
System F with Width-subtypingand Record Updating ?Erik PollComputing Laboratory, University of Kent, Canterbury, EnglandAbstract. It is a well-known problem that F� { the polymorphic lambdacalculus F extended with subtyping { does not provide so-called polymor-phic updates, and that the standard PER model for F� does not provideinterpretations for these operations. The polymorphic updates are inter-esting because they play an important role in some type-theoretic modelsof object-oriented languages. We present an extension Fwidth of system Fwith a restricted form of subtyping { width-subtyping { on record types,that does provide these operations. The main result is that we show itis still possible to give a PER model for this system.1 IntroductionThere have been many attempts to model object-oriented languages in typedlambda calculi (see for instance [CW85], many of the papers in [GM94], [FM94],or [AC96]). The type systems used for these object models are usually variantsof F�, the extension of the polymorphic lambda calculus { system F { with sub-typing introduced in [CW85]. Unfortunately, F� has the well-known de�ciencythat it does not provide so-called polymorphic record-updates, discussed in moredetail below. These operations play an important role in some object models,notably in the existential object model introduced in [PT94].One solution to this problem has been the introduction of richer systems forrecord types and operations on records, e.g. [CM91] [Car92] [Zwa95]. But thesesystems are very expressive and (hence) rather complicated.Another approach is taken in [HP96], where subtyping is restricted to so-called positive subtyping. We go one step further and restrict this notion of pos-itive subtyping to width-subtyping on record types, resulting in a system Fwidth .The intended application of Fwidth { like that of [HP96] { is the existentialobject model of [PT94]. Width-subtyping has several advantages over positivesubtyping, notably the much simpler operational semantics and denotationalPER semantics.The syntax of Fwidth is given in Section 2. The main challenge is to provide asemantics for Fwidth , because the standard (PER) model construction for systemF seems to rule out polymorphic record-updates. However, we show that it is? to appear in: Proceedings of Theoretical Aspects of Computer Software (TACS'97),Sendai , Japan



2possible to extend the standard PER model to interpret Fwidth in Section 3.Section 4 gives a comparison with related work. We point out some possibleextensions of the system in Section 5 and conclude in Section 6. The rest ofthis section discusses polymorphic record-updates, their relevance for modellingobjects, why they cannot be typed using subtyping, and how they can be typedusing width-subtyping.Typing Polymorphic Record UpdatesPolymorphic Record Updates. Because we are in a functional setting, updating arecord means making a copy of a record with one or more of its �elds changed.An example of a function that updates a record is a function have birthdaythat takes a record of type hage :Nat; name :Stringi as input and returns therecord with its age-�eld increased by 1. Similar functions exist of course for allrecord types that include such an age-�eld, and we would like to be able to writea single generic or polymorphic function have birthday that can be applied toany record with an age-�eld of type Nat. This requires a record-update thatcan be applied to records of many di�erent types { viz. all record types with anage-�eld of type Nat { which is known as a polymorphic record-update.Polymorphic Updates and Objects. To understand the use for polymorphic up-dates for modelling objects, suppose that an object is modelled as a piece of state{ a record of instance-variables { together with a collection of functions { themethods { that act on this state. For example, objects of a class AGE could havestates of type hage:Nati and have birthday as one of their methods. Objectsin subclasses will have have richer states, i.e. states with more instance vari-ables. For example, objects of a subclass PERSON of AGE could have states of typehname:String; age:Nati. A method of a superclass should be applicable to thesericher states of objects in a subclass, e.g. have birthday should be applicableto the states of PERSON's. This means we want the polymorphic have birthdaydiscussed above as method of AGE.The Problem with Subtyping. The subtyping relation of F� captures the notion ofsubstitutivity: a type � is a subtype of � { written � � � { if an expression of type� can be used whenever an expression of type � is required, without introducingtype errors. Unfortunately, this notion of subtyping turns out to be too weakto type polymorphic updates such as the have birthday above. At �rst sightone expects that a good type for have birthdaywould be 8��hage:Nati: � ! �.But this is not the case! The problem is that there may be subtypes � of hage:Nati{ for example hage:Eveni { for which increasing the age-�eld of a term of type �by 1 does not produce a result of type �. The standard PER model of F� doesprovide all subsets of IN as subtypes of Nat, which means that in this model8��hage:Nati: � ! � has an identity function as its only element (see [BL90]).Width-Subtyping. Basically, the problem is that there are too many subtypes.



3Subtyping includes not only so-called width-subtypingm � n (width)hl1:�1; : : : ; lm:�mi � hl1:�1; : : : ; ln:�nibut also depth-subtyping�i � �i for all i = 1 : : : n (depth)hl1:�1; : : : ; ln:�ni � hl1:�1; : : : ; ln:�niWe will solve the problem of typing have birthday by considering width-subtypingin isolation. A type � is a width-subtype of � { written � v � { if � can be ob-tained from � by adding �elds. We write Mhl :=Ni for the record M with itsl-�eld changed to N and all its other �elds unchanged. The typing rule for thisupdate operation is� `M : � � ` N : � � v hl:�i (update)� `Mhl :=Ni : �So, for example, �x:�: xhage :=x:age+ 1i : � ! � for any � v hage:Nati, andthe polymorphic have birthday is obtained by abstracting over all � v hage:Nati:have birthday = �� v hage:Nati: �x:�: xhage :=x:age+ 1i: 8� v hage:Nati: � ! � :Polymorphic functions being parametric { which roughly means they behave inthe same way at di�erent types { we expect this type 8� v hage:Nati: � ! � tobe isomorphic to Nat! Nat. This isomorphism does indeed hold in the PERmodel given in Sect. 3 (Lemma 34).2 The System FwidthWe add 4 new term constructions to system F : records hl1 =M1; : : : ; ln =Mni,�eld-selections M:l, record-updatesMhl :=Ni, and width-bounded abstractions(�� v �:M). We add 2 new type constructions: record types hl1 :�1; : : : ; ln:�niand width-bounded quanti�cations (8� v �: �).De�nition 1. The terms M and types � of Fwidth are given by the grammarM ::= x j �x:�: M jMM j ��:M jM�j hl =M; : : : ; l =Mi jM:l jMhl :=Mi j �� v �: M� ::= � j � ! � j 8�: � j hl:�; : : : ; l:�i j 8� v �: �Here x ranges over term-variables, � over type-variables, and l over a countableset of labels. Free and bound variables are de�ned as usual. Terms and types equalup to the names of bound variables and permutation of �elds are identi�ed. We



