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2 John Derrick, Eerke Boiten, Howard Bowman and Maarten Steen1. IntroductionThe Z speci�cation language [Spi89] has gained a certain amount of acceptancein the software community as an industrial strength formal method. Z is a state-based language based upon set theory and �rst order logic. The most commonstyle of speci�cation in Z is the so called \state plus operations" style, where acollection of operations describe changes to the state space. The state space andoperations are described as schemas, and the schema calculus has proved to bean enduring structuring mechanism for specifying complex systems.A growing literature and a number of industrial case studies have demon-strated the usability of the language, and attention is being turned to new do-mains of applicability - one such example being the use of Z for the speci�cationof concurrent and distributed systems [Cus91, Rud91, MZ94, Lam94, Str95].However, concurrent and distributed systems place a number of requirementson notations used to specify such systems, and, in particular, one aspect that isimportant is the role of the internal (or unobservable) operation. Internal opera-tions are not part of the interface to the environment (i.e. the user cannot invokethem), however, they are essential to our understanding and correct modelling ofthe system. Such operations (or actions) arise naturally in distributed systems,either as a result of modelling concurrency or the non-determinism that is inher-ent in a model of such a system. For example, internal operations can be used tomodel communication (e.g. as in the language CCS [Mil89]), non-determinismarises as a by-product of this interpretation. Internal operations are also centralto obtaining abstract speci�cation through hiding, a particularly important ex-ample of this is to enable communication to be internalised - a central facet inthe design of distributed systems.The majority of formal notations which have been designed with concurrentsystems in mind have a notion of internal action, event or operation as partof the language or its semantics. Examples include CCS [Mil89], CSP [Hoa85]and LOTOS [BB88]. In particular, internal events have an important role in thetheory of process algebras, and a special symbol is reserved for the occurrenceof such an internal event (e.g. i in LOTOS or � in CCS).In addition to the description, i.e., speci�cation, of a system an importantbene�t that formal methods o�er is the ability to develop a system's speci�cationaccording to some theory of re�nement in that language. Examples include theuse of re�nement in Z [Spi89, WD96], VDM [Jon89] or bisimulation in a pro-cess algebra [Mil89]. However, if internal events are distinguished in a particularspeci�cation notation, then the theory of re�nement in that language should dealwith such internal events in an appropriate way. One way is to treat an internalevent no di�erently from observable events, the strong bisimulation relation in aprocess algebra is an example of an equivalence relation adopting such a conven-tion. However, it is well recognised that strong bisimulation is inappropriate as are�nement relation because it discriminates too many speci�cations that mightreasonably be seen as equivalent. Therefore internal events in re�nement andequivalence relations typically have a di�erent role than the observable events ofthe system. Examples of relations in which the observable is di�erentiated fromthe internal are weak bisimulation [Mil89], testing equivalence [Bri88], reduc-tion and extension [BSS86], failures re�nement [Hoa85] and Hennessy's testingpre-orders [Hen88]. Central to these relations is the understanding that internalevents are unobservable, and that re�nement relations must re�ne the observablebehaviour of a speci�cation di�erently from the internal aspects of its behaviour.



Specifying and Re�ning internal operations in Z 3Now that Z is being used for the speci�cation of concurrent or distributed sys-tems, a number of authors have recognised the need to explicitly specify internaloperations separately from the observable interface, and a number of conventionshave been adopted for their description. In each case the internal operation isspeci�ed as normal and either has a distinguished name or informal commen-tary telling us that it is not part of the interface to the environment (we will seeexamples of both approaches below). This approach immediately raises two ques-tions. Firstly, is it possible to dispense with such internal operations by addingtheir behaviour to the observable interface in some fashion? Secondly, if internaloperations are to appear explicitly in a Z speci�cation, we need to consider thepossibility of re�ning these speci�cations. How should we treat the re�nement ofinternal operations in Z? This paper seeks to address these issues. In particular,we shall show that the standard Z re�nement rules are inappropriate for there�nement of internal operations. We make a proposal called weak re�nementwhich seeks to o�er a correct generalisation of re�nement when speci�cationscontain internal operations. This has a similar relation to ordinary Z re�nementas weak bisimulation does to strong bisimulation in a process algebra. In par-ticular, we de�ne weak re�nement by considering the stand point of an externalobserver of the system, who manipulates operations in the user interface.Such an external observer will require that a retrieve relation is still de�nedbetween the state spaces of the abstract and concrete speci�cations and that eachabstract observable operation AOp is recast as a concrete observable operationCOp. The weak re�nement relation is de�ned to ensure that the observablebehaviour of the concrete speci�cation is a re�nement of the observable behaviourof the abstract speci�cation.We will also consider to what extent internal operations are necessary andwhether we can dispense with them. For speci�cations that do not contain live-lock (i.e., in�nite sequences of internal events) we will argue that we can dispensewith the explicit use of internal operations in the speci�cation. For speci�cationscontaining divergence in the form of livelock whether we can dispense with theirexplicit speci�cation will turn out to depend on the interpretation of divergenceused.Throughout the paper we assume the state plus operations style of Z speci-�cation, and our discussion takes place within that context.The structure of the paper is as follows. In Section 2 we review the useof internal operations in Z speci�cations. Section 3 presents an example of aspeci�cation and re�nement involving internal operations, the example illustratesthat standard Z re�nement is inappropriate in the presence of internal operations.Section 4 formulates the generalization that we call weak re�nement, which ismotivated by the treatment of internal events in process algebras. Section 5revisits the protocol example to show that weak re�nement has the requiredproperties of a re�nement where internal operations have been speci�ed. Section6 considers whether we can dispense with internal operations and the role ofdivergence in answering that question. Section 7 discusses some properties ofweak re�nement, related work is then reviewed in Section 8, and we conclude inSection 9.



4 John Derrick, Eerke Boiten, Howard Bowman and Maarten Steen2. Internal OperationsIn the traditional approach to the speci�cation of sequential systems in Z, theoperations speci�ed represent the interface to the environment. That is, a statechange occurs in the system if and only if the environment invokes one of the op-erations. Each operation therefore represents a potential observable event of thesystem under construction, and this is usually an acceptable model. However,when modelling concurrent and distributed systems it is convenient to modelinternal events. These internal events represent operations over which the en-vironment has no control (hence the name internal), but are still necessary tospecify in a full description of the system. Since they are not part of the envi-ronmental or user interface they can be invoked by the system whenever theirpre-conditions hold. They can arise either due to the natural non-determinismof a distributed system [Hoa85], or due to communication within the system[Mil89] or due to some aspect of the system being hidden at this level of ab-straction [BB88]. The necessity for the speci�cation of internal events in processalgebras is well recognised [Mil89], and a number of researchers have found itconvenient or necessary to specify internal operations in Z when specifying dis-tributed systems [CW92, WJ94, Raf94, Str95, WD96, DBBS96a].For example, Strulo [Str95] considers the use of Z in network management anddescribes the need for both observable and internal operations in this applicationarea. A particular example is described of a network manager's view of a routerwithin a network. There, alarm noti�cations are a typical example of internalevents which are speci�ed as usual but with informal commentary describingwhich operations are observable and which are internal. A similar approach andapplication area is described in [WJ94, Raf94].Cusack and Wezeman, in [CW92], adopt a number of conventions for the useof Z for the speci�cation of OSI network management standards. In particular,they make the distinction between internal and observable operations accordingto whether an operation has input/output: operations which use �State but haveneither input or output variables are internal (unobservable) actions, correspond-ing to the internal event in LOTOS. All other operations can be thought of asinteractions with the environment, or external operations [CW92]. Their workis placed in an object-oriented setting and they consider notions of subtypingbased upon conformance instead of re�nement.In [DBBS96a] a distinguishing name (i) is used to denote which operationsare internal. The motivation there was to provide a direct mapping betweenevents in LOTOS and operations in Z in order to support the use of multipleviewpoints in the Open Distributed Processing reference model [ITU95].Woodcock and Davies [WD96] also use informal commentary to describewhich operations are internal and which are observable. They also comment onwhether these internal operations add to the expressive power of the language,saying: It should be clear that we could dispense with such operations, but onlyby adding the required degree of non-determinism to the remainder of the speci-�cation. We will give a constructive proof of this statement in Section 6.Evans in [Eva97] considers the use of Z for the speci�cation of parallel sys-tems, and in particular discusses issues of liveness and fairness in dynamic speci-�cations. Internal operations are speci�ed as in [WD96], and he also considers there�nement relations needed for Z speci�cations of concurrent systems. Similarwork has appeared in other state-based formalisms. For example, Butler [But97]considers the speci�cation and re�nement of internal actions in the B method



