a
fourth compartment to a class, which holds abstract instances of the class, specified
as a constraint diagram depicting sets and set members. In figure 5 the publication
class is re-expressed with the addition of the fourth (Abstract Instance) compartment
which is expressed as a constraint diagram, showing that each instance of the class
has the given structure and operations. This particular constraint diagram is actually
implicit in class diagrams and is elaborated here for illustration purposes only.

3 Three Layered Modelling
We have argued that GoF presents class-model pattern descriptions, and that this is
inappropriate since its forces premature commitment to deployment-specific details
(such as number of implementing classes, and the interfaces of those classes). To
better express the pattern in its most general terms we must present the pattern more
abstractly than the class-model, to capture only its essential spirit. A deployed class-
model, then, would be presented as a specific realisation of a more abstract
description of the pattern.

3.1 AbstractFactory as a Type-Model

The GoF representation of the structure of AbstractFactory as a class-model may give
the false impression that components of a design pattern are actually classes. It is our

Title : string
Authors : list<string>
ISBN : string
Body : text

for(int i=0;i!=Copies;i++)
printer << Body;

<<class>>

Sell(Copies, Client);
Print(Copies);

Bill(Copies,Client,this);
Send(Copies,Client, this);

publication

General
Properties
(incl Name)

State
(Attributes)

Behaviour
(Operations)

Fig. 4. UML Class Diagram

Title : string
Authors : list<string>
ISBN : string
Body : text

for(int i=0;i!=Copies;i++)
printer << Body;

<<class>>

Sell(Copies, Client);
Print(Copies);

Bill(Copies,Client,this);
Send(Copies,Client, this);

publication

General
Properties
(incl Name)

State
(Attributes)

Behaviour
(Operations)

Abstract
Instances

Fig. 5. UML Class Diagram + Abstract Instances

structure

methods

Fig. 6. AbstractFactory as aType-Model

<<type>>

AbstractFactory

CreateProductA():AbstractProductA

CreateProductB():AbstractProductB

<<type>> <<type>>

<<creates>><<creates>>

AbstractFactory
<<pattern>>

assertion that pattern components are better thought of in more abstract terms.
Specifically, the pattern may be re-expressed as a type-model. We follow the UML
tradition of defining a type as a specification of abstract state and operation
interfaces. A class realises one or more types via concrete state (attributes) and
concrete operations (method implementations). AbstractFactory is expressed, in
figure 6, as a type-model abstraction of its class-model.

3.2 Type-Model Refinement

Note that a type-model may be refined continually into a hierarchy of derived type-
models, each adding constraints to the type-model above it in the hierarchy. When a
commitment is made, however, to concrete (rather than abstract) state and concrete
method implementation we arrive at a class-model (which may itself be refined via
inheritance into other class-models).

Deployment of the pattern depicted in figure 6 requires refinement of the type-model
into a less abstract class-model, wherein classes realise the specifications within the
type-model. In addition, relationships between the types may be further refined to
express less abstract relationships between the classes of the class-model. In figure 7
we present a refinement of the type-model of figure 6, back to the GoF class-model of
AbstactFactory as originally presented in figure 1.

<<type>>

AbstractFactory

CreateProductA():AbstractProductA

CreateProductB():AbstractProductB

<<type>>
AbstractProductA

<<type>>
AbstractProductB

<<creates>><<creates>>

AbstractFactory
<<pattern>>

ConcreteProductA1 ConcreteProductA2

ConcreteProductB1 ConcreteProductB2

ConcreteFactory2

CreateProductA():ConcreteProductA2

CreateProductB ():ConcreteProductB2

<<implements>>

<<implements>>

<<implements>>

<<refines>>

<<refines>>
<<refines>>

<<refines>>

ConcreteFactory1

CreateProductA():ConcreteProductA1

CreateProductB ():ConcreteProductB1

Fig. 7. AbstractFactory Deployed as a Class Model

3.3 Model Generality

Figure 7 is certainly an improvement over figure 1. Its main contribution is that the
type-model specifies only abstract structure for the pattern, leaving details of
concrete implementation to derived class-models.