4assume that in hl1:�1; : : : ; ln:�ni and hl1 = M1; : : : ; ln = Mni no label li occurstwice. We write [e=x]e0 for the capture-free substitution of e for x in e0.The contexts of Fwidth are given by� ::= � j �; x : � j �; � : Type j �; � v �with the restriction that no variable may be declared twice, and that in �; x:�and �; � v � all free type variables in � must be declared in � .We write � ` � : Type if all free type variables in � are declared in � .De�nition 2. The width-subtype relation � ` � v � is the smallest relationclosed under the following rules:�; � v �; � 0 ` � v � (v-context)m � n � ` �i : Type for all i = 1 : : :m� ` hl1:�1; : : : ; lm:�mi v hl1:�1; : : : ; ln:�ni (v-width)� ` � v hi� ` � v � (v-refl) � ` � v � � ` � v �� ` � v � (v-trans)Note that width-subtyping is only de�ned on record types. � ` � v hi meansthat � is a record type, so the rule (v-refl) states that v is only reexive onthe record types.De�nition 3. The typing relation � ` M : � of Fwidth is the smallest relationclosed under the type inference rules of F�; x : �; � 0 ` x : � (var)�; x : � `M : �� ` �x:�: M : � ! � (!-intro) � `M : � ! � � ` N : �� `MN : � (!-elim)�; �:Type `M : �� ` ��:M : 8�: � (8-intro) � `M : 8�: � � ` � : Type� `M� : [�=�]� (8-elim)plus the additional rules� `M : � � ` � v �� `M : � (v-sub)� `M1 : �1 : : : � `Mn : �n� ` hl1 =M1; : : : ; ln =Mni : hl1:�1; : : : ; ln:�ni (record-intro)� `M : hl1:�1; : : : ; ln:�ni li 2 fl1; : : : ; lng� `M:li : �i (record-elim)



5� `M : � � ` N : � � ` � v hl:�i� `Mhl :=Ni : � (update)�; � v � `M : �� ` �� v �:M : 8� v �: � (8v-intro)� `M : 8� v �: � � ` � v �� `M� : [�=�]� (8v-elim)De�nition 4. The �-reduction relation �� on terms is given by the rewriterules (�x:�: M)N �� [N=x]M(��: M)� �� [�=�]M(�� v �:M)� �� [�=�]Mhl1 =M1; : : : ; ln =Mni:li �� MiMhl :=Ni:l0 �� �M:l0 if l 6= l0N if l = l0We write �>� for the reexive and transitive closure of ��, and � `M ��N : �as abbreviation for M �� N and � `M : � and � ` N : �.Theorem 5 (Church-Rosser). If M��M1 and M��M2 thenM1�>� N andM2�>� N for some term N .Proof. Standard. utLemma 6 (Generation). 1. If � ` hl1 =M1; : : : ; ln =Mni : �, then� = hl01:�1; : : : ; l0m:�mi with fl1; : : : ; lng � fl01; : : : ; l0mg and � `Mi : �j for allli = l0j 2 fl01; : : : ; l0mg.2. If � `Mhl :=Ni : �, then � `M : �, � = hl1:�1; : : : ; ln:�ni, and � ` N : �iif l = li 2 fl1; : : : ; lng.Proof. Induction on the derivation (which can only end with (v-sub) or with(record-intro) for 1, and with (v-sub) or (update) for 2.). utLemma 7 (Substitution). Let J be a judgement of the form M :� or � v � .Then1. If �; x:�; � 0 ` J and � ` N : � then �; [N=x]� 0 ` [N=x]J .2. If �; �:Type; � 0 ` J and � ` � : Type then �; [�=�]� 0 ` [�=�]J .3. If �; � v �; � 0 `M : � and � ` � v � then �; [�=�]� 0 ` [�=�]J .Proof. Induction on the derivation of J . utTheorem 8 (Subject Reduction). If � `M : � andM��N then � ` N : �.