Specifying and Re�ning internal operations in Z 5[Abr96]. There, internal actions are speci�ed explicitly in an abstract machine.Additional work in this area also includes the work of Lano, e.g. [Lan97].In each case the internal operation is speci�ed as normal and either has a dis-tinguished name or informal commentary telling us that it is not part of the userinterface. We will see examples of both below. Used in this way, Z is clearly suf-�cient as a notation for the speci�cation of internal operations or events, and ascan be seen from the examples referenced above, internal events are needed whenZ is used to specify parts of a distributed system which contain large amountsof state information. Typical of this application area are managed objects orthe information viewpoint of the Open Distributed Processing reference model,where the speci�cations contain a lot of state but there is also a need to modelinternal operations such as alarms.This section has reviewed the use of internal operations in Z speci�cations,the next section considers an example of their speci�cation and re�nement.3. Re�nementA Z speci�cation describes the state space together with a collection of opera-tions. The Z re�nement relation [Spi89, WD96], de�ned between two Z speci�-cations, allows both the state space and the individual operations to be re�nedin a uniform mannery.Operation re�nement is the process of recasting each abstract operation AOpinto a concrete operation COp, such that, informally, the following holds. Thepre-condition of COp may be weaker than the pre-condition of AOp, and COpmay have a stronger post-condition than AOp. That is, COp must be applicablewhenever AOp is, and if AOp is applicable, then every state which COp mightproduce must be one of those which AOp might produce. Data re�nement ex-tends operation re�nement by allowing the state space of the concrete operationsto be di�erent from the state space of the abstract operations.Consider an abstract speci�cation with state space Astate, operation AOp,and initialisation Ainit , and a re�ned speci�cation with state space Cstate, oper-ation COp, and initialisation Cinit . Re�nement is de�ned in terms of an abstrac-tion schema or retrieve relation, usually called Ret , Retrieve or Abs , which relatesthe abstract and concrete states. It has the same signature as Astate ^ Cstate,and its property holds if the concrete state is one of those which represent theabstract state [Spi89]. The retrieve relation does not need to be total nor func-tional. The concrete speci�cation is a re�nement of the abstract speci�cation ifthe following conditions hold:Initialisation 8Cstate 0 � Cinit ` 9Astate 0 � Ainit ^ Ret 0Applicability 8Astate; Cstate � preAOp ^ Ret ` preCOpCorrectness 8Astate; Cstate; Cstate 0 � preAOp ^ Ret ^ COp ` 9Astate 0 �Ret 0 ^ AOpAn illustration of re�nement will be given in the following subsection.There is a growing body of experience and literature concerning re�nement inthe traditional context of sequential systems speci�ed in Z, e.g. [WD96]. However,y We consider only re�nements de�ned by forward simulations in this paper. Similar resultscould be obtained for backwards simulations if needed.



6 John Derrick, Eerke Boiten, Howard Bowman and Maarten Steenthese re�nement rules assume all operations are observable. How does re�nementbehave if some of the operations are internal or unobservable?As an illustration of re�nement involving internal operations we consider thespeci�cation and re�nement of a telecoms protocol (the Signalling System No.7 standard) adapted from [WD96, HMR89]. The �rst speci�cation de�nes theexternal view of the protocol, subsequently we develop a sectional view whichspeci�es the route that messages take through the protocol. [HMR89] discussesthe formalisation of the informal speci�cation in more depth, our purpose hereis to use the formalisation given in [WD96] as an illustrative example.3.1. Speci�cation 1: the external viewLet M be the set of messages that the protocol handles. The state of the systemis represented by the state schema Ext , and comprises two sequences whichrepresent messages that have arrived in the protocol (in), and those that havebeen forwarded (out).Extin; out : seqM9 s : seqM � in = s a outIncoming messages are added to the left of in, and the messages contained in inbut not in out represent those currently inside the protocol. The state invariantspeci�es that the protocol must not corrupt or re-order. Initially, no messageshave been sent, and this is speci�ed by the following initialisation schema:ExtInit b= [Ext 0 j in 0 = h i ]The speci�cation at this level is completed by the description of two op-erations which model the transmission (Transmit) and reception (Receive) ofmessages into and out of the protocol. In the speci�cation of the Receive op-eration, either no message is available (e.g. all messages are en route in theprotocol) or the next one is output, at this level of abstraction this choice ismade non-deterministically. The speci�cations are straightforwardz.Transmit�Extm? : Min 0 = hm?ia inout 0 = outReceive�Extin 0 = in#out 0 = #out + 1 _ out 0 = outz The Receive operation could, if desired, actually output the transmitted value, however thisis immaterial to our concerns here.



Specifying and Re�ning internal operations in Z 73.2. Speci�cation 2: the sectional viewThe second speci�cation describes the sectional view which speci�es the routethe messages take through the protocol in terms of a number of sections. Eachsection in the protocol may receive and send messages, and those which have beenreceived, but not yet sent on, are in the section. The messages pass through thesections in order. Let N be the number of sections. In the state schema, ins irepresents the messages currently inside section i , rec i the messages that havebeen received by section i , and sent i the messages that have been sent onwardsfrom section i . The state and initialisation schemas are then given bySectionrec; ins ; sent : seq(seqM )N = #rec = #ins = #sentrec = ins aasentfront sent = tail rec SectionInitSection 08 i : 1::N �rec0 i = ins 0 i = sent 0 i = h iwhere aa denotes pairwise concatenation of the two sequences (so for every iwe have rec i = ins i a sent i). The predicate front sent = tail rec ensures thatmessages that are sent from one section are those that have been received by thenext. This speci�cation also has operations to transmit and receive messages,and they are speci�ed as follows:STransmit�Sectionm? : Mhead rec0 = hm?i a (head rec)tail rec0 = tail recsent 0 = sentSReceive0�Sectionrec0 = recfront ins 0 = front inslast ins 0 = front(last ins)front sent 0 = front sentlast sent 0 = hlast(last ins)ia (last sent)SReceive b= SReceive0 _ �SectionHere, the new message received is added to the �rst section in the route bythe operation STransmit .The operation SReceive will deliver a message from the last section in theroute. In the external view presented above, messages arrive non-deterministicallybecause we did not model the interior of the protocol. In the sectional view thisnon-determinism is represented by the progress of the messages through the sec-tions. Therefore in this more detailed design, we need to specify how the messagesmake progress through the sections. We do so by de�ning an operation Daemon



8 John Derrick, Eerke Boiten, Howard Bowman and Maarten Steenwhich non-deterministically selects a section to make progress. The oldest mes-sage is then transferred to the following section, and nothing else changes. Theimportant part of this operation is given by:Daemon0�Section9 i : 1::N � 1 jins i 6= h i �ins 0i = front(ins i)ins 0(i + 1) = hlast(ins i)i a ins(i + 1)8 j : 1::N j j 6= i ^ j 6= i + 1 � ins 0j = ins jThe informal commentary accompanying the speci�cation tells us that Daemonis an internal operation, and so can be invoked by the system whenever its pre-condition holds. As noted in [WD96]: This operation is not part of the user in-terface. The user cannot invoke Daemon, but it is essential to our understandingof the system and to its correctness.The sectional view is in some way a re�nement of the external view, wherethe retrieve relation is given by:RetrieveExtSectionhead rec = inlast sent = outWe note that the retrieve relation used here is a total function, i.e., 8Section �91 Ext � Retrieve.Under this re�nement STransmit and SReceive correspond to Transmit andReceive respectively, and the internal operation Daemon corresponds to the ex-ternal operation �Ext , i.e. the identity operation on Ext . The re�nement isproved correct by showing that (where we have omitted the appropriate quan-ti�cation over the states):SectionInit ^ Retrieve 0 ) ExtInitpreTransmit ^ Retrieve ) preSTransmitpreTransmit ^ Retrieve ^ STransmit ^ Retrieve 0 ) TransmitpreReceive ^ Retrieve ) preSReceivepreReceive ^ Retrieve ^ SReceive ^ Retrieve 0 ) Receivepre�Ext ^ Retrieve ) preDaemonpre�Ext ^ Retrieve ^ Daemon ^ Retrieve 0 ) �ExtThe re�nement is discussed in [WD96]. This completes the �rst re�nementof the external view.Let us summarise the situation so far. We can specify a system that containsnon-determinism in some of the operations in its user interface (e.g. Receive),but which does not contain any internal operations. We can then re�ne thisspeci�cation to one that contains internal operations that correctly models (inthe sense of a re�nement existing between the speci�cations) the abstract spec-i�cation. We have used the standard Z re�nement relations, which have beenperfectly adequate at this level.