We can view the class-model in figure 7 as a specific realisation of the type-model.
The type-model is sufficiently abstract to permit many other class-model realisations.
However, the type-model must be viewed as an application-domain-specific
refinement of the general pattern. For example, there is a commitment to a concrete
operation interface, as well as a commitment to a specific number of named abstract
product types. This is perfectly acceptable as a basis for further refinement within the
same application domain. However, the type-model is clearly inappropriate for other
application domains, which would require different abstract state and operation
interfaces, and thus their own type-model specifications of the pattern. We are
missing an abstraction above the type-model which expresses the pattern in an
application-domain-independent way.

3.4 Patterns as Role-Models

“A role is an architectural representation of the objects occupying the corresponding
positions in the object system … Different classes can implement the same type …
Objects of the same type can, and often do, play several roles” [15]

To capture patterns more purely we must generalise our type-model further to
capture only the essential spirit of the pattern, and remove non-essential features
which constrain the pattern’s general applicability. This is achieved by the utilisation
of roles as abstractions of types (just as types are abstractions of classes). We define
roles as actors in collaborations. Roles form placeholders in collaborations for types.
A role may define abstract state (refined by types which fulfil the role), and syntax-
independent abstract operations (given syntax and refined semantics by types). A
type may combine and realise more than one role (just as a class may realise more
than one type).

Thus, we view design patterns as role-models, where “a role model is a description of
a structure of co-operating objects along with their static and dynamic properties”
[15]. A role-model specifies highly abstract state and highly abstract semantics. By
abstract state we mean a set of constraints on state which must be respected by
further refinements of the model. By abstract semantics we mean a set of constraints
on behaviour which must be respected by further refinements of the model.

3.5 AbstractFactory as a Role-Model

With type-model-specific (i.e. application-domain-specific) features removed,
AbstractFactory is generalised to the role-model expressed in figure 8. Note that the
solid start in this figure represents the creation of a set instance.

Fig. 8. AbstractFactory as a Role Model

<<role>>

AbstractFactory

AbstractFactory
<<pattern>>

<<role>>

AbstractProduct

<<creates>>

3.6 Type-Model as refinement of Role-Model

Figure 8 is a pure representation of AbstractFactory; it conveys, in terms of structure
and behaviour, the pattern, the whole pattern, and nothing but the pattern.
Naturally, a full description of the pattern would be supplemented with textual
descriptions of motivation, trade-offs, known uses, etc. The figure shows that players
of the AbstractFactory role share a set of semantics for operations. Each operation in
that set is defined as creating a specific type of AbstractProduct. Thus, all players of
the AbstractProduct role must implement a set of methods adhering to this
semantics, creating via these methods the same set of AbstractProduct types. Note
that we have not expressed the operation section of the AbstractFactory role in terms
of concrete interfaces, rather we have expressed a constraint diagram depicting a set
of semantics for the operations. We have not needed to name these operations nor
specify their concrete cardinality prematurely. These would be deployment-specific
issues. Instead, we have expressed meta-level constraint information which must be
respected by any type-model derived from this role-model.

A role-model may be refined continually into a hierarchy of role-models. However,
as soon as a commitment is made to concrete-operation syntax we have derived a
type-model from the role-model. For example, we may now refine the
AbstractFactory role-model to re-express the domain-specific type-model presented
in figure 6. This re-expression is achieved in figure 9.

Fig. 9. AbstractFactory Role-Model to Type-Model

<<role>>

AbstractFactory

AbstractFactory
<<pattern>>

<<role>>

AbstractProduct

<<creates>>

<<type>>

AbstractFactory

CreateProductA ():AbstractProductA

CreateProductB ():AbstractProductB

<<type>>
AbstractProductA

<<type>>
AbstractProductB

<<refines>>

<<refines>>

<<refines>>

<<refines>>
<<refines>>

3.7 Class-Model as refinement of Type-Model

Figure 9 could be flattened (by synthesis) into the original type-model depicted in
figure 1. Since both models are semantically equivalent this would be a purely
cosmetic step and is unnecessary for the purposes of this paper. Consequently, we
omit this step here. It is similarly easy to visualise how the concrete (class-model)
deployment of the abstract factory pattern, as depicted in figure 7 may be re-
expressed as a refinement of the type-model in figure 9. Again, since this is a trivial
step, we omit it here.