6Proof. By induction on the derivation of � `M : � we simultaneously prove1. � `M : � ^ M �� N ) � ` N : �,2. � `M : � ^ � �� � 0 ) � 0 `M : �.The interesting cases are the cases of 1 where M is the redex. We treat one casein detail.{ Suppose the last step in the derivation is (record-elim). If M �� N is areduction M 0:l �� N 0:l with M 0 �� N 0, then the proof is easy. If M itself isthe redex, then there are two possibilities:� M �� N is the reduction hl1 =M1; : : : ; ln =Mni:li �� Mi. Then thederivation ends with� ` hl1 =M1; : : : ; ln =Mni : hl1:�1; : : : ; lm:�mi(i)� ` hl1 =M1; : : : ; ln =Mni:li : �i (record-elim)and by Lemma 6.1 it follows from (i) that � `Mi : �i.� M �� N is the reduction M1hl :=M2i:li �� �M1:li if l 6= liM2 if l = liThis case is proved in roughly the same way, now using Lemma 6.2.For the other �-reduction rules the substitution lemma (Lemma 7) is needed. utFor records the notion of �-equality is type-dependent. E.g., M is �-equal tohl =M:li ifM : hl:�i, but not ifM : hl:�; l0:�0i. So we can only talk of ��-equalityof well-typed terms at a certain type, which is written � `M =�� N : �.De�nition 9. We de�ne ��-equality (at a given type, in a given context) as thesmallest equivalence relation { i.e. reexive, symmetric, and transitive relation{ closed under the �- and �-rules� `M : � M �� N� `M =�� N : �� ` (�x:�: M)x : � x not free in M� ` (�x:�: M)x =�� M : �� ` (��:M)� : � � not free in M� ` (��:M)� =�� M : �� ` (�� v �:M)� : � � not free in M� ` (�� v �:M)� =�� M : �� `M : hl1:�1; : : : ; ln:�ni� ` hl1 =M:l1; : : : ; ln =M:lni =�� M : hl1:�1; : : : ; ln:�ni� `Mhl :=M:li : �� `Mhl :=M:li =�� M : �



7the following congruence rule for subsumption� `M =�� N : � � ` � v �� `M =�� N : �and �nally congruence rules for each term constructor:�; x : � `M =�� M 0 : �� ` �x:�:M =�� �x:�: M 0 : � ! � � `M =�� M 0 : � ! � � ` N =�� N 0 : �� `MN =�� M 0N 0 : ��; �:Type `M =�� M 0 : �� ` ��:M =�� ��:M 0 : 8�: � � `M =�� M 0 : 8�: � � ` � : Type� `M� =�� M 0� : [�=�]��; � v � `M =�� M 0 : �� ` ��v�:M =�� ��v�:M 0 : 8�v�: � � `M =�� M 0 : 8�v�: � � ` � v �� `M� =�� M 0� : [�=�]�� `M =�� M 0 : hl1:�1; : : : ; ln:�ni� `M:li =�� M 0:li : �i� `M1 =�� M 01 : �1 : : : � `Mn =�� M 0n : �n� ` hl1 = M1; : : : ; ln = Mni =�� hl1 = M 01; : : : ; ln = M 0ni : hl1:�1; : : : ; ln:�ni� `M =�� M 0 : � � ` N =�� N 0 : � � ` � v hl:�i� `Mhl :=Ni =�� M 0hl :=N 0i : �� `M =�� M 0 : � l1 6= l2 � ` Ni =�� N 0i : �i and � ` � v hli:�ii for i = 1; 2� `Mhl1 :=N1ihl2 :=N2i =�� M 0hl2 :=N 02ihl1 :=N 01i : �Lemma 10. If � `M = N : � then � `M : � and � ` N : �.Proof. Induction on the derivation of � `M =�� N : �, using the subject re-duction property to deal with the �-rules. ut2.1 Application to the Existential Object ModelIn the existential object model of [PT94] classes are polymorphic records of"pre-methods" that can be used either to create objects or to build sub-classes.These classes can be written in Fwidth exactly as in [HP96]. All the examples ofclass de�nitions given in [HP96] are immediately typable in Fwidth , so we willjust give one of these and refer to [HP96] and [PT94] for more explanation. Forexample, a simple class of points with interfaceM(�) = hget : �! Int; set : �! Int! �; bump : �! �iand representation type R = hx : Inti is given byPointClass= �� v hx : Inti: �self :M(�):hget = �s : �: s:x; set = �s : �; i : Int: shx := ii; bump = �s : �: self:set s((self:get s) + 1)i: 8� v R:M(�)!M(�):



8 Another use of width-subtyping is to model objects with public instancevariables. In the existential object model the type of objects with interface Mis Object(M) = 9�: hstate : �; methods :M(�)i. Using a width-bounded quan-ti�cation in this type we can expose some of the representation and make one ormore instance variables public. For example, 9� v hx:Inti: hstate : �; methods :M(�)i is the type of objects with interfaceM that have a public instance variablex of type Int.3 PER SemanticsThe PER model for Fwidth given below extends the standard PER model forsystem F . Types are interpreted as partial equivalence relation (pers) on IN, andterms as (indices of) partial recursive functions. If the per R is the interpretationof type �, then interpretations of terms of type � are equal if they are relatedby R.The di�culty in modelling Fwidth is �nding a suitable relation on pers tointerpret width-subtyping. Width-subtyping is a "structural" subtype relation:the width-subtype of a record type is a record type. On the other hand, theinterpretation of subtyping in the PER model for F� [BL90] is the "unstruc-tured" subset relation on pers, which { as explained in the introduction { isprecisely why it does not provide polymorphic updates. The interpretation ofwidth-subtyping in the PER model is made possible by the fact that we can tellwhich pers are interpretations of record types.De�nition 11. A partial equivalence relation (per) is a relation that is symmet-ric and transitive. PER is the collection of partial equivalence relations over IN.We write domR for fn 2 IN j (n; n) 2 Rg and ; for the empty relation.De�nition 12. We assume some enumeration of the partial recursive functions,and write n �m for the application of the nth partial recursive function to m.Application associates to the left. We write n�m " for "n�m is unde�ned", andn �m # for "n �m is de�ned". Whenever we write (E;E0) 2 R or E 2 domR forcertain expressions E and E0, it is implicit that these expressions are de�ned.3.1 The Interpretation of TermsThe interpretation of terms is a simple extension of the interpretation of termsin the standard PER model. Records are interpreted as in [BL90], i.e. as (indicesof) partial recursive mappings from labels to values. Record updating is theneasy to interpret, namely as the change of such a mapping for one of its inputs.To reduce notational clutter, we assume that the set of labels is IN. A modelcould be given based on an arbitrary enumeration of the labels, but havingnatural numbers as labels saves us some irrelevant and confusing indexing oflabels.To interpret terms we �rst erase all their type information:



