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Cyclic Distributed Garbage Collection
with Group Merger

Helena Rodrigues*and Richard Jones

December 1, 1997

Abstract

This paper presents a new algorithm for distributed garbage collection and outlines its
implementation within the Network Objects system. The algorithm is based on a reference
listing scheme, which is augmented by partial tracing in order to collect distributed garbage
cycles. Our collector is designed to be flexible, allowing efficiency, expediency and fault-
tolerance to be traded against completeness. Processes may be dynamically organised into
groups, according to appropriate heuristics, in order to reclaim distributed garbage cycles.
Unlike previous group-based algorithms, multiple concurrent distributed garbage collections
that span groups are supported: when two collection meet they may either merge, overlap
or retreat. The algorithm places no overhead on local collectors and suspends local mutators
only briefly. Partial tracing of the distributed graph involves only objects thought to be part
of a garbage cycle: no collaboration with other processes is required.

Keywords: distributed systems, garbage collection, algorithms, termination detection,
fault tolerance

1 Introduction

With the continued growth of distributed systems, designers are turning their attention to garbage
collection [38, 30, 24, 22, 23, 7, 26, 27, 25, 14, 31, 15, 33, 20, 28, 18], prompted by the complexity
of memory management and the desire for transparent object management. The goals of an ideal
distributed garbage collector are that:

safety: only garbage should be reclaimed.

completeness: all garbage, including distributed cycles, at the start of a collection cycle should
be reclaimed by its end.

concurrency: neither mutator nor local collector processes should be suspended; distinct dis-
tributed collection processes should run concurrently.

promptness: garbage should be reclaimed promptly.

efficiency: time and space costs should be minimised.

locality: inter-process communication should be minimised.

expediency: garbage should be reclaimed despite the unavailability of parts of the system.
scalability: it should scale to networks of many processes.

fault tolerance: it should be robust against message delay, loss or replication, or process failure.

*Work supported by JNICT grant (CIENCIA/BD/2773/93-1A) through the PRAXIS XXI Program (Portugal).



Inevitably compromises must be made between these goals. For example, scalability, fault-
tolerance and efficiency may only be achievable at the expense of completeness, and concurrency
introduces synchronisation overheads. Unfortunately, many solutions in the literature have never
been implemented so there is a lack of empirical data for the performance of distributed garbage
collection algorithms to guide the choice of compromises. For this reason we add a further goal

flexibility: it should be configurable, guided by heuristics or hints from either the programmer
or compiler.

Distributed garbage collection algorithms generally follow one of two strategies: tracing or
reference counting. Tracing algorithms visit all ‘live’ objects [17, 12]; global tracing requires the
cooperation of all processes before it can collect any garbage. This technique does not scale, is
not efficient and requires global synchronisation. In contrast, distributed reference counting algo-
rithms have the advantages for large-scale systems of fine interleaving with mutators, and locality
of reference (and hence low communication costs). Although standard reference counting algo-
rithms are vulnerable to out-of-order delivery of reference count manipulation messages, leading
to premature reclamation of live objects, many distributed schemes have been proposed to handle
or avoid such race conditions [6, 16, 29, 36, 7, 26].

On the other hand, reference counting algorithms cannot collect cycles of garbage, although
cyclic connections between objects in distributed systems are fairly common. For example, objects
in client-server systems may hold references to each other, and often this communication is bidi-
rectional [41]. Many distributed systems are typically long running (e.g. distributed databases), so
floating garbage is particularly undesirable as even small amounts of uncollected garbage may ac-
cumulate over time to cause significant memory loss [27]. Although inter-process cycles of garbage
can be broken by explicitly deleting references, this leads to exactly the error-prone scenario that
garbage collection replaces.

Systems using distributed reference counting as their primary distributed memory management
policy must reclaim cycles by using a complementary tracing scheme [22, 24, 21, 25, 33, 28,
18], or by migrating objects until an entire garbage cyclic structure is eventually held within
a single process where it can be collected by the local collector [38, 27]. However, migration
is communication-expensive and existing complementary tracing solutions either require global
synchronisation and the cooperation of all processes in the system [22], place additional overhead
on the local collector and application [25], rely on cooperation from the local collector to propagate
necessary information [24], or are not fault-tolerant [24, 25].

This paper presents an algorithm and outlines its implementation for the Network Objects
system [8]. A fuller description and a proof of its correctness is to be found in [34]. Our algorithm
is based on a reference listing [7], augmented by partial tracing in order to collect distributed
garbage cycles [21, 33]. Our algorithm preserves our primary goals of efficient reclamation of
local and distributed acyclic garbage, low synchronisation overheads, and avoidance of global
synchronisation. In brief, our aim is to match rates of collection against rates of allocation of data
structures. Objects only reachable from local processes have very high allocation rates, and must
be collected most rapidly. The rate of creation of references to remote objects that are not part
of distributed cycles is much lower, and the rate of creation of distributed garbage cycles is lower
still and hence should have the lowest priority for reclamation.

To these ends, we permit some degree of completeness and efficiency in collecting distributed
cycles to be traded, although eventually all these cycles will be reclaimed. We use heuristics to form
groups of processes dynamically that cooperate to perform partial traces of subgraphs suspected of
being garbage. Our earlier work offered only limited support for multiple, independently-initiated
distributed garbage collections, as we imposed the restriction that no two distributed garbage
collections could overlap; that is, no object could be simultaneously a member of more than one
group and hence subject to more than one garbage collection [33]. This restriction prevented
the collection of garbage cycles that spanned groups. In this paper, we lift this restriction and
furthermore offer considerable flexibility to the programmer/compiler over how groups interact.