Specifying and Re�ning internal operations in Z 93.3. Speci�cation 3: re�ning internal operationsHowever, let us look at the re�nement of the internal operation Daemon again.As it stands Daemon0 represents the functionality that for non-empty sections(ins i 6= h i) we transfer a message along the sections. But in order that thecomplete operation Daemon re�nes �Ext , Daemon0 must be extended to ensurethatpre�Ext ^ Retrieve ) preDaemoni.e. that Daemon is always applicable.This means that the internal operation Daemon can always be invoked bythe system, and therefore we have introduced livelock into the speci�cation. Thiswould not be acceptable in an implementation.The alternative to this would be to leave Daemon as Daemon0, i.e., justspecify the intended behaviour. However, now it is not a re�nement sincepre�Ext ^ Retrieve ) preDaemonfails. We will return to this point later.Suppose for the moment that we are given the sectional view speci�cationcontaining an internal operation Daemon b= Daemon0, we can now re�ne thisfurther. In particular we can re�ne the Daemon operation. This operation ispartial (as it does not specify what happens if ins i = h i for every i), and usingthe standard Z re�nement rules we can weaken its pre-condition, and re�ne it tothe following:NDaemon�Section(8 i : 1::N � 1; 9m : M � ins i = h i ^ ins 01 = hmi) _(9 i : 1::N � 1 jins i 6= h i �ins 0i = front(ins i)ins 0(i + 1) = hlast(ins i)i a ins(i + 1)8 j : 1::N j j 6= i ^ j 6= i + 1 � ins 0j = ins j )This operation includes the same functionality as before, except that in additionthe system can invoke it non-deterministically (since it is an internal opera-tion) initially to insert an arbitrary message into the �rst section. Thus initiallythere are two possible behaviours of the system: as before the user could in-voke Transmit to insert a message into the protocol, or now the system couldnon-deterministically invoke NDaemon which corrupts the input stream of theprotocol before the user has inserted any messages (ins 01 = hmi).The speci�cation which contains the sectional view operations together withthis new NDaemon in place of Daemon is a re�nement of the sectional view.Yet clearly implementations which introduce arbitrary amounts of noise into astream of protocol messages are unacceptable. But in these situations, usingstandard Z re�nement this has been allowed to happen, what has gone wrong?We have used standard Z re�nement here, and at issue is the re�nement ofinternal operations. Internal operations have behaviour which isn't subject tothe normal interpretation of operations that are in the user interface, therefore



10 John Derrick, Eerke Boiten, Howard Bowman and Maarten Steenit is not surprising that the standard re�nement rules bring about unexpectedand undesirable consequences.Furthermore, the standard re�nement rules allow the possibility of livelockor divergence to be added when we re�ne an internal operation. For example, theDaemon internal operation in the sectional view could be replaced by a divergentversion, DDaemon, speci�ed by:DDaemon�Sectionins 0 = insThe speci�cation containing this operation as an internal operation is a re�ne-ment of the external view. However, the system now contains divergence in thatDDaemon can be invoked non-deterministically an arbitrary number of times,causing a livelock.The introduction of livelock is not due to the introduction of an internaloperation Daemon re�ning the identity on Ext , �Ext . To see this it is su�cientto note that a divergent version of NDaemon given byDNDaemon�Section(8 i : 1::N � 1 � ins i = h i ^ ins 0 = ins)_(9 i : 1::N � 1 jins i 6= h i �ins 0i = front(ins i)ins 0(i + 1) = hlast(ins i)i a ins(i + 1)8 j : 1::N j j 6= i ^ j 6= i + 1 � ins 0j = ins j )is a re�nement of Daemon, and introduces similar potential livelock at the initialsystem state.The weak re�nement rules presented below will contain two conditions whichare necessary and su�cient to prevent divergence being introduced upon re�ne-ment. An alternative approach to these rules which explicitly prevent livelockbeing introduced is to adopt a non-catastrophic interpretation of divergence, thisapproach is discussed in Section 6.1 below.3.4. The �ring condition interpretationThe �ring condition interpretation is a potential solution to the problems en-countered when re�ning internal operations described by Strulo in [Str95]. It hasthe merit of simplicity, but, as we shall see, perhaps constrains re�nement toofar. Strulo calls internal operations active, and operations in the user interfacepassive. The �ring condition interpretation is the idea that the pre-conditionof an operation speci�es when the operation can happen instead of saying thatan operation is unde�ned, but possible, outside its pre-condition. That is, thepre-condition represents the guard of an operation.To de�ne re�nement, Strulo identi�es three regions for an operation (uncon-strained, empty and interesting). The three regions of an operation represent:



Specifying and Re�ning internal operations in Z 11The unconstrained region: states where the operation is divergent becauseno constraints are made on the after state;The empty region: states outside the usual pre-condition but which aren'tdivergent, and the operation is considered to be impossible in this region;andThe interesting region: the remaining states where some but not all afterstates are allowed.The applicability and correctness re�nement rules are then re-interpreted forinternal operations as:` COp ) AOp` (9State 0 � AOp) ^ (9State 0 � :AOp)) (9State 0 � COp) ^ (9State 0 � :COp)In terms of these interpretations and the regions of de�nition of an operation,the �rst condition prevents an operation becoming possible (unconstrained orinteresting) where it was impossible (empty), and the second condition ensuresthat the concrete operation doesn't become impossible (empty) where it wasde�ned and possible (interesting).For a full discussion the reader should consult [Str95]. It is worth remark-ing that no data re�nement is considered here and that these rules constituteconditions for operation re�nement only.We can apply these ideas to the above example, and in doing so we �ndthat with the �ring condition interpretation, NDaemon is not a re�nement ofDaemon. This is because it is not true that` NDaemon ) DaemonThus this interpretation successfully stops the pre-condition of an internal op-eration from being weakened. However, in order to achieve this the rules placea barrier between observable and unobservable operation re�nements. In par-ticular, for hybrid speci�cations (ones involving both internal and observableoperations), the re�nement rules used depend on the type of operation - stan-dard re�nement for observable operations, and the �ring condition interpretationfor internal operations.However, the division is not always as simple as that, on occasion we maywish to introduce internal operations during a re�nement, or we may wish toremove internal operations in a re�nement. The re�nement of the external viewto the sectional view is an example of the introduction of internal operations,and we will give an example of their removal shortly.The consequence of this is that, unfortunately, under the �ring condition in-terpretation we �nd that the sectional view is not a re�nement of the externalview of the protocol, because now Daemon does not correspond to �Ext underthe �ring condition interpretation re�nement rules (since we are adding an ex-plicit internal operation when there was no one previously). To overcome this,can we restrict the use of the �ring condition interpretation re�nement rules towhen the abstract operation is internal? The following example illustrates thatwe cannot.Consider an abstract speci�cation with an operation AOp in the user in-terface, and an internal operation IOp. The concrete speci�cation consists of asingle operation COp. Both have state space State consisting of a mode : f0; 1g.Initially mode is set to 0. The only operations in the speci�cations are given by:



12 John Derrick, Eerke Boiten, Howard Bowman and Maarten SteenAOp�Statemode = 0 ^mode 0 = 1 IOp�Stateerror ! : yes j nomode = 1 ^mode 0 = 0error ! = yesCOp�Stateerror ! : yes j nomode = mode 0 = 0 ^ error ! = yesWith these speci�cations their observable behaviour is identical to an ex-ternal observer. Therefore it is natural to view the concrete speci�cation as are�nement of the abstract. In the abstract, after invoking AOp an error messagewill occur (triggered by the internal operation IOp happening, which it eventu-ally always willx). Likewise in the concrete speci�cation, after invoking COp anerror message will occur. This type of removal of internal events lies at the heartof all treatments of internal operations in process algebras. However, under the�ring condition interpretation, the concrete operation is not a re�nement of theabstract, because no operation that was possible can become impossible - evenif the internal behaviour has moved elsewhere {.Summarising the discussion so far, we have found that the standard notionof re�nement in Z is too liberal in the presence of internal operations. Problemshave arisen because of the interpretation of internal operations which have al-lowed undesirable behaviour to be introduced into a re�nement, including thepossibility of divergence through livelock. By considering the pre-condition of anoperation to represent its guard, an alternative approach to re�nement is devel-oped in [Str95]. However, this involves a di�erent interpretation of operations,and the re�nement of internal behaviour can be too strict as the example aboveshows. In the next section we will seek an alternative generalization of re�nementmotivated by the treatment of internal events in process algebras.4. Weak Re�nementTo de�ne weak re�nement we will consider the standpoint of an external observerwho is concerned with the observable operations only. Such an external observerwill require that a retrieve relation is still de�ned between the state spaces ofthe abstract and concrete speci�cations and that each observable operation AOpis recast as a concrete operation COp. The re�nement relation will ensure thatthe observable behaviour of the concrete speci�cation is a re�nement of theobservable behaviour of the abstract speci�cation.Three of the weak re�nement rules have the same form as standard re�ne-ment:x We are assuming an implicit weak fairness condition here, that if an internal operation iscontinuously o�ered it eventually will be taken. This is the standard assumption to make[Led91], and we do not discuss it further in this paper.{ The issue of internal operations having output is discussed in Section 5.2.



Specifying and Re�ning internal operations in Z 13Initialisation 8Cstate 0 � Cinitw ` 9Astate 0 � Ainitw ^ Ret 0Applicability 8Astate; Cstate � prew AOp ^ Ret ` prew COpCorrectness 8Astate; Cstate; Cstate 0 � prew AOp ^Ret ^COpw ` 9Astate 0 �Ret 0 ^ AOpwexcept that the subscript w denotes a weak counterpart which we will de�nebelow and involves sequences of internal operations.In addition, we introduce two conditions that prevent the introduction ofdivergence upon re�nement, they are:D1 Ret ` E 2WFD2 8 i � Ret ^ i ` E 0 < Ewhere the quanti�cation in D2 is over all internal operations in the concretespeci�cation, and (WF,<) is a well-founded set and E an expression in the statevariablesk.To motivate our ideas the next subsection reviews the treatment of internalevents in process algebras, and we use these ideas in our formulation of weakre�nement which will follow.4.1. Internal events in Process AlgebrasRe�nement in a process algebra is de�ned in terms of the transitions a behaviouror process can undergo. We write P a�! P 0 if a process (or behaviour) P canperform the action a and then evolve to the process P 0. Re�nements and equiv-alences are de�ned in terms of a systems transitions. Typically, for each relation,two versions are possible - a strong relation which treats all actions identicallywhether observable or not, and a weak version that makes allowances for internalevents and is only concerned with observable transitions.To make allowances for internal actions, consideration is given to what ismeant by an observable transition. An observable transition is taken to be anyobservable action preceded or succeeded by any (�nite) number of internal events.Observable transitions are written P a=) P 0, which means that process P canevolve to process P 0 by undergoing an unspeci�ed (but �nite) number of internalevents, followed by the action a, followed by an unspeci�ed number of internalevents.Given a (strong) relation de�ned in terms of allowable transitions its weakor observable counterpart would replace a transition P a�! P 0 by the observabletransition: P a=) P 0.For example, strong bisimulation relates two behaviours P and Q as equiv-alent whenever a transition P1 a�! P2 in P is matched exactly by a transitionQ1 a�! Q2 in Q (for a complete de�nition and full details see, for example,[Mil89]). Weak bisimulation (or observational equivalence), [Mil89], weakens therequirement in strong bisimulation in the sense that two behaviours P and Q areweakly equivalent whenever a transition P1 a�! P2 in P is matched by a similarobservable transition Q1 a=) Q2 in Q . An extremely simple example (cf Sectionk This is essentially the technique of using a variant function to prove termination.