9De�nition 13. The type erasure Erase(M) of a term M is de�ned byErase(x) = xErase(�x:�: M) = �x: Erase(M)Erase(MN) = Erase(M)Erase(N)Erase(��:M) = Erase(M)Erase(�� v �:M) = Erase(M)Erase(M�) = Erase(M)Erase(hl1 =M1; : : : ; ln =Mni) = hl1 = Erase(M1); : : : ; ln = Erase(Mn)iErase(M:l) = Erase(M):lErase(Mhl :=Ni) = Erase(M)hl :=Erase(N)iDe�nition 14. 1. If E(x) is a partial recursive description of a natural numberdepending on some input x, we write ��x: E(x) for the index of the partialrecursive function for which ��x: E(x)�n = E(n) .2. If fl1 7! m1; : : : ; ln 7! mng is a partial recursive mapping on natural num-bers, we write hhl1 7! m1; : : : ; ln 7! mnii for the index of a partial recursivefunction for which hhl1 7! m1; : : : ; ln 7! mnii�li = mi for all li 2 fl1 : : : ; lng.3. For m;n; l 2 IN we write mhhl 7! nii for the index of the partial recursivefunction such that mhhl 7! nii�i = �m�i if i 6= l,n if i 6= l.The constructions above are used to interpret lambda-abstractions, records, andrecord-updates:De�nition 15. Let � be a term environment, i.e. a mapping from term variablesto IN. The (possibly unde�ned) interpretation [M ]� 2 IN of an erased term Min � is given by: [x]� = �(x)[�x:M ]� = ��n: [M ]�[x7!n][MN ]� = [M ]� �[N ]�[hl1 =M1; : : : ; ln =Mni]� = hhl1 7! [M1]� ; : : : ; ln 7! [Mn]�ii[M:l]� = [M ]� �l[Mhl :=Ni]� = [M ]� hhl 7! [N ]�iiThe (possibly unde�ned) interpretation [[M ]]� 2 IN of a typed term M in � isnow de�ned by [[M ]]� = [Erase(M)]�.Before it can be proved that [[M ]]� is de�ned for well-typed terms M , we �rsthave to de�ne the interpretation of types.



103.2 The Interpretation of TypesFunction types are interpreted as usual, and record types as in [BL90]:De�nition 16. Let R;S 2 PER. Then R!! S 2 PER is de�ned byR!! S = f(f; f 0) j 8r; r0: (r; r0) 2 R) (f �r; f 0 �r0) 2 Sg:De�nition 17. Let L � IN and Rl 2 PER for every l 2 L. Then hhl 7! Rl j l 2Lii 2 PER is de�ned byhhl 7! Rl j l 2 Lii = f(x; y) j 8l 2 L: (x�l; y �l) 2 Rlg:We write hhl1 7! R1; : : : ; ln 7! Rnii for hhli 7! Ri j li 2 fl1; : : : ; lngii. Note thathhl1 7! R1; : : : ; ln 7! Rnii = ; as soon as one of the Ri is ;.To de�ne the interpretation of types we need a suitable relation v on PER tointerpret width-subtyping. For this we use the following operations:De�nition 18. Let R 2 PER and l 2 IN. Then1. R has an l-�eld { written R# l { i� 8x 2 domR: x�l# .2. R�l is the relation f(x�l; x0 �l) j (x; x0) 2 Rg.N.B. note that R�l is not necessarily a per!Lemma 19. Let R = hhl 7! Rl j l 2 Lii 6= ; with L a decidable set (i.e. L has apartial recursive characteristic function). Then1. R# l() l 2 L,2. R�l = Rl for all l 2 L.Proof. 1. ((): Let l 2 L. It follows from (r; r) 2 R = hhl 7! Rl j l 2 Lii that(r �l; r �l) 2 Rl, and hence r# l. So r# l for all r 2 domR, i.e. R# l .()): R 6= ;, so we can assume an r such that r 2 domR.Suppose towards a contradiction that R # l and l 62 L. Now let r0 be theindex of the partial recursive function withr0 �i = � r �i if i 62 L;unde�ned otherwise:Here the restriction to decidable sets L is needed, namely to guarantee thatsuch an index r0 exists: for decidable L the de�nition of r0 above is partialrecursive. Now r0 2 domR and r0 �l ", which contradicts R# l.2. Let l 2 L. To prove: R�l = Rl.(�): Suppose (n; n0) 2 R �l. Then there is an (r; r0) 2 R such that r �l = nand r0 �l = n0. Since R = hhl1 7! R1; : : : ; ln 7! Rnii it follows from (r; r0) 2 Rthat (r �l; r0 �l) 2 Rl, i.e. (n; n0) 2 Rl.(�): Suppose (n; n0) 2 Rl. To prove that (n; n0) 2 R�l we have to prove thereexist some (s; s0) 2 R such that s � l = n and s0 � l = n0. Such s and s0 areeasy to construct: R 6= ;, so there exists some (r; r0) 2 R, and we can takes = rhhl 7! nii and s0 = r0hhl 7! n0ii. ut



