
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Rodrigues, Helena C.C.D. and Jones, Richard E. (1997) Cyclic Distributed Garbage Collection
with Group Merger. Technical report. University of Kent at Canterbury 17-97.

DOI

17-97

Link to record in KAR

https://kar.kent.ac.uk/21429/

Document Version

UNSPECIFIED

Cyclic Distributed Garbage Collectionwith Group MergerHelena Rodrigues�and Richard JonesDecember 1, 1997AbstractThis paper presents a new algorithm for distributed garbage collection and outlines itsimplementation within the Network Objects system. The algorithm is based on a referencelisting scheme, which is augmented by partial tracing in order to collect distributed garbagecycles. Our collector is designed to be exible, allowing e�ciency, expediency and fault-tolerance to be traded against completeness. Processes may be dynamically organised intogroups, according to appropriate heuristics, in order to reclaim distributed garbage cycles.Unlike previous group-based algorithms, multiple concurrent distributed garbage collectionsthat span groups are supported: when two collection meet they may either merge, overlapor retreat. The algorithm places no overhead on local collectors and suspends local mutatorsonly briey. Partial tracing of the distributed graph involves only objects thought to be partof a garbage cycle: no collaboration with other processes is required.Keywords: distributed systems, garbage collection, algorithms, termination detection,fault tolerance1 IntroductionWith the continued growth of distributed systems, designers are turning their attention to garbagecollection [38, 30, 24, 22, 23, 7, 26, 27, 25, 14, 31, 15, 33, 20, 28, 18], prompted by the complexityof memory management and the desire for transparent object management. The goals of an idealdistributed garbage collector are that:safety: only garbage should be reclaimed.completeness: all garbage, including distributed cycles, at the start of a collection cycle shouldbe reclaimed by its end.concurrency: neither mutator nor local collector processes should be suspended; distinct dis-tributed collection processes should run concurrently.promptness: garbage should be reclaimed promptly.e�ciency: time and space costs should be minimised.locality: inter-process communication should be minimised.expediency: garbage should be reclaimed despite the unavailability of parts of the system.scalability: it should scale to networks of many processes.fault tolerance: it should be robust against message delay, loss or replication, or process failure.�Work supported by JNICT grant (CIENCIA/BD/2773/93-IA) through the PRAXIS XXI Program (Portugal).1

Inevitably compromises must be made between these goals. For example, scalability, fault-tolerance and e�ciency may only be achievable at the expense of completeness, and concurrencyintroduces synchronisation overheads. Unfortunately, many solutions in the literature have neverbeen implemented so there is a lack of empirical data for the performance of distributed garbagecollection algorithms to guide the choice of compromises. For this reason we add a further goalexibility: it should be con�gurable, guided by heuristics or hints from either the programmeror compiler.Distributed garbage collection algorithms generally follow one of two strategies: tracing orreference counting. Tracing algorithms visit all `live' objects [17, 12]; global tracing requires thecooperation of all processes before it can collect any garbage. This technique does not scale, isnot e�cient and requires global synchronisation. In contrast, distributed reference counting algo-rithms have the advantages for large-scale systems of �ne interleaving with mutators, and localityof reference (and hence low communication costs). Although standard reference counting algo-rithms are vulnerable to out-of-order delivery of reference count manipulation messages, leadingto premature reclamation of live objects, many distributed schemes have been proposed to handleor avoid such race conditions [6, 16, 29, 36, 7, 26].On the other hand, reference counting algorithms cannot collect cycles of garbage, althoughcyclic connections between objects in distributed systems are fairly common. For example, objectsin client-server systems may hold references to each other, and often this communication is bidi-rectional [41]. Many distributed systems are typically long running (e.g. distributed databases), sooating garbage is particularly undesirable as even small amounts of uncollected garbage may ac-cumulate over time to cause signi�cant memory loss [27]. Although inter-process cycles of garbagecan be broken by explicitly deleting references, this leads to exactly the error-prone scenario thatgarbage collection replaces.Systems using distributed reference counting as their primary distributed memory managementpolicy must reclaim cycles by using a complementary tracing scheme [22, 24, 21, 25, 33, 28,18], or by migrating objects until an entire garbage cyclic structure is eventually held withina single process where it can be collected by the local collector [38, 27]. However, migrationis communication-expensive and existing complementary tracing solutions either require globalsynchronisation and the cooperation of all processes in the system [22], place additional overheadon the local collector and application [25], rely on cooperation from the local collector to propagatenecessary information [24], or are not fault-tolerant [24, 25].This paper presents an algorithm and outlines its implementation for the Network Objectssystem [8]. A fuller description and a proof of its correctness is to be found in [34]. Our algorithmis based on a reference listing [7], augmented by partial tracing in order to collect distributedgarbage cycles [21, 33]. Our algorithm preserves our primary goals of e�cient reclamation oflocal and distributed acyclic garbage, low synchronisation overheads, and avoidance of globalsynchronisation. In brief, our aim is to match rates of collection against rates of allocation of datastructures. Objects only reachable from local processes have very high allocation rates, and mustbe collected most rapidly. The rate of creation of references to remote objects that are not partof distributed cycles is much lower, and the rate of creation of distributed garbage cycles is lowerstill and hence should have the lowest priority for reclamation.To these ends, we permit some degree of completeness and e�ciency in collecting distributedcycles to be traded, although eventually all these cycles will be reclaimed. We use heuristics to formgroups of processes dynamically that cooperate to perform partial traces of subgraphs suspected ofbeing garbage. Our earlier work o�ered only limited support for multiple, independently-initiateddistributed garbage collections, as we imposed the restriction that no two distributed garbagecollections could overlap; that is, no object could be simultaneously a member of more than onegroup and hence subject to more than one garbage collection [33]. This restriction preventedthe collection of garbage cycles that spanned groups. In this paper, we lift this restriction andfurthermore o�er considerable exibility to the programmer/compiler over how groups interact.The paper is organised as follows. Section 2 introduces the computational model: the dis-tributed system, mutator processes, visibility of objects across the network, reference passing and2