The paper is organised as follows. Section 2 introduces the computational model: the dis-
tributed system, mutator processes, visibility of objects across the network, reference passing and



liveness. Section 3 describes our based partial tracing algorithm for a single group, and Section
4 introduces the problems of concurrency between mutators and collector, termination and ex-
plains how the collectors are synchronised. Section 5 introduces multiple, independently initiated,
distributed garbage collections and deals with the problem of cycles that span groups. Section 6
maps our abstract description of our collector onto a concrete implementation using Modula-3’s
Network Objects system. Section 7 outlines a proof or correctness. We discuss related work in
Section 8, and conclude in Section 9.

2 Computational Model

A distributed system is considered to consist of a collection of processes, organised into a network,
that communicate by exchange of messages. Each process can be identified unambiguously, and we
identify processes by upper-case letters, e.g. A, B, ..., and objects by lower-case letters (suffixed
by the identifier of the process to which they belong), e.g. x4, x5, ...

From the garbage collector’s point of view, mutator processes perform computations indepen-
dently of other mutators in the system (although they may periodically exchange messages) and
allocate objects in local heaps. The state of the distributed computation is represented by a
distributed graph of objects. Objects may contain references to objects in the same or another
process. Each process also contains a set of local roots that are always accessible to the local
mutator. Objects that are reachable by following from a root a path of references held in other
objects are said to be live. Other objects are said to be garbage, to be reclaimed by a collector. A
collector that operates solely within a local heap is called a local collector.

For the moment, we abstract away from the details of the implementation by considering each
process to maintain two tables. The in-table of a process lists all the remotely referenced in-objects
belonging to the process. Only in-objects may be shared by processes. The process accessing an
in-object for which it holds a reference is called the client, and the process containing the network
object is called its owner. Clients and owners may run on different processes within the distributed
system!. Associated with each entry in the in-table is a reference list, or client set, of the processes
holding out-objects for in-object.

A client cannot directly access an in-object but can only invoke the methods of a corresponding
out-object, which in turn makes remote procedure calls to the owner. The out-table of each process
lists all its out-objects and the remote in-objects to which they refer. A process may hold at most
one out-object for a given in-object, in which case all references in the process to that object point
to the out-object.

The heap of a process is managed by garbage collection. Local collections are based on tracing
from local roots — the stack, registers, global variables and also the in-table. The in-table is
considered a root by the local collector in order to preserve objects reachable only from other
processes. In-table entries are managed by the distributed memory manager.

Remote references may be deleted or copied from one process to another either as arguments
or results of methods. If the process receiving a reference is not the owner of the in-object, then
the process must create a local out-object. In order to marshal a reference to another process, the
sender process needs either to be the owner of the object or to have a out-object for that object.
This operation must preserve a key invariant: whenever there is a out-object for an in-object zp
belonging to owner P at client C, then C' € zp.clientSet.

Out-objects unreachable from their local root set are reclaimed by local collectors, in which
case the corresponding owner is informed that the reference should be removed from its client set.
When an in-object’s client set becomes empty, the object is removed from the in-table so that it
can be reclaimed subsequently by its owner’s local collector. The invariants necessary to avoid
race conditions and prevent premature reclamation of in objects are maintained in the standard
way [7].

TObjects cannot migrate from one process to another.



3 Three-Phase Partial Tracing within a single group

Our algorithm is based on the premise that distributed garbage cycles exist but are less common
than acyclic distributed structures. Consequently, distributed cyclic garbage must be reclaimed
but its reclamation may be performed more slowly than that of acyclic or local data. One con-
sequence is that it is important that collectors — whether local or distributed — should not
unduly disrupt mutator activity. We rely on local data being reclaimed by a tracing collector
[20], whilst distributed acyclic structures are managed by reference listing [7]. We augment these
mechanisms with an incremental, three-phase, partial trace to reclaim distributed garbage cycles.
Our implementation does not halt local collectors at all, and suspends mutators only briefly. The
local collectors reclaim garbage independently and expediently in each process. The partial trace
merely identifies garbage cycles without reclaiming them. Consequently, both local and partial
tracing collector can operate independently and concurrently. To simplify exposition, we start
by describing the basic mechanisms, restricting our discussion to the collection of garbage within
a single group of cooperating processes. Similarly, we ignore complexities of mutator-collector
concurrency; but we return to these two matters in sections 5 and 4 respectively.

Our algorithm operates in three phases [11, 21, 33]. The first, mark-red, phase identifies a
distributed subgraph that may be garbage, to which subsequent efforts are confined. This phase
is also used to form a group of processors that will collaborate to collect cycles. The second, scan,
phase determines whether members of this subgraph are actually garbage, before the final, sweep,
phase makes any garbage objects available for reclamation by local collectors. A new partial
trace may be initiated by any process not currently part of a trace. There are several reasons
for choosing to initiate such an activity: the process may be idle, a local collection may have
reclaimed insufficient space, the process may not have contributed to a distributed collection for
a long time, or the process may simply choose to start a new distributed collection whenever it
discovers a suspect object.