11We de�ne a collection RPER � PER of "record pers":De�nition 20. R 2 RPER i� R 2 PER, R = hhl 7! R�l j R# lii, and R�l 2 PERfor all R# l.Recall that R � l is not necessarily a per for R 2 PER. For R 2 RPER it is,provided R# l. All record types are interpreted as record pers:Lemma 21. Suppose R = hhl 7! Rl j l 2 Lii with all Rl 2 PER and L adecidable set. Then R 2 RPER.Proof. We distinguish two cases. If R 6= ;, then by Lemma 19 R # l () l 2 Land R�l = Rl for all l 2 L, and so R�l 2 PER for all R# l and hhl 7! R�l j R# lii =hhl 7! Rl j l 2 Lii = R. If R = ;, then R # l and R �l = ; for all l 2 IN; clearly; 2 PER, and hhl 7! ; j l 2 INii = ;. utThe restriction to decidable sets L in the lemma above is of course no problem,as any record type in Fwidth will have a decidable set of labels. There is a relationon pers that corresponds to width-subtyping:De�nition 22. The relation v on PER is de�ned byR v S () R;S 2 RPER ^ (R = ; _ 8S # l: R# l ^ R�l = S �l):Some simple properties of v:Lemma 23. 1. R v S ) R � S.2. v is transitive.3. Suppose R = hhl 7! Rl j l 2 Lii and S = hhl 7! Rl j l 2 L0ii, with L0 � L, andL and L0 decidable sets. Then R v S.The relation v on PER is used to interpret width-bounded quanti�cation intypes :De�nition 24. Let � be a type environment, i.e. a mapping from type variablesto PER. The interpretation [[�]]� 2 PER of a type � in � is given by[[�]]� = �(�)[[� ! � ]]� = [[�]]� !! [[� ]]�[[hl1:�1; : : : ; ln:�ni]]� = hhl1 7! [[�1]]� ; : : : ; ln 7! [[�n]]�ii[[8�: �]]� =\R2PER [[�]]�[�7!R][[8� v �: �]]� =\Rv[[�]]� [[�]]�[�7!R]



123.3 SoundnessWe now prove that the interpretation of types is sound with respect to v, andthat the interpretation of terms is sound with respect to typing, reduction, andequality.De�nition 25. Let � be a type environment and � a term environment. Then� satis�es � { written � j= � { i� �(�) v [[�]]� for all � v � in � . The pair (�; �)satis�es � { written (�; �) j= � { i� � j= � and �(x) 2 dom [[�]]� for all x : � in� .Theorem 26 (Soundness of Width-subtyping).If � ` � v � then [[�]]� v [[�]]� for all � j= � .Proof. Easy induction on the derivation of � ` � v �. For (v-context) weuse the de�nition of � j= � , for (v-trans) Lemma 23.2, and for (v-width)Lemma 23.3. utTheorem 27 (Soundness of Typing).If � `M : � then ([[M ]]� ; [[M ]]�) 2 [[�]]� for all (�; �) j= � .Proof. By induction on the derivation of � `M : � we prove1. there is a partial recursive f : INk ! IN such that f(�(x1); : : : ; �(xk)) =[[M ]]� for all (�; �) j= � , where x1; : : : ; xk are the term variables declared in� ,2. ([[M ]]� ; [[M ]]�0) 2 [[�]]� for all � j= � and (�; �0) 2 [[� ]]�,where [[� ]]� is the partial equivalence relation on term environments de�ned by(�; �0) 2 [[� ]]� () 8(x:�) 2 � : (�(x); �0(x)) 2 [[�]]� :(So, if � j= � and (�; �0) 2 [[� ]]� then (�; �) j= � .)Compared with the proof for system F there are 6 additional cases, one foreach new inference rule. For the rule (v-sub) the property R v S ) R � S(Lemma 23.1) is needed. We only treat the most interesting case:Suppose the last step in the derivation of � `M : � is� `M 0 : � � ` N : � � ` � v hl:�i (update)� `M 0hl :=Ni : �So M =M 0hl :=Ni.1. Follows directly from the induction hypothesis.2. Suppose (�; �0) 2 [[� ]]� . De�ne m = [[M ]]�, m0 = [[M ]]�0 , S = [[�]]�, n = [[N ]]� ,n0 = [[N ]]�0 , and T = [[� ]]� . By the induction hypothesis (m;m0) 2 S and(n; n0) 2 T . By Theorem 26 it follows from � v hl:�i that S v hhl 7! T ii,so S 2 RPER and S �l = T . To prove: (mhhl 7! nii;m0hhl 7! n0ii) 2 S. SinceS 2 RPER this is equivalent to 8S # i: (mhhl 7! nii�i;m0hhl 7! n0ii�i) 2 S �i.Suppose S # i. We distinguish two cases:



13{ i 6= l. Then mhhl 7! nii�i = m�i and m0hhl 7! n0ii�i = m0 �i, and(m�i;m0 �i) 2 S �i since (m;m0) 2 S.{ i = l. Then mhhl 7! nii�i = n and m0hhl 7! n0ii�i = n0, and (n; n0) 2 T =S �l. utLemma 28. If [[M ]]�[x7![[N ]]�] and [[[N=x]M ]]� are de�ned, then they are equal.Proof. Induction on the structure of M . utLemma 29. If M ��M 0 and [[M ]]� and [[M 0]]� are de�ned, then they are equal.Proof. Induction on the generation ofM��M 0. Apart from the congruence rules,for which the proof is trivial, there are 5 reduction rules to consider. The cases(��: M)� ��M and (�� v �:M)� �� [�=�]M are trivial, as Erase((��: M)�) =Erase(M) = Erase((�� v �:M)�) = Erase([�=�]M). The case (�x:�: M)N ��[N=x]M follows from the substitution lemma (Lemma 28) as usual. The tworemaining cases are very simple: it follows directly from the de�nition of [[ ]] that[[hl1 =M1; : : : ; ln =Mni:li]]� = [[Mi]]�[[Mhl :=Ni:l0]]� = � [[M ]]� �l0 if l 6= l0[[N ]]� if l = l0 utSoundness of reduction easily follows from the lemma above:Theorem 30 (Soundness of �-Reduction).Suppose � `M �� M 0 : �. Then ([[M ]]� ; [[M 0]]�) 2 [[�]]� for all (�; �) j= � .Proof. By soundness of typing (Theorem 27) [[M ]]� and [[M 0]]� are de�ned andin dom [[�]]� . So by Lemma 29 [[M ]]� = [[M 0]]� , and ([[M ]]� ; [[M 0]]�) 2 [[�]]� followsfrom the fact that [[�]]� is reexive on dom [[�]]� . utTheorem 31 (Soundness of ��-Equality).Suppose � `M =�� M 0 : �. Then ([[M ]]� ; [[M 0]]�) 2 [[�]]� for all (�; �) j= � .Proof. Induction on the derivation of � ` M =�� M 0 : �. For the case thatM ��M 0 we use soundness of reduction (Theorem 30). We treat just one of themore interesting cases:Suppose the last step in the derivation is � `Mhl :=M:li : � (i)� `Mhl :=M:li =�� M : �.To prove: ([[M ]]� ; [[Mhl :=M:li]]�) 2 [[�]]� . By Lemma 6.2 it follows from (i) that� = hl1:�1; : : : ; ln:�ni and that � `M : � (ii). Now([[M ]]� ; [[Mhl :=M:li]]�) 2 [[hl1:�1; : : : ; ln:�ni]]�() 8li 2 fl1; : : : ; lng: ([[M ]]� �li; [[Mhl :=M:li]]� �li) 2 [[�i]]� by def. [[ ]]�() 8li 2 fl1; : : : ; lng: ([[M ]]� �li; [[M ]]� �li) 2 [[�i]]� by def. [[ ]]�() ([[M ]]� ; [[M ]]�) 2 [[hl1:�1; : : : ; ln:�ni]]� by def. [[ ]]�and this follows from (ii) by soundness of typing (Theorem 27). ut



14 In the remainder of this section we show that the model provides exactly thepolymorphic update operations one expects. First we show that a polymorphicupdate g : (8� v hl:�i: �! �) can only change the l-�eld of its input, and leavesany other �elds unchanged.Lemma 32. Let (g; g) 2 TXvhhl7!SiiX !! X and (m;m) 2 X v hhl 7! Sii forsome per S. Then g �m�i = m�i for all i 6= l such that X # i.Proof. X v hhl 7! Sii, so X = hhX �i j i 2 X # iii and X # l with X �l = S.De�ne Y = hhi 7! Yi j X # iii with Yi = �S if i = l,f(m�i;m�i)g if i 6= l.Informally, Y is the record per X with all �elds except l restricted to a one-pointper. Clearly, (m;m) 2 Y . Also, Y v hhl 7! Sii, and hence (g; g) 2 Y !! Y and(g �m; g �m) 2 Y . But by the de�nition of Y this means that (g �m�i; g �m�i) 2 Yifor all i 2 I , and so (g�m�i; g�m�i) 2 f(m�i;m�i)g for all i 6= l such that X # i. utAn immediate consequence of this lemma:Corollary 33. If � ` g : (8� v hl:�i: �! �) and � `M : � with � ` � v hl:�i,then [[(g�M):li]]� = [[M:li]]� for all � `M:li : �i with li 6= l and � j= � .The type (8� v hl:�i: �! �) contains at least one member for every functionf : hl:�i ! hl:�i, namely �� v hl:�i: �x:�: xhl :=(fx):li. In fact, it is di�cult toimagine functions of this type that are not of this form. The mapping fromhl:�i ! hl:�i to (8� v hl:�i: �! �) given above is indeed an isomorphism inthe PER model1 :Lemma 34. IN= [[8� v hl:�i: �! �]]� and IN= [[hl:�i ! hl:�i]]� are isomorphicfor all � j= � .Proof. Let � = (8� v hl :�i: � ! �), S = [[hl:�i]]�, and R = [[�]]�. The isomor-phism between IN=R and IN=(S !! S) is given by the interpretations of� = �g 2 �: ghl:�i : �! hl:�i ! hl:�i = �f 2 hl:�i ! hl:�i: �� v �: �x:�: xhl :=(fx):li : (hl:�i ! hl:�i) ! �i.e. by [[�]] = ��x: x and [[ ]] = ��f��x��i: �x�i if i 6= lf �x�l if i = lLet � 2 IN=R ! IN=(S !! S) and 	 2 IN=(S !! S) ! IN=R be the functionson equivalence classes induced by [[�]] and [[ ]]. So �([g]R) = [[[�]] �g]S!!S and	([f ]S!!S) = [[[ ]]�f ]R, where [n]X denotes the X-equivalence class containing n.It follows from soundness of typing (Theorem 27) that � and 	 are well-de�nedfunctions on equivalence classes. That they are each other's inverses follows fromthe properties1 Note that interpretations of types are isomorphic if there is an isomorphism betweentheir equivalence classes, as [[�]]� gives the notion of equality for interpretations ofterms of type �, and so the number of di�erent interpretations of terms of type � isthe number of [[�]]�-equivalence classes.