liveness. Section 3 describes our based partial tracing algorithm for a single group, and Section4 introduces the problems of concurrency between mutators and collector, termination and ex-plains how the collectors are synchronised. Section 5 introduces multiple, independently initiated,distributed garbage collections and deals with the problem of cycles that span groups. Section 6maps our abstract description of our collector onto a concrete implementation using Modula-3'sNetwork Objects system. Section 7 outlines a proof or correctness. We discuss related work inSection 8, and conclude in Section 9.2 Computational ModelA distributed system is considered to consist of a collection of processes, organised into a network,that communicate by exchange of messages. Each process can be identi�ed unambiguously, and weidentify processes by upper-case letters, e.g. A, B, : : : , and objects by lower-case letters (su�xedby the identi�er of the process to which they belong), e.g. xA, xB , : : :From the garbage collector's point of view, mutator processes perform computations indepen-dently of other mutators in the system (although they may periodically exchange messages) andallocate objects in local heaps. The state of the distributed computation is represented by adistributed graph of objects. Objects may contain references to objects in the same or anotherprocess. Each process also contains a set of local roots that are always accessible to the localmutator. Objects that are reachable by following from a root a path of references held in otherobjects are said to be live. Other objects are said to be garbage, to be reclaimed by a collector. Acollector that operates solely within a local heap is called a local collector.For the moment, we abstract away from the details of the implementation by considering eachprocess to maintain two tables. The in-table of a process lists all the remotely referenced in-objectsbelonging to the process. Only in-objects may be shared by processes. The process accessing anin-object for which it holds a reference is called the client, and the process containing the networkobject is called its owner. Clients and owners may run on di�erent processes within the distributedsystem1. Associated with each entry in the in-table is a reference list, or client set, of the processesholding out-objects for in-object.A client cannot directly access an in-object but can only invoke the methods of a correspondingout-object, which in turn makes remote procedure calls to the owner. The out-table of each processlists all its out-objects and the remote in-objects to which they refer. A process may hold at mostone out-object for a given in-object, in which case all references in the process to that object pointto the out-object.The heap of a process is managed by garbage collection. Local collections are based on tracingfrom local roots | the stack, registers, global variables and also the in-table. The in-table isconsidered a root by the local collector in order to preserve objects reachable only from otherprocesses. In-table entries are managed by the distributed memory manager.Remote references may be deleted or copied from one process to another either as argumentsor results of methods. If the process receiving a reference is not the owner of the in-object, thenthe process must create a local out-object. In order to marshal a reference to another process, thesender process needs either to be the owner of the object or to have a out-object for that object.This operation must preserve a key invariant: whenever there is a out-object for an in-object xPbelonging to owner P at client C, then C 2 xP :clientSet.Out-objects unreachable from their local root set are reclaimed by local collectors, in whichcase the corresponding owner is informed that the reference should be removed from its client set.When an in-object's client set becomes empty, the object is removed from the in-table so that itcan be reclaimed subsequently by its owner's local collector. The invariants necessary to avoidrace conditions and prevent premature reclamation of in objects are maintained in the standardway [7].1Objects cannot migrate from one process to another.3

3 Three-Phase Partial Tracing within a single groupOur algorithm is based on the premise that distributed garbage cycles exist but are less commonthan acyclic distributed structures. Consequently, distributed cyclic garbage must be reclaimedbut its reclamation may be performed more slowly than that of acyclic or local data. One con-sequence is that it is important that collectors | whether local or distributed | should notunduly disrupt mutator activity. We rely on local data being reclaimed by a tracing collector[20], whilst distributed acyclic structures are managed by reference listing [7]. We augment thesemechanisms with an incremental, three-phase, partial trace to reclaim distributed garbage cycles.Our implementation does not halt local collectors at all, and suspends mutators only briey. Thelocal collectors reclaim garbage independently and expediently in each process. The partial tracemerely identi�es garbage cycles without reclaiming them. Consequently, both local and partialtracing collector can operate independently and concurrently. To simplify exposition, we startby describing the basic mechanisms, restricting our discussion to the collection of garbage withina single group of cooperating processes. Similarly, we ignore complexities of mutator-collectorconcurrency; but we return to these two matters in sections 5 and 4 respectively.Our algorithm operates in three phases [11, 21, 33]. The �rst, mark-red, phase identi�es adistributed subgraph that may be garbage, to which subsequent e�orts are con�ned. This phaseis also used to form a group of processors that will collaborate to collect cycles. The second, scan,phase determines whether members of this subgraph are actually garbage, before the �nal, sweep,phase makes any garbage objects available for reclamation by local collectors. A new partialtrace may be initiated by any process not currently part of a trace. There are several reasonsfor choosing to initiate such an activity: the process may be idle, a local collection may havereclaimed insu�cient space, the process may not have contributed to a distributed collection fora long time, or the process may simply choose to start a new distributed collection whenever itdiscovers a suspect object.The distributed collector requires that each item in processes' in- and out-tables has a colour| red, green or none | and that initially all objects are uncoloured (i.e. colour `none'). In-objectsalso have a red set of process names, akin to their client set.3.1 Mark-Red PhasePartial tracing is initiated at suspect objects: out-objects suspected of belonging to a distributedgarbage cycle. We observe that any distributed garbage cycle must contain some out-object.Suspects should be chosen with care both to maximise the amount of garbage reclaimed and tominimise redundant computation or communication. A na��ve view is to consider an out-objectto be suspect if it is not referenced locally, other than through the in-table. This informationis provided by the local collector | any out-object that has not been marked is suspect. Thisheuristic is very simplistic and may lead to undesirable wasted and repeated work. For example, itmay repeatedly identify an out-object as a suspect even though it is reachable from a remote root.Rather, our algorithm should be seen as a framework: any better heuristic could be used [26]. InSection 9 we show how more sophisticated heuristics improve the algorithm's discrimination andhence its e�ciency.The mark-red phase paints the transitive referential closure of suspect out-objects red. Itproceeds by a series of alternating local and remote steps. A local step forwards a colour from anobject i in a process' in-table to all objects in its out-table reachable from i. A remote step sendsa mark-red request from an out-table object to its corresponding in-table object, reddening thein-object and inserting the name of the sending process into the red-set to indicate that this clientis a member of the suspect subgraph2. Thus red-sets can be though of as a dual of client-sets:client-sets list all references to an in-object but red-sets list only those references believed to bedead.2Notice that cooperation from the acyclic collector and the mutator would be required if, instead, mark-redremoved references from client sets or copies of client sets (see [21]). Red sets avoid this need for cooperation aswell as allowing the algorithm to identify which processes have sent mark-red requests.4