The distributed collector requires that each item in processes’ in- and out-tables has a colour
— red, green or none — and that initially all objects are uncoloured (i.e. colour ‘none’). In-objects
also have a red set of process names, akin to their client set.

3.1 Mark-Red Phase

Partial tracing is initiated at suspect objects: out-objects suspected of belonging to a distributed
garbage cycle. We observe that any distributed garbage cycle must contain some out-object.
Suspects should be chosen with care both to maximise the amount of garbage reclaimed and to
minimise redundant computation or communication. A naive view is to consider an out-object
to be suspect if it is not referenced locally, other than through the in-table. This information
is provided by the local collector any out-object that has not been marked is suspect. This
heuristic is very simplistic and may lead to undesirable wasted and repeated work. For example, it
may repeatedly identify an out-object as a suspect even though it is reachable from a remote root.
Rather, our algorithm should be seen as a framework: any better heuristic could be used [26]. In
Section 9 we show how more sophisticated heuristics improve the algorithm’s discrimination and
hence its efficiency.

The mark-red phase paints the transitive referential closure of suspect out-objects red. It
proceeds by a series of alternating local and remote steps. A local step forwards a colour from an
object i in a process’ in-table to all objects in its out-table reachable from i. A remote step sends
a mark-red request from an out-table object to its corresponding in-table object, reddening the
in-object and inserting the name of the sending process into the red-set to indicate that this client
is a member of the suspect subgraph?. Thus red-sets can be though of as a dual of client-sets:
client-sets list all references to an in-object but red-sets list only those references believed to be
dead.

2Notice that cooperation from the acyclic collector and the mutator would be required if, instead, mark-red
removed references from client sets or copies of client sets (see [21]). Red sets avoid this need for cooperation as
well as allowing the algorithm to identify which processes have sent mark-red requests.
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Figure 1: Mark-Red Phase

The mark-red phase thus identifies dynamically groups of processes that will collaborate to
reclaim distributed cyclic garbage. A group is simply the set of processes visited by mark-red.
Group collection is desirable for fault-tolerance, decentralisation, flexibility and efficiency. Fault-
tolerance and efficiency are achieved by requiring the cooperation of only those processes forming
the group: progress can be made even if other processes in the system fail. Decentralisation
is achieved by partitioning the network into groups, with multiple groups simultaneously but
independently active for garbage collection: communication is only necessary between members of
the group. Flexibility is achieved by the choice of processes forming each group. This can be done
statically by prior negotiation or dynamically by mark-red. In the second case, heuristics based
on geography, process identity, distance from the suspect originating the collection, minimum
distance from any object known to be live, or time constraints can be used.

The collector does not need to visit the complete transitive referential closure of suspect out-
objects. The purpose of this phase is simply to determine the scope of subsequent phases and
to construct red-sets. Early termination trades conservatism (tolerance of floating garbage) for
expediency, bounds on the size of the graph traced (and hence on the cost of the trace), execu-
tion concurrently with mutators without need for synchronisation, and cheap termination. We
believe that our approach also shows promise for other NUMA problems that use partitioned ad-
dress spaces, such as distributed object-oriented databases and persistent storage systems; this is
explored in [34].

The example in figure 1 illustrates a mark-red process. The figure contains a garbage cycle
(ya = yB = yp — ¢ — ya). Process A has initiated a partial trace; yp is a suspect because
it is not reachable from a local root (other than through the in-table). The mark-red process
paints the suspect’s transitive closure red, and constructs the red sets. In the figure, the red set
of an object xx is denoted by RS(xzX); clear circles represent green objects and shaded ones red
objects. Note that objects zp and yc are not garbage although they have been painted red: their
liveness will be detected by the scan phase.

3.2 Scan Phase

At the end of the mark-red phase, a group of processes has been formed, that will cooperate for
the scan-phase. The aim of this phase is to determine whether any member of the red subgraph
is reachable from outside that subgraph. It is executed concurrently on each process in the group.
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Figure 2: Scan Phase

The first step is to compare the client- and red-sets of each red in-table object. If a red object does
not have a red-set (e.g. zp in figure 1), or if the difference between its client- and its red-sets is
non-empty, the object must have a client outside the suspect red graph. In this case the object is
painted green to indicate that it is live. Again, the scan phase proceeds by a series of alternating
local and remote steps. All red in- and out-table objects reachable from local roots or from green
in-table objects are now repainted green by a local step. A remote step sends a scan-request from
each out-table object repainted green to its corresponding in-table object. If this object was red,
it is also repainted green. The scan phase terminates when the group contains no green objects
holding references to red children within the group.

Continuing our example, each process calculates the difference between client- and red-sets for
each red concrete object it holds. For instance, zp in process D has no red-set so zp is painted
green and becomes a root for the local step. Figure 2 shows the result of the scan phase: the
live objects zp and yo have been repainted green. Notice that other group-based partial tracing
schemes do not consider public objects internal to the group to be roots [24]. In our example that
would require extra messages to be sent from A to B and from B to D in order to preserve xp.

3.3 Sweep Phase

At the end of the scan phase, all live objects are green®. Any remaining red objects must be part of
inaccessible cycles, and can thus be safely reclaimed. The sweep phase is executed in each process
independently: at the next local collection, red in-table objects are not considered to be roots,
and thus their (garbage) descendents will be reclaimed. The reclamation of an out-table item
causes the reference listing mechanism to send a delete message to the owner of the corresponding
in-table object: when its client-set becomes empty, that object will also be reclaimed.