151. (f; f) 2 S !! S ) (f; [[�]] �[[ ]] �f) 2 S !! S,2. (g; g) 2 R ) (g; [[ ]] �[[�]] �g) 2 R,which are proved below. Note that [[�]] is simply the identity, so [[�]]�[[ ]]�f = [[ ]]�fand [[ ]] �[[�]] �g = [[ ]] �g.1. (f; f) 2 S !! S() 8(x; x0) 2 S: (f �x; f �x0) 2 S by def. !!() 8(x; x0) 2 S: (f �x�l; f �x0 �l) 2 [[�]]� since S = hhl 7! [[�]]�ii() 8(x; x0) 2 S: (f �x�l; [[ ]] �f �x0 �l) 2 [[�]]� since f �x0 �l = [[ ]] �f �x0 �l() 8(x; x0) 2 S: (f �x; [[ ]] �f �x0) 2 S since S = hhl 7! [[�]]�ii() (f; [[ ]] �f) 2 S !! S by def. !!2. Suppose (g; g) 2 R. To prove: (g; [[ ]]�g) 2 R. Since R = TXvS X !! X , thisis equivalent to 8X v S: 8(x; x0) 2 X: (g �x; [[ ]] �g �x0) 2 X.Let X v S and (x; x0) 2 X . So X 6= ; and it follows by the de�nition of vthat X = hhi 7! X �i j X # iii with X # l and X � l = S � l = [[�]]�. To prove:(g �x; [[ ]] �g �x0) 2 X , which is equivalent to 8X # i: (g �x�i; [[ ]] �g �x0 �i) 2 X �i.Suppose X # i. We distinguish two cases:{ i = l. Then [[ ]] �g �x0 �i = g �x0 �l, so to prove: (g �x�l; g �x0 �l) 2 X �l.From (g; g) 2 R � X !! X and (x; x0) 2 X it follows that (g�x; g�x0) 2 X ,and so (g �x�l; g �x0�l) 2 X �l.{ i 6= l. Then [[ ]] �g �x0 �i = x0 �i, so to prove: (g �x�i; x0 �i) 2 X �i.It follows from (x; x0) 2 X and X # i that (x�i; x0 �i) 2 X �i. So it su�cesto prove g �x�i = x�i, which follows from Lemma 32. ut4 Related Work[Oho95] also describes an extension of system F with width-bounded quanti�-cation and a primitive for record updating, but without subsumption. His maininterest however is the predicative part of this system, in particular an ML-style(i.e. implicitly typed) type system that corresponds to this predicative part, andthe problem of its compilation.Several other extensions of F that provide polymorphic record updates havebeen proposed [CM91][Car92][Zwa95][HP96]. The system Fwidth is simpler thanall of these. It is also less expressive, but it does provide all the record operationsneeded for the existential object model in [PT94].Instead of updating, the systems in [CM91] and [Car92] provide operationsfor removing and adding �elds to records as primitives. This has several conse-quences. Firstly, in order to type these primitives we need operations for remov-ing and adding �elds to record types, whereas in Fwidth no new operations ontypes are needed. Secondly, to safely add �elds to records we need types thatexpress "negative" information (i.e. tell about the absence of certain �elds). InFwidth we only need types that express "positive" information (i.e. about thepresence of certain �elds).



16 Although the system described in [CM91] is very expressive, it can not expresswidth-subtyping or width-bounded quanti�cations. In this system the polymor-phic update have birthday will have type8� � hage:Nati: � ! � � age+ hage:Natiwhere �l and +hl : �i are the operations of removing and adding �elds to recordtypes. The bounded quanti�cation in this type can not be restricted to thosetypes � for which � � age + hage :Nati will be equal to � (i.e. to the width-subtypes of hage:Nati).The system F# presented in [Zwa95] provides a "merge"-operation that canbe used to concatenate a record to another record, overwriting any common�elds, provided the records have "compatible" types. Fwidth is a subsystem ofF#: the update operation is a simple case of the merge operation, and width-subtyping is a combination of ordinary subtyping and compatibility: width-subtypes are exactly the compatible subtypes.The notion of width-subtyping is also considered in [BL94] but in quite adi�erent setting, namely the lambda calculus with additional primitives for ob-jects { so-called object calculus { introduced in [FHM94]. Consequently, width-subtyping is there not a relation on record types but a relation on special objecttypes.[AC95] describes another object calculus with a subtype relation on objecttypes. But here the subtype relation is more general than just width-subtyping:annotation of the �elds in object types controls whether depth-subtyping is al-lowed on each individual �eld, so that both conventional subtyping and width-subtyping are essentially special cases of this single subtype relation.4.1 Comparison with Positive SubtypingIn [HP96] another restriction of subtyping is used to deal with the update-operations, namely positive subtyping. We write �+ for positive subtyping, andF pos for the extension of F with positive subtyping given in [HP96]. Positivesubtyping is a weaker relation than width-subtyping, i.e.v��+ ��. For�+ wehave all the usual subtyping rules, with the exception of the contrapositive rulefor function types. In particular, �+ includes both width- and depth-subtyping.So, for example hl:hx; y:Natii �+ hl:hx:Natii. A consequence is a more generalupdate-operation. E.g. a record M : hl:hx; y:Natii can be updated in its l-�eldwith N : hx:Nati, with as result a copy ofM with the x-�eld of its l-�eld updatedwith the x-�eld of N , but the y-�eld of its l-�eld unchanged. This is known as arecursive or deep update. There is a price for this more general update-operation:{ Update-operations have to be annotated with more type information in F pos :the types of both M and N have to be supplied as explicit type parametersin Mhl :=Ni.{ The notion of reduction in F pos is more limited than in Fwidth . WhereasMhl :=Ni:l reduces to N in Fwidth , in F pos they might not even be equal.