R

xA

zA

xB
yB

xC
yC

yD

X
yA

yB xB

R

xD

xD

yC

yD

xC

,

, RS(yD)={B}

yA

RS(yA)={C}

RS(xC)={D}
, RS(yC)={D}

RS Red set

R Local root

CS Client setCS(yA)={C}

CS(zA)={X}

CS(xD)={B}

CS(yD)={B}

CS(xC)={D},
CS(yC)={D}

CS(xB)={A}
CS(yB)={A}, RS(yB)={A}

Process A

Process B

Process D

Process C

IT

IT In table

IT

IT

ITFigure 1: Mark-Red PhaseThe mark-red phase thus identi�es dynamically groups of processes that will collaborate toreclaim distributed cyclic garbage. A group is simply the set of processes visited by mark-red.Group collection is desirable for fault-tolerance, decentralisation, exibility and e�ciency. Fault-tolerance and e�ciency are achieved by requiring the cooperation of only those processes formingthe group: progress can be made even if other processes in the system fail. Decentralisationis achieved by partitioning the network into groups, with multiple groups simultaneously butindependently active for garbage collection: communication is only necessary between members ofthe group. Flexibility is achieved by the choice of processes forming each group. This can be donestatically by prior negotiation or dynamically by mark-red. In the second case, heuristics basedon geography, process identity, distance from the suspect originating the collection, minimumdistance from any object known to be live, or time constraints can be used.The collector does not need to visit the complete transitive referential closure of suspect out-objects. The purpose of this phase is simply to determine the scope of subsequent phases andto construct red-sets. Early termination trades conservatism (tolerance of oating garbage) forexpediency, bounds on the size of the graph traced (and hence on the cost of the trace), execu-tion concurrently with mutators without need for synchronisation, and cheap termination. Webelieve that our approach also shows promise for other NUMA problems that use partitioned ad-dress spaces, such as distributed object-oriented databases and persistent storage systems; this isexplored in [34].The example in �gure 1 illustrates a mark-red process. The �gure contains a garbage cycle(yA ! yB ! yD ! xC ! yA). Process A has initiated a partial trace; yB is a suspect becauseit is not reachable from a local root (other than through the in-table). The mark-red processpaints the suspect's transitive closure red, and constructs the red sets. In the �gure, the red setof an object xX is denoted by RS(xX); clear circles represent green objects and shaded ones redobjects. Note that objects xD and yC are not garbage although they have been painted red: theirliveness will be detected by the scan phase.3.2 Scan PhaseAt the end of the mark-red phase, a group of processes has been formed, that will cooperate forthe scan-phase. The aim of this phase is to determine whether any member of the red subgraphis reachable from outside that subgraph. It is executed concurrently on each process in the group.5

R

xA

zA

xB
yB

xC

yD

X
yA

yB xB

RxD yD

xCyC

yA

yC

xD

RS Red set

R Local root

CS Client setProcess A

CS(yA)-RS(yA)={}

Process B

CS(yB)-RS(yB)={}

CS(xD)-RS(xD)={B}
CS(yD)-RS(yD)={}

CS(xC)-RS(xC)={}
CS(yC)-RS(yC)={}

Process D

Process C

IT In table

IT

IT

IT

IT

Figure 2: Scan PhaseThe �rst step is to compare the client- and red-sets of each red in-table object. If a red object doesnot have a red-set (e.g. xD in �gure 1), or if the di�erence between its client- and its red-sets isnon-empty, the object must have a client outside the suspect red graph. In this case the object ispainted green to indicate that it is live. Again, the scan phase proceeds by a series of alternatinglocal and remote steps. All red in- and out-table objects reachable from local roots or from greenin-table objects are now repainted green by a local step. A remote step sends a scan-request fromeach out-table object repainted green to its corresponding in-table object. If this object was red,it is also repainted green. The scan phase terminates when the group contains no green objectsholding references to red children within the group.Continuing our example, each process calculates the di�erence between client- and red-sets foreach red concrete object it holds. For instance, xD in process D has no red-set so xD is paintedgreen and becomes a root for the local step. Figure 2 shows the result of the scan phase: thelive objects xD and yC have been repainted green. Notice that other group-based partial tracingschemes do not consider public objects internal to the group to be roots [24]. In our example thatwould require extra messages to be sent from A to B and from B to D in order to preserve xD.3.3 Sweep PhaseAt the end of the scan phase, all live objects are green3. Any remaining red objects must be part ofinaccessible cycles, and can thus be safely reclaimed. The sweep phase is executed in each processindependently: at the next local collection, red in-table objects are not considered to be roots,and thus their (garbage) descendents will be reclaimed. The reclamation of an out-table itemcauses the reference listing mechanism to send a delete message to the owner of the correspondingin-table object: when its client-set becomes empty, that object will also be reclaimed.4 Concurrency and TerminationThe conservative approximation that the red subgraph may include only a subset of the set ofgarbage objects provides bene�ts including the removal of any need for synchronisation withmutators and cheaper termination. We use an acknowledgement-based termination detection3Note that the converse, i.e. that all green objects are live, is not necessarily true.6

Passive
Quiet

Passive
Disquiet

Active
Disquiet

a

b, c, d, e

b, c, d, e

f

a, ..., h Events:

g

f

Figure 3: State transition diagram for termination detection.Eventa start phaseb send mark request(out-object)c receive mark request(out-object)d receive acknowledgement(out-object)e perform local stepf all acknowledgements receivedg receive mark request(out-object)Figure 4: State Changes for Termination Detectionprotocol that does not require processes to be known at the start of distributed garbage collection[40].Following Augusteijn [2], we introduce three possible states for a process (see diagram 3 andtable 4): active-disquiet, passive-disquiet and passive-quiet. A process initiating a phase is active-disquiet. When a process has no more local steps to perform and has received acknowledgementsfor all its tracing requests, the process becomes passive-quiet. The receipt of a tracing requestcauses a passive-quiet process to become passive-disquiet; requests have no e�ect on the stateof an active-disquiet process. On becoming passive-quiet, processes return an acknowledgement,identifying themselves and those identi�ed by any tracing requests that they have exported.4.1 Mark-Red PhaseWithin a single group, the mark-red phase is initiated by a single active-disquiet process. Assoon as this process has received acknowledgements from all the mark-red processes that it hasexported, it becomes passive-quiet: the mark-red phase is complete and the membership of thegroup is known. These participants are then instructed by the initiator to start the scan phaseand informed of their co-members. 7