14 John Derrick, Eerke Boiten, Howard Bowman and Maarten Steen3.4) is the following two behaviours (represented by transition diagrams) whichare weak bisimular but not strongly bisimular:
a a

i4.2. Formulating weak re�nementThroughout this section we denote the state spaces of the abstract and concretespeci�cations by Astate and Cstate respectively. Let Ret be the retrieve relationde�ned between the speci�cations. AOp and COp stand for operations on theabstract and concrete state spaces where COp implements AOp. The initialstates are given by schemas Cinit and Ainit .Our formulation of weak re�nement will be motivated by the approach takenin process algebras. Application of an operation in Z corresponds to a transitionin a process algebra, and in weak re�nement in place of the application of anoperation Op we allow a �nite number of internal operations before and after theoccurrence of the operation. This corresponds to the change from P a�! P 0 toP a=) P 0 in a process algebra when moving from a strong to observable scenario.Here we take advantage of the Z schema calculus, and note that Op=) canbe denoted by saying that there exist internal operations i1; : : : ; ik ; j1; : : : ; jl (forsome k ; l � 0) such that we can apply the composition i1 o9 : : : o9 ik o9Op o9 j1 o9 : : : o9 jl .In order to avoid such quanti�cations over sequences of internal operations, weencode \all possible internal evolution" for a speci�cation as a single operationI (such that we can write I o9 Op o9 I ) as follows.Let Internals be the set of all internal operations in the speci�cation; this setcan be typed as PStateOp for some StateOp. Let IntSeq == seq Internals , rep-resenting all �nite sequences of internal operations. The e�ect of such a sequenceis obtained using the operator � : IntSeq ! StateOp de�ned, using distributedschema composition, by�h i= �State�ops= o9=ops for ops 6= h i\Every possible �nite internal evolution" is now described by the schema dis-junction of the e�ects of all possible �nite sequences of internal operations, i.e.I = 9 x : IntSeq � �xor in other words, two states are related by I i� there exists a series of internaloperations x such that the combined e�ect �x of these operations relates thestates.We distinguish between internal operations in the concrete and abstractspeci�cations by using the subscripts C and A on I . For operations Op ab-breviate pre(I o9 Op) by prew Op, and I o9 Op o9 I by Opw if desired. (Note thatpreOpw = prew Op since I is total.)



Specifying and Re�ning internal operations in Z 15We can now re-formulate each of the three conditions for re�nement for asystem containing internal operations. We begin with the initialization condition.InitializationWithout internal operations the relationship required upon initialization is thateach possible initial state of the concrete speci�cation must represent a possibleinitial state of the abstract speci�cation. In the presence of internal operationsafter an initialization the system might evolve internally to another state. There-fore, \each possible initial state of the concrete speci�cation" now includes allpossible evolutions of the initial state under internal operations. Likewise \apossible initial state of the abstract speci�cation" can now include a potentialevolution of the initial state due to invocation of internal operations in the sys-tem.To formalise this we require that:8Cstate 0 � Cinit o9 IC ` 9Astate 0 � (Ainit o9 IA) ^ RetThe (hidden) quanti�cation (over all possible evolutions) of the internal op-erations in Cinit o9 IC is important. What we wish to ensure is that every initialconcrete path (including all possible internal operations) can be matched by someinitial abstract path (possibly involving internal operations). We abbreviate thecondition to8Cstate 0 � Cinitw ` 9Astate 0 � Ainitw ^Ret 0ApplicabilityApplicability must ensure that if an abstract and concrete state are related bythe retrieve relation, then the concrete operation should terminate wheneverthe abstract operation terminated, where termination is usually expressed interms of satisfaction of the pre-condition of an operation. In the presence ofinternal operations we must allow for potential invocation of internal operations,and hence we require that: if an abstract and concrete state are related by theretrieve relation, then whenever the abstract operation terminates possibly afterany internal evolution then the concrete operation terminates after some internalevolution. This is described by saying there exists internal operations i1; : : : ; iksuch that pre(i1 o9 : : : o9 ik o9 AOp) holds.Applicability can then be expressed as8Astate; Cstate � pre(IA o9 AOp) ^Ret ` pre(IC o9 COp)Using the abbreviation prew AOp, where we note that we have replaced preAOpby the condition that AOp is applicable after a number of internal operations,applicability in weak re�nement reduces to8Astate; Cstate � prew AOp ^ Ret ` prew COpCorrectnessFor correctness, we require the weak analogy to the following: if an abstractstate and a concrete state are related by Ret , and both the abstract and con-



16 John Derrick, Eerke Boiten, Howard Bowman and Maarten Steencrete operations are guaranteed to terminate, then every possible state after theconcrete operation must be related by Ret 0 to a possible state after the abstractoperation [Spi89]. For the weak version preAOp is replaced by prew AOp andwe ask that, every possible state after the concrete operation must be relatedby Ret 0 to a possible state after the abstract operation, except that now 'after'means an arbitrary number of internal operations may occur before and afterthe abstract operation. The condition thus becomes, in full,8Astate; Cstate; Cstate 0 � pre(IA o9 AOp) ^ Ret ^ (IC o9 COp o9 IC ) `9Astate 0 � Ret 0 ^ (IA o9 AOp o9 IA)which we abbreviate to8Astate; Cstate; Cstate 0 � prew AOp ^ Ret ^ COpw ` 9Astate 0 � Ret 0 ^ AOpwAgain the quanti�cation over every possible �nite internal evolution in COpwis important. We need to ensure that every path involving COp and possibleinternal operations can be matched by some path involving AOp and (possibly)internal operations. Hence the quanti�cation in COpw is over all �nite sequencesof internal operations before and after COp.Rules for Internal operationsWe will also apply the correctness rule to internal operations. For internal oper-ations we do not want applicability to prevent an internal operation becomingimpossible where it was previously possible, indeed we want to re�ne out suchinternal operations if appropriate. Therefore for an internal operation i (de�nedon a state space State) we de�ne its weak pre-condition (not its pre-condition)by prew i = pre�State = StateAlthough this de�nition of the weak pre-condition for internal operationslooks strange, it does not allow us to arbitrarily weaken the pre-condition of aninternal operation under weak re�nement. The circumstances when we can aregoverned by what observable operations are present in the abstract speci�ca-tion, and the correctness rules for observable operations prevent the arbitraryweakening of pre-conditions of internal operations.Applicability for internal operations will reduce to checking that the concretestate is implied by the abstract state (modulo the retrieve relation).The �nal piece in the jigsaw is the meaning of correctness for internal oper-ations. Recall that we de�ne the weak version of an operation Op byOpw = � I o9 Op o9 I for an observable Op;I for an internal operation OpThis ensures that we can match up an occurrence of an internal operation in theabstract speci�cation by zero or more internal actions (using I ) in the concretespeci�cation.To prevent divergence being introduced upon re�nement we introduce twodivergence re�nement rules. The criteria these rules embody are based uponthose in [But97]. We use a well-founded set WF with a partial order <, anda variant which is an expression in the state variables. The variant, E , should



Specifying and Re�ning internal operations in Z 17always be an element of the set WF, and it should be decreased by each internaloperation in the concrete operation. These two conditions can be formulated as:D1 Ret ` E 2WFD2 8 i � Ret ^ i ` E 0 < Ewhere the quanti�cation in D2 is over all internal operations in the concretespeci�cation. Note that although internal operations decrease the variant, thereare no constraints on observable operations, which are allowed to increase thevariant. This means that an internal operation can be invoked an in�nite numberof times, but not in an in�nite sequence. So for example in the following �gurewith appropriately chosen variant the behaviour on the left satis�es D1 and D2,whereas the behaviour on the right cannot possibly do so.
i

a iSummarising the conditions we �nd that weak re�nement requires that� 8Cstate 0 � Cinitw ` 9Astate 0 � Ainitw ^Ret 0� 8Astate; Cstate � prew AOp ^ Ret ` prew COp� 8Astate; Cstate; Cstate 0 � prew AOp^Ret^COpw ` 9Astate 0 � Ret 0^AOpwwhere prew (Op) = pre(I o9Op) andOpw = � I o9 Op o9 I for an observable Op;I for an internal operation Opwith correctness (but not applicability) being applied to the internal operations.In addition, if WF is a well-founded set and E an expression in the statevariables, the following rules prevent the introduction of divergence:D1 Ret ` E 2WFD2 8 i � Ret ^ i ` E 0 < Ewhere the quanti�cation in D2 is over all internal operations in the concretespeci�cation.In the next section we show how these rules are applied in practice, and weshall see that although the full generality introduces complexity, in practice theoverheads are not large.5. ExamplesIn this section we illustrate the theory that was developed above to the exam-ples presented at the start of the paper. In the protocol example, the intuitivebehaviour we wish to capture is that the sectional view is a re�nement of theexternal view, but that the third speci�cation is not a re�nement of the sectionalview. We show that this is indeed the case with weak re�nement. We then con-sider internal operations which output to the environment and compare the Zspeci�cation of such internal events to the approach taken in process algebras.