In practise, a CASE tool supporting patterns would benefit from accommodating the
flattening of derived patterns via synthesis (e.g. flattening figure 9 back to figure 1),
since a valid criticism of the refinement approach is that the user can become
overwhelmed by the number of levels of refinement and their interconnections. In
other words, although the layering approach is valuable for building models, it is not
necessarily the best approach for presenting them in an ultimate (or even
intermediate) design. Tool support would presumably permit traceability between
layered and synthesised models, with a mechanism for easily switching between
them.

3.8 Summary of Three-Model Specification

In summary, we have argued that purity in pattern description may be achieved by
employing a layered three-model specification. The first layer (the role-model)
expresses the pattern purely in terms of highly abstract state and highly abstract
behavioural semantics, forming a constraint set which captures the essential spirit of
the pattern without dilution in non-essential (application-domain specific) details.
The middle level (the type-model) refines the role-model adding usually-domain-
specific refinements to the abstract state and semantics, and concrete syntax for
operations described by the abstract semantics. The final layer (class-model) deploys
the type-model in application-specific terms via the specification of concrete state
(attributes) and concrete semantics (method implementation), which realise the
abstract state and abstract semantics respectively. This layering of models is

<<role>> RoleName

Abstract State Structure

Abstract Behavioural Semantics

Abstract Instances

<<type>> TypeName

Refined Abstract State Structure

Refined Abstract Behavioural Semantics

+ Operation Interfaces

Refined Abstract Instances

<<class>> ClassName

Concrete State Structure

Concrete Behavioural Semantics
(Method Implementations)

Instances

<<refines>>

<<implements>>

Fig. 10. Three-Model Layering

summarised in figure 10.

4 Dynamics of AbstractFactory
The previous section focused upon purity of specification by presenting patterns at
multiple levels of abstraction, each refining the level above it. The focus was very
much on the static properties of patterns. Our attention now turns to dynamic
behaviour.

4.1 Sequence Diagrams

UML permits two overlapping forms of behavioural specification: Sequence
diagrams and collaboration diagrams. The former presents time as a separate
dimension but loses depiction of relationships between collaborators, whereas the
latter preserves relationships but the time dimension.

Interestingly, GoF does not present AbstractFactory behaviour diagrammatically. It
does, however present the behaviour of other patterns via sequence diagrams. We
continue that tradition here, although we present a slightly modified form of
sequence diagram, which combines the benefits of UML sequence diagrams and
collaboration diagrams by bounding sequence diagrams with pre- and post-
conditions expressed as constraint diagrams. That is, our diagrams show time as a
separate dimension, yet still preserve relationships between collaborators. We present
our diagrams in flat two-dimensional form. It is possible, however, to provide a
three-dimensional rendering where each constraint diagram is tilted away into a
three-dimensional image, with the time dimension running through the tilted
constraint diagrams thus connecting them. This would be particularly advantageous
with appropriate CASE tool support. Three-dimensional constraint diagram
modelling is investigated further in [10].

4.2 Class-Model Sequence Diagrams

Typically, one or more sequence diagrams are drawn for each method in a concrete
class-model. For example, we present a sequence diagram specification of
ConcreteFactory1::CreateProductA() in figure 11.

Let us examine figure 11 in detail. An instance of ConcreteFactory1 (depicted by a
dot in the abstract instances compartment) is the target of the invoked operation
(CreateProductA1). The invoked operation calls the ‘new()’ operation of
ConcreteProductA1 to create an instance of that class. The created product is
returned back to the client.

4.3 Type-Model Sequence Diagrams

Although it is useful to present sequence diagrams for all class-model methods, we
can achieve a much cleaner view of behaviour by shifting abstract semantics up to
the type-model and specifying in class-model sequence diagrams only method-
specific variants of the abstract semantics. For example, all realisations of the
operation AbstractFactory::CreateProductA() must respect a shared semantics, which
rightly belongs as an abstract behavioural specification in the type-model. Thus, we
can place shared abstract behaviour in sequence diagrams at the type-model level.
An example of this is shown in figure 12.