4.2 Scan PhaseThe scan phase is initiated concurrently on each participant process holding part of the red, suspectsubgraph: all participants become active-disquiet. The phase terminates when all participants arepassive-disquiet. In contrast to the mark-red phase, the scan phase must be complete with respectto the red subgraph, since it must ensure that all live red objects are repainted green. As withother concurrent marking schemes, this requires synchronisation between mutator and collector(e.g. [13]). Termination detection requires that scan phase local steps must be able to detect anychange to the connectivity of the graph made by a mutator. A local mutator may only change thisconnectivity by overwriting references to objects. Such writes can be detected by a write barrier[42] | our implementation is described in section 6.When a process has no more local scan steps to perform, any red in-object o and its reddescendents are isolated from the green subgraph held in that process | they cannot becomereachable through actions of the local mutator. However their reachability can still be changed if:1. a remote method is invoked on o;2. a new out-object in some other process is created for o;3. another object in the same process receives a reference to o from a remote process.This could only occur if the red out-object were still alive. Although such mutator activitycould be handled by the same barrier that handles local mutator activity, this would be imple-mentationally expensive. Instead, mutator messages are trapped by a `snapshot-at-the-beginning'barrier [42]. If a client invokes a remote method on a red out-object, or copies the reference held bya red out-object to another process, before the client's local-scan has become quiet, a scan-requestis sent to the corresponding in-object to arrive before the mutator message4. The scan-requestpaints the in-object, and any local out-objects reachable from it, green in an atomic operation.The scan-request is not acknowledged until all red descendents (in the group) of the red out-objecthave been painted green, if necessary by further scan-requests to other processes.Global scan phase termination is detected by the protocol described above. An active-disquietprocess its initiators as soon as it becomes passive-quiet. However, this account does not takemutator actions into consideration. Correct termination detection requires that each scan-request(and subsequent scan) has an active-disquiet process ultimately responsible for it | scan-requestsgenerated by mutator activity breach this invariant. However, trapping mutator messages with thesnapshot-at-the-beginning barrier preserves the invariant. If the owner is still active-disquiet, itimmediately takes over the responsibility for scanning the descendents of the object. If the owneris passive, the scan-request is not acknowledged until all the descendents have been scanned; theclient process cannot become quiet until it has received this acknowledgement. Notice that themutator operation cannot have been made from a red out-object in a passive-quiet process. If itwere, the red out-object would have been unreachable from the client's local roots: the action musttherefore have been caused by a prior external mutator action. But in this case the out-objectwould have been repainted green by its write barrier. Thus the barrier su�ces to ensure that anyscan-request has an active-disquiet process ultimately responsible for it.5 Multiple Group CollectionVery few studies have measured the performance of distributed garbage collection algorithmsand behaviour of the programs they support. In particular, comparatively little is known aboutthe topology or demographics of distributed object systems |for example, how common aredistributed cycles, how large are they, how long lived are they? A de�ciency of many proposalsfor group-based distributed garbage collectors, including our earlier work [33], is the treatmentof inter-group garbage cycles.4In our implementation, we send both messages in the same remote procedure call.8

PT

X

Cycle A Cycle B

Figure 5: partial tracng B is dependent on partial tracing A.Our new algorithm allows di�erent collecting groups to cooperate for garbage collection. Scala-bility demands that distributed garbage collections may be initiated independently, but this raisesthe possibility that two independently initiated groups may meet in one or more processes. Thereare two ways in which distributed structures, hence groups identi�ed by mark-red, may overlap.First, a process may be a member of more than one group despite there being no reference fromany object in one group to any object in any other group. Consequently no object will visited bycollector processes of more than one group. Alternatively, an object may be referenced by objectsin more than one group. It is this more interesting and challenging alternative that we addressnow.There are three possible strategies for resolving this matter. First, all interaction betweentwo independent distributed garbage collections could be prohibited whilst nevertheless permit-ting inter-group references (see [33]). This has the advantage of simplicity as it eliminates allinteraction between distributed collectors, and obviates any need for synchronisation either toassure correctness and termination, or to bound the size of a collection. However, it fails to collectgarbage cycles that span groups.The second strategy is to allow both collections to proceed, but to ignore one another. Ine�ect, the groups retain their own identity but overlap. This requires that the collectors do notshare any state (the colour and red-set information held in the in- and out-tables). This could beachieved by maintaining one copy of this state information for each collection group, and havingall garbage collection messages signed with the identity of their group (i.e. the identity of theirinitiating process). The obvious drawback is that, while it is scalable and complete, it is neithertime nor space e�cient as it leads to repeated work.The third strategy is to merge the two collecting groups into a single group, thereby givingcompleteness and e�ciency albeit at the cost of greater complexity. To collect garbage datastructures that span two groups, some form of synchronisation must exist between the groups.One group maybe be dependent on the other, and unable to determine that the structure it isholding is garbage until the other has also determined that its portion of the structure is garbage.In the example in �gure 5, the shaded group cannot detect that its structure is garbage until theclear group has completed its scan phase.5.1 Partial tracing objectsOur algorithm records this dependency information explicitly. Each in- and out-object holds (inaddition to the colour) a list marks of groups that have visited the object; the head of this list iscalled the mark.The Network Objects library handles all communication between network objects through aspecial object in each process [8]. We adopt the same approach to support our partial tracingmechanisms by constructing a separate partial tracing object (pto) PTid for every group that visits9

a participant process:PTid = (id, participants, ins, outs, responsibles, dependents)whereid is a unique identi�er. In general, a distributed garbage collection can be identi�ed by itsinitiating process and the set of suspect objects from which it starts. For simplicity we shallusually assume id and the initiator to be synonymous.participants the members of the group collaborating to collect garbage.ins, outs in- and out-objects respectively in this process visited by this group.dependents pto's that are dependent on this object.responsibles pto's that are responsible for this object.For convenience, we denote the colour of an object with mark B by redB , greenB , etc. Mostcommunication between groups is handled done through these local pto's (ambassadors?) withoutexchanging messages across the network.5.2 Merging mark-redTwo groups may merge if they meet when they are in the same phase (i.e. the mark-red phase).As before, each pto executes alternate local and remote steps in each phase. When it becomespassive-quiet, it returns an acknowledgement to its parent tracing object.The local mark-red step of a pto PTB propagates red from each in-object i that PTB hasmarked red to each out-object o reachable from i:ML.1 If o has not been coloured, then it is reddened and its mark set to PTB.ML.2 If o has already been marked red by PTB, then no further action is necessary.ML.3 If o was marked red by another pto PTA, then two groups have met | we say that A isdependent on B and that B is responsible for A. PTB is appended to o:marks, PTB is addedto PTA:responsibles, and PTA to PTB :dependents.ML.4 If o is green, it must have been marked by another group and the red wave-front retreats.When a remote step of PTB from process P reaches an in-object i, a new pto is constructed asnecessary to represent group B:MR.1 if i is uncoloured or redB , P is added to its red set and, if necessary, i is marked redB .MR.2 If i is redA and a 6= b, P is also added to i's red set. In this case, as in the local step, PTBis appended to i:marks and to PTA:responsibles, PTA to PTB:dependents.MR.3 If i was green, no further action is taken.As in the non-merging algorithm, as each pto PTB becomes passive-quiet it returns a list ofthe participants it and its children have visited to the pto whose remote step caused it to becreated. No further synchronisation is needed between the mark-red phases of each group, andthese phases terminate as described in section 4 above. Again, at the end of the mark-red phase,each initiator I will know the participants in its group, and objects in participants reachable fromsuspects will have been painted red (with their marks list identifying all the groups of which theyare members). 10