4 Concurrency and Termination

The conservative approximation that the red subgraph may include only a subset of the set of
garbage objects provides benefits including the removal of any need for synchronisation with
mutators and cheaper termination. We use an acknowledgement-based termination detection

3Note that the converse, i.e. that all green objects are live, is not necessarily true.
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Figure 4: State Changes for Termination Detection

protocol that does not require processes to be known at the start of distributed garbage collection
[40].

Following Augusteijn [2], we introduce three possible states for a process (see diagram 3 and
table 4): active-disquiet, passive-disquiet and passive-quiet. A process initiating a phase is active-
disquiet. When a process has no more local steps to perform and has received acknowledgements
for all its tracing requests, the process becomes passive-quiet. The receipt of a tracing request
causes a passive-quiet process to become passive-disquiet; requests have no effect on the state
of an active-disquiet process. On becoming passive-quiet, processes return an acknowledgement,
identifying themselves and those identified by any tracing requests that they have exported.

4.1 Mark-Red Phase

Within a single group, the mark-red phase is initiated by a single active-disquiet process. As
soon as this process has received acknowledgements from all the mark-red processes that it has
exported, it becomes passive-quiet: the mark-red phase is complete and the membership of the
group is known. These participants are then instructed by the initiator to start the scan phase
and informed of their co-members.



4.2 Scan Phase

The scan phase is initiated concurrently on each participant process holding part of the red, suspect
subgraph: all participants become active-disquiet. The phase terminates when all participants are
passive-disquiet. In contrast to the mark-red phase, the scan phase must be complete with respect
to the red subgraph, since it must ensure that all live red objects are repainted green. As with
other concurrent marking schemes, this requires synchronisation between mutator and collector
(e.g. [13]). Termination detection requires that scan phase local steps must be able to detect any
change to the connectivity of the graph made by a mutator. A local mutator may only change this
connectivity by overwriting references to objects. Such writes can be detected by a write barrier
[42]  our implementation is described in section 6.

When a process has no more local scan steps to perform, any red in-object o and its red
descendents are isolated from the green subgraph held in that process they cannot become
reachable through actions of the local mutator. However their reachability can still be changed if:

1. a remote method is invoked on o;
2. a new out-object in some other process is created for o;

3. another object in the same process receives a reference to o from a remote process.

This could only occur if the red out-object were still alive. Although such mutator activity
could be handled by the same barrier that handles local mutator activity, this would be imple-
mentationally expensive. Instead, mutator messages are trapped by a ‘snapshot-at-the-beginning’
barrier [42]. If a client invokes a remote method on a red out-object, or copies the reference held by
a red out-object to another process, before the client’s local-scan has become quiet, a scan-request
is sent to the corresponding in-object to arrive before the mutator message*. The scan-request
paints the in-object, and any local out-objects reachable from it, green in an atomic operation.
The scan-request is not acknowledged until all red descendents (in the group) of the red out-object
have been painted green, if necessary by further scan-requests to other processes.

Global scan phase termination is detected by the protocol described above. An active-disquiet
process its initiators as soon as it becomes passive-quiet. However, this account does not take
mutator actions into consideration. Correct termination detection requires that each scan-request
(and subsequent scan) has an active-disquiet process ultimately responsible for it  scan-requests
generated by mutator activity breach this invariant. However, trapping mutator messages with the
snapshot-at-the-beginning barrier preserves the invariant. If the owner is still active-disquiet, it
immediately takes over the responsibility for scanning the descendents of the object. If the owner
is passive, the scan-request is not acknowledged until all the descendents have been scanned; the
client process cannot become quiet until it has received this acknowledgement. Notice that the
mutator operation cannot have been made from a red out-object in a passive-quiet process. If it
were, the red out-object would have been unreachable from the client’s local roots: the action must,
therefore have been caused by a prior external mutator action. But in this case the out-object
would have been repainted green by its write barrier. Thus the barrier suffices to ensure that any
scan-request has an active-disquiet process ultimately responsible for it.

5 Multiple Group Collection

Very few studies have measured the performance of distributed garbage collection algorithms
and behaviour of the programs they support. In particular, comparatively little is known about
the topology or demographics of distributed object systems for example, how common are
distributed cycles, how large are they, how long lived are they? A deficiency of many proposals
for group-based distributed garbage collectors, including our earlier work [33], is the treatment
of inter-group garbage cycles.

4Tn our implementation, we send both messages in the same remote procedure call.
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Our new algorithm allows different collecting groups to cooperate for garbage collection. Scala-
bility demands that distributed garbage collections may be initiated independently, but this raises
the possibility that two independently initiated groups may meet in one or more processes. There
are two ways in which distributed structures, hence groups identified by mark-red, may overlap.
First, a process may be a member of more than one group despite there being no reference from
any object in one group to any object in any other group. Consequently no object will visited by
collector processes of more than one group. Alternatively, an object may be referenced by objects
in more than one group. It is this more interesting and challenging alternative that we address
now.

There are three possible strategies for resolving this matter. First, all interaction between
two independent distributed garbage collections could be prohibited whilst nevertheless permit-
ting inter-group references (see [33]). This has the advantage of simplicity as it eliminates all
interaction between distributed collectors, and obviates any need for synchronisation either to
assure correctness and termination, or to bound the size of a collection. However, it fails to collect
garbage cycles that span groups.