17(E.g. consider the example above, where M : hl:hx; y:Natii and N : hx:Nati).Reduction in F pos is a typed reduction, i.e. it depends on type informationin terms, whereas reduction in Fwidth { as in F { is an untyped reduction.{ The PER model for F pos is more complicated than the one for Fwidth . ForF pos it is not possible to erase all type information from terms as a �rst stepwhen de�ning the semantics of terms.The more general notion of subtyping and a more general update-operationof F pos are not required to write classes in the sense of [PT94]: all the examplesof class de�nitions given in [HP96] are typable in Fwidth , and all the equalitiesthat are proved for these examples in [HP96] also hold in Fwidth . In fact, inFwidth all these equalities are simple �-equalities.The only serious disadvantage of Fwidth compared to F pos is that becauseof the weakness of the subtyping relation { in particular the lack of congruencerules allowing for instance � ! hl:�;m:�i v � ! hl:�i { the property of minimaltyping is lost. However, this property is regained when Fwidth is extended withconventional subtyping, as discussed below.5 Further ExtensionsA further extension of Fwidth needed for the object encoding of [PT94] is con-ventional subtyping. This is because we want Object(M 0) to be a subtypeof Object(M) if M 0 a richer interface than M , and we clearly do not haveObject(M 0) v Object(M), with Object as in Sect. 2.1. The positive subtypingof [HP96] su�ers from the same de�ciency. Extending Fwidth with conventionalsubtyping will result in a system with two subtyping relations, width-subtypingv and conventional subtyping �, with v contained in �. The syntax becomesmore complicated, but as far as the PER semantics is concerned this extensionposes no problems, since our PER model of Fwidth is compatible with the PERmodels of F�. Both subtype relations can be interpreted in the PER world:the normal subset inclusion between relations as interpretation for �, and v asde�ned in De�nition 22 as interpretation for v.Maybe the complexity of having two subtype relations { conventional sub-typing and width-subtyping { could be avoided by distinguishing updatable andnon-updatable �elds in records, and then only allowing depth-subtyping on non-updatable �elds, as in [AC95] [Pie96], but a model for such a system wouldprobably be more complicated and very syntactic in avour.Other useful extensions would be F!-style type operators and a �xpoint op-erator for terms. The interpretation of F!-style type operators is not a problemin the PER model, but if a �xpoint is added the PER model we have given nolonger su�ces, and it remains to be seen if the more complex PER models forsystem F with recursion described in [AP90] [Ama91] [BM92] could be adapted.



186 ConclusionsWe have presented a system Fwidth that extends system F with a primitive forupdating records and width-subtyping on record types. It provides the poly-morphic record-updates needed for the class de�nitions in the existential objectmodel of [PT94].The combination of width-subtyping and a primitive operation for updatingseems to be the easiest way to provide polymorphic record-updates. Intuitivelywidth-subtyping and updating are very simple notions: the rules of Fwidth arefairly obvious, the record-update has a very simple operational semantics (givenby the reduction relation ��), and a straightforward interpretation in the PERmodel. Decomposing record-updating into more primitive operations for �eld-removal and record-extension, as in [CM91], results in more expressive and com-plex systems than Fwidth .The main technical result is the PER model for Fwidth . Key to this modelconstruction is the important observation that it possible to tell which persare interpretations of record types. This enables us to give an interpretation ofwidth-subtyping { which is a restricted form of "structural" subtyping { withouthaving to resort to the very syntactical model constructions like those sketchedin [CM91].Width-subtyping is a restriction of positive subtyping introduced in [HP96].As discussed in Sect. 4.1, this restriction has several advantages, notably thesimpler PER model and the simpler { and untyped { reduction relation givingan operational semantics.AcknowledgementsI want to thank Benjamin Pierce, Jan Zwanenburg, and the anonymous refereesfor their helpful comments on this paper.References[AC95] Mart��n Abadi and Luca Cardelli. An imperative object calculus. In P. D.Mosses, M. Nielsen, and M.I. Schwartzbach, editors, TAPSOFT'95: Theoryand Practice of Software Development, volume 915 of Lecture Notes in Com-puter Science, pages 471{485, 1995.[AC96] Mart��n Abadi and Luca Cardelli. A Theory of Objects. Monographs in Com-puter Science. Springer, 1996.[Ama91] Roberto M. Amadio. Recursion over realizability structures. Information andComputation, 90(2):55{85, 1991.[AP90] Mart��n Abadi and Gordon Plotkin. A PER-model of polymorphism andrecursive types. In Logic in Computer Science, pages 355{365. IEEE, 1990.[BL90] Kim B. Bruce and Giuseppe Longo. A modest model of records, inheritance,and bounded quanti�cation. Information and Computation, 87:196{240, 1990.Also in [GM94].
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