5.3 Scanning merged groupsThe aim of the merging collector is now to identify those objects that are not reachable from aroot or from outside the merged super-group. A group cannot make such a decision until it knowsthat all the groups upon which it depends have completed their scan phase, too.On termination of its mark-red phase, the initiator instructs all participants in its group tostart the scan phase, as before. However an in-object may be part of more than one group: inthis case the process will contain a pto with a non-empty responsibles set. If any pto waiting tostart the scan phase receives a scan-request, it simply marks the in-object green but does not yettake a local step.The roots of the scan phase for pto PTB are:� local roots,� green and uncoloured in-objects,� any red in-object marked either by PTB or any group responsible for it | PTB :responsibles| whose client and red sets di�er, and� any other red in-objects marked by other groups.The initial scan step of a pto PTB:SI.1 marks green any redB in- or out-object that is in, or reachable from, the local root set.The remote step from a greenB out-object to a corresponding in-object i:SR.1 marks i green if it is red and had been visited by a mark-red request from PTB (B 2 i:marks).The pto that originally marked i then executes a local step to propagate the green mark,once it has started its scan phase.SR.2 retreats if i is red but PTB was not a member of i:marks.SR.3 retreats if i is not red.The local scan phase step for PTB from a greenB in-object to those out-objects o in the sameprocess reachable from it:SL.1 greens o if it is red and B 2 o:marks.As usual, a pto PTB becomes quiet in the scan phase when it has no more local steps to performand has received acknowledgements for all the remote steps that it has executed. It returns to itsparent tracing object a list of all the groups upon which it is dependent, PTB:responsibles5. Notethat PTB:responsibles = [i:mark=B i:marksThe sweep phase for PTB isSW.1 remove all redB from the in-table, and repaint as uncoloured all greenB , clearing their markslists.5Note that group A may be responsible for group B and vice-versa.
11

5.4 TerminationThe scan phase of a group cannot terminate as long as it is possible for a member of the groupto receive further scan requests. Our modi�cation of Augusteijn's algorithm resolved this formembers of a single group (see section 4), but now groups may receive scan-requests from membersof other groups. We note however that there will be an active-disquiet process responsible for theserequests, and say that a process is stable if it is not active-disquiet. Once a process becomes stableit can never become active-disquiet again: although it may perform scan steps these will be onbehalf of other active-disquiet processes. We say that a group is partially terminated if all itsparticipants are stable. Our termination property for a single group is that all groups (initiators)on which it depends are partially terminated. We de�ne a relation Dependent :De�nition 1 8 pto's PTA; PTB in a process, Dependent(PTB ; PTA) � PTA 2 PTB.responsiblesand we calculate its reexive transitive closure, Dependent*. We adopt the simple protocol ofpassing tokens around a ring formed by initiator members of the super group [32]. When a tokenreturns to the initiator that created it, the scan phase of that group is complete. As soon as aninitiator I becomes stable, it constructs a token. The token has two parts:terminated a list of the groups in ring that are known to have terminated; initially this holds Ialone.next a set of initiators not yet visited; initially this holds the groups responsible for I , I:responsibles.Propagation of the token around the ring is simple. An initiator process I retains the token untilall members of its group are stable, i.e. the group is partially terminated. Then, if the head ofthe token's terminated list is I , then the scan phase has terminated. Otherwise, I (i) removesitself from the next set and appends it to the terminated list, (ii) appends any of its responsiblegroups, I:responsibles, that are not members of the terminated list to the next list, and (iii) passesthe token to the head of the next list. If this list is empty, all the Dependent*(I) groups haveterminated and the token is returned to its owner, the head of the terminated list.6 Mapping the algorithm onto Network ObjectsOur algorithm is built on top of the reference listing mechanism provided by the Network Objectsdistributed memory manager, albeit slightly modi�ed [8]. The Network Objects collector is resilientto communication failures or delays, and to process failures. In this section we describe how ouralgorithm is mapped onto the Network Objects system. In particular we are bound to account forthe collection of local and acyclic distributed garbage, and synchronisation between mutators andcollectors6.1 The local collectorNetwork Objects is a distributed object library for Modula-3, a garbage-collected language [10].The local collector is a slightly modi�ed version of the SRC Modula-3 incremental, mostly copyingcollector [4]. Synchronisation between the mutator and the local collector is provided by a page-wise read-only barrier [1].6.2 The acyclic distributed collectorNetwork Objects uses reference lists rather than counts: any client process holds at most onesurrogate for any given network, or concrete, object. Our in-table is represented by that part of(a modi�ed version of) the Network Objects' object table, that contains references, or wireReps,to concrete network objects, and our out-table is that part that contains references to surrogateobjects. 12

Communication failures are detected by a system of acknowledgements. However, a processthat sends a message but does not receive an acknowledgement cannot know whether that messagewas received or not. Unlike reference counting, reference listing operations are idempotent and soresilient to duplication of messages. Network Objects' dirty call mechanism also prevents out-of-order delivery of messages from causing the premature reclamation of objects.An owner of a network object can also detect the termination of any client process. Any clientthat has terminated is removed from the client set of the corresponding concrete object, allowingobjects to be reclaimed even if the client terminates abnormally. Unfortunately, communicationdelay may be misinterpreted as process failure, in which case an object may be prematurelyreclaimed. Proof of the safety and liveness of the Network Objects system may be found in [7].6.3 The cyclic distributed collectorThe mark-red trace starts from a set of objects suspected of being garbage. A simple solution,would be to use the local collector alone to identify those surrogates only reachable from the objecttable. A more sophisticated heuristic is to estimate an object's minimum distance from a root,measured by inter-process references | the distance heuristic [26]. The insight behind the distanceheuristic is that the estimate for objects in a distributed garbage cycle will increase without bound;once a threshold is reached for an object, we have some con�dence, but no guarantee, that theobject is garbage.Both the mark-red and the scan phases require mark colours to be transmitted locally andremotely. Because this phase simply constructs a conservative estimate of those objects thatmight be garbage, and therefore need not be accurate, red marks can be disseminated withoutsynchronisation with either mutators or local collectors. On the other hand, scan phase tracingmust be accurate with respect to the red subgraph in order to ensure that it reaches all red objectsthat are live. Mostly Parallel garbage collection [9] uses operating system support to detect thoseobjects modi�ed by mutators (actually pages that have been updated within a given interval).When the local scan phase process has visited all objects reachable from its starting points, themutator is halted while the graph is retraced from roots any modi�ed objects. Because most of thescanning work has already been done, it is expected that this retrace will terminate promptly (theunderlying assumption is that the rate of allocation of network objects, and of objects reachablefrom those network objects, is low).Mutator actions scan-requests may also be sent asynchronously and these may require theout-object descendents of the receiving in-object to be repainted green atomically. The simplestmethod of propagating marks from in- to out- objects is to `stop the world' in that process andperform a standard recursive trace from the in-object. We claim that this does not cause excessivedelay as this event is unlikely to occur if our heuristic for �nding suspects is good, and moreoverit is likely that objects reachable from a live in-object are already known to be live.7 SafetyThe safety requirement for our algorithm is that live objects are never reclaimed. First we notethat the system of acknowledgements ensures that marking requests are guaranteed to be deliveredto their destination unless either client or owner process fail before the message is safely deliveredand acknowledged. Although it is possible that messages might be duplicated, marking is anidempotent operation (cf. reference listing, above).To demonstrate that the merging algorithm is correct, we briey outline how it can be shownthat, if a pto PTB is in its sweep phase, then no redB objects in the same process can receive a scanrequest, and hence that no redB object can be live in B's sweep phase. First, we conservativelyde�ne an object x to be live(x) if(9P 2 supergroup^9r 2 Roots(P)^path(r; x))_ (9Q 62 supergroup^9o 2 out-table(Q)^path(o; x))13