<<class>>
ConcreteFactory1

CreateProductA():ConcreteProductA1

<<class>>
ConcreteProductA1

<<creates>>

Pre

<<class>>
ConcreteFactory1

CreateProductA():ConcreteProductA1

<<class>>
ConcreteProductA1

Post

CreateProductA() new()

<<returns>>

Fig. 11. Class-Model-Level Sequence Diagram

<<type>>
AbstractFactory

CreateProductA()

<<type>>
AbstractProductA

<<creates>>

Pre

<<type>>
AbstractFactory

CreateProductA()

<<type>>
AbstractProductA

Post

CreateProductA() new()

<<returns>>

Fig. 12. Type-Model-Level Sequence Diagram

4.4 Role-Model Sequence Diagrams

We saw above how to move shared behavioural semantics up into the type-model.
Since a role-model is an abstraction of a type-model it would appear useful to be able
to abstract semantics further and move them up to the role-model. How to achieve
this is not immediately obvious since a role-model neither lists nor names operations.
Looking back at figure 8, however, we recollect that we were able to express
operations as abstract sets sharing constraints. If we also view behavioural semantics
as constraints, then we realise that we can attach sequence diagrams to abstract and
anonymous sets of operations. This appears to be a novel idea that we have not seen
explored elsewhere.

As an example, we present in figure 13 a role-model-level sequence diagram shared
by all members of the set of operations to which it is attached. That sequence

diagram forms the abstract semantic specification of all operations that refine the
related operation set.

In figure 13, the abstract operations of the AbstractFactory role are depicted as a set
(of anonymous operations) each of which creates an object derived from
AbstractProduct. An arbitrary operation from this set is invoked on the selected
AbstractFactory compliant object. Figure 13, then, specifies semantic constraints on
operations without committing to concrete syntax or implementation. Types (and
subsequently classes) which refine these abstract operations must respect these
constraints. Hence, abstract operations constitute the minimal specification of the
(abstract) semantics of a concrete method. Types add concrete syntax (and may
further refine abstract semantics) and classes add concrete implementation.

It is our assertion that figure 13 is a precise and expressive specification of the
essential spirit of the AbstractFactory pattern. We have already seen in earlier
sections how to refine role-model specifications into type-models and, ultimately,
into class-model deployment, and hence we will not repeat those steps here.

<<role>>
AbstractFactory

<<role>>

AbstractProduct

<<creates>>

Pre

<<role>>
AbstractFactory

<<role>>
AbstractProduct

Post

[invoke] new()

<<returns>>

Fig. 13. Role-Model Sequence Diagram<<pattern>>
AbstractFactory

5 Conclusions
This paper has shown visual notations can present patterns purely, precisely, and
expressively. We have argued that purity, precision, and expressiveness are achieved
by adopting a three-model layering of pattern descriptions, wherein the essential
spirit of the pattern is represented as a role-model, further refined by a type-model,
and implemented by a class-model. The essence of three-model layering is to utilise
abstraction without loss of expressiveness, thus achieving maximal generality and
unambiguity in pattern description. In particular, we achieve abstract-yet-precise
expressiveness via the set-oriented representation of state, operations, and instances.

Since design patterns are intended for dissemination to a wider audience than ad-hoc
designs, it is particularly important that they are expressed in their most general
terms and communicated unambiguously. Furthermore, unambiguous specification
of designs is of paramount benefit when mining existing systems for new patterns.
The designs of existing systems can be examined and documented precisely as the
raw material from which purely specified patterns are later derived. Unless this raw
material is specified unambiguously, its subsequent refinement into pure patterns
will be error-prone. The benefit of a visual notation rather than a mathematical one
is that it is immediately approachable and therefore more readily understandable by
other designers and, perhaps more importantly, by domain experts. Visual
specifications, then, enable unambiguous communication between the domain expert
and the pattern miner, and between the pattern writer and the pattern user,
permitting them to speak the same language. This unambiguous communication
facilitates review, verification, and correction of mined patterns by the domain
expert, and comprehension and deployment of expressed patterns by the pattern user,
without mandating fluency in obtuse mathematical notations.