The second strategy is to allow both collections to proceed, but to ignore one another. In
effect, the groups retain their own identity but owverlap. This requires that the collectors do not
share any state (the colour and red-set information held in the in- and out-tables). This could be
achieved by maintaining one copy of this state information for each collection group, and having
all garbage collection messages signed with the identity of their group (i.e. the identity of their
initiating process). The obvious drawback is that, while it is scalable and complete, it is neither
time nor space efficient as it leads to repeated work.

The third strategy is to merge the two collecting groups into a single group, thereby giving
completeness and efficiency albeit at the cost of greater complexity. To collect garbage data
structures that span two groups, some form of synchronisation must exist between the groups.
One group maybe be dependent on the other, and unable to determine that the structure it is
holding is garbage until the other has also determined that its portion of the structure is garbage.
In the example in figure 5, the shaded group cannot detect that its structure is garbage until the
clear group has completed its scan phase.

5.1 Partial tracing objects

Our algorithm records this dependency information explicitly. Each in- and out-object holds (in
addition to the colour) a list marks of groups that have visited the object; the head of this list is
called the mark.

The Network Objects library handles all communication between network objects through a
special object in each process [8]. We adopt the same approach to support our partial tracing
mechanisms by constructing a separate partial tracing object (pto) PT;, for every group that visits



a participant process:
PT;y = (id, participants, ins, outs, responsibles, dependents)

where

id is a unique identifier. In general, a distributed garbage collection can be identified by its
initiating process and the set of suspect objects from which it starts. For simplicity we shall
usually assume id and the initiator to be synonymous.

participants the members of the group collaborating to collect garbage.

ins, outs in- and out-objects respectively in this process visited by this group.
dependents pto’s that are dependent on this object.

responsibles pto’s that are responsible for this object.

For convenience, we denote the colour of an object with mark B by redg, greeng, etc. Most
communication between groups is handled done through these local pto’s (ambassadors?) without
exchanging messages across the network.

5.2 Merging mark-red

Two groups may merge if they meet when they are in the same phase (i.e. the mark-red phase).
As before, each pto executes alternate local and remote steps in each phase. When it becomes
passive-quiet, it returns an acknowledgement to its parent tracing object.

The local mark-red step of a pto PTg propagates red from each in-object i that PTp has
marked red to each out-object o reachable from i:

MIL.1 If o has not been coloured, then it is reddened and its mark set to PTg.
ML.2 If o has already been marked red by PTp, then no further action is necessary.

ML.3 If 0 was marked red by another pto PT4, then two groups have met — we say that A is
dependent on B and that B is responsible for A. PTg is appended to o.marks, PTg is added
to PT s.responsibles, and PT4 to PTg.dependents.

ML.4 If o is green, it must have been marked by another group and the red wave-front retreats.

When a remote step of PTg from process P reaches an in-object i, a new pto is constructed as
necessary to represent group B:

MR.1 if i is uncoloured or redg, P is added to its red set and, if necessary, i is marked redp.

MR.2 If i is redy and a # b, P is also added to i’s red set. In this case, as in the local step, PTg
is appended to i.marks and to PT s.responsibles, PT4 to PTg.dependents.

MR.3 If i was green, no further action is taken.

As in the non-merging algorithm, as each pto PTp becomes passive-quiet it returns a list of
the participants it and its children have visited to the pto whose remote step caused it to be
created. No further synchronisation is needed between the mark-red phases of each group, and
these phases terminate as described in section 4 above. Again, at the end of the mark-red phase,
each initiator I will know the participants in its group, and objects in participants reachable from
suspects will have been painted red (with their marks list identifying all the groups of which they
are members).

10



5.3 Scanning merged groups

The aim of the merging collector is now to identify those objects that are not reachable from a
root or from outside the merged super-group. A group cannot make such a decision until it knows
that all the groups upon which it depends have completed their scan phase, too.

On termination of its mark-red phase, the initiator instructs all participants in its group to
start the scan phase, as before. However an in-object may be part of more than one group: in
this case the process will contain a pto with a non-empty responsibles set. If any pto waiting to
start the scan phase receives a scan-request, it simply marks the in-object green but does not yet
take a local step.

The roots of the scan phase for pto PTg are:

e local roots,
e green and uncoloured in-objects,

e any red in-object marked either by PTg or any group responsible for it — PTg.responsibles
— whose client and red sets differ, and

e any other red in-objects marked by other groups.
The initial scan step of a pto PT'g:
SI.1 marks green any redp in- or out-object that is in, or reachable from, the local root set.
The remote step from a greeng out-object to a corresponding in-object i:

SR.1 marks i green if it is red and had been visited by a mark-red request from PTg (B € i.marks).
The pto that originally marked ¢ then executes a local step to propagate the green mark,
once it has started its scan phase.

SR.2 retreats if ¢ is red but PTg was not a member of i.marks.

SR.3 retreats if ¢ is not red.

The local scan phase step for PTg from a greeng in-object to those out-objects o in the same
process reachable from it:

SL.1 greens o if it is red and B € o.marks.

As usual, a pto PTg becomes quiet in the scan phase when it has no more local steps to perform
and has received acknowledgements for all the remote steps that it has executed. It returns to its
parent tracing object a list of all the groups upon which it is dependent, PTg.responsibles®. Note
that

PTg.responsibles = U i.marks

i.mark=B

The sweep phase for PTg is

SW.1 remove all redg from the in-table, and repaint as uncoloured all greeng, clearing their marks
lists.