18 John Derrick, Eerke Boiten, Howard Bowman and Maarten Steen5.1. The Signalling ProtocolFirst we show that the sectional view of the protocol is a weak re�nement of theexternal view. We �rst prove the initialization is correct, noting that the retrieverelation is total and functional, so that we can use the usual simpli�cation, andwe show that:8Ext 0; Section 0 � SectionInitw ^ Retrieve ` ExtInitwThis reduces to 8Ext 0; Section 0 � SectionInit ^ Retrieve ` ExtInit , since thereare no internal operations in the external speci�cation, and no internal operationis applicable after SectionInit in the sectional view. This can be veri�ed as inthe veri�cation of the standard re�nement in Section 3.2.To verify applicability, we need to show thatprew Transmit ^ Retrieve ` prew STransmitprew Receive ^ Retrieve ` prew SReceiveIn the case of Transmit , this weak applicability requirement reduces topreTransmit ^ Retrieve ` pre(IS o9 STransmit)since prew Transmit = preTransmit . We �nd this to be true by considering theempty sequence of internal operations in the sectional view. A similar argumentholds for the weak applicability requirement for Receive. Notice that weak re-�nement does not require that Daemon is always applicable since we only verifycorrectness of internal operations. Therefore Daemon is not forced to be a totaloperation, and the problem of livelock is solved.Similarly, to verify correctness, we need to show thatpreTransmit ^ Retrieve ^ STransmitw ^ Retrieve 0 ` TransmitpreReceive ^ Retrieve ^ SReceivew ^Retrieve 0 ` Receivepre�Ext ^ Retrieve ^ Daemonw ^ Retrieve 0 ` �ExtFor the �rst, we need to check that occurrences of the Daemon operationbefore and after STransmit in the concrete speci�cation still leave us in a statethat is consistent with that produced by Transmit in the abstract. From there�nement demonstrated in Section 3.2 we found that pre �Ext ^ Retrieve ^Daemon ^ Retrieve 0 ) �Ext , it therefore follows that Retrieve ^ Daemon ^Retrieve 0 ) �Ext , and hence thatpreTransmit ^ Retrieve ^ STransmitw ^ Retrieve 0 )preTransmit ^ Retrieve ^ �Ext o9 STransmit o9 �Ext ^Retrieve 0` TransmitThe second case is similar. For the third this reduces to showing that8 k � Ext ^ Retrieve ^ Daemonk ^ Retrieve 0 ` �Extwhere Daemonk denotes k sequential compositions of Daemon. We can makethe deductionExt ^Retrieve ^ Daemonk ^ Retrieve 0 ) Ext ^ �Ext ) �ExtFinally to show that the sectional view does not introduce divergence inthe form of potential livelock of its internal operations we will prove that thedivergence criteria are satis�ed. To do so we consider the well founded set to be



Specifying and Re�ning internal operations in Z 19the lexiographical ordering on INN (where N is the number of sections in theprotocol). The variant will be the expression h#ins1; : : : ;#insN i, i.e. a sequenceconsisting of the number of messages inside each section in the route.Clearly we have E 2WF . Furthermore we haveRet ^ Daemon ) E 0 < EsinceDaemon ) 9 i : 1::N � 1 � (ins 0 i = front(ins i) ^ 8 j < i � ins 0 j = ins j )so that 8 j < i � #ins 0 j = #ins j and #ins 0 i = (#ins i) � 1. This ensuresthat if Daemon is applicable then it can only be invoked a �nite number of timesbefore it is disabled and an observable operation must be invoked.Therefore we have shown that the sectional view is indeed a weak re�nementof the external view and that no livelock has been introduced upon re�nement.Moreover, the additional veri�cation requirements imposed by the generality ofweak re�nement are not large in this example, being con�ned to the considerationof one internal operation - Daemon.We shall now show that the third speci�cation is not a weak re�nement ofthe sectional view. That is, we are not at liberty to weaken the pre-condition ofan internal operation arbitrarily. Consider the initialization rule that (for totalfunctional Retrieve):8Astate; Cstate � Cinitw ^ Retrieve ` AinitwNow in the sectional view it is not possible to apply Daemon initially. However, itis possible to apply NDaemon initially (where it arbitrarily inserts a new elementinto the protocol). Thus for the third speci�cation to be a weak re�nement ofthe sectional view we require thatSectionInit o9 NDaemon ` SectionInitThis is clearly not true, sinceSectionInit o9 NDaemon ) ins 0 1 6= hithat is, ins is no longer empty.In addition to the initialization requirement failing in this example, the re-quirement thatprew STransmit ^Retrieve ^ STransmitw ^Retrieve 0 ` STransmitwis also violated for similar reasons as the initial condition fails.5.2. Internal operations with outputIn the second example, presented in Section 3.4, in order to show that the con-crete speci�cation is a weak re�nement of the abstract speci�cation, we wouldneed to prove that for some retrieve relation Ret :8State � prew AOp ^Ret ` prew COp8State � prew AOp ^Ret ^ COpw ` 9State 0 � Ret 0 ^ AOpwThe retrieve relation we will use will link the states for which mode = 0, sincethe state mode = 1 was used purely as an intermediate state for the purposes of



20 John Derrick, Eerke Boiten, Howard Bowman and Maarten Steenspecifying the temporal ordering of the operations. Hence the retrieve relationwill be speci�ed byRetStatemode = 0With this retrieve relation we will in fact show that the concrete operation COpimplements both abstract operations AOp and IOp. Since the concrete speci�-cation does not have any internal operations we just need to show that:prew AOp ^ Ret ` preCOpprew AOp ^ Ret ^ COp ^ Ret 0 ` AOpwprew IOp ^Ret ` preCOpprew IOp ^Ret ^ COp ^ Ret 0 ` IOpwWe can calculate the pre-conditions needed. Note that in the case of prew AOpthis includes states from which the system can perform an internal operationand then invoke AOp, which then terminates successfully.prew AOpStatemode = 0 _mode = 1 preCOpStatemode = 0The applicability and correctness for the re�nement of AOp as COp are theneasily veri�ed. Consideration of the internal operation amounts to showing that(because of the way the pre-condition of an internal operation is de�ned)Ret ` preCOpRet ^ COp ^ Ret 0 ` 9 k � IOpkand the latter holds for k = 0.Therefore the concrete speci�cation is indeed a weak re�nement of the ab-stract (because there are no internal operations in the concrete system we do notneed to check for divergence). This illustrates an interesting aspect of specifyinginternal operations in Z - they can output data (in fact some interpretations ofunobservableness in Z outlaw this possibility e.g. [CR92], but generally this isthe case [Str95, WJ94]). This is in contrast to a process algebra where typicallyinternal actions can have no data attributes.Consider, for example, full LOTOS [BB88], where the internal action is writ-ten i . Internal actions in LOTOS can arise as a result of direct speci�cation oras a result of hiding observable actions. In the �rst case, it is syntactically illegalto associate a data attribute with an internal action, e.g. the behaviouri !7; Bis not well-formed. Here action pre�x is represented by ; and a value declarationon an action is given by a !, and B represents the subsequent behaviour. In thesecond case, upon hiding an observable action with data, the data is hidden aswell as the action. So, for example, in the behaviourhide g in (g !5; stop)the transition i can be performed, but no data is associated with the occurrenceof the internal action i . That is the only transition this behaviour can perform