An additional (perhaps even greater) benefit of unambiguous specification of pure
patterns is that it enables their expression in automatable form, permitting automated
checking of designs for inconsistency or incompleteness. Perhaps more importantly
though, CASE tool support of patterns enables the designer to work at the pattern
level rather that at the level of individual classes. Consequently the designer is freed
to work at a higher level of abstraction. We can envision tools which enable the
designer to browse purely- and precisely-specified pattern catalogues, selecting
design patterns which closely match the designer’s requirements, adapting selected
patterns via refinement, and combining and deploying these adapted patterns as
appropriate for the application domain.

The point has been raised by an early reviewer of this paper that many pattern
authors will find formal specification difficult, even with a visual notation. We have
to agree with this comment. However, we are constantly working at simplifying the
notation, and in a more general sense at bridging the gap between formal methods
work and approachability. Only time will tell whether or not we can reach
widespread approachability for the modelling community. In the interim, there is, of
course, no requirement that the original author of a pattern must also be the author

of its formal specification. It is our belief, and indeed our current practise, that
existing patterns can be 'formalised' at a time subsequent to their original
publication. Clearly, formal pattern specification may not suit everybody, but for
those for whom it is appropriate, we aim to provide relevant insights, notations, and
tools.

6 Further Work
We have explored only one possible refinement of each role model. For example, the
AbstractFactory pattern is refined (following the GoF) into a set of concrete classes
implementing separate functions for each concrete product. The GoF have observed
that this is just one possible implementation strategy for this pattern. Other
possibilities include the use of prototype products, and also a generalised create
function parameterised with the product type to be created. It is our belief that role-
models are (or should be) sufficiently general to accommodate all of these
alternatives. A useful short-term goal, then, is to demonstrate how these are
alternatives are themselves refinements of a common role-model. This is the focus of
a forthcoming paper, which will re-express completely a GoF pattern using a GoF
style of presentation, including all alternatives and trade-offs, but with a layering of
precise visual models at its core.

In the medium term we are describing the formal semantic underpinnings of the
notation for submission to an appropriate journal, with an approachable summary
submitted to a periodical of broader readership. The intent of this work is to prove
that the notation forms a sound basis for formal specification.

Longer term, we are undertaking three relevant on-going research efforts: Firstly, we
are exploring the applicability of these techniques to the description and refinement
of other kinds of patterns (particularly analysis patterns, process patterns, and
organisational patterns). Secondly, we are working with a commercial enterprise to
apply these techniques in the mining of a large existing legacy system for migration
to component based technology, thus demonstrating the practical application of the
work. Thirdly, we intend to investigate the requirements of CASE tool support for
this type of modelling.

7 Appendix

7.1 Composite Design Pattern

The intent of the Composite structural design pattern is to “Compose objects into tree
structures to represent part-whole hierarchies. Composite lets clients treat individual
objects and compositions of objects uniformly.” [9]

In the composite design pattern a Component consists of either a leaf or a Composite
which itself consists of a set of Component objects. This is depicted in figure A1.

The Add() operation adds a component to a composite component. This is depicted
in figure A2.

The Remove() operation removes a component from a composite component. This is
depicted in figure A3.

<<role>>
Component

Fig. A1. Composite Design Pattern Invariant

<<role>>
Leaf

<<role>>
Composite

isa isa

children

<<role>>
Component

<<role>>

Composite

isa

Pre

<<invoke>> ()

Fig. A2. Composite Design Pattern: Add()

 children

<Add>(Component)

<<role>>
Component

<<role>>
Composite

isa

Post

 children

The Operation() operation is propagated to each component. This is depicted in
figure A4.

7.2 Observer Pattern

The intent of the Observer behavioural design pattern is to “Define a one-to-many
dependency between objects so that when one object changes state, all its dependants
are notified and updated automatically.” [9]

Figure A5 presents the invariant constraints on the observer pattern. Objects with
changing state are termed subjects. Observer objects are registered with subjects.
Each subject, then, has a registered set of observers. Each observer is associated with
only one subject. A set of concrete subjects refines the abstract specification of the
subject role. A set of concrete observers refines the abstract specification of the
observer role. Concrete subjects and concrete observers maintain state information.