5Note that group A may be responsible for group B and vice-versa.
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5.4 Termination

The scan phase of a group cannot terminate as long as it is possible for a member of the group
to receive further scan requests. Our modification of Augusteijn’s algorithm resolved this for
members of a single group (see section 4), but now groups may receive scan-requests from members
of other groups. We note however that there will be an active-disquiet process responsible for these
requests, and say that a process is stable if it is not active-disquiet. Once a process becomes stable
it can never become active-disquiet again: although it may perform scan steps these will be on
behalf of other active-disquiet processes. We say that a group is partially terminated if all its
participants are stable. Qur termination property for a single group is that all groups (initiators)
on which it depends are partially terminated. We define a relation Dependent:

Definition 1 V pto’s PT, PTg in a process, Dependent(PTg, PT4) = PTa € PTg.responsibles

and we calculate its reflexive transitive closure, Dependent*. We adopt the simple protocol of
passing tokens around a ring formed by initiator members of the super group [32]. When a token
returns to the initiator that created it, the scan phase of that group is complete. As soon as an
initiator I becomes stable, it constructs a token. The token has two parts:

terminated a list of the groups in ring that are known to have terminated; initially this holds I
alone.

next aset of initiators not yet visited; initially this holds the groups responsible for I, I.responsibles.

Propagation of the token around the ring is simple. An initiator process I retains the token until
all members of its group are stable, i.e. the group is partially terminated. Then, if the head of
the token’s terminated list is I, then the scan phase has terminated. Otherwise, I (i) removes
itself from the next set and appends it to the terminated list, (ii) appends any of its responsible
groups, I.responsibles, that are not members of the terminated list to the next list, and (iii) passes
the token to the head of the mext list. If this list is empty, all the Dependent*(I) groups have
terminated and the token is returned to its owner, the head of the terminated list.

6 Mapping the algorithm onto Network Objects

Our algorithm is built on top of the reference listing mechanism provided by the Network Objects
distributed memory manager, albeit slightly modified [8]. The Network Objects collector is resilient
to communication failures or delays, and to process failures. In this section we describe how our
algorithm is mapped onto the Network Objects system. In particular we are bound to account for
the collection of local and acyclic distributed garbage, and synchronisation between mutators and
collectors

6.1 The local collector

Network Objects is a distributed object library for Modula-3, a garbage-collected language [10].
The local collector is a slightly modified version of the SRC Modula-3 incremental, mostly copying
collector [4]. Synchronisation between the mutator and the local collector is provided by a page-
wise read-only barrier [1].

6.2 The acyclic distributed collector

Network Objects uses reference lists rather than counts: any client process holds at most one
surrogate for any given network, or concrete, object. Our in-table is represented by that part of
(a modified version of) the Network Objects’ object table, that contains references, or wireReps,
to concrete network objects, and our out-table is that part that contains references to surrogate
objects.
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Communication failures are detected by a system of acknowledgements. However, a process
that sends a message but does not receive an acknowledgement cannot know whether that message
was received or not. Unlike reference counting, reference listing operations are idempotent and so
resilient to duplication of messages. Network Objects’ dirty call mechanism also prevents out-of-
order delivery of messages from causing the premature reclamation of objects.

An owner of a network object can also detect the termination of any client process. Any client
that has terminated is removed from the client set of the corresponding concrete object, allowing
objects to be reclaimed even if the client terminates abnormally. Unfortunately, communication
delay may be misinterpreted as process failure, in which case an object may be prematurely
reclaimed. Proof of the safety and liveness of the Network Objects system may be found in [7].

6.3 The cyclic distributed collector

The mark-red trace starts from a set of objects suspected of being garbage. A simple solution,
would be to use the local collector alone to identify those surrogates only reachable from the object
table. A more sophisticated heuristic is to estimate an object’s minimum distance from a root,
measured by inter-process references — the distance heuristic [26]. The insight behind the distance
heuristic is that the estimate for objects in a distributed garbage cycle will increase without bound;
once a threshold is reached for an object, we have some confidence, but no guarantee, that the
object is garbage.

Both the mark-red and the scan phases require mark colours to be transmitted locally and
remotely. Because this phase simply constructs a conservative estimate of those objects that
might be garbage, and therefore need not be accurate, red marks can be disseminated without
synchronisation with either mutators or local collectors. On the other hand, scan phase tracing
must be accurate with respect to the red subgraph in order to ensure that it reaches all red objects
that are live. Mostly Parallel garbage collection [9] uses operating system support to detect those
objects modified by mutators (actually pages that have been updated within a given interval).
When the local scan phase process has visited all objects reachable from its starting points, the
mutator is halted while the graph is retraced from roots any modified objects. Because most of the
scanning work has already been done, it is expected that this retrace will terminate promptly (the
underlying assumption is that the rate of allocation of network objects, and of objects reachable
from those network objects, is low).

Mutator actions scan-requests may also be sent asynchronously and these may require the
out-object descendents of the receiving in-object to be repainted green atomically. The simplest
method of propagating marks from in- to out- objects is to ‘stop the world’ in that process and
perform a standard recursive trace from the in-object. We claim that this does not cause excessive
delay as this event is unlikely to occur if our heuristic for finding suspects is good, and moreover
it is likely that objects reachable from a live in-object are already known to be live.