Specifying and Re�ning internal operations in Z 21is the following.hide g in (g !5; stop) i�! hide g in stopHowever, it is desirable to be able to specify an internal event which doeshave data associated with it. Indeed [Str95] contains an example of such anoperation - an alarm noti�cation in a managed object. This is a typical exampleof the kind of application where it is necessary to be able to specify an atomicinternal operation which has output associated with it. Used in this style Z o�ersa di�erent model to LOTOS in terms of internal events it can specify.Whether or not such an internal event is unobservable is debatable, andperhaps such events mark the di�erence between active systems as opposed toreactive systems - the latter often modelled using a process algebra. In an activesystem events can be under the control of the system but not the environment(e.g. an alarm operation), such events are internal but can have observable e�ects(such as an alarm noti�cation). This di�ers from the notion of internal in aprocess algebra, which equates internal with no observable transition or e�ect,including output. In such an interpretation the operation IOp de�ned abovewould not be internal as we can observe its occurrence via its output, and theterm active used in [Str95] could be used instead. However, the theory of weakre�nement developed here is equally applicable to such a class of events.6. Removing internal operationsIn this section we will consider to what extent it is true that we can dispensewith internal operations, both in terms of their speci�cation and in terms ofre�nements of speci�cations containing them. To do so we begin with a discussionof labelled transition systems (LTS) which provide a suitable model to discussthe role of internal operations. We will use labelled transition systems to answerthe questionFor any speci�cation containing internal operations, is there an equivalent speci�cation withoutinternal operations?and to do so we will need to consider a suitable de�nition of equivalence. Wewill argue that testing equivalence provides a suitable yardstick by which tocompare speci�cations. We will then show that for any speci�cation containinginternal operations, we can �nd a testing equivalent speci�cation not containingany internal operations.Having answered the original question in the a�rmative, we can then provethat weak re�nement is correct in the sense that: if speci�cation S2 is a weakre�nement of speci�cation S1, then there exists equivalent speci�cations to S1and S2, T1;T2 respectively, not containing internal operations such that T2 is astandard Z re�nement of speci�cation T1. The consequences of this are that wecan dispense with internal operations if we choose, but if we use them then theirweak re�nement is still correct.So far this discussion will have taken place in the context of divergence freespeci�cations. We will conclude this section with a discussion on the removal,and interpretation, of divergence due to livelock.A labelled transition system [BSS86] is a 4-tuple LTS = hS ;L;�!; s0i, whereS is a set of states, L a set of labels, �!2 S � L� S being a transition relation



22 John Derrick, Eerke Boiten, Howard Bowman and Maarten Steenand s0 2 S the initial state of the system. As usual we write s1 a�! s2 whenever(s1; a; s2) 2�!. We will need the following (standard) de�nitions:P a1:::an�! P 0 means that there exist P1; : : : ;Pn�1 2 S such that P a1�! P1 a2�!P2 : : :Pn�1 an�! P 0.P �=) P 0 if � = a1 : : : an means 9 k0; : : : ; kn 2 IN such that P ik0a1ik1a2:::an ikn�!P 0 P �=) means 9P 0 such that P �=) P 0P 6 �=) means that :(P �=))P after � = fP 0 j P �=) P 0g is the set of all states reachable from P after �.Ref (P ; �) = fX j 9P 0 2 P after � � P 0 6 a=);8a 2 X g is the refusal set of Pafter the trace �.Tr(P) = f� j P �=)g is the trace set of P .We also call P stable if P has no initial internal transition. In this discus-sion we can limit ourselves to stable systems since any Z speci�cation can beconsidered stable due to the presence of the (observable) initialisation schema.We can now de�ne reduction and testing equivalence for labelled transition sys-tems in a standard fashion [BSS86] (this is the formulation used in the LOTOScommunity, there are alternative, but equivalent, formulations in CSP).De�nition 1.Let P1 = hS1;L1;�!1; s0i and P2 = hS2;L2;�!2; t0i be labelled transition sys-tems. Then P1 red P2 i� (i) Tr(P1) � Tr(P2), and (ii) 8� 2 Tr(P1);Ref (P1; �) �Ref (P2; �).Reduction induces an equivalence called testing equivalence de�ned as fol-lows: P1 te P2 i� (i) Tr(P1) = Tr(P2), and (ii) 8� 2 Tr(P1);Ref (P1; �) =Ref (P2; �).It has been argued that testing equivalence is a natural and correct notion ofequivalence between systems [BB88]. Weak bisimulation is known to respect allthe distinctions which could reasonably be made by an external observer. How-ever, it is often considered too �ne and makes distinctions which couldn't reallybe made by an observer [Led91, BSS86]. Testing equivalence on the other handmakes precisely those distinctions which can be observed by testing the systemsunder consideration. If we consider labelled transition systems to represent thebehaviour of a system or speci�cation, we can use testing equivalence as a suit-able notion of equivalence, two systems are equivalent if their LTSs are testingequivalent.The context we are interested in here is how to answer the following ques-tion: given a Z speci�cation with internal operations explicitly speci�ed, can wedispense with such operations by adding their non-determinism to the observ-able operations present? If we can answer yes to this question (as is claimed in[WD96]), then we know that internal operations do not increase the expressivepower of the language. We can then even verify that weak re�nement is correctby showing that weak re�nement of a speci�cation with internal operations im-plies the normal Z re�nement if the internal operations are absorbed into theobservable ones.



Specifying and Re�ning internal operations in Z 23We �rst consider divergence free speci�cations, i.e. speci�cations without di-vergence due to livelock of internal operations. To show that for divergence freeZ speci�cations we can dispense with internal operations we will derive a trans-formation which will remove internal operations to create a Z speci�cation whichis testing equivalent to the original. We will �rst describe the transformation interms of labelled transition systems and prove that testing equivalence is pre-served, we will then give the transformation for Z speci�cations. This makesthe implicit assumption that we can represent Z speci�cations as labelled tran-sition systems in the obvious manner, the standard way to do this is given in[Smi95, CW92] for example.We use testing equivalence as our benchmark for equivalence of speci�cationsas opposed to the equivalence induced by weak re�nement because we wish tovalidate weak re�nement against the removal of internal operations. If we hadonly shown that the transformed speci�cation was weak re�nement equivalentto the original, we could not then show that the weak re�nement relation wascorrect. By using testing equivalence we can validate weak re�nement.Given a LTS P1 = hS ;L;�!1; s0i we derive another labelled transition sys-tem P2 = hS ;L;�!2; s0i which does not contain any internal transitions. Thetransformation is de�ned by the following rules:s1 a�!2 s2 i� s1 a=)1 s2for all observable actions a 2 L. Note that we are interested in stable labelledtransition systems (ones with no initial internal action), as all Z speci�cationshave an initialisation schema which is considered observable.As an example, we �nd the above de�nition produces the following transfor-mations, where in each example the original behaviour is given on the left withthe transformed behaviour on the right. Note that the purpose is to generate anequivalent LTS, but it will not necessary be the minimal such system.
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Example  1 Example  2Notice that P �=)1 P 0 if and only P �=)2 P 0. This implies that the tracesof the two systems are the same, i.e. Tr(P1) = Tr(P2), and furthermore therefusals are identical, that is for all traces �, Ref (P1; �) = Ref (P2; �). Thereforewe have proved:Theorem 1. Every labelled transition system has a transformation to a testingequivalent labelled transition system which contains no internal transitions.



24 John Derrick, Eerke Boiten, Howard Bowman and Maarten SteenIn the context of a Z speci�cation the transformation to remove internaloperations consists of rede�ning each observable operation AOp by an operationAOpS . That is AOpS is de�ned as followsAOpS b= IA o9 AOp o9 IANote that this de�nition is equivalent to taking the disjunction of all combina-tions of internal operations before and after AOp, i.e. AOpS b= AOp _ i o9AOp _AOp o9 i _ i o9 AOp o9 i _ i o9 i o9 AOp _ : : :. Observe that preAOpS = prew AOp.The transformed Z speci�cation will have an identical number of observableoperations, but with the internal operations simply removed. Note that weconsider the initialisation schema INIT as an observable operation, and thusthis too absorbs internal operations under the transformation if applicable (i.e.INITS b= INIT _ INIT o9 i _ INIT o9 i o9 i _ : : :).For example, consider the behaviour described by the following transitiondiagram, where a and b are observable events, and i represents an internal op-eration:
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3As a Z speci�cation we give this diagram its obvious interpretation as thespeci�cation:Statestate : f0; 1; 2; 3g Init�Statestate 0 = 0a�Statestate = 1 ^ state 0 = 3 b�Statestate = 0 ^ state 0 = 2 i�Statestate = 0 ^ state 0 = 1Then the equivalent speci�cation without internal operations is given by:Statestate : f0; 1; 2; 3g Init�Statestate 0 = 0 _ state 0 = 1a�State(state = 1 ^ state 0 = 3)_(state = 0 ^ state 0 = 3) b�Statestate = 0 ^ state 0 = 2With this transformation in place we know we can, if necessary, dispense withinternal operations in divergence free speci�cations. We are now in a position to



Specifying and Re�ning internal operations in Z 25prove that weak re�nement is correct with respect to standard Z re�nement,which we do now.

Theorem 2. Let S1 and S2 be Z speci�cations possibly containing internal oper-ations. Let S2 be a weak re�nement of S1. Then there exists equivalent speci�ca-tions to S1 and S2, denoted T1;T2 respectively, not containing internal operationssuch that T2 is a standard Z re�nement of the speci�cation T1.