Suppose that x is live but erroneously reclaimed by pto PTB in process P . By SW.1, redB(x)^live(x). Thus (9i 2 in-table(P) ^ path(i; x) ^ live(i)) _ (9r 2 Roots(P) ^ path(r; x))There cannot have been such a path from a local root before PTB took its initial scan step (sinceSI.1 would have greened x) so only a subsequent remote method invoked on an in-object i0 fromwhich x is reachable could have created this path. But this means that x would have been repaintedgreen, either by the barrier on a red i0 or because a non-red i0 would have been a local scan rootfor PTB .So x must have been reachable from i when PTB took its initial scan step, and this i cannothave been a local scan root (SI.1). Hencered(i) ^ (i:redSet = i:clientSet) ^ (i:mark = PTB _ i:mark 2 PTB :responsibles)All out-objects o (i.e. o 2 i:clientSet) from which i is reachable must be red (MR.1 or MR.2),and by hypothesis, at least one such redA, for some A, must be live. We need to show that groupA has completed its scan phase and hence that o can never become green.If A = B then the ptos responsible for both x and o are members of the same group. Henceo's pto has completed its phase. Alternatively, A 6= B, in which case, A 2 PTB :responsibles(MR.1 or MR.2) and hence a member of the responsibles set of the initiator of group B (the �nalaction of a pto in the scan phase is to return a list of responsible groups to its initiator). Thescan phase termination for group B sends a token to, inter alia, the initiator of group A (sinceA 2 PTB :responsibles). Group B does not enter the sweep phase until A (and other responsiblegroups) have returned the token, but group A will not do so until all its members are passive-quiet.Similar arguments show that, for redA o to become green, it must be reachable from someredA in-object that is repainted green by a scan request. This scan request cannot originate froma group in Dependent*(A) (all pto's within Dependent*(A) are stable since A has received itstoken back), so it must be from an out-object o00 in a third group, C 62 Dependent*(A). Since thein-object was red, its red set contained o00 and hence its marks contained C, i.e. C is responsiblefor group B. But this means that C 2 Dependent*(A). Thus no such scan request can occur.Hence group A has completed its scan phase and the red o can never become green. Inductionon the the length of the path of red objects (within ithe super group) between x and either a rootor an in-object with a client outside it completes the proof that no redB object is live at the startof B's sweep phase.8 Related WorkDistributed reference counting can be augmented in various ways to collect distributed garbagecycles. Juul and Jul [22], periodically invoke global marking to collect distributed garbage cycles,tracing the whole graph before any cyclic garbage can be collected. Even though some degree ofconcurrency is allowed, this technique cannot make progress if a single process has crashed, even ifthat process does not own any part of the distributed garbage cycle. This algorithm is complete,but it needs global cooperation and synchronisation, and thus does not scale.Maeda et al. [25] present a solution also based on earlier work by Jones and Lins using partialtracing with weighted reference counting [21]. Weighted reference counting is resilient to raceconditions, but cannot recover from process failure or message loss. As suggested by Jones andLins, they use secondary reference counts as auxiliary structures. Thus they need a weight-barrierto maintain consistency, incurring further synchronisation costs.Maheshwari and Liskov [27] describe a simple and e�cient way of using object migration toallow collection of distributed garbage cycles, that limits the volume of the migration necessary.The distance heuristic estimates the length of the shortest path from any root to each object. Theestimate of the distance of a cyclic distributed garbage object keeps increasing without bound;that of a live object does not. This heuristic allows the identi�cation of objects belonging to14

a garbage cycle, with a high probability of being correct. These objects are migrated directlyto a selected destination process to avoid multiple migrations. However, this solution requiressupport for object migration (not present in Network Objects). Moreover, migrating an object isa communication-intensive operation, not only because of its inherent overhead but also becauseof the time necessary to prepare an object for migration and to install it in the target process[39]. Thus, this algorithm would be ine�cient in the presence of large objects. In a recent paperMaheshwari and Liskov use the same distance heuristic to identify suspect objects from whichthey start a back trace in an attempt to discover a root [28]. They employ similar reference listingand barriers schemes to those presented here. Unlike [15], their algorithm provides an e�cientmethod of calculating back-references and takes account of concurrency.Lang et al. [24] also presented an algorithm for marking within groups of processes. Theiralgorithm uses standard reference counting, and so inherits its inability to tolerate message failures.It relies on the cooperation from the local collector to propagate necessary information. Thisalgorithm is di�cult to evaluate because of the lack of detail presented. However, the maindi�erences between this and our algorithm is that we trace only those subgraphs suspected ofbeing garbage and that we use heuristics to form groups opportunistically. In contrast, Lang'smethod is based on Christopher's algorithm [11]. Consequently it repeatedly scans the heap untilit is sure that it has terminated. This is much more ine�cient than simply marking nodes red. Forexample, concrete objects referenced from outside the suspect subgraph are considered as rootsby the scan phase, even if they are only referenced inside the group. In the example of �gures 1and 2 our algorithm would need a total of 6 messages (5 for mark-red phase and 1 for scan phase),against a total of 10 messages (7 for the initial marking and 3 for the global propagation) for Lang'salgorithm. Objects may also have to repeat traces on behalf of other objects (i.e. a trace from a`soft' concrete object may have to be repeated if the object is hardened). Their `stabilisation loop'may also require repeated traces. Finally, failures cause the groups to be completely reorganised,and a new group garbage collection restarted almost from scratch.Hudson et al. have adapted their Mature Object Space `train' algorithm for distributed garbagecollection [19, 18]. While their new algorithm collects all garbage, including distributed garbage,it requires an object substitution protocol to ensure that all old references to an object are updatedto refer to the new copy. Detecting that a train has no external references is also more complexin a distributed environment than in a uniprocessor one: they use a similar token ring techniqueto that we use for detecting super group termination.9 Conclusions and Future WorkThis paper has outlined a solution for collecting distributed garbage cycles, designed for theNetwork Objects system but applicable to other systems | a complete treatment will be foundin [34]. Our algorithm is based on a reference listing scheme [7], augmented by partial tracing inorder to collect distributed garbage cycles [21]. Groups of processes are formed dynamically tocollect cyclic garbage. Processes within a group cooperate to perform a partial trace of only thosesubgraphs suspected of being garbage. If necessary, groups can cooperate to collect garbage cyclesthat span them.Our memory management system is highly concurrent: mutators, local collectors, the acyclicreference collector and distributed cycle collectors operate mostly in parallel. Local collectorsare never delayed, and mutators are only halted by a distributed partial tracing to complete alocal-scan.Our system reclaims garbage e�ciently: local and acyclic collectors are not hindered. Thee�ciency of the distributed partial tracing can be increased by restricting the size of groups,thereby trading completeness for promptness. The use of the acyclic collector and groups alsopermits scalability whereas the ability to merge groups ensures completeness. We believe that, itthe absence of knowledge of problem being computed, it is unclear what action should be takenwhen two groups meet. A merger may not always be desirable. Instead it may be preferable to runmultiple overlapping groups. For example the best compromise may be to combine simultaneously15