<<role>>

Component

<<role>>

Composite

isa

Pre

<< invoke>> ()

Fig. A3. Composite Design Pattern: Remove()

children

<Remove>(Component)

<<role>>

Component
<<role>>

Composite

isa

Post

children

<<role>>

Component
<<role>>

Composite

isa

Pre

<<invoke>>

Fig. A4. Composite Design Pattern: Operation()

children

<Operation>()

<<role>>

Component

isa

Post

<<role>>

Composite

children

<<invoke>>

The observer pattern notifies observers when their subject’s state changes, so that
they may update their own state to reflect this change. The state of a subject is
modified via the SetState() operation, in which the subject invokes its own Notify()
operation. The Notify() operation invokes the Update() operation of each observer to
inform those observers of the subject’s state change. In an observer’s Update)
operation, the notifying subject is asked to reveal its new state (via the GetState())
operation, which then becomes the new state of the observer.

In summary, the observer pattern synchronises the state of observer objects with the
evolving state of subjects with which they are registered. The dynamics of this
synchronisation effort are depicted in figure A6.

<<role>>
Observer

subject

<<role>>
Subject

observers observers subject

<<role>>
State

subjectState

<<role>>

observerState

<<role>>

Concrete
Subjects

<<refines>>

Concrete
Observers

<<refines>>

isa isa

Fig. A5. Observer Design Pattern Invariant

<<role>>
Observer

subject

<<role>>
Subject

observers observers subject

Concrete
Subjects

<<refines>> <<refines>>

<<role>>
State

subjectState

<<role>>

observerState

<<role>>

Concrete
Observers

isa isa

Fig. A6. Observer Design Pattern: SetState()

<<role>>
State

<<role>>
observerState

<<role>>

Post

Pre

<SetState>(State)

<<returns>>

<<invoke>>
<<invoke>> ()

<Update>()<Notify>()
<GetState>()

<<invoke>>

<<invoke>>

References
1. Abrial, J-R., Schuman, S., Meyer, B.: A Specification Language. On the

Construction of Programs, McNaughten, R., and McKeag, R. (eds.), Cambridge
University Press (1980)

2. Booch, G.: Object-Oriented Analysis and Design With Applications (2nd

Edition), Benjamin/Cummings (1993)

3. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
Oriented Software Architecture: A System of Patterns, Wiley (1996)

4. Cook, S., and Daniels, J.: Designing Object Systems: Object-Oriented Modelling
with Syntropy, Prentice-Hall (1994)

5. Coplien, J., Schmidt, D. (eds.): Pattern Languages of Program Design, Addison-
Wesley (1995)

6. D’Souza, D., and Wills, A.: Objects, Components and Frameworks with UML:
The Catalysis Approach, Addison-Wesley (1998)

7. Firesmith, D., Henderson-Sellers, B., Graham, I.: OPEN Modelling Language
(OML) Reference Manual, SIGS Reference Library (1997)

8. Fowler, M.: Analysis Patterns: Reusable Object Models, Addison-Wesley (1997)

9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley (1995)

10. Gil, J., and Kent, S.: Three Dimensional Software Modelling, Unpublished
Manuscript (1998)

11. Jones, C.: Systematic Software Development using VDM (2nd edition), Prentice
Hall (1990)

12. Kent, S.: Constraint Diagrams: Visualising Invariants in Object-Oriented
Models, to appear in Procs. of OOPSLA97, ACM Press (1997)

13. Kent, S.: Visualising Action Contracts in Object-Oriented Modelling, submitted
to Visual 98 (1998)

14. Pree, W.: Design Patterns for Object-Oriented Software Development, Addison-
Wesley (1995)

15. Reenskaug, T., Wold, P., Lehne, O. A.: Working With Objects, Manning
Publications (1996)

16. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W.: Object-
Oriented Modelling and Design, Prentice Hall (1991)

17. UML Consortium: The Unified Modelling Language Notation, version 1.1,
http://www.rational.com (1997)

18. UML Consortium: The Unified Modelling Language Semantics, version 1.1,
http://www.rational.com (1997)

19. UML Consortium: Object Constraint Language Specification, version 1.1,
http://www.rational.com (1997)

20. Vlissides, J., Coplien, J., and Kerth, N., (eds.): Pattern Languages of Program
Design 2, Addison-Wesley (1996)