7 Safety

The safety requirement for our algorithm is that live objects are never reclaimed. First we note
that the system of acknowledgements ensures that marking requests are guaranteed to be delivered
to their destination unless either client or owner process fail before the message is safely delivered
and acknowledged. Although it is possible that messages might be duplicated, marking is an
idempotent operation (cf. reference listing, above).

To demonstrate that the merging algorithm is correct, we briefly outline how it can be shown
that, if a pto PT'g is in its sweep phase, then no redg objects in the same process can receive a scan
request, and hence that no redg object can be live in B’s sweep phase. First, we conservatively
define an object x to be live(z) if

(3P € supergroup A Ir € Roots(P) A path(r, z))V (3Q & supergroup A Jo € out-table(Q) A path(o, z))
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Suppose that z is live but erroneously reclaimed by pto PT's in process P. By SW.1, redg(z) A
live(x). Thus

(Fi € in-table(P) A path(i, x) A live(i)) V (3r € Roots(P) A path(r, x))

There cannot have been such a path from a local root before PTg took its initial scan step (since
SI.1 would have greened x) so only a subsequent remote method invoked on an in-object i’ from
which z is reachable could have created this path. But this means that = would have been repainted
green, either by the barrier on a red i’ or because a non-red i’ would have been a local scan root
for PTB.

So & must have been reachable from ¢ when PTg took its initial scan step, and this ¢ cannot
have been a local scan root (SI.1). Hence

red(i) A (i.redSet = i.clientSet) A (i.mark = PTg V i.mark € PTg.responsibles)

All out-objects o (i.e. o € i.clientSet) from which i is reachable must be red (MR.1 or MR.2),
and by hypothesis, at least one such redy, for some A, must be live. We need to show that group
A has completed its scan phase and hence that o can never become green.

If A = B then the ptos responsible for both z and o are members of the same group. Hence
0’s pto has completed its phase. Alternatively, A # B, in which case, A € PTpg.responsibles
(MR.1 or MR.2) and hence a member of the responsibles set of the initiator of group B (the final
action of a pto in the scan phase is to return a list of responsible groups to its initiator). The
scan phase termination for group B sends a token to, inter alia, the initiator of group A (since
A € PTpg.responsibles). Group B does not enter the sweep phase until A (and other responsible
groups) have returned the token, but group A will not do so until all its members are passive-quiet.

Similar arguments show that, for reds o to become green, it must be reachable from some
redy in-object that is repainted green by a scan request. This scan request cannot originate from
a group in Dependent*(A) (all pto’s within Dependent*(A) are stable since A has received its
token back), so it must be from an out-object 0" in a third group, C ¢ Dependent*(A). Since the
in-object was red, its red set contained 0" and hence its marks contained C, i.e. C is responsible
for group B. But this means that C' € Dependent*(A). Thus no such scan request can occur.

Hence group A has completed its scan phase and the red o can never become green. Induction
on the the length of the path of red objects (within ithe super group) between z and either a root
or an in-object with a client outside it completes the proof that no redg object is live at the start
of B’s sweep phase.

8 Related Work

Distributed reference counting can be augmented in various ways to collect distributed garbage
cycles. Juul and Jul [22], periodically invoke global marking to collect distributed garbage cycles,
tracing the whole graph before any cyclic garbage can be collected. Even though some degree of
concurrency is allowed, this technique cannot make progress if a single process has crashed, even if
that process does not own any part of the distributed garbage cycle. This algorithm is complete,
but it needs global cooperation and synchronisation, and thus does not scale.

Maeda et al. [25] present a solution also based on earlier work by Jones and Lins using partial
tracing with weighted reference counting [21]. Weighted reference counting is resilient to race
conditions, but cannot recover from process failure or message loss. As suggested by Jones and
Lins, they use secondary reference counts as auxiliary structures. Thus they need a weight-barrier
to maintain consistency, incurring further synchronisation costs.

Maheshwari and Liskov [27] describe a simple and efficient way of using object migration to
allow collection of distributed garbage cycles, that limits the volume of the migration necessary.
The distance heuristic estimates the length of the shortest path from any root to each object. The
estimate of the distance of a cyclic distributed garbage object keeps increasing without bound;
that of a live object does not. This heuristic allows the identification of objects belonging to
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a garbage cycle, with a high probability of being correct. These objects are migrated directly
to a selected destination process to avoid multiple migrations. However, this solution requires
support for object migration (not present in Network Objects). Moreover, migrating an object is
a communication-intensive operation, not only because of its inherent overhead but also because
of the time necessary to prepare an object for migration and to install it in the target process
[39]. Thus, this algorithm would be inefficient in the presence of large objects. In a recent paper
Maheshwari and Liskov use the same distance heuristic to identify suspect objects from which
they start a back trace in an attempt to discover a root [28]. They employ similar reference listing
and barriers schemes to those presented here. Unlike [15], their algorithm provides an efficient
method of calculating back-references and takes account of concurrency.