occasional long-running but complete collections over very large groups with more frequent fastercompleting collections over small groups. Our algorithm o�ers the implementer the choice betweencompleteness and promptness at the level of groups, processes and individual objects. Groups candecide whether or not to merge, processes can decide whether to allow groups to merge, to overlapor to retreat from one another, and objects can decide on merger or retreat.Our distributed collector is fault-tolerant: it is resilient to message delay, loss and duplication,and to process failure. Expediency is achieved by the use of groups.The total overhead of by our algorithm depends on how frequently it is run. A very simplisticheuristic may lead to wasted and repeated work. However, even with a simplistic heuristic, aprobability of being garbage can be assigned to each suspect object that has survived a partialtracing. For example, we could take a round-robin approach by tracing only from the suspect thatwas least recently traced. Better still, the distance heuristic increases the chance of our algorithmtracing only garbage subgraphs, thereby1 decreasing the number of times a partial trace is run.2 limiting the mark-red trace to just garbage objects.3 reducing the number of messages for the scan phase to the best case.On the other hand, by only propagating distances over a certain threshold with mark-red requestswe can reduce the risk of multiple distributed collections in the same garbage cycle and thereforreduce the overheads of our algorithm.In the mark-red phase, tracing a distributed subgraph requires e tracing requests to be issued,where e is the number of inter-process edges within the subgraph. Because we use RPC andAugusteijn's algorithm, less than e tracing acknowledgements may be required. Replies fromdisquiet processes (or processes that contain no further references of interest) can be piggy-backedonto the RPC acknowledgements.The scan phase does not send any tracing requests to garbage objects. If the red subgraph istruly garbage, no scan requests are sent; otherwise tracing requests are sent to live objects andthe cost is as for the mark red phase. The sweep phase requires no messages to be sent.Merging of group collections does impose additional synchronisation overheads in terms of bothspace used by in-, out- and pto's, and in terms of messages passed. However note that� if, as we believe is likely to be the common case as a consequence of the distance heuristic[28], a group is not merged with another, then there is no additional message passing orsynchronisation overhead.� additional messages are sent1 at the start of the scan phase from initiators only to those processes from which thesingle-group algorithm would have retreated (number of edges between cooperatinggroups).2 between an initiator I and those other initiators on which it depends at the terminationof the scan phase (the number of messages is the number of groups in Dependent*(I));� scan acknowledgement messages sent when a pto becomes passive-quiet may be longer, sincethey contain the names of other groups for which this group is responsible.All other `inter-group' communication is transacted between partial tracing objects on the sameprocess without exchange of messages across the network.Early versions of our algorithm have been implemented. In particular, some choices for coop-eration with the mutator require further study and depend mainly on experimental results andmeasurements. We are also interested in heuristics for suspect identi�cation and group formation.16

References[1] Andrew W. Appel, John R. Ellis, and Kai Li. Real-time concurrent collection on stock multiproces-sors. ACM SIGPLAN Notices, 23(7):11{20, 1988.[2] Lex Augusteijn. Garbage collection in a distributed environment. In Jacobus W. de Bakker, L. Ni-jman, and Philip C. Treleaven, editors, PARLE'87 Parallel Architectures and Languages Europe,volume 258/259 of Lecture Notes in Computer Science, pages 75{93, Eindhoven, The Netherlands,June 1987. Springer-Verlag.[3] Henry Baker, editor. Proceedings of International Workshop on Memory Management, volume 986of Lecture Notes in Computer Science, Kinross, Scotland, September 1995. Springer-Verlag.[4] Joel F. Bartlett. Compacting garbage collection with ambiguous roots. Technical Report 88/2, DECWestern Research Laboratory, Palo Alto, CA, February 1988. Also in Lisp Pointers 1, 6 (April{June1988), pp. 2{12.[5] Yves Bekkers and Jacques Cohen, editors. Proceedings of International Workshop on Memory Man-agement, volume 637 of Lecture Notes in Computer Science, St Malo, France, 16{18 September 1992.Springer-Verlag.[6] David I. Bevan. Distributed garbage collection using reference counting. In PARLE Parallel Archi-tectures and Languages Europe, volume 259 of Lecture Notes in Computer Science, pages 176{187.Springer-Verlag, June 1987.[7] Andrew Birrell, David Evers, Greg Nelson, Susan Owicki, and Edward Wobber. Distributed garbagecollection for network objects. Technical Report 116, Digital Systems Research Center, 130 LyttonAvenue, Palo Alto, CA 94301, December 1993.[8] Andrew Birrell, Greg Nelson, Susan Owicki, and Edward Wobber. Network objects. Technical Report115, DEC Systems Research Center, Palo Alto, CA, February 1994.[9] Hans-Juergen Boehm, Alan J. Demers, and Scott Shenker. Mostly parallel garbage collection. ACMSIGPLAN Notices, 26(6):157{164, 1991.[10] Luca Cardelli, James Donahue, Lucille Glassman, Mick Jordan, Bill Kalsow, and Greg Nelson.Modula-3 report (revised). Research Report PRC{131, DEC Systems Research Center and OlivettiResearch Center, 1988.[11] T. W. Christopher. Reference count garbage collection. Software Practice and Experience, 14(6):503{507, June 1984.[12] Margaret H. Derbyshire. Mark scan garbage collection on a distributed architecture. Lisp andSymbolic Computation, 3(2):135 { 170, April 1990.[13] Edsgar W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten, and E. F. M. Ste�ens. On-the-y garbage collection: An exercise in cooperation. Communications of the ACM, 21(11):965{975,November 1978.[14] Paulo Ferreira and Marc Shapiro. Asynchronous distributed garbage collection in the Larchant cachedshared store. Available from Marc Shapiro, May 1996.[15] Matthew Fuchs. Garbage collection on an open network. In Baker [3].[16] Benjamin Goldberg. Generational reference counting: A reduced-communication distributed storagereclamation scheme. In Proceedings of SIGPLAN'89 Conference on Programming Languages Designand Implementation, volume 24(7) of ACM SIGPLAN Notices, pages 313{320, Portland, Oregon,June 1989. ACM Press.[17] Paul R. Hudak and R. M. Keller. Garbage collection and task deletion in distributed applicativeprocessing systems. In Conference Record of the 1982 ACM Symposium on Lisp and FunctionalProgramming, pages 168{178, Pittsburgh, PA, August 1982. ACM Press.[18] Richard L. Hudson, Ron Morrison, J. Eliot B. Moss, and David S. Munro. Garbage collecting theworld: One car at a time. In OOPSLA'97 ACM Conference on Object-Oriented Systems, Languagesand Applications | Twelth Annual Conference, volume 32(10) of ACM SIGPLAN Notices, pages162{175. ACM Press, October 1997.[19] Richard L. Hudson and J. Eliot B. Moss. Incremental garbage collection for mature objects. InBekkers and Cohen [5]. 17