26 John Derrick, Eerke Boiten, Howard Bowman and Maarten SteenProofWe assume that there is one internal operation called i in thespeci�cations. The proof generalises easily to an arbitrary numberof internal operations.Because S2 is a weak re�nement of S1 we know that if the operationCOp in S2 re�nes the operation AOp in S1, then the following hold:� 8Cstate 0 � Cinitw ` 9Astate 0 � Ainitw ^ Ret 0� 8Astate; Cstate � prew AOp ^ Ret ` prew COp� 8Astate; Cstate; Cstate 0 � prew AOp ^ Ret ^ COpw `9Astate 0 � Ret 0 ^ AOpwFrom the above we know there exist equivalent speci�cations with-out internal operations. For each operation Op, let OpS denote thetransformed operation given by the scheme above. We will provethe transformed speci�cations are re�nements, i.e., we will showthat� 8Cstate 0 � CinitS ` 9Astate 0 � AinitS ^Ret 0� 8Astate; Cstate � preAOpS ^ Ret ` preCOpS� 8Astate; Cstate; Cstate 0 � preAOpS ^ Ret ^ COpS `9Astate 0 � Ret 0 ^ AOpSInitializationWe can make the following deductionCinitS b= Cinit o9 IC) (Ainit o9 IA) ^ Ret 0) AinitS ^ Ret 0ApplicabilityWe can make a similar deduction as follows:preAOpS ^ Ret = pre(IA o9 AOp o9 IA) ^ Ret= pre(IA o9 AOp) ^ Ret) pre(IC o9 COp)= preCOpSCorrectnessFinally, in a similar manner:preAOpS ^ Ret ^ COpS ) prew AOp ^Ret ^ (IC o9 COp o9 IC )) Ret 0 ^AOpw) Ret 0 ^AOpSThis concludes the proof that weak re�nement is correct.



Specifying and Re�ning internal operations in Z 27The next subsection considers to what extent these results can carry over tospeci�cations that contain divergence in the form of livelock.

6.1. DivergenceSection 3.3 showed that the standard Z re�nement rules could allow divergenceto be introduced into a Z speci�cation upon re�nement. By divergence here wemean a state where an in�nite number of internal operations can be invoked,thus causing the system to potentially livelock where it keeps on performinginternal and non-visible computations. How best should we treat this type ofdivergence in Z? One possibility is to use the two re�nement rules D1 and D2,which guarantee that if the abstract speci�cation is divergence free, then so willthe re�nement. However, we would also like to consider whether a divergentspeci�cation could be considered equivalent to a speci�cation without internaloperations, i.e., whether we really can dispense with internal operations in allcircumstances. To answer this we need to consider di�ering interpretations ofdivergence.In a labelled transition system or process algebra there are two standard in-terpretations of divergence: a catastrophic or non-catastrophic view. The formeris based upon the idea that a process diverges after the trace � if any of itssubtraces diverge [BHA84, dNH84] (i.e. 9�0 � � such that the process divergesafter �0). The alternative non-catastrophic view says that a system P divergesafter � i� there is a state reachable from P by � such that in that state it is pos-sible to engage in an in�nite sequence of internal events [Led91]. These di�eringinterpretations are then reected in how di�erent equivalences treat divergence.For example, testing equivalence adopts the non-catastrophic view of diver-gence, so that it ignores divergence or treats it in a fair manner [Led91]. On theother hand the equivalence induced by must testing [Hen88] (denoted �must)adopts the catastrophic view of divergence. This equivalence coincides with thefailures equivalence of CSP [Hoa85], and therefore CSP is said to take a catas-trophic view of divergence, whereas LOTOS with its testing equivalence is saidto possess a non-catastrophic view of divergence. For example, consider the fol-lowing pairs of systems:
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We �nd that in examples 1 and 2, P1 te P2 (P1 and P2 have the sametraces and refusals) but P1 and P2 are not must-equivalent (because in bothcases P1 diverges whereas P2 does not). However, in example 3, P1 and P2 arenot testing equivalent (they have di�erent traces), yet they are must-equivalent(the traces only di�er after a point of divergence). Finally, example 4 exhibitstwo systems which are both testing and must-equivalent (they have the sametraces and refusals and both diverge initially).Adopting a non-catastrophic view of divergence allows one to remove inter-nal operations from a Z speci�cation using the same procedure as de�ned inthe previous section. The transformation de�ned above will remove internal op-erations from a divergent speci�cation and replace it with a testing equivalentspeci�cation containing no internal operations within it.If one wanted to adopt a catastrophic view of divergence it is more prob-lematic as to whether one can �nd an equivalent speci�cation without internaloperations in it. This depends on whether livelock divergence is considered tobe a potentially di�erent kind of divergence than that of a Z operation invokedoutside its precondition. Under a catastrophic view, in order to �nd an equiv-alent speci�cation without internal operations contained within it, we have toequate the two types of divergence. For example, in example 3 above, to �nd aspeci�cation which is equivalent to the behaviour P1, we would have to divergeat every trace after state s1, therefore the best approximation to this would bethe speci�cation:



Specifying and Re�ning internal operations in Z 29Statestate : fs0; s1g Init�Statestate 0 = s0a�Statestate = s0 ^ state 0 = s1This speci�cation can perform the operation a initially. However, subse-quently it is in state s1, which is outside the precondition of the operation a.Therefore any subsequent invocation of a will be divergent. The subtle intuitivedi�erence between this speci�cation and P1 is that in the former it is the invo-cation of an operation which causes the system to diverge, whereas in P1 thelivelock is invoked by the system itself. So in terms of removal of internal opera-tions it would seem therefore more natural to adopt a non-catastrophic view ofdivergence in the context of Z speci�cations.7. DiscussionAn important aspect of re�nement, in both the sequential and concurrent worlds,is the ability to strengthen an implementation by reducing the non-determinismin the abstract speci�cation. Indeed this is a property of standard Z re�nement inthe absence of internal operations. Adding internal operations in a speci�cationhas introduced an additional form of non-determinism into the language. Weshall see that weak-re�nement allows us to reduce this type of non-determinismby removing internal operations.Consider the behaviours described by the following transition diagrams, wherea and b are observable events, and i represents an internal operation (we haveomitted the transition formed by the initialisation schema):
a b
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These speci�cations are not equivalent in any sense, for example in a processalgebraic setting none of them are weak bisimulation equivalent. However, wewould like a re�nement to remove the non-determinism which is present in termsof the internal events, and for P1 to re�ne P2 which in turn re�nes P3. Indeed,seen as labelled transition systems or processes they are related in the sensethat, for example, P1 red P2 red P3, where red is the reduction relation de�nedabove. Weak re�nement, which we denote vw , also exhibits this property, thatis P3 vw P2 vw P1, but P1 6vw P2 6vw P3. In terms of Z speci�cations we aregiving these diagrams their obvious interpretation as described in Section 6.A slightly more complex example is given by the two behaviours de�ned bythe following, where again the event i is internal and all others are observable.
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Interpreted as Z speci�cations we �nd that P is a weak re�nement of Q .This example is interesting because by resolving the non-determinism, the im-plementation never o�ers the operation b. The retrieve relation which shows thisis a weak re�nement is given by the dotted lines in the above diagram. Becausepre b^Ret has a predicate which is false, b can be implemented by any operationin the concrete speci�cation (e.g. �State will do).Notice that, as one would hope, Q is not a weak re�nement of P , because wehave to quantify over all paths of internal operations in the concrete speci�ca-tion in the correctness criteria for weak re�nement. The corresponding relationsbetween labelled transition systems also hold, i.e. P red Q but :Q red P .One desirable property that standard Z re�nement possesses is that it isa congruence. That is, if speci�cation S is re�ned by S 0, then in any contextC [:], C [S 0] re�nes C [S ]. A consequence of this is that operations can be re�nedindividually and the whole speci�cation is then a re�nement of the original.However, weak re�nement is not a congruence, due to the presence of internaloperations. To see this consider the two speci�cations given by the followingbehaviours:
a i

P

a

Q

Then under weak re�nement these are equivalent, i.e. P vw Q and Q vw P .However, if we add just one further operation to each speci�cation which isapplicable at the initial state, i.e. we specify the behaviour
a b b

a

i

P Q

then, as we observed earlier, Q is not a weak re�nement of P . So congruence islost with weak re�nement. Incidentally, this counter-example is the same example



Specifying and Re�ning internal operations in Z 31that shows weak bisimulation is not a congruence in a process algebra, so theresult here is not surprising and the ability to �nd observational relations whichare congruences can be non-trivial.Although weak re�nement is not a congruence, it does possess useful proper-ties when used in uni�cation and consistency checking. Uni�cation is a methodused to combine partial speci�cations, and the uni�cation of two speci�cations istheir least common re�nement [BBDS97] (least in the sense that any other com-mon re�nement is a re�nement of the uni�cation). Partial speci�cations arisein many contexts [FS96], and one such context is their use as viewpoints indistributed systems, and in particular their use within the Open DistributedProcessing (ODP) standardization initiative [ITU95]. ODP is a joint standard-isation activity of the ISO and ITU. A reference model has been de�ned whichdescribes an architecture for building open distributed systems. Central to thisarchitecture is a viewpoints model. This enables distributed systems to be de-scribed from as a number of di�erent partial speci�cations, each representing adi�erent perspective.ODP is typical of applications where it is useful to use Z for the speci�ca-tion of distributed systems, i.e., one where we might wish to use a languagethat will support data re�nement of speci�cations which involve the complexrepresentation of state and use explicit internal operations in the description.The use of a number of viewpoints to represent multiple aspects of one systemunder construction means that we need to be able to check the viewpoints forconsistency. One consistency checking method is to construct their uni�cationand to check it for contradictions. [BDBS96] describes how this may be achievedif the viewpoints are speci�ed in Z. The uni�cation of two Z viewpoints is con-structed in two phases. In the �rst phase (\state uni�cation"), a uni�ed statespace for the two viewpoints has to be constructed. The viewpoint operationsare then adapted to operate on this uni�ed state. At this stage we have to checkthat a condition called state consistency is satis�ed. In the second phase, calledoperation uni�cation, each pair of adapted operations from the viewpoints whichare partial descriptions of the same operation have to be combined into a singleoperation on the uni�ed state. This also involves a consistency condition (opera-tion consistency) which ensures that the uni�ed operation is a re�nement of theviewpoint operations.What is the correct uni�cation strategy if the viewpoints contain internaloperations? In the context of ODP this is almost certain to happen, since theviewpoints occur at di�erent levels of abstraction, and operations in one view-point may be hidden in another. Do we have to transform the viewpoints toones not containing internal operations before we apply uni�cation? Fortunatelywe do not, since it can be shown that the least common weak re�nement isequivalent to the least common re�nement of the viewpoints without internaloperations. That is, if we use the transformation de�ned earlier that producedtesting equivalent speci�cations without internal operations, and take the leastcommon standard re�nement for the uni�cation, this uni�cation will be (test-ing) equivalent to the least common weak re�nement of the original viewpoints.The consequence of this is that we can unify using weak re�nement and we donot have to remove internal operations �rst - a transformation that can be verycomplex.The use of viewpoints, or partial speci�cations, in a number of applicationareas has led to proposals (see for example [Ben89, MD98, Fis97, Smi97]) tocombine state-based methods with process algebras in order that the strengths of