Lang et al. [24] also presented an algorithm for marking within groups of processes. Their
algorithm uses standard reference counting, and so inherits its inability to tolerate message failures.
It relies on the cooperation from the local collector to propagate necessary information. This
algorithm is difficult to evaluate because of the lack of detail presented. However, the main
differences between this and our algorithm is that we trace only those subgraphs suspected of
being garbage and that we use heuristics to form groups opportunistically. In contrast, Lang’s
method is based on Christopher’s algorithm [11]. Consequently it repeatedly scans the heap until
it is sure that it has terminated. This is much more inefficient than simply marking nodes red. For
example, concrete objects referenced from outside the suspect subgraph are considered as roots
by the scan phase, even if they are only referenced inside the group. In the example of figures 1
and 2 our algorithm would need a total of 6 messages (5 for mark-red phase and 1 for scan phase),
against a total of 10 messages (7 for the initial marking and 3 for the global propagation) for Lang’s
algorithm. Objects may also have to repeat traces on behalf of other objects (i.e. a trace from a
‘soft’ concrete object may have to be repeated if the object is hardened). Their ‘stabilisation loop’
may also require repeated traces. Finally, failures cause the groups to be completely reorganised,
and a new group garbage collection restarted almost from scratch.

Hudson et al. have adapted their Mature Object Space ‘train’ algorithm for distributed garbage
collection [19, 18]. While their new algorithm collects all garbage, including distributed garbage,
it requires an object substitution protocol to ensure that all old references to an object are updated
to refer to the new copy. Detecting that a train has no external references is also more complex
in a distributed environment than in a uniprocessor one: they use a similar token ring technique
to that we use for detecting super group termination.

9 Conclusions and Future Work

This paper has outlined a solution for collecting distributed garbage cycles, designed for the
Network Objects system but applicable to other systems — a complete treatment will be found
in [34]. Our algorithm is based on a reference listing scheme [7], augmented by partial tracing in
order to collect distributed garbage cycles [21]. Groups of processes are formed dynamically to
collect cyclic garbage. Processes within a group cooperate to perform a partial trace of only those
subgraphs suspected of being garbage. If necessary, groups can cooperate to collect garbage cycles
that span them.

Our memory management system is highly concurrent: mutators, local collectors, the acyclic
reference collector and distributed cycle collectors operate mostly in parallel. Local collectors
are never delayed, and mutators are only halted by a distributed partial tracing to complete a
local-scan.

Our system reclaims garbage efficiently: local and acyclic collectors are not hindered. The
efficiency of the distributed partial tracing can be increased by restricting the size of groups,
thereby trading completeness for promptness. The use of the acyclic collector and groups also
permits scalability whereas the ability to merge groups ensures completeness. We believe that, it
the absence of knowledge of problem being computed, it is unclear what action should be taken
when two groups meet. A merger may not always be desirable. Instead it may be preferable to run
multiple overlapping groups. For example the best compromise may be to combine simultaneously
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occasional long-running but complete collections over very large groups with more frequent faster
completing collections over small groups. Our algorithm offers the implementer the choice between
completeness and promptness at the level of groups, processes and individual objects. Groups can
decide whether or not to merge, processes can decide whether to allow groups to merge, to overlap
or to retreat from one another, and objects can decide on merger or retreat.

Our distributed collector is fault-tolerant: it is resilient to message delay, loss and duplication,
and to process failure. Ezpediency is achieved by the use of groups.

The total overhead of by our algorithm depends on how frequently it is run. A very simplistic
heuristic may lead to wasted and repeated work. However, even with a simplistic heuristic, a
probability of being garbage can be assigned to each suspect object that has survived a partial
tracing. For example, we could take a round-robin approach by tracing only from the suspect that
was least recently traced. Better still, the distance heuristic increases the chance of our algorithm
tracing only garbage subgraphs, thereby

1 decreasing the number of times a partial trace is run.
2 limiting the mark-red trace to just garbage objects.

3 reducing the number of messages for the scan phase to the best case.

On the other hand, by only propagating distances over a certain threshold with mark-red requests
we can reduce the risk of multiple distributed collections in the same garbage cycle and therefor
reduce the overheads of our algorithm.

In the mark-red phase, tracing a distributed subgraph requires e tracing requests to be issued,
where e is the number of inter-process edges within the subgraph. Because we use RPC and
Augusteijn’s algorithm, less than e tracing acknowledgements may be required. Replies from
disquiet processes (or processes that contain no further references of interest) can be piggy-backed
onto the RPC acknowledgements.

The scan phase does not send any tracing requests to garbage objects. If the red subgraph is
truly garbage, no scan requests are sent; otherwise tracing requests are sent to live objects and
the cost is as for the mark red phase. The sweep phase requires no messages to be sent.

Merging of group collections does impose additional synchronisation overheads in terms of both
space used by in-, out- and pto’s, and in terms of messages passed. However note that

e if, as we believe is likely to be the common case as a consequence of the distance heuristic
[28], a group is not merged with another, then there is no additional message passing or
synchronisation overhead.

e additional messages are sent

1 at the start of the scan phase from initiators only to those processes from which the
single-group algorithm would have retreated (number of edges between cooperating
groups).

2 between an initiator I and those other initiators on which it depends at the termination
of the scan phase (the number of messages is the number of groups in Dependent*(1));

e scan acknowledgement messages sent when a pto becomes passive-quiet may be longer, since
they contain the names of other groups for which this group is responsible.

All other ‘inter-group’ communication is transacted between partial tracing objects on the same
process without exchange of messages across the network.

Early versions of our algorithm have been implemented. In particular, some choices for coop-
eration with the mutator require further study and depend mainly on experimental results and
measurements. We are also interested in heuristics for suspect identification and group formation.
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