[20] Richard E. Jones. Garbage Collection: Algorithms for Automatic Dynamic Memory Management.Wiley, July 1996. With a chapter on Distributed Garbage Collection by R. Lins. Reprinted February1997.[21] Richard E. Jones and Rafael D. Lins. Cyclic weighted reference counting without delay. In ArndtBode, Mike Reeve, and Gottfried Wolf, editors, PARLE'93 Parallel Architectures and LanguagesEurope, volume 694 of Lecture Notes in Computer Science. Springer-Verlag, June 1993.[22] Neils-Christian Juul and Eric Jul. Comprehensive and robust garbage collection in a distributedsystem. In Bekkers and Cohen [5].[23] Rivka Ladin and Barbara Liskov. Garbage collection of a distributed heap. In International Confer-ence on Distributed Computing Systems, Yokohama, June 1992.[24] Bernard Lang, Christian Quenniac, and Jos�e Piquer. Garbage collecting the world. In ConferenceRecord of the Nineteenth Annual ACM Symposium on Principles of Programming Languages, ACMSIGPLAN Notices, pages 39{50. ACM Press, January 1992.[25] Munenori Maeda, Hiroki Konaka, Yutaka Ishikawa, Takashi Tomokiyo, Atsushi Hori, and Jorg Nolte.On-the-y global garbage collection based on partly mark-sweep. In Baker [3].[26] Umesh Maheshwari. Fault-tolerant distributed garbage collection in a client-server object-orienteddatabase. In Third International Conference on Parallel and Distributed Information Systems, Austin,September 1994.[27] UmeshMaheshwari and Barbara Liskov. Collecting cyclic distributed garbage by controlled migration.In Proceedings of PODC'95 Principles of Distributed Computing, 1995. Later appeared in DistributedComputing, Springer Verlag, 1996.[28] Umesh Maheshwari and Barbara Liskov. Collecting cyclic distributed garbage by back tracing. InProceedings of PODC'97 Principles of Distributed Computing, 1997.[29] Jos�e M. Piquer. Indirect reference counting: A distributed garbage collection algorithm. In Aartset al., editors, PARLE'91 Parallel Architectures and Languages Europe, volume 505 of Lecture Notesin Computer Science. Springer-Verlag, June 1991.[30] David Plainfoss�e and Marc Shapiro. Experience with fault-tolerant garbage collection in a distributedLisp system. In Bekkers and Cohen [5].[31] David Plainfoss�e and Marc Shapiro. A survey of distributed garbage collection techniques. In Baker[3].[32] S. P. Rana. A distributed solution to the distributed termination problem. Information ProcessingLetters, 17:43{46, July 1983.[33] Helena C. C. D. Rodrigues and Richard E. Jones. A cyclic distributed garbage collector for Net-work Objects. In Ozalp Babaoglu and Keith Marzullo, editors, Tenth International Workshop onDistributed Algorithms WDAG'96, Bologna, October 1996.[34] Helena C.C.D. Rodrigues. Cyclic Distributed garbage Collection. PhD thesis, Computing Laboratory,The University of Kent at Canterbury, 1997. In preparation.[35] Marc Shapiro. A fault-tolerant, scalable, low-overhead distributed garbage collection protocol. InProceedings ot the Tenth Symposium on Reliable Distributed Systems, Pisa, September 1991.[36] Marc Shapiro, Peter Dickman, and David Plainfoss�e. Robust, distributed references and acyclicgarbage collection. In Symposium on Principles of Distributed Computing, Vancouver, Canada, Au-gust 1992. Superseded by [37].[37] Marc Shapiro, Peter Dickman, and David Plainfoss�e. SSP chains: Robust, distributed referencessupporting acyclic garbage collection. Rapports de Recherche 1799, Institut National de la Rechercheen Informatique et Automatique, November 1992. Also available as Broadcast Technical Report 1.[38] Marc Shapiro, Olivier Gruber, and David Plainfoss�e. A garbage detection protocol for a realisticdistributed object-support system. Rapports de Recherche 1320, INRIA-Rocquencourt, November1990. Superseded by [35].[39] N.G. Shivaratri, P. Krueger, and M. Singhal. Load distributing for locally distributed systems.Computer, 25(12):33{44, December 1992.[40] Gerard Tel and Friedmann Mattern. The derivation of distributed termination detection algorithmsfrom garbage collection schemes. ACM Transactions on Programming Languages and Systems, 15(1),January 1993. 18

[41] Paul Wilson. Distr. gc general discussion for faq. gclist mailing list (gclist@iecc.com), March 1996.[42] Paul R. Wilson. Garbage collection and memory hierarchy. In Bekkers and Cohen [5].

19