32 John Derrick, Eerke Boiten, Howard Bowman and Maarten Steena particular method can be applied in an appropriate way. It would be interestingto compare re�nement in these methodologies with the ideas of weak re�nementdiscussed in this paper.8. Related WorkIn this section we discuss related approaches to the issue of re�nement of state-based speci�cations containing internal operations. A preliminary version of thispaper appears in [DBBS97]. Other work in this area includes [Str95], [But97]and [Eva97]. The work of Strulo, [Str95], was discussed in Section 3.4, and weconsider here the proposals of Butler [But97] and Evans [Eva97].In [But97], Butler considers the design of distributed systems using the Babstract machine notation [Abr96]. His approach is based on the action systemformalism, and he considers re�nement of abstract machines which contain in-ternal actions. Although placed in a di�erent formalism, the re�nement rulesin [But97] can be seen to be a restricted version of the weak re�nement rulespresented here. Butler �rst considers re�nement of an abstract system M to aconcrete system N where neither contains any internal actions. Re�nement inthis context is de�ned by the following rules:1. M :init v N :init2. M :a v N :a for each (observable) action a3. AI ^ gd(M :a) ) gd(N :a) for each (observable) action awhere AI is the retrieve relation, v denotes action re�nement in B, M :arepresents the action a in system M , and gd(M :a) is the guard of the action ain system M . Informally the �rst two conditions ensure that each action of Nis re�nement of its counterpart in M . The third condition ensures that N mayonly refuse an action when M may refuse it.Butler then introduces internal actions in an abstract machine as follows,[But97]. \Internal actions are not visible to the environment of a machine. Anynumber of executions of an internal action may occur in between each executionof a visible action. If the action system reaches a state where internal actions canbe executed in�nitely, then the action system diverges. Internal actions do nothave input or output parameters, and are speci�ed explicitly in a machine." Toextend re�nement to a concrete system that may contain internal actions, we let�(N ) denote the set of internal actions in a system N . The extended re�nementrules are then given by:1. M :init v N :init2. M :a v N :a for each (observable) action a3. skip v N :h for each internal action h 2 �(N )4. AI ) E 2WF5. AI ^ E = e ) [N :h](E < e)6. AI ^ gd(M :a) ) gd(N :a) _ (9 h 2 �(N ) � gd(N :h)) for each (observable)action aThe divergence conditions (4 and 5) are identical to the ones we have used inour formulation of weak re�nement (as is the notation), and we do not discussthem further.



Specifying and Re�ning internal operations in Z 33The principal restriction made by Butler (and di�erence to our work) is toconsider only internal actions in the concrete system and for none to occur inthe system under re�nement. He therefore does not have a mechanism to re�nesystems containing internal actions. Such a restriction simpli�es the re�nementrules for internal actions considerably. For example, we �nd that rule 3: skip vN :h, can be deduced from the weak re�nement applicability rule applied tointernal operations, since in the Z setting skip corresponds to �State.Furthermore, because of the third condition, together with the divergenceconditions (4 and 5), the �nal condition (AI ^ gd(M :a) ) gd(N :a) _ (9 h 2�(N ) � gd(N :h))) represents the same requirements as the weak re�nementapplicability rule applied to observable operations. This is because conditions 4and 5 prevent in�nite execution of internal actions, and skip v N :h ensures thatexecution of an internal action won't e�ect the abstract state, so that gd(N :a)_(9 h 2 �(N ) � gd(N :h)) implies that potentially a �nite number of internalactions can occur and then N :a will be enabled. This represents the same criteriaas applicability in weak re�nement.However, the initialisation condition (1) and the correctness condition (2)here are more restrictive than their weak re�nement counterparts. For example,the B machine initialisation condition does not allow any internal evolution of theconcrete system unlike initialisation in weak re�nement. Correctness is similarlyrestrictive.Evans, in [Eva97], makes a proposal for the re�nement of Z speci�cationsin the presence of internal operations. Evans is principally concerned with thespeci�cation of safety and liveness properties, and discusses re�nement in thatcontext. Even without considering internal operations he uses a reformulation ofstandard Z re�nement which he claims will ensure that safety and liveness prop-erties are preserved under re�nement. This reformulation replaces the normalcorrectness criteria with the following:NextStateC ^�Abs ` NextStateAwhere Abs is the retrieve relation and NextStateC (NextStateA) is the disjunctionof all the operations in the concrete (abstract) speci�cation. For example, in theexternal view of the protocol discussed above, NextStateA would be Receive _Transmit .Evans then considers re�nement in the presence of internal operations, andhis de�nition uses four conditions, the standard initialisation condition togetherwith1. NextStateC ^�Abs ` NextStateA2. NextStateC ^:COp ^�Abs ` preAOp ) preAOp03. preAOp ^Abs ; preCOpwhere ; is a formulization of the leads-to property, see [Eva97] for details.NextStateC now includes all the internal operations, for example, in the sectionalview of the protocol, NextStateC will be SReceive _ STransmit _ Daemon.Unfortunately it is unclear whether internal operations are allowed in theabstract speci�cation or just the concrete. It is also not clear as to whether the�nal re�nement rule of Evans should apply to just the observable operations (asone would expect). Assuming that we apply the �nal re�nement rule to just theobservable operations, then this rule can be seen to be a weak applicability rule,



34 John Derrick, Eerke Boiten, Howard Bowman and Maarten Steenassuming the concrete speci�cation doesn't contain divergence (divergence is notdiscussed in [Eva97]).The motivation Evans gives for the second condition is its use as a livenesscondition to ensure that whenever an abstract operation is enabled, it will remainenabled at least until the corresponding concrete operation occurs. Because hisconditions are motivated by liveness and safety issues, his �rst two conditionsare orthogonal to the weak re�nement conditions whose motivation was di�erent.Again, like in the work of Butler but unlike our weak re�nement, the initialisationcondition of Evans does not allow any unobservable evolution of the initial statesof the system.9. ConclusionsThe motivation for the work described in this paper arose out of our interestin the use of Z for the speci�cation of distributed systems, and in particular itsuse within the Open Distributed Processing standardization initiative. A refer-ence model for the standard has been de�ned which describes an architecture forbuilding open distributed systems. Central to this architecture is a viewpointsmodel. This enables distributed systems to be described from a number of dif-ferent perspectives. There are �ve viewpoints: enterprise, information, computa-tional, engineering and technology. Z and LOTOS are strong candidates for usein some of the ODP viewpoints, for example Z in the information viewpoint andLOTOS in the computational and engineering viewpoints. The use of di�erentviewpoints speci�ed in di�erent languages means we have to have mechanismsto check for the consistency of speci�cations. One aspect of our work has beenthe development of means to check for the consistency of two Z speci�cations,and a means to translate LOTOS speci�cations into Z [DBBS96a].Requirements and speci�cations of an ODP system can be made from anyof the viewpoints, and these viewpoint speci�cations will typically be made atdi�erent levels of abstraction. It is important therefore that techniques, includ-ing re�nement, are developed to cope with such partial speci�cations occuringat di�ering levels of abstraction. The presence of internal operations in a speci�-cation is just one of the consequences of such an approach to large scale softwareengineering.In addition, development of viewpoints written in di�erent languages will beundertaken using di�erent re�nement relations, and this also motivates the needto develop a notion of weak-re�nement in Z which is related to re�nements inLOTOS. A full discussion of the relationships between the di�ering re�nementrelations is given in [DBBS96b] (which incidentally assumes the �ring conditioninterpretation discussed above).In this paper we used an example of a telecommunications protocol to showthat standard Z re�nement is inappropriate for re�ning a system when inter-nal operations are speci�ed explicitly. We then formulated a generalization of Zre�nement, called weak re�nement, which treats internal operations di�erentlyfrom observable operations when re�ning a system. We also discussed the roleof internal operations in a Z speci�cation, and in particular whether an equiv-alent speci�cation not containing internal operations can always be found. If aspeci�cation is divergence free we showed that we could �nd a testing equivalentspeci�cation that did not contain internal operations. In the presence of poten-
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